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Abstract

This thesis aims to introduce the concepts of Manifolds and Differential
Forms defined on Manifolds. These concepts serve as prerequisites for demon-
strating a general result. Namely, the Generalized Stokes’ Theorem, for which
we will provide a proof. We shall also show how two theorems from Vector
Calculus can be seen as special cases of this Generalized Theorem.
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Chapter 1

Manifolds and Tangent Spaces

A manifold can be seen as a generalization of curves and surfaces to higher
dimensions. Typical manifolds are things like graphs of a function, or a geo-
metric shape such as a circle. What is special about manifolds is that they
are locally Euclidean. If you where to zoom in on a small neighborhood of a
circle, it would resemble flat space.
An n-dimensional manifold is a topological space M for which every point
x ∈ M there is a neighbourhood homeomorphic to Euclidean space Rn.

For the purpose of this thesis, and the results we wish to show, we are not
concerned with abstract manifolds. Rather, subsets of Euclidean space. We
call those submanifolds of Rm (for some m). We shall proceed with defining
the manifolds of our interest. We begin by defining the notion of a surface
in Rn.

Definition 1.0.1. Take a subset M ⊂ Rn. A function ϕ(u) : U → V ∩M,
with open subsets U ⊂ Rn and V ⊂ Rm and

ϕ(u) =


ϕ1(u)
.
.

ϕm(u)

 =


v1
.
.
vm


is called a Local Parametrization (or Local Coordinate Chart) of M if it
satisfies the following properties

1. ϕ is Smooth (C∞) when the codomain is regarded as Rn.
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2. ϕ : U → V ∩M is a Homeomorphism meaning that ϕ is bijective, and
both ϕ and its inverse ϕ−1 are continuous.

3. rank(Dϕ) = n.

The coordinates (v1, ..., vm) are called Local coordinates of ϕ. If ϕ : U →
M is of class Ck for any integer k, then we call it a C∞ or Smooth local
parametrization. Throughout this thesis, we assume all parametrizations to
be smooth.

Definition 1.0.2. A subset M ⊂ Rn is called a Smooth (or regular) surface
in Rn if at every point p ∈ M there exists an open subset U ⊂ Rn, an open
subset V ⊂ Rm containing p, a smooth local parametrization ϕ : U → V ∩M,
and satisfying the three conditions above.

An example of a parametrization would be the graph of a function. We
can consider a smooth function f(x, y) : U → R defined on an open subset
U ⊂ R2. The graph of f denoted Γ would be defined as

Γ = {(x, y, f(x, y)) : (x, y) ∈ U ⊂ R3}.

We can also parametrize the graph by

Φ(x, y) = (x, y, f(x, y)).

We have assumed f to be smooth so condition 1 holds. If Φ(x1, y1) =
Φ(x2, y2) that will imply that x1 = x2 and y1 = y2 and so Φ is injective.
We have that Φ has Γ as its image and so is surjective. Also the inverse map
Φ−1 : Γ → U given by

Φ−1(x, y, f(x, y)) = (x, y),

is obviously continuous. So Condition 2 holds. Another way to say that DΦ
has full rank, is by saying that for any (x, y) ∈ U

∂Φ

∂x
× ∂Φ

∂y
̸= 0.

Taking the cross product amounts to

DΦ =

∣∣∣∣∣∣∣
ex 1 0
ey 0 1
ez ∂fx ∂fy

∣∣∣∣∣∣∣ =
−∂fx
−∂fy
1

 ,



which is non-zero for all (x, y) ∈ U . We have shown that condition 3 is sat-
isfied.

An example of a manifold is the unit circle. One representation of the unit
circle is

S = {(x, y) ∈ R2 : x2 + y2 = 1}.

We quickly run into the problem that if we wish to cover the entire circle, all
points of the circle will not be covered by a single parametrization chart. To
cover the entire circle we need four charts. These charts will be given by

ϕ1(x) = (x,
√
1− x2) (1.1)

ϕ2(y) = (−
√
1− y2, y) (1.2)

ϕ3(x) = (x,−
√
1− x2) (1.3)

ϕ4(y) = (
√

1− y2, y). (1.4)

There are points where these charts (patches) overlap. To show that these
charts are compatible, i.e points described by different charts do indeed de-
scribe the same points, we must introduce transition maps.

1.1 Transition maps
Definition 1.1.1. Let M ⊂ Rn be a smooth surface. An atlas on M is a
collection of charts (Ua, ϕa) such that ϕα(Uα) cover M.

Definition 1.1.2. Let ϕα : Uα → M and ϕβ : Uβ → M be two smooth local
parametrizations with overlapping images. Meaning

ϕα(Uα) ∩ ϕβ(Uβ) ̸= ∅.

We let

ϕα(Uα) := Θα = Vα ∩M
ϕβ(Uβ) := Θβ = Vβ ∩M.

The homeomorphisms

ϕ−1
β ◦ ϕα : ϕ−1

α (Θα ∩Θβ) → ϕ−1
β (Θα ∩Θβ)

ϕ−1
α ◦ ϕβ : ϕ−1

β (Θα ∩Θβ) → ϕ−1
α (Θα ∩Θβ)

we call Transition maps.



Taking the circle in the picture as example we can compute the transition
map ϕ−1

2 ◦ ϕ1. Let the set U2 = {p ∈ U1 ∪ U2 ∪ U3 ∪ U4 : x < 0} and let the
inverse map ϕ−1

2 be given by ϕ−1
2 (y) = y. Then the local parametrizations

given by 1.1 amount to the calculation given by

ϕ−1
2 ◦ ϕ1(x) = ϕ−1

2 (ϕ1(x))

=
√
1− x2

over the set where x < 0. Thus we have indeed shown that the homeomor-
phism ϕ−1

2 ◦ ϕ1 is a transition map.
To generalize this statement to any smooth surface of Rn we wish to show
that transition maps are smooth (regular).

Definition 1.1.3. A homeomorphism between two local coordinate charts
(Uα, ϕα), (Uβ, ϕβ) is called a Diffeomorphism if the transition map from (Uα, ϕα)
to (Uβ, ϕβ) is differentiable and has a differentiable inverse.



So we wish to show the general result that ϕ−1
α ◦ ϕβ is differentiable and its

inverse (ϕ−1
α ◦ ϕβ)

−1 = ϕ−1
β ◦ ϕα is also differentiable.

Proposition 1.1.3.1. Let M ⊂ Rn be regular and ϕα(u1, ..., un) : Uα → M
and ϕβ(v1, ..., vn) : Uβ → M be smooth local parametrizations with overlap-
ping images. Meaning W := ϕα(Uα)∩ϕβ(Uβ) ̸= ∅. Then the transition maps
defined as

ϕ−1
β ◦ ϕα : ϕ−1

α (W) → ϕ−1
β (W)

ϕ−1
α ◦ ϕβ : ϕ−1

β (W) → ϕ−1
α (W),

are also smooth transition maps. We call those maps Smoothly compatible.

We shall show this result for the special case in R3. A proof of the general
case can be found in [Munk91]. We use the following theorem that we state
without proof. [Tu11]

Theorem 1.1.4. Let ϕ : U → Rn be a smooth map defined on an open subset
U ⊂ Rn. For any point p ∈ U , ϕ is locally invertible at p iff the Jacobian
determinant

det

[
∂ϕi

∂uj

]
(p) ̸= 0.

This is called the Inverse Function Theorem. We shall also use the lemma
without proof

Lemma 1.1.4.1. The composition of smooth maps is smooth.

Proof of Proposition. 1.1.3.1 It suffices to show one of them and the other one
will automatically follow by symmetry. Differentiability is a local property,
so we fix a point p ∈ W ⊂ M and show that ϕ−1

β ◦ ϕα is smooth at ϕ−1
α (p).

Now by Condition 3 as in 1.0.1 we wish to show that

∂ϕα

∂u1
(p)× ∂ϕα

∂u2
(p) ̸= 0.

Meaning it is non-zero at p. Take ϕα(u1, u2) = (x(u1, u2), y(u1.u2), z(u1, u2)).
By computation of the cross product we obtain∣∣∣∣∣∣∣

ex
∂x
∂u1

∂x
∂u2

ey
∂y
∂u1

∂y
∂u2

ez
∂z
∂u1

∂z
∂u2

∣∣∣∣∣∣∣ =

det( ∂(y,z)

∂(u1,u2)
)

det( ∂(z,x)
∂(u1,u2)

)

det( ∂(x,y)
∂(u1,u2)

)

 (p) .



For this to be a smooth map, at least one of the determinants is never zero.
Without loss of generality let us assume that the first component

det(
∂(y, z)

∂(u1, u2)
)(p)

is non-zero. Now we define a map ψ given by

ψ(x, y, z) = (y, z).

The composition ψ ◦ϕβ(v1, v2) = (y(v1, v2), z(v1, v2)) by previous assumption
has determinant

det(
∂(y, z)

∂(u1, u2)
)(p) ̸= 0

at p. By Theorem 1.1.4 there exists a smooth inverse (ψ ◦ ϕβ)
−1 at a neigh-

bourhood of p. We may rewrite the composition ϕ−1
β ◦ϕα = (ψ◦ϕβ)

−1◦(ψ◦ϕα).
Since all of them are smooth, then by Lemma 1.1.4.1 we have shown our re-
sult.

1.2 The Tangent space of a Manifold
Definition 1.2.1. Let M ⊂ Rn be a smooth manifold. Given an open subset
U ⊂ Rn and V ∩M ⊂ Rm. Given a map ϕ : U → V ∩M the derivative map
Dϕ is linear, i.e

Dϕ ∈ L(Rn,Rm) =


∂ϕ1

∂u1
.... ∂ϕ1

∂un

. . .

. . .
∂ϕm

∂u1
.... ∂ϕm

∂un

.

Meaning an m× n matrix.

Definition 1.2.2. Given a point p ∈ M, let (Uα, ϕα) be a coordinate chart
such that p ∈ ϕα(Uα). Then we define the Tangent space TpM at p as

TpM := Span

{
∂ϕα

∂u1
, ...,

∂ϕα

∂un

}
.



From Definition 1.0.1 we know that rank(Dϕ) = n and thus that dim(TpM) =
n (the space has trivial kernel). We shall make the following proposition.

Proposition 1.2.2.1. The definition of Tangent space is independent of our
chosen coordinate system.

Proof. Let us begin by recalling some facts from Linear Algebra. Given an
m× n matrix A

A=


a11 .... an1
. . .
. . .
a1m .... anm


we define the image of A denoted by Im(A) asx : x = Ac : c =

c1..
cn

 ∈ Rn

 .

We have that Im(A) is a vector space (the column space) of dimension n,
provided that A has full rank. Now A : Rn → Rm is a linear map, and we
are able to construct a change-of-basis transformation B : Rn → Rn where B
is some invertible n× n matrix. Our goal is to show that Im(A) = Im(AB).
Let D = AB. Since B is invertible we have DB−1 = A. Given an x in Im(A)
there exists a c such that

x = Ac

⇒ x = DB−1c

⇒ x = AB(B−1c).

Now there exists some vector d ∈ Rn that is accomplished by multiplying c
with B−1, such that x = ABd. It follows that x ∈ Im(AB). Thus we have
shown that

Im(A) ⊂ Im(AB).

We wish to show it in the other direction as well. Take y ∈ Im(AB). By
definition we have that y = ABd. Set Bd = c and we have that

y = Ac.



We have that y ∈ Im(A) and thus that

Im(AB) ⊂ Im(A).

We conclude that

Im(A) = Im(AB).

Now back to the coordinate charts. Take ϕα to be a local parametrization
about p. And let ϕβ be another coordinate chart about p, with domains
Uα and Uβ respectively. We may restrict the domains so that Uα = Uβ.
Now by the smoothness of transition maps, i.e ϕ−1

β ◦ ϕα and ϕ−1
α ◦ ϕβ are

diffeomorphisms, we may show our result. Again, it suffices to show one of
them as there will be an analogous picture with the other one. Now by the
chain rule we obtain that

d(ϕβ ◦ ϕ−1
β ◦ ϕα) = d(ϕβ) ◦ d(ϕ−1

β ◦ ϕα) = dϕα.

Now obviously Im(dϕα) ⊆ Im(dϕβ). One can switch the arguments and the
inclusion will hold in the other direction as well. Thus we have shown that

Im(dϕα) = Im(dϕβ).

In other words, the tangent space is independent of coordinate system.

We will for the purpose of showing later results require the notion of Parti-
tions of unity.

Definition 1.2.3. Given a smooth function F defined on Rm, then we define
the Support of ϕ as

supp(ϕ) := {x ∈ Rm : ϕ(x) ̸= 0}.

That is the closure of the set

{x ∈ Rm : ϕ(x) ̸= 0}.

Definition 1.2.4. Let A be a union of open sets in Rn. There exists a
collection of smooth functions Fi : Rn → R such that

1. suppFi ⊂ A for all i.



2. For any p ∈ A there exists an open set Ω ⊂ A containing p intersecting
at least one but only finitely many sets of suppFi.

3.
∑∞

i=1 Fi(x) = 1 for each x ∈ A.

4. The sets suppFi are compact.

If the collection {Fi} satisfies the above conditions we call it a Partition of
Unity subordinate to A.

1.3 Manifolds with boundary
For the purpose of this thesis, we require a definition of a manifold with a
boundary, and the notion of differentiability on those.

Definition 1.3.1. We denote the upper half-space of Rn as Hn consisting of
those points x ∈ Rn for which xn ≥ 0. We denote Hn

+ those points for which
xn > 0.

Definition 1.3.2. Let S be a subset of Rm. Let f : S → Rn. Then f is
Smooth (or of Class Cr) on S if f may be extended to a function g : U → Rn

that is smooth on an open set U of Rm containing S.

Lemma 1.3.2.1. Let U be open in Hm but not in Rm and let α : U → Rn

be smooth. Let β : U ′ → Rn be a smooth extension of α defined on an open
subset U ′ ⊂ Rm. The derivative Dβ(x) will only depend on the α and is
independent of β. We may denote it Dα(x).

We shall be interested in maps defined on open sets in Hn but not in Rn.
Recall Definition 1.0.1. The same definition of M holds as a subset of Hn,
however with one extension. We require a definition of the boundary of M.
We shall do just that.

Definition 1.3.3. Let M be a smooth submanifold of Rn and let p ∈ M. If
there is a local coordinate chart ϕ : U → V about p such that U is open in
Rm, then we call p an Interior point of M. Otherwise it is a Boundary point
of M. We denote the boundary set of M with ∂M.

Lemma 1.3.3.1. Let M be a smooth submanifold of Rn. Let ϕ : U → V be
a local coordinate chart about p ∈ M. Then we have



1. If U is open in Rm, then p is an interior point of M.

2. If U is open in Hm and if p = ϕ(x0) for x0 ∈ Hm
+ , then p is an interior

point of M.

3. If U is open in Hm and if p = ϕ(x0) for Rm−1 × 0 and then p is a
boundary point of M.

Proof. (1) follows from the definition, with (2) we have a local coordinate
chart U0 = U ∩ Hm

+ that avoids the boundary. Given ϕ : U0 → V0 with V0

being the image of ϕ. This is a homeomorphism and we are done. For (3)
one is able to find a proof in [Munk91].



Chapter 2

Forms on Rn

We shall introduce the notion of vector forms, and then the differential forms.
In so doing, we shall also introduce the operator ∧ denoting the notion of
exterior multiplication.

2.1 Properties of the exterior product
The following properties hold for exterior products. [Hubb99]

1. Distributivity. For k-forms ϕ, ω1, ω2 we have that

ϕ ∧ (ω1 + ω2) = ϕ ∧ ω1 + ϕ ∧ ω2.

2. Associativity. For k-forms ω1, ω2, ω3 we have

(ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3).

3. Skew-commutativity. If ϕ is a k-form and ω is an l-form. Then we have
that

ϕ ∧ ω = (−1)klω ∧ ϕ.

4. Homogeneity. For k-forms ϕ and ω and a constant c ∈ R

(cϕ) ∧ ω = c(ϕ ∧ ω) = ϕ ∧ (cω).
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2.2 Vector Forms
Definition 2.2.1. Let 1 ≤ k ≤ n. Given vectors v1, ..., vn ∈ Rn we form an
n× k matrix

V=


v11 .... vn1
. . .
. . .
v1k .... vnk

.

Now given indices i1, ..., ik ∈ {1, ..., n} let Vi1...ik be the matrix formed by
choosing the the rows i1, ..., ik of V .

Then we define a multilinear and alternating map

dxi1 ∧ ... ∧ dxik : Rn × ...× Rn → R
(v1, ..., vn) 7→ (dxi1 ∧ ... ∧ dxik)(v1, ..., vk)

given by

(dxi1 ∧ ... ∧ dxik)(v1, ..., vk) := det(Vi1,...,ik).

The words "multilinear" and "alternating" require some explanation. We
shall explain them with the help of a few facts from algebra.

Lemma 2.2.1.1. [Biggs02] Let Sn be the symmetric group with n elements.
Any permutation σ ∈ Sn can be expressed in terms of products of transposi-
tions. That is, cycles of length 2.

Definition 2.2.2. We call a permutation σ Odd if it can be expressed in
terms of an odd number of transpositions. We call it Even if it can be ex-
pressed in terms of an even number of transpositions. The sign function
denoted sgn assigns the value sgn(σ) = −1 if σ is odd and sgn(σ) = 1 if σ is
even.

Definition 2.2.3. A definition of the determinant of an n × n matrix A is
given by the following. For a square matrix A = (aij)

det(A) =
∑
σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2)...an,σ(n).



Now, by properties of determinants we note the following facts.

1. If j ̸= l such that ij = il then dxi1 ∧ ... ∧ dxik = 0.

In other words, if any two elements in the exterior product are equal
then the whole thing is zero.

2. Take entries i, j in the form. Swapping places of i and j will render

ω(v1, ..., vi, vj, ..., vk) = −ω(v1, ..., vj, vi, ...vk).

Meaning that swapping any two entries picks up a minus sign. This is
what alternating means.

3. Suppose we take the i-th entry in the exterior product. Then

ω(v1, .., vi−1, av + bw, ..., vk) = aω(v1..., vi−1, v..., vk) + bω(v1..., vi−1, w..., vk).

This is what multilinear means. Linear in each coordinate.

Now we may proceed by defining a Form.

Definition 2.2.4. Let ω : Rn×...×Rn → R be a map satisfying the properties
that ω is multilinear and alternating. Then we call such a map a k-form.

Definition 2.2.5. The set of k-forms denoted

Ak
c (Rn)

constitutes a vector space by defining

(aω1 + bω2)(v1, ..., vk) = aω1(v1, ..., vk) + bω2(v1, ..., vk)

for all a, b ∈ R and ω1, ω2 ∈ Ak
c (Rn).

We shall begin by showing some forms that input vectors, and some examples.

Definition 2.2.6. Let I = {i1, ..., ik}. And that

dxI := dxi1 ∧ ... ∧ dxik .

An elementary (or vector) k-form on Rn is an expression of the form

dxi1 ∧ ... ∧ dxik
where 1 ≤ i1 < ... < ik ≤ n.



We denote the set

Ik = {I = {i1, ..., ik} : 1 ≤ i1 < ... < ik ≤ n}.

We shall also state and prove the following useful theorem.

Theorem 2.2.7. A basis for Ak
c (Rn) is given by

ξ = {dxi1 ∧ ... ∧ dxik : 1 ≤ i1 < ... < ik ≤ n}.

Proof. Recall that for any k-form, the act of swapping two of the vectors
picks up a minus sign, implying that if indices coincide, the entire thing is
zero. It therefore suffices to consider k-forms with strictly increasing indices.
In other words we have

dxi1 ∧ ... ∧ dxik(ej1 , ..., ejk) =

{
1 if i1 = j1, ..., ik = jk

0 otherwise.
(2.1)

Now to show linear independence of our proposed basis elements we may
consider a k-form

ω(ej1 , ..., ejk) =
∑

1≤i1<...<ik≤n

αi1,...,ikdxi1 ∧ .. ∧ dxik(ej1 , ..., ejk).

Then this implies that αi1,...,ik = 0. Since if we consider

ω(ej1 , ..., ejk) =
∑

1≤i1<...<ik≤n

αi1,...,ik

∣∣∣∣∣∣∣∣∣
ei1j1 .... ei1jk
. . .
. . .

eikj1 .... eikjk

∣∣∣∣∣∣∣∣∣ .
Then by 2.1 this says that

ω(ej1 , ..., ejk) =

{
αi1,...,ik if i1 = j1, ..., ik = jk

0 otherwise.

proving linear independence. Now we proceed by evaluating ω on k standard
basis vectors, not necessarily listed in increasing order, but due to Definition
2.2.2 there is a permutation σ of these elements that results in increasingly
ordered elements. In other words, once i1, ..., ik are chosen (and they are



distinct) there exists σ such that iσ(1) < ... < iσ(k) is strictly increasing.
Setting σ−1 = τ we obtain

ω(v1, ..., vk) =
∑

1≤i1<...<ik≤n

∑
τ∈Sk

sgn(τ)(vi1,τ(1), ..., vik,τ(k))ω(ei1 , ..., eik).

Note however that due to Definition 2.2.3∑
σ∈Sk

sgn(σ)(vi1,σ(1), ..., vik,σ(k)) = det(Vi1,...,ik)

= (dxi1 ∧ ... ∧ dxik)(v1, ..., vk).

And since we established that ω(v1, ..., vk) = αi1,...,ik . We obtain that

ω(v1, ..., vk) = (
∑

1≤i1<...<ik≤n

αi1,...,ikdxi1 ∧ ... ∧ dxik)(v1, ..., vk)

proving the vectors on this form span the set. We have shown that ξ is indeed
a basis for Ak

c (Rn).

An interesting fact/lemma is that

Lemma 2.2.7.1. There are
(
n
k

)
elementary k-forms.

Proof. Let the basis for Ak
c (Rn) be the set (as per 2.2)

{dxi1 ∧ ... ∧ dxik : 1 ≤ i1 < ... < ik ≤ n}.

For any k-form in Ak
c (Rn) we can make the following argument. We pick k

different 1-forms, from a set of n forms in total (so dxi1 up to dxik). These
are, linearily independent, and we wedge them together. In so doing we
produce a non-zero elementary k-form. We may choose k elements from n
total ones in

(
n
k

)
ways, and we have shown the result.

Consequently we have that dim(Ak
c (Rn)) =

(
n
k

)
. Take the example of n = 4

and k = 2. There will be six elementary forms arranged in ascending order.
Namely

{ v1 ∧ v2, v1 ∧ v3, v1 ∧ v4,
v2 ∧ v3, v2 ∧ v4,

v3 ∧ v4 }
.



Evaluating a vector k-form on a set of vectors v1...vk will produce a k × k
matrix determinant. So for instance when n = 2 and k = 2. We have that

ω1 ∧ ω2(v1, v2) =

∣∣∣∣∣ω1(v1) ω2(v1)
ω1(v2) ω2(v2)

∣∣∣∣∣ .
This will give the area of a paralellogram. For example let ω1 = 3dx+dy+4dz
and ω2 = dx − 2dy + dz. And we take vectors v1 = (1, 4, 2) and v2 =
(2, 5, 4). Our calculation amounts to the following. We get that ω1(v1) =
3 · 1+4+4 · 2 = 15, ω1(v2) = 3 · 2+5+4 · 4 = 27, ω2(v1) = 1− 2 · 4+2 = −5
and ω2(v2) = 2− 2 · 5 + 4 = −4. Thus we obtain the calculation

ω1 ∧ ω2(v1, v2) =

∣∣∣∣∣15 −5
27 −4

∣∣∣∣∣ = 75.

When n = 3 and k = 3 we get the area of a paralellopiped. For example, let
ψ = 2dx ∧ dy ∧ dz. Explicitly meaning ψ1 = 2dx, ψ2 = dy, ψ3 = dz. Take
the vectors v1 = (4, 2, 1), v2 = (0, 1, 1) and v3 = (−4,−2, 1). We wish to
calculate the determinant given by∣∣∣∣∣∣∣

ψ1(v1) ψ2(v1) ψ3(v1)
ψ1(v2) ψ2(v2) ψ3(v2)
ψ1(v3) ψ2(v3) ψ3(v3)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
8 2 1
0 1 1
−8 −2 1

∣∣∣∣∣∣∣ .
We can row-reduce this matrix. We simply add the first row to the third to
obtain an upper triangular matrix. The determinant of that matrix is just
the product of the diagonal entries. We obtain∣∣∣∣∣∣∣

8 2 1
0 1 1
0 0 2

∣∣∣∣∣∣∣ = 8 · 1 · 2 = 16.

2.3 Differential Forms
Now introducing general differential k-forms.

Definition 2.3.1. A differential k-form on Rn is given as

ω =
∑
I

fi1,...,ikdxi1 ∧ .. ∧ dxik



where all the fin : (Rn)k → R are continuous and differentiable functions.

With differential forms, we have a function that constantly changes the vec-
tor for any point in the tangent space (i.e a vector field). For the sake of
demonstration, we consider R3. Take the example of a differential 2-form
ω = xzdx ∧ dy + yzdy ∧ dz + (x2 + y2)dz ∧ dx. Now we specify a base point
p in the space where we want to evaluate the form. Take p = (1, 2, 3). Then
we simply input these values into their corresponding functions, and obtain

ω(1,2,3) = (1)(3)dx ∧ dy + (2)(3)dy ∧ dz + (12 + 22)dz ∧ dx.

Meaning ωp = 3dx ∧ dy + 6dy ∧ dz + 5dz ∧ dx. Let us pick two vectors. We
consider v1 = (1, 2, 3) and v2 = (2, 0, 1). The calculation amounts to

ω(1,2,3)(v1, v2) = 3

∣∣∣∣∣1 2
2 0

∣∣∣∣∣+ 6

∣∣∣∣∣2 3
0 1

∣∣∣∣∣+ 5

∣∣∣∣∣3 1
1 2

∣∣∣∣∣ .
Obviously this just amounts to

ω(1,2,3)(v1, v2) = 3(−4) + 6(2) + 5(5) = 25.

We can also consider vector fields at an arbitrary point p = (x, y, z) in three-
dimensional space. Let us consider a differential form ω = y2dx∧dy−3x2dy∧
dz. Consider also vector fields v1 = (xz, yz, x2 + y2) and v2 = (y, xz, z2).
Essentially we do exactly as we did with fixed vectors in space. We get

ω(x,y,z)(v1, v2) = y2

∣∣∣∣∣xz yz
y xz

∣∣∣∣∣− 3x2

∣∣∣∣∣ yz xz
x2 + y2 z2

∣∣∣∣∣ .
Of course we simply take the determinants and arrive at

w(x,y,z)(v1, v2) = (xyz)2 − y2z − 3x2z3y − 3x5z + 3x3y2z.

So essentially, ω is a differential 2-form. It takes in two vector fields and has
returned a function in R3.

2.4 The exterior derivative
Definition 2.4.1. The exterior derivative denoted with a lower-case d, is a
linear operator taking a k-form to a (k+1)-form. Given any smooth k-form,



defined on Rn, we have that

ω =
n∑

j1,...jk=1

ωj1,...jkduj1 ∧ ... ∧ dujk ,

and define

dω :=
n∑

j1,...jk=1

n∑
i=1

∂ωj1,...,jk

∂ui
dui ∧ duj1 ∧ ... ∧ dujk .

For smooth scalar functions the exterior derivative acts like the chain rule.
For example, let f(x, y, z) be a smooth scalar function on R3. The exterior
derivative of f will be

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

We also introduce the following rules for the exterior derivative. For any
k-forms ω and ψ

1) d(aω + bψ) = adω + bdψ (Linearity)
2) d(ψ ∧ ω) = dψ ∧ ω + (−1)kψ ∧ dω
3) d(dω) = d2(ω) = 0.

We can prove each and every one of them.

Proof of rules for the exterior derivative. 1) Suppose ω and ψ are k-forms on
an open set U ⊂ M. Then by definition we have

ω =
n∑

j1,...jk=1

ωj1,...jkduj1 ∧ ... ∧ dujk

ψ =
n∑

j1,...jk=1

ψj1,...jkduj1 ∧ ... ∧ dujk .



Taking the exterior derivative produces

d(aω + bψ) =
n∑

j1,...jk=1

d(aωj1,...jk + bψj1,...,jk)duj1 ∧ ... ∧ dujk

= a

n∑
j1,...jk=1

∂ωj1,...,jk

∂ui
dui ∧ duj1 ∧ ... ∧ dujk

+ b
∑

j1,...,jk=1

∂ψj1,...,jk

∂ui
dui ∧ duj1 ∧ ... ∧ dujk

= adω + bdψ.

2) Since d is linear it suffices to assume ψ = f(dui1 ∧ ... ∧ duik) and ω =
g(duj1 ∧ ... ∧ dujl). Then we have that

d(ψ ∧ ω) =
n∑

i=1

∂(fg)dui1 ∧ ... ∧ duik ∧ duj1 ∧ ... ∧ dujl

= (
n∑

i=1

∂f

∂ui
dui ∧ dui1 ∧ ... ∧ duik ∧ duj1 ∧ ... ∧ dujl) ∧ ω

+
n∑

i=1

∂g

∂ui
dui ∧ duj1 ∧ ... ∧ dujk

= dψ ∧ ω + (−1)kψ ∧ dω.

This is by applying the product rule for derivatives for every term in the
k-form, and then rearranging the exterior products.

3) We wish to show that applying the operation twice, i.e d(dω) gives us
zero. Take

dω =
n∑

i=0

∑
I

∂ωI

∂ui
dui ∧ duI .



Then taking the derivative of that produces

d(dω) =
n∑

j=0

∂

∂uj

 n∑
i=0

∑
I

∂ωI

∂ui
dui

 duj

=
n∑

j=0

n∑
i=0

∑
I

∂2ωI

∂uj∂ui
duj ∧ dui ∧ duI

=
∑
i<j

∂2ωI

∂uj∂ui
− ∂2ωI

∂ui∂uj
dui ∧ duj ∧ duI

= 0.

Where I = (i1, ...ik), and using the fact that dx ∧ dy = −dy ∧ dx and that
mixed partials of the form ∂2f

∂uj∂ui
= ∂2f

∂ui∂uj
are equal by Clairaut’s Theorem.

2.5 The Pullback
Definition 2.5.1. Let T : Rn → Rm be a linear map. We define the Pullback
of T by

T ∗ : Ak
c (Rm) → Ak

c (Rn)

ω 7→ T ∗(ω) : Rn × ...× Rn → R :

(v1, ..., vk) 7→ T ∗ω(v1, ..., vk).

By definition we have that

T ∗(ω)(v1, ..., vk) := ω(T (v1), ...T (vk)).

We make the following statement without proof. [Fong18]

Theorem 2.5.2. Let f : U ∈ Rn → V ∈ Rm be smooth. Given a k-form
ω ∈ Ak

c (V) then we have that

d(f ∗ω) = f ∗(dω).

In other words, the exterior derivative and the Pullback commute.
We can make the following proposition.



Proposition 2.5.2.1. Let (y1, ..., yi) be coordinates in Rm and (x1, ..., xj)
coordinates in Rn. Now let F : Rn → Rm be a smooth map. Then we have
that

F ∗(dx1 ∧ ... ∧ dxn) = J(y)dy1 ∧ ... ∧ dyn

where

J(y) = det

(
∂Fj

∂yi

)n

i,j=1

i.e, the determinant of the Jacobian matrix.

Proof. The elements i1...in are a permutation of the numbers 1, ..., n. There
is some permutation σ that orders these elements in increasing order. We
write ∑

σ∈Sn

∂F1

∂yσ(1)
...

∂Fn

∂yσ(n)
dyσ(1) ∧ ... ∧ dyσ(n).

By Lemma 2.2.1.1 this permutation is expressible in terms of transpositions,
by 2.2.2 the number of transpositions is either even or odd. So we obtain∑

σ∈Sn

sgn(σ)
∂F1

∂yσ(1)
...

∂Fn

∂yσ(n)
dy1 ∧ ... ∧ dyn.

The term ∑
σ∈Sn

sgn(σ)
∂F1

∂yσ(1)
...

∂Fn

∂yσ(n)

is by 2.2.3 the definition of the determinant of the n × n matrix consisting
of these partial derivatives from F1 to Fn. Otherwise known as the Jacobian
determinant. We conclude that∑

σ∈Sn

sgn(σ)
∂F1

∂yσ(1)
...

∂Fn

∂yσ(n)
dy1 ∧ ... ∧ dyn = J(y)dy1...dyn.

Which is what we wanted to show.



2.6 Forms on manifolds
In this section we define Forms over submanifolds of Euclidean space.

Definition 2.6.1. Given a manifold M of dimension k and an open set
U ⊂ Rm such that M ⊂ U and ω an l-form defined on U . Since for every p ∈
M ⊂ Rm, TpM is a vector subspace of Rm, we may consider the restriction
of ω to TpM as

ω(p)(v1, ..., vk) v1, ..., vk ∈ TpM.

Given a local coordinate chart (Uα, ϕα) the mapping

Uα → R

U 7→ ω(ϕα(u))(
∂ϕα

∂u1
, ...,

∂ϕα

∂un
)

is well defined and smooth on Uα.

2.7 Integration of forms
The goal of this section is to explain integration of k-forms. That is an
integral such as ∫

M
ω.

Definition 2.7.1. We define a parametrization

F (u1, u2, ..., uk) : (p1, q1)× (p2, q2)× ...× (pk, qk) → M.

Then given a k-form ω(u1, u2, ..., uk)du1 ∧ du2 ∧ ... ∧ duk, the integral of ω
over M is given by∫
M
ω(u1, u2, ..., uk)du1 ∧ du2 ∧ ... ∧ duk :=

∫ qk

pk

...

∫ q1

p1

ω(u1, u2, ..., uk)du1du2...duk.

A 1-form must be integrated over a curve, a 2-form over a surface, and a
k-form over a region in higher-dimensional space. So we integrate forms over



a region in of the same dimension.

Suppose f(x, y) is smooth function. Let the manifold M be given by the
graph

M = {(x, y, f(x, y)) ∈ R3 : (x, y) ∈ R2},

that has global parametrization in the form of a field F : R2 7→ M explicitly
given by

F (x, y) = (x, y, f(x, y)).

For instance, now let a 2-form be given by

ω = e−x2+y2dx ∧ dy.

This amounts to the double integral∫∫
R2

e−x2+y2dxdy.

By a change to polar coordinates you can show that this has the value π.
Note, how did we go from having wedges to no wedges? It seems tempting
in an expression like dx ∧ dy to just erase the wedge to produce dxdy and
forget we have a differential form. It seems we could instead write the form

ω = e−x2+y2dy ∧ dx.

The double integral of this does not coincide with the first one as it would
give the result −π. We can remedy this by simply defining that the form
should be in the right order before we integrate.



Chapter 3

Orientation

We shall give a few definitions.

Definition 3.0.1. Let g : U → V be a diffeomorphism between open sets in
Rm. We say that g is Orientation-preserving if detDg > 0 on U . We call g
Orientation-reversing if detDg < 0 on U .

Definition 3.0.2. Let M be a m-manifold in Rn. Given local coordinate
charts ϕi : ϕi(Ui) → ϕi(Vi) on M for i = 0, 1, we say they overlap positively
if the transition map ϕ−1

1 ◦ ϕ0 is orientation-preserving. If M can be covered
by a collection of local coordinate charts, each pair of which overlap positively,
then M is said to be Orientable. Otherwise, M is said to be non-orientable.

Definition 3.0.3. Let M be an orientable m-manifold. Given a collection of
coordinate charts covering M that overlap positively, we adjoin this collection
all other coordinate charts on M that overlap these charts positively. This
expanded collection is called an Orientation on M. A manifold M together
with an orientation of M, we call an Oriented manifold.

Certainly, this makes no sense when speaking about a 0-manifold, which is
just a set of points. For some dimensions, this becomes more intuitive. In
R, we can think about "left" and "right", in R2 one can imagine "clockwise"
and "anti-clockwise", and in R3 we can imagine "right-handed" and "left-
handed". If we consider an (n−1)-manifold in Rn, we picture an orientation
on M as a unit normal vector field to M.

Definition 3.0.4. Let M be an (n − 1) manifold in Rn−1. If p ∈ M, let
(p;n−1) be a unit vector in the vector space Tp(Rn), that is orthogonal to the
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linear subspace of TpM of dimension (n−1). Then n is uniquely determined
up to a sign. Let a local coordinate chart be given as in 1.2. We specify the
sign by requiring that the frame (n⃗, ∂ϕα

∂x1
, ..., ∂ϕα

∂xn−1
) be right-handed. Meaning

that the matrix [n⃗ Dϕα] has positive determinant.

A consequence of Definition 3.0.4 is that when integrating an (n − 1) form
over a manifold with boundary with induced orientation, we also take into
account the parity of n. This can be formulated as the following theorem
that we state without proof. [Fong18]

Theorem 3.0.5. Given a positively oriented local coordinate chart G(u1, ..., un) :
V → M of boundary type. Then (u1, ..., un−1) is positively oriented if n
is even and negatively oriented if n is odd. Therefore when integrating an
(n− 1)-form ωdu1 ∧ ... ∧ dun−1 on ∂M we have that∫

G(V)∩∂M
ωdu1 ∧ ... ∧ dun−1 = (−1)n

∫
V∩{un=0}

ωdu1 ∧ ... ∧ dun−1.

Theorem 3.0.6. If M is an orientable m-manifold with non-empty bound-
ary, then ∂M is orientable.

A proof of this is found in [Munk91].



Chapter 4

Generalized Stokes’ Theorem

Our efforts have concluded in showing the following result.

Theorem 4.0.1. Let M be an oriented smooth manifold of dimension n.
Let ω be a compactly supported smooth (n − 1)-form on M. We then have
that ∫

M
dω =

∫
∂M

ω.

This is known as the Generalized Stokes’ Theorem.

Proof of Generalized Stokes’ Theorem. The proof is by cases. We begin with
the case where the form is contained inside a single parametrization of inte-
rior type.

We have that ω is a (n − 1)-form, with its support contained in a single
parametrization chart of interior type.
We can write the (n− 1)-form as

ω =
n∑

i=1

ωidu1 ∧ ... ∧ dui−1 ∧ dui+1 ∧ ... ∧ dun.

We have removed the i-th term to obtain an (n− 1)-form.

We take the exterior derivative to obtain

dω =
n∑

i=1

n∑
j=1

∂ωi

∂uj
duj ∧ du1 ∧ ... ∧ dui−1 ∧ dui+1 ∧ ... ∧ dun.
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Now for each i, the product du1 ∧ ... ∧ dui−1 ∧ dui+1 ∧ ... ∧ dun is zero if
j ̸= i. The only sum that will survive as it were, is the one where j = i. This
reintroduces the dui to the beginning of the sum. We wish to put it in the
order it should be. Thus we make i − 1 swaps of wedge products and pick
up a factor of (−1)i−1. Hence we obtain

dω =
n∑

i=1

∂ωi

∂ui
du1 ∧ ... ∧ dui−1 ∧ dui+1 ∧ ... ∧ dun

=
n∑

i=1

∂ωi

∂ui
dui ∧ du1 ∧ ... ∧ dun

=
n∑

i=1

(−1)i−1∂ωi

∂ui
du1 ∧ ... ∧ dui ∧ ... ∧ dun.

By Definition 2.7.1 we get∫
M
dω =

∫
U

n∑
i=1

(−1)i−1∂ωi

∂ui
du1...dun.

The fact that ω has compact support means that there is a number R > 0
such that suppω is contained inside a rectangle [−R,R]... × ... × [−R,R]
in Rn. Also, outside the support the integral will just be zero. Then using
Fubini’s theorem we can change the order of integration and summation to
produce ∫

M
dω =

∫ R

−R

...

∫ R

−R

n∑
i=1

(−1)i−1∂ωi

∂ui
du1...dun

=
n∑

i=1

(−1)i−1

∫ R

−R

...

∫ R

−R

∂ωi

∂ui
du1...dun.

Now take the innermost integral. By the Fundamental Theorem of Calculus
we obtain ∫ R

−R

∂ωi

∂ui
dui = ωi

∣∣∣∣∣
R

−R

.

This pattern will follow for the other integrals. Since supp(ω) is contained
in a closed box of interior type, the value of all the ωi’s will be zero at −R



and R (at the boundary). Thus we have proven that∫
M
dω = 0.

Equivalently we have that on the boundary ∂M we have ω = 0. Thus we
have shown our first result, namely∫

M
dω =

∫
∂M

ω = 0.

We may now proceed with showing the next case. Namely when M is cov-
ered by a single parametrization of boundary type. The difference from the
previous step consists in knowing that ωi’s may not vanish on the boundary
of M. We instead consider the set in the upper half plane with rectangle
A = [−R,R] × ... × [−R,R] × [0, R] with R > 0 as large so as to contain
the support of ω. Since it has compact support we can as in the previous
step deduce that ωi(u1, ..., un) = 0 when un = R. But not that ωi = 0 when
un = 0.

Following the same calculation as in step 1 we obtain∫
M
dω =

∫ R

0

∫ R

−R

...

∫ R

−R

n∑
i=1

(−1)i−1∂ωi

∂ui
du1...dun

=
n∑

i=1

(−1)i−1

∫ R

0

∫ R

−R

...

∫ R

−R

∂ωi

∂ui
du1...dun

+ (−1)n−1

∫ R

0

∫ R

−R

...

∫ R

−R

∂ωn

∂un
du1...dun.

The first term is as we obtained in the first step, namely

n∑
i=1

(−1)i−1

∫ R

0

∫ R

−R

...

∫ R

−R

∂ωi

∂ui
du1...dun = 0,

so we need to consider the term

(−1)n−1

∫ R

−R

∫ R

−R

...

∫ R

0

∂ωn

∂un
du1...dun.



Integration is linear, so computing the innermost integral produces

(−1)n
∫ R

−R

...

∫ R

−R

ωn(u1, ..., un−1, 0)du1...dun−1.

We now wish to relate this to ∫
∂M

ω

for the purpose of showing that the two integrals are indeed equal. On the
boundary ∂M are points where un = 0. Hence dun = 0 across ∂M. We then
have that

ω =
n∑

i=1

ωi(u1, ..., un−1, 0)du1 ∧ ... ∧ dui−1 ∧ dui+1 ∧ ... ∧ dun

= ωn(u1, ..., un−1, 0)du1 ∧ ... ∧ dun−1.

So consequently we obtain that∫
∂M

ω =

∫
A∩∂M

ωn(u1, ..., un−1, 0)du1 ∧ ... ∧ dun−1

=

∫
A∩{un=0}

ωn(u1, ..., un−1, 0)du1...dun−1

=

∫ R

−R

...

∫ R

−R

ωn(u1, ..., un−1, 0)du1...dun−1.

We have gotten that the two sides are exactly equal apart from the factor of
(−1)n. This factor only takes into account the orientation as per Theorem
3.0.5. We have thus proven the result of step 2 that is∫

∂M
ω =

∫
M
dω.

Our final case is where we use partitions of unity to prove a more general
case of Stokes’ theorem.

We take

A = {Fa : Ua → M}



to be an atlas of M, by assumption with all positively oriented coordinates.
So A contains both interior and boundary types of local parametrizations.
Suppose now that

{ρa : M → [0, 1]}
is a partition of unity subordinate to A. We then obtain

ω =
∑

ρaω

since by Definition 1.2.4
∑
ρa = 1. Following the same procedure as before

we obtain ∑
a

∫
∂M

ρaω =
∑
a

∫
M
d(ρaω)

=
∑
a

∫
M
d(ρa ∧ ω + ρadω) (By 2.4)

=

∫
M
d

(∑
a

ρa

)
∧ ω +

(∑
a

ρa

)
dω

=

∫
M

0 ∧ ω + 1dω

=

∫
M
dω.

Since we have that ∑
a

∫
∂M

ρaω =

∫
∂M

ω,

we finally obtain that ∫
∂M

ω =

∫
M
dω.

Which is what we wanted to show, and the proof is complete.

4.1 Applications of the Generalized Stokes’ The-
orem in Vector Calculus

In this section we wish to derive two examples of special cases of the Gen-
eralized Stokes’ Theorem. Namely Green’s Theorem and the Divergence
Theorem.



Theorem 4.1.1. Let R be a closed, bounded and smooth submanifold of R2.
Let C= ∂R be the boundary of R, such that C is a simple closed curve in the
plane, and R is a region contained by C. Let

F (x, y) =

(
P (x, y)
Q(x, y)

)

be a smooth vector field defined in R. Then∫
C

P (x, y)dx+Q(x, y)dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

This is known as Green’s Theorem from Vector Calculus. We may proceed
by proving this with the use of differential forms and the Generalized Stokes’
Theorem.

Proof. Consider the 1-form ω = P (x, y)∧dx+Q(x, y)∧dy. By the definition
of exterior derivatives we obtain

dω =

(
∂P

∂x
dx+

∂P

∂y
dy

)
∧ dx+

(
∂Q

∂x
dx+

∂Q

∂y
dy

)
∧ dy.

=
∂P

∂y
dy ∧ dx+ ∂Q

∂y
dx ∧ dy.

We have used that dx∧ dx = 0. Now using that dy ∧ dx = −dx∧ dy we may
rearrange this to obtain

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

Now using Stokes’ Theorem which says that∫
∂R

ω =

∫
C

Pdx+Qdy,

and ∫
R

dω =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.



We then obtain the final result of∫
C

Pdx+Qdy =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

=

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy. (By 2.7.1)

Which is what we wanted to show.

The three-dimensional version of this is the Divergence Theorem due to
Gauss.

Theorem 4.1.2. Let D be a closed, bounded and smooth submanifold of R3

and ∂D its boundary. Let

F (x, y, z) =

P (x, y, z)Q(x, y, z)
R(x, y, z)


be a smooth vector field defined in D. Then∫∫

∂D

F · νdS =

∫∫∫
D

div(F )dxdydz

where div(F ) = ∇·F = ∂P
∂x

+ ∂Q
∂y

+ ∂R
∂z

, and ν is an outward-pointing normal
of ∂D.

So in a similar way as with Green’s we want to prove this.

Proof. Consider the 2-form ω = P ∧ dy ∧ dz + Q ∧ dz ∧ dx + R ∧ dx ∧
dy. The choice of this form itself comes from the ways to attaching two
differentials wedged together to each one of the vector inputs. Taking the
exterior derivative gives

dω =

(
∂P

∂x
dx+

∂P

∂y
dy +

∂P

∂z
dz

)
∧ dy ∧ dz

+

(
∂Q

∂x
dx+

∂Q

∂y
dy +

∂Q

∂z
dz

)
∧ dz ∧ dx

+

(
∂R

∂x
dx+

∂R

∂y
dy +

∂R

∂z
dz

)
∧ dx ∧ dy.



We take the first term with respect to P . Obviously after simplification this
will produce (

∂P

∂x

)
∧ dx ∧ dy ∧ dz.

A similar pattern will obviously follow for Q and R. We will get

dω =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
∧ dx ∧ dy ∧ dz.

Now using Stokes’ Theorem we have that∫∫
∂D
F · νdS =

∫
∂D
ω

and that ∫
D

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
∧ dx ∧ dy ∧ dz =

∫
D

dω

By the definition of integrals of differential forms we obtain∫∫
∂D
F · νdS =

∫∫∫
D

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz.

Which is what we wanted to show.
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