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Abstract

In this paper, we look at polynomials Pn,k(t) where the coefficient of ti counts the number
of set partitions of {1, 2, . . . , n} with exactly i big blocks, i.e. blocks of size at least k. We begin
by looking at small values of k. Then, we generalize the results to all values of k. Our main
focus is to find recurrence relations for the polynomials. We also define type-B set partitions
as well as bi-colored set partitions and polynomials generated by these. An important concept
we introduce is real-rootedness and interleaving. We present and prove Wagner’s lemma, which
is important when working with interleaving polynomials. Some examples in the paper suggest
that the polynomials Pn,k(t) might be real-rooted and interleaving.
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1 Introduction

In this paper, we consider polynomials of the form

Pn,k(t) :=
∑

π∈SP(n)

tbblocks(π,k), (1)

where SP(n) is the set of all partitions of the set 1, 2, . . . , n and bblocks(π, k) is the number of big
blocks (blocks of size at least k) in the set partition π. We will further explain these notations in
the next section. We find recurrence formulas for the polynomials, and we look at the properties
of these polynomials. Similar problems were studied in e.g., [2] and [3]. In [2], Alexandersson and
Nabawanda looked at run-sorted permutations RSP(n) and polynomials of the form

An(t) :=
∑

σ∈RSP(n)

tdes(σ).

We will briefly mention how the problem in [2] is linked to this paper in Section 2.2.

2 Prerequisites

2.1 Set partitions

A partitioning of the set S into non-empty subsets B1, . . . , Bk called blocks, that satisfy the
conditions:

1. the union of these blocks should be the whole set, i.e., B1 ∪ · · · ∪Bk = S

2. the intersection of any two distinct blocks should be empty, i.e., Bi ∩Bj = ∅ for any i ̸= j

is called a partition of S or a set partition. In other words, every element of S appears in exactly
one block Bi. The size of a block refers to how many elements are in the block. We will use the term
“k-block” to refer to a block of size k. Throughout the text, we assume that S is the set {1, 2, . . . , n}
for some n ∈ N. We will introduce the notation [n] := {1, 2, . . . , n} and we will let SP(n) denote
the set of all partitions of [n].

By convention, when we partition the set [n], we order the blocks such that minBi < minBj ,
whenever i < j. Also, we list the elements of Bi in increasing order. Now, we will introduce two
ways to present a set partition. The first way is to write the set of the blocks {B1, B2, . . . , Bk}. This
presentation of a set partition is tedious. A more convenient way is to write b1 | b2 | · · · | bk, where
bi denotes the elements of Bi with spaces separating them. We illustrate both ways to present a set
partition in the example below.

Example 2.1. Consider the set [3] = {1, 2, 3}. This set has five different partitions, i.e., |SP(n)| =
5. We list all partitions of the set [3] below:

1. {{1}, {2}, {3}}, or 1 | 2 | 3, partitions [3] into three 1-blocks

2. {{1}, {2, 3}}, or 1 | 2 3, partitions [3] into a 1-block and a 2-block

3. {{1, 2}, {3}}, or 1 2 | 3, partitions [3] into a 1-block and a 2-block

4. {{1, 3}, {2}}, or 1 3 | 2, partitions [3] into a 1-block and a 2-block
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5. {{1, 2, 3}}, or 1 2 3, partitions [3] into a 3-block

Example 2.2. Consider the set [3] = {1, 2, 3}. We list some non-examples of set partitions below:

• {{1, 3}} is not a set partition because 2 does not appear in any subset

• {{1, 2}, {2, 3}} is not a set partition because 2 appears in two different subsets

• {{1, 2}, {1}} is not a set partition because 1 appears in two different subsets, and 3 does not
appear in any subset.

When discussing set partitions, some natural questions that come up are “How many ways can
we partition the set?” and “How many ways can we partition the set into a pre-specified number
of blocks?” The Bell numbers and Stirling numbers of the second kind give us the answer to
each question, respectively. The Bell numbers Bn count the number of ways to partition [n], i.e.,
Bn = |SP(n)|. As we saw in Example 2.1, B3 = 5. Stirling numbers of the second kind, often
denoted S(n, k) or

{
n
k

}
, count the number of ways to partition [n] into k blocks. From Example 2.1,

we see that S(3, 1) = S(3, 3) = 1 and S(3, 2) = 3. Consider what happens when we sum over
all possible values of k in the Stirling numbers

{
n
k

}
. We should get the total number of ways to

partition [n]. Therefore, we have the summation formula

Bn =

n∑
k=0

{
n

k

}
. (2)

The following lemma gives us a recurrence relation for the Bell numbers.

Lemma 2.1. Let Bn be the nth Bell number. We have the following recurrence:

Bn+1 =
n∑

k=0

(
n

k

)
Bk. (3)

Proof. We look at the block containing the element n+ 1. Let k + 1 be the size of this block. We
can choose the other k elements of this block from [n] in

(
n
k

)
ways. Then, we can partition the

remaining n − k elements in Bn−k ways. Applying the multiplication principle, we get the term(
n
k

)
Bn−k. Since the element n + 1 being in different-sized blocks are disjoint events, the addition

principle gives us

Bn+1 =
n∑

k=0

(
n

k

)
Bn−k.

Relabeling the indexes and noting that
(
n
k

)
=

(
n

n−k

)
gives us Equation (3).

2.1.1 Other types of set partitions

We now introduce two types of set partitions different from the aforementioned “standard” set
partitions, namely type-B set partitions and bi-colored set partitions, and how these relate to each
other.

We call a partition of the set {±1,±2, . . . ,±n} a type-B set partition if it satisfies the following
conditions:

1. For every block Bi, there exists an opposite block −Bi, obtained by negating the elements in
Bi.
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2. There is at most one zero-block, i.e., at most one block satisfies Bi = −Bi.

Interested readers can find more on type-B set partitions in e.g., [7]. To present type-B set partitions,
we will use the notation {B0,±B1, . . . ,±Bk}, where B0 is the zero-block if it exists, and Bi, for
i = 1, . . . , k are the non-zero blocks. We will use the notation BSP(n) for the set of all type-B set
partitions.

Example 2.3. Let us look at the set S = {±1,±2,±3,±4,±5,±6,±7}. Below, we list some of the
type-B partitions of S:

1. {{±4,±7},±{1,−2, 5},±{−3,−6}}

2. {±{1, 3,−4},±{2,−7},±{5, 6}}

3. {{±1,±2,±3,±4,±5,±6,±7}}

4. {±{1},±{2},±{3},±{4},±{5},±{6},±{7}}

We introduce another type of set partition, called a bi-colored set partition. A bi-colored set
partition occurs when we partition the set [n] normally and color each element either red or blue
such that the smallest element of each block is colored red. We will use the notation BCSP(n) for
the set of all bi-colored set partitions. Bi-colored set partitions are relevant because we can create
a bijection between them and a subset of type-B set partitions, namely type-B set partitions where
we don’t allow zero-blocks. To see this, let us define the function

φ : BCSP(n) → BSP(n)

by first converting all the red elements to positive integers and the blue elements to negative integers
and then creating an opposite block −Bi for every block Bi. The condition that the smallest element
must be colored red in the bi-colored set partitions makes this function injective. The image of φ
is exactly the set of type-B set partitions without zero blocks. The function φ also has an obvious
inverse function φ−1: Take all blocks of a type-B set partition without zero blocks, whose element
closest to zero is positive; next, color the positive elements in red and the negative elements in blue.
Therefore, bi-colored set partitions are bijective with type-B set partitions without zero blocks.

Example 2.4. Consider the bi-colored set partition π = 1r 3r 4b | 2r 7b | 5r 6r. Then φ(π) =
{±{1, 3,−4},±{2,−7},±{6}}.

2.2 Polynomials and real-rootedness

A big part of this paper will be on polynomials generated by set partitions. In this section, we
will define properties such as real-rootedness and interleaving. The main result of this section will
be Wagner’s lemma. For interested readers, you can find more on this topic in e.g., [1] and [4].

Let ai ∈ R for i ∈ {0, 1, 2, . . . , n}. We call the polynomial p =
∑n

i=0 ait
i real-rooted if all the

roots of p are real.

Definition 2.1 (Interlacing and alternating, see [9, Section 3]). Let f and g be polynomials with
positive leading coefficients and real roots {fi} and {gi}, respectively. We say that f interleaves g
if the roots, as viewed on a number line, alternate between roots of f and roots of g and the largest
root is a root of g, i.e.,

gd+1 ≤ fd ≤ gd ≤ · · · ≤ f1 ≤ g1,
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if deg(f) = deg(g)−1 = d, and removing gd+1 if deg(f) = deg(g) = d. We say that g interlaces f in
the first case and g alternates left of f in the latter. In both cases, we write f ≪ g. By convention
0 ≪ 0, 0 ≪ h, and h ≪ 0 whenever h is a polynomial with a positive leading coefficient.

Example 2.5. Let f = x2 − 1, g = x2 − 2x, and h = x3 − 4x, with the roots

h1 = −2, f1 = −1, g1 = h2 = 0, f2 = 1, g2 = h3 = 2

Then, f alternates left of g and both f and g interlaces h. We have that f ≪ g, f ≪ h, and g ≪ h.

We gather some fundamental properties of interleaving polynomials in the following lemma, which
we also find in [9]:

Lemma 2.2 (Wagner’s lemma, see [9, Section 3]). Let f, g, h ∈ R[t] be real-rooted polynomials with
only non-positive roots and positive leading coefficients. Then

1. if f ≪ h and g ≪ h, then f + g ≪ h.

2. if h ≪ f and h ≪ g, then h ≪ f + g.

3. g ≪ f if and only if f ≪ tg.

Proof. 1. Assume that f ≪ h and g ≪ h, i.e.,

· · · ≤ f2, g2 ≤ h2 ≤ f1, g1 ≤ h1,

as shown in Figure 1. This, together with f and g having positive leading coefficients implies
that both f and g are positive to the left of f1 and g1 and negative to the right of f1 and g1.
This pattern continues, as illustrated in Figure 2, where we have colored the regions where
both f and g are positive in a dark grey and the regions where both functions are negative
in light grey. We see in the figure that the roots of f + g must be in the white regions, i.e.,
fi ≤ (f + g)i ≤ gi or gi ≤ (f + g)i ≤ fi. Since hi+1 ≤ fi, gi ≤ hi, we must have that
hi+1 ≤ (f + g)i ≤ hi, ignoring hi+1 if it does not exist. If deg(f) = deg(g) = d, this implies
f + g ≪ h and we are done. In the case of the degrees differing by 1, let us assume without
loss of generality that deg(f) = deg(g)− 1 = d and that d is an odd integer. Then, between
fd, gd and gd+1, both functions f and g are negative. However, to the left of gd+1, the function
f is still negative, but the function g will be positive. Since deg(g) > deg(f), we have that g
increases faster than f decreases. Therefore, the function f + g must have a root to the left
of gd+1 and we have that

(f + g)d+1 ≤ gd+1 ≤ hd+1 ≤ (f + g)d ≤ · · · ≤ (f + g)1 ≤ h1,

i.e. f + g ≪ h.

2. Assume that h ≪ f and h ≪ g, i.e.,

· · · ≤ h2 ≤ f2, g2 ≤ h1 ≤ f1, g1.

Similarly to the previous arguments, we have that either fi ≤ (f+g)i ≤ gi or gi ≤ (f+g)i ≤ fi.
Therefore, we have

· · · ≤ h2 ≤ (f + g)2 ≤ h1 ≤ (f + g)1,

i.e., h ≪ f + g.
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Figure 1: Interleaving polynomials, f ≪ h and g ≪ h (f dashed, g dotted, h solid)

Figure 2: Interleaving polynomials

3. Suppose g ≪ f , i.e.,
· · · ≤ g2 ≤ f2 ≤ g1 ≤ f1.

By multiplying the polynomial g with t, we essentially add an extra root at t = 0 to the
polynomial, call it g′0. Let {g′0, g′1, g′2, . . . , g′d} denote the roots of tg in decreasing order. Then,
we would have g′1 = g1, g′2 = g2, etc. The polynomial tg preserves the real-rootedness from g
and it has non-positive roots (since we only add the root 0) and positive leading coefficient.
Also, note that 0 is the largest possible non-positive root. Therefore, we have

· · · ≤ g′2 = g2 ≤ f2 ≤ g′1 = g1 ≤ f1 ≤ g′0,

and hence, f ≪ tg.

Let π ∈ SP(n). We will use the notation bblocks(π, k) to count the number of blocks in π of size
at least k. We want to study polynomials of the following type:

Pn,k(t) :=
∑

π∈SP(n)

tbblocks(π,k). (4)
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For convenience, we also introduce the notation

Qn,k(t) := tPn,k(t) =
∑

π∈SP(n)

tbblocks(π,k)+1. (5)

We begin by looking at Pn,k(t) when k = 1. We want to find a recurrence relation for the
polynomials. To do this, let us recall the Stirling numbers of the second kind, which has this
well-known recurrence relation (see e.g., [8]):

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), for 0 < k < n. (6)

Note that we have

Pn,1(t) :=
∑

π∈SP(n)

tbblocks(π,1) =
n∑

i=0

S(n, i)ti. (7)

Therefore, we can get the next result using Equation (6).

Lemma 2.3. Let Pn,1(t) be defined as in Equation (7). Then, we have the recurrence relation

Pn,1(t) = tPn−1,1(t) + tP ′
n−1,1(t), (8)

with starting condition P1,1(t) = t. We also have that

Qn,1(t) = tQ′
n−1,1(t) + tQn−1,1(t)−Qn−1,1(t), (9)

with starting condition Q1,1(t) = t2.

Proof. We have

Pn,1(t) =
n∑

i=0

S(n, i)ti

=
n∑

i=0

(S(n− 1, i− 1) + iS(n− 1, i))ti

=
n∑

i=0

S(n− 1, i− 1)ti +
n∑

i=0

iS(n− 1, i)ti

= t

n∑
i=0

S(n− 1, i− 1)ti−1 + t
n∑

i=0

iS(n− 1, i)ti−1

= tPn−1,1(t) + tP ′
n−1,1(t),

proving the first part. Now, since Qn,1(t) = tPn,1(t), we have that Q′
n,1(t) = Pn,1(t) + tP ′

n,1(t).
Combining these with Equation (8), we get

Qn,1(t) = tPn,1(t)

= t2Pn−1,1(t) + t2P ′
n−1,1(t)

= tQn−1,1(t) + t(Q′
n−1,1(t)− Pn−1,1(t))

= tQn−1,1(t) + tQ′
n−1,1(t)−Qn−1,1(t).

6



In Table 1, we see the first five polynomials of Pn,1(t). Note that the degree of the polynomial
Pn,1(t) is n. Also, we find the coefficients of the polynomials in [6, A008277], viewed in a triangular
array. They are just the Stirling numbers of the second kind.

n Pn,1(t)

1 t
2 t2 + t
3 t3 + 3t2 + t
4 t4 + 6t3 + 7t2 + t
5 t5 + 10t4 + 25t3 + 15t2 + t

Table 1: First five polynomials of Pn,1(t)
.

We prove that the polynomials Pn,1(t) are interleaving in the following theorem.

Theorem 2.4. For n ∈ N, the polynomial Pn,1(t) only has real roots. Furthermore, we have that
Pn−1,1(t) ≪ Pn,1(t).

Proof. From Table 1, we see that P1,1(t) and P2,1(t) are real-rooted. Assume that Pn−1,1(t) ≪
Pn−1,1(t), i.e. that Pn−1(t) is real-rooted. Using Item 3 in Lemma 2.2, we get Pn−1,1(t) ≪ tPn−1,1(t).
By Rolle’s theorem, we have that P ′

n−1,1(t) ≪ Pn−1,1(t). Using Item 3 in Lemma 2.2 again, we get
Pn−1,1(t) ≪ tP ′

n−1,1(t). Using Item 2 in Lemma 2.2, we get Pn−1,1(t) ≪ tPn−1,1(t) + tP ′
n−1,1(t),

which gives us Pn−1,1(t) ≪ Pn,1(t) by Lemma 2.3. Therefore, Pn,1(t) must also be real rooted. The
result follows by the induction hypothesis.

Let us now look at the polynomial Pn,k(t) when k = 2 and find a recurrence relation for it. In
[2], Alexandersson and Nabawanda found a recurrence for the polynomial

Rn(t) :=
∑

π∈RSP(n)

tdes(π)+1, (10)

where RSP(n) is the set of all run-sorted permutations over [n] and des(π) is the number of descents
in π. We will use this to get a recurrence for our polynomial Pn,2(t).

Definition 2.2 (See [2] and [5]). We define a map sptorsp : SP(n) → RSP(n + 1). Given
π ∈ SP(n) written in the form b1 | b2 | · · · | bk (see Section 2.1), we first move the smallest element
in each block to the end of the block. Then, all entries are increased by one, and we remove the
vertical bars separating the blocks. This creates a word of length n. Finally, we prepend a 1 to
the beginning of the word. The result is now an element in RSP(n + 1). In [5], Nabawanda,
Rakotondrajao, and Bamunoba proved that sptorsp is a bijection.

Interested readers can find examples of sptorsp and more about run-sorted permutations in e.g.,
[2] and [5]. Let us use this bijection and some other lemmas in [2] to find a recurrence for Pn,2(t).

Lemma 2.5 (See [2, Thm. 2.1]). For any integer n ≥ 0, if P is a set partition of [n] and σ its
corresponding run-sorted permutation over [n+ 1], then the number of blocks of size greater than 1
in P is equal to the number of descents in σ.

Remark. I have reworded Theorem 2.1 in [2] since if the number of runs in σ is equal to k, then the
number of descents in σ is equal to k − 1.

7



Lemma 2.6 (See [2, Lemma 3.1]). We have that the Rn(t) satisfy the recurrence

Rn+1(t) = tR′
n(t) + t(n− 1)Rn−1(t), (11)

with initial conditions R1(t) = R2(t) = t.

Lemma 2.7. We have that Qn,2(t) satisfy the recurrence

Qn,2(t) = tQ′
n−1,2(t) + t(n− 1)Qn−2,2(t), (12)

with initial conditions Q1,2(t) = t and Q2,2(t) = t2 + t.

Proof. Note that Qn,2(t) = Rn+1(t). This is because a set partition P of [n] corresponds to a
run-sorted permutation σ over [n+ 1] and by Lemma 2.5, bblocks(P ) = des(σ). Inserting this into
Equation (11), we get Equation (12).

To get Pn,2(t), note that Pn,2(t) = Qn,2(t)/t and Q′
n,2(t) = Pn,2(t) + tP ′

n,2(t). Therefore, we have

Pn,2(t) = Qn,2(t)/t

= Q′
n−1,2(t) + (n− 1)Qn−2,2(t)

Pn,2(t) = Pn−1,2(t) + tP ′
n−1,2(t) + t(n− 1)Pn−2,2(t). (13)

As shown in Table 2, the coefficients of the polynomial Pn,2(t) add up to the nth Bell number. We
can explain this since the coefficient before ti in Pn,2(t) counts the number of set partitions where i
blocks have a size of at least 2. Summing over i should naturally give us the number of set partitions
of [n], i.e., the nth Bell number. We also see the first ten polynomials of Pn,2(t). We also see that
the degree of the Pn,2(t) must be ⌊n/2⌋, since [n] can at most have ⌊n/2⌋ blocks of size at least 2.
We can generalize this idea: The degree of the polynomial Pn,k(t) is ⌊n/k⌋.

n Pn,2(t)

1 1
2 t+ 1
3 4t+ 1
4 3t2 + 11t+ 1
5 25t2 + 26t+ 1
6 15t3 + 130t2 + 57t+ 1
7 210t3 + 546t2 + 120t+ 1
8 105t4 + 1750t3 + 2037t2 + 247t+ 1
9 2205t4 + 11368t3 + 7071t2 + 502t+ 1
10 945t5 + 26775t4 + 63805t3 + 23436t2 + 1013t+ 1

Table 2: First ten polynomials of Pn,2(t)

We now repeat a central result of [2], but in the language of set partitions.

Theorem 2.8 (See [2, Thm. 3.3]). For n ∈ N, the polynomial Qn,2(t) only has real roots. Further-
more, we have that Qn,2(t) ≪ Qn+1,2(t).

Proof. We will prove the statement using induction. We have that Q1,2(t) ≪ Q2,2(t). Assume now
that Qn−2,2(t) ≪ Qn−1,2(t). Then, (n−1)Qn−2,2(t) ≪ Qn−1,2(t) and using Item 3 in Lemma 2.2, we
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get Qn−1,2(t) ≪ t(n− 1)Qn−2,2(t). By Rolle’s theorem, we have that Q′
n−1,2(t) ≪ Qn−1,2(t). Using

Item 3 in Lemma 2.2 again, we get that Qn−1,2(t) ≪ tQ′
n−1,2(t). Using Item 2 in Lemma 2.2, we

get Qn−1,2(t) ≪ tQ′
n−1,2(t) + t(n− 1)Qn−2,2(t) and using Lemma 2.7, we get Qn−1,2(t) ≪ Qn,2(t).

By induction, the statement follows.

Remark. The statement is also true for Pn,2(t), i.e. For n ∈ N, the polynomial Pn,2(t) only has real
roots. Furthermore, we have that Pn,2(t) ≪ Pn+1,2(t).

3 Main problem

In this section, we deal with the problem of finding a general recurrence formula for Pn,k(t) with
larger values of k. We begin by looking at Pn,3(t). Our initial approach was to consider a function
S(n, k, i, j) that counts the number of ways to partition [n] into k blocks, where i blocks are of size
2 and j blocks are of size at least 3. Note that we can view this function as a modified Stirling’s
number of the second kind. By finding a recurrence relation for S(n, k, i, j), we can get a recurrence
relation for Pn,3(t).

Lemma 3.1. For relevant n, k, i, j, we have the following recurrence relation:

S(n, k, i, j) = S(n− 1, k − 1, i, j) + (n− 1)S(n− 2, k − 1, i− 1, j)+(
n− 1

2

)
S(n− 3, k − 1, i, j − 1) + jS(n− 1, k, i, j), (14)

where S(n, k, i, j) = 0 otherwise.

Proof. We look at the block containing the element n. There are four relevant situations:

1. The element n is in a 1-block, i.e., we append n into an existing set partition of [n− 1] which
can be partitioned in S(n− 1, k− 1, i, j) ways. Hence, we get the first term in Equation (14).

2. The element n is in a 2-block. There are n− 1 ways to choose the other element in this block
from [n−1]. We can do this in (n−1) ways. The remaining n−2 elements can be partitioned
in S(n− 2, k − 1, i− 1, j) ways. Hence, we get the second term in Equation (14).

3. The element n is in a 3-block. There are
(
n−1
2

)
ways to choose the other 2 elements in this

block from [n− 1]. The remaining n− 3 elements can be partitioned in S(n− 3, k− 1, i, j− 1)
ways. Hence, we get the third term in Equation (14).

4. The element n is in a block of size bigger than 3. We insert n into one of the existing j
blocks of size at least 3. This gives us the term jS(n− 1, k, i, j), which is the fourth term in
Equation (14).

The four situations are mutually exclusive. Using the summation formula, we get Equation (14).

Note that we have

Pn+1,3(t) =
∑

π∈SP(n+1)

tbblocks(π,3) =
∑
i,j,k

S(n+ 1, i, j, k)tj . (15)

Through some calculations using Equation (15) and Lemma 3.1, we get the recurrence formula

Pn+1,3(t) = tP ′
n,3(t) + Pn,3(t) + nPn−1,3(t) + t

(
n

2

)
Pn−2,3(t), (16)
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with initial conditions P1,3(t) = 1 and P2,3(t) = 2.
This approach is similar to how we found a recurrence relation for Pn,1(t). However, this method

is hard to generalize to bigger blocks. This is because, for each incremental increase in k in Pn,k(t),
we need to add one more parameter to the modified Stirling’s number of the second kind. In
Section 3.1, we will use a different method to find a general recurrence formula for Pn,k(t).

3.1 Generalization to bigger blocks

So far, we have looked at the polynomials Pn,k(t) when k is 1 or 2. A natural question is if we can
find a recurrence for larger values of k, i.e., Pn,k(t) for k ≥ 3. One way to construct a recurrence
relation for Pn,k(t) is to look at what happens with the element n + 1, similar to how we proved
Lemma 2.1. This recurrence is presented and proved in Lemma 3.2.

Lemma 3.2. Let Pn,k(t) be defined as in Equation (4). Then, we have the recurrence

Pn+1,k(t) =

k−2∑
i=0

(
n

i

)
Pn−i,k(t) + t

n∑
i=k−1

(
n

i

)
Pn−i,k(t) (17)

Proof. We look at the block containing the element n + 1. Let i + 1 be the size of this block. We
can choose the other i elements of this block from [n] in

(
n
i

)
ways. The remaining n − i elements

give us the polynomial Pn−i,k(t). Therefore, we get the term
(
n
i

)
Pn−i,k(t). However, if i + 1 ≥ k,

then the block containing the element n+ 1 is a big block. Therefore, we should multiply the term
with another t. Since the element n + 1 being in different-sized blocks are disjoint events, we can
use the addition principle and get Equation (17).

The problem with Equation (17) is that it depends on all n previous polynomials. Also, this
recurrence relation is not ideal for finding properties of the polynomials, such as real-rootedness.
Therefore, we find another recurrence that depends on fewer previous polynomials. We will do this
by noting that

P ′
n,k(t) =

d

dt

( ∑
π∈SP(n)

tbblocks(π,k)
)

=
∑

π∈SP(n)

bblocks(π, k)tbblocks(π,k)−1.

Multiplying with t on both sides gives us

tP ′
n,k(t) =

∑
π∈SP(n)

bblocks(π, k)tbblocks(π,k), (18)

which we interpret combinatorically as choosing one of the existing blocks of size at least k and
putting the element n+ 1 in it. Using Equation (18), we get the following result:

Theorem 3.3. The polynomial Pn,k(t) has the recurrence relation

Pn+1,k(t) = tP ′
n,k(t) +

k−2∑
i=0

(
n

i

)
Pn−i,k(t) + t

(
n

k − 1

)
Pn−k+1,k(t) (19)

for k ≥ 2.

Proof. We look at the block containing the element n + 1. Let i + 1 be the size of this block.
If i + 1 > k, we can get this block by choosing one of the existing blocks of size at least k and

10



appending n + 1. This gives us the term tP ′
n,k(t), as mentioned above. If i + 1 ≤ k, we get the

remaining terms analogous to how we did when we proved Lemma 3.2.

Corollary 3.3.1. The polynomial Qn,k(t) has the recurrence relation

Qn+1,k(t) = tQ′
n,k(t) +

k−2∑
i=1

(
n

i

)
Qn−i,k(t) + t

(
n

k − 1

)
Qn−k+1,k(t) (20)

for k ≥ 3.

Proof. We have that Q′
n,k(t) = tPn,k(t)

′ + Pn,k(t). We get the result by multiplying both sides in
Equation (19) with t and simplifying the expression.

3.1.1 The polynomials Pn,k(t), for k = 3 and k = 4

Let us study the polynomials Pn,3(t) in greater detail. We will also look at a brief example of the
polynomials Pn,4(t). As shown in Table 3, the degree of Pn,3(t) is ⌊n/3⌋, confirming our statement
in section 2.2. Also, we can find the coefficients of the polynomials in [6, A355144].

n Pn,3(t)

1 1
2 2
3 t+ 4
4 5t+ 10
5 26t+ 26
6 10t2 + 117t+ 76
7 105t2 + 540t+ 232
8 931t2 + 2445t+ 764
9 280t3 + 6909t2 + 11338t+ 2620
10 4900t3 + 48546t2 + 53033t+ 9496

Table 3: First ten polynomials of Pn,3(t)

Using Lemma 3.2, we get the the recurrence formula

Pn+1,3(t) = Pn,3(t) + nPn−1,3(t) + t

n−1∑
i=2

(
n

i

)
Pn−i,3(t). (21)

Using Theorem 3.3, we again get the recurrence formula in Equation (16). Using Corollary 3.3.1,
we get

Qn+1,3(t) = tQ′
n,3(t) + nQn−1,3(t) + t

(
n

2

)
Qn−2,3(t). (22)

Example 3.1. From Table 3, we have P6,3(t) = 10t2 + 117t+ 76 and P7,3(t) = 105t2 + 540t+ 232.

11



We call the polynomials f and g respectively. The roots of the polynomials are calculated to be

f1 =
−117−

√
10649

20
≈ −11.010, f2 =

−117 +
√
10649

20
≈ −0.69030,

g1 =
−270− 2

√
12135

105
≈ −4.6697, g2 =

−270 + 2
√
12135

105
≈ −0.47316.

The polynomials are plotted in Figure 3. We can draw the conclusion that P6,3(t) ≪ P7,3(t).
Through some computer calculations, we find that Pn,3(t) ≪ Pn+1,3(t) for all the polynomials listed
in Table 3.

Figure 3: The polynomials P6,3(t) (dashed) and P7,3(t) (dotted)

Example 3.2. From Table 4, we have P7,4(t) = 225t+ 652 and P8,4(t) = 35t2 + 1325t+ 2780. We
call the polynomials f and g respectively. The roots of the polynomials are calculated to be

g1 =
−265− 3

√
6073

14
≈ −35.628, f1 = −652

225
≈ −2.8978, g2 =

−265 + 3
√
6073

14
≈ −2.2294.

The polynomials are plotted in Figure 4. We can draw the conclusion that P7,4(t) ≪ P8,4(t).
Through some computer calculations, we find that Pn,4(t) ≪ Pn+1,4(t) for all the polynomials listed
in Table 4.

n Pn,4(t)

1 1
2 2
3 5
4 t+ 14
5 6t+ 46
6 37t+ 166
7 225t+ 652
8 35t2 + 1325t+ 2780
9 441t2 + 8062t+ 12644
10 4746t2 + 50093t+ 61136

Table 4: First ten polynomials of Pn,4(t)

12



Figure 4: The polynomials P7,4(t) (dashed) and P8,4(t) (dotted)

Conjecture. The polynomials Pn,k(t) interleaves, i.e., Pn,k(t) ≪ Pn+1,k(t), for all integers k ≥ 1.

3.2 Polynomials generated by type-B set partitions

Let us look at polynomials generated by type-B set partitions and bi-colored set partitions. We
begin with bi-colored set partitions.

Rn,k(t) :=
∑

π∈BCSP(n)

tbblocks(π,k). (23)

The method used to derive a recurrence relation for Equation (23) will be similar to what we used
in Section 3.1.

Theorem 3.4. The polynomial Rn,k(t), defined in Equation (23) has the recurrence relation

Rn+1,k(t) = 2tR′
n,k(t) +

k−2∑
i=0

2i
(
n

i

)
Rn,k(t) + 2k−1t

(
n

k − 1

)
Rn−k+1,k(t). (24)

Proof. We look at the block containing the element n + 1. Let i + 1 be the size of this block. If
i+1 > k, we can get this block by choosing one of the existing blocks of size at least k and appending
n+1. This gives us the term tR′

n,k(t), akin to how we did in Section 3.1. However, we can color the
element n+1 either red or blue, so we need to add a coefficient 2, which gives us the term 2tR′

n,k(t).
Now, we consider when the size of the block containing the element n + 1 is less than or equal to
k, i.e., i + 1 ≤ k. We choose the other i elements of this block from [n]. Then, we need to color
every either red or blue, with the exception of the smallest element, i.e., we must color i elements,
and we obtain the coefficient 2i. The remaining n− i terms give us the polynomial Rn−1,k(t). From
this, we obtain the terms 2i

(
n
i

)
Rn,k(t) for i = 0, . . . , k − 2. However, when i + 1 = k, the block

containing the element n + 1 is a big block. Therefore, we need to multiply 2k−1Rn−k+1,k(t) with
t, which gives us the last term in Equation (23).

We now turn our attention to type-B set partitions and the polynomials defined by

Tn(t) :=
∑

π∈BSP(n)

tbblocks(π,1). (25)
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Although we did not find a recurrence relation to Tn(t), we used Mathematica to generate the first
four polynomials, which we see in Table 5. Note that the degree of Tn(t) is 2n. This is because the
most number of blocks in a type-B set partition of {±1, . . . ,±n} is 2n, achieved by putting each
element in separate blocks. Also, by adding the coefficients in Tn(t), we obtain the Dowling numbers,
see [6, A007405]. This means that we can interpret the Dowling numbers as the number of type-B
set partitions of {±1, . . . ,±n}. From the table, we also observe that T2(t) = t4 + 2t3 + 2t2 + t, and
through some computer calculations, we find that T2(t) has the roots t1 = −1, t2 = 0, t3 = −1

2−
i
√
3

2 ,
and t4 = −1

2 + i
√
3

2 . Therefore, we know that the polynomials Tn(t) can not be interleaving, and
they are not even real-rooted.

n Tn(t)

1 t2 + t
2 t4 + 2t3 + 2t2 + t
3 t6 + 3t5 + 6t4 + 9t3 + 4t2 + t
4 t8 + 4t7 + 12t6 + 30t5 + 28t7 + 32t3 + 8t2 + t

Table 5: First four polynomials of Tn(t)

4 Discussion

In the previous sections, we have looked at polynomials that count big blocks. We have looked
at the polynomials generated by set partitions, polynomials generated by type-B set partitions, and
polynomials generated by bi-colored set partitions. The main results regarding normal set partitions
are Theorem 2.8 and Theorem 3.3. Theorem 2.8 is related to one of the main results in [2] but
applied to set partitions instead of run-sorted permutations. Theorem 3.3 gives us an intuitive
recursion relation for the polynomials Pn,k(t). However, the recursion formula in Corollary 3.3.1
depends on fewer previous polynomials; therefore, it might be better. We could not find a recursion
formula for type-B set partitions, but with the help of a computer, we discovered that Rn,k(t) is
generally not real-rooted. We will further discuss the topic of real-rootedness in Section 4.1. We
found a recursion formula for the bi-colored set partitions in Theorem 3.4.

4.1 Real-rootedness

A topic of interest is whether or not the different polynomials we have looked at interleave. We
already saw that Pn,2(t) ≪ Pn+1,2(t) and we can similarly show that Rn,2(t) ≪ Rn+1,2(t). In
Example 3.1, we saw that at least the first ten polynomials interleave and the presumption is that
Pn,3(t) ≪ Pn+1,3(t) for all n ≥ 1. We found similar results for Pn,4(t) in Example 3.2. This leads us
to the idea of whether or not Pn,k(t) interleave for all k ≥ 1. However, proving this was deemed too
complex of a task for this paper. For the polynomials Tn(t), we found counter-examples showing
that the polynomials are neither interleaving nor real-rooted.
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