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Abstract

The contravariant functor Hom(⇤, D) is additive, and moreover left exact, but is
not exact. In this thesis we define a sequence of functors ExtnR(⇤, D) which in some
sense measure the failure of the hom functor to be exact. The functors ExtnR(⇤, D)
are called the derived functors of Hom. They are defined as the cohomology groups of
the cochain complex Hom(P•, D), where P• is a choice of projective resolution of the
source variable. The definition is independent of the choice of P•, because P• is unique
up to chain homotopy, and cohomology groups are homotopy-invariant.

When the functors ExtnR(⇤, D) are applied to a short exact sequence of modules
they generate a long exact sequence of cohomology groups. The functors ExtnR(⇤, A)
are characterized by this long exact sequence of cohomology groups together with
the natural isomorphisms Ext0R(⇤, D) ⇠= Hom(⇤, D) and ExtnR(Q,D) = 0 when Q is
projective and n > 0.

The functor Hom(⇤, D) is exact if and only if D is injective. It follows that an
R-module D is injective if and only if ExtnR(B,D) = 0 for all modules B and n > 0.

One of the first applications of Ext groups stems from the fact that there is a
bijection between equivalence classes of extensions of A by C and the group Ext1R(C,A).
We can define the bijection  by using the existence of a chain-map ↵n between the
projective resolution PC of C and the extension A by C. Since a chain-map implies
a commuting diagram of the complexes involved, ↵1d2 : P2 ! P1 ! A is equal to
0 : P2 ! 0 ! A and ↵1 can be viewed as an element of the kernel of the induced map

d
⇤
2 : Hom(P1, A) ! Hom(P2, A).

Since ↵1 belongs to the kernel of d⇤2, ↵1 is a representative of a coset in Ext1R(C,A).
The map  is defined by mapping the extension class represented by the extension
A by C to the coset of Ext1R(C,A) represented by ↵1. The inverse of  is defined
by choosing a representative of a coset of Ext1R(C,A) and a projective resolution of
C. Using these two objects an extension A by C is constructed as a second row in
a commutative diagram where all second rows are equivalent extensions. The inverse
then maps the coset represented by ↵1 to the extension class A by C.



Sammanfattning

Den kontravarianta funktorn Hom(⇤, D) är additiv och vänsterexakt men inte ex-
akt. I den här uppsatsen definierar vi en sekvens funktorer, ExtnR(⇤, D), som i viss mån
mäter hur mycket Hom(⇤, D) avviker från att vara exakt. Funktorerna ExtnR(⇤, D) är
definierade som kohomologigrupper av kokedjekomplexet Hom(P•, D). Där P• är va-
let av projektiv upplösning av argumentet. Definitionen är oberoende av val av P• då
homotopiska kedje-homomorfismer är oberoende av val av upplösning och kohomolo-
gigrupper är homotopi-invarianta.

Funktorerna ExtnR(⇤, D) mappar korta exakta sviter av moduler till långa exakta
sviter av kohomologigrupper. Funktorerna Hom(P•, D) karaktäriseras av dessa långa
exakta sviter i kombination med den naturliga isomorfismen Ext0R(⇤, D) ⇠= Hom(⇤, D)
och ExtnR(Q,D) = 0 för en projektiv modul Q och där n > 0.

Funktorn Hom(⇤, D) är exakt om och endast om D är injektiv, vilket innebär att
en R-modul är injektiv om och endast om ExtnR(B,D) = 0 för alla moduler B där
n > 0.

En av de första tillämpningarna av Ext-grupper kommer från det faktum att det
finns en bijektion  mellan ekvivalensklasser av korta exakta sviter och gruppen
Ext1R(C,A). Låt sviten 0 ! A ! B ! C ! 0 representera sin ekvivalensklass. Vi
kan definiera bijektionen  genom att använda kedje-homomorfismen ↵n mellan den
projektiva upplösningen PC av C och den exakta sviten 0 ! A ! B ! C ! 0. Ef-
tersom kedje-homomorfismer innebär ett kommutativt diagram av komplex får vi att
↵1d2 : P2 ! P1 ! A är samma som 0 : P2 ! 0 ! A vilket innebär att ↵1 tillhör
kärnan av homomorfismen

d
⇤
2 : Hom(P1, A) ! Hom(P2, A).

Då ↵1 tillhör kärnan av d
⇤
2, representerar ↵1 en sidoklass i Ext1R(C,A) och  definieras

sedan genom att ekvivalensklassen 0 ! A ! B ! C ! 0 mappas till den sidoklass
som representeras av ↵1. Inversen till  definieras genom att först välja en representat
av sidoklassen Ext1R(C,A) och därefter en projektiv upplösning av C. Sedan väljs en
homomorphism ↵1 som representerar den valda sidoklassen av Ext1R(C,A) och utifrån
den och den valda resolutionen skapas ett kommutativt diagram av två korta exakta
sviter där den andra raden alltid representerar ekvivalensklassen 0 ! A ! B ! C ! 0.
Inversen mappar sedan sidoklassen representerad av ↵1 till den korta exakta sviten i
andra raden av diagrammet.
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1 Introduction

The following sections are a compilation of definitions and theorems leading up to the
statements characterizing the functors Extn

R
(⇤, A), the characterization of injective modules

by Extn
R
(⇤, A) and finally the definition of the bijection between the set of equivalent

extensions of A by C and the group Ext1
R
(C,A).

We start by defining modules in section 2, in particular we define direct sums of modules,
free modules and projective modules. We also show that Hom-sets under point-wise addition
are additive abelian groups. This section might seem a bit too fundamental but the basics
are included for two reasons: The first is for reference and the second is for context since
basic qualities such as freeness and direct sums of modules or additivity of homomorphisms
are central throughout the text.

We move on to exact sequences/extensions in section 3, we show how quotient modules
can be written as exact sequences and we define split exact sequences. We define equivalent
extensions and we prove the Snake Lemma. We also show how to derive exact sequences of
Hom-groups from exact sequences of modules and we define injective modules.

In Section 4 we generalize the concept of exactness and define complexes. We show that
complexes share the properties of modules and that there are direct sums and short exact
sequences of complexes. We use the Snake Lemma to prove the Horseshoe Lemma which
shows how we can derive a short exact sequence of complexes from a short exact sequence
of modules. We define projective resolutions of modules and show that there always exist
a chain-map of resolutions given homomorphism of modules.

We then define cohomology groups, Hn-groups, from complexes in section 5, and we
use the Snake Lemma once again to show that a short exact sequence of cochain complexes
induces a long exact sequence of cohomology groups

In section 6 we define additive categories and additive functors and show that they
preserve direct sums, complexes and homotopic chain maps.

Finally in section 7 we define the additive contravariant functor Hom(⇤, B) and the
additive functor H

n in order to define the derived functor Extn
R
(⇤, A). We use the Long

Exact Sequence of Cohomology to derive the long exact sequence of Ext-groups and we state
the axioms characterizing Extn

R
(⇤, A). We then use Extn

R
(⇤, A) to characterize injective

modules and lastly we define the bijection of equivalent extensions A by C and the group
Ext1

R
(C,A).

2 Modules

2.1 Some Definitions and Properties

A left module or a right module is an abelian group on which a ring acts from the left or
from the right respectively. For commutative rings, the notions of left and right module are
equivalent and are referred to simply as an R-module. We will not assume that rings are
commutative, and adopt the convention that unless said otherwise, "module" means "left
module".

1



Definition 2.1. Let R be a ring with a 1. A left R-module or a left module over R is
a set M together with

(1) a binary operation + on M under which M is an abelian group, and

(2) an action of R on M (that is, a map R⇥M ! M) denoted rm for all r 2 R and for
all m 2 M which satisfies

(a) (r + s)m = rm+ sm, for all r, s 2 R, m 2 M

(b) r(m+ n) = rm+ rn for all r 2 R, m,n 2 M

(c) (rs)m = r(sm) for all r, s 2 R, m 2 M

(d) 1m = m for all m 2 M.

[1, pg. 337, Definition, Sec. 10.1]

Right modules are defined analogously. Let M be an R-module and let R0 be the zero
of the ring R and 0M the zero of M as an abelian group then

(i) R0m = 0M and

(ii) (�1)m = �m

for all m 2 M . This is due to the distributivity axiom in 2(a), since

(R0 +R 0)m = R0m,

and so R0m = 0M . With the help of 2(d) we then get

R0m = (1 + (�1))m = m+ (�1)m = 0M

and (�1)m = �m.

Example 2.2. (i) Abelian groups are Z-modules. Let r,�r 2 Z and let a 2 A where A

is an additive abelian group. If we define an action of Z on A by

ra 7! a+ a+ ...+ a,

the axioms of Definition 2.1 (2) are immediately satisfied for all positive integers. It
follows that (i) in the text above also holds and if we introduce the negative integers
so does (ii) and the action of �r on A becomes

�ra = r(�1)a = r(�a) 7! (�a) + (�a) + ...+ (�a).

The axioms of Definition 2.1 (2) are immediately satisfied for all negative integers and
A is a Z-module. [3, pg.289, Example B-1.19 (ii), Ch. B-1] [3, pg.132-133, Proposition
A-4.20, Ch. A-4]

(ii) Any ring R is an R-module where R acts upon itself by multiplication. Depending on
whether R acts on itself from the left or the right it is either a left module or a right
module and unless the ring is commutative these modules have different structures.
[1, pg. 338, Example (1), Sec. 10.1]

(iii) The zero module is the trivial module containing only the zero element, {0}.
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2.1.1 R-module Homomorphisms and Hom-sets

Definition 2.3. Let R be a ring and let M and N be R-modules.

(i) A map f : M ! N is an R-module homomorphism if it respects the R-module
structures of M and N , i. e.

(a) f(x+ y) = f(x) + f(y) for all x, y 2 M and
(b) f(rx) = rf(x), for all r 2 R, x 2 M

(ii) If f : M ! N is an R-module homomorphism, let

(a) ker f = {m 2 M | n = '(m) = 0} be the kernel of f, let
(b) im f = {n 2 N | n = f(m) for some m 2 M} be the image of f.

(iii) Define HomR(M,N) to be the set of all R-module homomorphisms from M into N .

[1, pg. 345, Definition (1),(3),(4), Sec. 10.2]

An R-module homomorphism which is both onto and one to one is called an R-module
isomorphism. We will sometimes refer to R-module homomorphisms as R-maps.

Definition 2.4. Let A and B be R-modules for some ring R. The zero map, 0 : A ! B

is defined by 0 : a 7! 0B for all a 2 A.

The set of all R-module homomorphisms, HomR(M,N), is an abelian group under
pointwise addition.

Proposition 2.5. Let M, N and L be R-modules.

(i) Let ', be elements of HomR(M,N) define '+  by

('+  )(m) = '(m) +  (m) for all m 2 M

Then ' +  2 HomR(M,N) and with this operation HomR(M,N) is an abelian

group.

(ii) If ' 2 HomR(L,M) and  2 HomR(M,N) then  ' 2 HomR(L,N).

(iii) Let HomR(M 0
,M) and HomR(N,N

0) be Hom-sets equipped with the addition de-

fined in (i). Let p 2 HomR(M 0
,M) and q 2 HomR(N,N

0) then for any f, g 2
HomR(M,N),

(a) (f + g)p = fp+ gp,

(b) q(f + g) = qf + qg.

(iv) With addition as above and multiplication defined as a function composition,

HomR(M,M) is a ring with a 1.
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Proof. (i) Let the additive identity be the zero map, and the inverse of f(m) be �f(m).
Then all the axioms of an additive group follows from N being an additive abelian
group since f(m) 2 N .

(ii) It suffices to show  '(rx + y) = r '(x) +  '(y) since r = 1 implies  ' is a homo-
morphism and y = 0 implies commutativity with R. From (i) and the definition of
R-module homomorphisms we get,

 '(rx+ y) =  ('(rx+ y)) =  ('(rx) + '(y))

=  (r'(x) + '(y)) = r '(x) +  '(y).

(iii) This follows immediately from (i) and the definition of an homomorphism:

(a) Let b 2 M
0 then

(f + g)p(b) = f(p(b)) + g(p(b))

and so (f + g)p = fp+ gp.
(b) Let a 2 N

0 then

q(f + g)(a) = q(f(a) + g(a)) = q(f(a)) + q(g(a))

and so q(f + g) = qf + qg.

(iv) Function composition is closed since the domain and codomain are the same for all
f 2 HomR(M,M) and it is binary according to (ii). The multiplicative identity is
the identity homomorphism. Composition is associative in general and distributivity
is shown in (iii).

[1, pg. 346, Proposition 2, (2), (3), (4), Sec. 10.2], [2, pg. 39 Lemma 2.3, Ch. 2.1]

We can mention that there is additional structure to HomR(M,N) besides being an
abelian group. Let f 2 HomR(M,N) and z 2 Z(R), the center of R and define zf by

(zf)(m) = zf(m)

for all m 2 M . This action on f by z turns HomR(M,N) into a Z(R)-module: zf commutes
with r 2 R since f and z commutes with r:

(zf)(rm) = zf(rm) = zr(f(m)) = rz(f(m)) = r(zf)(m),

and zf is a R-homomorphism since f is a R-homomorphism:

(zf)(rm+m
0) = zf(rm+m

0)

= z(f(rm) + f(m0))

= zf(rm) + zf(m0)

= (zf)(rm) + (zf)(m0)

= r(zf)(m) + (zf)(m0).
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Since (zf) 2 HomR(M,N), (zf)(m) 2 N and the axioms for a module then follows from
N being an R-module. Commutativity of Z(R) is the key to HomR(M,N) being a Z(R)-
module and it follows that if R is commutative HomR(M,N) is an R-module. We will
however view the Hom-sets of modules mainly as abelian groups throughout the text. [1,
pg. 346-347, Proposition 2 (2), Sec. 10.2], [2, pg.39, Proposition 2.4(ii), Ch. 2.1 ]

Below are some useful examples regarding Hom-set isomorphisms. Note that the exam-
ples applies to finite cyclic groups in general, since all finitely generated cyclic groups are
isomorphic to Z or quotients of Z, [3, pg. 163-164, Example A-4.74, Chapter A-4].

Example 2.6.

(i) The group Hom(Z, D) is isomorphic to D. Since Z = h1i any f 2 Hom(Z, D) is
completely determined by f(1) since for any n 2 Z, n = 1 + 1 + ... + 1 n times we
have

f(n) = f(1 + 1 + ...+ 1) = f(1) + f(1) + ...+ f(1) = nf(1).

And so every f is uniquely defined by an element d 2 D for which f(1) = d and
f(n) = nd. Conversely for every d 2 D you can define a homomorphism such that
f(1) = d and this gives us an isomorphism Hom(Z, D) ! D defined by fd 7! d.

(ii) The group Hom(Z/mZ, D) is isomorphic to mD = {x 2 D | mx = 0}. Similar to
the example above, any f 2 Hom(Z/mZ, D) is determined by f(1̄) since 1̄ generates
Z/mZ. But unlike Z, Z/mZ has finite order and since m(1̄) = 0Z/mZ,

mf(1̄) = f(m̄) = 0D

and any x 2 D for which f(1̄) = x needs to satisfy mx = 0D. It follows that
f(1̄) 2 mD and Hom(Z/mZ, D) ⇠= mD.

2.1.2 Submodules

A submodule S of M is a subgroup S of M closed under the action of R. A way of creating
submodules is to take a subset A of a module M and then forming all R-linear combinations
of the elements of A. A submodule N of M may have many different generating sets, N is
for instance always generated by itself.

Definition 2.7. Let M be an R-module and let N1, N2, ..., Nn be submodules of M.

(i) The sum of N1, ...., Nn is the set of all finite sums of elements from the sets Ni:
{a1 + a2 + ...+ an | ai 2 Ni for all i}. Denote this sum by N1 + ....+Nn

(ii) For any subset A of M let RA = {r1a1+r2a2+...+rmam | r1, ...rm 2 R, a1, ..., am 2
A,m 2 Z+} (where by convention RA = 0 if A = ;). Call RA the submodule of
M generated by A. If N is a submodule of M (possibly N = M) and N = RA, for
some subset A of M , we call A a a set of generators or a a generating set for
N , and we say N is generated byA.
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(iii) A submodule N of M (possibly N = M) is finiteley generated if there is some
finite subset A of M such that N = RA, that is if N is generated by some finite
subset.

[1, pg. 351, Definition (1), (2), (3), Sec. 10.3]

Example 2.8.

(i) Let f : M ! N be a R-homomorphism then the kernel of f is a submodule of M
and the image of f is a submodule of N . We will show that they are closed under the
action of R: Let a 2 ker f then

f(ra) = rf(a) = 0,

and so ra 2 ker f . Let b 2 M then

f(rb) = rf(b)

and rb is in the image of f .

(ii) A module generated by one element is a cyclic module. For example is the ring R as
an R-module over itself cyclic where R = h1i since r1 = r for all r 2 R. The principal
ideals of R are then cyclic submodules of R as an R-module since rI = I for all r 2 R.

2.1.3 Quotient Modules

Since R-modules are additive abelian groups every submodule is also a subgroup and every
R-module homomorphisms is also a group homomorphism. It follows that there exists an
abelian quotient group M/N and also a natural group homomorphism M ! M/N for any
module M with any submodule N . By defining an action of the ring R and check that
it satisfies the axioms in Definition 2.1 and 2.3 (i)(b) we can extend quotient groups and
group homomorphisms to quotient modules and module homomorphisms.

Proposition 2.9. Let R be a ring, let M be an R-module and let N be a submodule of M .

The (additive, abelian) quotient group M/N can be made into an R-module by defining an

action of elements of R by

r(x+N) = (rx) +N, for all r 2 R, x+N 2 M/N.

The natural projection map ⇡ : M ! M/N defined by ⇡(x) = x + N is an R module

homomorphism with kernel N .

Proof. [1, pg. 348, Proposition 3, Sec. 10.2]

Definition 2.10. Let f : M ! N be a R-module homomorphism then the cokernel of f
is the quotient N/im f .

Proposition 2.11. Let f : M ! N be an R-module then

6



(i) f is injective if and only if ker f = 0 and

(ii) f is surjective if and only if coker f = 0.

Proof. The proof is the same as for abelian groups.

By first referring to the corresponding theorems for abelian groups and then checking
that the group homomorphism holds under the action of R we can extend all the isomor-
phism theorems for groups to include modules and module homomorphisms. The first
isomorphism theorem for modules will be of importance in the following sections.

Theorem 2.12. (The First Isomorphism Theorem for Modules) Let M and N be R-

modules, and let f : M ! N be an R-module homomorphism, then M/ker f ⇠= im f .

Proof. The First Isomorphism Theorem for groups say that given a homomorphism of
abelian groups f : M ! N ,

' : M/ker f ! im f

m+ ker f 7! f(m)

is an isomorphism of abelian groups. If we can show that '(rx) = r'(x) for x 2 M/ker f ,
then ' is an R-mod isomorphism. We have that

'(rx) = 'r(m+ ker f) = '(rm+ ker f) = f(rm),

and since f is an R-homomorphism we get

f(rm) = rf(m) = r'(m+ ker f) = r'(x).

[1, pg. 349, Theorem 4, Sec. 10.2]

Let R be an R-module over itself and let I be an ideal of R then the quotient R/I is a
cyclic R-module generated by 1 + I since

r(1 + I) = r + I

for all r 2 R. We can use the First Isomorphism Theorem to show that any cyclic R module
M is isomorphic to a quotient R/I.

Example 2.13.

Let M be a cyclic R-module generated by x and let f be a map

f : R ! M

r 7! rx.

The map f is an R-homomorphism since f(r0r) = r
0
rx = r

0
f(r). We have that f is

surjective since M = Rx and the kernel of f is an ideal I of R. By the First Isomorphism
Theorem we then have R/I ⇠= M . In particular if R = Z then I = nZ for some n 2 Z and
M ⇠= Z/nZ.
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2.2 Direct Products and Direct Sums

The direct product of a set of R-modules, finite or infinite, is their Cartesian product
together with coordinatewise addition and the action of multiplication of R. Given a finite
set of modules, M1,M2, ...Mk, their (external) direct sum, denoted M1 �M2 � ...�Mk, is
defined as their direct product. In the case of an infinite set of modules, (Ai : i 2 I) where I

is an index set, their (external) direct sum,
L

i2I Ai, is a submodule of their direct product,Q
i2I Ai, consisting of the I-tuples which have a finite number of nonzero coordinates. In

this and in the following sections however direct sums will be of a finite set of modules
and therefore we will equate the external direct sum of a set of modules with their direct
product.

The direct product of modules is a module.

Definition 2.14. Let M1, ....,Mk be a finite collection of R-modules. The collection of k-
tuples m1,m2....,mk where mi 2 Mi with addition and action of R defined componentwise
is called the direct product of M1, ....,Mk, denoted M1⇥ ....⇥Mk. [1, pg. 353, Definition,
Sec. 10.3]

Closely related to the external direct sum is the internal direct sum.

Definition 2.15. Let S1, S2, ...Sk be submodules of M . Then M is their internal direct
sum,

M = S1 � S2 � ...� Sk, (1)

if each m 2 M has a unique expression of the form m = s1 + s2 + ...+ sk, where si 2 Si for
all i 2 1, 2, ..., k. Each submodule Si in (1) is called a summand of M .

A direct product, M = M1 ⇥M2 ⇥ ... ⇥Mk, can be written as an internal direct sum
of submodules, S1 � S2 � ...� Sk, Si 2 M . Let

Si = {(0, 0, .., xi, .., 0) | xi 2 Mi},

Si is clearly a submodule of M . Let si = (0, 0, .., xi, .., 0) due to the addition on M every
sum

kX

i=1

si = (x1, 0, .., 0) + ...+ (0, .., xn, .., 0) + ...+ (0, .., 0, xk) (2)

is an element of M and since the map ⇡ : Si ! Mi defined by (0, 0, .., xi, .., 0) 7! xi is a
bijection, every element m 2 M can be written as a sum (2) and we have that M =

P
k

i=1 Si.
The sum (2) is unique for each m, to see this let m =

P
k

i=1 si and m =
P

k

i=1 s
0
i
, then for

all j 2 1, 2, ..k,

sj � s
0
j =

X

i 6=j

(s0i � si) 2 Sj \ S1 + S2 + ...+cSj + ...+ Sk = {0},

and sj = s
0
j
. Note that the bijection ⇡ implies there exists an injection Si ! M and a

surjection M ! Si defined by

(x1, .., xi, .., xk) 7! (0, ..., xi, ..., 0).
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For a module M isomorphic to the direct product of two modules we have the equivalent
statements of the proposition below.

Proposition 2.16. Let M,M1 and M2 be left R-modules. The following statements are

equivalent :

(i) M1 ⇥M2
⇠= M

(ii) There exists injective R-maps ◆1 : M1 ! M and ◆2 : M2 ! M such that

M = im ◆1 + im ◆2 and im ◆1 \ im ◆2 = 0.

(iii) There exists R-maps ◆1 : M1 ! M and ◆2 : M2 ! M such that, for every m 2 M ,

there are unique x1 2 M1 and x2 2 M2 with m = ◆1(x1) + ◆2(x2).

(iv) There are R-maps ◆1 : M1 ! M and ◆2 : M2 ! M called injections, and R-maps

⇢1 : M ! M1, ⇢2 : M ! M2 called projections, such that

⇢i◆i = 1Mi , ⇢i◆j = 0 where i 6= j, ◆1⇢1 + ◆2⇢2 = 1M ,

where i, j 2 1, 2.

(v) There exists R-maps ⇢1 : M ! M1, ⇢2 : M ! M2 such that the map  : M !
M1 ⇥M2, is an isomorphism.

Proof. For full proof see [2, pg. 48, Proposition 2.20, Sec. 2.1]

We will refer to internal direct sums only as direct sums from now on.

Definition 2.17. A submodule S of a left R-module M is a direct summand of M if there
exists a submodule T of M with M = S � T . The submodule T is called a complement
of S.

Let M , M1 and M2 be the modules in in Proposition 2.16. The identity map

⇢1◆1 = 1M1 : M1 ! M ! M1

suggest that ⇢1 when restricted to the image of ◆1 is the inverse of ◆1. It follows that there
exists a map

◆i⇢1 : M ! M1 ! im ◆1

m1 7! m1

whose kernel is the image of ◆2 since ⇢1◆2 = 0 and any other m 6= 0 not in the image of ◆2
is in the image of ◆1. We then have that

M = im ◆1 � im ◆2 = im ◆1⇢1 � ker ◆1⇢1.

The map ◆1⇢1 : M ! im ◆1 is called a retraction and given a direct sum of two modules
there exists two retractions where one implies the other. The Proposition below shows that
the opposite is also true. If there exists a retraction r : M ! S

0 where S
0 is a submodule

of M ; M = im r � ker r = S
0 � ker r.

9



Proposition 2.18. A submodule S of a left R-module M is a direct summand if and only

if there exists an R-map r : M ! S called a retraction, with r(s) = s for all s 2 S. The

submodule S is then called a retract.

Proof. We have already shown that given a direct sum there exists a retraction. For the
opposite, given a retraction r we will show that M = S + ker r where S \ ker r = {0}. Let
m 2 M then m = (m� s) + s which we can write

m = (m� r(m)) + r(m).

Since r(m) 2 S and r(s) = s we have that r(r(m)) = r(m) and so r(m) � r(r(m)) = 0,
that is, r(m� r(m)) = 0 and m� r(m) 2 ker r. And we have M = S + ker r. For s 2 S,
r(s) = 0 if and only if s = 0 and so S \ ker r = {0}. [3, pg. 325, Corollary B-2.15, Ch.
B-2]

Below is a Proposition which shows that the direct sum satisfies the universal property of
both a (categorical) product and a (categorical) coproduct which will be defined in section
6.

Proposition 2.19. Let M1, M2 be left R-modules and let M ⇠= M1 ⇥M2. Given any two

left R-modules X1, X2 together with any two pair of homomorphisms; f1, g1 and f2, g2,

there exists two unique homomorphisms; ✓1 = ◆1f1+ ◆2g1 and ✓2 = f2⇢1+g2⇢2 which makes

the diagrams below commute:

M1 M
⇢1
oo

⇢2
//M2

X1

✓1

OO

g1

==

f1

aa

(3) M1

f2
!!

◆1
//M

✓2

✏✏

M2
◆2

oo

g2
}}

X2.

(4)

Proof. We use the equivalent statements (iii), (iv) of Proposition 2.16. To show commu-
tativity in diagram (3) we have for x 2 X1,

⇢1✓1(x) = ⇢1◆1f1(x) + ⇢1◆2g1(x) = 1M1f1(x) = f1(x),

and in the same manner is ⇢2✓1(x1) = g1(x1) and diagram (3) commutes. Let  : X1 ! M ,
given that diagram (3) commutes we have ⇢1 = f1 which gives us ◆1⇢1 = ◆1f1 after
composing with ◆1. In the same way ◆2⇢2 = ◆2g1. We then have, since all maps are
R-maps,

(◆1⇢1 + ◆2⇢2) = ◆1f1 + ◆2g1

1M = ◆1f1 + ◆2g1

 = ◆1f1 + ◆2g1 = ✓1,

and we have shown uniqueness of ✓1. In diagram (4) we get for all s 2 M1,

✓2◆1(s) = f2⇢1◆1(s) + g2⇢2◆1(s) = f21M1(s) = f2(s),
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and similarly ✓2⇢2(t) = g2(t) for all t 2 M2 and the diagram commutes. To show uniqueness,
let  : M ! X2. Given that diagram (4) commutes we have that  ◆1 = f2 and so
 ◆1⇢1 = f2⇢1 and in the same way  ◆2⇢2 = g2⇢2, and we get

 (◆1⇢1 + ◆2⇢2) = f2⇢1 + g2⇢2

 1M = f2⇢1 + g2⇢2

 = f2⇢1 + g2⇢2 = ✓2

[2, Proposition 5.1, Proposition 5.8, pg. 214-215, 218-219, Section 5.1] (The proof for
Proposition in 5.8 is relating the direct sum A � B to the Cartesian product A ⇥ B with
canonical injections ◆ : a ! (a, 0) and projections ⇢ : (a, b) ! a, the proof defines ✓ :
(a, b) 7! f(a) + g(b) which is analogous to ✓2 : m 7! f2⇢1(m) + g2⇢2(m), m 2 M in the
proof above).

In Example 2.13 we saw that cyclic R-modules are isomorphic to quotients R/I. Accord-
ing to The Existence Theorem if R is a PID any finitely generated R-module is isomorphic
to a direct sum of cyclic modules.

Example 2.20. Let G be a finitely generated R-module then

G ⇠= R
r �R/ha1i �R/ha2i � ...�R/hani (5)

where haii is the ideal in R generated by ai and where all ai satisfy the divisibility rela-
tion a1 | a2 | · · · | an [1, pg. 462-463, Theorem 5, ch. 12]. In particular there exists a
decomposition for a finitely generated Z-module H,

H ⇠= Zr � Z/n1Z � Z/n2Z � · · ·� Z/nkZ,

where r and ni are integers, r > 0 and ni � 2 and nk | · · · | n2 | n1 [1, p. 158-159, Theoreom
3, ch. 5].

2.3 Free And Projective Modules

Let F be a left R-module generated by a finite set A = {a1, a2, ..., am};

F = RA = {r1a1 + r2a2 + ...+ rmam | r1, ..., rm 2 R, a1, ..., am 2 A}.

If every element x 2 F can be uniquely written as a sum with respect to the elements of
R as well as A then A is a basis for F and F is a free module with basis A, denoted F (A).
Since each x 2 F (A) can be uniquely written as a sum, x = r1a1 + r2a2 + ...+ rmam, F (A)
is equal to the direct sum,

Ra1 �Ra2 � ...�Ram,

and since each Rai
⇠= R (by the map rai 7! r), F (A) ⇠= R

m and we can view F (A) as a
direct sum of m copies of R. Equivalently we can view F as a direct sum of cyclic modules
since Rai is the cyclic module generated by the element ai and we can write F as the direct
sum:

ha1i � ha2i � ...� hami
where ai 2 A and each ha1i ⇠= R. Should R be replaced by a field, k, F (A) would be the
same as the vector space over k with basis A.

11



Definition 2.21. An R-module F (A) is said to be free on the subset A of F if for every
element x of F (A) there exist unique elements r1, r2, ..., rn of R and unique a1, a2, ..., an in
A such that x = r1a1 + r2a2 + ...+ rnan for some n 2 Z+. In this situation we say A is a
basis or a set of free generators for F (A). [1, Definition, pg. 354]

Example 2.22. (i) Direct sums of free modules are free modules. Let Fi be an indexed
set of free modules with basis Xi, then a basis for the direct sum

L
i

Fi is the union

of the sets Xi.

(ii) A ring R is a free module over itself with the identity as a basis since R1 = R.

(iii) Z/mZ is not free as a Z-module since for any element x, mx = 0 and m 6= 0 in Z.

(iv) For PIDs a submodule of a free module is always free [3, pg. 331-332, Thm B-2.28,
Ch. b-2]. But for a general ring it is not true. For example, Z/6Z is a free module
over itself, but Z/3Z is a submodule of Z/6Z that is not free over Z/6Z.

Given a left R-module M and a set map from a set A to M , there exists an unique
R-module homomorphism from the free module with basis A to the module M . Applied
to vector spaces V and W over some field, the theorem underlie the unique linear transfor-
mation defined by mapping the set of basis elements in V to any set of vectors in W .

Theorem 2.23. (The Universal Property of Free Modules) For any set A there is a free

R-module F (A) on the set A and F (A) satisfies the following universal property: if M

is any R-module and ' : A ! M is any map of sets, then there is an unique R-module

homomorphism � : F (A) ! M such that �(a) = '(a), for all a 2 A, that is, the following

diagram commutes.

A

'

''

inclusion
// F (A)

�

✏✏

M

(6)

Proof. See [1, pg. 354, Theorem 6, Sec. 10.3]

Proposition 2.24. Let M and N be R-modules and let ' : M ! N be a surjective

homomorphism. Let P be a direct summand of a free module, then for every R-module

homomorphism f from P into N there exists a homomorphism f
0
from P into M such that

the following diagram commutes.

P

f

✏✏

f
0

~~

M
'
// N

(7)

Proof. Let F (S) be a free module generated from a set S and let P �K = F (S). Let ⇢ be
the projection of F (S) onto P so that the composition f⇢ becomes a homomorphism from
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F (S) to N ,
F (S) = P �K

⇢

✏✏

P

f

✏✏

M
'

// N.

(8)

Let f⇢(s) = ns, for s 2 S and some ns 2 N . Since ' is surjective there exists an element
ms 2 M such that '(ms) = ns. By the Universal Property of Free Modules there is a
unique R-module homomorphism f

00 from F (S) to M with f
00(s) = ms;

F (S) = P �K

f
00

��

⇢

✏✏

P

f

✏✏

M
'

// N.

(9)

We get that 'f 00(s) = '(ms) = ns = f⇢(s) and so 'f
00 = f⇢ which makes the diagram

above commutative. Define a map f
0 : P ! M by f

0(x) = f
00
◆(x), x 2 P . Since f

0 is the
composite of the injection ◆ : P ! F (S) and f

00, f 0 is an R-homomorphism;

F (S) = P �K

f
00

��

⇢

✏✏

P

◆

OO

f
0

ww

f

✏✏

M
'

// N.

(10)

We then have that
'f

0(x) = 'f
00
◆(x) = f⇢◆(x) = f(x)

and the diagram (7) commutes. [1, pg. 389-390, Proposition 30 (4) and (2), Sec. 10.5]

Free modules and summands of free modules are projective modules.

Definition 2.25. Let ⇡, f, f 0 and g, g
0 be R-homomorphisms whose domain and range is

indicated in the diagrams below.

(i) A map f
0 lifts f to M if for f : D ! N and f

0 : D ! M , ⇡f 0 = f

D

f

✏✏

f
0

}}

M
⇡
// N.

(11)

The map f
0 is called a lifting of the map f .
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(ii) A map g
0 extends g to N if for g : M ! D and g

0 : N ! D, g0⇡ = g

M
⇡
//

g

✏✏

N

g
0

~~

D.

(12)

The map g
0 is called an extension of the map g.

[2, Definition, pg 99, Sec. 3.1], [1, pg 386, Sec. 10.5]

Definition 2.26. A module P is projective if, for every surjective homomorphism ' :
M ! N and every homomorphism f : P ! N , f has a lift f

0 : P ! M . That is, there
exists a map f

0 for each map f such that the diagram below commutes.

P

f

✏✏

f
0

~~

M
'
// N

(13)

[2, Definition, pg 99, Sec. 3.1]

From Theorem 2.23 we have that free modules are projective and from Proposition 2.24
we have that summands of free modules are projective.

Corollary 2.27.

(i) Free modules are projective.

(ii) A finitely generated module is projective if and only if it is a direct summand of a

finitely generated free module.

(iii) Every direct sum of projective modules are projective.

Proof. (i) This is a special case of Proposition 2.24 where we let P be a free module,
since a free module is always a summand of a free module, see Example 2.22(i).

(ii) We have shown in Proposition 2.24 that a direct summand of a free module is projec-
tive. To show that a finitely generated projective module is a summand of a finitely
generated free module: Let P be a projective module with generating set P

0. Let
F (P 0) be a free module with basis P

0 and let ' be the surjective map F (P 0) ! P

mapping P
0 to P

0. Since P is projective there exists a lift f
0 such that the diagram

P

idP

✏✏

f
0

||

F (P 0)
'
// P

(14)

commutes. We then have that 'f 0 = idP which directly implies that f
0 is injective

but also that f
0
' : F (P 0) ! im f

0
' is a retraction, see the text following Definition

2.17. And so F (P 0) = im f
0
'� kerf 0

' = im f
0 � ker ' ⇠= P � ker '.

14



(iii) We will show this for a sum of two modules, for a proof of an arbitrary sum of modules
see [2, pg. 102, Cor. 3.6 (ii), Ch. 3.1]. Let P1 and P2 be projective. According to
(ii) there exists free modules such that F1 = P1 �Q1 and F2 = P2 �Q2. Let X1 be
a basis for F1 and X2 a basis for F2. We have that F1 � F2 is free since a basis is
X

0
1[X

0
2 where X

0
1 = {(x1, 0) | x1 2 X1} and X

0
2 = {(0, x2) | x2 2 X2}. Then we have

that

F1 � F2 = (P1 �Q1)� (P2 �Q2)

= (P1 � P2)� (Q1 �Q2)

and so P1 � P2 is a summand of a free module and as such a projective module.

Another consequence of the Universal Property of Free Modules is that every module
is a quotient of a free module.

Corollary 2.28. Every left R-module M is a quotient of a free module F .

Proof. Let M be a left R-module and let X be a generating set of M , then, according to
Theoreom 2.23, the diagram,

X

'

''

inclusion
// F (X)

�

✏✏

M.

(15)

commutes and �(x) = '(x). Since X is a subset of M , ' is an inclusion and �(x) =
'(x) = x and so X is in the image of � and since X generates M , � is surjective. Using
the isomorphism theorem we get that F (X)/ker � ⇠= M and M is a quotient of F (X).

3 Exact Sequences

In the first part of this section we will define exact sequences of modules, also called ex-
tensions, and we will define what it means for these sequences to be equivalent. We will
then state and prove two lemmas: The first is Lemma 3.9 which we will use in the proof
of Theorem 7.12, the final Theorem in this text. The second lemma is the Snake Lemma
3.10 which we will use to prove the Horseshoe Lemma 4.13 and The Long Exact Sequence
of Cohomology, Theorem 5.6.

In the second part we define induced exact sequences of Hom-sets. This will later be
used to define the contravariant Hom-functor in section 7.1.1.

3.1 Exact Sequences

A surjective R-module homomorphism ' : M ! N gives us the relationship N ⇠= M/ker '
by The First Isomorphism Theorem. If we let i be the injection of the kernel of ' into M
and '̄ the quotient map we can restate The First Isomorphism Theorem as a sequence

ker ' i! M
'̄! M/ker ' (16)
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where im i = ker '̄. The sequence (16) is called an exact sequence or more specifically a
sequence exact at M .

Definition 3.1. Let X,Y, Z and L,M,N be left R-modules then:

(i) The pair of homomorphism X
↵! Y

�! Z is exact at Y if im ↵ = ker �.

(ii) A sequence · · · �! Xn+1
fn+1�! Xn

fn�! Xn�1
fn�1�! · · · is an exact sequence if it is

exact at every Xn between a pair of homomorphisms.

(iii) An exact sequence of the form 0 �! L �! M �! N �! 0 is called a short exact
sequence.

A sequence 0 �! L
 �! M

'�! N �! 0 being short exact implies that  is injective
and ' is surjective.

Proposition 3.2. The sequence 0 �! L
 �! M is exact if and only if  is injective and

the sequence M
'�! N �! 0 is exact if and only if ' is surjective.

Proof. The image of the zero homomorphism 0 ! L is 0L, so for the sequence in (i) to be
exact ker  = 0L and this happens if and only if  is injective. The zero homomorphism
N ! 0 maps all of N to 0 so for the sequence in (ii) to be exact im ' = N and this happens
if and only if ' is surjective.

Corollary 3.3.

(i) The sequence 0 �! L
��! M �! 0 is exact if and only if � is an isomorphism.

(ii) The sequence 0 �! L
 �! M

'�! N �! 0 is a short exact sequence if and only if  

is injective, im  = ker ' and ' is surjective.

Proof. (i) The sequence in 0 �! L
��! M �! 0 is exact when it is exact at L and M .

By Proposition 3.2 � is then both injective and surjective and thus an isomorphism.
For the opposite, if � is an isomorphism it is both injective and surjective and by
Proposition 3.2 the sequence is exact.

(ii) This follows directly from Definition 3.1 and Proposition 3.2.

So a sequence
0 �! K

i�! M
'�! N �! 0 (17)

being short exact is equivalent to the quotient M/K being isomorphic to N , in particular
it implies that there is an extension M of K such that M/K ⇠= N . To highlight the latter
the sequence (17) is also called an extension of K by N and there may exists several
extensions K by N .

An exact sequence

· · · �! Xn+1
fn+1�! Xn

fn�! Xn�1
fn�1�! · · ·
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can be written as a succession of short exact sequences. Each Xn is an extension of the
cokernel of fn+1 by the kernel of fn since for each Xn the sequence

0 �! ker fn
i�! Xn

f̄n�! Xn/im fn+1 �! 0

is short exact. Free modules and direct sums can always be extended to short exact se-
quences.

Example 3.4.

(i) According to Corollary 2.28 every left R-module M is a quotient of a free module F ,

M ⇠= F (X)/ker �

where X is a generating set of M and � : F (X) ! M is a surjective homomor-
phism. The free module F (X) can then be extended to a short exact sequence,
0 �! ker � i�! F (X)

��! M �! 0. As an example consider the short exact
sequence

0 �! nZ �! Z �! Z/nZ �! 0

where Z/nZ is generated by 1 and we can view Z as the free module F (1). This
sequence is usually written

0 �! Z n�! Z �! Z/nZ �! 0,

since nZ being a cyclic module of infinite order is isomorphic to Z.

(ii) The trivial extension of the modules A and C is the sequence

0 �! A
↵�! A� C

��! C �! 0,

where ↵ and � are the canonical injection and projection maps, respectively, for a
direct sum. Equivalently, for a module B where B ⇠= A�C, there exists a short exact
sequence,

0 �! A
◆1�! B

⇢2�! C �! 0, (18)

where ◆1 and ⇢2 is the injection and projection maps in Proposition 2.16 (iv).

In the last example above the existence of a surjective homomorphism ⇢1 : B ! A such
that

⇢1◆1 = 1A : A ! B ! A

implies a retraction
◆1⇢1 : B ! A ! im ◆1

⇠= A. (19)

Equivalently an injective homomorphism ◆2 such that

⇢2◆2 = 1C : C ! B ! C,
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implies a retraction
◆2⇢2 : B ! C ! im ◆2

⇠= C. (20)

According to proposition 2.18 equation (19) shows that

B = im ◆1⇢1 � ker ◆1⇢1 = im ◆1 � ker ◆1⇢1

and equation (20) shows that

B = im ◆2⇢2 � ker ◆2⇢2 = im ◆2 � ker ◆2⇢2.

Because the sequence (18) is exact, the image of ◆1 being a summand implies the retraction
◆2⇢2 since the equivalence

im ◆1 = ker ⇢2 = ker ◆2⇢2, (21)

suggests that ⇢2 is a retraction (proposition 2.18) meaning there exists an injection C ! B

implying the retraction (20). Equivalently if ◆2⇢2 is a retraction and ker ◆2⇢2 is a summand,
the equation (21) implies that im ◆1 is a summand and thus there exists a projection ⇢1

such that ◆1⇢1 is the retraction (19). In conclusion, equations (19) and (20) implies one
another and given an exact sequence,

0 �! A �! B �! C �! 0,

if we can find a projection or an injection such that we get the identity map on either A or
C then B is isomorphic to their direct sum.

Proposition 3.5. Let 0 �! L
 �! M

'�! N �! 0 be a short exact sequence. If there

exists a R-map ⇡ : N ! M with '⇡ = 1N or equivalently, a map ⇢ : M ! L with ⇢ = 1L
then M ⇠= L�N and the short exact sequence is split.

Proof. The proof is covered in the text above.

Example 3.6. Let P be a projective module, then every short exact sequence

0 �! A �! B �! P �! 0

is split. Consider the diagram below, according to Corollary 2.27 (ii) there exists a map
⇡ : P �! B such that '⇡ = idP .

P

id

✏✏

⇡

��

0 // A // B
'
// P // 0

and according to Proposition 3.5 the sequence is then split where B ⇠= P � ker '.
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Even though every direct sum implies a split short exact sequence, a short exact sequence
0 �! A

↵�! A � C
��! C �! 0 is not necessarily split. The R-maps ↵ and � can be

defined such that the sequence is exact but not meet the requirements of being split, see
example [2, pg 54, Ch. 2.1].

A short exact sequence can be viewed as a single mathematical object, homomorphisms
between short exact sequences are then defined as follows.

Definition 3.7. Let 0 �! A �! B �! C �! 0 and 0 �! A
0 �! B

0 �! C
0 �! 0 be

two short exact sequences of R-modules. A homomorphism of short exact sequences
consists of a triple of homomorphisms, ↵, �, � such that the following diagram commutes

0 // A

↵

✏✏

// B

�

✏✏

// C

�

✏✏

// 0

0 // A
0

// B
0

// C
0

// 0.

The homomorphism of short exact sequences above is an isomorphism of short exact
sequences when ↵, �, � are all isomorphisms. The modules B and B

0 are then called
isomorphic extensions. [1, pg. 381, Sec. 10.5]

If we let B and B
0 be isomorphic extensions, then the isomorphism of B and B

0 as R-
modules is restricted to an isomorphism on modules A and A

0 and inducing an isomorphism
on the quotients C and C

0. If ↵ = 1A and � = 1C the isomorphism of B and B
0 would

be restricted to the identity on A and C and in this case we call B and B
0 equivalent

extensions.

Definition 3.8. Two extensions A by C are equivalent if there exists an isomorphism
� : B ! B

0 that makes the following diagram commute

0 // A

1A
✏✏

// B

�

✏✏

// C

1C
✏✏

// 0

0 // A // B
0

// C // 0.

The modules B and B
0 are then called equivalent extensions. [1, pg. 381, Sec. 10.5]

It is not hard to see that being equivalent is an equivalence relation on extensions and
we will in Theorem 7.12 define a bijection on the set of equivalence classes of extensions A

by C. The next Lemma will support Theorem 7.12.

Lemma 3.9. Let ⌅ = 0 ! X1 ! X0 ! C ! 0 be an extension X1 by C, given a map

h : X1 ! A, consider the diagram

0 // X1

h

✏✏

// X0
// C

1C
✏✏

// 0

A C.
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(i) There exists a commutative diagram with exact rows which completes the given dia-

gram:

0 // X1

h

✏✏

j
// X0

✏
//

�

✏✏

C

1C
✏✏

// 0

0 // A
i

// B
⌘
// C // 0

(22)

(ii) Any two bottom rows of completed diagrams are equivalent extensions.

Proof. (i) Suppose we define B = A�X0 and define i(a) = (a, 0) and �(b) = (0, b). Then
i would be an injection but the first square in diagram (22) would fail to commute
since for x1 2 X1 we have

ih(x1) = (h(x1), 0)

�j(x1) = (0, j(x1))

and ih(x1) 6= �j(x1). If we instead define B as the quotient (A �X0)/S where S is
the subgroup of A�X1 consisting of all elements

(h(x1), 0)� (0, j(x1)) = (h(x1),�j(x1)) for all x1 2 X1

and let
i(a) = (a, 0) + S and �(x0) = (0, x0) + S

for a 2 A and x0 2 X0, then i is an injection and the first square commutes. Define
⌘ : B0 ! C as

(a, x0) + S 7! ✏(x0)

and the second square commutes since

⌘�(x0) = ⌘((0, x0) + S) = ✏(x) = 1C✏(x).

We have to show that ⌘ is well-defined: Let (a0, x00) be another representative for the
coset (a0, x0) + S, then

(a00, x
0
0) = (a0, x0) + (h(x1),�j(x1)) = (a0 + h(x1), x0 � j(x1))

and
⌘((a0 + h(x1), x0 � j(x1))) = ✏(x0 � j(x1)) = ✏(x0) = ⌘(a0, x0).

Finally we show that the second row is exact, we will first show that im i ✓ ker ⌘:
Since the diagram commutes we have that ker ⌘� = ker ✏ = im j which makes ker ⌘ =
�j and since �j = ih, �j ✓ im i. For the reverse we have that ⌘i(a) = ✏(a, 0) = ✏(0) =
0C and the second row is exact.
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(ii) Let the bottom row of

0 // X1

h

✏✏

j
// X0

✏
//

�
0

✏✏

C

1C
✏✏

// 0

0 // A
i
0
// B

0
⌘
0
// C // 0

be a second extension completing the diagram. We need to define ✓ such that the
diagram

0 // A

1A
✏✏

i
// B

✓

✏✏

⌘
// C

1C
✏✏

// 0

0 // A
i
0
// B

0
⌘
0
// C // 0

(23)

commutes. Since B is a direct sum of A and X0 we use the maps i0 and �0 and define
✓ : B ! B

0 by
(a, x0) + S 7! i

0(a) + �
0(x0)).

The map ✓ is well-defined since for (a0, x00) = (a, x0) + (h(x1),�j(x1)) we have

✓(a0, x00) = ✓(a, x0) + ✓(h(x1),�j(x1))

= (i0(a) + �
0(x0)) + (i0h(x1)� �

0
j(x1))

= i
0(a) + �

0(x0) = ✓(a, x0).

The diagram (23) commutes since:

✓i(a) = ✓((a, 0) + S) = i
0(a) = i

01A(a)

and

⌘
0
✓((a, x0) + S) = ⌘

0
i
0(a) + ⌘

0
�
0(x0)

= 0 + ✏ = ⌘�(x0) = ⌘(0, x0).

[2, pg. 423-424, Lemma 7.28, Chapter 7]

A homomorphims of short exact sequences implies an exact sequence of kernels and
cokernels of the homomorphisms involved. The Snake Lemma below will later on be used
to prove The Horseshoe Lemma 4.13 and The Long Exact Sequence of Cohomology 5.6.

Lemma 3.10. (Snake Lemma) Given a commutative diagram of modules with exact rows,

0 // A

↵

✏✏

// B

�

✏✏

// C

�

✏✏

// 0

0 // A
0

// B
0

// C
0

// 0,

(24)

there is an exact sequence

0 ! ker ↵! ker � ! ker � �! coker ↵! coker � ! coker � ! 0
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[4, pg 268, Corollary C-3.43 ch. C-3]

Proof. Proof of snake lemma . The proof will not be written out in its entirety. We will
show the exactness of sequences

0 ! ker ↵! ker � ! ker �,

and
A

0
/im ↵! B

0
/im � ! C

0
/im � ! 0

and then define the connecting homomorphism � : ker � ! A
0
/im ↵.

(i) Consider the diagram below where the second and third row makes up a commutative
diagram,

0 // ker ↵

✏✏

j̄
// ker �

✏✏

p̄
// ker �

✏✏

0 // A

↵

✏✏

j
// B

�

✏✏

p
// C

�

✏✏

// 0

0 // A
0 i

// B
0 q

// C
0

// 0.

Let a 2 ker ↵ and b 2 ker � then the commutativity of the diagram gives us

�j(a) = i↵(a) = i(0A0) = 0B0

�p(b) = q�(b) = q(0B0) = 0C0

and we have that j(a) is in the kernel of � and p(b) is in the kernel of � and there
exists a sequence

0 ! ker ↵ j̄! ker � p̄! ker �, (25)

where j̄ and p̄ are the homomorphisms j and p restricted to the kernels of ↵ and �.
This sequence is exact. Exactness at ker ↵: Since j is injective so is j̄ and the sequence
is exact at ker ↵. Exactness at ker �: Since im j = ker p we have that p̄j̄(a) = 0C
and so im j̄ ✓ ker p̄. To show that ker p̄ ✓ im j̄, let p̄(b) = 0C . By the exactness at
B there exists some a 2 A, such that b = j(a) and since i↵(a) = �j(a) = 0B0 and i is
injective, ↵(a) = 0A0 and so a 2 ker ↵ and then b = j(a) 2 im j̄ and so ker p̄ ✓ im j̄.

(ii) Consider the diagram below where the first and second row makes up a commutative
diagram,

0 // A

↵

✏✏

j
// B

�

✏✏

p
// C

�

✏✏

// 0

0 // A
0 i

//

✏✏

B
0 q

//

✏✏

C
0

//

✏✏

0

A
0
/im ↵

ī
// B

0
/im �

q̄
// C

0
/im � // 0.
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Define ī and q̄ as

ī(a0 + im ↵) = i(a0) + im �

q̄(b0 + im �) = q(b0) + im �

for a
0 2 A

0 and b
0 2 B

0 respectively. The homomorphisms are well-defined. The
commutativity of the first two rows in the diagram gives us

i↵ = �j

and so i maps the image of ↵ to the image of � which means that ī is well-defined
since

a
0
1 + im ↵ = a

0
2 + im ↵ 2 A

0
/im ↵

!
a
0
1 � a

0
2 2 im ↵

!
i(a01 � a

0
2) 2 im �.

And so i(a01) + im � = i(a02) + im � 2 B
0
/im �. Similarly q̄ is well-defined since

q� = �p. We will show that the sequence,

A
0
/im ↵

ī! B
0
/im �

q̄! C
0
/im � ! 0, (26)

is exact. Since q is surjective, q̄ is surjective and the sequence is exact at C
0
/im �.

Exactness at B
0
/im �: Since qi = 0 we have that q̄ī = 0 + im � and so im ī ⇢ ker q̄.

To show that ker q̄ ⇢ im ī, let b0+ im � 2 ker q̄, then q(b0) 2 im � and so �(c) = q(b0)
for some c 2 C. Since p is surjective there exists a b 2 B such that p(b) = c and so
�p(b) = q(b0) and due to the commutativity of the diagram we have

�p(b) = q�(b) = q(b0)

and so b
0 2 im � and b

0 + im � 2 im ī.

(iii) We will now show that there exists a homomorphism ker � ! coker ↵ defined by

� : ker � ! A
0
/im ↵ (27)

z 7! i
�1
�p

�1(z) + im ↵.

Let c 2 kernel �, and let p(b) = c, b 2 B, since p is surjective such b exists. The
commutativity of the diagram gives us

q�(b) = �p(b) = �(c) = 00C

and so �(b) is in the kernel of q and as such in the image of i. We have that i is
injective so there exists a unique a

0 2 A
0 such that

i
�1
�p

�1(c) = i
�1
�(b) = a

0
.
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and we have a map c 7! a
0 + im ↵. To show that it is well-defined: Let c1 = c2, then

there exists b1 and b2 such that

p(b1 � b2) = c1 � c2 = 0C ,

and (b1 � b2) is in the kernel of p and as such also in the image of j and there exists
an unique a 2 A such that j(a) = (b1 � b2). From the commutativity of the diagram
we then get that

i↵(a) = �j(a) = �(b1 � b2),

and �(b1 � b2) is in the image of i↵ and since i is injective,

i
�1
�(b1 � b2) = ↵(a),

and so �(b1 � b2) is mapped to the image of ↵. And so since

i
�1
�(b1 � b2) = i

�1
�p

�1(c1 � c2),

we have that c1 � c2 is mapped to the image of ↵ and so

i
�1
�p

�1(c1) = i
�1
�p

�1(c2) 2 A
0
/im ↵.

and (27) is well-defined.

We have shown that there exists a homomorphisms � connecting two exact sequences (25)
and (26) into a sequence

0 ! ker ↵ j̄! ker � p̄! ker � �! A
0
/im ↵

ī! B
0
/im �

q̄! C
0
/im � ! 0.

What is left to show is the exactness at ker � and coker ↵, these parts will be left out. [4,
pg. 269, Excercise C-3.25 (i), (ii), Ch. C-3.5]

Note that if we change diagram (24) in the Snake Lemma above to

A

↵

✏✏

j
// B

�

✏✏

// C

�

✏✏

// 0

0 // A
0

// B
0

q
// C

0
,

we would get an exact sequence

ker ↵ j̄! ker � p̄! ker � �! A
0
/im ↵

ī! B
0
/im �

q̄! C
0
/im �,

since the injectivity of j̄ and surjectivity of q̄ is a direct consequence of j being injective
and q being surjective (part (i) and (ii) in the proof above). We will use this to prove The
Long Exact Sequence of Cohomology 5.6 in section 5.

We will now look at induced exact sequences.
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3.2 Exact Sequences Derived From Hom-sets

Given R-modules M,N , D and a homomorphism ' as below,

M
'
//

✏✏

N

f
~~

D,

we can always construct a composite homomorphism f' 2 HomR(M,D), for any f 2
HomR(N,D). Since HomR(M,D) and HomR(N,D) are abelian groups, see Proposition
2.5 (i) we can define a homomorphism of groups: '⇤ : HomR(N,D) ! HomR(M,D), by
f 7! f'.

Proposition 3.11. Let M, N and D be R-modules and let ' : M ! N be an R-module

homomorphism.

(i) Then the induced map

'
⇤ : HomR(N,D) �! HomR(M,D)

f 7�! f'

is a homomorphism of abelian groups.

(ii) Moreover if ' is surjective the induced map '
⇤

is injective.

Proof. Let m 2 M and n 2 N . By Proposition 2.5 are HomR(N,D) and HomR(M,D)
abelian groups. From the addition defined in 2.5(iv) we get (f + g)('(m)) = f('(m)) +
g('(m)) and so '

⇤(f + g) = '
⇤(f) + '

⇤(g) and '
⇤ is a homomorphism. For the second

part, assume ' is surjective, then for all n 2 N we have that n = '(m) for some m 2 M .
Let f1 and f2 be two homomorphisms from N to D, assume f1'(m) = f2'(m), since '
is surjective f1'(m) = f2'(m) for all m 2 M implies f1(n) = f2(n) for all n 2 N and so
f1 = f2 and '⇤ is injective.

Part (ii) of proposition 3.11 can be written in terms of exact sequences; from the exact
sequence of modules,

M
'�! N �! 0,

we get the exact sequence

0 �! HomR(N,D)
'
⇤

�! HomR(M,D).

of abelian groups. Part (i) of proposition 3.11 implies that given a composite,

L
 �! M

'�! N �! 0, (28)

there exists a sequence

0 ! HomR(N,D)
'
⇤

! HomR(M,D)
 
⇤

! HomR(L,D),

where  ⇤ = f
0
 for f 0 2 Hom (M,D). The theorem below then shows that if the extended

sequence (28) is exact so is the induced sequence of Hom groups.
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Theorem 3.12. Let D be an R-module and let

L
 �! M

'�! N �! 0 (29)

be a sequence of R-modules. Define the homomorphisms '
⇤ : Hom (N,D) ! Hom (M,D)

and  
⇤ : Hom (M,D) ! Hom (L,D) as

'
⇤ : f 7! f',

 
⇤ : f 0 7! f

0
 .

If sequence (29) is exact, is the associated sequence

0 ! HomR(N,D)
'
⇤

! HomR(M,D)
 
⇤

! HomR(L,D)

exact.

Proof. According to Proposition 3.11, '
⇤ is injective so the sequence is exact at

HomR(N,D). We need to show that the sequence is exact at HomR(M,D), that is
Ker  

⇤ = Im '
⇤. First we show that Im '

⇤ ✓ Ker  
⇤: for f

⇤ 2 Im '
⇤ we want

to show  
⇤
'
⇤(f) = 0. Consider the diagram

L
 
//M

'
//

f
0

✏✏

N

f
~~

// 0

D,

we have that '⇤(f) = f' and so  ⇤
'
⇤(f) = (f') = f(' ) = f0 = 0. Next we show that

Ker  ⇤ ✓ Im '
⇤: Let f

0 2 Ker  ⇤ then f
0 : M ! D and f

0
 = 0. For any m and m

0 2 M

where
m = m

0 mod im  

we have that f(m) = f(m0) and so f
0 is constant on M/im  , meaning f

0 is welldefined
on M/im  ! D. Since the sequence (29) is exact and since p is projective we have
M/im  = M/ker p ⇠= N and there exists a welldefined map f : N ! D by

f(n) = f'(m) = f
0(m).

Since f' is in the image of '0 , f 0 is in the image of '⇤. For proof of the "only if" part
of the statement see [1, pg. 393-394, Thm. 33, ch.10.5]. [3, pg. 468, Thm. B-4.21 (iii),
ch.B-4], [6, StackExchange, (1)]

If the sequence (29) were short exact, would it induce a short exact sequence of Hom
groups? Consider the diagram below where 0 �! L

 �! M , is an exact sequence

0 // L
 
//

f
  

M

f
0

✏✏

D,
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Just like in Proposition 3.11, composing f
0 2 HomR(M,D) with  induce a group homo-

morphism,
 
⇤ : HomR(M,D) �! HomR(L,D)

defined by
f

0 7�! f
0
 .

Suppose  ⇤ is surjective, then there would be a lift f 0 for every f 2 HomR(L,D) such that
f = f

0
 , and this is not in general true, see [1, pg. 393, Sec.10.5]. However, some modules

are such that there exists a lift f
0 2 HomR(M,D) for every f 2 HomR(L,D). These

modules, analogous to projective modules (Definition 2.26) are called injective modules.

Definition 3.13. Let  : L �! M be an injective R-map and L,M and D left R-modules,
then D is called an injective module if there exists a map f

0 for every map f such that f 0

to f . That is, there exists a map f
0 for every map f such that the diagram

L
 
//

f
  

M

f
0

✏✏

D

commutes.

Given an injective module D, the sequence

HomR(M,D)
 
⇤

�! HomR(L,D) �! 0,

is exact.

Corollary 3.14. A module D is injective if and only if for every exact sequence

0 �! L
 �! M

'�! N �! 0

the induced sequence

0 ! HomR(N,D)
'
⇤

! HomR(M,D)
 
⇤

! HomR(L,D) ! 0 (30)

is short exact.

Proof. Consider the diagram

0 // L
 
//

f
  

M

f
0

✏✏

'
// N // 0

D.

Assume D is an injective module then there exists a lift f
0 for each f 2 HomR(N,D), the

induced map  ⇤ is then surjective and the exact sequence,

0 ! HomR(N,D)
'
⇤

! HomR(M,D)
 
⇤

! HomR(L,D),

from Theorem 3.12 is extended to a short exact sequence. On the other hand, given a
short exact sequence (30) then  

⇤ is surjective by definition and f =  
⇤(f

0
) = f

0
 for all

f 2 HomR(N,D) and D is an injective module.
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4 Complexes

A complex of modules is a sequence of modules together with a sequence of homomorphisms
such that the composition of any two consecutive homomorphisms is zero. Most construc-
tions for modules can be applied to complexes and in the first part of this section we will
state some properties for complexes analogue to modules, in particular we will define short
exact sequences of complexes. The second and third part describes how we can resolve a
module M with an exact sequence of free modules and, by extension, how we can replace
a short exact sequence of modules with a short exact sequence of free resolutions.

4.1 Chain and Cochain Complexes

An exact sequence is an example of a more general structure called a complex, where instead
of equality of images and kernels of consecutive homomorphisms, the former is a subset of
the later.

Definition 4.1. A chain complex is a sequence of modules and homomorphisms

(C•, d•) = · · · �! Cn+1
dn+1�! Cn

dn�! Cn�1
dn�1�! . . . (31)

such that the composition of adjacent homomorphisms is 0: dndn+1 = 0 for all n 2 Z. The
maps dn are called differentials. [2, pg. 317, Definition, Ch. 5.5]

We will sometimes use C• to refer to a chain complex (C•, d•) and we will often say
complex to mean chain complex.

Definition 4.2. Define the zero complex 0• = (C•, d•) as the complex where each Cn =
{0} and thus dn = 0 for all n.

[4, pg. 257, Example (iv), Ch. C-3.4]

By adding the zero complex to the left and right of any R-module homomorphism it
can be viewed as a complex.

Example 4.3. Any R-map f : A �! B can be extended to a complex by adding zero-
modules and zero maps. Let A = C1, B = C0 and f = d1 then

0•
d2�! C1

d1�! C0
d0�! 0•

is a complex where every module and map except C0, C1 and d1 are zero. Since the differ-
entiations d2 and d0 are both zero maps we have that

im d2 = 0 ✓ ker d1

and
im d1 ✓ ker d0 = C0.

[4, pg. 257, Example (v), Ch. C-3.4]
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In the same way as in the example above we can view any exact sequence, 0 �!
A

↵�! B
��! C �! 0 as a complex since the equality Im ↵ = ker � implies the inclusion

Im ↵ ✓ ker �.

Definition 4.4. (i) A positive chain complex is a complex where Cn = 0 for all
n < 0:

�! Cn �! Cn�1 �! ... �! C1 �! C0 �! 0

(ii) A negative complex or a cochain complex is a complex where Cn = 0 for all
n > 0:

0 �! C0 �! C�1 �! ... �! C�n �! C�(n+1) �! ...

The negative indices are usually changed to positive and instead put as a superscript:

0 �! C
0 �! C

1 �! ... �! C
n �! C

n+1 �! ...

[2, pg. 328-329, Definition, Ch. 6.1][2, pg. 329, Ch. 6.1]

Note that the customary notation for cochain complexes do not follow the definition
of a complex as the indexes are increasing by one instead of decreasing. However, the
negative notation is according to the definition and all statements regarding complexes can
be applied to cochain complexes with the appropriate adjustments to the indices.

A homomorphism of complexes f : C• ! C0
• is a sequence of maps fn : Cn ! C

0
n

creating a commutative diagram.

Definition 4.5. If (C•, d•) and (C
0
•, d

0
•) are complexes, then a chain map

f = f
• : (C•, d•) ! (C

0
•, d

0
•)

is a sequence of morphisms fn : Cn ! C
0
n for all n 2 Z making the following diagram

commute:
... // Cn+1

fn+1
✏✏

dn+1
// Cn

fn
✏✏

dn
// Cn�1

fn�1
✏✏

// ...

... // C
0
n+1

d
0
n+1

// C
0
n

d
0
n

// C
0
n�1

// ....

(32)

[2, pg. 318, Definition Ch. 5.5]

Complexes inherit the properties of modules. A direct sum of complexes (C•, d•) �
(C 0

•, d
0
•) for example, is defined as the complex

�! Cn+1 � C
0
n+1

d̄n+1�! Cn � C
0
n

d̄n�! Cn�1 � C
0
n�1 �!

where
d̄n : c� c

0 7! dn(c)� d
0
n(c).
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And a chain map f : C• ! C
0
• is an isomorphism if and only if each fn : Cn ! C

0
n is an

isomorphism in which case the sequence of inverses, f�1, is also a chain map. The First
Isomorphism Theorem holds for any chain map f : C• ! C

0
• if

Cn/Ker fn
⇠= Im fn

for each homomorphism fn : Cn ! C
0
n. [2, pg. 319, Examples (i), (ii), Ch. 5.5] It follows

that the notion of exactness can also be applied to chain maps.
Definition 4.6. (i) A complex (A•, �•) is a subcomplex of (C•, d•) if, for every n 2 Z,

An is a submodule of Cn and �n = dn|An.

(ii) If A• is a subcomplex of C• then the qoutient complex is defined as

C•/A• = · · · ! Cn/An

d̂n! Cn�1/An�1 !

where d̂n : cn +An 7! dncn +An�1.

(iii) Let f• : (C•, d•) �! (C 0
•, d

0
•) be a chain map. Then kerf , defined by

ker f = �! ker fn+1
�n+1�! ker fn

�n�! ker fn�1 �!, �n = dn | ker fn,

is a subcomplex of C• and im f , defined by

im f = �! im fn+1
�n+1�! im fn

�n�! im fn�1 �!, �n = d
0
n | ker fn,

is a subcomplex of C 0
•.

(iv) A sequence of complexes and chain maps

... �! Cn+1
• �!

fn+1

Cn

• �!
fn

Cn�1
• �! ...

is exact if imfn+1 = ker fn for all n 2 Z.
[2, pg. 318 - 320, Ch. 5.5]
To illustrate the above definition of an exact sequence of complexes, if we write each

complex as a column, then a short exact sequence of complexes, 0 �! C
0
•

f�! C•
g�!

C
00
• �! 0, is a commutative diagram where the columns are complexes and the rows are

exact:

✏✏

✏✏

✏✏

0 // C
0
n+1

fn+1
//

d
0
n+1
✏✏

Cn+1
gn+1

//

dn+1

✏✏

C
00
n+1

d
00
n+1
✏✏

// 0

0 // C
0
n

fn
//

d
0
n
✏✏

Cn

dn

✏✏

gn
// C

00
n

d
00
n
✏✏

// 0

0 // C
0
n�1

fn�1
//

✏✏

// Cn�1
gn�1

//

✏✏

C
00
n�1

//

✏✏

0

.
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We will now show how to construct complexes from any module and short exact com-
plexes from short exact sequences of modules.

4.2 Projective Resolutions of Modules

From a short exact sequence of modules we can construct a short exact sequence of com-
plexes. The following section is based on [2, pg 325-326, ch. 6.1] unless otherwise specified.

In Example 3.4 we saw that for any module M we can create a short exact sequence

0 �! K
i�! F (X)

'�! M �! 0, (33)

where X is a generating set of M , F (X) is the free module with basis X and K is the
kernel of '. If we let Y be a generating set of K then (X,Y ) is a presentation of M .
Presentations allows us to to treat equations in M as if they were equations in the free
module F (X) [2, pg 325, ch. 6.1]. If K is free and Y is a basis computations in F would
become much easier but a sub module of a free module is not necessarily free and so K

does not need to be free. However, assuming K is not free, starting from K we can create
another short exact sequence as the one above,

0 �! K1
i1�! F1(X1)

'1�! K �! 0, (34)

where F1 is a free module over some generating set X1 of K and where K1 is the kernel of
'1. We can then combine the two sequences (33) and (34) and get

0 �! K1
i1�! F1(X1)

'1�! K
i�! F (X)

'�! M �! 0.

By continuing to iterate over Kn in this manner we can construct an exact sequence of free
modules from M ,

// F3(X3)

'3
%%

f3
// F2(X2)

'2
%%

f2
// F1(X1)

'1
$$

f1
// F (X)

'
//M // 0

K2

i2

OO

K1

i1

OO

K

i

OO

(35)

where the functions fn are the composite functions in � 'n+1. The sequence is exact by
design, since the image of fn is Kn�1 and Kn�1 is the kernel of 'n�1. The sequence (35)
is called a free resolution of M and can be seen as a generalized presentation of M and a
way of treating equations in M by a sequence of equations in free modules [2, pg 325, Sec.
6.1 ]. There are however many different generating sets of a module and a single module
M can have many different resolutions.

Definition 4.7. Let A be any R-module. A free resolution of A is an exact sequence

· · · �! Fn

dn�! Fn�1 �! . . .
d1�! F0

✏�! A �! 0 (36)

such that each Fi is a free R-module. Since free modules are projective, this is also a
projective resolution.

[1, pg 779, Sec. 17.1 ]
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Example 4.8. The sequence

0 �! Z n�! Z �! Z/nZ �! 0

from Example 3.4(i) is a projective resolution of Z/nZ. In general we have that any Z-
module M have a free resolution of the form

0 �! ker ' �! F (X) �! M �! 0.

This is because ker' is free due to F (X) being a Z-module, see Example 2.22.

The module A in sequence (36) is the cokernel of d1: A ⇠= F0/Ker ✏ = F0/Im d1 and
this allows us to delete A without losing any information.

Definition 4.9. Let A be a module and let the exact sequence

· · · �! Fn

dn�! Fn�1 �! · · · �! F1
d1�! F0

✏�! A �! 0,

be a free resolution of A, then the deleted resolution of A is the complex

· · · �! Fn

dn�! Fn�1 �! · · · �! F1
d1�! F0 �! 0. (37)

Note that the sequence (37) is no longer exact since at F0 we have that Ker (F0 !
{0}) = F0 and im d1 6= F0.

4.3 Simultaneous Resolution

Free resolutions are exact and as such they are complexes. Given a homomorphism f

between modules A and A
0 there exists homomorphisms fn : Fn ! F

0
n between the modules

of some free resolutions of A and A
0 respectively, constituting a chain map. This chain map

is the result of an iteration of lifts, starting with the lift f̂0 of the initial composite function
f✏,

· · · // F0
✏
//

f̂0
✏✏

A //

f

✏✏

0

· · · // F
0
0

✏
0
// A

0
// 0.

Since free modules are projective modules, see Corollary 2.27, we are ensured that a lift f̂n
always exists. The next theorem states that there exist a chain map between the projective
resolutions of modules A and A

0 provided there is a homomorphism f : A ! A
0 to start

the iteration of lifts. Take note in the proof that it suffice for the top row to be projective
and the second row to be exact.

Proposition 4.10. Let f : A ! A
0
be any homomorphism of R-modules. Take projective

resolutions of A and A
0
respectively. Then for each n � 0 there is a lift f̂n of f such that
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the following diagram commutes,

... // Pn+1

f̂n+1
✏✏

dn+1
// Pn

f̂n
✏✏

dn
// Pn�1

f̂n�1
✏✏

dn�1
// ... // P0

✏
//

f̂0
✏✏

A //

f

✏✏

0

... // P
0
n+1

d
0
n+1

// P
0
n

d
0
n

// P
0
n�1

d
0
n�1

//// ... // P
0
0

✏
0
// A

0
// 0.

(38)

This makes f̂ : PA ! PA0 a chain map, where PA and PA0 are the deleted resolutions of

A and A
0
.

Proof. Since P0 is projective there is a lift f̂0 of the composite map f✏ such that ✏0 f̂0 = f✏.
The following lifts can be shown by induction where it suffices to show that Im f̂ndn+1 ✓
Im d

0
n+1 since Pn+1 being projective ensures a lift f̂n+1 such that d

0
n+1f̂n+1 = f̂dn+1. The

rows are exact so we will show Im f̂ndn+1 ✓ Ker d
0
n. We have the base step f̂0 which allows

us to assume there exists a lift f̂n such that d
0
nf̂n = f̂n�1dn and so

d
0
nf̂ndn+1 = f̂n�1dndn+1 = 0.

Note that there are no lifts required from the second row in the diagram and that it is
enough for the second row to be exact, not necessarily projective. [4, pg. 273-274, Theorem
C-3.46 (i)]

Given a homomorphism f : A ! A
0 of modules there exists a chain map f̂ : PA ! PA0

of deleted resolutions, moreover PA being projective and P
0
A

being exact also gives rise
to lifts sn : Pn ! P

0
n+1 such that for any two chain maps f̂ , g : PA ! PA0 we have

fn � gn = d
0
n+1sn + sn�1dn.

Definition 4.11. Two chain maps f, g : (A•, d•) ! (A0
•, d

0
•) are homotopic if,

(i) for chain complexes (A•, d•) and (A0
•, d

0
•);

... // An+1

✏✏

dn+1
// An

✏✏

fn�gn

✏✏

dn
//

sn
}}

An�1

✏✏

//

sn�1
}}

...

... // A
0
n+1

d
0
n+1

// A
0
n

d
0
n

// A
0
n�1

// ... .

there are maps sn : An ! A
0
n+1 such that

fn � gn = d
0
n+1sn + sn�1dn,

(ii) and for cochain complexes (A•, d•) and (A0
•, d

0
•);

· · · // A
n�1 dn�1

// A
n

sn
{{

fn�gn

✏✏

dn
// A

n+1

✏✏

//

sn+1
{{

· · ·

· · · // A
0n�1

d
0
n�1

// A
0n

d
0
n

// A
0n+1

// · · · ,
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there are maps sn : An ! A
0n�1 such that

fn � gn = d
0
n�1sn + sn+1dn.

When a chain map f is homotopic to the zero chain map 0 where 0n : An ! 0, f is called
nullhomotopic.

Proposition 4.12. Let f : A ! A
0

be a homomorphism of modules and let PA and

P
0
A

be deleted projective resolutions of A and A
0

respectively, then any two chain maps

f̂ , g : PA ! PA0 that are lifts of f are homotopic.

Proof. The proof will not be written out in its entirety, it is by induction and similar to
the one before. Consider the diagram

... // Pn+2

✏✏ ✏✏

dn+2
// Pn+1

✏✏

sn+1

|| ✏✏

dn+1
// Pn

sn

}}

gn
f̂n
✏✏ ✏✏

dn
// ...

sn�1

��

// P0
✏
//

g0
f̂0
✏✏ ✏✏

A

s�1

��

//

f

✏✏

0

s�2

��

... // P
0
n+2

d
0
n+2

// P
0
n+1

d
0
n+1

// P
0
n

d
0
n

//// ... // P
0
0

✏
0
// A

0
// 0.

(39)

We want to show that there exists maps sn such that gn � fn = d
0
n+1sn + sn�1dn. For the

base step, define g�1 = f = f̂�1 then by defining s�1 = 0 = s�2 we get

g�1 � f̂�1 = 0 = d
0
0s�1 + s�2d�1.

This holds for all d
0
0 and d�1, particularly d

0
0 = ✏

0 and d�1 = 0. Continuing with the
inductive step, assuming gn � f̂n = d

0
n+1sn + sn�1dn we want to show gn+1 � f̂n+1 =

d
0
n+2sn+1 + sndn+1. To do this we only need to show

Im (gn+1 � f̂n+1 � sndn+1) ✓ Im d
0
n+2, (40)

since if (40) is true, Pn+1 being projective ensures a map sn+1 such that d
0
n+2sn+1 =

gn+1 � f̂n+1 � sndn+1. As in the proposition above, the proof is finalized by showing
d
0
n+1(gn+1 � f̂n+1 � sndn+1) = 0 since the exactness of the bottom row of diagram (39)

gives im d
0
n+2 = ker d

0
n+1. For full proof see [4, pg. 273-274, Theorem C-3.46 (ii)].

We will now show the Simultaneous Resolution Lemma which says that given a short
exact sequence of modules there exists a short exact sequence of resolutions. By constructing
a projective resolution of M from the direct product of the free resolutions of modules L
and N we get a commutative diagram where the columns are complexes and the rows exact.

Lemma 4.13. (Simultaneous Resolution or the Horseshoe Lemma) Let 0 �! L �! M �!
N �! 0 be a short exact sequence of R-modules. Let L and N have projective resolutions
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as in the diagram below

✏✏ ✏✏

P
0
1

✏✏

P
00
1

✏✏

P
0
0

✏✏

P
00
0

✏✏

0 // L
 

//

✏✏

M
'
// N //

✏✏

0

0 0.

(41)

Then there exist a projective resolution of M so that the three columns form an exact

sequence of complexes:

✏✏

✏✏

✏✏

0 // P
0
1

//

✏✏

P1
//

✏✏

P
00
1

✏✏

// 0

0 // P
0
0

//

✏✏

P0

✏✏

// P
00
0

✏✏

// 0

0 // L
 

//

✏✏

//M
'
//

✏✏

N //

✏✏

0

0 0 0

(42)

Proof. Let Pn = P
0
n � P

00
n , then each row,

0 �! P
0
n

◆
0

�! P
0
n � P

00
n

⇢
00

�! P
00
n ! 0,

is an exact sequence where ◆0 and ⇢00 are the usual injections and projections. Since P
0
n�P

00
n

and P
0
n � P

00
n are projective so is P

0
n � P

00
n (Corollary 2.27 (iii)). Let f 0 =  ✏

0 and let f 00 be
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the lift of ✏00, ✏00 = 'f
00, since P

00
0 is projective such lift exists.

✏✏

✏✏

✏✏

0 // P
0
0

◆
0
//

✏
0

✏✏

f
0

##

P
0
0 � P

00
0

✓

✏✏

⇢
00
// P

00
0

✏
00

✏✏

//

f
00

zz

0

0 // L
 

//

✏✏

//M
'

//

✏✏

N //

✏✏

0

0 0 0.

(43)

By Proposition 2.19 there exists a unique homomorphism ✓ : P 0
0 � P

00
0 ! M defined by

⇢
0 + ⇢

00 7! f
0
⇢
0 + f

00
⇢
00
, (44)

where ⇢0 is the projection P
0
0 � P

00
0 ! P

0
0. The square with base M ! N then commutes

since
✏
00
⇢
00 = 'f

00
⇢
00 = '(0 + f

00
⇢
00) = '✓,

where 0 : P 0
0 � P

00
0 ! 0M . Similarly the square with base L ! M commutes since

 ✏
0 = f

01P 0
0
= f

0
⇢
0
◆
0 = (f 0

⇢
0 + 0)◆0 = ✓◆

0
,

and we have established that the first two rows are commutative. The next step is to use
the Snake lemma to get the diagram,

0 // ker ✏0 //

i

✏✏

ker ✓ //

i

✏✏

ker ✏00

i

✏✏

0 // P
0
0

//

✏
0

✏✏

P
0
0 � P

00
0

✓

✏✏

// P
00
0

✏
00

✏✏

// 0

0 // L //

✏✏

//M //

✏✏

N //

✏✏

0

// coker ✏0 // coker ✓ // coker ✏00 // 0,

(45)

where the top and the bottom rows are exact (see proof of lemma 3.10). Since ✏0 and ✏
00

are surjective, coker ✏0 = coker ✏00 = 0 and since the bottom row is exact coker ✓ = 0 and ✓
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is surjective. We are left with a commutative diagram,

0 // ker ✏0 //

✏✏

ker ✓ //

✏✏

ker ✏00

✏✏

// 0

0 // P
0
0

//

✏
0

✏✏

P
0
0 � P

00
0

✓

✏✏

// P
00
0

✏
00

✏✏

// 0

0 // L //

✏✏

//M //

✏✏

N //

✏✏

0

0 0 0.

(46)

Since the resolutions of L and N gives us surjective maps P
0
1 ! ker ✏0 and P

00 ! ker ✏001 we
can construct the following diagram in the same way as the one above,

0 // ker ✏01 //

✏✏

ker ✓1 //

✏✏

ker ✏001

✏✏

// 0

0 // P
0
1

//

✏
0
1
✏✏

P
0
1 � P

00
1

✓1

✏✏

// P
00
1

✏
00
1
✏✏

// 0

0 // ker ✏0 //

✏✏

ker ✓ //

✏✏

ker ✏00

✏✏

// 0

0 0 0.

(47)

The proof is by induction on the diagrams and then splicing the n+ 1 diagram to the nth
diagram by defining ✓n+1 : Pn+1 ! Pn as the composition Pn+1 ! ker ✓n ! Pn, this also
implies that the constructed resolution of M is exact since the image of ✓n+1 is the kernel
of ✓n. [2, pg. 349-350, Proposition 6.24]

5 Cohomology and Homology

In this section will we define homology and cohomology of chain and cochain complexes
respectively. We will show that homotopic chain maps induce the same map over homology/
cohomology. Lastly we will prove the Long Exact Sequence of Cohomology groups using
the Snake Lemma.

5.1 Cohomology

Let (C•, d•) be a chain or a cochain complex. Since the image of one map d is a subgroup
of the kernel of the following map we can make quotients out of images and kernels. These
quotients are called the homology or cohomology of the complex depending on the direction
of the complex. Since the difference lies in the direction of the complex, homology and
cohomology are basically the same quotient and with the appropriate changes to notation
any statements regarding cohomology can be applied to homology.
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Definition 5.1. (i) Let C• be a complex:

· · · �! Cn+1
dn+1�! Cn

dn�! Cn�1 �! . . . , (48)

then its n
th homology is the quotient ker dn / image dn+1 and is denoted Hn(C•).

(ii) Let C• be a cochain complex:

0 �! C
0 d0�! C

1 �! · · · �! C
n�1 dn�1�! C

n dn�! C
n+1 �! . . . , (49)

then its nth cohomology is the quotient ker dn / image dn�1 and is denoted H
n(C•).

We will focus on cohomology groups from now on.

Example 5.2. A cochain complex is an exact sequence if and only if all of its cohomology
groups are {0} since Ker dn/Im dn�1 = {0} directly implies Im dn�1 = Ker dn for all n.

Let f : C• ! C
0
• be a chain map of cochain complexes, the commutativity of the

diagram

... // Cn�1

fn�1
✏✏

dn�1
// Cn

fn
✏✏

dn
// Cn+1

fn+1
✏✏

// ...

... // C
0
n�1

d
0
n�1

// C
0
n

d
0
n

// C
0
n+1

// ... .

(50)

ensures that each fn map the kernel of dn to the kernel of d0n and the image of dn+1 to the
image of d

0
n+1 which implies there exists well-defined homomorphism ker dn/im dn�1 !

ker d
0
n/im d

0
n�1.

Lemma 5.3. Let f : (C•, d•) ! (C
0
•, d

0
•) be a chain map, then for c 2 ker dn, fn(c) 2 ker d

0
n

and for c 2 im dn�1, fn(c) 2 im d
0
n�1.

Proof. From the commutativity in diagram (50) we have that fn+1dn = d
0
nfn. Let p 2

ker dn then
fn+1dn(p) = d

0
nfn(p) = 0

and so fn(p) 2 ker d
0
n. Let a 2 im dn�1 then we get that

fn(a) = fndn�1(c) = d
0
n�1fn�1(c)

for some c 2 Cn�1 and so fn(a) 2 im d
0
n�1.

Proposition 5.4. If f : (C•, d•) ! (C0
•, d

0
•) is a chain map of cochain complexes then

there are group homomorphisms H
n(f) : Hn(C•) ! H

n(C0
•) defined by

H
n(f) : z + Im dn�1 7! fn(z) + Im d

0
n�1

where fn : Cn ! C
0n

, z 2 ker dn and n 2 Zn�0
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Proof. Let f : (C•, d•) ! (C0
•, d

0
•) be a chain map then there is a commutative diagram,

· · ·
dn�1

// C
n

fn
✏✏

dn
// C

n+1

fn+1
✏✏

dn+1
// · · ·

· · ·
d
0
n�1

// C
0n

d
0
n

// C
0n+1

d
0
n+1

// · · · .

By Lemma 5.3 we have that if z 2 ker dn then fn(z) 2 ker d
0
n and so we can define a map

z + Im dn�1 7! fn(z) + Im d
0
n�1 and since z 2 im dn�1 implies fn(z) 2 im d

0
n�1 by the

same Lemma, this map is well-defined: Let z+Im dn�1 = y+Im dn�1, then z�y 2 Im dn�1

and so fn(z � y) 2 Im d
0
n�1 and we get fn(z) + Im d

0
n�1 = fn(y) + Im d

0
n�1. [4, pg. 263,

first part of Proof for Proposition C-3-37 ]

Since the cohomology groups of a complex are quotients where the zero coset is im dn�1,
any two chain maps f and g where

(fn � gn)(z) 2 im d
0
n�1,

for all z 2 ker dn, induce the same map on cohomology groups. Homotopic chain maps
do this and when compositions of chain maps are homotopic to the identity chain map,
cohomology groups are isomorphic. Before we show this note that H

n maps the identity
map of chain complexes to the identity map of cosets; let 1C• be the identity map between
a chain complex and itself, that is the sequence of maps 1Cn : Cn ! C

n, then H
n(1C•) is

the identity map on H
n(C•), mapping

z + Im dn�1 7! 1Cn(z) + Im dn�1 = z + Im dn�1

for each Hn(C•), z 2 ker dn. Note also that H
n preserves composition; let f and g be two

chain maps where
(C•, d•)

f�! (C 0
•, d

0
•)

g�! (C 00
• , d

00
•)

then

Hn(gf)(z + Im dn�1) = (gf)n(z) + Im d
00
n�1

= gn(fn(z) + Im d
0
n�1)

= Hn(g)(fn(z) + Im d
0
n�1)

= Hn(g)Hn(f)(z + Im dn�1),

and so Hn(gf) = Hn(g)Hn(f). Let f, g : A• ! A’• be homotopic chain maps of cochain
complexes, then according to Definition 4.11 (ii) we have

fn � gn = d
0
n�1sn + sn+1dn

where sn are the maps in the below diagram;

· · · // A
n�1 dn�1

// A
n

sn
{{

fn�gn

✏✏

dn
// A

n+1

✏✏

//

sn+1
{{

· · ·

· · · // A
0n�1

d
0
n�1

// A
0n

d
0
n

// A
0n+1

// · · · .
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An immediate consequence of the definition is that homotopic chain maps induce the same
homomorphisms between cohomoloy groups since for all z 2 ker dn we get

(fn � gn)(z) = d
0
n�1sn(z) + sn+1dn(z) = d

0
n�1sn(z) 2 im d

0
n�1

which is equivalent to
fn(z) + im dn�1 = gn(z) + im dn�1,

and so if f and g are homotopic then H
n(f) = H

n(g). It follows that given two chain maps

h : C• �! C
0
•, g : C0

• �! C•,

if gh is homotopic to 1C• and hg is homotopic to 1C0• then H
n(C)• ⇠= H

n(C0)• since

H
n(gh) = H

n(1C•) and H
n(hg) = H

n(1C0•)

is the same as
H

n(g)Hn(h) = 1Hn(C•) and H
n(h)Hn(g) = 1Hn(C0•)

and this makes H
n(h) an isomorphism with inverse H

n(g). We summarize the above in
the proposition below. [4, pg. 265, chapter C-3. Proposition C-3.39], [2, pg. 346-347,
Proposition 6.20]

Proposition 5.5.

(i) Let 1C• be the identity chain map on a cochain complex C•, then H
n(1C•) = 1Hn(C•),

for all n 2 Zn�0, where 1Hn(C•) is the identity map on H
n(C•).

(ii) Let f : C• �! C
0
•, and g : C0

• �! C•, be two chain maps then

H
n(gf) = H

n(g)Hn(f).

(iii) If g, f : (A•, d•) ! (A0
•, d

0
•) are two homotopic chain maps between cochain complexes

then

H
n(f) = H

n(g) : Hn(A•) ! H
n(A0

•).

(iv) Let C• and C
0
• be two cochain complexes and let h : C• ! C

0
• and g : C0

• ! C• be

two chain maps. If gh is homotopic to 1C• and hg is homotopic to 1C0
• then H

n(C•)
and H

n(C0
•) are isomorphic.

Proof. We have showed the statements in the text above.

We will now use the Snake Lemma to show that there exists a Long Exact Sequence of
cohomology groups given a short exact sequence of complexes.

Theorem 5.6. (The Long Exact Sequence in Cohomology) Let 0 ! C
0
• ! C• ! C

00
• ! 0

be a short exact sequence of cochain complexes. Then there is a long exact sequence of

cohomology groups

· · · // H
n�1(C 0) // H

n�1(C) // H
n�1(C 00) // H

n(C 0) //

// H
n(C) // H

n(C 00) // H
n+1(C 0) // H

n+1(C) · · · //
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Proof. The first, main part of the proof is showing that given a short exact sequence of
cochain complexes,

✏✏

✏✏

✏✏

0 // C
0
n�1

fn�1
//

d
0
n�1
✏✏

Cn�1
gn�1

//

dn�1

✏✏

C
00
n�1

d
00
n�1
✏✏

// 0

0 // C
0
n

fn
//

d
0
n
✏✏

Cn

dn

✏✏

gn
// C

00
n

d
00
n
✏✏

// 0

0 // C
0
n+1

fn+1
//

dn+1

✏✏

Cn+1
gn+1

//

dn+1

✏✏

C
00
n+1

//

dn+1

✏✏

0

,

(51)

there exists a commutative diagram with exact rows,

C
0
n/im d

0
n�1

f̄n
//

d̄0n
✏✏

Cn/im dn�1
ḡn
//

d̄n

✏✏

C
00
n/im d

00
n�1

d̄00n
✏✏

// 0

0 // ker d
0
n+1

f̄n+1
// ker dn+1

ḡn+1
// ker d

00
n+1,

(52)

where d̄n is defined as
d̄n : c+ im dn�1 7! dn(c), (53)

c 2 Cn, and define f̄n as

f̄n : x0 + im d
0
n�1 7! fn(x

0) + im dn�1, (54)

x
0 2 C

0. The maps d̄n and d̄00n are defined as d̄n and ḡn is defined as f̄n.

The second part of the proof is applying the Snake Lemma 3.10 to diagram (52) and
observing that the exact sequence which appears is a sequence of cohomology groups.

(i) Since im dn ⇢ ker dn+1, the map (53) exists and since im dn�1 ⇢ ker dn, it is wellde-
fined: Let x = y, x, y 2 Cn then x� y 2 im dn�1 and so

d̄n : x� y + im dn�1 7! dn(x� y) = 0

and dn(x) = dn(y). According to Lemma 5.3, fn(y0) 2 im dn�1 for any y
0 2 im d

0
n�1

and this makes the map (54) welldefined, the proof is the same as the one above. The
diagram (52 )is commutative since the short exact complex is commutative, for the
square

C
0
n/im d

0
n�1

f̄n
//

d̄0n
✏✏

Cn/im dn�1

d̄n

✏✏

ker d
0
n+1

f̄n+1
// ker dn+1 ,

(55)
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we have

f̄n+1d̄
0
n(x

0) + im dn�1 = fn+1(dn(x
0)) + im dn�1 =

dnfn(x
0) + im dn�1 = d̄n(fn(x

0) + im dn�1) =

d̄nf̄n(x
0 + im dn�1).

Define ḡn in the same way as f̄n, the above then applies with the appropriate changes.
We will now show exactness of the top row of diagram (52). Since gnfn = 0, it follows
immediately that ḡnf̄n = 0, that is im f̄n ⇢ ker ḡn. To show ker ḡn ⇢ im f̄n: If

x+ im dn�1 2 ker ḡn,

then gn(x) 2 im d
00
n�1, since gn�1 is surjective there exists an element y 2 Cn�1

such that d
00
n�1gn�1(y) = gn(x) and because the complex (51) is commutative we

have that x 2 im dn�1 and since im dn�1 ⇢ ker dn, dn(x) = 0Cn+1 . Since fn+1 is
injective, fn+1(z) = 0Cn+1 implies z = 0C0

n+1
and there exists a x

0 2 C
0
n such that

d
0
nfn+1(x0) = dn(x). Commutativity of (51) then gives us that x 2 im fn and so

x+ im dn�1 is in the image of f̄n and ker ḡn ⇢ im f̄n.

(ii) We have shown that diagram (52) is a commutating diagram where the rows are exact,
we can then apply the Snake Lemma 3.10 (and the text following the Snake Lemma)
and observe that the exact sequence which appears is a sequence of cohomology
groups,

· · · // ker d
0
n/im d

0
n�1

✏✏

// ker dn/im dn�1

✏✏

// ker d
00
n/im d

00
n�1

✏✏

//

C
0
n/im d

0
n�1

fn
//

d̄0n
✏✏

Cn/im dn�1
gn

//

d̄n

✏✏

C
00
n/im d

00
n�1

d̄00n
✏✏

// 0

0 // ker d
0
n+1

fn+1
//

✏✏

ker dn+1

✏✏

gn+1
// ker d

00
n+1

✏✏

// ker d
0
n+1/im d

0
n

// ker dn+1/im dn
// ker d

00
n+1/im d

00
n

// · · ·

The kernel of d̄n is the cohomology group H
n(C) = ker dn/im dn�1 and the cokernel

of d̄n is the cohomology group H
n+1(C) = ker dn+1/im dn. The Long exact Sequence

then arises from repeating (i) and (ii), starting with the commutative diagram emerg-
ing from shifting diagram (51) one step such that the middle row will be indexed n+1.
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The next commutative diagram with cohomology groups would then be

· · · // ker d
0
n+1/im d

0
n

✏✏

// ker dn+1/im dn

✏✏

// ker d
00
n+1/im d

00
n

✏✏

//

C
0
n+1/im d

0
n

fn+1
//

d̄0n+1

✏✏

Cn+1/im dn
gn+1

//

d̄n+1

✏✏

C
00
n+1/im d

00
n

d̄00n+1

✏✏

// 0

0 // ker d
0
n+2

fn+2
//

✏✏

ker dn+2

✏✏

gn+2
// ker d

00
n+2

✏✏

// ker d
0
n+2/im d

0
n+1

// ker dn+2/im dn+1
// ker d

00
n+2/im d

00
n+1

// · · ·

and the proof is finalized with an induction proof on the last two diagrams.
[4, pg. 269-270, Exercise C-3.25 (ii), (iii), Ch. C-3.5]

6 Additive Categories and Additive Functors

Chain complexes, modules and groups are all objects belonging to different mathematical
systems. Category mathematics is used to compare mathematical structures shared by
different systems or categories, it consists of a general mathematical language where state-
ments often are depicted by diagrams of arrows and objects. Two examples are the diagrams
in Proposition 2.19 defining products and coproducts which in the category of R-modules
both are direct sums. A transformation of objects from one category into another is called
a functorial map if it also transforms the maps between the objects. The mapping of co-
homology groups, Hn(C•) ! H

n(C 0
•) derived from chain maps of complexes f : C• ! C

0
•

in section 5 can be seen as a functorial transformation from the category of complexes to
the categroy of groups and the mapping of Hom-groups, '⇤ : Hom(N,D) ! Hom(M,D)
derived from the R-module homomorphism ' : M ! N in section 3 is also a functorial
mapping. Both H

n and Hom will be defined as functors in the next section but in order to
do that we need to define categories and functors.

6.1 Categories

A category is defined as a class of objects together with sets of morphisms on which com-
position is defined. It is possible to define a category solely as a set of morphisms since
each object can be uniquely identified by an identity morphism but it is more natural to
think of categories as containing both objects and morphisms [2, pg. 17].

Definition 6.1. A category C consists of

(i) A class of objects,

(ii) a set of morphisms HomC(A,B) for every ordered pair of objects A,B in C
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(iii) and composition for every ordered triple of objects A,B,C denoted by

HomC(A,B)⇥ HomC(B,C) ! HomC(A,C)

(f, g) 7! gf.

The objects and morphism must satisfy the following three axioms for objects A,B,C,D 2
C:

(1) Each object B has an identity morphism 1B 2 HomC(B,B) such that 1Bf = f

and g1B = g for f 2 HomC(A,B) and g 2 HomC(B,C).

(2) Each f 2 HomC(A,B) has a unique domain A and a unique codomain B. It follows
that if (A,B) 6= (C,D), HomC(A,B) and HomC(C,D) are disjoint sets.

(3) Composition is associative. For f 2 HomC(A,B), g 2 HomC(B,C) and h 2
HomC(C,D),

h(gf) = (hg)f.

[2, pg. 8, Definition, Sec. 1.2]

A diagram in a category C is a directed multigraph where the vertices is a set of objects
of C and the arrows are morphisms. Using diagrams we can effectively depict categorical
statements, we may picture composition, Definition 6.1 (iii), as the commutative diagram

B

g

  

A

f

??

gf

// C

(56)

where it is clearly illustrated that the domain of g is the codomain of f and that the domain
and codomain of gf is the domain of f and the codomain of g respectively. The associativity
of composition, axiom three of Definition 6.1 is displayed by the commutative diagram

A

gf

))

h(gf)=(hg)f
//

f

✏✏

D

B

hg

55

g
// C

h

OO

(57)

and the first axiom is pictured by the commutative diagram

A

f
��

f
// B

Id

✏✏

g

  

B
g
// C.

(58)

Hom-sets are allowed to be empty in general, one exception is the set of morphisms
Hom(A,A) which must contain the identity morphism 1A. That each object can be iden-
tified by its identity morphism follows from the first axiom which implies that the identity
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morphism is unique for each object, since if we let 1A and 10
A

both be the identity morphism
on A 2 C then 10

A
1A = 1A and 10

A
1A = 10

A
and so 1A = 10

A
.

Example 6.2. (i) The category Ab has as its objects abelian groups, as its morphisms
homomorphisms, and composition is the usual composition.

(ii) The category RMod has as its objects left R-modules over a ring R, as its morphisms
R-homomorphisms, and as its composition the usual composition of functions. If R
is Z, then ZMod = Ab since Z-modules are abelian groups.

(iii) The category RComp has as its objects complexes (C•,d•), where Cn are left R-
modules and dn are R-module homomorphisms and as its morphisms chain maps
f = f• : (C•,d•) ! (C0

•,d
0
•).

[3, pg. 444, Example B-4.1 (iii), (vi)], [4, pg.259, Defintion, Ch. C-3.4]

Definition 6.3. Let C be a category and let C 2 C.

(i) An object A 2 C is called initial if, for every object C there exists a unique morphism
A ! C.

(ii) An object ⌦ 2 C is called terminal if, for every object C there exists a unique
morphism C ! ⌦.

(iii) A zero object in a category C is an object which is both initial and terminal.

[2, pg. 216, Defintion, Ch. 5.1 ], [2, pg. 218, Definition, Ch. 5.1 ], [2, pg. 226, Exercise 5.2,
Ch. 5.1 ]

Definition 6.4. Let C be a category and let A,B 2 C.

(i) An object P 2 C is a product of A and B if there exists maps p1 : P ! A and
p2 : P ! B such that for every X 2 C and every pair of morphisms X ! A and
X ! B there is a unique morphism X ! P such that the diagram below commutes,

A P
p1
//

p2
oo B

X

OO`` >>

(59)

(ii) an object S 2 C is a coproduct of A and B if there exists maps ◆1 : A ! S and
◆2 : B ! S such that for every X 2 C and every pair of morphisms A ! X and
B ! X there is a unique morphism S ! X such that the diagram below commutes,

A

  

◆1
// S

✏✏

B
◆2
oo

~~

X

(60)

Lemma 6.5. In RMod we have that
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(i) the zero object is the zero module {0} and

(ii) the product and the coproduct of any two left R-modules A,B are isomorphic and is

their direct sum, A�B.

Proof. (i) Assume B is the zero object in RMod then there exists a unique morphism
B ! B. Since Hom(B,B) is a ring, see Proposition 2.5(iv), it must contain both the
identity homomorphism on B, 1B, and the zero homomorphism 0 and so 1B = 0 and
B needs to be the zero module. [2, pg. 226, Exercise 5.2, Ch. 226 ]

(ii) See Proposition 2.19 and the commutative diagrams (3) and (4).

6.1.1 Additive Categories

In additive categories Hom-sets are abelian groups under point wise addition where the
distributive law holds in regard to composition.

Definition 6.6. A category A is pre-additive if

(i) HomA(A,B) is an (additive) abelian group for every A,B 2 objA,

(ii) the distributive laws hold: given morphisms

X
k�! A

f

◆
g

B
h�! Y

where X and Y 2 objA, then

h(f + g) = hf + hg and (f + g)k = fk + gk.

A category A is additive if it is pre-additive and

(iii) A has a zero object,

(vi) A has finite products and finite coproducts: for all objects A,B in A, both their
product and their coproduct exist in objA.

[2, pg. 303, Definition, Section 5.5]

Proposition 6.7. The category RMod is an additive category.

Proof. Let A,B 2R Mod, according to Proposition 2.5 HomR(A,B) is an abelian group
and the distributive laws in (ii) hold for any f, g 2 HomR(A,B) according to Proposition
2.5 (iii). The zero object is the zero module according to Lemma 6.5(i) and the product
and coproduct is the direct sum according to Lemma 6.5(ii).

Proposition 6.8. The category RComp of RMod complexes and chain maps, is a pre-

additive category if we define, for chain maps f, g

(f + g)n = fn + gn

for each n 2 Z.
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[4, pg. 259, Ch. 3.4]

Proof. This follows from chain maps consisting of homomorphisms of modules. The group
structure of an additive abelian group then follows as do the distributive laws.

6.2 Functors

A functor is a structure preserving map between categories mapping both objects and mor-
phisms, it maps identity to identity and it preserves composition of morphisms. An additive
functor is a functor between pre-additive categories preserving the point-wise addition of
the Hom-sets and since Hom sets in additive categories are abelian groups under pointwise
addition the additive functor acts as a homomorphism over the Hom sets. As such additive
functors maps zero to zero as well as identity to identity and preserves thus complexes,
direct sums and homotopic maps. Functors are either covariant or contravariant, where the
last reverses the direction of the morphisms between the mapped objects.

Definition 6.9. A functor T : C ! D, where C and D are categories, is a function such
that

(i) if A 2 obj(C) then T (A) 2 obj(D),

(ii) T (1A) = 1T (A) for every A 2 obj(C).

(iii) A covariant functor T : C ! D

(a) maps f : A ! A
0 to T (f) : T (A) ! T (A

0
) and

(b) A
f�! A

0 g�! A
00 to T (A)

T (f)�! T (A
0
)
T (g)�! T (A

00
)

(c) and if gf is a composition of morphisms in C then T (gf) = T (g)T (f) is a
composition of morphisms in D.

(iv) A contravariant functor F : C ! D

(a) maps f : A ! A
0 to F (f) : F (A0) ! F (A) and

(b) A
f�! A

0 g�! A
00 to F (A00)

F (g)�! F (A0)
F (f)�! F (A)

(c) and if gf is a composition of morphisms in C then F (gf) = F (f)T (g) is a
composition of morphisms in D.

[2, pg. 17, 19, Definition, Ch. 1.2]

Since a functor preservers composition of morphisms it also preserves commutative
diagrams. For example, let f : X ! P , g : A ! X and h : X ! B be the morphisms
from diagram (4) in Definition 6.4, defining a categorical product in C. Let T : C ! D be
a functor into some category D, then we have

T (h) = T (p1f) = T (p1)T (f)
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and
T (g) = T (p2f) = T (p2)T (f)

and so T preserves the commutativity of diagram (4), but not necessarily the product. An
additive functor however does.

Definition 6.10. Let C, D be additive categories and let C,C
0 2 obj (C). A functor

T : C ! D of either variance is called an additive functor if, for every pair of morphisms
f, g : C ! C

0, we have
T (f + g) = T (f) + T (g). (61)

The definition of an additive functor T turns T into an homomorphism over the Hom-
sets and as such T will map zero maps to zero maps and subsequently zero objects to zero
objects.

Proposition 6.11. Let T : RMod ! RMod be an additive functor of either variance,

then T (0) = 0 where 0 is the zero map or the zero object in RMod.

Proof. Since the Hom-sets of RMod are abelian groups, the equation (61) turns T into a
homomorphism over the Hom-sets and as such T preserves the zero homomorphism. Let A
be the zero object in RMod then there exists a unique homomorphism f : A ! A which,
according to the proof of Lemma 6.5(i), is the zero homomorphism and so T (f) is the zero
homomorphism and T (A) is the zero object. [3, pg. 474, Excercise B-4.18, Ch. B-4]

Using Proposition 6.11 we can show that additive functors preserves direct sums, com-
plexes and homotopic maps.

Proposition 6.12. Let T : RMod !R Mod be an additive functor then

(i) T (A1 �A2) ⇠= T (A1)� T (A2) where A1, A2 2 RMod,

(ii) If (A•, d•) 2 RMod is a chain complex the functored sequence (TA•, Td•) is a chain

complex.

(iii) If f, g : (A•, d•) ! (B•, d•) are homotopic chain maps in RMod, the functored maps

T (f), T (g) are also homotopic.

Proof. (i) A direct sum M = A1 � A2 is characterized by the equations in Proposition
2.16 (iv):

⇢i◆i = 1Mi , ⇢i◆j = 0 where i 6= j, ◆1⇢1 + ◆2⇢2 = 1M ,

where ◆n : An ! M and ⇢n : M ! An. Since T is a functor it preserves composition
and the identity map and since T is an additive functor it preserves addition and the
zero map and so T will preserve the above equations. [3, pg. 466, Prop. B-4.18, Ch
B-4]

(ii) Let T be a covariant functor then for a complex

(A•, d•) = · · · ! An+1
dn+1�! An

dn�! An�1 ! · · · , (62)
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we get the functored sequence

(TA•, Td•) = · · · ! T (An+1)
T (dn+1)�! T (An)

T (dn)�! T (An�1) ! · · · .

Since T is an additve functor we then have

T (dn)T (dn+1) = T (dndn+1) = T (0) = 0.

Let T be a contravariant functor then the functored sequence will be

(TA•, Td•) = · · · ! T (An�1)
T (dn)�! T (An)

T (dn+1)�! T (An+1) ! · · · . (63)

However, the sequence (63) have increasing indices which is in conflict with the defi-
nition of a complex. We can fix this by setting X�n = T (An) and ��n+1 = T (dn) to
get the sequence

(TA•, Td•) = · · · ! X�n+1
��n+1�! X�n

��n�! X�n�1 ! · · · ,

and just as in the definition of a cochain complex, Definition 4.4 (ii), we change the
indices to positive and put them as a superscript;

(TA•, Td•) = · · · ! X
n�1 �

n�1

�! X
n �

n

�! X
n+1 ! · · · . (64)

We then get

�
n
�
n�1 = ��n��n+1 = T (dn+1)T (dn) = T (dndn+1) = T (0) = 0.

and (64) is a cochain complex. [4, pg.258, Ex. C-3.34 (ix, x) Ch. C-3.4]

(iii) Let T be an additive covariant functor, let (A•, d•) be the complex (62) and (B•, d
0
•)

be a similar positive complex and

(A•, d•) ! (B•, d
0
•) (65)

be a chain map. According to the definition of a covariant functor

(TA•, Td•) ! (TB•, Td•)

is a chain map where (TA•, Td•) are (positive) chain complexes according to (ii).
According to definition 4.11 homotopic chainmaps f, g : (A•, d•) ! (B•, d

0
•) are

defined by the equation

gn � fn = d
0
n+1sn + sn�1dn, (66)

where sn : An ! Bn+1. Since T is an additive covariant functor it will map equation
(66) to

T (gn)� T (fn) = T (d0n+1)T (sn) + T (sn�1)T (dn),
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where T (sn) : T (An) ! T (Bn+1). And this makes T (f), T (g) homotopic chain maps.
Let F be an additive contravariant functor. According to the definition of a con-
travariant functor F maps (65) to

(FB•, Fd
0
•) ! (FA•, Fd•)

where, according to (ii), (FB•, Fd
0
•) and (FA•, Fd•) are cochain complexes. Since F

is additive equation (66) is mapped to

F (fn)� F (gn) = F (sn)F (d0n+1) + F (dn)F (sn�1)

where F (sn) : F (Bn+1) ! F (An) and so, according to Definition 4.11, F (f) and F (g)
are homotopic.

Additive Functors preserve complexes but not necessarily exactness, when they do they
are called exact functors.

Definition 6.13. (i) A covariant functor is called left exact if exactness of

0 ! A
i! B

p! C

implies exactness of
0 ! T (A)

T (i)! T (B)
T (p)! T (C).

(ii) A contravariant functor is called left exact if exactness of

A
i! B

p! C ! 0

implies exactness of
0 ! T (C)

T (p)! T (B)
T (i)! T (A).

(iii) A functor of either variance is called exact if all the above sequences are extended to
short exact sequences.

6.3 Products of Categories and Bifunctors

There exists products of categories. Let B and C be two categories, let the sequence

B
f! B

0 f
0

! B
00

of objects and morphisms belong to B and let the sequence

C
g! C

0 g
0

! C
00
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belong to C. The product B ⇥ C is a category whose objects are pairs hB,Ci and whose
morphisms are pairs hf, gi. The composition,

hB,Ci hf 0
,g

0i�! hB0
, C

0i hf,gi�! hB00
, C

00i,

in B ⇥ C is defined as
hf, gihf 0

, g
0i = hff 0

, gg
0i. (67)

As per Definition 6.4 (i), B ⇥ C is a product of categories if there exists a category D and
functors P1 and P2 such that the diagram

D

F

✏✏

L

||

R

""

B B ⇥ C P1
//

P2
oo C

commutes and in which F is a unique functor, mapping any morphism h in D to hLh,Rhi 2
B ⇥ C.

A bifunctor S is a functor B ⇥ C �! D of two arguments determined by the set of
one-argument functors SB and SC fixing B and C respectively for all objects hB,Ci: Define
functors

SB : C �! D
SC : B �! D

for all C 2 C and all B 2 B where

SB(C) = SC(B).

Let f : B ! B
0 2 B and g : C ! C

0 2 C then there exists a bifunctor S : B⇥ C �! D such
that

SB(C) = S(B,C) (68)
SB(g) = S(idB, g),

SC(B) = S(B,C) (69)
SC(f) = S(f, idC)

if and only if
SB0(g)SC(f) = SC0(f)SB(g) 2 D. (70)

Assume S is a bifunctor. Using the definition (67) of composition in B ⇥ C we have

hidB0 , gihf, idCi = hidB0f, gidCi = hf, gi = hfidB, idC0gi = hf, idC0ihidB, gi

which gives us
S(idB0 , g)S(f, idC) = S(f, idC0)S(idB, g)
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in D which is the same as (70). Conversely, given functors SB and SC for all B 2 B and
all C 2 C, for every pair hf, gi we have

SB0(g)SC(f) = S(idB0 , g)S(f, idC) = S((idB0 , g)(f, idC))

= S(idB0f, gidC)

= S(f, g).

Similarly we have SC0(f)SB(g) = S(f, g) and so equation (70) implies the functor S.
[5, pg. 36-38, Proposition 1, Sec. II Construction on Categories, Subsec. 3. Products

of Categories]

6.4 Opposite Categories

Given a categorical statement, its dual statement is a statement arising from reversing
directions of morphisms. If a statement is depicted by a commutative digram its dual is
a commutative diagram where all the arrows are reversed. For example is the dual of a
categorical product P in Definition 6.4(i) the coproduct S in 6.4(ii) and the dual of the
initial object A in 6.3 (i) is the terminal object ⌦ in 6.3 (ii). The statements defining a
category all have duals. The dual of Definition 6.1(iii) regarding composition is the reversal
of the commutative diagram (56), which is the commutative diagram

B

f

��

A C.
fg

oo

g

``

The duals of axioms 6.1 (3) and 6.1 (1) regarding associativity of composition and identity
are the reversals of the commutative diagrams (57) and (58) which are the commutative
diagrams

A D
(fg)h=f(gh)

oo

h

✏✏

gh
uu

B

f

OO

C,
g

oo

fg

ii

and
A B

f
oo

B

f

__

Id

OO

C.

g

``

g
oo

The above diagrams are as valid as the original which implies that any dual of a categorical
statement based on Definition 6.1 is as valid as the original. This is called the duality
principle. The duality principle can be applied to statements involving several categories
and functors between them where statements of each category are simultaneously dualized.
[5, pg. 31-32, Duality, Construction on Categories]
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The duality principle allows us to associate each category C with an opposite category
Cop where the morphisms are reversed and where each statement is a dual to a statement
in C.

Definition 6.14. Let C be a category, then the associated opposite category Cop is
a category whose objects are the objects of C and whose morphisms are in one-to-one
correspondence to the morphisms of C: For each morphism

f : A ! B

in C, there is an opposite, reversed, morphism

f
op : B ! A

in Cop. Let g : B ! C be a morphism in C. The composite f
op
g
op is defined

f
op
g
op = (gf)op,

and exists exactly when gf is defined in C.

Any categorical statement about C generate a dual statement in Cop and a dual statement
is true in Cop if and only if the original statement is true in C. [5, pg. 33, Contravariance
and opposites, Construction on Categories]

Example 6.15. The opposite of RMod, RModop, is an additive category. According to
Definition 6.14 if ' 2 Hom(A,B) there exists a homomorphism '

op 2 Hom(B,A). It
follows immediately from Definition 2.5 that Hom(B,A) is an additive group and that the
distributive law holds. We also want to show that the zero-object, products and coproducts
exists in RModop: Since we have that the initial object and the terminal object are duals
the zero-object exists in RModop and is the same as in RMod. For the same reason do
products and coproducts exist in RModop: Since coproducts and products are duals and
since they exist and coincide in RMod they exist and coincide in RModop.

Contravariant functors C ! D are often defined as covariant functors Cop ! D. Define
a covariant functor S : Cop ! D we then have that

f
op : D ! C 2 Cop

is mapped covariantly
S(fop) : S(D) ! S(C) 2 D.

and compositions are mapped

S(fop
g
op) = S(fop)S(gop)

given that f
op
g
op exists in Cop. Since we have defined the functor S on Cop we may also

define it on C. Let S̄ : C ! D be the functor S defined on C then

S̄(f) = S(fop)
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and
S̄(f)S̄(g) = S(fop)S(gop)

which makes S̄ a contravariant functor since

f : C ! D 2 C

is mapped
S̄(f) : S̄(D) ! S̄(C) 2 D

and composition is mapped
S̄(gf) = S̄(f)S̄(g).

[5, pg. 33, Contravariance and opposites, Construction on Categories]
We can use the above and define an additive contravariant functor RMod ! RMod

’covariantly’ as an additive functor RModop ! RMod.

Definition 6.16. Let T̄ : RMod ! RMod be an additive contravariant functor. Define
an additive covariant functor

T : RModop ! RMod,

where T maps elements A 2 RModop to elements T̄ (A) 2 RMod and homomorphisms

f
op : A ! B

in RModop to homomorphisms

T̄ (f) : T̄ (A) ! T̄ (B)

in RMod. Composition is mapped

T (fop
g
op) = T̄ (f)T̄ (g).

The properties of T follows from the properties of T̄ . Even though T technically is a
covariant functor, it is regarded as and referred to as an contravariant functor. In the next
section we will define the contravariant Hom functor as a functor RModop ! Ab.

7 Functors Hom, H
n

and Derived Functors Ext

We will begin this section by defining the additive contravariant bifunctor Hom(⇤, D) and
the cohomology functor H

n. Then, using these definitions, we will continue to define the
Right Derived Functors of Hom: Extn

R
(⇤, D). We will show and then state the axioms

characterizing Extn
R
(⇤, D) which we will use to show some computations of Ext-groups.

As an application of Extn
R
(⇤, D) we will characterize injective modules and we will finally

define the bijection between Ext1
R
(C,A) and the set of extension classes of the extension A

by C.
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7.1 Functors Hom and Hn

In section 3.2 we defined homomorphisms of hom-sets '⇤ : Hom(N,D) ! Hom(M,D)
derived from R-module homomorphisms ' : M ! N and in section 5 we defined homomor-
phisms of cohomology groups, Hn(C•) ! H

n(C 0
•) derived from chain maps of complexes

f : C• ! C
0
•. We will now show that these definitions constitutes functorial mappings.

7.1.1 The Contravariant Hom functor

Using Proposition 3.11 we can define a bifunctor in RMod. Let ' : M �! N be an
homomorphism in RMod and let D be an R-module. Define a bifunctor

T : RMod ⇥ RMod ! Ab

by

T (M,D) = Hom(M,D),

T (', idD) = '
⇤

where '
⇤ is the homomorphism defined in Proposition 3.11. If we fix the module D,

Proposition 3.11 and the text following shows that T maps the sequence

L
 �! M

'�! N

to the sequence
HomR(N,D)

'
⇤

! HomR(M,D)
 
⇤

! HomR(L,D)

making T a bifunctor contravariant in the first argument.
Since D is fixed we can view T as a contravariant functor T

D : RMod ! Ab of one
argument, similar to the functor (69) in the section before. Alongside T

D there exist a
functor

TD : RMod ! Ab

similar to (68) for which the equality (70) holds making T a bifunctor. This is the covariant
Hom-functor Hom(B,⇤) which we are not including in this text. [5, pg. 38, Sec. II
Construction on Categories, Subsec. 3. Products of Categories]

Proposition 7.1. Let B 2 RMod then

(i) Hom(⇤, B) is a contravariant additive functor, T
B : RMod

op ! Ab, defined for all

objects C 2 RMod by

T
B : RMod

op ! Ab

C 7! Hom(C,B),

and defined for f : C ! C
0
in RMod by

T
B(fop) : Hom(C

0
, B) ! Hom(C,B)

h 7! hf.

We will denote T
B(fop) by f

⇤
.
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(ii) Hom(⇤, B) is a left exact functor; if the sequence

L ! M ! N ! 0

is exact in RMod is the sequence

0 ! Hom (N,B) ! Hom (M,B) ! Hom (L,B)

exact.

(iii) Hom(⇤, B) is an exact functor if and only if B is an injective module: The sequence

0 ! Hom (N,B) ! Hom (M,B) ! Hom (L,B) ! 0

is a short exact sequence whenever

0 ! L ! M ! N ! 0,

is a short exact sequence in RMod and if and only if B is injective.

Proof. (i) The mappings of objects and morphisms are shown in Proposition 3.11 and its
proof. We need to show that composition is preserved and that identity is mapped to
identity and finally that additivity is preserved. Let C,C

0
, C

00 and B be R-modules
and let h be any map in Hom (C 00

, B). Consider the diagram of R-module homomor-
phisms below,

C
f
//

  

C
0

hg

✏✏

g
// C

00

h
}}

B.

(71)

We have that
g
⇤ : h ! hg

and so
f
⇤
g
⇤ : h ! hg ! (hg)f

and since
(gf)⇤ : h ! h(gf) = (hg)f,

(gf)⇤ = f
⇤
g
⇤ and we have shown composition. For the identity mapping, let 1C :

C ! C be the identity map then 1⇤
C
: h ! h for any map h 2 Hom (C,B) since,

1⇤C : h ! h1C = h,

and we have shown that Hom(⇤, B) is a functor. What is left to show is additivity.
Let f, g : C ! C

0 and let h 2 Hom (C 0
, B) be any homomorphism. From Proposition

2.5 (iii) we get that
h(f + g) = hf + hg

that is
(f + g)⇤ = f

⇤ + g
⇤

and so Hom(⇤, B) is an additive functor. [2, pg. 20, Example. 1.10, Ch 1.2], [2, pg.
40, Proposition 2.5, Ch 2.1]
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(ii) - (iii) Follows from Theorem 3.12 and Corollary 3.14.

7.1.2 The Cohomology Functor H
n

We will now use Propositions 5.4 and 5.5 to define the functor H
n.

Proposition 7.2. The cohomology functor, denoted H
n
, is an additive functor H

n :
Comp(RMod) ! Ab for each n 2 Z, defined for all objects C• = (C•, d•) 2 RComp by

H
n : Comp(RMod) ! Ab

C 7! ker dn/Image dn�1

for every Cn in C•. And defined for all chain maps f : (C•, d•) ! (C 0
•, d

0
•) where fn : Cn !

C
0
n by

H
n(f) : zn + Im dn�1 7! fn(zn) + Im d

0
n�1

for every zn 2 C
n
.

Proof. The morphisms are welldefined according to Proposition 5.4. In Proposition 5.5(i)
and (ii) we have shown that identity and composition are preserved. Lastly H

n is additive
since group homomorphisms are additive: Let f, g : C•, d•) ! (C 0

•, d
0
•) be two chain maps,

then we have

Hn(f + g) : z + Im dn�1 7! (fn + gn)z + Im d
0
n�1

= (fn(z) + gn(z)) + Im d
0
n�1

= (Hn(f) +Hn(g))(z + Im d
0
n�1),

for each n 2 Z. [4, pg. 263-264, Proposition C-3.37, Ch. C-3.5]

7.2 Ext Groups and Right Derived Functors Ext

The contravariant functors Extn
R
(⇤, D) are a set of functors RMod ! Ab, called the right

derived functors for HomR(⇤, D). They are a composition of functors HomR(⇤, D) and H
n

applied on the projective resolution of a module A, that is Extn
R
(⇤, D)(A) = Extn

R
(A,D)

generate cohomology groups derived from a complex of Hom-groups which in turn are
derived from the projective resolution of the module A.

Let us start with the projective resolution of an R-module A and let

PA = · · · �! Pn

dn�! Pn�1
dn�1�! . . .

d1�! P0
✏�! 0 (72)

be the deleted projective resolution of A. Apply HomR(⇤, D), since HomR(⇤, D) is an
additive contravariant functor, see Proposition 7.1, and the sequence (72) is a chain complex
the functored sequence is the cochain complex,

0 �! HomR(P0, D)
d
⇤
1�! . . .

d
⇤
n�1�! HomR(Pn�1, D)

d
⇤
n�! HomR(Pn, D) �! ....

The n
th cohomology group of the sequence above is called Extn

R
(A,D) indicating that it

is derived specifically from a complex emerging from the projective resolution of A after
being mapped by the functor HomR(⇤, D).
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Definition 7.3. Let A and D be R-modules. Let PA be the deleted resolution (72) and
let

0 �! HomR(P0, D)
d
⇤
1�! . . .

d
⇤
n�1�! HomR(Pn�1, D)

d
⇤
n�! HomR(Pn, D) �! ..., (73)

be the cochain complex of abelian groups resulting from applying the functor HomR(⇤, D)
to each Pn 2 PA. Define

ExtnR(A,D) = H
n(HomR(PA, D)) = ker d

⇤
n+1/im d

⇤
n

to be the cohomology group derived from the n
th element of (73).

Example 7.4. Let A and B be Z-modules, we showed in Example 4.8 that a free resolution
of A is of the form

0 ! ker '! F (X)
'! A ! 0

which gives us a deleted resolution

0 ! ker '! F (X) ! 0. (74)

Let F = F (X) and K = ker ', if apply HomZ(⇤, B) to (74) we get

0 �! HomZ(F,B)
d
⇤
1�! HomZ(K,B)

d
⇤
2�! 0

which gives us the groups Ext0Z(A,B) = ker d
⇤
1 and Ext1Z(A,B) = ker d

⇤
2/im d

⇤
1 and we get

ExtnZ(A,B) = 0 for all n > 1.

Since HomR(⇤, D) is a left exact functor it maps the first modules of the resolution of
A, which is the exact sequence

P1
d1�! P0

✏�! A �! 0,

to the exact sequence

0 �! HomR(A,D)
✏
⇤

�! HomR(P0, D)
d
⇤
1�! HomR(P1, D).

The exactness of the last sequence then gives us that HomR(A,D) ⇠= im ✏
⇤ = ker d

⇤
1.

According to definition we have that

Ext0R(A,D) = ker d
⇤
1/0 = ker d

⇤
1

and we get that Ext0
R
(A,D) ⇠= HomR(A,D). We state the result in the Proposition below.

Proposition 7.5. For any R-module A and D we have that Ext
0
R
(A,D) ⇠= HomR(A,D)

Proof. This follows from the text above.
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Since any two chain maps f, f̂ : PA ! P
0
A0 over the same homomorphism f : A ! A

0

are homotopic, see Proposition 4.12, the induced chain maps f⇤
, f̂

⇤ are also homotopic due
to additive functors preserving homotopy, see Proposition 6.12. A consequence of this is
that the cohomology groups Extn

R
(A,D) do not depend on the choice of resolution of A,

that is if PA and P
0
A are two different projective resolutions of A, Hn(HomR(PA, D)) and

H
n(HomR(P0

A, D)) are canonically isomorphic.

Proposition 7.6. The groups Ext
n

R
(A,D) are independent of the choice of projective res-

olution of A.

Proof. Let P and P
0 be two projective resolutions of the the module A and let g : PA ! P

0
A

and h : P0
A ! PA be two chain maps over 1A and consider the diagram below,

· · · // P
2

g2

✏✏

d2
// P

1

g1

✏✏

d1
// P

0

g0

✏✏

// A

1A
✏✏

· · · // P
02

h2
✏✏

d2
// P

01

h1
✏✏

d1
// P

00

h0
✏✏

// A

1A
✏✏

· · · // P
2 d2

// P
1 d1

// P
0

// A.

The compositions hg and the identity chain map 1PA are both chain maps PA ! PA over
1A and as such they are homotopic according to Proposition 4.12. In the same way are gh

and 1P0
A homotopic chain maps P

0
A ! P

0
A. Since Hom(⇤, D) is a contravariant additive

functor we have that

(hg)⇤ = g
⇤
h
⇤ : HomR(PA, D) ! HomR(PA, D)

is homotopic to 1⇤PA
and that

(gh)⇤ = h
⇤
g
⇤ : HomR(P

0
A, D) ! HomR(P

0
A, D)

is homotopic to 1⇤P0
A

and, according to Proposition 5.5, H
n(HomR(PA, D)) ⇠=

H
n(HomR(P0

A, D)).

Proposition 7.7. Let P be a projective R-module and D any R-module then Ext
n

R
(P,D) =

0 for n � 1.

Proof. Due to Proposition 7.6 we only need to show that the statement is true for some
resolution of P . Since P is projective a projective resolution of P is

· · · �! 0 �! 0 �! P
1P�! P �! 0

which gives us the deleted resolution

CP = · · · �! 0 �! 0 �! P �! 0
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where every Cn = 0 for n � 1. After applying Hom(⇤, D) we get the complex

0 ! Hom(P,D) �! 0 �! 0 �! · · ·

where every H
n(HomR(CP , D)) = H

n(0) = 0 for n � 1. And Extn
R
(P,D) = 0 for n �

1.

We will now define the right derived functors for Hom.

Proposition 7.8. Let B be an R-module. The right derived functors for Hom,

Ext
n

R
(⇤, B), n � 0, is a set of additive contravariant functors RMod ! Ab.

Ext
n

R
(⇤, B) is defined on objects A 2 RMod by

A 7! Ext
n

R(A,B)

where Ext
n

R
(A,B) = H

n(HomR(PA, B)) are the cohomology groups in Definition 7.3.

Ext
n

R
(⇤, B) is defined on morphisms f : A ! A

0 2 RMod by

f 7! H
n(f̂⇤

n),

H
n(f̂⇤

n) : H
n(HomR(CA0 , B)) ! H

n(HomR(PA, B))

where H
n

is the cohomology functor in Proposition 7.2 and where f̂
⇤
n : Hom(Cn, B) !

Hom(Pn, B) is the map induced by the lift f̂n : Pn ! Cn in the chainmap f̂ : PA ! CA0

where CA0 is the deleted resolution of the module A
0
.

Proof. That Extn
R
(⇤, B) is additive follows from Hom and H

n being additive. That
Extn

R
(⇤, B) is well defined follows from Hom and H

n being well-defined functors together
with Proposition 7.6 since by Proposition 7.6 the Extn

R
(A,B) groups are the same (canoni-

cally isomorphic) regardless of the choice of resolution of A. That Extn
R
(⇤, B) is contravari-

ant follows from Hom(⇤, D) being contravariant. Let

· · ·

✏✏

d2
// P2

f̂2

✏✏

d1
// P1

f̂1

✏✏

d0
// P0

✏
//

f̂0

✏✏

A //

f

✏✏

0

· · ·
d
0
2

// C2
d
0
1

//// C1
d
0
0

// C0
✏
0
// A

0
// 0.

(75)

be the commutative diagram of projective resolutions constructed from f : A ! A
0, see

Proposition 4.10. Since Hom(⇤, B) is an additive contravariant functor, applying Hom on
diagram (75) generates a diagram where the rows and columns are reversed making it a
chain map of cochain complexes:

0 // Hom(A0
, B) ✏

0⇤
//

f
⇤

✏✏

Hom(C0, B)

f̂
⇤
0
✏✏

d
0⇤
0
// Hom(C1, B)

f̂
⇤
1
✏✏

d
0⇤
1
// Hom(C2, B)

f̂
⇤
2
✏✏

d
0⇤
2

// · · ·

0 // Hom(A,B) ✏
⇤
// Hom(P0, B)

d
⇤
0
// Hom(P1, B)

d
⇤
1
// Hom(P2, B)

d
⇤
2

// · · · .
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By Proposition 7.2 we can apply H
n and get a set of homomorphisms

H
n(f̂⇤) : ker d

0⇤
n /im d

0⇤
n�1 ! ker d

⇤
n/im d

⇤
n�1

which according to Definition 7.3 is the same as

H
n(f̂⇤) : ExtnR(A0

, B) ! ExtnR(A,B)

and Extn
R
(⇤, B) are contravariant functors.

7.2.1 The Long Exact Sequence of Ext Groups

Next we will use the Horseshoe Lemma (Lemma 4.13) and the Long Exact Sequence in
Cohomology (Theorem 5.6) to derive a long exact sequence of Ext groups. Take the pro-
jective resolution of modules L and N in the short exact sequence 0 ! L ! M ! N ! 0,
according to the Horseshoe Lemma there exists a short exact sequence of complexes whose
columns are complexes and rows are split,

...

d
0
2
✏✏

...

d2

✏✏

...

d
00
2
✏✏

0 // P
0
1

//

d
0
1
✏✏

(P
0
1 � P

00
1 ) //

d1
✏✏

P
00
1

d
00
1
✏✏

// 0

0 // P
0
0

//

d
0
0

✏✏

(P
0
0 � P

00
0 )

d0

✏✏

// P
00
0

d
00
0

✏✏

// 0

0 // L //

✏✏

M //

✏✏

N //

✏✏

0

0 0 0.

If we replace the first row with zeroes, turning the columns into deleted resolutions, we still
have a short exact sequence of complexes since deleted resolutions are still complexes and
the remaining rows are still short exact sequences:

...

d
0
2
✏✏

...

d2

✏✏

...

d
00
2
✏✏

0 // P
0
1

//

d
0
1
✏✏

(P
0
1 � P

00
1 ) //

d1
✏✏

P
00
1

d
00
1
✏✏

// 0

0 // P
0
0

//

✏✏

(P
0
0 � P

00
0 )

✏✏

// P
00
0

✏✏

// 0

0 0 0.
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Next we apply HomR(⇤, D) to the diagram above and get the diagram

...
...

...

0 // Hom(P
00
2 , D) //

OO

Hom((P
0
2 � P

00
2 ), D) //

OO

Hom(P
0
2, D)

OO

// 0

0 // Hom(P
00
1 , D) //

d
002

OO

Hom((P
0
1 � P

00
1 ), D) //

d
2

OO

Hom(P
0
1, D)

d
02

OO

// 0

0 // Hom(P
00
0 , D) //

d
001

OO

Hom((P
0
0 � P

00
0 ), D)

d
1

OO

// Hom(P
0
0, D)

d
01

OO

// 0

0

OO

0

OO

0,

OO

(76)
where we have left out the stars on induced maps to simplify notation. By Proposition 6.12
the diagram (76) is also a short exact complex: The columns are cochain complexes since
HomR(⇤, D) turns chain complexes into cochain complexes, and the rows are split exact
since

Hom(P
0
n � P

00
n , D) = Hom(P

0
n, D)� Hom(P

00
n , D)

due to HomR(⇤, D) preserving direct sums. By Theorem 5.6 there now exists a long exact
sequence of cohomology groups,

0 // ker d
001
/0 // ker d

1
/0 // ker d

01
/0 // ker d

002
/im d

001
//

// ker d
2
/im d

1
// ker d

02
/im d

01
// ker d

003
/im d

002
// ker d

3
/im d

2
// · · ·

which, according to Definition 7.3 and Proposition 7.5, is the same as

0 // HomR(N,D) // HomR(M,D) // HomR(L,D) // Ext1
R
(N,D) //

// Ext1
R
(M,D) // Ext1

R
(L,D) // Ext2

R
(N,D) // Ext2

R
(M,D) // · · · .

We will summarize the above in the next theorem which also characterizes the right derived
functors Extn

R
(⇤, D) [2, pg. 373, Theorem 6.64, Ch. 6.2].

Theorem 7.9. Let Ext
n

R
(⇤, D) : RMod ! Ab be the right derived functor of Hom defined

in Proposition 7.8. Then

(i) for every short exact sequence

0 ! A ! B ! C ! 0
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of left R-modules there is a long exact sequence and a connecting homomorphisms

· · · ! Ext
n

R(C,D) ! Ext
n

R(B,D) ! Ext
n

R(A,D)
�n�! Ext

n+1
R

(C,D) ! · · ·

(ii) where Ext
0
R
(⇤, D) and Hom(⇤, D) are equivalent and where

(iii) Ext
n

R
(P,D) = 0 for all modules D and all projective modules P .

Proof. The first statement follows from the text above, the second and third is Proposition
7.5 and Proposition 7.7

Theroem 7.9 can be used in determining Ext-groups whose arguments are finitely gener-
ated Z-modules. Let A and B be Z-modules. In Example 7.4 we showed that the only non-
zero ExtnZ(A,B)-groups are Ext0Z(A,B) and Ext1Z(A,B) where Ext0Z(A,B) = HomZ(A,B)
by statement (iii) in the Theorem above. What is left to determine is Ext1Z(A,B). In
Example 2.20 we stated that any finitely generated module over a PID can be decomposed
into a direct sum of cyclic groups, in particular finitely generated Z-modules have a unique
decomposition of cyclic modules. We assume that A is finitely generated and B is cyclic.
Since Extn

R
(⇤, D) preserves direct sums we can compute Ext1Z(A,B) by decomposing A

into a direct sum of cyclic submodules C, the group Ext1Z(A,B) is then the direct sum of
groups Ext1Z(C,B) which we can determine using the statements below.

Example 7.10.

(i) ExtnZ(Z, B) = 0, n > 0 and where B is any Z-module.

(ii) Ext1Z(Z/nZ,Z) ⇠= Z/nZ.

(iii) Ext1Z(Z/mZ,Z/nZ) ⇠= Z/gZ where g = gcd(m,n).

(i) This follows from Theorem 7.9 (iii), since Z is a free module and as such projective.

(ii) The projective resolution of Z/nZ is a short exact sequence

0 �! Z n�! Z �! Z/nZ �! 0

(Example 4.8) where n is the homomorphisms multiplying each element in Z by n.
By Theorem 7.9 (i) there exists an exact sequence,

0 �! Hom(Z/nZ,Z) �! Hom(Z,Z) n
⇤

�! Hom(Z,Z) �! Ext1Z(Z/nZ,Z) �! 0

where Ext1Z(Z,Z) = 0 due to (i). In particular is

Hom(Z,Z) n
⇤

�! Hom(Z,Z) �! Ext1Z(Z/nZ,Z) �! 0

exact. Since Hom(Z,Z) ⇠= Z and n
⇤ is multiplication by n, there exists an exact

sequence
Z n�! Z �! Ext1Z(Z/mZ,Z/nZ) �! 0.

Using the First Isomorphism Theorem we then get Ext1Z(Z/mZ,Z/nZ) ⇠= Z/nZ.
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(iii) This example follows the one above. The projective resolution of Z/mZ is a short
exact sequence

0 �! Z m�! Z �! Z/mZ �! 0.

Theorem 7.9 (i) gives us an exact sequence of Ext-groups:

Hom(Z,Z/nZ) m
⇤

�! Hom(Z,Z/nZ) �! Ext1Z(Z/mZ,Z/nZ) �! 0

where Ext1Z(Z,Z/nZ) is zero due to (i). Using Example 2.6(i) we get an exact sequence

Z/nZ m�! Z/nZ �! Ext1Z(Z/mZ,Z/nZ) �! 0

and so
Ext1Z(Z/mZ,Z/nZ) ⇠= (Z/nZ)/m(Z/nZ) = Z/gZ.

To show the last equality: Let G = Z/nZ, and mG = m(Z/nZ) and let t be the
order of mG. Let m = lg and n = kg where g = gcd(m,n) where k, l 2 Z. We will
show that t = k which leads to |G/mG| = |G|/|mG| = g implying that G/mG is
a cyclic group of order g. First we show that t|k: Since gcd(l, k) = 1 we have that
kgl = lcm(m,n) and since kgl = km, we get that k(mx) = 0 and so t|k. Next we
show that k|t: We have that t(mx) = 0Z/nZ and so n|tm which implies k|tl and since
gcd(k, l) = 1 we get that k|t. And so t = k.

We can use Extn
R
(⇤, D) to characterize injective modules. Consider Diagram (76), if

we let D be an injective module then according to Proposition 7.1(iii) the columns of the
diagram would be not only complexes but also exact at every group Hom(Pn, D) where
n � 1. In other words, given an injective module D the Extn

R
(⇤, D) groups where n � 1

are all zero. Proposition 7.1(iii) is an if and only if statement which means that the converse
is also true: if Ext1

R
(N,D) = 0 for all R-modules N then D is an injective module and if

D is injective then the following Extn
R
(⇤, D) groups are also zero. We have the equivalent

statements of the Proposition below characterizing injective modules.

Proposition 7.11. The following are equivalent.

(i) D is injective.

(ii) Ext
1
R
(N,D) = 0 for all R-modules N .

(iii) Ext
n

R
(N,D) = 0 for all R-modules N and n � 1.

[1, pg. 784, Proposition 9, Sec. 17.1]

In the last part of this text we will show that there is a bijection between the cohomology
group Ext1

R
(C,A) and the set of equivalence classes of extensions A by C.
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7.2.2 Bijection of Ext1
R
(C,A) and e(C,A)

In section 3 we defined equivalent extensions A by C as two extensions making the diagram

0 // A

1A
✏✏

// B

�

✏✏

// C

1C
✏✏

// 0

0 // A // B
0

// C // 0

(77)

commute. We will now show, using Lemma 3.9 that there is a bijection between the set of
equivalence classes of extensions A by C and the group Ext1

R
(C,A).

Theorem 7.12. For any R-modules C and A there is a bijection between the group

Ext
n

R
(C,A) and the set of equivalence classes of extensions A by C.

Proof. Define
e(C,A) = {[⇠] | ⇠ is an extension of A by C}.

We will first define the map

 : e(C,A) ! Ext1R(C,A),

and then construct its inverse

✓ : Ext1R(C,A) ! e(C,A).

Let
P =! P2

d2�! P1
d1�! P0 �! C ! 0

be a projective resolution of a module C and remember that

Ext1R(C,A) = ker d
⇤
2/im d

⇤
1

where d
⇤
2 is the homomorphism

Hom(P1, A) ! Hom(P2, A)

↵1 7! ↵1d2.

Let [⇠] = 0 ! A ! B ! C ! 0 be an extension class A by C and consider the diagram

// P2
d2
//

0
✏✏

P1
d1
//

↵1

✏✏

P0
//

↵0

✏✏

C

1C
✏✏

// 0

// 0 // A
i

// B
p
// C // 0.

(78)

From Proposition 4.10 we get that there exists a chain map ↵n over 1C since the first row
is projective and the second row is exact. Since ↵n is a chain map the diagram commutes
and we have that ↵1d2 = 0, that is ↵1 2 ker d

⇤
2 and we can now define  :

 : e(C,A) ! Ext1R(C,A)
[⇠] 7! ↵1 + im d

⇤
1.
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Suppose Q = · · · ! P2 ! P1
t1! P0 ! C is another resolution of C we would then have a

chain map � : Q ! ⇠ and a homomorphis �1 : Q1 ! A and we could define  as

[⇠] 7! �1 + im t
⇤
1.

However, since any two resolutions of C gives rise to isomorphic groups Extn
R
(C,A), see

Proposition 7.6, we have an isomorphism ⇡ such that

⇡(�1 + im t
⇤
1) = ↵1 + im d

⇤
1

and the map  is independent of the resolution. We need to show that  does not depend on
the chain map ↵n. Proposition 4.12 states that any two chain maps over 1C are homotopic,
this means that given a chain map ↵0

n,

// P2
d2
//

0
✏✏

P1
d1
//

↵
0
1
✏✏

P0
//

↵
0
0
✏✏

C

1C
✏✏

// 0

// 0 // A
i

// B
p
// C // 0,

there exists maps s1 : P1 ! 0 and s0 : P0 ! A such that

↵
0 � ↵ = 0s1 + s0d1 = s0d1

and ↵�↵0 2 im d
⇤
1 and so ↵+im d

⇤
1 = ↵

0
1+im d

⇤
1 and we have shown that  does not depend

on the chain map ↵n. We also need to show that  does not depend on the extension ⇠.
Consider the diagram below where the two bottom rows are equivalent extensions,

P = // P2
//

0
✏✏

P1
//

↵

✏✏

P0
//

✏✏

C

1C
✏✏

// 0

⇠ = // 0 //

✏✏

A //

1A
✏✏

B //

✏✏

C

1C
✏✏

// 0

⇠
0 = // 0 // A // B

0
// C // 0.

Since equivalent extensions implies commutating diagrams we can view the equivalence of
the rows as a chain map and the chain map P ! ⇠

0 as the composition P ! ⇠ ! ⇠
0 and so

 (⇠0) = 1A↵+ im d
⇤
1 = ↵+ im d

⇤
1 =  (⇠).

We will now construct the inverse of  :

✓ : Ext1R(C,A) ! e(C,A).

Let u 2 Ext1
R
(C,A), choose a projective resolution to C and choose a homomorphism

↵1 : P1 ! A, such that ↵1 + im d
⇤
1 represents the coset u:

P = // P2
d2
// P1

d1
//

↵1

✏✏

P0
d0
// C // 0

A.

(79)
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Since ↵1 2 ker d
⇤
2 we have that ↵1d2 = 0A and ↵1 induces a homomorphism

↵̄1 : P1/im d2 ! A

x1 + im d2 7! ↵1(x1)

where x1 2 P1. Given the resolution P in diagram (79) we have by the First Isomorphism
Theorem that P1/im d2

⇠= im d1 and by the exactness of P that im d1 = ker d0 and there
exists a short exact sequence

⌅ = 0 �! P1/im d2
d̄1�! P0

d0�! C �! 0,

where d̄1(x1 + im d2) = d1(x1). By Lemma 3.9 there exists a commutative diagram

0 // P1/im d2
//

↵̄1

✏✏

P0

�

✏✏

// C

1C
✏✏

// 0

0 // A
i

// B // C // 0.

(80)

We can now define the map ✓ where the cosets of Ext1
R
(C,A) maps to the equivalence class,

[↵̄1⌅] which are all extensions C by A in the bottom row of (80) completing the diagram.
Define ✓ as

✓ : Ext1R(C,A) ! e(C,A)

↵1 + im d
⇤
1 7! [↵̄1⌅].

We need to show that ✓ does not depend on the choice of homomorphism representing the
coset ↵1 + im d

⇤
1, first note that the commutativity of diagram

// P2
d2
//

0
✏✏

P1
d1
//

↵1

✏✏

P0
//

�

✏✏

C

1C
✏✏

// 0

// 0 // A
i

// B // C // 0

(81)

implies diagram (80) and vice versa. We have that

↵1 + im d
⇤
1 = {↵1 + sd1 | s 2 Hom(P0, A)}

and so any other representative for the coset is of the form ↵
0
1 = ↵1 + sd1. Consider the

diagram
// P2

d2
//

0
✏✏

P1
d1
//

↵1+sd1

✏✏

P0
//

�+is

✏✏

C

1C
✏✏

// 0

// 0 // A
i

// B
p
// C // 0.

(82)

where the top row is the resolution chosen initially and the bottom row is the extension in
diagram (80). This diagram commutes:

(↵1 + sd1)d2 = ↵1d2 + sd1d2 = 0A
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and
(� + is)d1 = �d1 + isd1 = i↵1 + isd1 = i(↵1 + sd1)

and finally
p(� + is) = p� + pis = d0 + pis = d0.

Since diagram (82) commutes we have that

0 // P1/im d2
//

↵̄1+sd1

✏✏

P0

�+is

✏✏

// C

1C
✏✏

// 0

0 // A
i

// B
p
// C // 0,

(83)

commutes and so [↵̄0
1⌅] = [↵̄1⌅] according to Lemma 3.9. We also have to show that ✓ 

and  ✓ are identity maps. To show that  ✓ is an identity map, let ↵1+ im d
⇤
1 2 Ext1

R
(C,A)

then ✓(↵1 + im d
⇤
1) is the extension class consisting of the bottom rows of

0 // P1/im d2
//

↵̄1

✏✏

P0

✏✏

// C

1C
✏✏

// 0

0 // A // B // C // 0.

which are the same sequences as the bottom row of the chain map ↵n over 1C starting with
↵1,

P2
//

0
✏✏

P1
//

↵1

✏✏

P0
//

↵0

✏✏

C

1C
✏✏

// 0

0 // A // B // C // 0.

And so, from the definition of  we get that  ✓(↵1+ im d
⇤
1) = ↵1+ im d

⇤
1. For the reversed

map, let ⇠ be an extension of C by A then  (⇠) = ↵+ im d
⇤
1 where ↵ is a map

P2
//

0
✏✏

P1
//

↵

✏✏

P0
//

✏✏

C

1C
✏✏

// 0

⇠ = 0 // A // B // C // 0.

making the diagram commute. This implies there exists a diagram

⌅ = 0 // P1/im d2
//

↵̄

✏✏

P0

✏✏

// C

1C
✏✏

// 0

⇠ = 0 // A // B // C // 0.

and so ⇠ 2 [↵⌅] and ✓ (⇠) = [↵⌅] is an identity map. [2, pg. 421-426, Theorem 7.30, Ch.
7.2]
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