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Abstract

Herglotz-Nevanlinna functions maps the complex upper half plane ana-
lytically to itself. The classic theory by Nevanlinna provides an integral
representation for such functions in terms of a positive Borel measure on
the real line, and establish a one-to-one correspondence between the func-
tions and the class of finite positive Borel measures, D(R). The first part
of this thesis utilize some techniques from functional analysis to prove this
in detail. The second part of this thesis is devoted to show an approx-
imation theorem for Herglotz-Nevanlinna functions in terms of rational
functions with poles of order at most one. Any such function is again
a Herglotz-Nevanlinna function. It turns out that the extreme points of
D(R) are precisely the point mass measures δx0 , and by establishing com-
pactness and convexity of D(R) in the weak* sense, the Krein-Milman
theorem may be applied to extract a pointwise convergent sequence of
such rational functions.
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1 Introduction

In this thesis we are concerned with Herglotz-Nevanlinna functions, that is,
analytic functions defined on the complex upper half plane, denoted C+, with
non-negative imaginary part. Here C+ is defined by C+ = {z ∈ C : Im z > 0}.
This thesis contain two main results. First we state and prove in detail the classic
representation theorem by Nevanlinna. That is, a function f is a Herglotz-
Nevanlinna function if and only if f is given by the formula

f(z) = α+ βz +

∫
R

tz + 1

t− z
dν(t) (1)

where α ∈ R, β ≥ 0 and ν a finite positive Borel measure on R, are all uniquely
determined. Secondly we prove that any Herglotz-Nevanlinna function can be
pointwise approximated by a sequence of rational functions, {qk}k∈N, each on
the form

qk(z) = αk + βkz +

Nk∑
n

dkn
1

skn − z
(2)

where αk ∈ R, βk > 0 and Nk ∈ N for each k ∈ N, and dkn > 0 and skn ∈ R
for each k ∈ N and 0 ≤ n ≤ Nk. Any such function is a Herglotz-Nevanlinna
function.

The first result by Nevanlinna establishes a correspondence between the set
of Herglotz-Nevanlinna functions and the set of finite positive Borel measures.
We will denote the set of finite positive Borel measures and complex Borel
measures on the real line by D(R) and M(R) respectively, where the former is
a subset of the later. Taking this view will prove useful since M(R) is a Banach
space, allowing for the use of tools from functional analysis. In particular one
can define the weak* topology on M(R). The set D(R), while not a vector
space, proves to be closed with respect to this topology, the essential property
in our proof of equation (1).

For the second result there are two main points. First, defining for each
A > 0 the set DA(R) = {ν ∈ D(R) : ν(R) ≤ A}, we will see that DA(R) as a
subset of M(R) is both convex and compact with respect to the weak* topology.
This allows for the use of the Krein-Milman theorem, which roughly states that
the set DA(R) can be recovered, in terms of weak* convergence, from its extreme
points. Secondly we discover explicitly what the extreme points of DA(R) are.
It turns out that these are precisely the point mass measures, that is measures
defined by

δx0
(E) =

{
1 if x0 ∈ E

0 otherwise
(3)

for measurable sets E, where x0 ∈ R. When evaluating the integral in formula
(1), this yields the sum of fractions appering in (2).
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2 Elements of functional analysis

2.1 Local compactness and the Urysohn lemma

In this section we collect some definitions, a lemma and fix some notation.

Definition 2.1. A topological space X is called Hausdorff if for any two
points x, y ∈ X with x ̸= y there exist open sets U and V such that x ∈ U ,
y ∈ V and U ∩ V = ∅.
Definition 2.2. Let (X.T ) be topological space. A subset K ⊂ X is called
compact if for every collection {Vα}α∈A of open sets Vα ∈ T with K ⊂

⋃
α Vα

where A is some index set, there is a finite sub-collection {Vαk
}nk=1 such that

K ⊂
⋃n

k=1 Vαk
.

If X itself is compact, we say that X is a compact space.

Definition 2.3. A topological space X is called locally compact if for each
point x ∈ X there exist an open set U with x ∈ U and U compact.

Definition 2.4. A subset A in a topological space is called σ-compact if it is
the countable union of compact sets.

Definition 2.5. Let X be a topological space. We define the support of a
function f : X −→ C by Supp f = {x ∈ X : f(x) ̸= 0}, and in case Supp f is
compact we says that f has compact support. We will denote the set of all
continuous functions on X with compact support by Cc(X).

Clearly, if X is compact we have Cc(X) = C(X), simply the continuous
functions on X. However we will keep the subscript throughout to keep notation
consistent with the presentation in the preliminaries, this since X is sometimes
compact and sometimes not.

Definition 2.6. Let X be a locally compact Hausdorff space. A function f :
X → C is said to vanish at infinity if for each ε > 0 there exist a compact set
K ⊂ X such that |f(x)| < ε hold for each x ∈ X \K. We will denote the set of
all continuous functions on X that vanish at infinity by C0(X).

It is easy to see that Cc(X) and C0(X) are vector spaces over C. Throughout,
we will let the spaces Cc(X) and C0(X) be endowed with supremum norm
defined by ∥f∥ = supx∈X |f(x)| for f in Cc(X) or C0(X) respectively, turning
both spaces into normed vector spaces.

Lemma 2.7. (Urysohn) Let X be a locally compact Hausdorff space, V ⊂ X
be open, K ⊂ X compact and K ⊂ V . Then there exist a function f ∈ Cc(X)
with Supp f ⊂ U , f(x) = 1 whenever x ∈ K and 0 ≤ f(x) ≤ 1 for all x ∈ X.

Proof. For proof see [4]

Corollary 2.8. The space Cc(X) is dense in C0(X).

Proof. Let f0 ∈ C0(X) and ε > 0 be given. By definition there exist a compact
set K ⊂ X such that |f0(x)| < ε for x ∈ X \K. Let f be a as in Lemma 2.7 for
this K and set g = f0f . Now g ∈ Cc(X) and ∥f0 − g∥ < ε.
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2.2 Borel measures and regularity

In this section we collect some definitions and properties about measures and fix
some notation. Basic knowledge of measure theory is however assumed and this
is not an exhaustive treatment. Most of it is directly taken from the textbook
[4].

Definition 2.9. Let (X, T ) be a topological space. The σ-algebra on X gen-
erated by T is called the Borel σ-algebra on X with respect to T and is
denoted B(X). A positive, signed or complex measure defined on B(X) is called
a positive, signed or complex Borel measure.

Proposition 2.10. (Hahn decomposition) Let µ be a signed measure on X.
There exist sets A and B with A ∪ B = X and A ∩ B = ∅ such that µ(E) ≥ 0
holds for each measurable set E ⊂ A and µ(F ) ≤ 0 holds for each measurable
set F ⊂ B.

Proof. Proof see [4].

Proposition 2.11. If µ is a complex Borel measure it can be decomposed
uniquely in the following way

µ = µ1 − µ2 + i(µ3 − µ4) (4)

where each of the measures µ1, µ2, µ3, µ4 are positive Borel measures. The
measures defined by µRe := µ1 − µ2 and µIm := µ3 − µ4 are finite signed Borel
measures.

Proof. Proof see [4]

Definition 2.12. Let µ be a complex Borel measure on X. We define the total
variation measure, |µ|, by

|µ|(E) = µ1(E) + µ2(E) + µ3(E) + µ4(E) (5)

for each E ∈ B(X).

We note that |µ| is finite positive Borel measure on X.

Definition 2.13. Let X be a topological space. We denote by M(X) the set
of complex Borel measures on X and by D(X) the set of finite positive Borel
measures on X.

The set M(X) is a complex vector space in a natural way. Moreover, the
mapping || · ||M(X) : M(X) → R defined by

||µ||M(X) = |µ|(X) (6)

defines a norm on M(X).
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Definition 2.14. Let X be a topological space. For A > 0 we define the set
MA(X) by

MA(X) = {µ ∈ M(X) : ||µ|| ≤ A} (7)

and DA(X) analogously.

It is clear that D(X) ⊂ M(X) and that DA(X) ⊂ MA(X) holds for each
A > 0.

Definition 2.15. Let X be a locally compact Hausdorff space and let µ be a
positive Borel measure. If

µ(E) = inf{µ(V ) : E ⊂ V, V open} (8)

holds for each set E ∈ B(X), we say that µ is outer regular. If

µ(E) = sup{µ(K) : K ⊂ E,Kcompact} (9)

holds for each set E ∈ B(X) with either µ(E) < ∞ or E open, we say that µ is
inner regular. We say that µ is regular if it is both outer and inner regular
and that a complex Borel measure ν is regular if |ν| is regular.

For X a locally compact Hausdorff space any linear combination of regular
complex measures is again regular. In particular, if ν = ν1 − ν2 + i(ν3 − ν4) is a
complex Borel measure and if νi is regular for each 1 ≤ i ≤ 4, then ν is regular.

Definition 2.16. Let X be a locally compact Hausdorff space. We denote by
R(X) the set of all regular complex measures on X. The sets RA(X) for A > 0
are defined in the same way as in Definition 2.13.

It is clear that R(X) ⊂ M(X) and that RA(X) ⊂ MA(X) for each A > 0.
Moreover, R(X) form a vector subspace of M(X). We will let R(X) inherit
the norm of M to form a normed vector space. The following lemma gives
conditions on a Borel measure µ that guarantees regularity.

Proposition 2.17. Let X be a locally compact Hausdorff space in which every
open set is σ-compact and let µ be a positive Borel measure for which µ(K) <
+∞ holds whenever K is compact. Then µ is regular.

Proof. Page 48 of [4]

We also need a version of variables substitution formula. Since we are mostly
concerned with Borel measures, we state a variation of this.

Proposition 2.18. Let X and Y be topological spaces, let µ be a finite positive
Borel measure on X and let φ : X → Y be a continuous function. Then the
mapping ν = µ ◦ φ−1 on B(Y ) defined by the formula

ν(E) = µ(φ−1(E)) (10)
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is a finite positive Borel measure on Y . Moreover, a B(Y )-measurable function
f is µ ◦ φ-integrable if and only if f ◦ φ is µ-integrable and in that case we have
the formula ∫

Y

f d(µ ◦ φ−1) =

∫
X

f ◦ φ dµ. (11)

Proof. See Theorem 3.6.1 page 190 [1]

2.3 Convexity in topological vector spaces

In this section we collect some definitions and results about convexity:

Definition 2.19. Let X be a vector space over C. A subset S ⊂ X is called a
convex subset of X if tx+ (1− t)y ∈ S for all x, y ∈ S and t ∈ (0, 1).

The intuition of this definition should be that any line segment connecting
two points of S need be contained in S.

Definition 2.20. Let S ⊂ X be a set and {xi}ni=1 a collection of points of S.
The sum

n∑
i=1

cixi (12)

where each ci ≥ 0 and
∑n

i=1 ci = 1 is called a convex combination of points
of S.

Clearly a set S is convex if it includes all its convex combinations, and by
an induction argument it is easy to show that the converse holds . We define
the convex hull of S, ConvS, to be set of all convex combinations of points of
S.

Definition 2.21. Let S ⊂ X. A point x ∈ S is called an extreme point of S
if the only convex combination of points of S that equal x is the one where all
but one constant, ck, equal zero and ck = 1 and xk = x. We denote the set of
extreme points of S by ES .

Definition 2.22. Let X be a vector space, let X be endowed with a topology
T , let X × X be endowed with the product topology and let α ∈ C. If each
mapping α : X → X defined by α(x) = αx is continuous with respect to T
and the mapping ρ : X × X → X defined by ρ(x, y) = x + y is continuous
with respect to the product topology on X×X we say that X is a topological
vector space.

Definition 2.23. Let x ∈ X where (X, T ) is topological space and let J (x)
be a collection of neighborhoods of x. We say that J (x) is a neighborhood
basis of x if for each neighborhood U ∈ T of x there is a member N ∈ J (x)
with N ⊂ U .

Definition 2.24. Let X be topological vector space. We say say that X is
a locally convex topological vector space if there exist a neighborhood basis
about the origin consisting entirely of convex sets.

7



Theorem 2.25 (Krein-Milman). Let X be a locally convex topological vector
space where the topology is Hausdorff. If K ⊂ X is convex and compact and E
denotes the extreme points of K then we have that K = ConvE.

Proof. Page 172, Theorem 6.9 of [5].

2.4 Dual spaces and the weak* topology

In this section we collect some definitions and results from functional analysis
that will be used throughout this thesis. It is mainly a combination of results
from the textbooks [4] and [5].

Definition 2.26. Let X be a normed vector space over C. We will call a
linear map ℓ : X → C that satisfy sup∥x∥≤1 |ℓ(x)| < ∞ a bounded linear
functional on X. The dual space of X, denoted X∗, will be the set of all
bounded linear functionals on X. We define the map ∥.∥X∗ : X∗ → R≥0 by
∥ℓ∥X∗ = sup∥x∥≤1 |ℓ(x)|.

It is easy to see that X∗ is a vector space over C, moreover, ∥.∥X∗ defines
a norm on X∗. We recall that a complete normed vector space is called a
Banach space. The fact that a dual space always is complete is the content of
the following proposition.

Proposition 2.27. The pair (X∗, ∥.∥X∗) is a Banach space over C.

Proof. Theorem 4.4.4 of [3]

From now on norm subscripts will be omitted when the meaning is clear
from context. Applying Proposition 2.27 to X∗ we get the following corollary.

Corollary 2.28. The space X∗∗ is a Banach space.

For each x ∈ X we define the map x̂ : X∗ → C by x̂(ℓ) = ℓ(x) for ℓ ∈ X∗.
One can show that x̂ is a bounded linear functional on X∗ and thus x̂ ∈ X∗∗.
Moreover, the mapping j : x 7→ x̂ is an injective linear isometry. We will denote
the image of X under j by X̂ and note that since j is linear, the set X̂ ⊂ X∗∗

form a vector subspace. We shall let X̂ inherit the norm of X∗∗ to form a
normed vector space.

Definition 2.29. Let E be the collection of sets on the form x̂−1(U) where
U ⊂ C is open. The topology on X∗ generated by E is called the weak*
topology on X∗.

Definition 2.30. Let {ℓk}k be a sequence in X∗. If there exist an element
ℓ ∈ X∗ such that lim

k→∞
ℓk(x) = ℓ(x) holds for each x ∈ X, we say that that ℓk

converges weak* to ℓ and write ℓk
∗−→ ℓ.

Proposition 2.31. A sequence converges weak* if and only if it converges with
respect to the weak* topology.
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Proof. See section 6.3 of [5]

One can show that for a locally compact Hausdorff space X and a regular
complex measure µ ∈ R(X) on X, the function ℓµ : C0(X) → C defined by

ℓµ(f) =

∫
X

f dµ (13)

for f ∈ C0(X) is a bounded linear functional on C0(X). In other words, ℓµ ∈
C0(X)∗. The converse statement constitute a version of the Riesz representation
theorem.

Theorem 2.32. (Riesz) Let X be a locally compact Hausdorff space and let
ℓ ∈ C0(X)∗. There exist a unique regular complex measure µℓ such that

ℓ(f) =

∫
X

f dµℓ (14)

holds for each f ∈ C0(X). Moreover, ∥µℓ∥ = ∥ℓ∥.

Proof. Theorem 6.19 in [4]

The uniqueness above tells us for example that the equalities ℓµℓ
= ℓ and

µℓµ = µ holds. In conclusion we have seen the following.

Corollary 2.33. For X a locally compact Hausdorff space, the mapping
τ : C0(X)∗ → R(X) by τ(ℓ) 7→ µℓ as in Theorem 2.32 defines a isometric
isomorphism of normed vector spaces, C0(X)∗ ≃ R(X).

As a consequence of 2.33 we get that R(X) is a Banach space and that
C0(X)∗∗ ≃ R(X)∗ as normed vector spaces. We also get that the topology on
R(X) generated by sets on the form τ(U), where U ⊂ C0(X)∗ is weak* open, is
precisely the weak* topology on R(X). We conclude the following.

Corollary 2.34. The vector spaces C0(X)∗ and R(X) endowed with their re-
spective weak* topologies are homeomorphic as topological vector spaces.

We will also need the following fact

Proposition 2.35. Let X be a locally compact Hausdorff space. The vector
space M(X) endowed with the weak* topology is a locally convex Hausdorff
topological vector space.

Proof. Section 6.3 of [5]

Theorem 2.36. (Alaoglu) The unit ball in X∗ is weak* compact.

Proof. Theorem 6.10 of [5]

Theorem 2.37. (Hahn-Banach Corollary) If X is a Banach space and Y ⊂ X
is a dense subspace, then Y ∗ ≃ X∗ as normed vector spaces.

Proof. Let ℓ ∈ Y ∗ be non-zero and suppose ℓ′, ℓ′′ ∈ X∗ are extensions of ℓ with
∥ℓ∥ = ∥ℓ′∥ = ∥ℓ′′∥. By Corollary 4.8.7 of [3], we have that 0 = (ℓ′ − ℓ′′)(Y ) =
(ℓ′ − ℓ′′)(Y ) = (ℓ′ − ℓ′′)(X), a contradiction.
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3 Herglotz-Nevanlinna functions and their re-
lated measures

3.1 Basic properties and examples

In this section we discuss some basic properties and examples of Herglotz-
Nevanlinna functions. A natural starting point for this investigation might
be to take known analytic functions C → C and simply restrict the domain to
C+.

Definition 3.1. Let C+ denote the set C+ = {z ∈ C : Im(z) > 0}. An analytic
function f : C+ → C that satisfy that Im(f(z)) ≥ 0 for all z ∈ C+ is called a
Herglotz-Nevanlinna function.

Remark. In this definition we allow for the function f to attain real values,
however this only happens if f ≡ a where a ∈ R, a real constant. Here we only
give an outline of the argument, for a more rigorous treatment we refer the reader
to chapter X of [2]. The argument goes as follows. Write f(z) = u(z) + iv(z)
and suppose z0 ∈ C+ is such that v(z0) = 0. Recall from elementary complex
analysis that v is harmonic on C+ and thus satisfy the mean value property.
That is,

v(w) =
1

2π

∫
[0,2π)

v(w + reit)dt (15)

whenever the closed disk Br(w) is contained in C+. Now by a version of the
maximum modulus principle (page 255, Theorem 1.10 of [2]) we get that v is
constant, and since v(z0) = 0 we have that v ≡ 0 on C+. Finally, the Cauchy-
Riemann equations can be applied to find that u is constant, let say u ≡ a, and
thus the assertion follows.

Example 1. A power function like f1(z) = zp, where p ∈ R≥0, is a Herglotz-
Nevanlinna function if and only if p ≤ 1. To see this, we write z = reit and
f1(re

it) = rpeipt where 0 ≤ t < π. Thus, we need the inequality 0 ≤ pt < π
to hold, which is always the case when p ≤ 1. Moreover, when p > 1 we can
always find a t close to π such that the inequality is fails.

Example 2. By a similar argument as in Example 1, one can show that the
function f2(z) = − 1

zp is a Herglotz-Nevanlinna function if and only of p ≥ −1.

Example 3. The function f3(z) =
a

b−z , where a ≥ 0 and b ∈ R are constants,
is a Herglotz-Nevanlinna function. To see this simply write z = x+ iy, now by
the computation

f3(x+ iy) =
a

(b− x)− iy
=

a((b− x) + iy)

((b− x)− iy))((b− x) + iy))

=
a(b− x)

|(b− x)− iy|
+ i

ay

|(b− x)− iy|

(16)

the assertions follows since ay ≥ 0.
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Proposition 3.2. Let f and g be Herglotz-Nevanlinna functions and suppose
Im(g) > 0. Now f ◦ g is a Herglotz-Nevanlinna function.

Proof. This is clear since the range of g is contained in the domain of f and
compositions of analytic functions are again analytic. In particular, by Example
2, the function f4(z) = − 1

h(z) is Herglotz-Nevanlinna whenever h is a Herglotz-

Nevanlinna function with Im(h(z)) > 0 for all z ∈ C+.

3.2 Some considerations on the spaces at hand

The main representation theorem concerns finite positive Borel measures on
the real line, however we will see that by virtue of a transformation we can
equivalently consider finite positive Borel measures on the interval (0, 2π). We
will let [0, 2π] and (0, 2π) inherit the standard subspace topologies from R, and
thus (0, 2π) and [0, 2π] are both Hausdorff spaces. Since [0, 2π] is closed and
bounded it is a compact space.

Proposition 3.3. The space (0, 2π) is locally compact.

Proof. To see that (0, 2π) is locally compact let x ∈ (0, 2π) be given and pick an
open ball Br(x) where r < min(dist(0, x),dist(x, 2π)). The set Br(x) contain
x, is closed and bounded and therefore compact.

Proposition 3.4. Any open set in (0, 2π) is σ-compact.

Proof. Let U ⊂ (0, 2π) be open. Recall that U can be written as a countable
union of open intervals, that is U = ∪k(ak, bk), where (ak, bk) is an open interval
in (0, 2π) for each k ∈ N. However each interval (ak, bk) can be written as
a countable union of closed intervals, (ak, bk) = ∪i[a

i
k, b

i
k], each contained in

(ak, bk). Thus U can be written U = ∪k ∪i [a
i
k, b

i
k], a countable union of closed

and bounded, and therefore compact, sets.

Proposition 3.5. Any open set in [0, 2π] is σ-compact.

Proof. Let U ⊂ [0, 2π] be open. If none of the endpoints belong to U , the
same technique as in the proof of Proposition 3.4 can be applied to U . Suppose
0 ∈ U . But now the technique above can be applied to U \{0} to write U \{0} =
∪k ∪i [a

i
n, b

i
k]. However we have U = {0} ∪ (∪k ∪i [a

i
n, b

i
k]), a countable union

of compact sets. The same argument applies in the remaining cases so the
assertion follows.

Proposition 3.6. Let X and Y be locally compact Hausdorff spaces, the func-
tion φ : X → Y a homeomorphism and µ ∈ M(X). Then µ ◦ φ−1 ∈ M(Y ).
Moreover, the mapping jφ : µ 7→ µ ◦ φ−1 is an isomorphism of normed vector
spaces.
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Proof. By Proposition 2.18 we have the inclusion µ ◦ φ−1 ∈ M(X). The com-
putation∥∥µ ◦ φ−1

∥∥ = |µ ◦ φ−1|(Y )

= µ1(φ
−1(Y )) + µ2(φ

−1(Y )) + µ3(φ
−1(Y ) + µ4(φ

−1(Y ))

= µ1(X) + µ2(X) + µ3(X) + µ4(X)

= |µ|(X) = ∥µ∥

(17)

shows that µ ◦ φ−1 ∈ M(Y ). For linearity suppose µ′, µ′′ ∈ MA(X), a, b ∈ R
and E ∈ B(Y ). By the computation

((aµ′ + bµ′′) ◦ φ)(E) = (aµ′ + bµ′′)(φ−1(E))

= aµ′(φ−1(E)) + bµ′′(φ−1(E))

= a(µ′ ◦ φ−1)(E) + b(µ′′ ◦ φ−1)(E)

(18)

the assertion follows.

We get the following corollary.

Corollary 3.7. The restricted map jφ|DA(X) : DA(X) → DA(Y ) is a norm
preserving linear bijection.

Since DA(X) is not a vector space, the linearity of jφ|DA(X) should be un-
derstood to be applicable when it makes sense. That is an expression on the
form

∑
k ckµk belong to DA(X) if and only if jφ (

∑
k ckµk) =

∑
k ck

(
µ ◦ φ−1

)
belong to DA(Y ).

Returning to complex measures we have the following useful fact.

Corollary 3.8. Any complex Borel measure on (0, 2π), [0, 2π] or R is regular.

Proof. Let ν be a complex Borel measure on (0, 2π), [0, 2π] or R with decom-
position ν = ν1 − ν2 + i(ν3 − ν4). The total variation measure of ν is now given
by

|ν| = ν1 + ν2 + ν3 + ν4, (19)

where Proposition 2.17 can be applied to each component νi for 1 ≤ i ≤ 4,
showing that |ν| is a finite sum of regular measures. We conclude that ν is
regular.

Above we have gathered that, in symbols, R(0, 2π) = M(0, 2π), R[0, 2π] =
M[0, 2π], and R(R) = M(R). Since by Proposition 2.8 the set Cc[0, 2π] is dense
in C0[0, 2π], we have by Theorems 2.37 and 2.32 that

Cc[0, 2π]∗ ≃ C0[0, 2π]∗ ≃ R[0, 2π] ≃ M[0, 2π], (20)

where the equivalence above is in the sense of Corollary 2.33.
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Let us also view M[0, 2π] endowed with the weak* topology instead of the
norm topology. By Corollary 2.34 we get the same chain of equivalences as in
equation (20) if we instead consider them as topological vector spaces with the
weak* topology.

We now turn to show the very key fact that will be used to prove both main
results of this thesis, namely that the set DA[0, 2π] is a compact subset with
respect to the weak* topology.

Proposition 3.9. The set DA[0, 2π] is weak* compact.

Proof. First note DA[0, 2π] is given by

DA[0, 2π] = D[0, 2π] ∩MA[0, 2π] (21)

and that MA[0, 2π] is compact by Theorem 2.36. Thus it is sufficient to show
that D[0, 2π] is closed in M[0, 2π]. For contradiction suppose not, namely that
there is exist a weak* convergent sequence {µk}k, fully contained in D[0, 2π],
with weak* limit equal to µ ∈ M[0, 2π] \ D[0, 2π]. By definition we have that

lim
k→∞

∫
[0,2π]

f dµk =

∫
[0,2π]

f dµ (22)

holds for each f ∈ C0[0, 2π].

Step 1. First assume that µ is a signed measure. By Theorem 2.10 there
exist a set B ∈ B[0, 2π] such that µ(B) = −µ−(B) < 0 and µ(E) ≤ 0 for
each measurable set E ⊂ B. Since µ is regular we can find a compact set
K ⊂ B and an open set B ⊂ V such that |µ|(V \ K) < ε1 = 1

2µ
−(B) and

|µ(B) − µ(K)| < ε2 = 1
2µ

−(B). By Lemma 2.7 there exist a function g ∈
Cc[0, 2π] with Supp g ⊂ V , g(x) = 1 for each x ∈ K and 0 ≤ g(x) ≤ 1. Setting
f = g in (22), we have for the right hand side the estimate∫

[0,2π]

g dµ =

∫
V \K

g dµ+

∫
K

g dµ

≤
∫
V \K

g d|µ|+ µ(K) ≤ |µ|(V \K)− µ−(K)

<
1

2
µ−(B) +

1

2
µ−(B)− µ−(B) = 0

(23)

which shows that the right hand side of (22) is strictly negative. However each
member of the left hand side of (22) is non-negative, a contradiction.

We finish this chapter by showing that DA[0, 2π] is a convex set, a fact that
will be useful in section 4

Proposition 3.10. If
∑N

i=1 ciµi is a convex combinations of measures µi ∈
DA[0, 2π], then the measure

∑N
i=1 ciµi ∈ DA[0, 2π].

13



Proof. By the following computation,(
N∑
i=1

ciµi

)
([0, 2π]) =

N∑
i=1

ciµi ([0, 2π]) ≤ A
∑
i=1

ci ≤ A, (24)

the assertion follows.

Step 2. Next assume µ is a complex measure. By what we have shown, the
imaginary part of µ, µIm, is necessarily non-zero since else µ would be a signed
measure. However µIm is a signed measure, so the same argument as above
can be applied to µIm. In particular there exist a function h ∈ Cc[0, 2π] such
that for f = h, the right hand side of (22) have non-zero imaginary part, a
contradiction.

3.3 Poisson Integral Formula

In this section we state and prove the well known Poisson integral formula, the
first stepping stone to proving the two main theorems of this thesis. In order
to do this we first state and prove two auxiliary lemmas. Here, a region will
mean an open connected subset of the complex plane.

Lemma 3.11. For |w| < 1 the equality Re( e
it+w

eit−w ) = 1−|w|2
|1−e−itw|2 holds.

Proof. Write w = reiθ. From the computation

eit + w

eit − w
=

eit

eit
· 1 + e−itw

1− e−itw
=

(1 + e−itw)(1− eitw)

(1− e−itw)(1− eitw)
(25)

(26)

=
1− |w|2 − eitw + e−itw

|1− e−itw|2
=

1− |w|2

|1− e−itw|2
+

r(ei(θ−t) − e−i(θ−t))

|1− e−itw|2
(27)

=
1− |w|2

|1− e−itw|2
+ i

2r sin(θ − t)

|1− e−itw|2
(28)

the assertion follows.

Lemma 3.12. If f and g are analytic on a region G and have identical real
part they differ by at most an imaginary constant.

Proof. Let f and g have identical real part. Since the difference, f − g, is again
analytic it satisfies the Cauchy-Riemann equations. In particular ∂

∂x Im(f−g) =

− ∂
∂y Re(f − g) = 0. By computing the derivative,

d

dz
(f − g) =

∂

∂x
Re(f − g) + i

∂

∂x
Im(f − g) = 0− i

∂

∂y
Re(f − g) = 0, (29)

we see that f − g is constant.
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Theorem 3.13 (Poisson Integral Formula). Let f be an analytic function on
a region G containing the closed unit disk D and let w ∈ D. Now f is given by
the following integral formula

f(w) = i Im(f(0)) +
1

2π

∫
[0,2π)

Re(f(eit))
eit + w

eit − w
dt. (30)

Proof. We let γ denote the unit circle in C. Since 1
w /∈ D we have by the Cauchy

integral formula

f(w) =
1

2πi

∫
γ

f(z)

z − w
dz (31)

and

0 =
1

2πi

∫
γ

f(z)

z − 1
w

dz (32)

and by adding the two equations we get

f(w) =
1

2πi

∫
γ

f(z)

(
1

z − w
− 1

z − 1
w

)
dz. (33)

Let γ(t) = eit for t ∈ [0, 2π) be a parameterization of the unit circle. Substitut-
ing z = eit in the equation above and rewriting the integrand we get

f(w) =
1

2π

∫
[0,2π)

f(eit)
1− |w|2

|1− we−it|2
dt. (34)

Let h : G → C be defined by

h(w) =
1

2π

∫
[0,2π)

Re(f(eit))
eit + w

eit − w
dt (35)

and note that h is analytic. Applying Lemma 3.11 to the right hand side of (35)
we see that f and h have identical real part, so by Lemma 3.12 f and h differ
by at most a purely imaginary constant, say ξ. Thus we can write

f(w) = ξ +
1

2π

∫
[0,2π)

Re(f(eit))
eit + w

eit − w
dt. (36)

Setting w = 0 and subtracting ξ from both sides we get

f(0)− ξ =
1

2π

∫
[0,2π)

Re(f(eit))dt, (37)

and since the right hand side is real we see that ξ = i Im(f(0)). In conclusion
we have the formula

f(w) = i Im(f(0)) +
1

2π

∫
[0,2π)

Re(f(eit))
eit + w

eit − w
dt (38)

as desired.
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3.4 Representation Theorem

In this section we prove the classic representation theorem by Nevanlinna. Prov-
ing such a well known theorem can surely be done in many ways, and here the
details is carried out from the viewpoint of the author, for whom much of the
background comes from the courses ”Advanced real analysis I + II” given at
mathematics department at Stockholm University.

Theorem 3.14. A function f is Herglotz-Nevanlinna if and only if there exist
unique constants α ∈ R, β ≥ 0 and a unique finite positive Borel measure ν on
R such that

f(z) = α+ βz +

∫
R

sz + 1

s− z
dν(s) (39)

for each z ∈ C+.

In order to prove the statement above, we first consider a closely related
class of function.

Definition 3.15. An analytic function h : D → C that satisfy Re(h(w)) ≥ 0
for all w ∈ D is called a Carathéodory function.

Remark. The two classes of functions are related as follows. We note that for
z ∈ C+ the mapping z 7→ z−i

z+i is an analytic bijection from C+ to D and that
for ζ ∈ {ξ ∈ C : Re(ξ) > 0} the mapping ζ 7→ iζ is an analytic bijection from
{ξ ∈ C : Re(ξ) > 0} to C+. Putting this together we conclude that a function
f is a Herglotz-Nevanlinna function if an only if it can be written as

f(z) = ih(w) (40)

where h is a uniquely determined Carathéodory function, w = z−i
z+i and z ∈ C+.

Proposition 3.16. Any Carathéodory function can be written

h(w) = i Im(h(0)) +

∫
[0,2π]

eit + w

eit − w
dµ (41)

where µ ∈ DA[0, 2π].

Proof. Define for 0 < r < 1 the family of functions {hr}r by hr(w) = h(rw).
Each function hr is analytic on a region containing the closed unit disk D, so
Theorem 3.13 may be applied to write

hr(w) = i Im(h(0)) +
1

2π

∫
[0,2π)

Re(h(reit))
eit + w

eit − w
dt

= i Im(h(0)) +
1

2π

∫
[0,2π]

χ[0,2π) Re(h(re
it))

eit + w

eit − w
dt

(42)

for |w| < 1. Let µr be the measure defined by

µr(E) =

∫
E

χ[0,2π) Re(h(re
it))dt (43)
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for each measurable set E ∈ B[0, 2π]. It is easy to verify that µr is a measure and
since Re(h) > 0, µr is positive. Moreover, by Theorem 3.8 we have that µr is
regular. Evaluating the expression in (43) with E replaced by [0, 2π] we see that
µr([0, 2π]) = Re(h(0)) holds independent of r, so µr ∈ DRe(h(0))[0, 2π] for all r.

Define the sequence {rn}n by rn = 1− 1
n for n ∈ N. The sequence of measures

µrn is fully contained in the weak*-compact set DRe(h(0))[0, 2π], so by Theorem
3.9 there exist a subsequence {µrnk

}k, k ∈ N and a measure µ′ ∈ DRe(h(0))[0, 2π]

such that µrnk

∗−→ µ′. In particular, since each of the functions gw(t) :=
eit+w
eit−w

belong to Cc[0, 2π], we get that

h(w) = lim
k→∞

hrnk
(w) = i Im(h(0)) + lim

k→∞

1

2π

∫
[0,2π]

eit + w

eit − w
dµrnk

(t)

= i Im(h(0)) +
1

2π

∫
[0,2π]

eit + w

eit − w
dµ′(t).

(44)

Setting µ = 1
2πµ

′ we get that µ ∈ DA where A = Re(h(0))
2π , as well as the desired

formula,

h(w) = i Im(h(0)) +

∫
[0,2π]

eit + w

eit − w
dµ, (45)

which concludes the proof.

We now turn to the proof of the main theorem.

Proof of Theorem 3.14. ( =⇒ ) We first show that any expression on the form
of the right hand side of (39) is a Herglotz-Nevanlinna function. To show that
the right hand side have positive imaginary part, it suffices that the integral
expression have positive imaginary part, this since β ≥ 0 and Im z > 0. However
ν is a positive measure, so it is enough to show that the imaginary part of the
integrand is positive. Writing z = a+ bi, the integrand can be rewritten

tz + 1

t− a− bi
=

(tz + 1)(t− z)

(t− a)2 + b2
=

t2(a+ bi) + t− t|z|2 − a+ bi

(t− a)2 + b2

=
t2a+ t− t|z|2 − a

(t− a)2 + b
+ i

t2b+ b

(t− a)2 + b

(46)

where the last expression has positive imaginary part. To show that the
expression on the right hand side of (39) is analytic it suffices to show that the
integral part is analytic. For some fixed z0 ∈ C+ consider the quotient

1

z0 − z

(∫
R

tz0 + 1

t− z0
dν(t)−

∫
R

tz + 1

t− z
dν(t)

)
(47)

where adding the integrals and simplifying the integrand gives

1

z0 − z

∫
R

z0t− zt+ z0 − z

(t− z0)(t− z)
dν(t) =

∫
R

t+ 1

(t− z0)(t− z)
dν(t). (48)
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If we assume that 0 < |z0 − z| < Im(z0)
2 we get the following estimate for the

integrand,

∣∣∣∣ t+ 1

(t− z0)(t− z)

∣∣∣∣ ≤ 1

|t− z|
max
t∈R

(∣∣∣∣ t+ 1

t− z0

∣∣∣∣) ≤ 1

Im(z)
max
t∈R

(∣∣∣∣ t+ 1

t− z0

∣∣∣∣)
≤ 2

Im(z0)
max
t∈R

(∣∣∣∣ t+ 1

t− z0

∣∣∣∣) ,

(49)

where the maximum above exist since Im(z0) > 0, the function t 7→
∣∣∣ t+1
t−z0

∣∣∣
is continuous and lim

t→±∞

∣∣∣ t+1
t−z0

∣∣∣ = 1. Thus when taking the limit as z → z0

in the last expression of (48), the Lebesgue dominated convergence theorem is
applicable and we get

lim
z→z0

∫
R

t+ 1

(t− z0)(t− z)
dν(t) =

∫
R

t+ 1

(t− z0)2
dν(t). (50)

The last expression above is finite since the integrand is bounded and ν is
finite. For uniqueness it is quite clear. Namely that changing α, β or ν will
yield a different (Herglotz-Nevanlinna) function.

( ⇐= ) Conversely, let f be a Herglotz-Nevanlinna function. By the remark
following Definition 3.15, f can be written as

f(z) = ih(w) (51)

where h is a Carathéodory function, w = z−i
z+i and z ∈ C+. Since h is a

Carathéodory function, we can apply Proposition 3.16 to write

f(z) = i

(
i Im(h(0)) +

∫
[0,2π]

eit + w

eit − w
dµ(t)

)

= Re(f(i)) + i (µ({0}) + µ({2π})) 1 + w

1− w
+ i

∫
(0,2π)

eit + w

eit − w
dµ(t).

(52)

Setting α = Re(f(i)), β = µ({0}) + µ({2π}) and noting that z = i 1+w
1−w we get

f(z) = α+ βz + i

∫
(0,2π)

eit + w

eit − w
dµ(t). (53)

Secondly, let φ : R → D be defined by φ(s) = 2 arctan
(
− 1

s

)
and define the

measure ν = µ ◦ φ. Note that φ is a homeomorphism, so by Corollary 3.6 we
have that ν ∈ D Im(f(i))

2π
(R). Since φ is bijective we have that µ = ν ◦ φ−1, and

applying Proposition 2.18 to the integral in (53) gives

i

∫
(0,2π)

eit + w

eit − w
d(ν ◦ φ−1)(t) = i

∫
R

eiφ(s) + w

eiφ(s) − w
dν(s). (54)
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Finally, by a tedious but standard computation one can show the equality
eiφ(s)+w
eiφ(s)−w

= 1
i
sz+1
s−z , and thus we arrive at the formula

f(z) = α+ βz +

∫
R

sz + 1

s− z
dν(s) (55)

where α ∈ R, β ≥ 0 and ν ∈ DA(R) for A = Im(f(i))
2π , a finite positive Borel

measure.

4 Approximation by rational Herglotz-Nevanlinna
functions

4.1 Extremal measures of Herglotz-Nevanlinna functions

In this section we show that the extreme points of DA[0, 2π] is precisely the
point mass measures on [0, 2π]. Without loss of generality, we may assume that
A = 1 for this section.

Lemma 4.1. Let µ ∈ D1[0, 2π] and suppose µ is not a point mass measure,
then there exist a set E ∈ B[0, 2π] with 0 < µ(E) < 1.

Proof. Suppose not, namely that for each set E ∈ B(0, 2π) it holds that µ(E) =
1 or µ(E) = 0. Since µ is not a point mass measure, µ({x}) = 0 holds for each
x ∈ [0, 2π]. For for n ∈ N and 0 ≤ k ≤ n let Ikn = (π k

n , π
k+1
n ). Note that for each

n only one of the intervals, say Ik
∗

n , have µ(Ik
∗

n ) = 1 and that µ((Ik
∗

n )c) = 0.
Moreover, Ik

∗

n ⊃ Ik
∗

n+1 holds for each n, and since diam(Ik
∗

n ) → 0 as n → ∞,

only one point, say x∗, belong to the set ∩nI
k∗

n . Now the computation

0 = µ({x∗}) = µ(∩nI
k∗

n ) = lim
n→∞

µ(Ik
∗

n ) = lim
n→∞

1 = 1 (56)

demonstrates the desired contradiction.

Proposition 4.2. A measure µ is an extreme point of D1[0, 2π] if and only if
µ is a point mass measure, that is µ = δx0

for some x0 ∈ [0, 2π].

Proof. First suppose µ is a point mass measure, µ = δx0
, for some x0 ∈ [0, 2π].

For contradiction suppose µ can be written as a non trivial convex combinations
of measures µ1, µ2 ∈ D1[0, 2π]. That is

δx0 = c1µ1 + c2µ2 (57)

where c1, c2 > 0 and c1 + c2 = 1. However the computation

0 = δx0

(
[0, 2π] \ {x0}

)
= c1µ1

(
[0, 2π] \ {x0}

)
+ c2µ2

(
[0, 2π] \ {x0}

)
(58)

shows that
µ1

(
[0, 2π] \ {x0}

)
= µ2

(
[0, 2π] \ {x0}

)
= 0, (59)
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implying that
µ1

(
{x0}

)
= µ2

(
{x0}

)
= 1, (60)

and thus we have that µ1 = µ2 = δx0
, a contradiction. Conversely, suppose

that µ is an extreme point of D1[0, 2π], and suppose for contradiction that µ is
not a point mass measure. By Lemma 4.1 there exist a set E ∈ B[0, 2π] such
that 0 < µ(E) < 1. Define the measures µ1 and µ2 by µ1(C) = µ(C ∩ E) and
µ2(C) = µ(C ∩ Ec) for each C ∈ B[0, 2π]. Now µ is given by

µ =
1

µ(E)
µ1 +

1

µ(Ec)
µ2, (61)

a non-trivial convex combination of measures µ1, µ2 ∈ D1[0, 2π], a contradiction.

4.2 Approximation by rational functions

In this section we present the second main theorem of this thesis. That is, any
Herglotz-Nevanlinna function f can be pointwise approximated by sequence of
rational Herglotz-Nevanlinna functions {qk}k, all with a finite number of poles
of order at most one, such that qk(z) → f(z) for all z ∈ C+. By virtue of
conclusions made in Section 3.1, it is quite simple to infer that any such rational
function is Herglotz-Nevanlinna. The main proof is carried out in a similar way
to the proof of Theorem 3.14, utilizing many of the same techniques, as well as
the content of Theorem 3.14 itself.

Definition 4.3. Denote by Q the set of functions q on C+ on the form

q(z) = α+ βz +

N∑
n=1

dn
1

t0 − z
(62)

where α, t0 ∈ R, β, dn > 0 and N ∈ N.

The setQ do indeed consist entirely of Herglotz-Nevanlinna functions. To see
this, one can combine the examples of section 3.1, Proposition 3.2 to note that
each term of a function on the form as in equations (62) is Herglotz-Nevanlinna.
Moreover it is easy to see that a sum of Herglotz-Nevanlinna functions is again
a Herglotz-Nevanlinna function.

Theorem 4.4. Let f be a Herglotz-Nevanlinna function. There exist a sequence
{qk}k contained in Q such that qk(z) → f(z) for each z ∈ C+.

Proof. We write f as in equation (52), that is

f(z) = Re(f(i)) + i

∫
[0,2π]

eit + w

eit − w
dµ(t) (63)

where again µ ∈ D Im(f(i))
2π

[0, 2π], w = z−i
z+i and z ∈ C+. We abbreviate A =

Im(f(i))
2π and let EDA[0,2π] denote the set of extreme points of DA[0, 2π]. By
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Proposition 4.2, EDA[0,2π] consist entirely of point mass measures. Consider
DA[0, 2π] ⊂ M[0, 2π], both endowed with the weak* topology. We have seen
by Proposition 2.35 that M[0, 2π] is locally convex, and by Propositions 3.10
and 3.9 that DA[0, 2π] is convex and compact, thus by Theorem 2.25 we have
that Conv(EDA[0,2π]) = DA[0, 2π]. That is, there exist a sequence of measures
on the form

µk =

Nk∑
n=1

cknδtkn (64)

where each tkn ∈ [0, 2π], ckn > 0,
∑Nk

n=1 c
k
n = 1 and Nk ∈ N , such that µk

∗−→ µ.
We define the functions qk : C+ → C+ by

qk(z) = Re(f(i)) + i

∫
[0,2π]

eit + w

eit − w
dµk(t)

= Re(f(i)) + i (µk({0}) + µk({2π}))
1 + w

1− w
+ i

∫
(0,2π)

eit + w

eit − w
dµk(t).

(65)
Set βk = µk({0}) + µk({2π}). We use the same variable substitutions as in the
proof of Theorem 3.14, that is let φ be defined by φ(s) = 2 arctan

(
− 1

s

)
and

νk = µk ◦ φ. This yields the formula

qk(z) = Re(f(i)) + βkz +

∫
R

sz + 1

s− z
dνk(s). (66)

However, Corollary 3.7 allows us to calculate νk, and in turn the whole integral
in equation (66), explicitly. We get

νk = µk ◦ φ =

(
Nk∑
n=1

cknδtkn

)
◦ φ =

Nk∑
n=1

ckn(δtkn ◦ φ) =
Nk∑
n=1

cknδskn (67)

where we define each skn = φ−1(tkn). Applying this to the integral in equation
(66) we get

qk(z) = Re(f(i)) + βkz +

Nk∑
n=1

ckn
sknz + 1

skn − z

= Re(f(i))−
Nk∑
n=1

ckns
k
n + βkz +

Nk∑
n=1

ckn
(skn)

2 + 1

skn − z

(68)

and setting αk = Re(f(i))−
∑Nk

n=1 c
k
ns

k
n and dkn = ckn((s

k
n)

2 + 1) we get

qk(z) = αk + βkz +

Nk∑
n=1

dkn
1

skn − z
. (69)

Since the coefficients βk and dkn are non-negative we for all k and n, we get that
qk ∈ Q for each k, which concludes the proof.
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