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Abstract

In this paper, we focus on the construction and simplicity of the Mathieu
groups M11 and M12, as presented in Donald.S Passman’s book "Per-
mutation Groups." The main aim is to provide clearer explanations to
the ambiguities involved in understanding the construction and related
concepts.
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1 Introduction
This thesis aims to explore two of the five Mathieu groups, M11 and M12. The
Mathieu groups are an intriguing family of finite groups that hold significant
applications in combinatorics and group theory. To comprehend Mathieu groups
and their significance, it is crucial to introduce the concept of sporadic groups
and the classification of finite simple groups. We start by formally state the
classification theorem to present a comprehensive overview.

Theorem 1.1. (Classification of Finite Simple Groups) Every finite simple
group is isomorphic to one of the following groups:

(i) a member of one three infinite classes of groups, namely:

• the cyclic group of prime order,

• the alternating group of degree at least 5,

• the groups of Lie type.

(ii) one of 26 groups called "the sporadic groups"

(iii) the Tits group.

The classification theorem of finite simple groups is a remarkable result in math-
ematics, sorting all finite simple groups into distinct categories. This theorem is
known for its exceptionally long and complex proof, which spans tens of thou-
sands of pages in various research papers and books. Due to its complex nature,
providing the complete proof is beyond the scope of this thesis.

The Mathieu groups are some of the most well-known examples of sporadic
groups. They are also the first sporadic groups to be discovered. The sporadic
groups are interesting because they don’t fit into any particular family or nat-
ural sequence of groups, and they appear seemingly randomly. In other words,
they do not arise from any obvious pattern or structure. The construction
of Mathieu groups involves manipulating permutation groups that are "highly
transitive" and we will see that this types of transitive groups are extremely rare.

In this thesis, we will focus on the two smaller groups, M11 and M12, their
constructions and properties, and show that they are indeed simple. specifi-
cally, we will establish that these groups belong to the category of finite simple
groups.

There are several ways to construct the Mathieu groups M11 and M12. We
will use a procude due to Ernst Witt, who was a German mathematician that
confirmed the existence of these groups by constructing them as successive tran-
sitive extensions of permutation groups.
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2 Preliminaries

2.1 An Overview of the Theory of Groups
We begin this work by introducing some important definitions and results in
group theory that is needed to understand the technical details in later sections.

2.1.1 Group Actions

The following concept we are introducing may be the most important tool for
characterizing groups and understanding their structure and behavior, espe-
cially in the context of permutation groups (which are groups represented as
permutationen).

Definition 2.1. (Group Action) Let G be a group with the identity e and let
A be a set. Then a (left) group action of G on A is a function

G×A −→ A

denoted by
(g, a) 7→ g · a

which satisfies the following properties

(i) e · a = a

(ii) g1 · (g2 · a) = (g1g2) · a

for all g1, g2 ∈ G and a ∈ A.

There are many different characterizations of group actions, and we will address
those that are relevant to our work.

Definition 2.2. The action of a group G on a set A is called transitive if for
any two points a, b ∈ A there exists a g ∈ G so that ga = b.

Definition 2.3. (Orbit) Let G be a group acting on a set A and let a ∈ A.
The set

Ga = {ga | g ∈ G}

is called the orbit of a (under the action of G on A).

Remark 2.4. Note that Ga is a subset of A and that the group action is
transitive if and only if there is only one orbit.

Definition 2.5. (Stabilizer) Let G be a group acting on a set A and a some
fixed element of A. The stabilizer of a in G is the set Ga = {g ∈ G | ga = a}.

Theorem 2.6. (Orbit-Stabilizer Theorem) Let G be a group acting on a set A.
Then it holds that |Ga| = |G : Ga|.
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Proof. We show that the mapping

ϕ : Ga→ G/Ga

ga 7→ gGa

is a bijection. We first must show that ϕ is a well defined mapping. Let
g1a, g2a ∈ Ga and g1a = g2a for some g1, g2 ∈ G. Then we have

(g−1
2 g1)a = g−1

2 (g1a) = g−1
2 (g2a) = (g−1

2 g2)a = ea = a.

This shows that g−1
2 g1 ∈ Ga which implies g1Ga = g2Ga so ϕ is well defined.

It is clear that ϕ is surjective by the way it is defined. If g1Ga = g2Ga then
g1 = g2h for some h ∈ Ga so

g1a = (g2h)a = g2(ha) = g2a

thus ϕ is injective. Since bijections preserves the cardinality of the sets the
theorem follows.

Definition 2.7. A group G acting on a set A is said to be semiregular if
Ga = {e} for all a ∈ A. If G is also transitive we say that the group is regular.

Definition 2.8. Let G be a transitive permutation group acting on a set A.
The action on the set A is said to be primitive if for any a ∈ A, Ga is a maximal
subgroup of G.

This definition of a primitive action is not standard. However, we will see
how it will be used when M11 naturally arises as a stabilizer subgroup of M12.
The following results will be used in the last section where we are going to prove
the simplicity of the Mathieu groups, which we are going to state without proof.

Proposition 2.9. Let G be a transitive permutation group and let N � G. If
N ̸= {e} and G is primitive, then N is transitive.

Proposition 2.10. Let G be a transitive permutation group of prime degree.
Then G is primitive

2.1.2 The Symmetric Group Sn: Introduction and Fundamental Prop-
erties

We are no going to see how group actions and permutation groups are related.

Definition 2.11. (Symmetric Group) The symmetric group together with com-
position operator (Sn, ◦), is the group of permutation of n objects. In other
words, it is all the bijections from a set A (whose cardinality is n) to itself.
Furthermore, a subgroup of the symmetric group is said to be a permutation
group.

Proposition 2.12. For any non empty set A, the group of permutations of A,
SA acts on A by σ · a = σ(a) for all σ ∈ SA, a ∈ A.
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Proof. We show that the properties of a group action given in definition 2.1 are
satisfied. Let σ1, σ2 ∈ SA and a ∈ A. Then

(i) e · a = e(a) = a

(ii) σ1 · (σ2 · a) = σ1(σ2 · a) = σ1(σ2(a)) = (σ1σ2)(a) = (σ1σ2) · a.

Proposition 2.13. Let the group G act on a set A. For each fixed g ∈ G we
get a map σg defined by

σg : A→ A

σg(a) = g · a

with the following properties:

(1) for each fixed g ∈ G, σg is a permutation of A, and
(2) the map from G to SA defined by g 7→ σg is a homomorphism.

Proof. The map σg is a permutation of A if it has a 2-sided inverse σg−1 . For
all a ∈ A

(σg−1 ◦ σg)(a) = σg−1(σg(a)) = g−1 · (g · a) = (g−1g) · a = 1 · a = a

so σg−1 ◦ σg is the identity map from A to A. Thus σg has a two sided inverse,
hence is a permutation of A. Now let ϕ : G→ SA be defined by ϕ(g) = σg. Note
that σg ∈ SA by the first part of the proof. Let g1, g2 ∈ G. The permutations
ϕ(g1g2) and ϕ(g1) ◦ ϕ(g2) are equal if and only if their values agree on every
element a ∈ A. For all a ∈ A

ϕ(g1g2)(a) = σg1g2(a) = (g1g2)·a = g1 ·(g2 ·a) = σg1(σg2(a)) = (ϕ(g1)◦ϕ(g2))(a)

which proves that ϕ is a homomorphism.

Definition 2.14. (Degree) The degree of a permutation group of a finite set is
the number of elements in the set.

Example 2.15. The symmetric group Sn acts on a set of n element, so it has
degree n.

In fact, every group is isomorphic to a permutation group, which brings us
further to an important result called Cayley’s theorem. This theorem has a
central role in this thesis since we are going to construct the Mathieu groups
that are represented as permutation groups.

Theorem 2.16. (Cayley’s Theorem) Every finite group is isomorphic to a per-
mutation group. If G is a group of order n, then G is isomorphic to a subgroup
of Sn.

5



Proof. For a group G with g, x ∈ G define

λg : G −→ G

λg(x) = gx.

Since
λg(x) = λg(y) ⇒ gx = gy ⇒ x = y

the function is injective. Suppose y ∈ G and note that λg(g−1y) = g−1gy = y
so it is also surjective hence λg is a bijection λg ∈ SG, where SG is the group
of permutations of the n elements in G. Now let H = {λg | g ∈ G}. We claim
that H is a group under composition. If an element λg ∈ H is composed with
λe we get

(λg ◦ λe)(x) = gex = gx = λg(x)

so λe is the identity in H. For inverses we get

(λg ◦ λg−1)(x) = gg−1x = x = λe(x)

which shows that every element has an inverse and (λg)
−1 = λg−1 . Since com-

position of function is associative the operation on the set is also associative.
Let λg1 , λg2 ∈ H and we get

(λg1 ◦ λg2)(x) = g1g2x = λg1g2(x) ∈ H

so the set is closed. We have shown that (H, ◦) is a group. We finish this proof
by showing that G ∼= H. Consider the map

ϕ : G −→ H

ϕ(g) = λg.

We show that this is a bijective homomorphism. Note that for elements g, h ∈ G

λgh(x) = ghx = (λg ◦ λh)(x) = ϕ(g)ϕ(h)(x)

so ϕ is indeed a homomorphism. The map is obviously surjective by the way
it is defined. For injectivity, the permutations ϕ(g) = λg and ϕ(h) = λh are
equal if and only if their values agree on every element x ∈ G. We get that
λg(x) = λh(x) for all x ∈ G which implies gx = hx ⇒ g = h and the result
follows.

Cayley’s theorem highlights the idea that every group can be represented
by permutations of its elements. It is good to keep it in mind to build a good
intuition for the technical proofs later on.

Proposition 2.17. Let σ, τ be elements of Sn and suppose σ has cycle decom-
position

(a1 a2 ... ak1
)(b1 b2 ... bk2

)... .
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Then τστ−1 has the cycle decomposition

(τ(a1) τ(a2) ... τ(ak1
))(τ(b1) τ(b2) ... τ(bk2

))... ,

that is, τστ−1 is obtained from σ by replacing each entry i in the cycle decom-
position for σ by the entry τ(i).

Proof. Let σ(i) = j. By using the definition of composition of functions, we get

τστ−1(τ(i)) = τ(σ(τ−1(τ(i)))) = τ(σ(i)) = τ(j).

Thus if σ sends i to j, then τστ−1 sends τ(i) to τ(j). This completes the
proof.

Definition 2.18. (Fixed Points) LetG be a group acting on a setA = {a1, ..., an}
and let H be a subgroup of G. We say that H fixes the set A if it fixes all the
elements of A, i.e., hai = ai for all h ∈ H and i = 1, ..., n.

Example 2.19. Let G = S3 be acting on the set {1, 2, 3} with H = {e, (1 2)}.
Then (e)(3) = 3 and (1 2)(3) = 3 so H fixes 3.

Definition 2.20. (The Alternating Group) An even permutation is a permu-
tation that is a product of an even number of transpositions. The set of even
permutations of Sn, denoted by An, is called The alternating group of degree n
with the usual group multiplication inherited from Sn.

2.1.3 Important Subgroups and Related Concepts

To study groups effectively, it is essential to look at their subgroups, as sub-
groups play a crucial role in understanding the structure and properties of a
given group.

Definition 2.21. (Center) Let G be a group. The set Z(G) = {g ∈ G | gx =
xg for all x ∈ G}, i.e., the set of elements commuting with all the elements of
G is called the center of G .

Example 2.22. If G is abelian, then all the elements commute, so Z(G) is the
entire group, i.e., Z(G) = G.

Definition 2.23. (Centralizer) Let G be a group and let A be a nonempty
subset of G. The set CG(A) = {g ∈ G | gag−1 = a for all a ∈ A} is called the
centralizer of A in G . In other words, CG(A) is the set of elements of G which
commute with every element of A.

Definition 2.24. (Normalizer) Let G be a group and let A be a nonempty sub-
set of G. Define gAg−1 = {gag−1 | a ∈ A}. The set NG(A) = {g ∈ G | gAg−1 =
A} is called the normalizer of A in G.

The center, centralizer and normalizer are all subgroups of G.
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Definition 2.25. (Self-Centralizing Subgroup) Let G be a group and H a sub-
group of G. If CG(H) ≤ H or (equivalently) Z(H) = CG(H), then H is called
self-centralizing.

Remark 2.26. If G (or H) is abelian then the definition of self-centralizing is
equivalent to H = CG(H).

Definition 2.27. (Double Coset) Let G be a group, and let H and K be
subgroups of G. For each g ∈ G, the (H,K)-double coset of g is the set HgK =
{hgk | h ∈ H, k ∈ K}. If H = K, this is called the H-double coset of g. The set
of all double cosets is denoted by H\G/K.

Note that if we let H or K above be the identity subgroup, then this is just
the usual definition of the left- and right cosets, respectively.

Proposition 2.28. Let G be a group and H an abelian subgroup of G. Then
H is self-centralizing if and only if it is not contained in any bigger abelian
subgroup of G.

Proof. Let H ≤ K where K is abelian. Then K centralizes H so K ≤ CG(H).
But CG(H) ≤ H so K ≤ H which yield H = K. Conversely, if H is not
contained in any larger abelian subgroup, and x ∈ CG(H) then < H,x > is
abelian, and so has to be H, that is x ∈ H. Hence H is self-centralizing.

Definition 2.29. (Normal Subgroup) A subgroup H of a group G is said to be
normal if ghg−1 ∈ H for all g ∈ G and h ∈ H. We will denote this by H �G.

It is sometimes useful to use the following definition of a normal subgroup:
A Subgroup H of G is normal in G if and only if NG(H) = G.

Definition 2.30. (Conjugate) Let G be a group and g and h be two elements
in G. The element ghg−1 is called the conjugate of h by g.

Proposition 2.31. Let G be a group and H a subgroup of G. Then gHg−1 is
a subgroup of G.

Proof. We use the subgroup criterion. Since e ∈ H we have

geg−1 = gg−1 = e ∈ gHg−1

so gHg−1 is nonempty. Suppose that h1, h2 ∈ H, then

(gh1g
−1)(gh2g

−1)−1 = (gh1g
−1)(gh−1

2 g−1) = gh1h
−1
2 g−1 ∈ gHg−1.

Proposition 2.32. Two elements of Sn are conjugate if and only if they have
the same cycle type. The number of conjugacy classes of Sn equals the number
of partitions of n.
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Proof. The fact that conjugate permutations have the same cycle type follows
immediately by proposition 2.17. Conversely, suppose that σ, τ ∈ Sn has the
same cycle type. Order the cycles in each permutation in nondecreasing length,
including the 1-cycles (note that if several cycles of σ and τ has the same length
then there are several ways of doing this). Let ρ be the function that maps the
ith integer in the list for σ to the ith integer in the list for τ . Then again by
proposition 2.17, ρ is a permutation that fulfills ρσρ−1 = τ . Since the cycle
type of a permutation is a certain partition of n, and that the conjugacy class of
a permutation is determined by its cycle type, the number of conjugacy classes
of Sn is the number of partition of n, completing the proof.

Example 2.33. The elements (1 2 4)(3 6)(7 8) and (2 3 8)(7 6)(1 4) in S8 has
both cycle type 3, 2, 2 so they are conjugate

Definition 2.34. (Simple Group) A simple group is a nontrivial group whose
only normal subgroups are the trivial group and the group itself.

Definition 2.35. (Index) If G is a group (possibly infinite) and H ≤ G, the
number of left coset of H in G is called the index of H in G and is denoted by
|G : H|.

Theorem 2.36. (Lagrange’s Theorem) If G is a finite group and H is a sub-
group of G , then the order of H divides the order of G and |G : H| = |G|

|H| .

Proof. Let |H| = n and |G : H| = k. We know that the set of left cosets of H
in G partition G. The map

H → gH

h 7→ gh

is clearly a surjection. Since gh1 = gh2 implies h1 = h2 the map is also injective.
This proves that |gH| = |H| = n and so |G| = kn which implies k = |G|

n = |G|
|H| ,

completing the proof.

2.1.4 The First Isomorphism Theorem

Theorem 2.37. (The First Isomorphism Theorem) If ϕ : G → H is a group
homomorphism, then ker ϕ�G and G/ker ϕ ∼= ϕ(G).

Proof. We show that gng−1 ∈ ker ϕ for all g ∈ G and n ∈ ker ϕ. Let g ∈ G
and n ∈ ker ϕ be arbitrary. Since ϕ is an homomorphism we get

ϕ(gng−1) = ϕ(g)ϕ(n)ϕ(g−1) = ϕ(g)ϕ(g)−1 = eH

thus gng−1 ∈ ker ϕ which proves the first part. For the second part, define the
group map

ψ : G/ker ϕ→ ϕ(G)

gker ϕ 7→ ϕ(g)
.
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We show that this is an isomorphism. Take some arbitrary g1, g2 ∈ G. The map
is well defined since

g1ker ϕ = g2ker ϕ =⇒ g2
−1g1 ∈ ker ϕ =⇒ ϕ(g2

−1g1) = eH =⇒
ϕ(g2)

−1ϕ(g1) = eH =⇒ ϕ(g1) = ϕ(g2)
.

Note also that

ψ((g1ker ϕ)(g2ker ϕ)) = ψ(g1g2ker ϕ) = ϕ(g1g2) = ϕ(g1)ϕ(g2) = ψ(g1ker ϕ)ψ(g2ker ϕ)

so it is an homomorphism. Now suppose that xker ϕ ∈ ker ψ where x ∈ G.
This implies that ψ(gker ϕ) = ϕ(x) = eH which tells us that x ∈ ker ϕ. Thus
xker ϕ = ker ϕ so ker ψ = {ker ϕ}. Since a group homomorphism is injective if
and only if the kernel is the identity it follows that ψ is injective. For surjectivity,
suppose that y ∈ ϕ(G). Then there exist x ∈ G such that ϕ(x) = y. Note that
ψ(xker ϕ) = ϕ(x) = y so we have found an element in the domain that maps
onto the arbitrary element y thus the ψ is indeed surjective and the theorem
follows.

Proposition 2.38. Let G and H be groups, K ≤ G and ϕ : G↠ H a surjective
homomorphism. Let c be a nonzero number. If c | |ϕ(K)| then c | |K|.

Proof. Consider the homomorphism ψ : K → ϕ(K). Since ψ is surjective,
the previous theorem (theorem 2.37) implies that |K|/|ker ψ| = |ϕ(K)|. The
proposition follows.

2.1.5 Automorphisms and Sylow’s Theorem

Definition 2.39. (Automorphism) Let G be a group. An isomorphism from G
onto itself is called an automorphism of G . The set of all automorphisms of G
is denoted by Aut(G).

Proposition 2.40. Aut(G) is a group under composition.

Proposition 2.41. Let G be a group and let H be any non-empty subset of G
such that

h ∈ H, g ∈ G =⇒ ghg−1 ∈ H.

Then G acts by conjugation on H defined by

g · h = ghg−1 for all g ∈ G, h ∈ H.

Proof. We show that the two axioms for a group action are satisfied

(i) e · h = ehe−1 = h

(ii) g1 · (g2 · h) = g1 · (g2hg−1
2 ) = g1g2hg

−1
2 g−1

1 = (g1g2)h(g1g2)
−1 = (g1g2) · h

for all g1, g2 ∈ G, h ∈ H.
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Proposition 2.42. Let H be a normal subgroup of the group G . Then G acts
by conjugation on H as automorphisms of H. More specifically, the action of
G on H by conjugation is defined for each g ∈ G by

h 7→ ghg−1, for each h ∈ H.

For each g ∈ G, conjugation by g is an automorphism of H. The permutation
representation afforded by this action is a homomorphism of G into Aut(H) with
kernel CG(H). In particular, G/CG(H) is isomorphic to a subgroup of Aut(H).

Proof. Let ϕg be conjugation by g, i.e., let

ϕg : H → H

ϕg(h) = ghg−1.

Note that ϕg maps H to itself since ghg−1 ∈ H for all g ∈ G. Since conjugation
defines an action, ϕe = e and ϕa ◦ ϕb = ϕab. Thus, for each fixed g ∈ G, ϕg is
a bijection from H to itself since it has a two-sided inverse. Also, each ϕg is a
homomorphism from H to itself because

ϕg(hk) = g(hk)g−1 = gh(gg−1)kg−1 = (ghg−1)(gkg−1) = ϕg(h)ϕg(k)

for all h, k ∈ H. This proves that for each fixed g, ϕg is an isomorphism from
H onto itself, i.e., an automorphism of H. Now the group action induce a
homomorphism

ψ : G −→ SH

ψ(g) = ϕg.

Since automorphisms of a group H are permutations of the set H, Aut(H) is
a subgroup of SH and each ϕg is an automorphism, so the image of of Ψ is
contained in Aut(H). Finally,

ker ψ = {g ∈ G | ϕg = e} = {g ∈ G | ghg−1 = h for all h ∈ H} = CG(H).

Thus by the first isomorphism theorem, G/CG(H) ∼= ψ(G) ≤ Aut(H).

Corollary 2.43. If K is any subgroup of the group G and g ∈ G, then K ∼=
gKg−1.

Proof. Let G = H in preceding proposition (Note that G is a normal subgroup
of itself).

Corollary 2.44. For any subgroup H of G , the qoutient group NG(H)/CG(H)
is isomorphic to a subgroup of Aut(H).

Proof. This is clear since H �NG(H), so if we let NG(H) play the role of G in
the preceding proposition, the corollary follows.

Proposition 2.45. The automorphism group of the cyclic group of order n is
isomorphic to (Z/nZ)×, the multiplicative group of integers modulo n.
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Theorem 2.46. (Cauchy’s Theorem) If G is a finite group and p is a prime
dividing |G|, then G has an element of order p.

Definition 2.47. Let G be a group and let p be a prime.
(1) A group of order pα for some α ≥ 0 is called a p-group. Subgroups of G
which are p-groups are called p-subgroups.
(2) If G is a group of order pαm, where p ∤ m, then a subgroup of order pα is
called a sylow p-subgroup of G .

Theorem 2.48. (Sylow Theorems) Let G be a group of order pαm, where p is
a prime not dividing m.
(1) Sylow p-subgroups of G exist.
(2) Any two Sylow p-subgroups of G are conjugate in G.
(3) The number of Sylow p-subgroup of G (which we will denote by np) is

np ≡ 1 (mod p).

Further, np divides m.

Proof. For a complete detailed proof of the theorem, see Dummit and Foote’s
book ’Abstract Algebra’ (pp. 140-141).

Proposition 2.49. Let ϕ : G → H be a surjective group homomorphism and
N �G, then ϕ(N)�H.

Proof. To show that ϕ(N) is a normal subgroup of H, we show that hϕ(n)h−1 ∈
ϕ(N) for all h ∈ H and n ∈ N . Since ϕ is surjective, for every h ∈ H there
exists g ∈ G such that ϕ(g) = h. We have

hϕ(n)h−1 = ϕ(g)ϕ(n)ϕ(g−1) = ϕ(g)ϕ(n)ϕ(g)−1 = ϕ(gng−1).

Since N is normal in G , gng−1 ∈ N so ϕ(gng−1) = hϕ(n)h−1 ∈ ϕ(N).

Proposition 2.50. Let G and H be groups and ϕ : G→ H a surjective homo-
morphism. If G is abelian then H is abelian.

Proof. Let h1, h2 ∈ H be two arbitrary elements. Since ϕ is surjective, there
exists g1, g2 ∈ G such that ϕ(g1) = h1 and ϕ(g2) = h2 so

h1h2 = ϕ(g1)ϕ(g2) = ϕ(g1g2) = ϕ(g2g1) = ϕ(g2)ϕ(g1) = h2h1

which shows that H is abelian since h1 and h2 was arbitrary.

Proposition 2.51. Let G be a group and H a subgroup of G . Then the action
of G on the coset G/H by left multiplication is transitive.

Proof. Let g1H, g2H ∈ G/H. Then if g = g2g
−1
1 we have

g(g1H) = g2g
−1
1 g1H = g2H.

and this applies to all elements of G/H since g1H and g2H was arbitrary.
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Proposition 2.52. Let H be a transitive abelian group. Then H is regular.

Proof. Let H act on a set A and fix an arbitrary element a ∈ A. Since H is
transitive there exist h ∈ H such that ha = b. Now

h−1gha = a ⇐⇒ g(ha) = ha,

so
g ∈ Hha ⇐⇒ h−1gh ∈ Ha ⇐⇒ g ∈ hHah

−1,

and hence (always)
Hha = hHah

−1,

But H is abelian, so Hb = Hha = hHah
−1 = Ha. Hence an element in Ha also

fixes all other elements b ∈ H, and hence acts as the trivial permutation, i.e.
Ha =< 1 >.

Proposition 2.53. Let G be a group acting transitively on a set A and let H
be a transitive subgroup. Then G = GaH = HGa for all a ∈ A

Definition 2.54. (Elementary abelian group) An elementary abelian group is
an abelian group in which all elements other than the identity has the same
order p where p is a prime number.

Definition 2.55. Let G be a finite group and H a normal subgroup of G. Then
H is called a normal p-complement of G for a prime p if H has an order coprime
to p and index a power of p.

Theorem 2.56. Let P be a Sylow p-subgroup of a group G. If P is in the center
of its normalizer then G has a normal p-complement.

Proof. For a complete proof, See D.S. Passmans book ’Permutation Groups’
(pp. 103-104).

2.2 Multiple Transitivity
Before we begin the construction of the Mathieu groups, it is essential to define
the special property that these groups carry, namely multiple transitivity. It is
nothing more than an extension of the transitivity defined earlier.

Definition 2.57. For an integer n ≥ 1, the action is n-transitive if the set A be-
ing acted on has at least n elements and for any pair of n-tuples (a1, ..., an), (b1, ..., bn) ∈
An with pairwise distinct entries (that is ai ̸= aj , bi ̸= bj when i ̸= j) there ex-
ists a g ∈ G such that gai = bi for i = 1, ..., n. In other words, the action on the
subset of An of tuples without repeated entries is transitive. If g is unique in
the definition of n-transitivity, we say that the action is sharply n-transitive.

Remark 2.58. Althought transitivity is a characteristic of group action, we
will prescribe it for a group G meaning that the action of G on a given set is
transitive.
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Proposition 2.59. If m ≥ 2, then m-transitivity implies k-transitivity for all
k ≤ m.

Proof. It is clear by the definition of multiple transitivity.

Proposition 2.60. A permutation group G of degree n is sharply k-transitive
if and only if G is k-transitive and only the identity in G fixes k points.

Proof. Suppose G is sharply k-transitive. Then G is k-transitive by definition.
Let A = {a1, ..., an} be the underlying set G is acting on. Since G is sharply
k-transitive, for any (b1, ..., bk) ∈ Ak (bi ̸= bj when i ̸= j) there exists a unique
g ∈ G such that gbi = bi for i = 1, ..., k. The identity fixes all the points by the
second property of a group action so we can take g = e. To see that the identity
is the only element that fixes k points, suppose there is some other element g′
such that g′bi = bi for i = 1, ..., k. But that is a contradiction since G is sharply
k-transitive (the identity is the unique element that fixes all the bi). Conversely,
suppose that G is k-transitive and only the identity in G fixes k points. Let
(c1, ..., ck) ∈ Ak. Then given (b1, ..., bk) ∈ Ak, by the k-transitivity there is a
g ∈ G such that gbi = ci for i = 1, ..., k. Suppose that there is another element
h ∈ G such that hbi = ci for i = 1, ..., k. But then

h−1gbi = h−1ci = h−1hbi = bi

and since only the identity fixes k points we have h−1g = 1 which implies h = g,
contradiction. Thus G is sharply k-transitive.

Proposition 2.61. The symmetric group Sn is n-transitive and the alternating
group An is (n− 2)-transitive for all n ≥ 3.

Proof. Given (a1, ..., an), (b1, ..., bn) ∈ An with ai ̸= aj , bi ̸= bj when i ̸= j, the
permutation (written in Cauchy’s two-line notation)(

a1 . . . an
b1 . . . bn

)
is in Sn and maps ai to bi for i = 1, ..., n which proves the first part. Now
consider (a1, ..., an−2), (b1, ..., bn−2) ∈ An−2 with ai ̸= aj , bi ̸= bj when i ̸= j.
Then one of the permutations

σ1 =

(
a1 . . . an−2 an−1 an
b1 . . . bn−2 bn−1 bn

)
, σ2 =

(
a1 . . . an−2 an−1 an
b1 . . . bn−2 bn bn−1

)
is even since they differ by a transposition by σ1 = (bn−1 bn)σ2 which proves
the second part.

Proposition 2.62. Sn is sharply n-transitive and sharply (n− 1)-transitive of
degree n. If n ≥ 3, then An is sharply (n− 2)-transitive of degree n.
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Proof. By the preceding proposition, Sn is n-transitive (it is also (n − 1)-
transitive by proposition 2.59 ). The fact that the identity is the only element
fixing n points follows directly from the definition of the identity. Now if σ ∈ Sn

fixes (n − 1)-points, then clearly σ = 1. If it fixes (n − 2) points, then either
σ = 1 or σ is a transposition. Since An contains no transposition, the last
statement follows.

Remark 2.63. Note that sharply 1-transitivity is precisely regularity.

The following two propositions we are going to state are used quite widely in
the construction. They are the key in constructing the larger group M12 from
the smaller M11.

Proposition 2.64. Let G be a transitive permutation group on a set A. If
k ≥ 2, then G is k-transitive if and only if Ga is (k − 1)-transitive on A \ {a}

Proof. If G is k-transitive, then for any (a1, ..., ak), (b1, ..., bk) ∈ Ak (with ai ̸=
aj , bi ̸= bj when i ̸= j), there exists a g ∈ G such that g(a1, ..., ak) = (b1, ..., bk).
If we let a = a1 = b1, the element g fixes a so g ∈ Ga. Since the remaining k−1
elements are arbitrary, it follows that for all (a2, ..., ak), (b2, ..., bk) ∈ Ak−1 (with
ai ̸= aj , bi ̸= bj when i ̸= j), there exists a g ∈ Ga such that g(a2, ..., ak) =
(b2, ..., bk) which is the definition of (k − 1)-transitivity on A \ {a}. Conversely,
let (a1, ..., ak), (b1, ..., bk) ∈ Xk. Since G is transitive there are two elements
g and h such that ga1 = a and hb1 = a. They permute the k-tuples to (a =
ga1, ga2, ..., gak) respectively (a = hb1, hb2, ..., hbk). Since Ga is k− 1-transitive
there is an element k ∈ Ga such that

k(ga2, ..., gak) = (hb2, ..., hbk).

Since it belongs to Ga

k(a, ga2, ..., gak) = (a, hb2, ..., hbk).

Then clearly h−1kg(a1, , , , ak) = (b1, , , , bk), so we have an element that takes a
k-tuple to any other k-tuple (with distinct elements).

Proposition 2.65. Let G be a permutation group on a set A with n elements.
Suppose that G is sharply k-transitive. If a ∈ A and k > 1, then Ga is sharply
(k − 1)-transitive on A \ {a}. It also holds that |G| = n(n− 1) · · · (n− k + 1).

Proof. If G is sharply k-transitive, then for any (a1, ..., ak), (b1, ..., bk) ∈ Ak

(with ai ̸= aj , bi ̸= bj when i ̸= j), there exists a unique g ∈ G such that
g(a1, ..., ak) = (b1, ..., bk). If we let a = a1 = b1, the element g fixes a so
g ∈ Ga. Since the remaining k − 1 elements are arbitrary, it follows that for all
(a2, ..., ak), (b2, ..., bk) ∈ Ak−1 (with ai ̸= aj , bi ̸= bj when i ̸= j) there exists
a unique g ∈ Ga such that g(a2, ..., ak) = (b2, ..., bk) which is the definition of
sharply (k − 1)-transitivity on A − {a}. For the second part, note that G is
transitive so the associated group action consist of one orbit. By the orbit-
stabilizer theorem (theorem 2.6), |Ga| = |G|/|Ga| = n and by induction we get
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that Ga = (n− 1) · · · (n− k+ 1) hence |G| = n(n− 1) · · · (n− k+ 1) (Ga plays
the role of G in the formula since Ga is (k-1)-transitive by the first part of the
proof).

Proposition 2.66. Let G be transitive on a set A and let a ∈ A. Then G is
2-transitive if and only if for all g ∈ G \Ga we have G = Ga ∪GagGa.

Proof. Suppose that G is 2-transitive and let g ∈ G\Ga be given. If h ∈ G\Ga

then ha = b and ga = c for some a, b, c ∈ A with b, c ̸= a. By the preceding
result, Ga is transitive on A\{a} so we can find k ∈ Ga such that kb = c. Hence
kha = kb = c = ga and thus g = kh otherwise the operation would not be well
defined. This shows that g−1kha = a or in particular g−1kh ∈ Ga so h ∈ GagGa.
We conclude that G = Ga∪GagGa. Now suppose that G = Ga∪GagGa. Given
b, c ∈ A\{a}, then since G is transitive there exists g1, g2 ∈ G such that g1a = b
and g2a = c. Since g1 and g2 does not fix a, g1, g2 /∈ Ga and we must have
g2 = k1g1k2 for some k1, k2 ∈ Ga. Finally,

c = g2a = k1g1a = k1b

which shows that Ga is transitive on A \ {a} since b and c was arbitrary. The
result follows by the preceding proposition.

Proposition 2.67. Let G be a t-transitive group of degree n. Let H be the
subgroup fixing t points and let P be a sylow p-subgroup of H. Suppose P fixes
w ≥ t points. Then NG(P ) is t-transitive on the w points fixed by P .

Proof. We assume that H fixes the points a1, ..., at and show that if P fixes the
points b1, ..., bw then there exists n ∈ NG(P ) such that nai = bi for i = 1, ..., w.
Since G is t-transitive there exists a g ∈ G such that gai = bi for i = 1, ..., t.
Let b1, ..., bt be the points fixed by P i.e. p′bi = bi for all p′ ∈ P . This gives

p′bi = bi ⇒ p′(gai) = (p′g)ai = gai ⇒ g−1((p′g)ai) = g−1(gai) ⇒
⇒ (g−1p′g)ai = (g−1g)ai ⇒ (g−1p′g)ai = ai

so g−1Pg fixes a1, ..., at. By proposition 2.43, g−1Pg ∼= P hence g−1Pg is also a
sylow p-subgroup of H. By Sylow’s theorem all sylow p-subgroups are conjugate
so there exists h ∈ H with h−1(g−1Pg)h = P . If we let n = gh then n ∈ NG(P )
and we have nai = (gh)ai = g(hai) = gai = bi. This completes the proof

The following lemma is meant to exclude some of the impossible cases for a
group to have the multiply sharply transitive characterization. It will be applied
in the next theorem.

Lemma 2.68. If G is sharply k-transitive of degree n, then we cannot have
k = 4, n = 10 or k = 6, n = 13.
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Proof. Suppose that k = 4, n = 10. Then proposition 2.65 states that |G| =
10 · 9 · 8 · 7. By Sylow’s theorem G has a Sylow 7-subgroup so there exists
an element x ∈ G of order 7 which generates the Sylow 7-subgroup < x >.
The element x must be a 7 cycle, say x = (1 2 3 4 5 6 7). Now G is 3-
transitive and < x > is a sylow 7-subgroup of the subgroup of G fixing {8, 9, 10}
hence by previous proposition NG(< x >) acts 3-transitively on {8, 9, 10}. This
action induce a surjective homomorphism ϕ : NG(< x >) ↠ S{8,9,10} ∼= S3.
Since CG(x) � NG(< x >), ϕ(CG(x)) is a normal subgroup of S3 (proposition
2.49). The only normal subgroups of S3 are {1}, A3 and S3. Suppose that
ϕ(CG(x)) = {1} i.e. CG(x) ⊂ ker ϕ. Then we have a well defined mapping

ϕ̃ : NG(< x >)/CG(x) ↠ S3

nCG(x) 7→ ϕ(n)

This is clearly a surjective homomorphism. But this is a contradiction since
surjective homomorphisms preserves the abelian property between the groups
and NG(< x >)/CG(x) is isomorphic to a subgroup of Aut(< x >) ∼= (Z/7Z)×
which is abelian but S3 is not hence ϕ(CG(x)) ̸= {1}. The image ϕ(CG(x))
is then either A3 or S3 so 3||ϕ(CG(x))| which implies 3||CG(x)| (proposition
2.38). By Cauchy’s theorem. we can choose y ∈ CG(x) such that |y| = 3. Now
the order of a permutation is the l.c.m of the lengths of the cycles in its cycle
decomposition so |xy| = l.c.m(|x|, |y|) = 7 · 3 = 21 and since x and y has prime
order, they consist of a 7-cycle and a 3-cycle, respectively. Since x, y ∈ CG(x),
we have (xy)7 = y ̸= 1 which fixes 7 points, a contradiction since G is sharply
4-transitive so only the identity fixes 4 points.

Now suppose that k = 6, n = 13. Then |G| = 13 · 12 · · · 8 and G has a sy-
low 5-subgroup so there exists an element x ∈ G of order 5 which generates the
Sylow 5-subgroup < x >. Also, x is either an 8-cycle or a 5-cycles since G is
sharply 6-transitive. But an 8-cycle would fix more than eight points, contra-
diction. Let x = (1 2 3 4 5)(6 7 8 9 10). Since G is 3 − transitive, the same
argument as above shows that there exists y ∈ CG(x) with |y| = 3. The element
xy has order 15 and must consist of 3-cycles and 5-cycles since it cannot contain
a 15-cycle due to the degree of G . Finally, (xy)6 = x so xy must have two 5-
cycles and one 3-cycle. But then (xy)5 = 1 which fixes 10 points, contradiction
and the lemma is proved.

Lemma 2.69. The symmetric group S4 contains three elements of order 2 which
acts without fixed points. These elements are (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) and
forms a regular normal subgroup together with the identity. All other elements
of order 2 in S4 are transpositions which has two fixed points.

In the following result the symmetric group and the alternating group are
considered trivial.

Theorem 2.70. Let G be a nontrivial sharply k-transitive group of degree n.
If k ≥ 4, then we have either k = 4, n = 11 or k = 5, n = 12.
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Proof. We proceed in a series of steps.
Step 1. Suppose that k = 4. We show that n ≥ 8 and all elements of G of order
2 are conjugate in G .
By the definition of k-transitive groups we must have n ≥ 4. If n = 4 or n = 5
by proposition 2.65 |G| = n! so G = Sn, contradiction. If n = 6 then |G| = n!

2

so G = An, again a contradiction. Now let n = 7 so |G| = 7!
6 . Further, we note

that G is a subgroup of S7 (since it is a permutation group of degree 7) and
|S7 : G| = 6 so the number of left cosets of G in S7 is 6. By proposition 2.51 S7

acts transitively on S7/G which induce a homomorphism ϕ : S7 → SS7/G
∼= S6.

Furthermore, we can define the map ψ : S7 → ϕ(S6) which also is a homo-
morphism. By the first isomorphism theorem, S7/ker ϕ ∼= ϕ(S6) and the only
normal subgroups of S7 is {e}, A7 and S7. If ker ϕ = {e} then S7/ker ϕ ∼= S7,
a contradiction since |S7| > |S6|. With the same argument, ker ϕ cannot
be equal to S7, so we must have ker ϕ = A7. By this, we can write ψ as
ψ : S7 → S7/A7

∼= C2. But this is a contradiction since C2 cannot be transitive
on 6 elements. Thus n ≥ 8.

We now show that all elements of G of order 2 are conjugate in G . Let
x, y ∈ G be such elements. Since x and y fixes at most three points (by the fact
that G is sharply k-transitive) and n ≥ 8 we must have x = (1 2)(3 4)... and
y = (a b)(c d)..., that is at least two transpositions must occur in each element.
If we choose g ∈ G with

g =

(
1 2 3 4 . . .
a b c d . . .

)
we get

gxg−1 =

(
1 2 3 4 . . .
a b c d . . .

)
(1 2)(3 4)...

(
a b c d . . .
1 2 3 4 . . .

)
= (a b)(c d)...

Since gxg−1y−1 fixes four points this must equal the identity so

gxg−1y−1 = 1 ⇔ gxg−1 = y.

Hence we have found an element g ∈ G such that gxg−1 = y for all x, y ∈ G
with order 2 and the fact follows.

step 2. We show that if k = 4 then n = 11.
Let x = (1)(2)(3 4)... and y = (1 2)(3)(4)... be elements of G. Note that
these elements exist since G is 4-transitive. Then x2 and y2 fixes four points
so x2 = y2 = 1 since only the identity fixes four points. Also, (xy)(yx)−1 fixes
four points so it follows that xy = yx. Set z = xy so that z = (1 2)(3 4)... .
Now, we know that x has at most three fixed points. If it has a third fixed point
we denote this by 7. In the following whenever we write (7) we will allow for
the possibility that this term does not occur. Since y commutes with x, we can
show that y permutes the fixed points of x. Let s be a fixed point of x so

x(y(s)) = y(x(s)) = y(s)
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which shows that y(s) is also a fixed point of x. Thus y fixes 7. Hence x =
(1)(2)(3 4)(7)..., y = (1 2)(3)(4)(7)... and z = xy = (1 2)(3 4)(7)... . Since x and
z both have order 2 they are conjugate by step 1, so it follows that x and z has
the same cycle structure, hence z has two or three fixed points. We know that
z must have two fixed points other than 7, say it fixes 5 and 6. The elements
x and y commutes with z so they must permute the fixed points of z. Since we
have already accounted for all fixed points of x and y, each must interchange 5
and 6. Thus we have

x = (1)(2)(3 4)(5 6)(7)...

y = (1 2)(3)(4)(5 6)(7)...

z = (1 2)(3 4)(5)(6)(7)...

(1)

and < x, y, z >= H is the klein four-group, the elementary abelian group of
order 4. Suppose that w ∈ G centralizes H, i.e., w ∈ CG(H). Then w must
fix the common fixed point 7 by the same argument as before. The element w
commutes with x, y, and z so it permutes their fixed points and hence

w = (1 2)α(3 4)β(5 6)γ(7)...

with α, β, γ = 0, 1. If w is not the identity, then w fixes at most three points
so at least two of α, β, γ are equal to 1. Hence the possibilities are x, y, z or
w = (1 2)(3 4)(5 6)(7)... . In the latter case, note that

xw = (1)(2)(3 4)(5 6)(7)... ◦ (1 2)(3 4)(5 6)(7)... = (1 2)(3)(4)(5)(7)... ̸= 1

fixes four points, a contradiction and w must be one of the other elements
hence H is self-centralizing, i.e., H = CG(H). Now |Aut H| = 6 since there
are 6 different ways to map the non identity elements in the set {e, x, y, z} to
itself while letting the identity be fixed. These maps indeed preserve the group
structure of H. By Corollary 2.44 , NG(H)/CG(H) is isomorphic to a subgroup
of Aut(H) and since H is self-centralizing we have that

|NG(H) : CG(H)| = |NG(H)|
|CG(H)|

=
|NG(H)|

4
≤ 6

so |NG(H)| ≤ 24. Now {1, 2, 3, 4, 5, 6, 7} is a union of orbits of H which contains
the fixed points of all elements of H \{e} since no element in H \{e} can fix four
points. The action on further orbits is regular, since the only points that can be
fixed by some non identity element under the action of H is in {1, 2, 3, 4, 5, 6, 7}
and the stabilizer is trivial. There is at least one more orbit since n ≥ 8. By
the orbit-stabilizer theorem, the size of the orbits induced by the regular action
is equal to the order of H. Let {a, b, c, d} be such an orbit and let W be the set
of elements of G which permutes this set. Clearly W ∼= S4 since G is sharply
4-transitive. By lemma 2.69, H is a normal subgroup of W which is equivalent
to W ≤ NG(H) and since |N | ≤ 24 and |W | = 24 we have N =W ∼= S4. Let g
be an element of N \H of order 2. By the previous lemma, g has two fixed points
in {a, b, c, d}. If H has two such orbits then g fixes two points in each so g fixes
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four points, a contradiction since G is sharply 4-transitive. Thus there are pre-
cisely four more points being permuted other than {1, 2, 3, 4, 5, 6, 7}. This yields
n = 10 or n = 11 since we must allow for the possibility that the point 7 does not
occur. However, by lemma 2.68 we cannot have k = 4 and n = 10. Thus n = 11.

step 3. We show that if If k ≥ 5 and G is nontrivial then n = 12.
Suppose that G is sharply k-transitive of degree n. Then by proposition 2.64, Gx

is sharply (k−1)-transitive of degree n−1. If Ga is trivial, then |Ga| = (n−1)!

or (n−1)!
2 which implies |G| = n! or |G| = n!

2 . This shows that G is also trivial.
Equivalently, if |G| is nontrivial then Ga is nontrivial so let us suppose that G is
nontrivial. If k = 5 then Ga is a nontrivial sharply 4-transitive group of degree
n−1. It was shown in step 2 that the only nontrivial sharply 4-transitive group
is of degree 11. Hence n−1 = 11 which implies n = 12. In this same way, k = 6
yields n = 13. However, it was shown in lemma 2.68 that this group does not
exist. It now follows easily by induction that no trivial groups exist for k ≥ 6
and the theorem is proved.

3 Construction
We are now prepared to begin the detailed construction of the Mathieu groups.
As stated before, we will use the construction due to Witt.

Lemma 3.1. Let G be k-transitive (k ≥ 2) on a set M . Let y ∈ G and b ∈ M
with yb ̸= b and let x ∈ SM∪{a} with xa ̸= a. Let H be the group generated by the
elements of G and x, i.e., H =< G, x > and suppose that x2 = y2 = (xy)3 = 1
and xGbx = Gb. Then H is (k + 1)− transitive on M ∪ {a} with Ha = G

Proof. Define GxG = {g1xg2|g1, g2 ∈ G} and let K = G ∪ GxG. Then K is
clearly nonempty. Take some g1xg2 ∈ GxG and since

x2 = 1 ⇔ x = x−1

we see that (g1xg2)
−1 = g−1

2 x−1g−1
1 ∈ GxG so K is closed under inverses. We

need to show that K is closed under multiplication to conclude that it is a group.
Given an element g ∈ G, we see that

gg1xg2 ∈ GxG

and also that
g1xg2g ∈ GxG

so multiplication by an element of G with an element of GxG is also in K. Take
two element g1xg2, g3xg4 ∈ GxG. The product of these can be written as

(g1xg2)(g3xg4) = g1(xg2g3x)g4

which is in the set G(xGx)G. Since have shown that K is closed by multiplica-
tion by G , it is sufficient to show that xGx is in K to conclude that K is closed
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under multiplication. From x2 = y2 = 1 and (xy)3 = 1 we obtain

(xy)3 = 1 ⇔ (xy)2 = (xy)−1 = y−1x−1 = yx⇔
⇔ xy = yx(xy)−1 = yxy−1x−1 = yxyx⇔ xyx−1 = yxyxx−1 ⇔ xyx = yxy.

Now G is 2-transitive so by proposition 2.66, G = Gb ∪GbyGb. Hence

xGx = x(Gb ∪GbyGb)x = xGbx ∪ (xGbx)xyx(xGbx) = Gb ∪GbxyxGb =

= Gb ∪GbyxyGb ⊆ G ∪GxG = K

so K is closed under multiplication. In fact, K is equal to H since GxG ⊂ K
and xGx ⊂ K. It is clear that G fixes a. Take some g1xg2 ∈ H = G ∪ GxG.
Clearly

g1xg2(a) = g1(x(g2))(a) = a

and hence Ha = G. Finally Ha is k-transitive so H is (k+1)-transitive by
proposition 2.64.

Lemma 3.2. Let G be 2-transitive on M. Let y ∈ G, a ∈ M with ya ̸= a and
let x1, x2, x3 ∈ SM∪{1,2,3}. Suppose that

x1 = (1 a)(2)(3)...

x2 = (1 2)(3)(a)...

x3 = (2 3)(1)(a)...

y2 = x21 = x22 = x23 = 1

(x1y)
3 = (x2x1)

3 = (x3x2)
3 = 1

(yx2)
2 = (yx3)

2 = (x1x3)
2 = 1

x1Gax1 = x2Gax2 = x3Gax3 = Ga.

Then H =< G, x1, x2, x3 > is 5-transitive on M ∪ {1, 2, 3} and H1,2,3 = G.

Proof. By lemma 3.1, K =< G, x1 > is 3-transitive on M ∪ {1} with K1 = G.
Since y2 = (yx2)

2 = 1 and x22 = 1 we have

(yx2)
2 = 1 ⇒ yx2 = (yx2)

−1 = x−1
2 y−1 ⇒ yx2 = x2y

so x2 and y commutes. We show that x2 < Ga, y > x2 =< Ga, y >. In
particular, given that g ∈< Ga, y >, we want to show that x2gx2 ∈< Ga, y >.
Write g = g1g2g3g4. If gi ∈ Ga (i = 1, 2, 3, 4) we get that x2gix2 ∈ Ga ⊂<
Ga, y > due to conditions. If gi = y = y−1, we get x2gix2 = x2yx2 = y ∈<
Ga, y > since x2 and y commute. Now define the map

< Ga, y >→ x2 < Ga, y > x2

g 7→ x2gx2.

This is clearly a group homomorphism since

x2(g1g2g3g4)x2 = (x2g1x2)(g2x2g2)(g3x2g3)(g4x2g4)
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so x2gx2 is a product of elements in Ga, y and y−1. Thus x2 < Ga, y > x2 =<
Ga, y >. Using this, we obtain

x2K1x2 = x2Gx2 = x2 < Ga, y > x2 =< Ga, y >= G = K1.

By lemma 3.1 L =< K,x2 > is 4-transitive on M ∪ {1, 2} with L2 = K. Again
we see that x3 commutes with x1 and y so with the same argument as above
we get that x3L2x3 = L2 so H =< L, x3 > is 5-transitive on M ∪ {1, 2, 3} and
H3 = L. We conclude that H1,2,3 = L1,2 = K1 = G.

It is time to state the theorem that is central in this thesis. Note how the
generators of the two groups are choosen in such a way that it will obey the
condition in the two previous lemmas.

Theorem 3.3. Given the following permutations

s = (4 5 6)(7 8 9)(10 11 12)

t = (4 7 10)(5 8 11)(6 9 12)

u = (5 7 6 10)(8 9 12 11)

v = (5 8 6 12)(7 11 10 9)

w = (5 11 6 9)(7 12 10 8)

x1 = (1 4)(7 8)(9 11)(10 12)

x2 = (1 2)(7 10)(8 11)(9 12)

x3 = (2 3)(7 12)(8 10)(9 11)

then M11 =< s, t, u, v, w, x1, x2 > is a sharply 4-transitive of degree 11 and
M12 =< M11, x3 > is a sharply 5-transitive of degree 12. This yields that
|M11| = 7920 and |M12| = 95040

Proof. Let H =< s, t >. Since the set of generators of H commutes, H is
abelian so an element of H is of the form sxty. Clearly, the map

H → C3 × C3

sxty 7→ (x, y)

is an isomorphism so H is an elementary group of degree 9. It is easy to check
that H is transitive, hence regular by proposition 2.52. Now let Q =< u, v, w >.
The conjugates of the generators of H by the generators of Q are elements of
H, so H is normalized by Q. We claim that Q is isomorphic to the quaternion
group Q8, a regular group of degree 8. By calculation, we see that Q has 8
elements. The quaternion group has the following presentation

Q8 =< i, j, k | i2 = j2 = k2 = ijk > .
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It is then enough to show that u, v, w satisfies the relations in Q8 with the
following maps

u 7→ i

v 7→ j

w 7→ k

to conclude that Q ∼= Q8. We have

u2 = (5 7 6 10)(8 9 12 11)(5 7 6 10)(8 9 12 11) = (5 6)(7 10)(8 12)(9 11)

v2 = (5 8 6 12)(7 11 10 9)(5 8 6 12)(7 11 10 9) = (5 6)(7 10)(8 12)(9 11)

w2 = (5 11 6 9)(7 12 10 8)(5 11 6 9)(7 12 10 8) = (5 6)(7 10)(8 12)(9 11)

and

uvw = (5 7 6 10)(8 9 12 11)(5 8 6 12)(7 11 10 9)(5 11 6 9)(7 12 10 8) =

= (5 6)(7 10)(8 12)(9 11)

so the relations are indeed satisfied. Now let G =< s, t, u, v, w >, so G is
generated by the elements in H and Q . Thus every element in G is of the form

h1q1h2q2 · · ·hr−1qr−1hrqr

for some positive integer r. Since Q normalizes H, for all h ∈ H and q ∈ Q we
have qh = h′q for some h′ ∈ H. It now follows by induction that G = HQ and
G is a sharply 2-transitive group of degree 9, and G4 = Q. If we let a = 4 in
the preceding lemma, we see that x1, x2 and x3 normalize Q so that

x1G4x1 = x2G4x2 = x3G4x3 = G4.

Moreover, if
y = s−1u2s = (4 6)(7 12)(8 11)(9 10)

we see that the condition for y, x1, x2 and x3 in the previous lemma are satisfied.
Thus by lemma 3.2 we have thatM12 is is 5-transitive of degree 12. Furthermore,
M11 is a subgroup of M12 fixing 3, i.e (M12)3 = M11 thus proposition 2.64
implies that M11 is 4-transitive of degree 11. Lemma 3.2 ensures that M12 is
sharply 5-transitive and it also follows that M11 is sharply 4-transitive. Finally,
the last statement follows by proposition 2.65.

We have successfully constructed M11 and M12, and we have already com-
pleted enough preparatory work to a detailed construction to the remaining
Mathieu groups. However, we decided to leave that task for future readers.

4 Simplicity
It is time to show that the Mathieu groups M11 and M12 are indeed simple.

Theorem 4.1. M11 is simple.
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Proof. Set G =M11 and we know that |G| = 11 · 10 · 9 · 8. By Sylow’s theorem,
there exists a subgroup P of order 11. Let P =< x > be the subgroup generated
by x. Moreover, x must be an 11− cycle which acts transitively on a set of 11
elements. If A ≥ P then A is clearly transitive and if A is abelian then by
proposition 2.52, A is regular. This means that A must have order 11 because
otherwise it would contradict the fact that it is sharply 1 − transitive and
we get that A = P . Thus P is self-centralizing by proposition 2.28. Since
Aut P is isomorphic to (Z/11Z)× we have that |Aut P | = 10. Furthermore,
NG(P )/CG(P ) is isomorphic to a subgroup of Aut P so by Lagrange’s theorem,
|NG(P ) : CG(P )| = |NG(P ) : P | must divide 10. Suppose 2 | |NG(P ) | so
NG(P ) has an element y of order 2 by Cauchy’s theorem. Since the degree 11
is odd, y must fix a point, say 1. Now y ∈ NG(P ) so yxy−1 = yxy = x−1 and

y(xr(1)) = x−r(y(1)) = x−r(1)

. This shows that y is a product of five transposition and hence y /∈ A11, which
is a contradiction since all generators of M11 given in Theorem 3.3 are even
permutations and finite products of even permutation cannot give an odd per-
mutation. Thus we have |NG(P ) : P | = 1 or 5.

Now suppose that H is a nontrivial normal subgroup of G. Since G has prime
degree, it is primitive, and since H transitive (see proposition 2.9), the given
action has exactly one orbit. The Orbit-Stabilizer theorem gives

|H|
|Hx|

= |Hx| =⇒ |H| = 11|Hx|

and hence 11 | |H|. By Cauchy’s theorem there is an element that generates
a cyclic subgroup P with |P | = 11 such that P ⊂ H. Now NG(P ) acts on
P by conjugation so it will equal the stabilizer of an element in the set being
acted on. Thus by proposition 2.53, G = HNG(P ) and hence NG(P ) ̸⊆ H since
otherwise G would equal to H. By the above this implies that NH(P ) = P
and since P is abelian, Z(P ) = P so P = Z(NH(P )) and which shows that
P is in the center of its normalizer. Thus Theorem 2.56 implies that H has a
normal 11 − complement K. Then k � G and 11 ∤ |K| yields K = {e}. The
orbit stabilizer theorem forces |H| = 11 since |Hx| = |H||Hx| with |H| = 11n

for some n ≥ 1 implies |Hx| = 11
11n and n must be equal to 1. Finally we

have H = P and G = PNG(P ) = NG(P ) with the result we obtained above
|NG(P ) : P | = |G : P | ≠ 1 or 5, contradiction and M11 is simple.

Before showing that M12 is simple, we state the two following crucial facts.
However, we choose to show only the latter.

Proposition 4.2. Let G be an m-transitive permutation group of degree n which
has a regular normal subgroup N .

i) If m = 2, then n = |N | = pk for some prime p.
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ii) If m = 3, then either n = 3 or n = 2k.

iii) If m = 4, then n = 4

iv) We cannot have m ≥ 5.

Proposition 4.3. Let G be a primitive permutation group acting on a set A,
and suppose that G has no regular normal subgroups. Let a ∈ A. If Ga is simple,
then G is simple.

Proof. Let N � G with N ̸= {e}. Since G is primitive, N is transitive by
proposition 2.9. Now Ga is simple and Na � Ga so Na = {e} or Ga. Suppose
that Na = {e}. But this means that Na is a regular normal subgroup of G,
contradiction. Thus Na = Ga and since N is transitive, its action on A possess
only one orbit that is equal to |A|. Thus the orbit stabilizer theorem yields

|N : Na| = |G : Ga| = |A|.

Hence N = G is simple.

Theorem 4.4. M12 is simple.

Proof. This Follows from the simplicity of M11. We stated in the proof of
theorem 3.3 that (M12)3 = M11, i.e., M11 being the stabilizer subgroup of
M12 with respect to 3. We have shown earlier that there are no nontrivial
sharply 4-transitive groups of degree 11 other than M11 except for (possibly)
the trivial ones, which shows that M11 is a maximal subgroup of M12. Thus
M12 is primitive. By theorem 4.2, M12 has no regular subgroups. It finally
follows by the previous proposition that M12 is simple.
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