

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

An Introduction to Differential Forms and Manifolds
av
Marcel Mäki

2023 - K 24

An Introduction to Differential Forms and Manifolds

Marcel Mäki

Självständigt arbete i matematik 15 högskolepoäng, grundnivå Handledare: Salvador Rodriguez Lopez

Abstract

This thesis aims to introduce the concepts of Manifolds and Differential Forms defined on Manifolds. These concepts serve as prerequisites for demonstrating a general result. Namely, the Generalized Stokes' Theorem, for which we will provide a proof. We shall also show how two theorems from Vector Calculus can be seen as special cases of this Generalized Theorem.

Chapter 1

Manifolds and Tangent Spaces

A manifold can be seen as a generalization of curves and surfaces to higher dimensions. Typical manifolds are things like graphs of a function, or a geometric shape such as a circle. What is special about manifolds is that they are locally Euclidean. If you where to zoom in on a small neighborhood of a circle, it would resemble flat space.
An n-dimensional manifold is a topological space \mathcal{M} for which every point $x \in \mathcal{M}$ there is a neighbourhood homeomorphic to Euclidean space \mathbb{R}^{n}.

For the purpose of this thesis, and the results we wish to show, we are not concerned with abstract manifolds. Rather, subsets of Euclidean space. We call those submanifolds of \mathbb{R}^{m} (for some m). We shall proceed with defining the manifolds of our interest. We begin by defining the notion of a surface in \mathbb{R}^{n}.

Definition 1.0.1. Take a subset $\mathcal{M} \subset \mathbb{R}^{n}$. A function $\phi(u): \mathcal{U} \rightarrow \mathcal{V} \cap \mathcal{M}$, with open subsets $\mathcal{U} \subset \mathbb{R}^{n}$ and $\mathcal{V} \subset \mathbb{R}^{m}$ and

$$
\phi(u)=\left(\begin{array}{c}
\phi_{1}(u) \\
\cdot \\
\cdot \\
\phi_{m}(u)
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
\cdot \\
\cdot \\
v_{m}
\end{array}\right)
$$

is called a Local Parametrization (or Local Coordinate Chart) of \mathcal{M} if it satisfies the following properties

1. ϕ is S mooth $\left(C^{\infty}\right)$ when the codomain is regarded as \mathbb{R}^{n}.
2. $\phi: \mathcal{U} \rightarrow \mathcal{V} \cap \mathcal{M}$ is a Homeomorphism meaning that ϕ is bijective, and both ϕ and its inverse ϕ^{-1} are continuous.
3. $\operatorname{rank}(D \phi)=n$.

The coordinates $\left(v_{1}, \ldots, v_{m}\right)$ are called Local coordinates of ϕ. If $\phi: \mathcal{U} \rightarrow$ \mathcal{M} is of class C^{k} for any integer k, then we call it a C^{∞} or Smooth local parametrization. Throughout this thesis, we assume all parametrizations to be smooth.

Definition 1.0.2. A subset $\mathcal{M} \subset \mathbb{R}^{n}$ is called a Smooth (or regular) surface in \mathbb{R}^{n} if at every point $p \in \mathcal{M}$ there exists an open subset $\mathcal{U} \subset \mathbb{R}^{n}$, an open subset $\mathcal{V} \subset \mathbb{R}^{m}$ containing p, a smooth local parametrization $\phi: \mathcal{U} \rightarrow \mathcal{V} \cap \mathcal{M}$, and satisfying the three conditions above.

An example of a parametrization would be the graph of a function. We can consider a smooth function $f(x, y): \mathcal{U} \rightarrow \mathbb{R}$ defined on an open subset $\mathcal{U} \subset \mathbb{R}^{2}$. The graph of f denoted Γ would be defined as

$$
\Gamma=\left\{(x, y, f(x, y)):(x, y) \in \mathcal{U} \subset \mathbb{R}^{3}\right\}
$$

We can also parametrize the graph by

$$
\Phi(x, y)=(x, y, f(x, y))
$$

We have assumed f to be smooth so condition 1 holds. If $\Phi\left(x_{1}, y_{1}\right)=$ $\Phi\left(x_{2}, y_{2}\right)$ that will imply that $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and so Φ is injective. We have that Φ has Γ as its image and so is surjective. Also the inverse map $\Phi^{-1}: \Gamma \rightarrow \mathcal{U}$ given by

$$
\Phi^{-1}(x, y, f(x, y))=(x, y)
$$

is obviously continuous. So Condition 2 holds. Another way to say that $D \Phi$ has full rank, is by saying that for any $(x, y) \in \mathcal{U}$

$$
\frac{\partial \Phi}{\partial x} \times \frac{\partial \Phi}{\partial y} \neq 0 .
$$

Taking the cross product amounts to

$$
D \Phi=\left|\begin{array}{ccc}
e_{x} & 1 & 0 \\
e_{y} & 0 & 1 \\
e_{z} & \partial f_{x} & \partial f_{y}
\end{array}\right|=\left(\begin{array}{c}
-\partial f_{x} \\
-\partial f_{y} \\
1
\end{array}\right)
$$

which is non-zero for all $(x, y) \in \mathcal{U}$. We have shown that condition 3 is satisfied.

An example of a manifold is the unit circle. One representation of the unit circle is

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\} .
$$

We quickly run into the problem that if we wish to cover the entire circle, all points of the circle will not be covered by a single parametrization chart. To cover the entire circle we need four charts. These charts will be given by

$$
\begin{align*}
& \phi_{1}(x)=\left(x, \sqrt{1-x^{2}}\right) \tag{1.1}\\
& \phi_{2}(y)=\left(-\sqrt{1-y^{2}}, y\right) \tag{1.2}\\
& \phi_{3}(x)=\left(x,-\sqrt{1-x^{2}}\right) \tag{1.3}\\
& \phi_{4}(y)=\left(\sqrt{1-y^{2}}, y\right) . \tag{1.4}
\end{align*}
$$

There are points where these charts (patches) overlap. To show that these charts are compatible, i.e points described by different charts do indeed describe the same points, we must introduce transition maps.

1.1 Transition maps

Definition 1.1.1. Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a smooth surface. An atlas on \mathcal{M} is a collection of charts $\left(\mathcal{U}_{a}, \phi_{a}\right)$ such that $\phi_{\alpha}\left(\mathcal{U}_{\alpha}\right)$ cover \mathcal{M}.
Definition 1.1.2. Let $\phi_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \mathcal{M}$ and $\phi_{\beta}: \mathcal{U}_{\beta} \rightarrow \mathcal{M}$ be two smooth local parametrizations with overlapping images. Meaning

$$
\phi_{\alpha}\left(\mathcal{U}_{\alpha}\right) \cap \phi_{\beta}\left(\mathcal{U}_{\beta}\right) \neq \emptyset .
$$

We let

$$
\begin{aligned}
\phi_{\alpha}\left(\mathcal{U}_{\alpha}\right) & :=\Theta_{\alpha}=\mathcal{V}_{\alpha} \cap \mathcal{M} \\
\phi_{\beta}\left(\mathcal{U}_{\beta}\right) & :=\Theta_{\beta}=\mathcal{V}_{\beta} \cap \mathcal{M} .
\end{aligned}
$$

The homeomorphisms

$$
\begin{aligned}
& \phi_{\beta}^{-1} \circ \phi_{\alpha}: \phi_{\alpha}^{-1}\left(\Theta_{\alpha} \cap \Theta_{\beta}\right) \rightarrow \phi_{\beta}^{-1}\left(\Theta_{\alpha} \cap \Theta_{\beta}\right) \\
& \phi_{\alpha}^{-1} \circ \phi_{\beta}: \phi_{\beta}^{-1}\left(\Theta_{\alpha} \cap \Theta_{\beta}\right) \rightarrow \phi_{\alpha}^{-1}\left(\Theta_{\alpha} \cap \Theta_{\beta}\right)
\end{aligned}
$$

we call Transition maps.
\square

——

\square

\square
\square

We have that $y \in \operatorname{Im}(A)$ and thus that

$$
\operatorname{Im}(A B) \subset \operatorname{Im}(A)
$$

We conclude that

$$
\operatorname{Im}(A)=\operatorname{Im}(A B)
$$

Now back to the coordinate charts. Take ϕ_{α} to be a local parametrization about p. And let ϕ_{β} be another coordinate chart about p, with domains \mathcal{U}_{α} and \mathcal{U}_{β} respectively. We may restrict the domains so that $\mathcal{U}_{\alpha}=\mathcal{U}_{\beta}$. Now by the smoothness of transition maps, i.e $\phi_{\beta}^{-1} \circ \phi_{\alpha}$ and $\phi_{\alpha}^{-1} \circ \phi_{\beta}$ are diffeomorphisms, we may show our result. Again, it suffices to show one of them as there will be an analogous picture with the other one. Now by the chain rule we obtain that

$$
d\left(\phi_{\beta} \circ \phi_{\beta}^{-1} \circ \phi_{\alpha}\right)=d\left(\phi_{\beta}\right) \circ d\left(\phi_{\beta}^{-1} \circ \phi_{\alpha}\right)=d \phi_{\alpha} .
$$

Now obviously $\operatorname{Im}\left(d \phi_{\alpha}\right) \subseteq \operatorname{Im}\left(d \phi_{\beta}\right)$. One can switch the arguments and the inclusion will hold in the other direction as well. Thus we have shown that

$$
\operatorname{Im}\left(d \phi_{\alpha}\right)=\operatorname{Im}\left(d \phi_{\beta}\right)
$$

In other words, the tangent space is independent of coordinate system.
We will for the purpose of showing later results require the notion of Partitions of unity.

Definition 1.2.3. Given a smooth function F defined on \mathbb{R}^{m}, then we define the Support of ϕ as

$$
\operatorname{supp}(\phi):=\overline{\left\{x \in \mathbb{R}^{m}: \phi(x) \neq 0\right\}}
$$

That is the closure of the set

$$
\left\{x \in \mathbb{R}^{m}: \phi(x) \neq 0\right\}
$$

Definition 1.2.4. Let A be a union of open sets in \mathbb{R}^{n}. There exists a collection of smooth functions $F_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

1. $\operatorname{supp} F_{i} \subset A$ for all i.
\square
\square

\qquad
\qquad

\qquad

-

———

Proposition 2.5.2.1. Let $\left(y_{1}, \ldots, y_{i}\right)$ be coordinates in \mathbb{R}^{m} and $\left(x_{1}, \ldots, x_{j}\right)$ coordinates in \mathbb{R}^{n}. Now let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth map. Then we have that

$$
F^{*}\left(d x_{1} \wedge \ldots \wedge d x_{n}\right)=J(y) d y_{1} \wedge \ldots \wedge d y_{n}
$$

where

$$
J(y)=\operatorname{det}\left(\frac{\partial F_{j}}{\partial y_{i}}\right)_{i, j=1}^{n}
$$

i.e, the determinant of the Jacobian matrix.

Proof. The elements $i_{1} \ldots i_{n}$ are a permutation of the numbers $1, \ldots, n$. There is some permutation σ that orders these elements in increasing order. We write

$$
\sum_{\sigma \in S_{n}} \frac{\partial F_{1}}{\partial y_{\sigma(1)}} \ldots \frac{\partial F_{n}}{\partial y_{\sigma(n)}} d y_{\sigma(1)} \wedge \ldots \wedge d y_{\sigma(n)}
$$

By Lemma 2.2.1.1 this permutation is expressible in terms of transpositions, by 2.2 .2 the number of transpositions is either even or odd. So we obtain

$$
\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \frac{\partial F_{1}}{\partial y_{\sigma(1)}} \ldots \frac{\partial F_{n}}{\partial y_{\sigma(n)}} d y_{1} \wedge \ldots \wedge d y_{n}
$$

The term

$$
\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \frac{\partial F_{1}}{\partial y_{\sigma(1)}} \ldots \frac{\partial F_{n}}{\partial y_{\sigma(n)}}
$$

is by 2.2.3 the definition of the determinant of the $n \times n$ matrix consisting of these partial derivatives from F_{1} to F_{n}. Otherwise known as the Jacobian determinant. We conclude that

$$
\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \frac{\partial F_{1}}{\partial y_{\sigma(1)}} \ldots \frac{\partial F_{n}}{\partial y_{\sigma(n)}} d y_{1} \wedge \ldots \wedge d y_{n}=J(y) d y_{1} \ldots d y_{n}
$$

Which is what we wanted to show.

We shall give a few definitions.

Certainly, this makes no sense when speaking about a 0 -manifold, which is just a set of points. For some dimensions, this becomes more intuitive. In \mathbb{R}, we can think about "left" and "right", in \mathbb{R}^{2} one can imagine "clockwise" and "anti-clockwise", and in \mathbb{R}^{3} we can imagine "right-handed" and "lefthanded". If we consider an $(n-1)$-manifold in \mathbb{R}^{n}, we picture an orientation on \mathcal{M} as a unit normal vector field to \mathcal{M}.
$(p ; n-1)$

$$
\mathcal{M} \quad(n-1)
$$

linear subspace of $T_{p} \mathcal{M}$ of dimension $(n-1)$. Then n is uniquely determined up to a sign. Let a local coordinate chart be given as in 1.2. We specify the sign by requiring that the frame $\left(\vec{n}, \frac{\partial \phi_{\alpha}}{\partial x_{1}}, \ldots, \frac{\partial \phi_{\alpha}}{\partial x_{n} 1}\right)$ be right-handed. Meaning that the matrix $\left[\vec{n} D \phi_{\alpha}\right]$ has positive determinant.

A consequence of Definition 3.0.4 is that when integrating an $(n-1)$ form over a manifold with boundary with induced orientation, we also take into account the parity of n. This can be formulated as the following theorem that we state without proof. Fong18]

Theorem 3.0.5. Given a positively oriented local coordinate chart $G\left(u_{1}, \ldots, u_{n}\right)$: $\mathcal{V} \rightarrow \mathcal{M}$ of boundary type. Then $\left(u_{1}, \ldots, u_{n-1}\right)$ is positively oriented if n is even and negatively oriented if n is odd. Therefore when integrating an ($n-1$)-form $\omega d u_{1} \wedge \ldots \wedge d u_{n-1}$ on $\partial \mathcal{M}$ we have that

$$
\int_{G(\mathcal{V}) \cap \partial \mathcal{M}} \omega d u_{1} \wedge \ldots \wedge d u_{n-1}=(-1)^{n} \int_{\mathcal{V} \cap\left\{u_{n}=0\right\}} \omega d u_{1} \wedge \ldots \wedge d u_{n-1}
$$

Theorem 3.0.6. If \mathcal{M} is an orientable m-manifold with non-empty boundary, then $\partial \mathcal{M}$ is orientable.

A proof of this is found in Munk91.
\qquad

Now for each i, the product $d u_{1} \wedge \ldots \wedge d u_{i-1} \wedge d u_{i+1} \wedge \ldots \wedge d u_{n}$ is zero if $j \neq i$. The only sum that will survive as it were, is the one where $j=i$. This reintroduces the $d u_{i}$ to the beginning of the sum. We wish to put it in the order it should be. Thus we make $i-1$ swaps of wedge products and pick up a factor of $(-1)^{i-1}$. Hence we obtain

$$
\begin{aligned}
d \omega & =\sum_{i=1}^{n} \frac{\partial \omega_{i}}{\partial u_{i}} d u_{1} \wedge \ldots \wedge d u_{i-1} \wedge d u_{i+1} \wedge \ldots \wedge d u_{n} \\
& =\sum_{i=1}^{n} \frac{\partial \omega_{i}}{\partial u_{i}} d u_{i} \wedge d u_{1} \wedge \ldots \wedge d u_{n} \\
& =\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial \omega_{i}}{\partial u_{i}} d u_{1} \wedge \ldots \wedge d u_{i} \wedge \ldots \wedge d u_{n}
\end{aligned}
$$

By Definition 2.7.1 we get

$$
\int_{\mathcal{M}} d \omega=\int_{\mathcal{U}} \sum_{i=1}^{n}(-1)^{i-1} \frac{\partial \omega_{i}}{\partial u_{i}} d u_{1} \ldots d u_{n}
$$

The fact that ω has compact support means that there is a number $R>0$ such that $\operatorname{supp} \omega$ is contained inside a rectangle $[-R, R] \ldots \times \ldots \times[-R, R]$ in \mathbb{R}^{n}. Also, outside the support the integral will just be zero. Then using Fubini's theorem we can change the order of integration and summation to produce

$$
\begin{aligned}
\int_{\mathcal{M}} d \omega & =\int_{-R}^{R} \ldots \int_{-R}^{R} \sum_{i=1}^{n}(-1)^{i-1} \frac{\partial \omega_{i}}{\partial u_{i}} d u_{1} \ldots d u_{n} \\
& =\sum_{i=1}^{n}(-1)^{i-1} \int_{-R}^{R} \ldots \int_{-R}^{R} \frac{\partial \omega_{i}}{\partial u_{i}} d u_{1} \ldots d u_{n}
\end{aligned}
$$

Now take the innermost integral. By the Fundamental Theorem of Calculus we obtain

$$
\int_{-R}^{R} \frac{\partial \omega_{i}}{\partial u_{i}} d u_{i}=\left.\omega_{i}\right|_{-R} ^{R}
$$

This pattern will follow for the other integrals. Since $\operatorname{supp}(\omega)$ is contained in a closed box of interior type, the value of all the ω_{i} 's will be zero at $-R$

Integration is linear, so computing the innermost integral produces

$$
(-1)^{n} \int_{-R}^{R} \ldots \int_{-R}^{R} \omega_{n}\left(u_{1}, \ldots, u_{n-1}, 0\right) d u_{1} \ldots d u_{n-1}
$$

We now wish to relate this to

$$
\int_{\partial \mathcal{M}} \omega
$$

for the purpose of showing that the two integrals are indeed equal. On the boundary $\partial \mathcal{M}$ are points where $u_{n}=0$. Hence $d u_{n}=0 \operatorname{across} \partial \mathcal{M}$. We then have that

$$
\begin{aligned}
\omega & =\sum_{i=1}^{n} \omega_{i}\left(u_{1}, \ldots, u_{n-1}, 0\right) d u_{1} \wedge \ldots \wedge d u_{i-1} \wedge d u_{i+1} \wedge \ldots \wedge d u^{n} \\
& =\omega_{n}\left(u_{1}, \ldots, u_{n-1}, 0\right) d u_{1} \wedge \ldots \wedge d u_{n-1} .
\end{aligned}
$$

So consequently we obtain that

$$
\begin{aligned}
\int_{\partial \mathcal{M}} \omega & =\int_{A \cap \partial \mathcal{M}} \omega_{n}\left(u_{1}, \ldots, u_{n-1}, 0\right) d u_{1} \wedge \ldots \wedge d u_{n-1} \\
& =\int_{A \cap\left\{u_{n}=0\right\}} \omega_{n}\left(u_{1}, \ldots, u_{n-1}, 0\right) d u_{1} \ldots d u_{n-1} \\
& =\int_{-R}^{R} \ldots \int_{-R}^{R} \omega_{n}\left(u_{1}, \ldots, u_{n-1}, 0\right) d u_{1} \ldots d u_{n-1}
\end{aligned}
$$

We have gotten that the two sides are exactly equal apart from the factor of $(-1)^{n}$. This factor only takes into account the orientation as per Theorem 3.0.5. We have thus proven the result of step 2 that is

$$
\int_{\partial \mathcal{M}} \omega=\int_{\mathcal{M}} d \omega
$$

Our final case is where we use partitions of unity to prove a more general case of Stokes' theorem.

We take

$$
A=\left\{F_{a}: U_{a} \rightarrow \mathcal{M}\right\}
$$

to be an atlas of \mathcal{M}, by assumption with all positively oriented coordinates. So A contains both interior and boundary types of local parametrizations. Suppose now that

$$
\left\{\rho_{a}: \mathcal{M} \rightarrow[0,1]\right\}
$$

is a partition of unity subordinate to A. We then obtain

$$
\omega=\sum \rho_{a} \omega
$$

since by Definition 1.2.4 $\sum \rho_{a}=1$. Following the same procedure as before we obtain

$$
\begin{aligned}
\sum_{a} \int_{\partial \mathcal{M}} \rho_{a} \omega & =\sum_{a} \int_{\mathcal{M}} d\left(\rho_{a} \omega\right) \\
& =\sum_{a} \int_{\mathcal{M}} d\left(\rho_{a} \wedge \omega+\rho_{a} d \omega\right) \\
& =\int_{\mathcal{M}} d\left(\sum_{a} \rho_{a}\right) \wedge \omega+\left(\sum_{a} \rho_{a}\right) d \omega \\
& =\int_{\mathcal{M}} 0 \wedge \omega+1 d \omega \\
& =\int_{\mathcal{M}} d \omega
\end{aligned}
$$

Since we have that

$$
\sum_{a} \int_{\partial \mathcal{M}} \rho_{a} \omega=\int_{\partial \mathcal{M}} \omega
$$

we finally obtain that

$$
\int_{\partial \mathcal{M}} \omega=\int_{\mathcal{M}} d \omega
$$

Which is what we wanted to show, and the proof is complete.

4.1 Applications of the Generalized Stokes' Theorem in Vector Calculus

In this section we wish to derive two examples of special cases of the Generalized Stokes' Theorem. Namely Green's Theorem and the Divergence Theorem.

We then obtain the final result of

$$
\begin{align*}
\int_{C} P d x+Q d y & =\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x \wedge d y \\
& =\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y \tag{By2.7.1}
\end{align*}
$$

Which is what we wanted to show.
The three-dimensional version of this is the Divergence Theorem due to Gauss.

Theorem 4.1.2. Let D be a closed, bounded and smooth submanifold of \mathbb{R}^{3} and ∂D its boundary. Let

$$
F(x, y, z)=\left(\begin{array}{l}
P(x, y, z) \\
Q(x, y, z) \\
R(x, y, z)
\end{array}\right)
$$

be a smooth vector field defined in D. Then

$$
\iint_{\partial D} F \cdot \nu d S=\iiint_{D} \operatorname{div}(F) d x d y d z
$$

where $\operatorname{div}(F)=\nabla \cdot F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$, and ν is an outward-pointing normal of ∂D.

So in a similar way as with Green's we want to prove this.
Proof. Consider the 2-form $\omega=P \wedge d y \wedge d z+Q \wedge d z \wedge d x+R \wedge d x \wedge$ $d y$. The choice of this form itself comes from the ways to attaching two differentials wedged together to each one of the vector inputs. Taking the exterior derivative gives

$$
\begin{aligned}
d \omega & =\left(\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y+\frac{\partial P}{\partial z} d z\right) \wedge d y \wedge d z \\
& +\left(\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y+\frac{\partial Q}{\partial z} d z\right) \wedge d z \wedge d x \\
& +\left(\frac{\partial R}{\partial x} d x+\frac{\partial R}{\partial y} d y+\frac{\partial R}{\partial z} d z\right) \wedge d x \wedge d y
\end{aligned}
$$

- - -

