
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Bang-Bang control in Reinforcement Learningand System
Identification

av

Alexander Westberg

2023 - K14

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Bang-Bang control in Reinforcement Learningand System
Identification

Alexander Westberg

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Yishao Zhou

2023

Abstract

From numerical results it is observed that a Bang-Bang controller has com-
petitive performance against a continuous controller on different tasks in Re-
inforcement learning problems. The performance of a Bang-Bang controller in
Reinforcement learning problems is yet not fully understood yet, and is thus and
open research question. In this paper we explore this open question and provide
an partial explanation with mathematical proof why this phenomena exist. We
start by understanding the foundations of control theory and the Bang-bang
controller. With an existing mathematical foundation of System Identification
we derive errors for approximating dynamical systems. Using the error terms,
we prove that the Bang-Bang controller yields a better approximation then a
continuous controller in Reinforcement learning problems.

Contents

1 Introduction 1
1.1 Insights from numerical results 1
1.2 Hypothesis of performance for the Bang-Bang controller 3

2 Linear Algebra Preliminaries 4
2.1 Definite Matrices . 4
2.2 Rayleigh quotient . 7
2.3 Cayley-Hamilton Theorem . 10
2.4 Matrix calculus . 11

2.4.1 Scalar-by-matrix derivation 11
2.4.2 Scalar-by-vector derivation 15

2.5 Vector- and Matrix Norms . 17

3 Control Theory and Dynamical systems 20
3.1 Reachability (Discrete time) . 21
3.2 Optimal control . 24

3.2.1 Performance indices . 24
3.3 Dynamic programming (DP) . 25

3.3.1 DP in discrete time . 27
3.3.2 The dynamic programming equation 28

3.4 Pontryagins Minimum Principle (PMP) 30
3.4.1 Discrete time . 30
3.4.2 Continuous time . 33
3.4.3 Example: Bang-Bang control 34

4 Reinforcement learning (RL) 37
4.1 Known Dynamics and cost: Dynamic programming 39
4.2 Unknown Dynamics: Model-free vs Model-Based

methods . 42

5 System Identification 43
5.1 Upper bound and errors . 43

5.1.1 Derive an error term . 43
5.1.2 Derive the Covariance matrix 45
5.1.3 Derive upper bound on error term A 46
5.1.4 Derive upper bound on error term B 48

5.2 Error Bounds for Bang-Bang- VS Gaussian controller 48
5.2.1 Standard deviation for the controllers 48
5.2.2 Smallest eigenvalues of Σx with different controllers . . . 49

6 Conclusions 50

Acknowledgement

I would like to acknowledge and thank my supervisor, Yishao Zhou, for her guid-
ance and support during this thesis. Her expertise in mathematics and control
theory greatly influenced the research direction and quality. I appreciate her
time, feedback, and wisdom, which helped improve the ideas and methodologies.

1 Introduction

In the paper [6] the researchers provide numerical results in Reinforcement learn-
ing problems that when restricting agents to only extreme controls yields com-
petitive performance compared to continuous controllers. More specifically, they
only consider the maximum and minimum of an given controller compared to
an controller where all the available controllers are considered. In complex con-
trol problems where the controls are of high dimensions it seems unlikely that
the optimal controller would only be strictly Bang-Bang controller, which is
pointed out by the researchers. But the competitive observed results with the
Bang-Bang controller does raise a question why it is observed. The researchers
from [6] does give several a hypothesis why this phenomena occurs but without
mathematical proof. One of them being that when the dynamical system is un-
known the Bang-Bang controller enables better exploration. Therefore a better
approximation of the given dynamical system.

The goal of this paper is to prove that under reasonable assumptions the
Bang-Bang controller yields a better approximation of an unknown dynamical
system. We will extend the ideas from the paper [2] which provide a good math-
ematical foundation for identifying discrete dynamical systems. With the exten-
sion of those ideas we will prove that the Bang-Bang controller approximate any
discrete dynamical system better then a Gaussian continuous controller under
an learning process.

This paper begins with preliminaries in Linear Algebra. Both control theory
and Reinforcement learning heavily rely on this subject. Understanding it, will
be a crucial part of our examination of control theory, Reinforcement learning
and our analysis of the Bang-Bang controller in System Identification.

In section 3 we examine control theory, specifically about Reachability and
Optimal control. Here we will closely study different approaches of finding an
optimal controller. In section 4 we examine the basics of Reinforcement Learning
and draw a distinction between control theory and Reinforcement Learning.
In section 5, we will show how to apply Reinforcement Learning; we derive a
method for learning a model from data. Then in 5.2, we show how a Bang-Bang
controller improve the error of the approximated model.

1.1 Insights from numerical results

In the Figure 1 we can see the results of using both the Bang-Bang and Gaussian
controller the researchers from [6] observed. We can observe that the result
with different algorithms and controllers varies between tasks. So it is not
clear that any of the two controllers are better then the other. But since these
two controllers are quite different from one another, it raises the question of
why the controllers have similar performance. The researches provide different
hypothesis of this question. Although they do give many ideas, but they are
not mathematically proved.

1

Figure 1: The rows the different algorithms that are being used for the different
tasks and the Columns are the different tasks the algorithms are being trained
on. Figure taken from [6].

Figure 2: The distributions of magnitude of the controllers for the trajectories
of the MPO algorithm in Figure 1. Figure taken from [6].

2

Figure 3: The explored environment by using different kinds of controllers during
two tasks. The rows shows the goal of the task and the columns are the different
kind of controllers. Figure taken from [6].

In Figure 2 we can see that even though all the controllers (in an interval)
are available to the Gaussian controller, it tend to choose the controllers at the
extremes. So, this algorithm (MPO short for Maxmimum A Posteriori Policy
Optimization) being used in the RL problems tend converge to an approximate
Bang-bang controller.

The goal of this paper is to provide a good mathematical foundation to
try to explain these result. We will investigate the theoretical framework of
mathematical optimal control. Which deals with deriving an controller given
some dynamical system and performance index, rather then learning it from
data which is usually done in Reinforcement learning.

Since control theory and Reinforcement learning (RL) both heavily rely on
the framework of linear algebra, we will have to build a strong understanding
of Linear algebra firstly before we go onto control theory and RL.

1.2 Hypothesis of performance for the Bang-Bang con-
troller

If the environment of an agent is unknown, the agent has to learn its envi-
ronment. The researchers from [6] give an idea that the using the Bang-Bang
controller will result in the agent exploring a larger part of its environment,
which is observed in their numerical experiments in Figure 3. So when an agent
explores a larger area, it will yield better results. The researchers argue that
costs of controllers can hinder the Gaussian controller from exploring and finding
the optimal controller. While costs of the Bang-bang controller can also hinder
the agent from achieving maximum performance due too only choosing maxi-
mum action. It is later argued that an optimal design should be a combination
of a Bang-Bang controller and Gaussian controller.

But this idea is not proved in that paper. In the Figure 3 they do show that
agents with an Bang-bang controller explores a larger area of its environment.

3

As said, it is not mathematically shown how a larger area explored will cause a
better performance. But it is an idea that we will prove later in this paper.

2 Linear Algebra Preliminaries

Linear algebra plays a pivotal role in the field of control theory, serving as a
fundamental mathematical framework for the analysis and design of control
systems. By employing mathematical models to represent these systems, we
can leverage linear algebra techniques to gain insights into their dynamics and
manipulate their responses. The application of linear algebra enables the ex-
amination of input-output relationships, investigation of system stability and
controllability, design of optimal control strategies.

In this section we will develop propositions, definitions and theorems in
linear algebra that will be necessary (directly or indirectly) for our analysis in
this paper. Some of the proofs is based on lecture notes and material from [8].

2.1 Definite Matrices

Definite matrices hold a significant importance in control theory. These matrices
are square matrices that possess distinct eigenvalue properties, providing crucial
insights into system dynamics. Positive definite matrices, in particular, play a
central role. Such matrices are associated with stable and well-behaved systems.

Definition 2.1. A symmetric matrix A ∈ Rn×n is called a positive definite
matrix if for all nonzero vectors x ∈ Rn

x⊤Ax > 0.

Proposition 2.1. A positive definite matrix A ∈ Rn×n has only positive eigen-
values.

Proof. If a matrix is positive definite then x⊤Ax > 0 for all nonzero vectors.
Now take any x eigenvector and corresponding eigenvalue λ of A

x⊤Ax = x⊤λx = λx⊤x = λ||x||22.

Since the euclidean norm ||x||22 > 0 for all nonzero vectors, the eigenvalue λ
must the positive since 0 < x⊤Ax = λ||x||22.

Proposition 2.2. If P ∈ Rn×n is a positive definite matrix then it is invertible.

Proof. If Px = 0 = 0 · x for some nonzero x ∈ Rn then 0 is a eigenvalue of P ,
which contradicts that P only has only positive eigenvalues. Therefore P must
be invertible.

4

Proposition 2.3. Any A ∈ Rn×n matrix that only has positive eigenvalue is a
positive definite matrix.

Proof. Now, from the Spectral theorem, an invertible symmetric matrix can be
decomposed into

A = V DV ⊤

where V ∈ Rn×n is an orthonormal matrix where columns are eigenvectors of
A and D ∈ Rn×n is a diagonal matrix, where the diagonal elements are the
eigenvalues of A.

Now take any vector x ∈ Rn and some vector y ∈ Rn where yi ∈ R are the
elements of y

x⊤V DV ⊤x = y⊤Dy =

n∑
i=1

λi · y2i > 0.

Definition 2.2. A symmetric matrix A ∈ Rn×n is called a positive semi-definite
matrix if for all nonzero vectors x ∈ Rn

x⊤Ax ≥ 0.

Proposition 2.4. If P ∈ Rn×n is a positive definite matrix and Q ∈ Rn×n is
a semi-definite matrix then P +Q is positive definite matrix.

Proof. Since for every nonzero x ∈ Rn we have that x⊤Px > 0 and x⊤Qx ≥ 0

x⊤(P +Q)x = x⊤Px+ x⊤Qx > 0.

Proposition 2.5. If P ∈ Rn×n is a positive definite matrix then its inverse
P−1 is also positive definite.

Proof. For any nonzero y ∈ Rn and define x = Py ∈ Rn. Since P in an invertible
matrix the range of Py is Rn. So, we have that

x⊤P−1x = y⊤P⊤P−1Py = y⊤Py > 0.

5

Proposition 2.6. If P ∈ Rn×n is a positive definite matrix and A ∈ Rn×n.
Then A⊤PA is a positive semi-definite matrix. If A is invertible, then A⊤PA
is a positive definite matrix

Proof. For any nonzero x ∈ Rn and some y ∈ Rn

x⊤A⊤PAx = y⊤Py.

Since A is not necessarily and invertible matrix, then there exist an x such
that Ax = 0 = y. Therefore there exist some vector x such that x⊤A⊤PAx =
y⊤Py = 0.

Now if A is invertible, there does not exist a vector x such that Ax = 0,
therefore for some nonzero z ∈ Rn Ax = z and

x⊤A⊤PAx = z⊤Pz > 0.

Proposition 2.7. If A ∈ Rn×n with dimension 0 < k ≤ n and singular values
0 < σ1 ≤ ... ≤ σk. Then

N∑
i=1

Ai(A⊤)i

is positive semi-definite if k < n and if k = n then it is positive definite, for any
N .

Proof. DecomposeAA⊤ into its Singular Value decomposition, recall that U, V ∈
Rn×n are orthonormal matrices, meaning that UU⊤ = U⊤U = I,

AA⊤ = (UΣV ⊤)(UΣV ⊤)⊤ = UΣV ⊤V ΣU⊤ = UΣ2U⊤.

Now, since Σ is a diagonal matrix with the singular values of A along its diag-
onal in a descending order, and the number of singular values depends on the
dimension of A.

If k < n then A has k singular values. So, there exists some y ∈ Rn such
that

(UΣ2U⊤)y = 0

since Σ has a dimension of k. We also see that if UΣ2U tx ̸= 0 then

x⊤UΣ2U⊤x = y⊤Σ2y =

k∑
i=1

(σk−i+1)
2 y2i > 0,

so it must be positive semi-definite.

6

Now if k = n then there does not exist x ∈ Rn such that UΣ2U tx ̸= 0
meaning that

x⊤UΣ2U⊤x =

k∑
i=1

(σk−i+1)
2 y2i > 0

for all x and some y. So it must be positive definite.
For the second part of the proof, if P1, P2 ∈ Rn×n are positive definite then

P1 + P2 is also positive definite, because

x⊤(P1 + P2)x = x⊤P1x+ x⊤P2x > 0.

Therefore if A is invertible then

N∑
i=1

Ai(A⊤)i

is positive definite.
If Q ∈ Rn×n is positive semi-definite then Qp + Qm is also positive semi-

definite for any p,m ∈ R, because if Qx = 0 then

x⊤(Qp +Qm)x = x⊤Qp−1(Qx) + x⊤Qm−1(Qx) = 0.

Now, if Qx ̸= 0

x⊤(Qp +Qm)x = x⊤Qpx+ x⊤Qmx > 0.

Therefore if A is not invertible then

N∑
i=1

Ai(A⊤)i

is positive semi-definite.

2.2 Rayleigh quotient

The Rayleigh quotient is a fundamental concept in linear algebra, providing a
means to characterize and analyze the properties of a matrix or a linear oper-
ator. It serves as a powerful tool for studying eigenvalues and eigenvectors of
a matrix or operator, allowing for the assessment of positive definiteness, and
other characteristics. In Control theory, understanding the properties of eigen-
values and eigenvectors is often required to understand certain system dynamics.
Therefore knowledge about Rayleigh quotients can be essential for solving con-
trol problems. Later in this paper, it will serve as one of our most valuable tools
for proving our key results.

7

Definition 2.3. Given a symmetric matrix A ∈ Rn×n and a nonzero vector
x ∈ Rn we define the Rayleigh quotient as

R(A, x)
x⊤Ax

x⊤x
.

The following theorem establishes key properties of the Rayleigh quotient,
specifically about its maximum and minimum value and its connection to the
eigenvectors and eigenvalues of the matrix A. It will be an important tool for
later on in the paper.

Theorem 2.1 (Min-max theorem, or Courant–Fischer–Weyl min-max princi-
ple). Let A ∈ Rn×n be an symmetric matrix with eigenvalues λ1 ≤ ... ≤ λk ≤
... ≤ λn. Then

λk = min
U

{max
x

{R(A, x) : x ∈ U, x ̸= 0} : dim(U) = k}.

In particular
λ1 ≤ R(A, x) ≤ λn,

meaning that
max

x
R(A, x) = λn, min

x
R(A, x) = λ1.

Proof. Since A is symmetric matrix, the Spectral theorem says that the matrix
A is diagonalizable and has an orthonormal basis of eigenvectors {u1, ..., un}
where ui is an eigenvector.

Now, if U is a subspace of dimension k, then its intersection with the sub-
space span({uk, ..., un}) is not zero. If it were zero then the span of the two
subspaces would be k + n− k + 1 which is impossible. Therefore there exists a
non-zero vector v in this intersection which we can write as

v =

n∑
i=k

aiui, ai ∈ R,

and whose Rayleigh quotient is

R(A, v) =
(
∑n

i=k aiui)
⊤A(

∑n
i=k aiui)

(
∑n

i=k aiui)⊤(
∑n

i=k aiui)
.

We have that Aaiui = λiaiui, so

R(A, v) =
(
∑n

i=k aiui)
⊤(
∑n

i=k λiaiui)

(
∑n

i=k aiui)⊤(
∑n

i=k aiui)

since the vector ui, uj are orthonormal vectors u⊤
i uj = 0 and u⊤

i ui = 1

R(A, v) =

∑n
i=k a

2
iλi∑n

i=k a
2
i

.

8

Now since λ1 ≤ ... ≤ λk ≤ ... ≤ λn

R(A, v) =

∑n
i=k a

2
iλi∑n

i=k a
2
i

≥ λk

and therefore
max{R(A, x) : x ∈ U} ≥ λk.

Since this is true for all subspaces U , we have that

min
U

{max
x

{R(A, x) : x ∈ U, x ̸= 0} : dim(U) = k} ≥ λk.

This is one inequality, we now find the other one. We now choose the k-
dimensional space V = {u1, ..., uk} where ui is an orthonormal eigenvector of A
where ui corresponds to the λi eigenvalue of A. We use the the same arguments
as in the previous equality. Take any vector v ∈ V that intersects with U which
is a subspace of dimension k, it must be a linear combination of basis

v =

k∑
i=1

aiui, ai ∈ R.

We have that

R(A, v) =
(
∑k

i=1 aiui)
⊤A(

∑k
i=1 aiui)

(
∑k

i=1 aiui)⊤(
∑k

i=1 aiui)
=

∑k
i=1 a

2
iλi∑k

i=1 a
2
i

≤ λk,

so
max

v
{R(A, v) : v ∈ V } ≤ λk

since λk is the largest eigenvalue in V . Therefore also,

min
U

{max
x

{R(A, x) : x ∈ U, x ̸= 0} : dim(U) = k} ≤ λk.

Taking these two inequalities we get that

min
U

{max
x

{R(A, x) : x ∈ U, x ̸= 0} : dim(U) = k} = λk.

To prove the last statements

max
x

R(A, x) = λn, min
x

R(A, x) = λ1.

Take U with dimension one, the smallest value of the Rayleigh quotient will be
equal to the smallest eigenvalue of A. Now also, take U with dimension n, the
greatest value of the Rayleigh quotient will be equal to the greatest eigenvalue
of A.

9

2.3 Cayley-Hamilton Theorem

In this section we will establish the Cayley-Hamilton Theorem. But we need
some other preliminaries first.

Definition 2.4. Let A ∈ Rn×n. The cofactor matrix C (or Minor) of A is a
matrix where each entry Cij of the cofactor matrix is a determinant of submatrix
of A. This submatrix of A is formed by deleting the i-th row and the j-th column
from A, and it is also multiplied by (−1)i+j .

The transpose of the cofactor matrix is also known as the adjugate (or clas-
sical adjoint) of A, denoted adj(A).

From Cramer’s Rule we have that

A adj(A) = adj(A) A = det(A)I.

Theorem 2.2 (Cayley-Hamilton Theorem). Let A ∈ Rn×n and p(s) = det(A−
sI) = a0 + a1s + · · · + an−1s

n−1 + ans
n be the characteristic polynomial of A.

Then the matrix A satisfies its own characteristic polynomial, meaning that

p(A) = a0I + a1A+ · · ·+ an−1A
n−1 + anA

n = 0.

The following proof is based on material from [9].

Proof. Let C(s) be the adjoint of (A− sI). Since the entries of C are cofactors
of (A − sI) they are polynomials of at most degree n − 1. Thus Cij(s) =
c0+c1s+ ...+cn−1s

n−1. Let C(s) = B0+B1s+ ...+Bn−1s
n−1 where Bi ∈ Rn×n

are constant matrices.
From Cramer’s rule we have that

(A− sI) adj(A− sI) = det(A)I ⇔

⇔ (A− sI)(B0 +B1s+ ...+Bn−1s
n−1) = (a0 + a1s+ · · ·+ an−1s

n−1 + ans
n)I.

We expand the left hand side and get

AB0 +AB1s+ ...+ABn−1s
n−1 −B0s−B1s

2 − ...−Bn−1s
n =

= (a0 + a1s+ · · ·+ an−1s
n−1 + ans

n)I.

Now, we get n+ 1 equations

−Bn−1 = anI,

ABn−1 −Bn−2 = an−1I,

ABn−2 −Bn−3 = an−2I,

. . . ,

AB1 −B0 = a1I,

10

AB0 = a0I.

Now if we multiply the first equation by An and the second by An−1, and we
continue this for the rest of the equations. We get

−AnBn−1 = anA
n,

AnBn−1 −An−1Bn−2 = an−1A
n−1 ⇔ −anA

n −An−1Bn−2 = an−1A
n−1,

An−1Bn−2 −An−2Bn−3 = an−2A
n−2 ⇔

⇔ −anA
n − an−1A

n−1 −An−2Bn−3 = an−2A
n−2 ⇔

⇔ −anA
n − an−1A

n−1 − an−2A
n−2 = An−2Bn−3 ⇔

⇔ −(

n∑
i=n−2

aiA
i) = An−2Bn−3,

. . . ,

A2B1 −AB0 = a1A ⇔ −(

n∑
i=2

aiA
i)− a1A = AB0,

AB0 = a0I ⇔ −(

n∑
i=1

aiA
i) = a0I ⇔ 0 = a0I + a1A+ a2A

2 + ...+ anA
n.

So, the last equation shows the equality we wanted to derive.

2.4 Matrix calculus

Matrix calculus is a specialized branch of calculus that deals with derivatives and
integrals involving matrices and vectors. It extends the principles of traditional
calculus to handle multidimensional objects. In control theory, matrix calculus is
essential because it allows for differentiation and integration functions involving
matrices of matrices and vectors that represent the dynamic behavior of systems.

2.4.1 Scalar-by-matrix derivation

Definition 2.5. If f is any scalar function and X is an m× n variable matrix,
we define function-by-matrix derivative as

∂f

∂X
=

∂f/∂x11 . . . ∂f/∂x1n

...
. . .

...
∂f/∂xm1 . . . ∂f/∂xmn

 .

Definition 2.6. The trace of a matrix A ∈ Rn×n is defined as

tr(A) =

n∑
i=1

Aii.

11

We develop some notation for referencing the elements in matrices. For the
ik-th element in the matrix [AB] will be the i-th row of A ∈ Rn×m multiplied
by the k-th column of B ∈ Rm×p. So

[AB]ik =

m∑
j=1

AijBjk.

We can even extend this to 3 matrices, where A ∈ Rn×m, B ∈ Rm×p, C ∈ Rp×n

that are multiplied with each other

[ABC]il =

m∑
j=1

Aij [BC]jl =

m∑
j=1

Aij

p∑
k=1

BjkCkl =

m∑
j=1

p∑
k=1

AijBjkCkl

where C ∈ Rp×

The two following proposition is based upon notes from [1].

Proposition 2.8. Assume X is an m× p variable matrix and A ∈ Rn×m, B ∈
Rp×n. Then

∂tr(AXB)

∂X
= A⊤B⊤,

and if X is an m× p variable matrix and A ∈ Rn×p, B ∈ Rm×n

∂tr(AX⊤B)

∂X
= BA.

Proof. For the first statement we have that

tr(AXB) =

n∑
i=1

[AXB]ii =

n∑
i=1

m∑
j=1

Aij [XB]ji =

n∑
i=1

m∑
j=1

Aij

p∑
k=1

XjkBki =

=
n∑

i=1

m∑
j=1

p∑
k=1

AijXjkBki.

Now if we take the derivative with respect to Xjk, all the terms without Xjk

will disappear, so we get that

∂tr(AXB)

∂Xjk
=

n∑
i=1

AijBki = [BA]kj .

So, the jk-th element in the in derivative matrix would be kj-th element of [BA],
which is equivalent of the jk-th element of its transpose

[BA]⊤ = A⊤B⊤.

12

Therefore
∂tr(AXB)

∂X
= A⊤ B⊤.

Now similarly for the second formula, and to remind A ∈ Rn×p, B ∈ Rm×n

tr(AX⊤B) =

n∑
i=1

[AX⊤B]ii =

n∑
i=1

p∑
j=1

Aij [X
⊤B]ji =

n∑
i=1

p∑
j=1

Aij

m∑
k=1

X⊤
jkBki =

=

n∑
i=1

p∑
j=1

m∑
k=1

AijXkjBki.

We take the derivative with respect to Xkj

∂tr(AX⊤B)

∂Xkj
=

n∑
i=1

AijBki = [BA]kj .

So the kj-th element of the derivative matrix is the kj-th element of [BA].
Therefore

∂tr(AX⊤B)

∂X
= BA.

Proposition 2.9. Let A ∈ Rn×m and X be an m× n variable matrix. Then

∂tr(AX⊤)

∂X
= A.

Proof. We have that

tr(AX⊤) =

n∑
i=1

[AX⊤]ii =

n∑
i=1

m∑
j=1

AijX
⊤
ji =

n∑
i=1

m∑
j=1

AijXij .

Now if we derivate the function by Xij

∂(AijX
⊤
ji)

∂Xij
=

∂(AijX
⊤
ij)

∂Xij
= Aij .

Proposition 2.10. Let A ∈ Rm×n and X be an m× n variable matrix. Then

∂tr(A⊤X)

∂X
= A.

13

Proof. We do a similar proof as the previous proposition

tr(A⊤X) =

n∑
i=1

[A⊤X]ii =

n∑
i=1

m∑
j=1

A⊤
ijXji =

n∑
i=1

m∑
j=1

AjiXji.

Now if we derivate the function by Xji

∂(AjiXji)

∂Xji
= A.

Proposition 2.11. Let and X be an n× n variable matrix. Then

∂tr(X)

∂X
= I.

Proof. We have

tr(X) =

n∑
i=1

Xii.

So when

j = i :
∂(
∑n

i=1 Xii)

∂Xii
= 1, and i ̸= j :

∂(
∑n

i=1 Xii)

∂Xij
= 0

therefore
∂tr(X)

∂X
= I.

Proposition 2.12. Let A ∈ Rn×m and X be an n×m variable matrix. Then

∂tr(AX⊤XA⊤)

∂X
= 2XA⊤A.

Proof. According to [1] in (18) if we have multiple occurrences of X in the trace
function, we can simply evaluate each appearance ofX assuming that everything
else is constant (including other appearances of X) and then summing those
evaluations. We have that

∂tr(AX⊤XA⊤)

∂X
=

∂tr(AX⊤D)

∂X
+

∂tr(EXA⊤)

∂X

where D = XA⊤ and E = XA⊤. Now, by proposition (2.8) we have that

∂tr(AX⊤D)

∂X
+

∂tr(AX⊤E)

∂X
= DA+ E⊤A = (XA⊤)A+ (XA⊤)A = 2XA⊤A.

14

2.4.2 Scalar-by-vector derivation

Definition 2.7. If y is a real variable (that might depend on several variables)
and x is a variable vector with n components, we define scalar-by-vector deriva-
tives as

∂y

∂x
=
(
∂y/∂x1 . . . ∂y/∂xn

)
.

Proposition 2.13. Let A ∈ Rn×n and x be an n variable vector. Then the
derivative of the quadratic form

x⊤Ax

is
∂x⊤Ax

∂x
= x⊤(A+A⊤).

Proof. By definition

x⊤Ax =

n∑
i=1

n∑
j=1

aijxixj .

Now, if we derivate with respect to the k − th element of x we have that

∂x⊤Ax

∂xk
=

n∑
j=1

akjxj +

n∑
i=1

aikxi

for all k = 0, 1, ..., n. We denote Ak as the k-th column in A. In the first term∑n
j=1 akjxj this would be equivalent of x⊤Ak =

∑n
j=1 akjxj . For the second

term
∑n

i=1 aikxi = x⊤A⊤
k .

So,

∂x⊤Ax

∂xk
=

∂(
∑n

i=1

∑n
j=1 aijxixj)

∂xk
=

n∑
j=1

akjxj +

n∑
i=1

aikxi =

= x⊤Ak + x⊤(A⊤)k = x⊤(Ak + (A⊤)k).

therefore
∂x⊤Ax

∂x
= x⊤(A+A⊤).

15

Proposition 2.14. Let A ∈ Rn×n be a symmetric matrix and x be an n variable
vector. Then the derivative of the quadratic form

x⊤Ax

is
∂x⊤Ax

∂x
= 2x⊤A.

Proof. his is simply an application of the previous proposition. We know that
for any matrix A

∂x⊤Ax

∂x
= x⊤(A+A⊤).

Now since A = A⊤ and A+A⊤ = 2A, we have that

x⊤(A+A⊤) = 2x⊤A.

Proposition 2.15. Let A ∈ Rn×n, y ∈ Rn and x be a n variable vector. Then

∂y⊤Ax

∂x
= y⊤A.

Proof. Let v⊤ = y⊤A and denote the the i-th element of v as

vi =

n∑
j=1

yjAij .

We have that
∂vixi

∂xi
=

∂
∑n

j=1 yjAijxi

∂xi
=

n∑
j=1

yjAij .

Proposition 2.16. Let A ∈ Rn×n, y ∈ Rn and x be a n variable vector. Then

∂x⊤Ay

∂x
= y⊤A⊤.

Proof. Let v = Ay and denote the the i-th element of v as

vi =

n∑
j=1

Ajiyj .

We have that
∂xivi
∂xi

=
∂
∑n

j=1 xiAjiyj

∂xi
=

n∑
j=1

yjAji.

16

2.5 Vector- and Matrix Norms

Norms enable us to define distances between vectors or matrices. By calculating
the norm of the difference between two vectors or matrices, we obtain a distance
metric that quantifies how ”far apart” they are. This enabled us to compare
vectors or matrices for analyzing their behaviors and properties under different
circumstances.

Definition 2.8. Let x ∈ Rn and M ∈ Rn×n, the Euclidean vector norm and
the Frobenius matrix norm is respectively defined as

||x||2 =

√√√√ n∑
i=1

x2
i , ||M ||F =

√√√√ n∑
i=1

n∑
j=1

M2
ij .

Proposition 2.17. Let M ∈ Rn×n. Then

||M ||F =

√√√√ n∑
i=1

n∑
j=1

M2
ij =

√
tr(MM⊤).

Proof. First we have that the entries of MM⊤ is

[MM⊤]ik =

n∑
j=1

MijM
⊤
jk =

n∑
j=1

MijMkj .

The trace of MM⊤ is

tr([MM⊤]) =

n∑
i=1

[MM⊤]ii =

n∑
i=1

n∑
j=1

MijM
⊤
ji =

n∑
i=1

n∑
j=1

MijMij =

n∑
i=1

n∑
j=1

M2
ij .

Now of we simply take the root of tr([MM⊤]) we have the result.

Another important matrix norm is the spectral norm. Which is an induced
norm from the Euclidean vector norm. We first show that the Euclidean vector
norm preserves distance. Then we show how the Spectral norm is induced from
the Euclidean vector norm.

Proposition 2.18. Let M ∈ Rn×n be an orthonormal matrix. Then

||Mx||2 = ||x||2,

in other words the Euclidean vector norm is distance preserving.

17

Proof. Since M is an orthonormal matrix M⊤M = MM⊤ = I, we have that

||Mx||2 =
√
(Mx)⊤Mx =

√
x⊤M⊤Mx =

√
x⊤x = ||x||2.

Now we show how to induce the Spectral norm. Let A ∈ Rn×n, recall the
Singular Value Decomposition (SVD) of A, i.e. A = UΣV ⊤ where U, V ∈ Rn×n

are orthonormal matrices and Σ ∈ Rn×n is a diagonal matrix with the singular
values of A along its diagonal in decreasing order starting from the first element.

Proposition 2.19. Let M ∈ Rn×n and the singular values of M be σ1 ≤ ... ≤
σk where k is the dimension of M . Then

max
x

||Mx||2
||x||2

= max
||x||2=1

||Mx||2 = σk.

Proof. We have that

max
||x||2=1

||Mx||2 = max
||x||2=1

||UΣV ⊤x||2 = max
||x||2=1

||ΣV ⊤x||2.

Now since ||V ⊤x||2 = ||x||2 = 1 and the expression ΣV ⊤x = Σy is maximized
when Σ is maximized. This happens when the first element of y is equal to one
and the other elements is equal to zero in other words y = (1 0 ... 0)⊤. This
because ||V ⊤x||2 = 1. We rewrite

max
||x||2=1

||ΣV ⊤x||2 = max
||y||2=1

||Σy||2 = σk.

The vector x that maximize

max
||x||2=1

||ΣV ⊤x||2

is the first row of V ⊤. Denote vi as the i-th row of V ⊤. Now if x = v⊤1 , then
vi · x = 0 for all i ̸= 1 and v1 v⊤1 = 1 because the rows and columns of V ⊤ are
orthonormal. So the vector x = v⊤1 maximize the the original expression

max
||x||2=1

||Mx||2.

Definition 2.9. Let M ∈ Rn×n and the singular values of M is σ1 ≤ ... ≤ σk,
where k is the dimension of M . The Spectral norm of M is defined as

||M ||2 := max
x

||Mx||2
||x||2

= σk.

18

Proposition 2.20. Let M ∈ Rn×n be an invertible matrix and the singular
values of M is σ1 ≤ ... ≤ σn. Then

||M−1||2 =
1

σ1
.

Proof. We use a similar argument done in the previous proposition. We have
that

M−1 = (UΣV ⊤)−1 = V Σ−1U⊤.

Now we have that

max
||x||2=1

||V Σ−1U⊤x||2 = max
||x||2=1

||Σ−1U⊤x||2.

Now since ||U⊤x||2 = ||x||2 = 1 and the expression Σ−1U⊤x = Σ−1y is maxi-
mized when Σ−1 is maximized. This happens when the last element of y is equal
to one and the other elements is equal to zero in other words y = (0 0 ... 1)⊤.
This because ||U⊤x||2 = 1.

We rewrite

max
||x||2=1

||Σ−1U⊤x||2 = max
||y||2=1

||Σ−1y||2 =
1

σ1
.

The vector x that maximize

max
||x||2=1

||Σ−1U⊤x||2

is the first row of U⊤. Denote ui as the i-th row of U⊤. Now if x = u⊤
n , then

vi · x = 0 for all i ̸= 1 and un u⊤
n = 1 because the rows and columns of U⊤ are

orthonormal. So the vector x = u⊤
n maximize the the original expression

max
||x||2=1

||M−1x||2.

Proposition 2.21. Let A,B ∈ Rn×n. Then

||AB||2 ≤ ||A||2||B||2.

Proof. From the definition of the Spectral norm we have that

||A||2 = max
x

||Ax||2
||x||2

,

so it must be that

||A||2 ≥ ||Ax||2
||x||2

⇔ ||A||2||x||2 ≥ ||Ax||2.

19

We have that
||ABx||2 ≤ ||A||2||Bx||2 ≤ ||A||2||B||2||x||2.

Now if we set the condition ||x||2 = 1 and

max
||x||2=1

||ABx||2 ≤ ||A||2||B||2||x||2 ⇔ ||AB||2 ≤ ||A||2||B||2.

3 Control Theory and Dynamical systems

The desire to comprehend and control the behavior of complex systems drives
the study of control theory. Control theory is fundamental to contemporary
engineering and technology, including applications in aircraft, robotics, manu-
facturing, and energy systems, by giving a systematic framework for creating,
evaluating, and putting into practice control systems. Using control theory, re-
searchers can describe and comprehend the behavior of complicated systems,
forecast how they will react to various inputs, and create controllers that will
provide the desired results.

Control theory is a broad and varied topic of study that has numerous
chances for research and invention. In conclusion, learning about control theory
may provide one a thorough grasp of the ideas that guide current technology
and open doors for creativity and research in a variety of sectors.

Dynamical systems are systems that evolve over time according to certain
mathematical models or equations. A common description of a dynamical sys-
tem is that we have some differential equation

ẋ(t) = A(t)x(t) +B(t)u(t)

where Ai ∈ Rn×n, x ∈ Rn, Bi ∈ Rn×m and with some control input ui ∈ Rm.
This is usually known as a continuous-time.

Similarly, we can also define a discrete-time dynamical system

x(k + 1) = A(k)x(k) +B(k)u(k).

Since many problems in this paper are discrete, linear and time-invariant
this, we will mostly be studying Linear time-invariant (LTI) discrete dynamical
systems, meaning that the matrices A,B are constant. So this formulation
x(k + 1) = Ax(k) +Bu(k) will be the most common one we will study.

The following material in this section is heavily based upon several sources,
communication and explanations with supervisor [5], Mathematical Control
Theory by Eduardo D Sontag [7], lecture notes and other material from the
course [9].

20

3.1 Reachability (Discrete time)

Let put the abstract notion of reachability in the the discrete-time linear system

x(k + 1) = A(k)x(k) +B(k)u(k), k ≥ k0

where A(k) ∈ Rn×n, B(k) ∈ Rn×m, x(k) ∈ Rn and x(k) ∈ Rn, and k, k0 are
integers. Clearly

x(k) = Φ(k, k0)x(k0) +

k−1∑
i=k0

Φ(k, i+ 1)B(i)u(i)

where the state transition matrix Φ(k, k0) = A(k − 1)A(k − 2) · · ·A(k0), for
k > k0 and Φ(k0, k0) = I. Let now the initial state at time k0 be x0 = x(k0).
For the state at some time k1 > k0 to assume the value x1, an input u(·) must
exist such that

x1 = Φ(k1, k0)x0 +

k1−1∑
i=k0

Φ(k, i+ 1)B(i)u(i).

For the purpose of this text and the sake of notational simplicity, we restrict
ourselves to the time-invariant linear system, that is, A(k), B(k) are constant
matrices for all k ≥ k0. The derivation is similar for the time varying system.
Then Φ(k1, k0) = Ak−k0 depends on k− k0 and we can simply take k0 = 0, and
k1 = K. Thus

x1 = AKx0 +

K−1∑
i=0

AK−(i+1)Bu(i), K > 0

which is

x1 = AKx0 +
(
B AB · · · AK−1B

)

u(K − 1)
u(K − 2)

...
u(0)

 = AKx0 +RK(A,B)UK

where A ∈ Rn×n, B ∈ Rn×m, and RK(A,B) =
(
B AB · · · AK−1B

)
, and

UK =
(
u(K − 1)⊤ u(K − 2)⊤ · · · u(0)⊤

)⊤
. In the sequel we will use R(A,B)

if K = n.
The question of the reachability is: Given x0 at k = 0 and x1 at k = K > 0

is there a input sequence u(· · ·) (in other words the vector UK such that x1 =
AKx0 +R(A,B)UK? The answer is that such UK exists if x1 −AKx0 is in the
range of R(A,B). So we proved the following theorem.

Theorem 3.1. There exists input u(k) that transfers the state of the x(k+1) =
Ax(k) +Bu(k) from x0 to x1 in some finite time if and only if

x1 −AKx0 ∈ RK(A,B),

21

i.e. x1 lies in the range of RK(A,B). Such input u(k), k = 0, 1, ...,K − 1 is
determined by solving the equation

RK(A,B)UK = x1 −AKx0.

Now we rephrase the notion of reachability for the time-invariant discrete-
time linear system. A state x1 is reachable if there exists a u(k), 0 ≤ k ≤ K
that drives the state x(k) from x0 at k = 0 to x1 in some finite time K. Denote
Rr the set of all reachable states of the system x(k + 1) = Ax(k) + Bu(k),
which is a vector space so we call Rr the reachable subspace of the system
x(k + 1) = Ax(k) + Bu(k), We say x(k + 1) = Ax(k) + Bu(k), is completely
reachable if every state is reachable, i.e. Rr = Rn. Since this only depends on
the pair (A,B) we simply say that A,B is reachable. Now we are in position to
prove the following theorem.

Next we show that the transfer take at most n steps, the dimension of the
system.

Theorem 3.2. There exists input u(k) that transfers the state of the x(k+1) =
Ax(k) +Bu(k) from x0 = 0 to x1 in finite time if and only if

x1 ∈ RK(A,B),

i.e. x1 lies in the range of RK(A,B). Moreover an appropriate input u(k),
k = 0, 1, ..., n− 1 that accomplishes this transfer in n steps is determined by

Un =
(
u(n− 1)⊤ u(n− 2)⊤ · · · u(0)⊤

)⊤
which is a solution to the equation

R(A,B)Un = x1.

In this case, x1 is reachable and Rr = R(A,B).

Proof. Since we have already proved that such a transfer exists if and only if
x1 − AKx0 = x1 ∈ RK(A,B), or x1 = RK(A,B)UK has a solution UK , it
remains to show that it takes n steps to accomplish this transfer.

For x1 to be reachable we must have x1 ∈ RK(A,B) for some finite K.
Note that the range RK(A,B) cannot increase beyond the range of Rn(A,B) =
R(A,B), that is, RK(A,B) = R(A,B) for K ≥ n. This is a consequence of the
Cayley-Hamilton Theorem (Theorem 2.2), because any vector x in RK(A,B)
K ≥ n, can be expressed as a linear combination of B,AB, ..., An−1B. There-
fore, x ∈ R(A,B). It is possible to have x1 ∈ RK(A,B) with K < n for a
particular x1. However, in this case x1 ∈ R(A,B) since RK(A,B) is a sub-
set of R(A,B). Hence, x1 is reachable if and only if it is in the range of
R(A,B). Clearly any Un that accomplishes this transfer satisfies the equation
R(A,B)Un = x1.

22

Corollary: The system x(k + 1) = Ax(k) + Bu(k) is completely reachable (or
the pair (A,B) is reachable) if and only is

rankR(A,B) = n.

Proof. It is an immediate consequence of the preceding theorem by noting
that R(A,B) = Rr = Rn if and only if the rank of R(A, b) is equal to n.

Remark. This holds for is any initial state x0. The proof is similar.
The following notion will be used later.

Definition 3.1. The reachability gramian of the system x(k + 1) = Ax(k) +
Bu(k) is defined by

Wr(0,K) =

K−1∑
i=0

AK−(i+1)BB⊤(A⊤)K−(i+1).

Note that

K−1∑
i=0

AK−(i+1)BB⊤(A⊤)K−(i+1) =

K−1∑
i=0

AiBB⊤(A⊤)i = RK(A,B)RK(A,B)⊤

we have

Proposition 3.1. The following holds for the reachability gramian satisfies

Wr(0,K) = RK(A,B)RK(A,B)⊤.

Proposition 3.2. R(A,B) = R(Wr(0,K)) for all K ≥ 0.

Proof. Take x1 ∈ R(Wr(0,K)). Then there is an η1 ∈ Rn such thatWr(0,K)η1 =

x1. But x1 =
∑K−1

i=0 AK−(i+1)Bu(i). Choose
u(i) = B⊤(A⊤)K−(i+1)η1 we have

x1 = Wr(0,K)η1 =

(
K−1∑
i=0

AK−(i+1)BB⊤(A⊤)K−(i+1)

)
η1

which means x1 ∈ RK(A,B), proving R(Wr(0,K)) ⊆ R(A,B).
On the other hand, if x1 ∈ RK(A,B), i.e., there exists η ∈ Rm×n such

that RK(A,B)η = x1. Assuming x1 ̸∈ R(Wr(0,K)) for some K > 0. Then
N (Wr(0,K)) is nontrivial. So there is x2 ̸= 0 such that x⊤

2 x1 ̸= 0, that is x1

and x2 are not orthogonal. To see this note first that Wr(0,K) is symmetric
which leads to R(Wr(0,K)) = (N (Wr(0,K))⊥. Since Wr(0,K)x2 = 0 we have
x1 such that x⊤

2 x1 = 0 would be in the range of Wr(0,K), which is not true,
and so x⊤

2 x1 ̸= 0.

23

Next consider

x⊤
2 Wr(0,K)x2 = 0 =

K−1∑
i=0

(
x⊤
2 A

K−(i+1)B
)(

B⊤(A⊤)K−(i+1)
)
=

K−1∑
i=0

∥x⊤
2 A

K−(i+1)B∥22

implying x⊤
2 A

K−(i+1)B = 0 for all 0 ≤ i ≤ K.
This in turn shows that

x⊤
2 A

iB = 0, i ≥ 0

Therefore x⊤
2 x1 = x⊤

2 RK(A,B)η = 0 which is a contradiction since x⊤
2 x1 ̸= 0.

Therefore x1 lies in the range of Wr(0,K), completing the proof.

3.2 Optimal control

When applying some control it is reasonable to assume that it is not ”free”
to use it. It has some ”cost” of using the control, whether it is fuel in some
motor, financial or political cost of applying some economical policy. Finding the
control inputs that produce the desired results while reducing some measure of
cost or maximizing some measure of performance is the aim of Optimal control.

3.2.1 Performance indices

Depending on our goals or objectives how we measure performance might dif-
fer. Performance indices quantify how good our control function performs. We
present some common performance indices.

Assume our dynamical system is subject to some to some initial condition

x(t0) = x0.

In many problems we want to know how good our system is performing
according so measurement. A performance index J is scalar valued function
which provides a measurement of performance on our system.

In Minimum time problems we want to transfer from our initial state
x(t0) to x(t1) = xtf where xtf is our final state which is specified, in an minimum
time. A suitable performance index for this problem would be

J =

∫ t1

t0

dt = t1 − t0,

a discrete version would be

J =

t1∑
i=t0

1 = t1 − t0.

In Minimum effort problems our final state is specified and we want to
reach this state with as little control as possible. Here, a suitable performance
index could either be a linear performance index

24

J =

∫ t1

t0

m∑
j=1

βj |uj |dt,

or quadratic performance index

J =

∫ t1

t0

u⊤Rudt

where is R is real positive definite matrix and rij , βi are weighting factors.
The discrete version would simply be

J =

t1∑
i=t0

m∑
j=1

βj |uj |,

and the quadratic performance index

J =

t1∑
i=t0

u⊤Ru.

3.3 Dynamic programming (DP)

The optimality principle stated by Bellman is as follows:
An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with re-
gard to the state resulting from the first decision.
Briefly we can state the Bellman’s principle of optimality as follows. From any
point on an optimal trajectory, the remaining trajectory is optimal for the cor-
responding problem initiated at that point. We illustrate this principle by an
example.

The shortest path problem: Consider the “stagecoach problem” (drawn
in a directed graph, see Figure 4) in which a traveler wishes to minimize the
cost of a journey from an initial town (node) to a terminal town (node) through
several possible paths. To each path is associated a cost shown on each arc in
the path. An example is the uppermost path 0 → 1 → 1 → 1 → 1 → 0 has the
cost 1 + 5+ 4+ 1+ 2 = 13. The problem is to find the path with minimal cost.
A naive (but natural) way to solve this problem is to compute the cost of each
path and then compare them. If N is the number of stages (here N = 5 then
we can show that there are O((1+

√
2)N) paths. Since we need to add numbers

to compute the cost of a single path, we need O((1+
√
2)NN) additions in total

and then compare O((1 +
√
2)N) numbers in order to find the shortest path.

This is a very large number when N is large. Dynamic programming provides a
systematic and less expansive way to solve this problem. Let k ∈ {0, 1, 2, 3, 4, 5}
denote the stage and for each stage the state xk := x(k) ∈ {1, 0,−1} tells us

25

Figure 4: Road system for stagecoach problem

whether we are in the upper, middle or lower node respectively. In this way
we can represent the nodes of the graph with their ”coordinates” (k, xk). Let
the shortest path (minimum cost path) from node (k, x) to the terminal node
be J(k, x). Then J(0, 0) is the shortest path from stage 0 satisfying (obviously)
the following relation

J(0, 0) = min (1 + J(1, 1), 2 + J(1, 0), 3 + J(1,−1)) .

Continue in the same manner, for example

J(1, 1) = min (5 + J(2, 1), 3 + J(2, 0)) .

The basic principle behind these formulas is the Bellman optimality principle:
The shortest path has the property that for any initial part of the path from the
initial node to some node (k, x) ∈ {1, ..., 5}×{1, 0,−1} the remaining path must
be the shortest from the node (k, x) to the terminal.

Notice that the cost in the terminal of the shortest path is known in advance.
In our example J(5, 0) = 0. This means we can optimize backwards from stage
5 to stage 0 and in this recursive way we can compute the shortest path-to-go
function J(k, x). Since there is only one way of going from the nodes are stage
4 to the terminal node we get

J(4, 1) = 2, J(2, 0) = 3, J(4,−1) = 4.

26

In the nest step we obtain

J(3, 1) = min (1 + J(4, 1), 2 + J(4, 0)) = min(3, 5) = 3

J(3, 0) = min (3 + J(4, 1), 4 + J(4, 0), 2 + J(4,−1)) = min(5, 7, 6) = 5

J(3,−1) = min (1 + J(4, 0), 5 + J(4,−1)) = min(4, 9) = 4.

Continue this way we can find the minimum cost J(0, 0) = 8. The path is shown
in Figure 5 with the thicker arrows.

Figure 5: Optimal solution of stagecoach problem

We comment on the complexity of the dynamic programming approach now.
No addition and comparison are needed while computing J(5, x) and J(4, x). To
compute J(3, x) for x = 1, 0,−1 we need 7 additions and 4 comparisons. Thus
for arbitrary number of stages N we need 3+7(N-2) additions and 2+4(N-2)
comparisons. For large N this is much less expansive than computing the cost
of all possible paths and then comparing them although it is on the same order
of complexity.

3.3.1 DP in discrete time

To avoid complication of technicality and get good intuition we first derive the
optimality equation for discrete-time problem. The above shortest path problem
is a special case of multistage decision problem. The general form is an optimal
control problem:

(Pd)


minimize ϕ(xN) +

N−1∑
k=0

f0(k, xk, uk)

subject to xk+1 = f(k, xk, uk), x0 is given , xk ∈ Xk, uk ∈ U(k, x),

27

where k ∈ {0, 1, ..., N} (we call it discrete-time set), Xk is the state space, a
discrete set in the shortest path example but it is very often Xk = Rn for
all k = 0, 1..., N , and U(k, xk) is the constraint set in Rm. Note that the cost
function is additive and has one term corresponding to each stage. The terminal
cost ϕ(xN) penalizes deviation from a desired terminal state and the running
cost adds a term f0(k, xk, uk) to the total cost at each stage.

The preceding optimization problem can be generalized to x0 ∈ S0 and
xN ∈ SN where S0 ⊂ X0 and SN ⊂ XN are the subsets of the state space. We
can also let N be free (that is a variable).

Now we cast the shortest path example in this formulation.

• x0 = 0, Xk = {1, 0,−1} at k = 1, ..., N − 1 and XN = {0}.

• The control variable takes three values (in most cases) 1, 0,−1 where uk =
1 means going up, uk = 0 going forward and uk = −1 going down. The
control constraint set is

U(k, x) =


{0, .1}, x = 1

{1, 0,−1}, x = 0

{1, 0}, x = −1

k = 0, 1, ..., N − 2

U(N − 1, 1) = {−1}, U(N − 1, 0) = {0}, U(N − 1,−1) = {1}.

• the state dynamics is given by xk+1 = xk + uk, i.e. f(k, x, u) = x+ u.

• the terminal cost ϕ(x) = 0 and the stage-wise additive costs f0(k, x, u) =
cki,j , where c

k
i,j is the cost on the arrow from node (k, i) at stage k to node

(k + 1, j) at stage k + 1. For example, c00,1 = 1, c11,1 = 5, c11,0 = 3, etc..

3.3.2 The dynamic programming equation

Define the optimal cost-to-go function as

J∗(n, x) = min

{
ϕ(xN) +

N−1∑
k=n

f0(k, xk, uk) :

xk+1 = f(k, xk, uk), xn = x, xk ∈ Xk, uk ∈ U(k, xk)

}
for n = 0, ..., N − 1 and J∗(N, x) = ϕ(x). In particular, the optimal solution of
(Pd) is J

∗(0, x0).

28

Theorem 3.3 (The principle of optimality). Suppose there is a finite solution
to the backwards dynamic programming recursion

J(N, x) =

{
ϕ(x), x ∈ XN

∞, x ̸∈ XN

J(n, x) = min {f0(n, x, u) + J(n+ 1, f(n, x, u))} , n = N − 1, ..., 0

where the optimization over U(n, x) is restricted to those control variables for
which f(n, x, u) ∈ Xn+1. Then, there exists an optimal solution to (Pd) and

• J∗(n, x) = J(n, x) for all n = 0, ..., N , x ∈ Xn, and

• the optimal feedback control in each stage is

u∗
n = µ(n, x) = arg min

u∈U(n,x)
{f0(n, x, u)0J(n+ 1, f(n, x, u))} .

Proof. In fact, it is an immediate consequence of the principle of optimality. But
we give a proof based on induction. First, we have J∗(N, x) = J(N, x) = ϕ(x).
Assume now that for some n ∈ {1, ..., N − 1} we have J∗(n+1, x) = J(n+1, x)
for all x ∈ Xn+1. Then

J∗(n, xn) = min
uk∈U(k,xk),k=n,...,N−1

{
ϕ(xN) +

N−1∑
k=n

f0(k, xk, uk)

}
(by definition)

= min
un∈U(n,xn)

{
f0(n, xn, un) + min

uk∈U(k,xk),k=n+1,...,N−1

{
ϕ(xN) +

N−1∑
k=n+1

f0(k, xk, uk)

}}
(by the additivity of the cost function)

= min
un∈U(n,xn)

{f0(n, xn, un) + J∗(n+ 1, f(n, xn, un))} (xn+1 = f(n, xn, un))

Now by the induction assumption we obtain

J∗(n, xn) = min
un∈U(n,xn)

{f0(n, xn, un) + J(n+ 1, f(n, xn, un))} .

completing the proof.

The optimal cost-to-go function, J∗(n, x) is commonly called the value func-
tion. Sometimes we use the notation V (n, x). In this notation the dynamic
programming equation is

(DP)

V (N, x) =

{
ϕ(x), x ∈ XN

∞, x ̸∈ XN

V (n, x) = min {f0(n, x, u) + V (n+ 1, f(n, x, u))} , n = N − 1, ..., 0.

Keep the following in mind.

29

(i) The optimal uk is a function of xk and k, i.e., uk = µ(k, xk)

(ii) The (DP) equation yields the optimal control uk in closed loop form. It
is optimal whatever the past control policy may have been.

(iii) The (DP) equation is a backward recursion in time (from which we get
the optimum at N − 1, then N − 2 and so on.) The later policy is decided
first.

It could also be instructive to remember the citation from Kierkegaard “Life
must be lived forward and understood backwards”.

3.4 Pontryagins Minimum Principle (PMP)

Another approach to finding an optimal controller that minimize an objective
function is Pontryagins Minimum (or Maximum) Principle. It provides neces-
sary conditions on the controller.

3.4.1 Discrete time

Consider the following discrete-time optimal control problem

minϕ(xN) +

N−1∑
k=0

f0(k, x(k), u(k)) subject to
x(k + 1) = f(k, x(k), u(k)

x0 is given, .G(x(N)) = 0

where G(x) = (g1(x), ..., gp(x))
⊤ fulfils the usual regularity assumption, for

example, the gradients {∇gk(x)} are linearly independent, and we take Rn and
Rm as state space and control space, respectively.

The dynamic programming approach to solve such a control problem has
the following properties.

• It produces feedback solutions, that is, we know the optimal control value
for every position of the state vector x. This provides robustness to the
closed loop system in the sense that ff the solution is perturbed by a
disturbance then the controller still knows the optimal action.

• The solution is obtained by backwards iteration. It can be computationally
demanding. One way to understand this is that we compute the optimal
control value for every possible system state. What we win in robustness
we loose in computational complexity.

• It is a sufficient condition.

Next we derive the Pontryagin’s minimum principle to solve this problem.
This can be done by standard optimization theory using Lagrange relaxation.
In fact the PMP conditions are the first order necessary conditions, the so-called
KKT conditions. To this end we recall the KKT conditions following Bazaraa
et-al ”Nonlinear programming”: Suppose that x∗ is a (local) optimum of

minF(x) subject to h(x) = 0

30

where F : Rn → R and h : Rn → Rp are continuously differentiable and the
constraint set is regular, i.e., the gradients {∇hk(x)} are linearly independent
(one of the constraints qualification condition). Then there is a vector λ ∈ Rp

such that

1. h(x∗) = 0

2. ∇xL(x∗, λ) = 0 where L(x∗, λ) = F(x) + λ⊤h(x) is the Lagrangian, and
the vector λ is the vector of Lagrange multipliers.

Theorem 3.4 (Pontryagins Minimum Principle (Discrete time)). Let {u∗(k)}N−1
k=1

be an optimal control for above problem and let {x∗(k)}Nk=0 be the correspond-
ing trajectory. Then there exists an adjoint variable (Lagrange multiplier)
{λ(k)}Nk=1 such that

1. adjoint equation:

λ(k) =
∂H

∂x
(k, x∗(k), u∗(k), λ(k + 1)), k = 1, ..., N − 1

2. ”pointwise optimization”

∂H

∂u
(k, x∗(k), u∗(k), λ(k + 1)) = 0, k = 0, 1, ..., N − 1

3. boundary condition

λ(N) =
∂H

∂x
(x∗(N)) + hx(x

∗(N))⊤ν

for some ν ∈ Rp.

where the Hamiltonian is

H(k, x, u, λ) = f0(k, x, u) + λ⊤f(k, x, u)

Proof. Let z⊤ =
(
x(1)⊤ · · · x(N)⊤ u(0)⊤ · · · u(N − 1)⊤

)
,

F(z) = ϕ(xN) +

N−1∑
k=0

f0(k, x(k), u(k))

h(z) =


f(0, x(0), u(0)− x(1)

...
f(N − 1, x(N − 1), u(N − 1)− x(N)

G(x(N))



31

The KKT conditions (a necessary condition) for optimality of the problem

minF(x) subject to h(x) = 0

are that there is a λ̃ = (λ⊤ ν⊤)⊤ such that

∂L
∂z

(z∗, λ̃) = 0

where L(z, λ̃) = F(z) + λ̃⊤h(z). More precisely

∂L
∂x(k)

(z∗) =
∂f0
∂x

(k, x∗(k), u∗(k)) + λ(k + 1)⊤
∂f

∂x
(k, x∗(k), u∗(k))− λ(k), k = 1, ..., N − 1

∂L
∂x(N)

(z∗) =
∂ϕ

∂x
(x∗(N))− λ(N) +Gx(x

∗(N))⊤ν

∂L
∂u

(z∗) =
∂f0
∂u

(k, x∗(k), u∗(k)) + λ(k + 1)⊤
∂f

∂u
(k, x∗(k), u∗(k)), k = 1, ..., N − 1.

Thus, the condition ∂L
∂z (z

∗, λ̃) = 0 together with the definition of the Hamilto-
nian H proves the theorem.

This theorem is often used in the following way.

1. Define the Hamiltonian: H(k, x, u, λ) = f0(k, x, u) + λtopf(k, x, u).

2. Perform pointwise optmization, that is, find a function µ(k, x, λ) such that
∂H
∂u (k, x, u, λ) = 0. Therefore the candidate optimal control is u∗(k) =
µ(k, x∗(k), λ(k)).

3. Solve the two boundary value problem

x(k + 1) =
∂H

∂λ
(k, x(k), µ(k, x(k), λ(k + 1), λ(k + 1)) = f(k, x(k), µ(k, x(k), λ(k + 1))),

λ(k) =
∂H

∂x
(k, x(k), µ(k, x(k), λ(k + 1), λ(k + 1)), λ(N) =

∂ϕ

∂x
(x(N)) +Gx(x(N))⊤ν

with the boundary conditions G(x(N)) = 0 and λ(N) = ∂ϕ
∂x (x(N)) +

Gx(x(N))⊤ν

We call this a two point boundary value problem because the only un-
known to determine are λ(0) and x(N). Once they are known all other
state and adjoint variables can be computed from the recursive equations.
It is interesting to note that the nonlinear program has a lot of structure
that can be exploited.

The PMP approach is characterized by the following properties.

• It results in an open loop control problem, that is, the optimal so-
lution is only known for a particular initial condition x(0). If the
solution is perturbed from the optimal by a disturbance then the
optimal control may no longer be effective. The resulting system is
therefore more sensitive to disturbances.

32

• It is generally easier to compute.

• It gives only a necessary condition for optimality.

There are few remarks in order. First this is an unconstrained optimal
control problem. So it is easy to use the Lagrangian technique because we
have equality constraints only, thus only two equations needed to solve in the
KKT conditions. Let us consider the control space as a cube: |u(i)| ≤ 1,
i = 0, ..., N − 1. Notice that these are functional inequality constraints. Then
the KKT necessary condition are more involved. Instead we can move the
constraints to the step where we pointwise optimize the Hamiltonian. In this
particular example we can solve ∂H

∂u (k, x, u, λ) = 0 together with the conditions
|u(i)| ≤ 1, i = 0, ..., N − 1, or we use the KKT conditions to find the candidates
of the optimization problem min{H(k, x, u, λ) : |u(i)| ≤ 1, i = 0, ..., N − 1}.
This is easier because we only have inequality constraints and the admissible
set for u is convex and compact.

Next we know that the partial derivative with respect to u does not give
us any thing if the Hamiltonian is linear in u. It is here the bang-bang control
come into the picture. In the discrete setting it becomes a linear programming
problem in this example, and we know that the optimal solution is the corner
of the cube. So we choose either u(i) = 1 or u(i) = −1. It depends on the sign
of the coefficient in case we only have one control variable.

3.4.2 Continuous time

Given an dynamical system
ẋ = f(x, u, t),

an objective function

J = Q(t1) +

∫ t1

t0

q(x, u, t)dt

where the first term is the terminal cost, the second term is the trajectory
cost, t0 ≤ t ≤ t1 where t1 is a free variable , x(t1) is specified and u is uncon-
strained. We define the Hamiltonian

H = q(x, u, t) + pf(x, u, t)

where p = [p1, ..., pn] is an Lagrange multiplier (or costate variable). Now the
necessary conditions for an controller to be optimal is that

∂H

∂ui
= 0,

ṗi = −∂H

∂xi
,

(
H +

∂Q

∂t

)u=u∗

t=t1
= 0,

33

(
H
)u=u∗

= 0 for t0 ≤ t ≤ t1,

for 1 ≤ i ≤ n.
These conditions are necessary conditions when x(t1) is specified, t1 is a free

variable and u is unconstrained. When the control problem differ from these
constraint we will need other conditions.

We will now look at the case when u is constrained.

Theorem 3.5 (Pontryagins Minimum Principle (Continuous time)). Given an
objective function J and a dynamical system ẋ = f(x, u, t) where t0 ≤ t ≤ t1
and t1 is a free variable , x(t1) is specified and u is constrained. The necessary
conditions on u∗ to minimize J are

H(x, u, p, t) ≥ H(x∗, u∗, p∗, t).

ṗi = −∂H

∂xi
,(

H +
∂Q

∂t

)u=u∗

t=t1
= 0,(

H
)u=u∗

= 0 for t0 ≤ t ≤ t1,

for 1 ≤ i ≤ n.
where H is the Hamiltonian, and it is assumed that x(t1) is specfied and t1

is free.

The proof is beyond the scope of this paper and thus omitted.

3.4.3 Example: Bang-Bang control

A landing vehicle separates from a spacecraft at time t = 0 at an altitude h from
the surface of a planet, with initial downward velocity v. For simplicity assume
that gravitational forces can be neglected and that the mass of the vehicle is
constant. Consider vertical motion only, with upwards regarded as the positive
direction. Let x1 denote the altitude, x2 velocity and u(t) the thrust exerted by
the rocket motor, subject to |u(t)| ≤ 1 with suitable scaling. The equations of
motion are

ẋ1 = x2, ẋ2 = u

with the initial conditions

x(0) = h, x2(0) = v.

In order to have a ”soft landing” at some time t we require that

x1(tf) = 0, x2(tf) = 0.

34

A suitable performance metric would be∫ tf

0

(|u|+ k)dt,

it represents a sum of total fuel consumption and time to landing, k being a
factor which weights the relative importance of these two quantities.

To solve this problem we define the Hamiltonian

H = |u|+ k + p1x2 + p2u.

From PMP, the optimal controller must be of the following form

u∗(t) =

{
1 if p∗2(t) > 1
0 if 1 > p∗2(t) > −1
−1 if p∗2(t) < −1

Such a control is referred to in the literature by the graphic term bang-zero-
bang, since only maximum thrust is applied in a forward or reverse direction; no
intermediate nonzero values are used. If there is no period in which u∗ is zero
the control is called bang-bang. For example, a racing-car driver approximates
to bang-bang operation, since he tends to use either full throttle or maximum
braking when attempting to circuit a track as quickly as possible.

So the controller switches according to the value of p∗2(t), which is therefore
termed (in this example) the switching function. One of the conditions were
that

ṗi = −∂H

∂xi
,

so we get that

ṗ∗1(t) = 0, ṗ∗2(t) = −ṗ∗1

and integrate
p∗1(t) = c1, p∗2(t) = c1tc2,

where c1, c2 are constant. Since p∗2 is linear in t, it follows that it can take each
of the values +1 and −1 at most once in0 ≤ t ≤ tf , so u∗(t) can switch at most
twice. We must however use physical considerations to determine an actual
optimal control. Since the landing vehicle begins with a downwards velocity at
an altitude h, logical sequences of control would seem to either

u∗ = 0 followed by u∗ = +1

(upwards is regarded as positive), or

u∗ = −1, then u∗ = 0, then u∗ = +1.

Consider the first possibility and suppose that u∗ switches from zero to one
at time t1. By virtue of of the controller this sequence of control is possible if p∗2

35

decreases with time. It is easy to verify that the solution of ẋ1 = x2, ẋ2 = u
subject to the initial conditions x(0) = h, x2(0) = v is

x∗
1 = h− µt, x∗

2 = −v, 0 ≤ t ≤ t1

x∗
1 = h− vt+

1

2
(t− t1)

2, x∗
2 = −v + (t− t1), t1 ≤ t ≤ tf .

Substituting the soft landing requirements x1(tf) = 0, x2(tf) = 0 into the
above gives

tf =
h

v
+

1

2
v, t1 =

h

v
− 1

2
v.

Because the final time is not specified and because of the form of the Hamil-
tonian H the equation (H)u=u∗ = 0, t0 ≤ t ≤ t1. holds, so in particular (H)u=u∗

at t = 0, i.e. with t = 0 in H,

k = p∗1(0)x
∗
2(0) = 0

or p∗1(0) = k/v. Hence from p∗1(t) = c1, p∗2(t) = c1tc2 we have that

p∗1(t) = k/v, t ≥ 0

and
p∗2(t) = −kt/v − 1 + kt1/v

using the assumption that p∗2(t1) = −1. Thus the assumed optimal control will
be valid if t1 > 0 and p∗2(0) < 1 (the latter conditions being necessary since
u∗(0) = 0), and using tf = h

v − 1
2v and p∗2(t) = −kt/v − 1 + kt1/v these

conditions imply

h >
1

2
v2, k < 2v2/(h− 1/2v2).

If these inequalities do not hold then some different control strategy, such as

u∗ = −1, then u∗ = 0, then u∗ = +1,

becomes optimal. For example, if k is increased so that the inequality

k < 2v2/(h− 1/2v2)

is violated then this means that more emphasis is placed on the time to landing
in the performance index. It is therefore reasonable to expect this time would
be reduced by first accelerating downwards with u∗ = −1 before coasting with
u∗ = 0, as in

u∗ = −1, then u∗ = 0, then u∗ = +1.

It is interesting to note that provided

h >
1

2
v2, k < 2v2/(h− 1/2v2)

36

holds then the total time tf to landing in

tf =
h

v
+

1

2
v, t1 =

h

v
− 1

2
v

is independent of k.

4 Reinforcement learning (RL)

Reinforcement learning (RL) is a branch of machine learning that involves learn-
ing a controller by sampling data from some environment. The goal of RL is
learn optimal a controller by exploring the environment and adapting the con-
troller based on the feedback it receives.

We follow the definition of RL and its problem formulations done in [3].
RL is most common defined through an Markov decision process (MDP),

which is a discrete-time stochastic control process. The common notation for
an MDP is that we have

• A set of states X = {x1, x2, ..., xn} that can be sampled from an environ-
ment, it is often called the state space.

• An set of controls (also called actions) U = {u1, u2, ..., um} that represent
all the inputs that are available each state. Depending on use-case, the
controls can take different forms. But it is common that the controls have
an magnitude and they are either single- or multidimensional.

• A transition function xt+1 = ft(xt, ut, wt) that maps probability of tran-
sitioning to a certain state given some control and current state since the
the transition function is stochastic. Note that wt is the state transition
randomness.

• A cost function c(xt, ut), which maps a state-controls pair to a scalar cost.

• A discount factor γ ∈ [0, 1], which is often used to penalize cycles of states.

Over the course of T sampling steps, we will have generated a pairs of values
(u0, x0, x1), ..., (uT−1, xT−1, xT) and associated costs c0, ..., cT . The goal of RL
is to minimize the cumulative cost

V π = E

[
T∑

t=0

γtc(ut, xt, xt+1) + cT (xT)

]
given a control policy

π = {π0, π1, ..., πT−1}

where ut = πt(ut−1, xt).

37

To minimize V we need to find an control policy that chooses controls ut

that minimize V . For a given state xt the policy πt maps a probability that the
control ut will minimize V .

The value function Vπ(x) is defined as the expected cumulative reward that
can be obtained by following the control policy π from a given state x0. The
function is used to evaluate different policies.

The problem of RL is that the optimal policy function that minimizes (or
maximizes) the value function is often not known to us, therefore the problem
is to find such policy.

Remark: Some definitions of RL have instead the objective of maximizing
the value function. In this case you often speak of rewards instead of costs.

How the optimal policy is found, depends on different factors. Such as
whether the dynamical system have known or unknown dynamics and cost, the
computational resources that are available and dimensionality and cardinality
of the system, the number of boundary condition or initial states. This leads us
to different kinds of problems.

If either the dynamics or cost are unknown we will have to learn it in
some way, this leads us to two approaches. The first one is multi(or episodic)-
trajectory, meaning that after T number of steps in the trajectory we stop and
reset, then start from another (or same) initial state. After some number of tra-
jectories have been sampled, we approximate the dynamics from the gathered
data. In contrast a single-trajectory setting we only consider one trajectory and
the dynamics will have to be approximated only through this trajectory. So
in a singe-trajectory there is only one initial state, while in a multi-trajectory
settings there are multiple initial states that are used. A more classic name
for single- and multi-trajectory settings is respectively adaptive learning control
and iterative learning control.

Even when the dynamics and cost is known our computational resources
may not be enough to compute an exact solution due to high dimensionality
and cardinality of the problem. In this case, approximation methods can be
used instead, but the solution might not be exact.

As we might have seen RL and Control Theory share the common goal of
optimizing system behavior to achieve desired objectives. The main distinction
between RL and optimal control theory is that RL mostly deals with finding
a control policy by learning from data, while control theory most often deals
with deriving an optimal control policy from a known mathematical model of a
system.

In RL, there is a distinction between model-free and model-based approaches.
Model-free RL methods learn from experience without explicitly modeling the
environment, relying on data to approximate the system dynamics and costs.
Model-based RL methods, on the other hand, create explicit models of the sys-
tem and use them for finding an optimal policy.

Control Theory mainly relies on explicitly known mathematical models of

38

the dynamical system. The control design is based on these known models, and
mathematical tools like differential- or difference equations.

4.1 Known Dynamics and cost: Dynamic programming

When the dynamics are stochastic, a model of the system will be

x(t+ 1) = Ax(t) +Bu(t) + w(t)

where w(t)
i.i.d∼ N (0, σ2

wI).
In this case, it is still possible to derive a solution given that we have been

given or defined a cost function. Using dynamic programming is one approach
to finding the optimal controller. We will closely study the LQR problem which
is a classical instantiation of the MDP, with the help of Dynamic programming.

Example: Stochastic Linear Quadratic Regulator (SLQR)

The LQR problem is often studied when the objective is to keep the system
close to the origin. The goal is to minimize the following cost function

J = E
[T−1∑

i=0

(x⊤
i Qxi + u⊤

i Rui) + x⊤
TQxT

]
,

with respect to the controls u0, ..., uN−1 and where R is positive definite matrix
and Q is a positive semi-definite matrix. The solution is based up lecture notes
from [4].

We will solve this problem via Dynamic programming. So, we will solve this
inductively backwards starting form the final state xT .

We define the value function as

V (t, xt) := min
ut,ut+1,...,uT−1

T−1∑
i=t

E
[
x⊤
i Qxi + u⊤

i Rui

]
+ x⊤

TQxT

The cost at xT is V (T, xT) = x⊤
TQxT . Now we solve for V (t, xt) in terms of the

next step V (t+ 1, xt+1). We have that

V (t, xt) = min
ut,ut+1,...,uT−1

T−1∑
i=t

E
[
x⊤
i Qxi + u⊤

i Rui + x⊤
TQxT

]
.

we pull the first step out of the sum

min
ut

x⊤
t Qxt + u⊤

t Rut +
(

min
ut+1,...,uT−1

T−1∑
i=t+1

E
[
x⊤
i Qxi + u⊤

i Rui + x⊤
TQxT

])
⇔

⇔ V (t, xt) = min
ut

x⊤
t Qxt + u⊤

t Rut + E
[
V (t+ 1, xt+1)

]
⇔

39

⇔ V (t, xt) = min
ut

x⊤
t Qxt + u⊤

t Rut + E
[
V (t+ 1, Ax(t) +Bu(t) + w(t))

]
.

We make an ansatz V (t, xt) = x⊤
t Ptxt+rt where P ∈ Rn×n is a semi-definite

matrix, rt is a constant and rT = 0. It is true for T since V (T, xT) = x⊤
TQxT +0

and Q is a semi-definite matrix. Now assume it is true for k + 1 for

V (t, xt) = min
ut

x⊤
t Qxt + u⊤

t Rut + E
[
V (t+ 1, Ax(t) +Bu(t) + w(t))

]
.

We expand the third term

E
[
V (t+ 1, Ax(t) +Bu(t) + w(t))

]
=

= E
[
(Ax(t) +Bu(t) + w(t))⊤Pk+1(Ax(t) +Bu(t) + w(t)) + rt+1

]
=

= E
[
(Ax(t) +Bu(t) + w(t))⊤(Pt+1Ax(t) + Pt+1Bu(t) + Pt+1w(t)) + rt+1

]
=

= E
[
x(t)⊤A⊤(Pt+1Ax(t) + Pt+1Bu(t) + Pt+1w(t))+

+u(t)⊤B⊤(Pt+1Ax(t) + Pt+1Bu(t) + Pt+1w(t))+

+w(t)⊤(Pt+1Ax(t) + Pt+1Bu(t) + Pt+1w(t)) + rt+1

]
.

Now since E[w(t)] = 0 and E[αw(t)] = αE[w(t)] for some constant α ∈ R we
have that

x⊤
t Qxt + u⊤

t Rut + x(t)⊤A⊤Pt+1Ax(t) + x(t)⊤A⊤Pt+1Bu(t)+

+u(t)⊤B⊤Pt+1Ax(t) + u(t)⊤B⊤Pt+1Bu(t) + E[w(t)⊤Pt+1w(t)] + rt+1 =

= x⊤
t (A

⊤Pt+1Ax(t) +Q)xt + u⊤
t (B

⊤Pt+1Bu(t) +R)ut+

+x(t)⊤A⊤Pt+1Bu(t) + u(t)⊤B⊤Pt+1Ax(t) + E[w(t)⊤Pt+1w(t)] + rt+1.

Since w(t)
i.i.d∼ N (0, σ2

wI), the covariance between the components of w(t) is
equal to zero, we have that

E[w(t)⊤Pt+1w(t)] = E[

n∑
i

n∑
j

wiPijwj] =

n∑
i

n∑
j

E[wiwj]Pij =

=

n∑
i

n∑
j

σ2
wIijPij = Tr(σ2

wPt+1).

Now we want to find the optimal controller

argmin
u

x⊤
t Qxt + u⊤

t Rut + x(t)⊤A⊤Pt+1Ax(t) + x(t)⊤A⊤Pt+1Bu(t)+

+u(t)⊤B⊤Pt+1Ax(t) + u(t)⊤B⊤Pt+1Bu(t) + Tr(σ2
wPt+1) + rt+1.

40

According to the matrix calculus from our Linear Algebra preliminaries

∂(x⊤Ax)

∂x
= x⊤(A+A⊤),

∂(y⊤Ax)

∂x
= y⊤A,

∂(x⊤Ay)

∂x
= y⊤A⊤

for A ∈ Rn×n and x, y ∈ Rn .
Derivate the expression with respect to u to find where the gradient is equal

to zero, so the optimal controller can be found

x(t)⊤APt+1B + x(t)⊤APt+1B + 2u(t)⊤BPt+1B + 2u(t)⊤R = 0 ⇔

⇔ 2x(t)⊤A⊤Pt+1B + 2u(t)⊤B⊤Pt+1B2u(t)⊤R = 0

⇔ u(t)⊤B⊤Pt+1B + u(t)⊤R = −x(t)⊤A⊤Pt+1B

⇔ (B⊤Pt+1B +R)u(t) = −B⊤Pt+1Ax(t) ⇔

⇔ u∗(t) = −(B⊤Pt+1B +R)−1B⊤Pt+1Ax(t).

Now if the optimal controller u∗ is applied to

x⊤
t (A

⊤Pt+1A+Q)xt + u⊤
t (B

⊤Pt+1B +R)ut+

+x(t)⊤A⊤Pt+1Bu(t) + u(t)⊤B⊤Pt+1Ax(t) + Tr(σ2
wPt+1) + rt+1

the second term and fourth term will cancel out each other and we are left with

x⊤
t (A

⊤Pt+1A+Q)xt + Tr(σ2
wPt+1)−

−x(t)⊤A⊤Pt+1B(B⊤Pt+1B +R)−1B⊤Pt+1Ax(t) + rt+1 =

= x⊤
t

[
A⊤Pt+1A+Q−A⊤Pt+1B(B⊤Pt+1B +R)−1B⊤Pt+1A

]
xt+

+Tr(σ2
wPt+1) + rt+1.

Now, from our Linear algebra Preliminaries

1. The inverse of a positive definite matrix P ∈ Rn×n is also a positive
definite matrix

2. If P ∈ Rn×n is a positive definite matrix then it is invertible.

3. If P ∈ Rn×n is a positive definite matrix and Q ∈ Rn×n is a semi-definite
matrix then P +Q is positive definite matrix.

4. If P ∈ Rn×n is a positive definite matrix and A ∈ Rn×n. Then A⊤PA is a
positive semi-definite matrix. If A is invertible, then A⊤PA is a positive
definite matrix.

41

Our induction hypothesis was that V (t, x) = x⊤
t Ptxt+ rt. Now applying the

rules above, the terms A⊤Pt+1A+Q and A⊤Pt+1B(B⊤Pt+1B+R)−1B⊤Pt+1A
are clearly positive semi-definite matrices. Therefore our induction hypothesis
holds. In the process we also found the optimal controller.

To summarize we have proved that V (t, xt) = x⊤Ptx+ rt where P is semi-
definite matrix and rt is constant, and

PT = Q, rT = 0

Pt = A⊤Pt+1A+Q−A⊤Pt+1B(B⊤Pt+1B +R)−1B⊤Pt+1A

rt = Tr(σ2
wPt+1) + rt+1

u∗
t = −(B⊤Pt+1B +R)−1B⊤Pt+1Ax(t).

Given any initial state x0 and some final time T the cost of the LQR will be

V (0, x0) = xt
0P0x0 + r0 = xt

0P0x0 +

T∑
t=0

Tr(Ptσ
2
w),

and again the matrix P0 is calculated recursively backwards in time starting
from the final time. For an example if we want to compute PT−1, we know that
PT = Q. We simply use the formula above for Pt, and we get

PT−1 = A⊤QA+Q−A⊤QB(B⊤QB +R)−1B⊤QA.

After this PT−2 can be obtained through PT−1 and so on.

4.2 Unknown Dynamics: Model-free vs Model-Based
methods

In the Stochastic Linear Quadratic Regulator problem we could derive an opti-
mal controller since the dynamics were known. But finding the optimal policy
becomes particularly challenging when the underlying dynamics of the system
are unknown. In such cases, two fundamental approaches emerge: model-based
and model-free methods. Model-based methods strive to construct an explicit
model of the system’s dynamics. In other words, we try to approximate the
matrices A and B in a dynamical system. Then using the model to determine
the optimal policy. On the other hand, model-free methods forgo the explicit
modeling of the dynamics, instead focusing on learning a policy directly from
the interactions with the environment. Both approaches offer distinct advan-
tages and trade-offs. Forward we will choose the control theoretic approach
which is the model-based method. This will lead us to the subject of System
identification.

42

5 System Identification

In this section we will show how to construct a model of an unknown discrete
dynamical system with multiple-trajectories. But we will disregard the whether
the cost function is known or unknown in this section. Then we will analyze
how a Bang-Bang controller will affect the error of the approximation of the sys-
tem. We will under reasonable assumptions show that the Bang-Bang controller
provides a better approximation of a discrete dynamical system.

The following derivation of the error terms is based from [2].

5.1 Upper bound and errors

In the case when the system is unknown and we chose a model-based approach
to find an optimal controller, we will estimate A and B. We will assume that
the system is controllable this implies that that the Controllability Gramian

ΛC(A,B, T) =

T∑
i=0

AiBB⊤(Ai)⊤

is positive definite matrix for some T .

5.1.1 Derive an error term

Consider the stochastic discrete dynamical system

x(t+ 1) = Ax(t) + bu(t) + w(t),

where xt, wt ∈ Rn, u ∈ Rm where wt
i.i.d∼ N (0, σ2

wI). We also inject noise

through u
i.i.d∼ N (0, σ2

uI). To simplify the analysis, we will use only use the
last two samples at T + 1, T to analyze the error estimates. We sample N
trajectories with T + 1 time-steps from the dynamical system. The goal is to
find an estimation of A,B such that

N∑
i=1

||x(i)
T+1 −Ax

(i)
T −Bu

(i)
T ||22.

is minimized.
To find the optimal estimates of A,B we derivate the expression to search

where the derivate is equal to zero. We have that

∇(A,B)

N∑
i=1

||x(i)
T+1 −Ax

(i)
T −Bu

(i)
T ||22 = 0.

We notice that for some i that

||x(i)
T+1 −Ax

(i)
T −Bu

(i)
T ||22 =

n∑
k=1

[
(x

(i)
T+1)k − (Ax

(i)
T)k − (Bu

(i)
T)k

]2
.

43

If we let

XN :=


(x

(1)
T+1)

⊤

...

(x
(N)
T+1)

⊤

 , ZN :=


(x

(1)
T)⊤, (u

(1)
T)⊤

...
...

(x
(N)
T)⊤, (u

(N)
T)⊤

 ,WN :=


(w

(1)
T)⊤

...

(w
(N)
T)⊤

 .

then the expression can we rewritten as

∇(A,B)

N∑
i=1

||x(i)
T+1 −Ax

(i)
T −Bu

(i)
T ||22 =

= ∇(A,B)||XN − ZN

[
A B

]⊤||2F =

= ∇(A,B)tr
[(
XN − ZN

[
A B

]⊤)(
XN − ZN

[
A B

]⊤)⊤]
=

= ∇(A,B)tr
[
XNX⊤

N −XN

[
A B

]
Z⊤
N −ZN

[
A B

]⊤
X⊤

N +ZN

[
A B

]⊤[
A B

]
Z⊤
N

]
.

Now we derivate the expression with respect to the concatenated matrix
(A,B). We use the propositions (2.8) and (2.12) about derivatives of Trace
from our Linear Algebra preliminaries and we get that

−2X⊤
NZN + 2

[
A B

]
Z⊤
NZN = 0.

We apply the pseudo-inverse of ZN and Z⊤
N ,

−X⊤
N +

[
A B

]
Z⊤
N = 0 ⇔

⇔ ZN

[
A B

]⊤
= XN ⇔

⇔
[
A B

]⊤
= (Z⊤

NZN)−1Z⊤
NXN ⇔

⇔
[
A B

]⊤
= (Z⊤

NZN)−1Z⊤
N (ZN

[
A B

]⊤
+WN) ⇔

⇔
[
A B

]⊤
=
[
A B

]⊤
+ (Z⊤

NZN)−1Z⊤
NWN .

We have now derived an error term for the estimate

[Â B̂
]⊤

=
[
A B

]⊤
+ (Z⊤

NZN)−1Z⊤
NWN .

In the derivation we also found a formula for computing the estimates Â, B̂,
namely [

Â B̂
]⊤

= (Z⊤
NZN)−1Z⊤

NXN .

44

5.1.2 Derive the Covariance matrix

What is the formula for state at x(k + 1)? Assume we start at 0, i.e. x(0) = 0,
then we have that

x(1) = Bu(0) + w(0)

x(2) = A(Bu(0) + w(0)) +Bu(1) + w(1) = ABu(0) +Aw(0) +Bu(1) + w(1)

x(3) = A(ABu(0) +Aw(0) +Bu(1) + w(1)) +Bu(2) + w(2) =

= A2Bu(0) +A2w(0) +ABu(1) +Aw(1) +Bu(2) + w(2)

....

We guess that the formula for x(k + 1) is

x(k + 1) =

k∑
i=0

AiBu(k − i) +Aiw(k − i).

The formula is true for x(1), x(2). We assume it is true for k + 2,

A
[k∑

i=0

AiBu(k − i) +Aiw(k − i)
]
+Bu(k + 1) + w(k + 1) =

=
[k∑

i=0

Ai+1Bu(k − i) +Ai+1w(k − i)
]
+Bu(k + 1) + w(k + 1) =

=

k+1∑
i=0

AiBu(k + 1− i) +Aiw(k + 1− i) = x(k + 2).

The formula holds.
Since x(k+ 1) is a random vector, we want to understands its variance. We

compute its variance

V ar(x(k + 1)) = Cov(x(k + 1), x(k + 1)⊤) =

E
[[k∑

i=0

AiBu(k − i) +Aiw(k − i)− 0
][k∑

i=0

AiBu(k − i) +Aiw(k − i)− 0
]⊤]

=

E
[k∑

i=0

AiBu(k − i)u(k − i)⊤B⊤(Ai)⊤ +Aiw(k − i)w(k − i)⊤(Ai)⊤ + ...
]
.

We recall that the E[aX] = aE[X] and if two random variables are in-
dependent then E[XY] = E[X]E[Y]. Since u(0), ..., u(k), w(0), ..., w(k − i) are
independent variables, the remaining mixed terms of V ar(x(k+1)) will be equal
to zero because the expected value of u(0), ..., u(k), w(0), ..., w(k− i) is zero. So,

45

E
[k∑

i=0

AiBu(k − i)u(k − i)⊤B⊤(Ai)⊤ +Aiw(k − i)w(k − i)⊤(Ai)⊤
]
=

= E
[k∑

i=0

AiBu(k − i)u(k − i)⊤B⊤(Ai)⊤
]
+ E

[
Aiw(k − i)w(k − i)⊤(Ai)⊤

]
=

= σ2
u

k∑
i=0

AiBB⊤(Ai)⊤ + σ2
w

k∑
i=0

Ai(Ai)⊤ = V ar(x(k + 1)).

Now it is easy verifiable that[
x
(i)
T

u
(i)
T

]
i.i.d∼ N

(
0,

[
σ2
uΛC(A,B, T) + σ2

wΛC(A, I, T) 0
0 σ2

uInu

])
,

where nu is the dimension of u. We define Σx as the first block of the above
covariance matrix

Σx = σ2
u

k∑
i=0

AiBB⊤(Ai)⊤ + σ2
w

k∑
i=0

Ai(Ai)⊤,

and Σu as the second block
Σu = σ2

wInu
.

The first block of covariance matrix for the Gaussian and Bang-bang controller
will be denoted ΣxG

and respectively ΣxB
.

5.1.3 Derive upper bound on error term A

We will now derive a probability bounds with the spectral norm of the error
terms. To remind, if A ∈ Rn×n and singular values of A is σ1 ≤ ... ≤ σn, the
spectral norm is defined as

||A||2 = max
||x||2=1

||Ax||2 = σn

in other words it is the maximum singular value of the matrix A, this was shown
in our Linear Algebra preliminaries.

From the derived error terms from earlier

[Â B̂
]⊤

=
[
A B

]⊤
+ (ZNZ⊤

N)−1Z⊤
NWN ,

we can easily verify that the error terms for A and B is[
Â−A

]⊤
= [Inx

0nx×xu
](Z⊤

NZN)−1Z⊤
NWN ,[

B̂ −B
]⊤

= [0nu×xx
Inu

](Z⊤
NZN)−1Z⊤

NWN ,

46

where nx, nu is the dimension of x and respectively u.
Define QA = [Inx 0nx×xu], the the spectral norm of the error term is

||Â−A||2 = ||QA(Z
⊤
NZN)−1Z⊤

NWN ||2.

For the matrix ZN the expected distance is the square root of the covariance
matrix and the spectral norm is a distance preserving. Therefore, ZN can rewrite
to ZN = YNΣ1/2 where

YN :=

y
⊤
1
...
y⊤N


with yi

i.i.d∼ N (0, Inx+nu). We have that

||QA(Z
⊤
NZN)−1Z⊤

NWN ||2 = ||QA((YNΣ1/2)⊤YNΣ1/2)−1(YNΣ1/2)⊤WN ||2 =

= ||QA(Σ
1/2Y ⊤

N YNΣ1/2)−1Σ1/2Y ⊤
N WN ||2 =

= ||QAΣ
−1/2(Y ⊤

N YN)−1Y ⊤
N WN ||2.

Assuming the singular values of M is σ1 ≤ ... ≤ σn, the spectral norm for
the inverted matrix M is

||M−1||2 =
1

σ1

which was proved in our Linear algebra preliminaries.
Since the we assumed that the dynamical system were controllable, Σx will

be an positive definite matrix because. Therefore its eigenvalues are equal to
its singular values. From our Linear Algebra preliminaries, we proved that the
Spectral norm is submultiplicative. Now we have that

= ||QAΣ
−1/2(Y ⊤

N YN)−1Y ⊤
N WN ||2 ≤

≤ ||Σ−1/2
x ||2

||Y ⊤
N WN ||2

||Y ⊤
N YN ||2

= λmin(Σ
−1/2
x)

||Y ⊤
N WN ||2

λmin(Y ⊤
N YN)

.

To conclude,

||Â−A||2 ≤ λmin(Σ
−1/2
x)

||Y ⊤
N WN ||2

λmin(Y ⊤
N YN)

.

and, in the paper [2] the researchers prove that given some parameters, the
term

||Y ⊤
N WN ||2

λmin(Y ⊤
N YN)

has an upper bound. The proof is outside the scope of this paper thus omitted.

47

5.1.4 Derive upper bound on error term B

To derive an upper bound for the the error term for B we will use the same
arguments that were done in derivation for the error term for A.

We have that

||B̂ −B||2 = ||QB(Z
⊤
NZN)−1Z⊤

NWN ||2 =

= ||QBΣ
−1/2(Y ⊤

N YN)−1Y ⊤
N WN ||2 ≤

≤ ||(σ2
uInu)

−1/2||2 ·
||Y ⊤

N WN ||2
λmin(Y ⊤

N YN)
=

=
1

σu

||Y ⊤
N WN ||2

λmin(Y ⊤
N YN)

.

5.2 Error Bounds for Bang-Bang- VS Gaussian controller

We have concluded that the error bounds for A respectively B is

||Â−A||2 ≤ λmin(Σ
−1/2
x)

||Y ⊤
N WN ||2

λmin(Y ⊤
N YN)

||B̂ −B||2 ≤ 1

σu

||Y ⊤
N WN ||2

λmin(Y ⊤
N YN)

.

We now want to understand how using a Bang-bang controller compared to
a Gaussian controller affects the error terms. In many control problems, our
controller u is often limited by some magnitude ||u|| ≤ U , where U is some
scalar. In the case where u ∈ Rm is a vector, each component of the controller
u will have the following form

ui =
{

U : Pr(X = U) = 0.5
−U : Pr(X = −U) = 0.5

for 1 ≤ i ≤ m.

5.2.1 Standard deviation for the controllers

The components of the Gaussian controller will approximately be N (0, 0.52)
multiplied by the maximum magnitude U of the controller.

For the variance for each of the Bang-Bang controller will be

V ar(XB) = 0.5 · (U − 0)2 + 0.5 · (−U − 0)2 = U2

so the the standard deviation for the Bang-Bang controller will be U. While the
standard deviation for the Gaussian controller will be 0.5 · U.

A direct observation for this is that when using the Bang-bang controller,
the error bound for B which is

1

σu

||Y ⊤
N WN ||2

λmin(Y ⊤
N YN)

will be halved compared to using an Gaussian controller.

48

5.2.2 Smallest eigenvalues of Σx with different controllers

For the error bound of A we will analyze the term λmin(Σx) to show that when
using Bang-bang controller, this error bound also get reduced compared to using
a Gaussian controller. To prove this we will use the Rayleigh quotient.

Firstly, by proposition (2.7) the matrix ΛC(A, I, T) is semi-definite matrix
if A is not invertible and if A is invertible it is positive definite.

Since we assumed that the system is controllable, σ2
uΛC(A,B, T) is a positive

definite matrix. Therefore by proposition (2.4) the matrix σ2
uΛC(A,B, T) +

σ2
wΛC(A, I, T) is a positive definite matrix.
This implies that all the eigenvalues of Σx is positive and bigger then zero.

Assume we have have (invertible) symmetric matrix M ∈ Rn×n. To remind the
Rayleigh quotient of a symmetric matrix is defined as

R(M,x) =
xtMx

xtx
.

Assume that the eigenvalues of M ∈ Rn×n is 0 < λ1 ≤ ... ≤ λn. From
the Courant–Fischer–Weyl min-max principle (Theorem 2.1) we have that the
eigenvalues of M is

λ1(M) ≤ R(M,x) ≤ λn(M)

because
min
x

R(M,x) = λ1(M), max
x

R(M,x) = λn(M).

We denote M1 = σ2
uΛC(A,B, T) and M2 = σ2

wΛC(A, I, T). Now consider

λ1(M2) ≤ R(M2, x) ≤ λn(M2),

if we now add
λ1(M1) = min

x
R(M1, x)

to the equation we get that

λ1(M2) + λ1(M1) ≤ R(M2, x) + λ1(M1).

Now λ1(M2) + λ1(M1) ≤ R(M1 +M2, x) must be true since

min
x1

xt
1M1x1

xt
1x1

+min
x2

xt
2M2x2

xt
2x2

≤ xt(M1 +M2)x

xtx
=

xtM1x

xtx
+

xtM2x

xtx

for any x ∈ R , therefore

λ1(M1) + λ1(M2) ≤ λ1(M1 +M2).

Now if we instead have a positive scalar a ∈ R+ in front of M1, how will this
affect the minimum value of aM1 + M2? We examine the difference between
R(aM1+M2, x) and R(M1+M2, x). Assume R(aM1+M2, x) > R(M1+M2, x),
now

49

R(aM1 +M2, x) > R(M1 +M2, x) ⇔ R(aM1 +M2, x)−R(M1 +M2, x) > 0 ⇔

⇔ xt(aM1 +M2 −M1 +M2)x

xtx
=

(a− 1)xtM1x

xtx
> 0.

Now if a ≥ 2 then
(a− 1)xtM1x

xtx
> 0

holds.
So the smallest difference between R(M1 + M2, x) and R(aM1 + M2, x) is

(a− 1)λ1(M1) since

min
x

R((a− 1)M1, x) = (a− 1)λ1(M1).

In our case with the Gaussian controller

ΣxG
= σ2

uΛC(A,B, T) + σ2
wΛC(A, I, T)

with the Bang-Bang controller

ΣxB
= (2·σu)

2ΛC(A,B, T)+σ2
wΛC(A, I, T) = 4·σ2

uΛC(A,B, T)+σ2
wΛC(A, I, T).

So, using the formula above (a−1)xtM1x
xtx > 0, in our case a = 4, so the

minimum eigenvalue of ΣxB
will at least differ by 3λ1(ΛC(A,B, T)) then the

minimum eigenvalue of ΣxG
.

Therefore

1

λ1(Σ
1/2
xB)

<
1

λ1(Σ
1/2
xG) + 3λ1(ΛC(A,B, T))

≤ 1

λ1(Σ
1/2
xG)

so the error

||Â−A||2 ≤ λmin(Σ
−1/2
x)

||Y ⊤
N WN ||2

λmin(Y ⊤
N YN)

will be less when using the Bang-Bang controller compared to the Gaussian
controller.

6 Conclusions

In RL problems where model-based methods are being used, we have now
showed that the approximation of the environment will be better when using
Bang-bang controllers instead of a Gaussian controller.

We have not discussed the drawbacks of using the Bang-Bang controller. It
was discussed earlier that using controllers are not usually ”free”, there is some
cost of using them. If only the maximum magnitude of the controllers are used

50

then this might be expensive to use, especially if the cost is quadratic. It will
be up to the practitioner to decide whether the improved error is worth it.

Even though the Bang-Bang controller yields a better approximation of the
dynamical systems, it might not be optimal when the agent then have to choose
action in the environment. From Figure 2 we can see that even though the
agents choose action at the extremes, they are not strictly at the two extremes.
So if we assume that that these algorithms are close to the optimal controller,
it will not be a strictly Bang-bang controller. But still, using the Bang-bang
controller during a the process of learning the dynamical system will yield a
better approximation if we disregard the cost of using the Bang-Bang controller
during the learning process.

References

[1] Johannes Traa. URL https://www.scribd.com/document/551082766/matrix-calculus.
Matrix Calculus - Notes on the Derivative of a Trace.

[2] N. Matni and S. Tu. A tutorial on concentration bounds for system identi-
fication. arXiv preprint, 2019. URL https://arxiv.org/abs/1906.11395.

[3] N. Matni, A. Proutiere, and A. R. S. Tu. From self-tuning regulators
to reinforcement learning and back again. arXiv preprint, 2019. URL
https://arxiv.org/abs/1906.11392.

[4] Northeastern University, Course ME7247 Advanced Control Engineering.
URL https://laurentlessard.com/teaching/7247-advanced-control-engineering/.
Lecture notes by Laurent Lessard, Lecture 14.

[5] Private communications with Yishao Zhou (Thesis Supervisor). Explana-
tions and guiding.

[6] T. Seyde, I. Gilitschenski, W. Schwarting, B. Stellato, M. Riedmiller,
M. Wulfmeier, and D. Rus. Is bang-bang control all you need? solv-
ing continuous control with bernoulli policies. arXiv preprint, 2021. URL
https://arxiv.org/abs/2111.02552.

[7] E. D. Sontag. Mathematical Control Theory: Deterministic Finite-
Dimensional Systems. Springer-Verlag New York, Inc., 1998.

[8] Stockholm University, Course MM7024 - Linear Algebra and Learning from
Data. Course material and lecture notes.

[9] Stockholm University, Course MM7027 - Dynamic Systems and Optimal
Control Theory. Course material and lecture notes.

51

Thesis Misprints Corrections and Additional

clarifications

Alexander Westberg

August 2023

Chapter 2 Proof of Proposition 2.3

The summation in

x⊤V DV ⊤x = y⊤Dy =

n∑
i=1

λi · y2i > 0.

should be corrected to

n∑
i=1

λn−i · y2i .

since the eigenvalues are ordered in descending order starting from the top in
D.

Chapter 2 Proof of Proposition 2.3

If a matrix has strictly positive eigenvalues, it is invertible. Assume there exists
a vector such that Ax = 0 = 0·x, meaning that A is not invertible and zero would
be an eigenvalue. Since A only has strictly positive eigenvalues, Ax = 0 = 0 · x
is a a contradiction, since 0 is not positive.

Chapter 2 Proof of Proposition 2.7

When ”Dimension” is mentioned during this proposition, it refers to the dimen-
sion of the columnspace of A, or simply Rank of A.

Chapter 2 Proof of Proposition 2.7

If A is invertible then Ai(A⊤)i is a positive definite matrix for any i ≥ 0. Since

xtAi(A⊤)ix = (Aix)⊤(A⊤)ix = ||(A⊤)ix||22 > 0.

IfA is not invertible then there exist some x such that (A⊤)ix = (A⊤)i−1(A⊤)x =
0 which means that

xtAi(A⊤)ix = ||(A⊤)ix||22 ≥ 0,

1

meaning that Ai(A⊤)i is a semi positive definite.

Chapter 4 page 37

The function c(ut, xt, xt+1) in

V π = E

[
T∑

t=0

γtc(ut, xt, xt+1) + cT (xT)

]
should corrected to c(ut, xt).

Chapter 4 page 37

The summation

V π = E

[
T∑

t=0

γtc(ut, xt, xt+1) + cT (xT)

]

from 0 to T should be corrected to 0 to T − 1.

Chapter 5.2.2 page 50

The inequality

1

λ1(Σ
1/2
xB)

<
1

λ1(Σ
1/2
xG) + 3λ1(ΛC(A,B, T))

≤ 1

λ1(Σ
1/2
xG)

is not correct.
What we want to show is that

λ1(Σ
−1/2
XB

) < λ1(Σ
−1/2
XG

),

where ΣXB
and ΣXG

is respectively the covariance matrix for the Bang-Bang
controller and the Gaussian controller.

First we need to find the formula for ||M−1/2||2 where M is positive definite
matrix.

Since || · ||2 is sub-multiplicative we have that

||M−1/2||2 = ||M−1M1/2||2 ≤ ||M−1||2||M1/2||2.

Now from the Linear Algebra preliminaries, we have that

||M−1||2 =
1

σ1

where 0 < σ1 ≤ ... ≤ σn is the singular values of M .
So it remains to find ||M1/2||2.

With the spectral theorem we have that M = V DV ⊤ where where V ∈ Rn×n is
an orthonormal matrix where columns are eigenvectors of A and D ∈ Rn×n is

2

a diagonal matrix, where the diagonal elements are the eigenvalues of A. Now
M0.5 = V D0.5V ⊤ since

(V D0.5V ⊤)(V D0.5V ⊤) = V DV ⊤.

So, it must be that

||M0.5||2 =
√
σn.

To conclude,

||M−1/2||2 ≤ ||M−1||2||M0.5||2 =

√
σn

σ1
.

Under this subsection (5.2.2) we proved that the difference between R(aM1+
M2, x) and R(M1 +M2, x) is at minimum

R((a− 1)M1, x),

and also that

λ1(M1) + λ1(M2) ≤ R(M1 +M2, x) ≤ λn(M1) + λn(M2).

where R(·, x) is the Rayleigh quotient.
We denote M1 = σ2

uΛC(A,B, T) and M2 = σ2
wΛC(A, I, T). If we set the

Gaussian controller to

ΣxG
= σ2

uΛC(A,B, T) + σ2
wΛC(A, I, T)

then the Bang-Bang controller will be

ΣxB
= (2·σu)

2ΛC(A,B, T)+σ2
wΛC(A, I, T) = 4·σ2

uΛC(A,B, T)+σ2
wΛC(A, I, T).

Now we have that that the minimum difference between

λ1(Σ
−1/2
XB

) and λ1(Σ
−1/2
XG

)

must be √
(a− 1)λ1(M1) + λn(M1 +M2)

(a− 1)λ1(M1) + λ1(M1 +M2)
<

√
λn(M1 +M2)

λ1(M1 +M2)

we input a = 4 and get√
3λ1(M1) + λn(M1 +M2)

3λ1(M1) + λ1(M1 +M2)
<

√
λn(M1 +M2)

λ1(M1 +M2)
.

Therefore the approximation error for the matrix A when using the Bang-
Bang controller will be smaller compared to the Gaussian controller.

3

