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Abstract

This thesis is focused on exploring the mathematical concepts of Eulerian numbers,
Eulerian polynomials, and Grassmannian permutations. The main objective of this
research is to provide an introductory understanding of Eulerian polynomials and
Grassmannian permutations, with a particular emphasis on proving the polynomial
recursion. The thesis also aims to prove an important property of Eulerian polynomials,
namely that they are real-rooted.
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1 Introduction
The basic concept of discrete mathematics has been studied by mathematicians from many
different cultures and time periods. In ancient India, the concept of permutations was
studied as part of Combinatorics. Indian mathematicians developed a system for counting
the number of permutations of n objects, which is known as the "factorial" function[1].
For example, the number of permutations of 4 objects is 4 · 3 · 2 · 1 = 24. The concept
of permutation dates back to ancient Greek mathematics, where it was used in the study
of symmetry and geometric transformations. In the 17th century, Blaise Pascal, Pierre de
Fermat, and Abraham de Moivre continued this line of research in discrete mathematics.
Pascal is well known for his contributions to the field through his work on Pascal’s triangle.
De Moivre’s contributions to combinatorics were more focused on probability, where he
developed the theory of probabilities and introduced the concept of normal distribution. In
the 18th century, the Swiss mathematician Leonhard Euler made significant contributions to
the field of combinatorics through his work on graph theory, partitions, and Latin squares[14].

In the 20th century, permutations found further applications in areas such as cryptography,
coding theory, and computer science. The study of permutations continues to play a central
role in modern mathematics and science, and new applications of permutations are still being
discovered. Permutations can be used to solve many real-world problems, such as counting
the number of possible ways to arrange a group of people in a line or assigning tasks to a
team of workers. In its simplest form, a permutation is a way to arrange a set of n distinct
objects in a specific order. For example, if we have a set of three distinct objects A, B, and
C, then we can arrange them in six different ways: ABC, ACB, BAC, BCA, CAB, and CBA.

Eulerian numbers are integers that count the number of permutations of n elements that
have k descents, where a descent is defined as a position in the permutation where the value
is greater than the next value. Eulerian polynomials are polynomials that generalize Eulerian
numbers. Eulerian numbers and polynomials are essential concepts in combinatorics, with
a history dating back to the 18th century. These mathematical objects are named after
the renowned mathematician Leonhard Euler, who made significant contributions to their
development[5].
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2 Permutations
A permutation is a bijective function that maps a set of elements to itself.

Definition 2.1. A permutation of a set A is a bijective function ϕ : A → A that maps each
element of the set A to a unique element of A, in such a way that each element of A is
included in the mapping exactly once.

For example, Let A = {1, 2, 3, 4, 5} be a set, then ϕ(1) = 2, ϕ(2) = 3, ϕ(3) = 1, ϕ(4) = 5 and
ϕ(5) = 4 is one of its permutation. We can write this in standard notation as

ϕ =

(
1 2 3 4 5
2 3 1 5 4

)
.

Another way to write it is as ϕ = (1 2 3)(4 5). This notation is called cycle notation because
it emphasizes the cycles of the permutation. Each cycle represents a group of elements that
are swapped by the permutation.

In general, the set of all permutations of a set of size n is known as the symmetric group on
n elements, denoted by Sn[3].

Lemma 2.1 (Permutation Formula). The number of permutations of a set of size n is n!.
The number of elements in Sn is n!.

Proof of Lemma 2.1. Base case: When n = 1. In this case, there is only one permutation of
the set, which is the set itself.
Now assume that the formula holds for n = k, where k is a positive integer.
We need to show that the formula holds for k + 1 distinct elements. To prove the formula
for n = k + 1, consider a set S of size k + 1 distinct elements. We can choose any one of
these elements to be the first element in the sequence, giving us k + 1 choices. Then we
are left with a set of k elements to arrange, which can be done in k! ways by our inductive
hypothesis. Therefore, the total number of permutations of Sn is (k + 1) · k! = (k + 1)!.
By mathematical induction, the formula n! for the total number of permutations of a set of
size n is true for all positive integers n.
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3 Generating functions
A generating function is a formal power series of the form

G(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·

where the coefficients a0, a1, a2, a3, ... are typical elements of some algebraic structure, such
as the integers or polynomials. The coefficients of the power series correspond to the terms
in the sequence, and the variable x is a formal variable that is used to keep track of the
position of each term in the sequence. Generating functions are used to study the properties
of sequences and to solve combinatorial and algebraic problems. Generating functions are
used to study many different types of sequences, including sequences of integers, polynomials,
partitions, permutations, and more, and they have applications in combinatorics, number
theory, probability, statistics, physics, and engineering[17].
The generating function can be used to derive various identities and closed formulas such
as the Fibonacci numbers closed-form expression. The generating function for Fibonacci
numbers is

F (x) = x/(1− x− x2)

where n:th number Fn is the coefficient of the expansion of F (x).

3.1 Ordinary generating function

Definition 3.1. The ordinary generating function A(x) of the sequence (an) is the power
series defined by

A(x) =
∞∑
n=0

anx
n

where the summation ranges over all non-negative integers n. Note that we don’t care about
convergence.

The coefficients of the power series A(x) are the terms of the sequence (an), i.e., an is the
coefficient of xn in the power series expansion of A(x).
A very simple example of the sequence an = 1, 2, 3, 4, . . ., which is the sequence of positive
integers starting from 1, which has generating function, 1 + 2x + 3x2 + 4x3 + . . . , and now
we can see that

1 + 2x+ 3x2 + 4x3 + · · · = d

dx
(1 + x2 + x3 + x4 + · · · )

which the well known geometric series 1
1−x

= (1 + x2 + x3 + x4 + · · · ). Hence

1 + 2x+ 3x2 + 4x3 + · · · = d

dx

1

(1− x)
=

1

(1− x)2
=
∑
n≥0

(1 + n)xn.

Now let us consider the Fibonacci numbers and find out an exact formula for the function
F (x) =

∑
n≥0 Fnx

n, which generates the Fibonacci numbers. The recurrence relation of
Fibonacci numbers is

Fn = Fn−1 + Fn−2, n ≥ 2 with F1 = 0, F2 = 1.
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We have the function F (x) =
∑

n≥0 Fnx
n and if we separate the initial terms and use the

recurrence relation we get,

F (x) =
∑
n≥0

Fnx
n = x+

∑
n≥2

Fnx
n = x+

∑
n≥2

(Fn−1 + Fn−2)x
n.

Now if we rewrite the two sums in terms of generating function we get,∑
n≥2

(Fn−1 + Fn−2)x
n =

∑
n≥2

Fn−1x
n +

∑
n≥2

Fn−2x
n

= x
∑
n≥2

Fn−1x
n−1 + x2

∑
n≥2

Fn−2x
n−2

= x
∑
n≥0

Fnx
n + x2

∑
n≥0

Fnx
n

= xF (x) + x2F (x).

We have that

F (x) = x+ xF (x) + x2F (x) =⇒ F (x) =
x

(1− x− x2)
.

Once we get the closed formula for generating function, we need to express this as power
series. The roots of the polynomial (1 − x − x2) are −r1 and −r2, where r1 = 1−

√
5

2
and

r2 =
1+

√
5

2
. So the polynomial factors are (1− x− x2) = −(x+ r1)(x+ r2).

Now by using partial fraction decomposition, we obtain

F (x) =
1√
5

(
r1

x+ r1
− r2

x+ r2

)
.

Since r2 = − 1
r1

, we can rewrite this as,

F (x) =
1√
5

(
1

1− r2x
− 1

1− r1x

)
=

1√
5

(
∞∑
n=0

rn2x
n −

∞∑
n=0

rn1x
n

)

=
∞∑
n=0

1√
5
(rn2 − rn1 )x

n.

The definition of F (x) =
∑

n≥0 Fnx
n gives the closed formula for n-th Fibonacci numbers as,

Fn =
1√
5
(rn2 − rn1 ) .
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3.2 Exponential generating function

An exponential generating function is a generating function used in combinatorics to count
certain types of objects. While an ordinary generating function is used to count the number
of objects of a certain size, an exponential generating function counts objects based on their
structure or composition. For example, an ordinary generating function can be used to count
the number of ways to choose k items from a set of n items. In contrast, an exponential
generating function can be used to count the number of permutations of n objects based on
their cycle structure, or the number of partitions of a set of n objects based on the number
of parts and their sizes[13][17].

Definition 3.2. The exponential generating function of a sequence bn is defined as

F (x) =
∞∑
n=0

bn
n!
xn

where the summation ranges over all non-negative integers n.

Exponential generating functions are useful for counting permutations and other ordered
structures. For example, the exponential generating function for all permutations of n objects
is given by

F (x) =
∑
n

n!
xn

n!
.

This can be derived using the identity F (x) = 1 + xF (x) where F (x) stands for the
exponential generating function counting permutations. This can be seen as the first term
is a trivial "empty set" and the term xF (x) counts the permutation of non-empty sets
multiplication principle. Solving for F (x), we get

F (x) =
1

1− x
.

So,

∞∑
n=0

an
n!

xn =
∞∑
n=0

xn.

Comparing both sides gives an = n! which counts the number of permutation of set [n] which
is in agreement with Lemma 2.1.

4 Descents and ascents
Definition 4.1. Let π be a permutation on set [n] = {1, 2, ..., n}. We say π has a descent
at i ∈ {1, ..., n− 1} if πi > πi+1 and we say π has an ascent at i ∈ {1, ..., n− 1} if πi < πi+1.

For example the permutation the permutation π = 9 2 5 4 7 6 8 1 3 has 4 descents and 4
ascents. The descents occur at positions i = 1, i = 3, i = 5, and i = 7. The ascents occur at
positions i = 2, i = 4, i = 6, and i = 8.

7



4.1 Eulerian number

The Eulerian number is a family of integers that are named after the Swiss mathematician
Leonhard Euler. They arise in combinatorial problems that involve permutations and
partitions of sets. The Eulerian number An,k counts the number of permutations of the
set 1, 2, ..., n that have exactly k descents or ascents[5][9] .

Definition 4.2. For n ∈ N, the number of permutations in the π that have exactly k descents
is denoted by An,k, and such numbers are known as Eulerian number.

Example 4.1. Let n = 3 and k = 1. Then An,k = 4, there are four permutations of n = 3
with exactly k = 1 descent which are 132, 213, 312, 231. As we can see that 213 and 312 have
descents at position i = 1 and 132 and 231 at position i = 2.

We see that An,0 = 1 and An,n−1 = 1 since the only permutation of π with no descents is the
identity permutation, and the only permutation with n− 1 descents is (n, n− 1, · · · , 1). For
k ≥ n, An,k = 0, since the maximum amount of descents a permutation of set n can have is
(n− 1). As usual, we defined A0,0 = 1, since A0,0 represents the number of permutations of
an empty set with no descents or ascents, and this value is considered to be 1 by convention.
We can also see that An,n = 0 since there can be only (n− 1) descent in the permutation of
set [n].

Theorem 4.1 (Analytic formula). For all integers n and k such that, k < n we have

An,k =
k∑

j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n.

Proof of theorem 4.1. We begin by considering the case when k = 0. In this case, we are
interested in the number of permutations of [n] with no descents. The only permutation
satisfying this condition is the identity permutation. Thus, An,0 = 1. To verify the formula,
we substitute k = 0 into the equation

An,0 =
0∑

j=0

(−1)j
(
n+ 1

j

)
(1 + k − j)n = (−1)0

(
n+ 1

0

)
1n.

Next, we consider the case when k ≥ 1. For this case, we will construct an n, k-arrangement
of [n] with k black squares forming k+1 segments such that each segment is ascending runs.
Segments are allowed to be empty also. For example, an n, k-arrangements of n = 5 with
k = 3 black squares is

1 ■ 3 ■ 25 ■ 4

We observe that for an n, k-arrangement, the number of segments is one greater than the
number of black squares. We claim that the number of n, k-arrangements is equal to (k+1)n.
To see why, we can construct an n, k-arrangement in the following way. First, we distribute
k black squares to create k + 1 empty segments. We then distribute each number i from [n]
among the k + 1 segments, ensuring that the numbers within each segment are arranged in
ascending order. Each number has k + 1 choices of segments where it can be placed. Thus,
by applying the product principle, the total number of n, k-arrangements is (k + 1)n.
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Note that some black squares are removable and, the remaining segments still maintain the
ascending runs. For example,

■ 1 ■ 3 ■ 25 ■ ■4 ■

The arrangement has 6 black squares, but we can remove the black square at the front,
in the end, between 1 and 3 and one black square between 25 and 4 while preserving the
ascending runs within the remaining segments. A black square is removable if it is between
two numbers that are in increasing order, if it is alone at the very beginning, if it is alone at
the very end, or if there is no number in between the black squares.
We claim that the number of n, k-arrangements with no removable black squares is equal
to the Eulerian numbers. Since there is a bijection between these arrangements and the
permutations with k descents. Therefore, we have the following relationship

An,k = number of n, k-arrangements with no removable square.

Next, we define positions in the arrangement as the spaces between consecutive entries of a
permutation, as well as the space before the first entry and after the last entry. For example,
permutation 12345 has 6 positions

p 1 p 2 p 3 p 4 p 5 p p represent the position in this permutation.

For an n-permutation, we have a total of n + 1 positions. Let S ⊆ [n + 1], and let AS

represent the number of arrangements in which there is a black square in each position
belonging to S. Let |S| = i. Then we claim AS = (k + 1 − i)n. In order to see this first
take any n, k−arrangement that contains (k − i) black squares. There are (k − i+ 1)n such
arrangements. Now, we will insert i extra black squares by placing one in each position that
belongs to S. If a position already contains a black square, we simply put the new black
square immediately to the right of it. This procedure generates an n, k−arrangement that
falls within the set AS. Conversely, every n, k−arrangement belonging to AS can be obtained
precisely once using this method. Specifically, if a is an element of AS, we can obtain the
original n, k−arrangement by removing one black square from each of the i positions that
belong to S. This results in a unique n, k−arrangement with k − i− 1 black squares, which
corresponds to a. Thus, we have successfully constructed n, k-arrangements with removable
black squares in the set S. It now follows that there are (k−i+1)n many such arrangements.
By the Principle of Inclusion and Exclusion, we get

An,k = number of n, k-arrangements −
∑

S⊆{0,1,...,n},
1≤|S|≤k

(−1)|S|+1AS

An,k = (k + 1)n −
∑

S⊆{0,1,...,n},
1≤|S|≤k

((−1)|S|+1(k + 1− |S|)n

= (k + 1)n −
∑

S⊆{0,1,...,n},
1≤|S|≤k

(−1)i+1(k + 1− i)n

= (k + 1)n −
k∑

i=1

(−1)i
(
n+ 1

i

)
(k + 1− i)n

=
k∑

j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n.
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This completes the proof. [4]

Lemma 4.1 (Recursive Formula for Eulerian Numbers). The Eulerian numbers satisfy the
following recursive formula

An,k = (k + 1)An−1,k + (n− k)An−1,k−1 (An,0 = 1 (n ≥ 0), An,k = 0 (k ≥ n)). (1)

Proof of Lemma 4.1. We will use a bijective argument to prove this lemma. Note that the
Eulerian numbers An, k are defined as the number of permutations of [n] that have exactly
k descents.
Now let us consider a permutation σ counted by An, k and a permutation σ′ obtained by
removing the entry n. We want to remove the element n from σ and insert it back into the
permutation in such a way that we end up with a permutation of [n − 1] with either k or
k − 1 descents. There are two cases to consider:

• Removing n from σ does not change the number of descents k. In this case, the
resulting permutation is a permutation of [n − 1] with k many descents, so there are
An−1,k many of them. To reconstruct the permutation σ we have to insert n at the end
of σ′, or we have to insert n between two entries that form one of the k descents of σ′.
This means we have k + 1 choices for the position of n. Therefore, the contribution
from this case is (k + 1)An−1,k.

• Removing n from σ decreases the number of descents from k to k − 1. In this case,
the resulting permutation is a permutation of [n − 1] with k − 1 many descents, so
there are An−1,k−1 many of them. To reconstruct the permutation σ we have to insert
n at the beginning of σ′ or at any of the n− k − 1 places that are not descents in σ′.
This means that we have n− k choices to insert n in σ′. Hence, we conclude that the
contribution from this possibility is (n− k)An−1,k−1.

Adding the two cases, we get the recurrence relation An,k = (k+1)An−1,k +(n− k)An−1,k−1.
This completes the proof. [4]

Proposition 4.1. Given a positive integer n and 0 ≤ k ≤ n− 1, we have An,k = An,n−k−1.

Proof of Proposition. 4.1 We can simply take the reverse of any permutation with k descents
to obtain a permutation with n−k−1 descents. Therefore, An,k = An,n−k−1, as claimed.
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4.2 Eulerian polynomials

The Eulerian polynomials are a sequence of polynomials which coefficients are Eulerian
numbers[9].

Definition 4.3. Given a non-negative integer n, the n-th Eulerian polynomial An(x) is
defined as

An(x) =
n∑

k=0

An,kx
k

where An,k is an Eulerian number.

The first few terms of eulerian polynomials are,

A0(x) = 1

A1(x) = 1

A2(x) = 1 + x

A3(x) = 1 + 4x+ x2

A4(x) = 1 + 11x+ 11x2 + x3

A5(x) = 1 + 26x+ 66x2 + 26x3 + x4

A6(x) = 1 + 57x+ 302x2 + 302x3 + 57x4 + x5

A7(x) = 1 + 120x+ 1191x2 + 2416x3 + 1191x4 + 120x5 + x6.

Lemma 4.2. The following identity holds for all integers n and k:

An(x) =
∑
k≥0

k∑
j=0

(
n+ 1

j

)
(−1)j(1 + k − j)nxk.

Proof of Lemma 4.2. The Eulerian number An,k satisfies the analytic formula as shown in
4.1 and Eulerian numbers are coefficients of Eulerian polynomials. So the claim follows.

Proposition 4.2. For n ≥ 0, we have the identity∑
k≥0

(k + 1)nxk =
1

(1− x)n+1
An(x).

Proof of proposition. Let us consider the Lemma 4.2. We have

∑
k≥0

An,kx
k =

∑
k≥0

k∑
j=0

(
n+ 1

j

)
(−1)j(1 + k − j)nxk.

If we now rearrange the terms in this expression,∑
k≥0

An,kx
k =

∑
j≥0

(
n+ 1

j

)
(−1)jxj

∑
k≥0

(1 + k)nxk.

11



The binomial theorem tells us that (1 + x)a =
∑∞

k=0

(
a
k

)
xk. Using the binomial theorem, we

can write
∑

j≥0

(
n+1
j

)
(−1)jxj = (1− x)n+1. Finally, by rearranging the terms and using the

binomial theorem we arrive at∑
k≥0

An,kx
k = (1− x)n+1

∑
k≥0

(1 + k)nxk,

which then implies the formula.

Proposition 4.3. The Eulerian polynomials satisfy the following,

An(x) = x(1− x)A′
n−1(x) + (1 + (n− 1)x)An−1(x), (n ≥ 1) (2)

where A′
n−1(x) denotes the derivative of An−1(x) with respect to x and with intial conditions

A1(x) = 1.

Proof. We can prove this by using the identity from Proposition 4.2. We have the expression
for An(x). Using this we can find An−1(x) as (1−x)n

∑
(1+k)n−1xk. By taking the derivative

of An−1(x), we can express it as

A′
n−1(x) = n(1− x)n−1

∑
(1 + k)n−1xk + (1− x)n

∑
k(1 + k)n−1xk−1.

Substituting the expression we obtained and performing simple calculations of right-hand
side (RHS) yields

RHS = (1− x)n
∑
k≥0

(1 + k)n−1xk
(
1 + (n− 1)x− nx+ (1− x)k

)
= (1− x)n

∑
k≥0

(1 + k)n−1xk(1 + k)(1− x)

= (1− x)n+1
∑
k≥0

(1 + k)nxk

= An(x).

The recurrence holds as claimed.
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4.3 Grassmannian permutation

The study of Grassmannian permutations is essential to Schubert calculus, as the Schubert
polynomials depend on the relative order of the elements of a given permutation. Schubert
calculus is a field of algebraic geometry that involves the study of geometric objects called
Schubert varieties and their intersection theory. To compute the number of intersection
points of Schubert varieties, the Schubert calculus rule, a combinatorial formula involving
Schubert polynomials, is used[6][10][16].

Definition 4.4. Let π be a permutation on the set [n] = 1, 2, 3, . . . , n. We say that π is a
Grassmannian permutation if and only if the permutation has at most one descent.

For example, the permutation 312 has only one descent at position i = 2 and is considered
to be a Grassmannian permutation of the set {1, 2, 3}. On the other hand, the permutation
321 has two descents at positions i = 1 and i = 2, and is not a Grassmannian permutation.

Proposition 4.4. The explicit formula for the total number of Grassmannian permutations
on set [n] is given by 2n − n.

Proof. We can consider the analytic formula for Eulerian numbers 4.1,

A(n, k) =
k∑

j=0

(−1)j
(
n+ 1

j

)
(1 + k − j)n,

which calculates the number of permutations on set [n] that have exactly k descents. Putting
k = 1 gives,

A(n, 1) =
1∑

j=0

(−1)j
(
n+ 1

j

)
(1 + k − j)n

= (−1)0
(
n+ 1

0

)
(2n) + (−1)1

(
n+ 1

1

)
(1n)

= 2n − (n+ 1)1n

= 2n − (n+ 1).

Hence, there are 2n − (n+ 1) number of permutations of Sn that have exactly one descent.
The only permutation with zero descent is the identity permutation itself. Therefore the
total number of Grassmannian permutations of π = A(n, 1) + 1 = 2n − n.
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4.3.1 Bijective proof of Proposition 4.4

We want to show that the number of Grassmannian permutations is given by 2n−n. Consider
the set [n] = {1, 2, 3, · · · , n}.
For every subset A of [n], we generate Grassmannian permutations by arranging the elements
of A in increasing order, followed by the elements of the complement of A (i.e., the elements
not in A), also listed in increasing order. This construction guarantees that the resulting
permutation has at most one descent.

Now, let us analyze the number of permutations obtained through this construction, which
is equivalent to the total number of subsets of [n]. Since we are listing the elements of A
in ascending order, followed by the elements of the complement of A, there are 2n possible
subsets of [n]. However, we need to consider that this construction yields n + 1 instances
of identical permutations. Thus, we subtract n from the 2n. Consequently, the number of
Grassmannian permutations of [n] is 2n − n.[6]

5 Real-rooted
In this section, we will study the property of roots of Eulerian polynomials. The real roots
of a polynomial are important because they give information about the behavior of the
polynomial. We will show that the Eulerian polynomials have only real roots[5][18].

5.1 Interlacing

Definition 5.1. Let f and g be polynomials with real coefficients and with real roots fi and
gi respectively. We say that f interlaces g if deg(f) + 1 = deg(g) = n and the roots of f and
g are real and arranged in increasing order: g1 ≤ f1 ≤ · · · ≤ fn−1 ≤ gn.

Moreover, we say that f alternates left of g if deg(f) = deg(g) = n and f1 ≤ g1 ≤ · · · ≤
fn ≤ gn.We say that f interleaves g if either f interlaces g or f alternates left of g. We write
this as f ≪ g .

5.2 Eulerian polynomials are real-rooted

Proposition 5.1. The Eulerian polynomial An(x) has only real roots.

Proof. 5.1 Lets consider the Eulerian polynomials

An(x) =
n∑

k=0

An,kx
k.

For the first few terms of the Eulerian polynomials, it is easy to check that the roots are
indeed real. We will prove this proposition by induction. Base case: For n = 0, 1, the
Eulerian polynomial A0(x) and A1(x) is simply 1, which has no roots. Thus, the proposition
holds for the base case.
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Inductive Step: Assume that the proposition holds for all n ≤ k − 1, where k ≥ 0. We will
prove that it holds for n = k. Now consider the Eulerian polynomials recurrence 4.3 for
n ≥ 2. We have

An(x) = x(1− x)A′
n−1(x) + (1 + (n− 1)x)An−1(x)

= xA′
n−1(x) + An(x)− x2A′

n−1(x)− xAn−1(x) + nxAn−1(x)

Let us introduce Ãn(x) = An(x)x so that Ã′
n(x) = An(x) + xA′

n(x) which gives the new
recurrence

Ãn(x) = x(1− x)Ã′
n−1(x) + nxÃn−1(x).

We conclude that nxÃn−1(x) ≪ x(1 − x)Ã′
n−1(x) even if the leading coefficient is negative.

Note that Ã′
n−1(x) ≪ Ãn−1(x). However the sum of the x(1 − x)Ã′

n−1(x) + nxÃn−1(x) has
positive leading coefficient due to n ≥ 2. Now if we draw a graphic illustration of how this
looks,

Figure 1: Graphic illustration of recurrence relation

In Figure 1 Ãn(x) = blue color, x(1− x)Ã′
n−1(x) = red color and xÃn−1(x) = green color.

Let b1, b2, . . . , bn be the roots of Ãn(x) in in decreasing order and let c1, c2, . . . , cm be the
roots of Ãn−1(x) in decreasing order. We claim that

bm ≤ cn ≤ bm−1 ≤ cn−1 ≤ bm−2 ≤ · · · ≤ c1 ≤ b1.

In order to justify why Ãn−1(x) interlaces Ãn(x), we can consider the term Ãn−1(x) in the
recurrence relation which has only real roots by assumption. Then the term Ã′

n−1(x) also
has real roots since Ã′

n−1(x) ≪ Ãn−1(x). Thus the polynomial Ãn−1(x) and Ã′
n−1(x) changes

signs at the roots just like in Figure 1.
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Now, consider an interval (a, b) between two roots. We want to show that the Ãn(x) has a
real root at the interval. In the interval (a, b), both Ãn−1(x) and Ã′

n−1(x) maintain their signs
(either positive or negative) due to the ordering of the real roots. Therefore, the polynomial
Ãn(x) in the interval (a, b) maintains the same sign as the sum of these two terms, which
is positive if they have the same sign and negative if they have opposite signs. By the
Intermediate Value Theorem, since Ãn−1 is negative and Ãn(x) is positive (or vice versa),
there exists at least one root of Ãn(x) in the interval (a, b). Since this is true for any real
root x of Ãn(x). This accounts for (n − 1) roots of Ãn(x). Since we have accounted for all
but one root, the remaining last root must be real since complex roots of polynomials with
real coefficients come in conjugate pair we conclude that Ãn(x) has only real roots.
This completes the proof. [4]
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