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Abstract

In this thesis, we aim to present key concepts in stochastic processes, Itô’s

calculus, and stochastic di�erential equations. We will give a brief overview of

how stochastic di�erential equations can be used in stochastic dynamic con-

trol problems and how to find explicit solutions to such optimization problems.

Our main focus will be to provide explicit solutions for the optimal consump-

tion and investment rules in the case when the risk aversion is constant. Lastly,

we will also provide concise economic interpretations and implications of such

optimal consumption and investment rules.
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2
Introduction

This thesis has the goal of providing a mathematical background in stochastic pro-
cesses, as well as di�erential equations and dynamic programming using such pro-
cesses, which will then be used to find the optimal investment and consumption
rules for an investor. In Section 3.1 we will provide a comprehensive definition on



the probability space where stochastic processes are constructed. Section 3.2 will
focus on stochastic processes, the most important for this dissertation being a Brow-
nian motion. Section 3.3 will introduce the Itô’s integral, which will be fundamental
to the construction of stochastic di�erential equations, the focus of Section 3.4. Fi-
nally, we end the mathematical background in Section 3.5 with the introduction to
stochastic dynamic control.

Moreover, this paper will also focus on describing how such mathematical con-
cepts can be applied in financial economics, and how one is able to find explicit so-
lutions to an investor’s optimal consumption and investments. Such problems were
first introduced by [Merton, 1969], in his paper Lifetime Portfolio Selection under

Uncertainty: The Continuous time Case, where a model in which stochastic dynamic
control is used to determine the individuals optimal investment and consumption
levels over their lifetime. This paper is fundamental for financial economics, as it
was the first to describe the investors optimal choices in such a way. The proposed
model incorporates one risk-free asset and one risky asset, the behavior of which is
described using a Brownian motion. Moreover, the paper also provides insight on
how the optimal portfolio selection is a�ected by the investor’s time horizon, and
their risk preferences when described by constant absolute risk aversion functions.
It is important to note that Merton’s paper includes several assumptions, such as
the behavior of interest rate, specific characteristics of the utility function and risk
aversion, and the assumption of a frictionless market. By relaxing these assumptions
and slightly reformulating the problem, plenty of new research in the area has led
to rich insights into the optimal investment and consumption rules for investors.

One of the first extensions to this Merton’s problem was made by Merton him-
self in [Merton, 1971]. In this paper Optimal Consumption and Portfolio Rules in

a Continuous-Time Model, Merton builds upon the optimal consumption and in-
vestment rules, as he firstly examines a case with n number of assets, then provides
a more comprehensive result for a broader type of utility function, di�erent price
behavior functions as well as it accounts for non-capital gains sources. One of the
key concepts presented in this paper is also the "Mutual Fund Theorem", which,
succinctly speaking, states that a pair of funds can be constructed using a linear
combination of all the n assets in such a way that investors are indi�erent between
investing in these funds or all n assets. Lastly, this paper also provides a more
comprehensive understanding of the use of Itô’s Processes and their application in
modelling stock prices.
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[Davis and Norman, 1990] reformulate Merton’s problem, however with a more
realistic approach, in which there are transaction costs for investing in the risk-free
asset and the stock. In short, [Davis and Norman, 1990] find that the investments
in the risk-free and the risky asset must be treated as two di�erent processes and
cannot be merged into a single wealth process. Moreover, another main finding is
that on a plot depicting the holdings in each asset, the optimal investment strategy
is given by a line. Surrounding such line there is a wedge like shaped region, where
the investor should have a minimal trading strategy, while in the region above and
below the line the investor should purchase and sell the stock, respectively.

[Korn and Kraft, 2002] on the other hand, provide another interesting expansion
to Merton’s Problem. By assuming that the interest rate follows an Itô process, the
stochastic control problem becomes much more delicate, yet by using two di�erent
models for the short rate, it is shown that the investment in a stock, and in a risk-
free asset is similar to Merton’s original problem. The main finding of this paper is
that there is a stochastic correction term for the amount invested in the risky asset,
which depends on the short rate model used.

[Ste�ensen, 2011] provides another interesting extension to the original paper,
as the assumption of a risk aversion coe�cient is reformulated for the risk aversion
being a function of time. That is, the risk aversion behavior of the investor changes
in relation to their age. The main findings is that, for a monotonically increasing
risk aversion, the investor’s optimal consumption rate displays a convex function of
wealth. When it comes to the optimal investment rate, the results are more complex
due to the influence of higher order terms.

[van Bilsen et al., 2020] expand on Merton’s problem by extending the idea
of utility gained by the individual from the consumption by introducing a habit
formation element to the utility. Despite there not being an analytical solution to
multiplicative habit formation, by linearizing the budget equation they are able to
approximate it to portfolio problems without the habit formation. Then, this ap-
proximation is applied in three di�erent cases, when the investor has time-separable
relative consumption and constant relative risk aversion; when there is a stochastic
interest rate; as well as combing the habit formation with a stochastic di�erential
utility. The main findings of the three models are following: the risk aversion dictates
the yearly change in consumption, while the habit formation dictates the reaction
of consumption on stock shocks; the investment in bonds decline over time and the
hedging bond portfolio investment over time has a hump shaped curve; and median
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consumption does not grow at unrealistic rates, respectively.
In Section 4 we will formally pose the original problem as formulated by [Björk,

2020], and find explicit solutions to the optimal consumption and investment rules
for an investor that has constant risk aversion and that has the possibility of choosing
between 2 assets, one of which is risky and the other risk-free.

Lastly, in section 5 we will provide a concise interpretation of the optimal invest-
ment and consumption rules found in the previous section.

3
Mathematical Background

This part of the essay is dedicated to understanding key mathematical concepts
which are going to be applied in a financial economic scenario in the later parts of
this thesis. It will be heavily based on the book Stochastic Di�erential Equations:

An introduction with Applications, by [Øksendal, 2000]. We will first define the
probability space and stochastic processes, then understand why Itô’s Integral is
essential to stochastic calculus. By having a better understanding of Itô’s calculus,
we will then also introduce the idea of stochastic di�erential equations, and how
they can be used in stochastic dynamic control. All definitions in this section are
from [Øksendal, 2000] unless stated otherwise, while examples are provided by the
author.

3.1 Preliminaries

We will begin by providing some key concept and building blocks for the construction
of stochastic processes, such as random variables, the measurable and probability
space, which are defined as follow:

Definition 3.1. We say a ‡-algebra of F on a given set � if F is a family of subsets
of � (also referred as sample space) which have the following properties:

(i) The empty set ? belongs to F ;
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(ii) For an element F in F , its complement F C also belongs in F ;

(iii) For the elements A1, A2, · · · œ F , their countable union A is also in F ( i.e.
A œ F , A :=

Œt
i=1

Ai.

The pair (�, F) is also usually referred to as measurable space.

Definition 3.2. To define a probability space we need to include a probability
measure, P , to such ‡-algebra of F on �, as a function P : F æ [0, 1] such that:

(i) The probability of the empty set is equal to zero (P (ÿ) = 0), and the proba-
bility of the whole event space is 1 (P (�) = 1),

(ii) For the elements A1, A2, · · · œ F and a disjoint sequence {Ai}Œ
i=1,the probabil-

ity of union of such elements is equal to the sum of each probability separately.
In other words P (

Œt
i=1

Ai) = qŒ
i=1 P (Ai).

Finally, this triple (�, F , P ) is called a probability space and is the environment
we wish to construct our stochastic processes on.

Intuitively, this triple (�, F , P ) can be seen as the non-empty sample space �,
the event space F and the probability measure P . The probability measure assigns
a value which we interpret as the probability of such ‡ - algebra event F happening.

Example 3.3. To illustrate the triple (�, F , P ) we will use the simple example of
determining the probability of getting a number larger than 3 when a unbiased
6-sided dice rolled.

We have that � are all possible outcomes, which clearly are 1,2,3,4,5 or 6, in
other words � = {1, 2, 3, 4, 5, 6}.

Since we have three possible outcomes which are larger than three, i.e. 4, 5 or 6,
our event space is therefore comprised of F = {4, 5, 6}.

Lastly, since the dice is unbiased, we have that each outcome has equal proba-
bility 1/6. Since our event space comprises of three mutual exclusive events we add
up their individual probabilities. Therefore, we can say that P ({F}) = 1/2.

Definition 3.4. All subsets F of � that belong to F are called F - measurable sets.

We also note that functions can also be F - measurable. More precisely, we
call functions Y : � æ R

n F - measurable if Y ≠1(U) := {Ê œ �; Y (Ê) œ U} œ
F , for all open sets U œ R

n. We are now thus able to define random variables as
follows:
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Definition 3.5. Using our (�, F , P ) probability space, we say that a random vari-
able X is a F - measurable function X : � æ R

n.

For more details we refer to page 9 of [Øksendal, 2000].
Another fundamental concept we need to define is the idea of a filtration. In-

tuitively, a filtration is the history or the development of information up to time t,
that is the increasing ‡-algrebra families up to time t. We formally define it as:

Definition 3.6. We define a filtration on the measurable space (�, F) as a family
F = {Ft}tØ0 of the ‡-algebras Ft µ F that satisfy the property: 0 Æ s < t ∆ Fs µ
Ft.

For more details about filtrations we refer to pages 25 and 31 of [Øksendal, 2000].

3.2 Stochastic Process

In general terms a Brownian motion is a type of Stochastic process, the latter of
which is defined as follows.

Definition 3.7. We define a stochastic process as a parameterized collection of
random variables {Xt}tœT on a probability space (�, F , P ), with values in R

n.

The historical origins of the Brownian motion arise from Robert Brown, who
studied the movement of pollen particles suspended in liquids. Simply put, a Brow-
nian motion is a stochastic process Bt(Ê), which interpreted in Brown’s application,
describes the position at time t of the pollen particle Ê. The most common appli-
cation of Brownian motion we are going to delve into is the price development over
time of a given stock, which we do not know the behavior in the future. For the
proof of existence and mathematical construction of Brownian motions we refer to
pages 10 to 12 on [Øksendal, 2000]. We then have that a stochastic process Bt is a
Brownian motion if it has the following properties:

(i) Bt is a Gaussian process, which means that each increment is has a normal
distribution with mean equal 0 and variance equal to the length of the increment,

(ii) Bt has independent increments,
(iii) Bt is continuous.
For a proof that a process having these characteristics exists, we refer to page 12

as well as appendix A in [Øksendal, 2000].
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Remark 3.8. We note that Brownian motions can be processes in many dimensions,
that is, the increments have a multi-normal distribution. For our purposes we will
assume a one dimensional process.

Definition 3.9. A geometric Brownian motion (GBM) is a cornerstone for stochas-
tic prices in the financial market. A geometric Brownian motion is a Brownian
motion that has the following characteristic: Xt = X0 · e(–t+—Bt), where – and — are
constants.

We refer to page 62 of Øksendal (2000), for more details on geometric Brownian
motions.

Remark 3.10. As the field of stochastics advances, so does its applications in other
areas of studies. For instance, there have been examples of Brownian motions being
used to describe climate change, or more specifically, the change in average temper-
ature over time.

We will use the interpretation that a random variable is Ft-measurable if its
values can be decided from the values of a filtration up to a certain time t. For more
details we refer to page 25 of [Øksendal, 2000].

An important property of some stochastic processes is that they can be adapted,
in other words, the process takes in all information available from a Ft - measurable
function, and incorporates this in the value of the process. More formally we have:

Definition 3.11. A process Xt(Ê) : [0, Œ)◊� æ R
n is called Ft - adapted for each

t Ø 0 if the function:
Ê æ Xt(Ê)

is Ft - Measurable, where {Ft}tØ0 is a filtration.

For more details we refer to page 25 of [Øksendal, 2000].
We now are able to also introduce our last notion for stochastic processes of

interest.

Definition 3.12. We define a martingale {Mt}tØ0 to be n≠dimensional stochastic
process on a probability space with regards to a filtration {Ft}tØ0 if it satisfies the
three following conditions:

(i) For all t, the stochastic process is Ft-measurable,

(ii) The process has finite expectation i.e. E [|Mt|] Æ Œ,
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(iii) For all s Ø t the conditional expectation of Ms given Mt is equal to Mt.

Intuitively, the martingale tells us that the expectation of future values, con-
ditional on the present value and the information available at the current time, is
equal to the present value. For more details we refer to page 31 of [Øksendal, 2000].

3.3 Itô’s Calculus

As previously mentioned in the introduction of this chapter, we are trying to better
describe the randomness of stochastic processes. Since we do not know the future
behavior of such processes, we are not able to use common integration and dif-
ferentiation techniques such as the Riemann integral. In short, the main issue we
face is that stochastic processes, more specifically Brownian motions, are continuous
but not smooth. Therefore, we need to define a new set of rules for integration to
understand the behavior of stochastic processes. To do so we need to make several
approximations and other assumptions, such as at which point we evaluate the value
of the function when defining the integral. Choosing the left hand side to evaluate
the value of the integral gives rise to the Itô integral, while choosing the midway
point will give rise to the Stratonovich integral. For our purposes we focus on Itô’s
integral, as we will further have the assumption that in financial markets, we only
have information up to the current time and not in the future, which is e�ciently
captured by Itô’s integral.

To define Itô’s Integral, we must first go over the class of processes for which
they defined. For such we refer to pages 25 and 35 of [Øksendal, 2000].

Definition 3.13. We introduce the class of stochastic processes V = V(S, T ), where
each Xt(Ê) : [0, Œ) ◊ � æ R satisfies the following characteristics:

(i) (t, Ê) æ Xt(Ê) is F -measurable in regards to all open subsets,
(ii) Xt(Ê) is adapted to the filtration Ft,
(iii) The expectation of the integral of the square function between two points

(S < T ) in time is finite i.e. E
Ës T

S Xt(Ê)2dt
È

< Œ.

Moreover, we also introduce the concept of elementary functions, which separate
the stochastic part and the time depending part of a process, and their integrals.

Definition 3.14. We define elementary processes „ œ V processes as the following:

„(t, Ê) =
ÿ

j

ej(Ê) · ‰[tj ,tj+1)(t),
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where ‰ is the indicator function for the interval [tj, tj+1) and ej(Ê) is a Ftj - mea-
surable process.

Definition 3.15. We define the integral for elementary processes as the following:
⁄ T

S
„(t, Ê)dBt(Ê) =

ÿ

jØ0
ej(Ê)

Ë
Btj+1 ≠ Btj

È
(Ê).

We refer to pages 23 to 26 of [Øksendal, 2000] for more details on elementary
functions.

Since we have defined the elementary functions and their integral we are now
able to define the Itô integral as follow:

Definition 3.16. Given the process Xt œ V(S, T ), and a sequence of elementary
processes {„n} such that the expectation of the integral

s T
S (Xt(Ê) ≠ „n(t, Ê))2 dt

tends to zero as n æ Œ, the Itô integral is defined as following:
⁄ T

S
Xt(Ê)dBt(Ê) = lim

næŒ

⁄ T

S
„n(t, Ê)dBt(Ê).

We note that the limit refers to the limit on the squared expectation, which
implies that the sequence of elementary functions converges to a point, regardless of
the presence of a stochastic element. For more details on this convergence we refer
to Appendix A6 on [Björk, 2020]. For a detailed construction of such integrals we
refer to pages 24 to 28 of [Øksendal, 2000]. In short, to construct these integrals we
first break down a Brownian motion in smaller sub-intervals, then at each left-hand
side of each interval we approximate this to a constant. The next step is to take the
limit as the size of each interval approaches zero, and show that by the square square
di�erence between the Brownian motion and the constant converge in expectation.
We now introduce an important property of an Itô integral, the Itô isometry, which
given by the following corollary:

Corollary 3.17. For all processes Xt in V(S, T ), the expectation of the squared Itô

integral is equal to the integral of the squared integrand, formally:

E

S

U
A⁄ T

S
Xt(Ê)dBt

B2T

V = E

C⁄ T

S
X2

t (Ê)dt

D

.

We refer to pages pages 24 to 28 of [Øksendal, 2000] for the proof of this corollary.
Nevertheless, the Itô isometry is not the only fundamental characteristic of Itô inte-
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grals. The following 4 characteristics are also essential when considering stochastic
equations:

Theorem 3.18. For stochastic processes Xt, Yt œ V(0, T ) and a constant c under

the assumption that 0 Æ S < U < T , the following properties hold:

(i) An Itô integral can be broken down into di�erent parts i.e.

⁄ T

S
XtdBt =

⁄ U

S
XtdBt +

⁄ T

U
XtdBt.

(ii) An Itô integral of the sum of two functions can be broken down as:

⁄ T

S
(cXt + Yt)dBt = c ·

⁄ T

S
XtdBt +

⁄ T

S
YtdBt.

(iii) The expectation of an Itô integral is equal to zero i.e.

E

C⁄ T

S
XtdBt

D

= 0.

(iv) the integral of a Brownian motion is FT ≠ measurable.

For the proof of these properties we refer to page 30 of [Øksendal, 2000].
We now wish to define Itô processes, however to do so we need to first relax some

requirements of definition 3.13. Firstly, we loosen the requirement (ii) of definition
3.13 to account for the fact that the Brownian motion is a martingale w.r.t a filtration
Ft and that the process Xt is Ft-adapted, for t Ø 0. By doing so we let the process
depend on more information than just what is provided by the Brownian motion,
while the Brownian motion still accounts for the history of the process for s Æ t.
Secondly, we relax requirement (iii) of definition 3.13 to P

Ës T
S Xs(Ê)2ds < Œ

È
=

1.We say that the class of processes that satisfy the requirements (ii) and (iii) as
above and still satisfy requirement (i) from definition 3.13 is denoted by WF . For
more details see page 34 and 35 of [Øksendal, 2000].

We now define an Itô process as follow:

Definition 3.19. We define Itô process as a stochastic process Xt on the probability
space (�, F , P ) that satisfies the following stochastic integral:

Xt = X0 +
⁄ t

0
u(s, Ê)ds +

⁄ t

0
v(s, Ê)dBs,

where Bt is a Brownian motion, v œ WF , and u is Ft adapted, such that the following
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two characteristics are satisfied for all t Ø 0:

(i) The probability of v not diverging is equal to 1, or in other words,

P
5⁄ t

0
v(s, Ê)2ds < Œ

6
= 1.

(ii) The probability of u being finite is equal to 1, or in other words,

P
5⁄ t

0
|u(s, Ê)|ds < Œ

6
= 1

.

It is also common to write this process in the shorter di�erential form:

dXt = udt + vdBt.

For more details we refer to page 44 of [Øksendal, 2000].
The final concept regards Itô calculus we are going to present in this section is

of the Itô formula. This formula gives us the idea that when transforming an Itô
process through a function, we get a new Itô process. More formally, we describe
this using the following theorem.

Theorem 3.20. For an Itô process Xt and a function g(t, x) œ C2([0, Œ) ◊ R), we

are able to create a new Itô process Yt = g (t, Xt), such that:

dYt = ˆg

ˆt
(t, Xt) dt + ˆg

ˆx
(t, Xt) dXt + 1

2
ˆ2g

ˆx2 (t, Xt) · (dXt)2 .

We also have the following rules:

1. (dXt)2 = (dXt) · (dXt),

2. dt · dt = dt · dBt = dBt,

3. dt = 0 and

4. dBt · dBt = dt.

We refer to page 46 of [Øksendal, 2000] for a sketch of the proof. Nevertheless,
it is highly important to note the perhaps counter intuitive behavior of this last
theorem. It is commonly referred to as Itô’s Lemma, and the its striking aspect is
the quadratic variation, dBt · dBt = dt. The proof of this is quite complex, however
the intuition behind it is that the continuous yet non-di�erentiable behavior of a
Brownian motion gives rise to the quadratic variation. For a heuristic explanation
of the quadratic variation we refer to page 54 of [Björk, 2020].
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Example 3.21. A simple example to illustrate the usefulness of the previous theorem
is when the Itô process is a Brownian motion, (i.e. dXt = dBt), and the function
Yt = g(t, Xt) = X2

t . We begin by taking the partial derivatives of the g with regards
to t and Bt we get:

1. ˆg/ˆt = 0,

2. ˆg/ˆXt = 2Bt and

3. ˆ2g/ˆX2
t = 2,

which we are able to substitute back in the equation for dYt, which yields:

dYt = 0ˆt + 2Xt · dXt + 1
2 · 2(dXt)2.

Since our Itô process is given by dXt = dBt, we substitute this in the previous
equation:

dYt = 2Bt(dBt) + (dBt)2.

We now substitute in the Brownian motion, and using the rules 1-4 in the previous
theorem, which leads to:

dYt = 2BtdBt + dt.

3.4 Stochastic Differential Equations

Di�erential equations is a common area of study within mathematics since it has
many useful applications. One of simplest versions of a di�erential equation has
some form:

yÕ = f(x, y(x)). (1)

However, when introducing stochastic processes to di�erential equations we en-
counter one main issue. More specifically, due to the randomness of a stochastic
process, we are not able to use deterministic rules of di�erentiation and integration
to solve such equations.

However, as we have gone over Itô’s calculus in the last section alongside its
integration and di�erentiating rules, we can better describe this randomness as a
solution to the stochastic equation:

Xt = X0 +
⁄ t

0
b (s, Xs) ds +

⁄ t

0
‡ (s, Xs) dBs. (2)
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In this section we will mostly use the di�erential form of the previous equation,
which is as follow:

dXt = b (t, Xt) dt + ‡ (t, Xt) dBt,

where Bt is a Brownian motion, and Xt(Ê) : [0, Œ) ◊ � æ R
n is a stochastic

process. As we can see, this di�erential equation is quite similar to (1), however
we now have another term ‡ that accounts for the white noise in the process, and
as a result the whole equation is aligned to what we have established in definition
3.19. Such di�erential equations involving stochastic processes are often referred to
as stochastic di�erential equations. We note that to solve a stochastic di�erential
equation we refer to the idea of finding stochastic processes on the right hand side
of equation (2) so that the equality is satisfied.

Much like ordinary di�erential equations, there are situations in which stochastic
di�erential equations have unique solutions. We introduce the following theorem to
formalize such situations. For more details on the description and applications of
stochastic di�erential equations we refer to page 61 of [Øksendal, 2000].

Theorem 3.22. If the measurable functions b(·, ·) : [0, T ] ◊ R
n æ R

n
and ‡(·, ·) :

[0, T ] ◊ R
n æ R

n◊m
, and the random variable Z which is independent of the ‡-

algebra F (m)
Œ generated by the Brownian motion Bs(·) satisfy the following three

conditions, for T > 0:

(i) |b(t, x)| + |‡(t, x)| Æ C(1 + |x|) for a constant C and |‡|2 = q |‡i,j|2,
(ii) |b(t, x) ≠ b(t, y)| + |‡(t, x) ≠ ‡(t, y)| Æ D|x ≠ y|, for a constant D and where

x, y œ R
n

and t œ [0, T ],
(iii) Z has finite second order expectation (i.e. E [|Z|2] < Œ).

Then the stochastic di�erential equation

dXt = b (t, Xt) dt + ‡ (t, Xt) dBt, 0 Æ t Æ T, X0 = Z,

has a unique t-continuous solution Xt(Ê). Moreover, we note that Xt(Ê) is adapted

to the filtration FZ
t generated by Z and Bs(·); and has the following property:

E
Ës T

0 |Xt|2 dt
È

< Œ, for s Æ t.

For a detailed version of the proof, refer to [Øksendal, 2000], page 67.
The intuition is by having |b(t, x)| + |‡(t, x)| Æ C(1 + |x|), we ensure that the

process does not explode, or in other words does not become unbounded. Moreover,
by having |b(t, x)≠ b(t, y)|+ |‡(t, x)≠‡(t, y)| Æ D|x≠y|, we ensure that the process
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has a continuous behavior, in other words, by fixing the time point the change in
the di�erential equation is bounded by the scaled distance between the two points
x and y. The fact that the process is adapted to a filtration arises from the fact
that we have a unique solution of the equation, which means that at each time t the
process takes in all information up to this time t. Lastly, by having E [|Z|2] < Œ,
we ensure that the process is not over volatile.

It is highly important to note that the previous theorem guarantees that a so-
lution exists for b and ‡ that satisfy such conditions. This however does not mean
that the solution is easy to find, or in other words we do not expect to have a closed
form solution, instead we only know a solution exists.

Example 3.23. To illustrate the previous theorem we will try to find a solution to
the following stochastic di�erential equation:

dXt = µXtdt + ‡XtdBt,

where X0 = x and µ and ‡ are constants. We first rearrange the equation as follow:

dXt

Xt
= µdt + ‡dBt.

Which we interpret as: ⁄ t

0

dXs

Xs
= µt + ‡Bt. (3)

To find a solution to the stochastic di�erential equation it is enough to show that
we are able to di�erentiate and integrate using Itô’s calculus, and that the results
match. We then use Itô’s Lemma to di�erentiate the function:

g(t, x) = ln x, x > 0.

This yields:

d (ln Xt) = ˆ (ln Xt)
ˆXt

dXt + 1
2

ˆ2 (ln Xt)
ˆX2

t
(dXt)2

= 1
Xt

dXt ≠ 1
2

A
1

X2
t

B

‡2X2
t dt.

Rearranging, we have:
dXt

Xt
= d (ln Xt) + 1

2‡2dt.

Which we now substitute in equation (3):
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⁄ t

0
d (ln Xt) + 1

2‡2
⁄ t

0
dt = µt + ‡Bt.

Which therefore yields:

ln Xt ≠ ln X0 = µt ≠ 1
2‡2t + ‡Bt

ln Xt

X0
=

3
µ ≠ 1

2‡2
4

t + ‡Bt.

We simplify further to:
Xt = X0 · e(µ≠ 1

2 ‡2)t+‡Bt .

If we recall from definition 3.9, this is exactly a geometric Brownian motion such
that – = (µ ≠ 1/2‡2) and — = ‡. We refer to page 62 of [Øksendal, 2000] for more
details, and for a in depth description of this example.

We note that the solutions of such di�erential equations can be seen as process
themselves. We use the following definition to formalize such processes:

Definition 3.24. We define an Itô di�usion as a stochastic process Xt(Ê) : [0, Œ)◊
� æ R

n which satisfies the following di�erential equation:

dXt = b (Xt) dt + ‡ (Xt) dBt,

for t Ø s and Xs = x, in which Bt is a Brownian motion and we have the drift and
di�usion terms as defined in by theorem 3.22.

Remark 3.25. We note that Itô di�usions are solutions to stochastic di�erential
equations.

We now introduce another important characteristic for Itô di�usions. This char-
acteristic is the Markov property, which states that the future behavior of the process
only depends on the current state. In a sense, the process is "forgetful".

We define the Markov property formally as follow:

Theorem 3.26. For a function f : R
n æ R, and for non negative t, h, the condi-

tional expectation of the function evaluated at time t + h given the filtration is equal

to the expectation at time t. More formally we have

Ex
Ë
f (Xt+h) | F (m)

t

È

(Ê)
= EXt(Ê) [f (Xh)] .
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We refer to page 109 of [Øksendal, 2000] for the proof of this property.
In short, the Markov provides insight that the current behavior of the processes

depends only on its current state, and not on how long the process has been going
on for.

Remark 3.27. Processes that have the Markov Property are also commonly referred
to as Markov processes.

We now introduce the concept of stopping time, which is fundamental for under-
standing the strong Markov property, to which we refer to page 110 of [Øksendal,
2000].

Definition 3.28. We define stopping time as a function · : � æ [0, Œ] with respect
to a filtration {Ft} if {Ê; ·(Ê) Æ t} œ Ft, ’t Ø 0.

Intuitively, the stopping time enables us to say if · Æ t has occurred or not based
on the information Ft. In other words, by looking at all information available at
time t we are able to determine if the stopping time has occurred or not.

Moreover, the strong Markov property is useful because it enables us to still have
the Markov property for a random time ·(Ê) instead of a given fixed time t. We
note that the strong Markov property holds for Itô di�usions, and for more details
on this we refer to page 111 on [Øksendal, 2000]. We define the strong Markov
property as follow:

Theorem 3.29. For a function on R
n
, the stopping time · with regards to Ft, for

· < Œ, the strong Markov property is given by

Ex
Ë
f (X·+h) | F (m)

·

È
= EX· [f (Xh)] , ’h Ø 0.

The proof is similar to the proof of the Markov property for Itô di�usions and
for this we refer to page 111 on [Øksendal, 2000].

The final concept regarding stochastic di�erential equations that we are intro-
ducing in this section is the generator of a di�usion, which we define as follow:

Definition 3.30. We define the generator A of Xt as

Af(x) = lim
t¿0

Ex [f (Xt)] ≠ f(x)
t

; x œ R
n,

where {Xt} is an Itô di�usion.
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We also introduce the notations DA(x) as the set of functions f : R
n æ R such

that the limit exists at x, and DA as the set of functions that the limit exists for all
x œ R

n.
Finally, a more concrete use of the idea of generator is given by the following

theorem, which can be found on page 117 of [Øksendal, 2000].

Theorem 3.31. For an Itô di�usion (as in definition 3.24), if f œ C2
0(Rn) then

the generator of such di�usion is given by:

Af(x) =
ÿ

i

bi(x) ˆf

ˆxi
+ 1

2
ÿ

i,j

1
‡‡T

2

i,j
(x) + ˆ2f

ˆxiˆxj
,

and f œ DA.

To prove this theorem we first introduce the following lemma.

Lemma 3.32. For an Itô process Yt = Y x
t given by:

Y x
t (Ê) = x +

⁄ t

0
u(s, Ê)ds +

⁄ t

0
v(s, Ê)dBs(Ê),

where we have a m-dimensional Brownian motion and the process is in R
n
, let a

function f œ C2
0 (Rn), and · be the stopping time. We also assume that the stopping

time has finite expectation (Ex[· ] < Œ), that the processes u, v are bounded on (t, Ê)
such that Y (t, Ê) belongs to the support of f . Then the expectation of the function

being applied on the Itô process is given by:

Ex [f (Y· )] = f(x)+Ex

S

U
⁄ ·

0

Q

a
ÿ

i

ui(s, Ê) ˆf

ˆxi
(Ys) + 1

2
ÿ

i,j

1
vvT

2

i,j
(s, Ê) ˆ2f

ˆxiˆxj
(Ys)

R

b ds

T

V .

The proof for this lemma can also be found on page 116 of [Øksendal, 2000]. In
short, we apply Itô’s lemma to the Itô di�usion and a function Z = f (Yt), then
we take the expectation on both sides of the resulting equation. Lastly, it is shown
that, for a bounded function g (Yt), the expectation of the term depending on dBt

is equal to zero.
We find a short description of the proof for theorem 3.32 on page 118 of [Øksendal,

2000], but we will instead provide a proof sketch.

Proof. We begin this proof sketch by applying Lemma 3.33 for the Itô di�usion

dXt = b(Xt)dt + ‡(Xt)dBt,
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and a function f .

Ex [f (Xt)] = f(x)+Ex

S

U
⁄ t

0

Q

a
ÿ

i

bi(s, Ê) ˆf

ˆxi
(Xs) + 1

2
ÿ

i,j

1
‡‡T

2

i,j
(s, Ê) ˆ2f

ˆxiˆxj
(Xs)

R

b ds

T

V .

Which we rearrange and divide by t:

Ex [f (Xt)] ≠ f(x)
t

=
Ex

5s t
0

3q
i bi(s, Ê) ˆf

ˆxi
(Xs) + 1

2
q

i,j

1
‡‡T

2

i,j
(s, Ê) ˆ2f

ˆxiˆxj
(Xs)

4
ds

6

t
.

(4)
We are then able to apply the limit as t æ 0 from the right hand side. It becomes
clear that the left hand side of (4) becomes our definition of the generator. On
the right hand side of the equation we then include 1/t and the limit inside the
expectation, since the function f satisfies the requirements to monotone convergence,
see page 489 of [Björk, 2020]. This yields:

Af(x) = Ex

S

U lim
t¿0

1
t

⁄ t

0

Q

a
ÿ

i

bi(s, Ê) ˆf

ˆxi
(Xs) + 1

2
ÿ

i,j

1
‡‡T

2

i,j
(s, Ê) ˆ2f

ˆxiˆxj
(Xs)

R

b ds

T

V .

Intuitively, as t tends to 0, we are taking the derivative of the integral, which there-
fore implies we are able to simplify this to the following:

Af(x) =
ÿ

i

bi(x) ˆf

ˆxi
+ 1

2
ÿ

i,j

1
‡‡T

2

i,j
(x) + ˆ2f

ˆxiˆxj
,

which concludes our proof.

3.5 Stochastic Dynamic Control

Having defined stochastic processes, delved into studying their behavior using Itô’s
calculus and stochastic di�erential equations, the next focus of ours will be under-
standing how to control such di�erential equations. Unsurprisingly, this next topic
is usually referred to as stochastic dynamic control. Continuing the financial theme
throughout this thesis, we want to find consumption and investment rules that dic-
tate what an investor should do. That is, we want to find functions or parameters
ut œ U µ R

k such that we can not only describe but also control an Itô process:

dXt = dXu
t = b(t, Xt, ut)dt + ‡(t, Xt, ut)dBt, (5)
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where U represents the set in which we are able to choose the processes ut at any
time t to control the process. In this section we will focus on how we can use (5)
as a constraint to maximize a process over time. One way of maximizing a process
is by breaking it down into two functions. The first one is the utility rate function
and represents how much value is added to the process across its duration. On the
other hand, the bequest function is seen as a legacy function, that is, it accounts
for the value of the process at its end time. We therefore introduce a utility rate
function (F : R ◊ Rn ◊ U æ R) and a bequest function (K : R ◊ Rn æ R), to
understand how they influence the performance of the overall process. Since we are
considering a stochastic scenario it is therefore natural to also assume that we would
like to maximize the expectation of this process. Then the process we would like to
optimize for is given by:

Es,x

C⁄ ‚T

s
|F ut(t, Xt)|dt + K|( ‚T , X‚T )|‰{‚T <Œ}

D

, (6)

where ‰ is again the indicator function and where we also introduce the first exit
time: ‚T = ‚T s,x(Ê) = inf{r > s; (r, Xs,x

r (Ê)) /œ G} Æ Œ, where G is a fixed domain
in R ◊R

n. In economic terms this would represent when an investor goes bankrupt.
Noteworthy is that we now also introduce a slight notation change F (r, Xr, u) =
F u(r, Xr). With a formal definition of the process, we emphasize that the utility
rate function is the function that gives us the performance from time s up to time t,
while the bequest function instead accounts for the overall performance at the time
‚T . We then introduce the performance function which is given by:

Ju(s, x) = Es,x

C⁄ ‚T

s
F ur(r, Xr)dt + K( ‚T , X‚T )‰{‚T <Œ}

D

.

By introducing Yt = (s + t, Xs,x
s+t), which has the initial point Y0 = (s, x) and for

time greater than zero, we can rewrite (5) as:

dYt = dY u
t = b(Yt, ut)dt + ‡(Yt, ut)dBt.

For more details on this change of notation we refer to page 224 of [Øksendal, 2000],
where it is also explained in detail that our performance function is thus given by:

Ju(y) = Ey

C⁄ T

0
F ut(Yt)dt + K(YT )‰{T <Œ}

D

,
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where T is given by T := inf{t > 0; Yt /œ G} = ‚T ≠ s. To this point we have thus
described the problem in terms of a stochastic process that depends over time and
a control parameter which dictates the problem. Since our goal is to maximize the
overall performance, we want to find a function �(y), such that:

�(y) = sup
u(t,Ê)

Ju(y) = Juú(y),

where uú = uú(t, Ê) = uú(y, t, Ê). That is, uú is a control that maximizes the
performance function, and if it exists is referred to as optimal control. We are now
going to explore one type of control function, namely Markov controls, that for a
deeper discussion we refer to page 225 of [Øksendal, 2000].

Definition 3.33. We define Markov Controls as functions u(t, Ê) = u0 (t, Xt(Ê))
that only depend on the current state of the system for a given time t. Formally we
have:

u : [0, T ) ◊ R
n+1 æ U,

u (t, Xt) ,

where U is again the set which we can choose u at any time t to control the process.

Therefore, we say that the parameters ut in (6) are indeed Markov controls.

Remark 3.34. For our purposes it is important to note that these Markov controls
are Itô’s di�usions and more specifically, also are Markov Processes.

Before we introduce the main part of this section, we first introduce the following
definition, which is the generator for a di�erential equation with Markov controls,
hence, very similar to theorem 3.32.

Definition 3.35. For the di�erential equation dYt = b (Yt, u (Yt)) dt+‡ (Yt, u (Yt)) dBt,
where Yt = (s + t, Xs+t), Y0 = (s, x) , and the Markov controls u = u (t, Xt(Ê)), we
define:

(Lvf) (y) := ˆf

ˆs
(y) +

nÿ

i=1
bi(y, v) ˆf

ˆxi
+

nÿ

i,j=1
ai(y, v) ˆ2f

ˆxiˆxj
,

where v œ U , f œ C2
0 (R ◊ R

n); such that ai,j = 1
2‡‡T , y = (s, x) and x =

(x1, · · · , xn). Therefore, we have an Itô di�usion with generator A for each choice
Yt = Y u

t and f œ C2
0 (R ◊ R

n), such that:

(Af)(y) =
1
Lu(y)f

2
(y).
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More details can be found on page 225 of [Øksendal, 2000]. We also define
F v(y) = F (y, v) for v œ U .

The backbone for solving our stochastic dynamic control problem is the Hamilton-
Jacobi-Bellman (HJB) equation. The HJB equation is fundamental because it re-
duces the stochastic control problem to a deterministic one, given a fixed starting
point. The HJB equation is central for both the HJB theorem as well as the veri-
fication theorem, as the HJB theorem establishes a connection between the control
problem and the verification theorem is the other side of this implication.

In brief, according to the HJB theorem if a function � is the optimal value
function, if u

ú is an optimal Markov control, we are then able to find a maximum to
our control problem by satisfying the HJB equation. We note that this maximum
is attained by using the control u

ú(t, x). In other words, if the necessary conditions
mentioned are fulfilled, then the following equation holds:

Y
__]

__[

sup
uœU

{F v(y) + (Lv�) (y)} = 0, ’y œ G

�(y) = K(y).
(7)

Moreover, such supremum is obtained when v = u
ú and is given by:

F (y, u
ú(y)) +

1
Luú(y)�

2
(y) = 0.

Equation (7) is commonly referred to as the HJB equation. We refer to pages
226 and 229 of [Øksendal, 2000] for a formal formulation of the HJB theorem, which
includes more details on the boundary conditions in which �(y) = K(y).

Simply put, the HJB theorem states that if we have an optimal value function, an
optimal Markov control, then we are able to satisfy the HJB equation. Nevertheless,
the central aspect of the HJB theorem for our purposes is that it acts a su�cient
condition for the verification theorem.

According to the verification theorem, if we have a (su�cient regular) function
that satisfies the HJB equation, we then have optimal Markov controls for some
initial starting point and an optimal performance function for our control problem.

This implies that in our purposes it is central to find a function that satisfies the
HJB equation. With that, we are then able to use the verification theorem to find
an optimal value function, and that we have optimal Markov controls. For more
details on the verification theorem we refer to page 229 of [Øksendal, 2000].

We then formulate formulate the verification theorem as follows:
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Theorem 3.36. If the function „ in the set C2(G) fl C(G) satisfies the following

three conditions, for all v œ U :

(i) the sum of the utility rate function and the generator is less than 0:

F v(y) + (Lv„)(y) Æ 0 for y œ G.

(ii) the function „(Yt) approaches the bequest function K(YT ) · ‰{T ÆŒ} as t tends

to T with probability 1 with respect to a fixed starting point. In other words, the

boundary values satisfy lim(tæT ) „(YT ) = K(YT ) · ‰{T ÆŒ}.

(iii) The function „(Y· )·ÆT is integrable for all Markov controls and y œ G.

Then, for all Markov controls u and y œ G

„(y) Ø Ju(y).

Moreover, if for each y œ G, we find u0(y) such that the following equation holds:

F u0(y)(y) + (Lu0(y)„)(y) = 0,

then u0 = u0(y) is a Markov control which satisfies

„(y) = Ju0(y),

leading to the fact that u0 must be an optimal control and „(y) = �(y).

We note that this is a slightly simplified version of the verification theorem,
for more details and for the proof of the verification theorem we refer to page 229
of [Øksendal, 2000].

In exercise 11.4 of [Øksendal, 2000], the reader is encouraged to deduce Bellman’s
Principle of Optimality. In short this principle states that the Markov control û

tx

optimizes the process not only at the initial time interval [0, t] but also for the
remaining interval in the process [t, T ]. Since we are explicitly referring to this
theorem in the latter parts of this dissertation, we will borrow from page 339 of
[Björk, 2020] to formulate this principle.
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Theorem 3.37. For a fixed initial point (t, x) and the corresponding optimal Markov

control û
tx

, the optimal Markov control û
tx

is also optimal for any subinterval be-

tween t and T (i.e. [r, T ] where r Ø t). More formally we have:

û
tx
s (y) = û

r,Xr
s (y), ’s Ø r, y œ R

n.

Proof. To prove this theorem we use contradiction, and for more details we refer to
page 339 of [Björk, 2020]. We will instead provide a proof sketch for the case in
which t = 0. Firstly, we need to make the fundamental assumption that there exists
optimal control laws for the problem for every initial point (t, x), which are denoted
by û

tx. For more details on this assumption, we also refer to page Assumption 25.4.1
on page 339 of [Björk, 2020]. Say that for some t > 0, there exists a control law u

0

which performs better than our optimal control law û on [t, T ]. In other words, we
are trying to find a control law so that:

Et,x

C⁄ T

t
F

1
s, Xu0

s , u
0
s

2
ds + K

1
Xu0

T

2D

Ø Et,x

C⁄ T

t
F

1
s, X û

s , ûs

2
ds + K

1
X û

T

2D

.

(8)
We then introduce the strategy that incorporates the new control law, which incor-
porates û for time between 0 and t, and u

0 for the rest of the time period. More
formally:

us(y) =

Y
_]

_[

ûs(y), for 0 Æ s < t.

u
0
s(y), for t Æ s < T.

This would imply that that given the same starting point, the new value function
will have the same behavior as the one dictated by the optimal control law for the
first interval [0, t]. However, for the rest of the time period it would behave as the
control law u

0, which should outperform the optimal control law. Therefore, for this
new strategy the value function then becomes:

J0(x0, u) = E0,x0

C⁄ T

0
F (s, Xu

s , u
ú
s)ds + K(Xu

T )
D

= E0,x0

5⁄ t

0
F (s, X û

s , ûs)ds
6

+ E0,x0

C⁄ T

t
F (s, Xu0

s , u
0
s)ds + K(Xu0

T )
D

.

Now using the Markov property of the control law, we are able to adjust the expec-

26



tation from t to T , which yields:

J0(x0, u) = E0,x0

5⁄ t

0
F (s, X û

s , ûs)ds
6
+E0,x0

C

Et,Xt

C⁄ T

t
F (s, Xu0

s , u
0)ds + K(Xu0

s
T )

DD

.

(9)
Generalizing (8) to the state Xt at time t yields the following:

Et,Xt

C⁄ T

t
F

1
s, Xu0

s , u
0
s

2
ds + K

1
Xu0

T

2D

Ø Et,Xt

C⁄ T

t
F

1
s, X û

s , ûs

2
ds + K

1
X û

T

2D

.

Then substituting the right hand side of this generalization in (9) leads to the strict
inequality:

J0 (x0, u) >E0,x0

5⁄ t

0
F

1
x, X û

x , û

2
ds

6
+ E0,x0

C⁄ T

t
F

1
s, X û

s , ûs

2
ds + K

1
X û

T

2D

= E0,x0

C⁄ T

0
F

1
s, X û

s , ûs

2
ds + K

1
X û

T

2D

= J0 (x0, û) .

Hence, we get that J0 (x0, u) > J0(x0, û), which contradicts the previous assumption
that the optimal control function û exists. Since we are considering such assumption,
we see that this result does not hold, and therefore there does not exist a control
law u

0 which performs better than û.

4
Optimal Consumption and Invest-

ment Rules

In this section we will use our concepts of stochastic calculus and control to derive
explicit rules to maximize an investors utility over their lifetime. This implies that
we want to find optimal control laws, in other words, investment and consumption
rules that bring the most amount of benefit to the investor throughout their lifetime.
We will borrow from Chapter 25 of [Björk, 2020] and from [Björk, 2015] to formulate
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the problem. We first describe the investment options available, then we will describe
how we model the investors utility during their lifetime.

Say the investor has the option to invest in a stock and a bond only, where the
stock is seen as a risky asset and the bond a risk-free asset. We are then able to
describe the price development of a stock using a stochastic di�erential equation:

dS(t)
S(t) = u(t, S(t))dt + v (t, S(t)) dBt.

Where µ and v are the instantaneous conditional expected change and instantaneous
conditional variance, respectively. Since in example 3.23 we have shown that both
of these terms are constants as a result of the Geometric Brownian motion. We
therefore get:

dS(t)
S(t) = –dt + ‡dBt.

Moreover, since we are assuming that the bond is a risk-free asset, we have a deter-
ministic process that describes its price change. For a bond Yt we describe its price
change as follows:

dYt = rYtdt,

which we know to be a deterministic di�erential equation, which yields Y (t) = K ·ert,
for some positive constant K.

Therefore, if we have 2 assets, one involving risk and the other being risk-free,
we say that the weight invested in each asset is w(t) and wÕ(t), respectively. It
is therefore natural to have w(t) = 1 ≠ wÕ(t). We also introduce a deterministic
consumption term c(t) which captures the investors consumption over time, which
we see as anything that is not destined to investment and hence c(t) Ø 0, ’t Ø 0.

Therefore, we describe the overall wealth process Xt of an investor over time as
follow:

dXt = (w(t)(– ≠ r))Xtdt + (rXt ≠ c(t))dt + w(t)‡XtdBt, (10)

where we have a fixed initial point, i.e. X0 = x0.
To describe the investor’s utility throughout their lifetime we will use two func-

tions. As previously mentioned in Section 3.5, we will have a utility rate function
U(·) which in this case represents the benefits and well being the investor gets from
consuming throughout their life. We highlight that each investor values a certain
level of consumption over investing and vice versa, and that the risk tolerance/ aver-
sion for investing in the risky asset is also an individual characteristic. Hence, these
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are also accounted for in the utility rate function. Moreover, we also introduce the
bequest function K(·), which represents the benefit the investor gets from the money
left over at their bank account when the process ends. Therefore, combining these
two functions we equate the investors utility throughout their lifetime. Lastly, we
also assume that throughout their lifetime, the investor cannot go bankrupt, in other
words, the process cannot be equal to zero. This implies that the process goes on un-
til whichever of the two conditions happens first: the investor dies or goes bankrupt.
Therefore, to formalize this we use the stopping time: · = inf{t Ø 0|Xt = 0} · T ,
where T is the final time of the wealth process (i.e. when the investor dies).

We now formally introduce the problem we want to solve, as formulated on page
36 of [Björk, 2015]:

Problem 4.1. The problem is to maximize the overall utility of an investor over

their lifetime, which we express as:

max
wœR,cØ0

Ex
5⁄ ·

0
U(c(t), t)dt + K(XT )

6
.

Where the wealth dynamics is given by:

dXt = (w(t)(– ≠ r))Xtdt + (rXt ≠ c(t))dt + w(t)‡XtdBt,

and where · = inf{t Ø 0|Xt = 0} · T, U is the utility rate function and K is the

bequest function. Moreover, we have the following constraints:

w(t) + wÕ(t) = 1, c(t) Ø 0’t; X0 = x0.

4.1 General Approach to Solving the Problem

Our goal is to describe the benefit the investor gets throughout their lifetime, then
use the restrictions of the wealth dynamics above, to find optimal consumption and
investment rules. In other words, we would like to describe the problem in a similar
way to what we have done in Section 3.5, and use the verification theorem to find
explicit solutions for the optimal investment and consumption rules.

To do so we first define generalize the problem, by introducing the control law
u(t, x). Since we have two terms, c(t, x) and w(t, x), that in a sense control the
process, that is c(t, x) dictates the investors outflows i.e. expenditures and con-
sumption, while w(t, x) dictates the investment in the risky asset, we use u(t, x) as
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a representation to the general combined e�ect of c(t, x) and w(t, x) on the overall
wealth dynamics. We refer to page 335 of [Björk, 2020] for more details. This yields
the stochastic di�erential equation:

dXt = –(t, Xt, u(t, Xt))dt + ‡(t, Xt, u(t, Xt))dBt. (11)

We then introduce the value function J0 : U æ R, which is given by:

J0(u) := E

C⁄ T

0
U(t, Xu

t , ut)ds + K(Xu
T )

D

,

where U represents the class of admissible controls u such that (11) has a unique
solution for a starting point X0 = x. For more details on the admissible control laws
we refer to page 335 of [Björk, 2020]. We now introduce the optimal value function
that is given by

Ĵ0 = sup
uœU

J0(u).

Since we have shown by Bellman’s principle of optimality, Theorem 3.38, that such
problems have an optimal control law, we then note that there exist optimal controls
laws such that:

J0(û) = Ĵ0.

We then introduce a optimal value function v : R+ ◊ R
n æ R:

V (t, x) := sup
uœU

J (t, x, u).

In Section 3.5 we are able to find explicit solutions to our problem using the
verification theorem, in other words we are able to find the optimal control law u.

Reverting back to the control problem we want to solve, we then separate the
e�ect of investment and consumption to the overall wealth process. Therefore, we
draw the parallel that we are able to solve the same problem using the constraint
(10) instead of the generalized form (11).

Therefore, to maximize the investor’s wealth process and find the optimal in-
vestment rules we revert back to stochastic dynamic control and the HJB equation.
More specifically, the HJB equation for maximizing the investors utility given the
invesment and consumption rules in question is:

Vt + sup
cØ0,wœR

{U(t, c) + wx(– ≠ r)Vx + (rx ≠ c)Vx + (1
2w2‡2x2)Vxx} = 0, (12)
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which is also subject to V (T, x) = 0 and V (t, 0) = 0, and where the derivatives are
denoted by the subscripts.

We remind that by the HJB theorem, if we have an optimal value function and
optimal investment and consumption rules, then equation (12) is satisfied and its
maximum value is attained when using such optimal investment and consumption
rules. Moreover, these conditions set by the HJB theorem act as su�cient to show
the converse, which according to the verification theorem, states that if a function
satisfies equation (12), then we indeed have optimal consumption and investment
rules, and an optimal value function for our control problem. For more details on
this method of using the HJB equation we refer to page 337 of [Björk, 2020].

To find the optimal controls c
ú(t, x) and w

ú(t, x), we will provide short descrip-
tion of the methodology. Firstly, we isolate w

ú(t, x) and c
ú(t, x) in our first order

conditions of equation (12). Then we are able to write w
ú(t, x) and c

ú(t, x) in terms
of the other variables, i.e. Vx, Vt, Vxx, x, and t. We then introduce a function that
describes the behavior of the utility function, as well as a trial solution to the value
function. It is therefore needed to verify that equation (12) holds for these new
functions, and if it does we have found the optimal consumption and investment
rules due to the verification theorem, since its conditions are satisfied by the HJB
theorem as explained above. Lastly, we are able to rewrite V (x, t), w

ú(t, x) and
c

ú(t, x) explicitly in terms of x and t.

4.2 Solving the Problem with Constant Risk Aversion

Firstly we introduce a function that relates the investors utility gained with their
risk aversion:

U(t, c) = e≠”t · c“, (13)

for some ” and where 0 < “ < 1 is a measure of risk aversion. For a more detailed
discussion on the investors risk aversion we refer to page 250 of [Merton, 1969].

Therefore, the solutions to Problem 4.1, found on page 39 of [Björk, 2015], are
given by the following theorem:

Theorem 4.2. In the case we have 2 assets, one risky and one risk-free, and assum-

ing that the utility function is given by (13), the optimal consumption and investment
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that solve Problem 4.1 are given by:

c
ú(t, x) = x · h(t)(≠1/1≠“)

and

w
ú(t, x) = (– ≠ r)

‡2(1 ≠ “) .

Moreover, we also have that the optimal value function is given by:

V (t, x) = e≠”t · h(t) · x“,

where “ and is a parameter of the risk aversion function, and h(t) is given by h(t) =1
1
Ae(t≠C)A(z≠1) ≠ B

21/(1≠z)
for A = “(a≠r)2

‡2(1≠“) + r“ ≠ 1“(a≠r)2

2‡2(1≠“) ≠ ”, B = 1 ≠ “ and C =
T ≠ ln(B)

A(z≠1) for z = ≠“/(1 ≠ “).

We note that deriving explicit solutions to non-linear PDE can be challenging,
hence most problems regarding optimal investment and consumption "rig" the prob-
lem by selecting utility functions and trial solutions in which asnwers can be found.
Hence the similarities between U(t, c) and V (t, x). For more details we refer to Re-
mark 25.6.1 in [Björk, 2020]. In short, by having the function h(t) we are able to
separate the e�ect of time from the current state of the process, which enables us to
find explicit solutions later on.

Proof. We will borrow from the methodology earlier in this chapter and from pages
37 to 40 of [Björk, 2015] to solve this problem. We first substitute our utility function
in equation (12) and take the first derivatives with regards to c and w. Therefore,
we get

“ · e≠”t · c“≠1 ≠ Vx = 0.

We then isolate c, which yields

c
ú(t, x) =

A
e”t

“
· Vx

B 1
“≠1

. (14)

Now, focusing on w we get:

x(– ≠ r)Vx + w‡2x2Vxx = 0.
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Isolating for w yields:
w

ú(t, x) = ≠ Vx

x · Vxx
· a ≠ r

‡2 . (15)

We now introduce the trial solution:

V (t, x) = e≠”t · h(t) · x“, (16)

such that h(T ) = 0, which satisfies the boundary conditions of our bequest function.
Now, by Bellman’s principle of optimality, it su�ces to show that the following trial
solution satisfies the HJB equation (12), which implies that the trial solution is in-
deed the optimal value function. Moreover, by the verification theorem, we therefore
get that the investment and consumption controls are thus optimal controls. We be-
gin by taking the partial derivatives of V with regards to x and t, and the second
derivative with regards to x.

Vt = e≠”t · hÕ(t) · x“ ≠ ”e≠”t · h(t) · x“,

Vx = “ · e≠”t · h(t) · x“≠1,

Vxx = “ · (“ ≠ 1) · e≠”t · h(t) · x“≠2.

We now substitute back in (14) and (15), which results in:

c
ú(t, x) =

A
e”t

“
“ · e≠”t · h(t) · x“≠1

B 1
“≠1

= x · h(t)≠1/(1≠“) (17)

and
w

ú(t, x) = ≠ “ · e≠”t · h(t) · x“≠1

x · “ · (“ ≠ 1) · e≠”t · h(t) · x“≠2 · a ≠ r

‡2 = a ≠ r

‡2(1 ≠ “) . (18)

The last thing remaining is to explicitly find the function h(t), which we do by
substituting our solutions in (12), which gives us:

x“(hÕ(t) + Ah(t) + Bh(t)≠“/(1≠“)) = 0,

where A = “(a≠r)2

‡2(1≠“) + r“ ≠ 1“(a≠r)2

2‡2(1≠“) ≠ ” and B = 1 ≠ “. Which we are able to simplify
as:

hÕ(t) + Ah(t) + Bh(t)≠“/(1≠“) = 0.

As on page 40 of [Björk, 2020], this is a Bernoulli di�erential equation and can easily
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be solved using the condition that h(T ) = 0, however no explicit solution is given.
Nevertheless, to find such explicit solution we begin by substituting ≠“/(1 ≠ “) = z,
hence the equation can be rewritten as:

hÕ(t) + Ah(t) + Bh(t)z = 0.

We now rearrange and write in the di�erential form:

dh

Ah(t) + Bh(t)z
= dt.

We now integrate both sides, yielding:

ln(Ah(t)1≠z + B)
A(z ≠ 1) + C = t.

Now Isolating h(t) we get:

ln(Ah(t)1≠z + B) = (t ≠ C)A(z ≠ 1).

Since the right hand side is greater than zero we get:

h(t) =
3 1

A
e(t≠C)A(z≠1) ≠ B

4 1
1≠z

.

Substituting h(T ) = 0, we are able to isolate C, which yields:

h(t) =
3 1

A
e(t≠C)A(z≠1) ≠ B

4 1
1≠z

,

where C = T ≠ ln(B)
A(z≠1) .

Since we have now found an explicit expression for the function h(t) such that
(12) holds, we have met all conditions for the HJB theorem. Therefore, we also
have that the conditions for the verification theorem are met. In other words, for
a value function and some given control functions, if the value function satisfies
equation (12), which we have just shown, we then have optimal control functions
for consumption and investment and an optimal value function. This concludes our
proof.
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5
Interpretation of Optimal Con-

sumption and Investment Rules

In this section we will provide a short interpretation of the solutions to the problem
posed in the previous section.

Firstly , we note that the optimal investment rule in the risky asset, which is
given by equation (18), is a constant as it does not depend on t or x. It instead only
depends on market conditions and intrinsic characteristics of the investor. Therefore,
we can say that for an average investor, they should allocate a percentage of their
wealth in the risky asset depending only on their level of risk aversion, since market
conditions are not in control of individual investors.
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Figure 1 is an illustration of the investment in the risky asset for di�erent values
of risk aversion. It is clear that the investors with higher risk aversion should invest
less in the stock and more in the bond, while risk tolerant investors on the other
hand allocate a higher percentage of their portfolio in the risky asset, irrespective
of market conditions. We note that we have plotted 1 ≠ “ in the x-axis of Figure
1, because this is Pratt’s definition of constant relative risk aversion and better
describes the investor’s investment strategy. For more details on characteristics of
this measure we refer to page 250 of [Merton, 1969], as well as page 354 of [Björk,
2020].

In regards to the optimal consumption we have more interesting insights. From
equation (17), we note that the consumption has a linear positive relationship with
the investor’s wealth. Moreover, as illustrated in Figure 2, we notice that for an
increasing value of x, the consumption over time has increasing behaviors over time,
which is mainly dictated by the term h(t), and that the consumption is a convex
function over time.
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When it comes to the overall utility gained by the investor we are able to analyze
the results in two perspectives. Firstly, we note that the overall utility of the investor
is increase as the values of x increase, proportionally scaled to a factor of x“, as in
(16) which is illustrated in Figure 3. It is also important to note that 0 < “ < 1,
It is noteworthy to highlight that with an increase in t the optimal value function

decreases, despite displaying similar behaviors. This would imply that the investor
gains more utility by having more money at an earlier period in time, which is a
reasonable economic interpretation.
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On the other hand, we are also able to analyze the performance of the optimal
value function V (t, x) when fixing for di�erent values of x, which is illustrated in
Figure 4. We see that the function decreases over time regardless of the fixed x

value. This behavior becomes clearer when considering the solution to the problem,
which has an exponential term that dominates the function h(t). The economic
interpretation of such is that an investor gains more utility for having a certain
amount of capital earlier in life than later in life, regardless of their risk aversion
and their wealth. We also observe that for higher values of wealth, the corresponding
utilities are higher across the specified period.
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Corrections to Stochastics and Its Application in

Merton’s Problem

Kevin Pettersson

August 2023

1. In Theorem 3.20 the rules listed should be corrected to:

1. (dXt)
2 = (dXt) · (dXt),

2. dt · dt = dt · dBt = dBt · dt = 0 and

3. dBt · dBt = dt.

2. In Example 3.21, we should have dt instead of ∂t. This would yield:

dYt = 0dt+ 2Xt · dXt +
1

2
· 2(dXt)

2.

3. As of page 32 a should be replaced by α.
4. When finding explicit solutions to the optimal investment and consump-

tion rules, the expression for h(t) on page 43 should be given by:

h(t) =

(
1

A
(e(t−C)A(z−1) −B)

) 1
1−z

.

5. Typos:
On page 9 σ-algrebra should be corrected to σ-algebra.
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