
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Convolution on compact groups and natural language processing

av

Mbwenga Maliti

2023 - No K28

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Convolution on compact groups and natural language processing

Mbwenga Maliti

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Rikard Bøgvad

2023

Abstract

There is a mathematical framework that can be used for explicitly con-
structing neural networks with internal representations of its input that are
equivariant to the action of an arbitrarily chosen compact group. I have de-
scribed parts of it and used a simple model of languages and translations to
examine a part of the aforementioned framework necessary for applying it to
natural language processing. There is a significant amount of work remaining
in order to build a full neural network according to the mathematical frame-
work, as well as in order to incorporate more sophisticated models of language
and translations into it.

Sammanfattning

Det finns ett matematiskt ramverk som kan användas för att konstrue-
ra neurala nätverk med interna representationer som är symmetriska under
gruppverkan av en godtyckligt vald kompakt grupp. Jag beskriver delar av
detta ramverk och använder en enkel model av språk och översättningen mel-
lan dem för att undersöka delar av det förnämnda ramverket som behövs
för att tillämpningar inom behandlingen av naturligt språk. Det återstår en
betydande mängd arbete för att konstruera ett neuralt nätverke i enlighet
med ramverket, samt att introducera mer sofistikerade modeller av språk och
översättningen mellan dem.

1

Contents

1 Artificial neural networks 5
1.1 Binary classification . 5
1.2 Artificial neurons . 5
1.3 Deep neural networks . 11
1.4 The convolution layer . 22

2 Group convolutional neural networks 26
2.1 G-convolution layer . 32
2.2 G-CNN construction . 35

3 Linguistic convolution on finite language graphs 37
3.1 Sample dataset . 38
3.2 Translation group . 39

4 Conclusions & next steps 39

References 41

3

1
Artificial neural networks
1.1 Binary classification

A common problem is the problem of binary classification. Given two properties A

and B that some X may exhibit, how can we infer what property X has without
knowing it beforehand? One example of a binary classification problem is where we
have an 1000x1000 pixel image and want to determine if the image contains a bus
or not. It may be an easy problem for a human to solve, but for an algorithm the
only information it has is the vector in R106 that the image is represented by. And
that is assuming the image is in black and white, where only opacity needs to be
set. Representing an image with color would require a vector in R1018 , seeing as each
color can be described as a combination of the foundational colors red, green and
blue at varied levels of opacity. More abstractly, we may view the problem of binary
classification as that of for two subsets A, B of some set C such that

A ∩B = ∅

finding a function fδ : C → {⊤,⊥} such that:

fδ(x) =

⊤ if x ∈ A

⊥ if x ∈ B

Sometimes, a solution to this problem is a McCulloch-Pitt Neuron neuron:

1.2 Artificial neurons

Definition 1.1. An McCulloch-Pitt Neuron(MPN) is a function f(W (X + B)⊤)
where X = (x1, ... xn) are variables, W = (w1, ... wn) and B = (b1, ... bn) are

5

constants, X, W, B ∈ Rn, n ∈ N and f is a function such that

f(C) =

1 if C > 0

0 if C ≤ 0

.

The constants W of an MPN are referred to as the weights of the MPN. B is
known as the bias of the MPN. Suppose that A1 and A2 are two disjoint regions of
R2, and that they lie on each side of the line x = −y, with A1 containing elements
(x, y) such that x+y > 0. Then we can see that the MPN f with weights W = (1, 1)
and bias B = (0, 0) can decide whether X = (x, y) ∈ R2 is in A1 or A2, since:

f(WX⊤) =

1 then X ∈ A1

0 then X ∈ A2

As an MPN can only classify regions separated by a hyperplane, the types of regions
an MPN can classify are characterized by a result commonly referred to as the
hyperplane separation theorem. Before proving it, we must cover some definitions:

Definition 1.2. A metric space is a set M with a function d : M → R such that:

• ∀x, y ∈M : d(x, y) ≥ 0

• ∀x, y ∈M : d(x, y) = d(y, x)

• ∀x, y ∈M : d(x, x) = 0 and d(x, y) = 0 =⇒ x = y

• ∀x, y, z ∈M : d(x, y) + d(y, z) ≥ d(x, z).

The function d is known as the metric of M .

It is clear that Rn can be viewed as a metric space with euclidean distance as its
metric.

Definition 1.3. A subset of a metric space N ⊂M is bounded if there exists some
real number r > 0 such that ∀x, y ∈ N : d(x, y) < r.

For any C ⊂ Rn, the following definitions apply:

Definition 1.4. A point a ∈ Rn is known as a limit point of the subset if every
open ball around a contains both points from C and the complement of C.

6

Definition 1.5. C is known as closed if it contains all of its limit points.

Definition 1.6. If C is both bounded and closed, it is compact.

Definition 1.7. If for all x, y ∈ C the line segment connecting x and y is contained
in C, then C is convex.

We now state a remark necessary for proving the theorem:

Remark 1.8. Let A and B be two disjoint closed subsets of Rn, and assume A is
compact. Then there exists points a0 ∈ A and b0 ∈ B minimizing the distance
||a− b|| over a ∈ A and b ∈ B.

Proof. Let a ∈ A and b ∈ B be any pair of points, and let r1 = ∥b − a∥. Since A

is compact and thus bounded, it is contained in some ball centered on a; let the
radius of this ball be r2. Let S = B ∩ Br1+r2(a) be the intersection of B with a
closed ball of radius r1 + r2 around a. Then S is compact since the intersection
of two closed and bounded sets is closed and bounded, and nonempty because it
contains b. Furthermore, the product of two compact sets in Rn is a compact set
in Rn × Rn. And a continous function on a compact set attains its minimum and
maximum value[PB2]. Since the distance function is continuous, there exist points
a0 and b0 whose distance ∥a0− b0∥ is the minimum over all pairs of points in A×S.
It remains to show that a0 and b0 in fact have the minimum distance over all pairs
of points in A×B. Suppose for contradiction that there exist points a′ and b′ such
that ∥a′ − b′∥ < ∥a0 − b0∥. Then in particular, ∥a′ − b′∥ < r1, and by the triangle
inequality, ∥a− b′∥ ≤ ∥a′ − b′∥+ ∥a− a′∥ < r1 + r2. Therefore b′ is contained in S,
which contradicts the fact that a0 and b0 had minimum distance over A× S.

We can now prove the theorem:

Theorem 1.9. If A, B ⊂ Rn are disjoint, closed, bounded and convex then there
exists some hyperplane separating them.

7

Figure 1: Proof illustration

Proof. By Definition 1.6, both sets are compact. By the previous remark, there exist
points a0 ∈ A and b0 ∈ B of minimum distance to each other. Now, construct two
hyperplanes LA, LB perpendicular to the line segment [a0, b0], with LA across a0 and
LB across b0. We claim neither A nor B enters the space between LA, LB, and thus
perpendicular hyperplanes to (a0, b0) satisfy the theorem.

Algebraically, the hyperplanes LA, LB are defined by the vector v := b0−a0, and
two constants cA := ⟨v, a0⟩ < cB := ⟨v, b0⟩, such that LA = {x : ⟨v, x⟩ = cA}, LB =
{x : ⟨v, x⟩ = cB}. Our claim is that ∀a ∈ A, ⟨a, v⟩ ≤ cA and ∀b ∈ B, ⟨b, v⟩ ≥ cB.
Suppose there is some a ∈ A such that ⟨a, v⟩ > cA, then let a′ be the foot of
perpendicular from b0 to the line segment [a0, a]. Since ⟨a, v⟩ > ⟨a0, v⟩ implies that
⟨a− a0, v⟩ > 0, it is apparent by the properties of the scalar product of two vectors
in euclidean space that the angle between a−a0 and v must be less than π

2 . Thus the
side [a0, a] of the triangle a0, b0, a must contain the point a′. Since A is convex and
thus the line segment [a0, a] must be contained in A, a′ is inside A. By considering
that [a0, b0] forms the hypotenuse of a triangle with [a′, b0] as one of it’s sides, it is

8

clear that a′ is closer to b0 than a0, a contradiction. Similar argument applies to B.

Assuming that we have two sets of points in Rn, each of which are closed, con-
nected and convex, we can see that MPNs can be used as a tool to classify which
set any given point from A or B is contained in. The same guarantee can however
not be made for points in non-convex sets. By first generalizing the MPN into an
artificial neuron:

Definition 1.10. An artificial neuron(AN) is a function f(X) = α(W (X + B)⊤)
where X = (x1, ... xn), W = (w1, .. wn), B = (b1, ... bn), X, W, B ∈ Rn, n ∈ N and
α is a real valued function. The function α is known as the activation function of f .

and defining a tuple of ANs as a perceptron:

Definition 1.11. A perceptron is a function f(X) = (m1(X), . . . ml(X)) on X =
(x1, ... xn) ∈ Rn where each mi for 1 ≤ i ≤ l is an artificial neuron

We can see that by composing perceptrons, it is in some cases possible to ap-
proximately classify points from two sets even if they are not convex. Using the two
dimensional example below:

9

y

x

f3((f2(x, y), f1((x, y))))

f1 = 0 to the right of this linef2 = 1 to the right of this line

f2 − f1 = 1 in this sector

Figure 2: Non-convex set and lines between composed MPN regions

where f1,f2 are MPNs with the weights (−3, 2), (3, 2) respectively and f3 an AN
with the weights (1,−1) and following activation function:

α(x) =

1 if x ≥ 1

0 if x < 1

we can see that any point in the circular set would be classified as 1, and any point in
the non-convex set would be classified as 0. A composition of perceptrons is referred
to as a multi-layer perceptron:

Definition 1.12. A multi-layer perceptron(MLP) is a function f(X) = Ll(Ll−1(. . . (L1(X))
on X = (x1, ... xn) ∈ Rn where each Li for 1 < i ≤ l is a perceptron.

10

1.3 Deep neural networks

Deep neural networks[GBA16] are computer algorithms designed for processing and
modeling numeric data. They are fundamentally artificial neural networks, ANNs.
The most general definition of an artificial neural network is that of a computer
algorithm that at some point in it’s execution simulates a perceptron. It may from
this be apparent that in practice the perceptron being simulated is often a small
part of the algorithm as a whole. They are referred to as deep because the percep-
trons being simulated often come in dimensions far exceeding what was feasible at
the time of the invention of the MPN. For instance, a deep neural network named
PEGASUS[ZZSL19] created by a research team at Google for automatic summariz-
ing of text contains about 560 million elements across its weights and bias matrices.
And this model is a relatively small model when compared to models such as GPT-3
whose weights and bias matrices contain over a hundred billion elements in total.
Deep neural networks are commonly represented visually as directed graphs. The
vertices are often referred to as nodes in this case. The input data is represented by
the nodes at the base of the graph and each non-input node represents an artificial
neuron. Each set of neurons at a specific distance from the input nodes are known
as hidden layers. It is through the activation functions that the data is processed
and passed between neurons and their respective layers. Activation functions can
be seen as loosely inspired by the synapses in the human brain[GBA16, p.13], regu-
lating both when a signal is to be passed between neurons and with which strength.
A more tangible example of an MLP f(X) with 5 input nodes, 2 hidden layers with
10 nodes with sigmoidal activation functions f1, f2, f3 and a single sigmoidal output
node, could be represented as the represented by:

X = X(0) = [x1, x2, x3, x4, x5]⊤ ∈ R5,

W1,∈M10×5(R), W2 ∈M10×10(R), W3 ∈M1×10(R),

B1, B2 ∈M1×10(R), B3 ∈ R,

X(i) = fi(WiXi−1 + Bi) for i ∈ {1, 2, 3}.

f(X) = f3(W3(f2(W2(f1(W1(X + B1)⊤) + B2)⊤) + B3)⊤).

11

The matrices Wi and Bi are the weights and biases, respectively, of the MLP. The
sigmoid function, represented explicitly as:

sigmoid(x) = 1
1 + e−x

is applied elementwise on matrices and vectors. In this example, each element in the
vectors Xi can be seen as the nodes of the MLP, and each vector as the individual
layers of the MLP. If we were to remove the sigmoid function from the MLP, we
would see that any individual node of the first hidden layer could be described
through the familiar expression of a two-dimensional real line:

y ∈ X1 =⇒ y = wx + b, w ∈ W1, x ∈ X0, b ∈ B1.

The same property holds for the other layers aswell, albeit in higher dimensions.
The sigmoid function is for this reason known as a non-linearity function. Given
that the output of the neural network is a number in the interval (0, 1), it would
be most appropriately deployed towards some form of binary classification problem
for a set of classes C1 and C2, as described in section 1.1. For instance guessing
if a point is contained in a poorly defined region of 5-dimensional euclidean space
or, somewhat equivalently in theory, deciding if a loan applicant of a given income
level, age, account balance, net worth and date of birth will complete all their pay-
ments in a timely manner. Since this is an issue of binary classification, we can
see that by Theorem 1.9, it is possible to automate the decision making using an
artificial neural network with appropriate weights and biases. Assuming that the
two classes of applicants each lie in compact, disjoint and convex sets. Even with
such a non-trivial assumption, the appropriate weights and biases are difficult to
know beforehand, and become more and more complicated to compute symbolically
as the amount of variables considered, size of each dataset and complexity of the
task increases. The most common approach is therefore to initialize the weights and
biases semi-randomly, and iteratively adjust them based on sample data. Artificial
neural networks can have their weights and biases adjusted through a process com-
monly referred to as training. Given a set of samples X from an input space, their
corresponding samples Y from the desired output space and a distance function d for
elements in the output space it is possible to, for some artificial neural network F ,
optimize the weights of F in order to minimize the distance between F (X) = Ŷ and
Y . In the case of loan applications, X could contain information about previously

12

approved loan applicants and Y their respective payment adherence represented by
1 if they followed their payments and 0 if they didn’t. The distance function d

could for example be addition or subtraction. One source of inspiration for distance
functions can be found in the field of statistics. The Mean Squared Error, or MSE
for short, is a sort of averaging of distances between predicted and observed values.
For a set of n pairs of observed values Yi and predicted values Ŷi, it is defined as:

1
n

n∑
i=1

(Yi − Ŷi)2 (1)

To provide an explicit example of training of a neural network, we can assume that
d is the MSE on a single pair of observed an predicted values:

d(Y, Ŷ) = (Y − Ŷ)2

and that F is the MLP exemplified earlier. The predicted value is in this case the
value of F . We also have a sample data set X that consists of 100 randomly sampled
points inside and outside a 5 dimensional unit sphere centered at the origin of radius
10, including the point:

1√
5

[1, 1, 1, 1, 1].

If we label points inside the sphere with 1 and points outside it with 0, then we can
describe the loss for the point above with the following expression:

d(1, F ([1, 1, 1, 1, 1])) = (1− F ([1, 1, 1, 1, 1]))2.

By randomly initializing the weights of F and setting its bias vectors as zero val-
ued, we can compute it’s value on [1, 1, 1, 1, 1] using the following mathematica
code:

13

In[159]:=

L1 = NetInitialize@LinearLayer[10, "Input"  5]

L2 = NetInitialize@LinearLayer[10, "Input"  10]

L3 = NetInitialize@LinearLayer[1, "Input"  10]

NetExtract[L1, "Weights"] // Normal

NetExtract[L2, "Weights"] // Normal

NetExtract[L3, "Weights"] // Normal

NetExtract[L1, "Biases"] // Normal

NetExtract[L2, "Biases"] // Normal

NetExtract[L3, "Biases"] // Normal

F = NetChain[{L1, ElementwiseLayer[LogisticSigmoid], L2,

ElementwiseLayer[LogisticSigmoid], L3, ElementwiseLayer[LogisticSigmoid]},

"Input"  5, "Output"  NetDecoder["Scalar"]]

F[{1, 1, 1, 1, 1}]

Export["MLPdemo.pdf", EvaluationNotebook[]]
Out[159]=

LinearLayer Input : vector (size: 5)

Output : vector (size: 10)


Out[160]=

LinearLayer Input : vector (size: 10)

Output : vector (size: 10)


Out[161]=

LinearLayer Input : vector (size: 10)

Output : vector (size: 1)


Out[162]=

{{-0.227335, -0.0315741, -0.712812, 0.687186, 1.19765},

{-0.588905, -0.489504, 0.0639282, 0.0465843, -0.748237},

{0.0159885, 0.0761096, 0.418003, -0.369785, -0.0406799},

{0.462154, -0.162575, 0.0843404, -0.0608847, -0.0375435},

{0.249559, -0.966555, 0.004463, -0.380593, -0.405908},

{-0.447447, 0.219026, 0.171084, -0.201943, 0.510055},

{0.0658155, 0.306806, 0.572441, -0.541783, -0.259413},

{-0.539585, 0.249051, 0.0122437, -0.185271, 0.369974},

{0.0435727, -0.406934, 0.441859, 0.0714822, -0.328253},

{-0.293133, -0.199171, 0.163789, -0.114177, 0.111943}}

Printed by Wolfram Mathematica Student Edition

Out[163]=

{{-0.16075, -0.0223263, -0.504034, 0.485914,

0.846864, -0.416418, -0.346132, 0.0452041, 0.03294, -0.529084},

{0.0113056, 0.0538176, 0.295572, -0.261477, -0.028765,

0.326793, -0.114958, 0.0596377, -0.043052, -0.0265473},

{0.176465, -0.683457, 0.00315582, -0.26912, -0.28702, -0.316393, 0.154875,

0.120975, -0.142795, 0.360663}, {0.0465386, 0.216944, 0.404777, -0.383099,

-0.183433, -0.381545, 0.176106, 0.00865758, -0.131006, 0.261611},

{0.0308106, -0.287745, 0.312442, 0.0505455, -0.23211,

-0.207276, -0.140835, 0.115816, -0.0807354, 0.0791557},

{0.104774, 0.0995118, 0.542574, -0.04669, 0.119367, 0.163544, 0.00857594,

0.14041, 0.541274, 0.166406}, {0.193987, 0.185644, 0.134926, -0.278123,

0.00645927, 0.0578803, 0.699784, -0.000506443, -0.115662, -0.442993},

{-0.364381, -0.154783, -0.0643412, 0.0395997, -0.334149,

-0.0114371, -0.42682, 0.0838717, 0.0572576, -0.0541785},

{-0.143424, 0.0608095, 0.093548, 0.0907857, -0.340566, -0.183062,

0.379418, 0.643919, -0.3876, 0.508179}, {0.18519, -0.357849, 0.178986,

-0.0694283, -0.266553, 0.0359188, 0.288282, -0.732395, 0.471446, 0.395521}}

Out[164]=

{{-0.16075, -0.0223263, -0.504034, 0.485914,

0.846864, -0.416418, -0.346132, 0.0452041, 0.03294, -0.529084}}

Out[165]=

{0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}

Out[166]=

{0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}

Out[167]=

{0.}

Out[168]=

NetChain Input port: vector (size: 5)

Output port: scalar 

Out[169]=

0.401506

2 ThesisNotebook.nb

Printed by Wolfram Mathematica Student Edition

We can see in the code that the layers of the MLP is represented by the vari-
ables L1, L2, L3. Using the Mathematica function NetExtract, we can view the
randomized weights and biases of the network, shown as the nested and single lists
respectively in the code printout. The layers are combined using the Mathemat-
ica function NetChain, allowing the activation function of each layer to be defined
aswell. Finally, at the end of the printout, the value of the MLP on the point
(1, 1, 1, 1, 1) is shown. Thus with the given sample datapoint and model parameters,
the loss evaluates to:

(1− F ([1, 1, 1, 1, 1]))2 = (1− 0.401506)2 ∼ 0.3582.

Searching for local minimums to this expression with regards to the weight and
bias parameters of F is what is meant by "training" an MLP. By findinng a local
minimum to this expression, we make the neural network model our sample data
more closely, in the hopes of it generalizing to the set of data it will process when
solving it’s intended task.

Since MLPs are a composition of differentiable functions, it is clear that MLPs
must be differentiable. Assuming that the set of data it is intended to model is
convex, then the tools from the theory of convex optimization are available to use
for training MLPs. One such tool that is commonly used for finding local minimums
of MLPs is known as gradient descent:

Definition 1.13. Let x ∈ Rd and let γ > 0 be known as step size. The Gradient
Descent(GD) algorithm defines a sequence (xt)t∈N satisfying

xt+1 = xt − γ∇f(xt).

It is however not necessarily evident that gradient descent ever arrives at a local
minimum for a given MLP. For the case of MLPs on compact sets consisting of
convex and smooth activation functions, it can be proved that it does. We first
define a lipschitz constant:

Definition 1.14. A lipschitz constant of a function f : X → Y with metric spaces
(X, dX), (Y, dY) is a real number L such that for all x1, x2 ∈ X:

dY (f(x1), f(x2)
dX(x1, x2)

≤ L.

.

16

We will be using this with d(x, y) = ||x − y||2 for x, y ∈ Rn. We introduce the
notion of µ-strong convexity:

Definition 1.15. Let f : Rn → R∪ {+∞}, and µ > 0. We say that f is µ-strongly
convex if, for every x, y ∈ Rn, and every t ∈ [0, 1] we have that

µ
t(1− t)

2 ||x− y||2 + f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

We say that µ is the strong convexity constant of f.

. An equivalent definition is by lemma 2.14 of [CH23]:

Definition 1.16. If a differentiable function f : Rn → R is µ-strongly convex then

∀x, y ∈ Rn : f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2 ||y − x||2.

. We will define argmin f for some function f as the set of elements in its domain
on which f attains its minimal value. We introduce lemma 2.18 of [CH23]:

Proposition 1.17. Let f : Rn → R be differentiable, and µ > 0. If f is µ-strongly
convex, then f is bounded from below, and for all x ∈ Rn

f(x)− inf f ≤ 1
2µ
||∇f(x)||2.

Proof. As f is continuous and strongly convex, argmin f contains a unique element.
Denote it by x∗. Thus f(x∗) = inf f . Multiplying the inequality in definition 1.16
by minus one and substituting y = x∗, we have that

f(x)− f(x∗) ≤ ⟨∇f(x), x− x∗⟩ − µ

2 ||x
∗ − x||2

= −1
2 ||
√(x− x∗)− 1

√∇f(x)||2 + 1
2µ
||∇f(x)||2

≤ 1
2µ
||∇f(x)||2.

We can now prove the following theorem:

Theorem 1.18. Assume that f : U → R is a differentiable function on the compact
subset U ⊂ Rd with argmin f ̸= ∅ that is µ-strongly convex and smooth, with L

17

being some Lipschitz constant of its gradient such that Ł ≥ µ > 0. Let (xt)t∈N be
the sequence of iterates generated by the (GD) algorithm, with a step size satisfying
0 < γ ≤ 1

L
. Then, for x∗ = argmin f and for all t ∈ N:

||xt+1 − x∗||2 ≤ (1− γµ)t+1||x0 − x∗||2

Proof. By the (GD) algorithm:

||xt+1 − x∗||2 = ||xt − x∗ − γ∇f(xt)||2

= ||xt − x∗||2 − 2γ⟨∇f(xt), xt − x∗⟩+ γ2||∇f(xt)||2.

By definition 1.16 we can see that:

||xt − x∗||2 − 2γ⟨∇f(xt), xt − x∗⟩+ γ2||∇f(xt)||2

≤ (1− γµ)||xt − x∗||2 − 2γ(f(xt)− inff) + γ2||∇f(xt)||2.

Where inf f is the minimal value of f on U . Since f is smooth and U compact, ∇f

must attain a maximum and minimum value on U . Thus by definition 1.16:

(1− γµ)||xt − x∗||2 − 2γ(f(xt)− inff) + γ2||∇f(xt)||2.

≤ (1− γµ)||xt − x∗||2 − 2γ(f(xt)− inff) + 2γ2L(f(xt)− inff

= (1− γµ)||xt − x∗||2 − 2γ(1− γL)(f(xt)− inff).

Since 1
L
≥ γ we have that −2γ(1− γL) is negative, and thus can be safely dropped

to give
||xt+1 − x∗||2 ≤ (1− γµ)||xt − x∗||2.

Applying gradient descent to training an MLP F relies on computing the gradient
of the expression d(Y, Ŷ) with regards to the weights of F . Computing gradients
becomes impractical to do symbolically for artificial neural networks with many
layers and nodes. Thus it is often done iteratively, through a process known as
backpropagation. The gradient is through this process computed layer by layer,
backwards from the final layer of the network, using the multivariate chain rule.
Given a neural network F and its distance function d, commonly known in machine

18

learning literature as its loss function, we may for a given sample ytrain ∈ Y and
output F (xtrain) for xtrain ∈ X compute a loss d(ytrain, F (xtrain)). Using a distance
function such as the MSE, as defined in equation 1, it is possible to do this for
the whole dataset at once. Finding the minimum of d(1, F (1√

5 [1, 1, 1, 1, 1])) using
gradient descent and backpropagation involves the following computations:

Wi → ∇Wi
d(1, F (1√

5
[1, 1, 1, 1, 1])) = ∇Wi

(1− F (1√
5

[1, 1, 1, 1, 1]))2,

Bi → ∇Bi
d(1, F (1√

5
[1, 1, 1, 1, 1])) = ∇Bi

(1− F (1√
5

[1, 1, 1, 1, 1]))2.

As finding gradients in closed form may be difficult as the MLP grows to the size of
hundreds of layers and thousands of nodes, and the directional derivative relies upon
the gradient of d, backpropagation may be used to compute the gradient and the
directional derivatives of d numerically. An algorithm for doing so can be described
using the following pseudocode:

Algorithm 1 Backpropagation
After the forward computation, the gradient on the output layer is computed:

g ← ∇ŷJ = ∇ŷd(y, ŷ)
for k = l, l − 1...1, do

▷ Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):

g ← ∇a(k)J = g ⊙ f ′(a(k))
▷ Compute gradients on weights and biases (including the regularization

term, where needed):
∇Bk

J = g + λ∇Bk
Ω(θ)

∇Wk
J = gh(k−1)⊤ + λ∇Wk

Ω(θ)
▷ Propagate the gradients w.r.t. the next lower-level hidden layer’s

activations: g ← ∇h(k−1)J = W ⊤
k g

end for=0

also found at [GBA16, p.213]. Stepping through the code using the prior de-
scribed sample data and MLP as input, and assuming no regularization is done, we
can explicitly show the computations involved in one backward pass as the following:

ŷ = F ([1, 1, 1, 1, 1]), y = 1

19

=⇒ g = ∇ŷd(y, ŷ) = (∂d(y, ŷ)
∂y

,
∂d(y, ŷ)

∂ŷ
) · ŷ

= (2y − 2ŷ, 2ŷ − 2y) · ŷ.

k = 3

=⇒ a(k) = a(3) = W3X2 + B3.

f(x) = sigmoid(x) = 1
1 + e−x

=⇒ f ′(x) = − e−x

(1 + e−x)2 = f(x)(f(x)− 1)

=⇒ g ← (2y − 2ŷ, 2ŷ − 2y) · ŷ ⊙ f(a(3))(f(a(3))− 1)

=⇒ ∇B3J = (2y − 2ŷ, 2ŷ − 2y) · ŷ ⊙ f(a(3))(f(a(3))− 1),

∇W3J = ((2y − 2ŷ, 2ŷ − 2y) · ŷ ⊙ f(a(3))(f(a(3))− 1))f(a(2))⊤,

g ← W ⊤
3 (2y − 2ŷ, 2ŷ − 2y) · ŷ ⊙ f(a(3))(f(a(3))− 1).

k = 2

=⇒ a(k) = a(2) = W2X1 + B2.

g ← (W ⊤
3 (2y − 2ŷ, 2ŷ − 2y) · ŷ ⊙ f(a(3))(f(a(3))− 1))⊙ f(a(2))(f(a(2))− 1)

=⇒ ∇B2J = (W ⊤
3 (2y− 2ŷ, 2ŷ− 2y) · ŷ⊙ f(a(3))(f(a(3))− 1))⊙ f(a(2))(f(a(2))− 1),

∇W2J = ((W ⊤
3 (2y−2ŷ, 2ŷ−2y)·ŷ⊙f(a(3))(f(a(3))−1))⊙f(a(2))(f(a(2))−1))f(a(2))⊤,

g ← W ⊤
2 (W ⊤

3 (2y − 2ŷ, 2ŷ − 2y) · ŷ ⊙ f(a(3))(f(a(3))− 1))⊙ f(a(2))(f(a(2))− 1).

k = 1

=⇒ a(k) = a(1) = W1X0 + B1.

g ← (W ⊤
2 (W ⊤

3 (2y−2ŷ, 2ŷ−2y)·ŷ⊙f(a(3))(f(a(3))−1))⊙f(a(2))(f(a(2))−1))⊙f(a(1))(f(a(1))−1))

=⇒ ∇B1J =

(W ⊤
2 (W ⊤

3 (2y−2ŷ, 2ŷ−2y)·ŷ⊙f(a(3))(f(a(3))−1))⊙f(a(2))(f(a(2))−1))⊙f(a(1))(f(a(1))−1)),

∇W1J =

((W ⊤
2 (W ⊤

3 (2y−2ŷ, 2ŷ−2y)·ŷ⊙f(a(3))(f(a(3))−1))⊙f(a(2))(f(a(2))−1))⊙f(a(1))(f(a(1))−1))f(a(0))⊤,

g ← W ⊤
1 ((W ⊤

2 (W ⊤
3 (2y−2ŷ, 2ŷ−2y)·ŷ⊙f(a(3))(f(a(3))−1))⊙f(a(2))(f(a(2))−1))⊙f(a(1))(f(a(1))−1))).

20

The only part missing from the computations above are the initial values of the
weights and biases. Selecting these properly is not a trivial problem, and is of-
ten an important part of ensuring that a neural network actually converges during
training[GBA16, p.301]. In most practical applications, where data sets and the
dimensionality of it’s datapoints are large, it becomes impractical from a computa-
tional standpoint to do (GD) computations across entire training sets. Stochastic
Gradient Descent (SGD) allows for the training of an MLP with a fewer computa-
tions by using estimates of its gradient instead of the gradient itself:

Definition 1.19. Consider a function f : Rd → R:

f(x) = 1
n

n∑
i=1

fi(x)

where the functions fi : Rd → R are smooth and convex. Let x0 ∈ Rd, and let γt > 0
be a sequence of step sizes. The Stochastic Gradient Descent (SGD) algorithm is
given by the iterates (xt)t∈N where:

it ∈ {1, ...n} Sampled with probability 1
n

,

xt+1 = xt − γt∇fit(xt).

Theorem 5.5 of [CH23] also proves that (SGD) converges under conditions similar
to those for (GD):

Theorem 1.20. Let f be a sum of convex and smooth functions fi on a compact
set U ⊂ Rd under the assumptions of (SGD), where Lmax is the the largest Lipschits
constant for some set of Lipschitz constants of the functions fi. Consider (xt)t∈N a
sequence generated by the (SGD) algorithm with a stepsize γt > 0.

1. If γt = γ < 1
2Lmax

, then for every t ≥ 1 we have that

E[f(xt)− f(x∗)] ≤ ||x0 − x∗||2

2γ(1− 2γLmax)
1
t

+ γ

1− 2γLmax
σ∗

f

where xt = 1
t

∑t−1
k=0 xk.

2. If γt = γ
√

t + 1 with γ ≤ 1
2Lmax

, then for every t we have that

E[f(xk)− f(x∗)] ≤
||x0 − x∗||2

2γ
√

k
+ γ2 log(k)

γ
√

k
σ∗

f = O(log(k)√
k

).

21

1.4 The convolution layer

Successful training of a neural network for a given task is commonly known as con-
vergence. How the distance function d is chosen and the sample datasets X and Y

are constructed have an enormous impact on the conditions under which a neural
network converges. For instance,describing the distance between the predicted num-
ber in an image of a number and the actual number depicted using subtraction may
be enough for a relatively simple MLP to converge. Assuming that the a sample set
consists of small, digitally drawn images of white numbers on a black background
paired with the numbers written, and that all numbers it is expected to classify fol-
low this pattern. An example of an MLP with a slightly different loss function that
achieves 99% accuracy on the foundational MNIST dataset can be found at https:
//www.kaggle.com/code/devanshbesain/deep-mlp-on-mnist-dataset. It may
however at the same time be impossible for any MLP at all to converge using the
same distance metric when trying to train it to automatically classify arbitrary im-
ages of numbers in real life, in any number of orientation, drawn on any number of
surfaces or using any number of objects, in all kinds of illumination levels. One issue
lies in the fact that MLPs process all parts of their input in largly the same way,
thus the weights and biases necessary for classifying two seemingly similar images,
e.g various rotations of the number 7, can differ significantly. Exploiting various
spatial symmetries, for instance that numbers are numbers regardless of their ori-
entation, when constructing a distance function, or a neural network more broadly,
can however turn an intractable problem into a tractable one. Convolutional neural
networks are such an example. A convolutional neural network is a neural network
that employs convolution in place of general matrix multiplication in at least one
of it’s layers[GBA16, p.330]. Convolution is a method widely used in the context of
signal processing, and can be viewed as a method of averaging two time continuous
measurements x(t) and w(t), or signals, over some domain D ∈ R in the following
manner:

s(t) =
∫

D
x(a)w(t− a) da. (2)

The operation is typically represented using an asterisk:

s(t) = (x ∗ w)(t)

22

https://www.kaggle.com/code/devanshbesain/deep-mlp-on-mnist-dataset
https://www.kaggle.com/code/devanshbesain/deep-mlp-on-mnist-dataset

It is however not a true weighted average unless w is a valid probability density
function[GBA16, p.331]. If w is a probability density function of D, then the con-
volution above corresponds with the expected value of x(t) as a random variable
with a probability distribution equal to D. For instance, for some square shaped
greyscale image I ∈ [255]r×r ⊂ Zr×r of resolution r ∈ N, we may use w(t) = 1

r2 of
the uniform distribution and see an example of this. As the input space for a given
neural network used practically is most often finite, and most functions are defined
as zero valued outside them, the integration step of the convolution operation can
be assumed to be representable as a sum.

Another use case of convolution beyond signal processing is for image processing.
For instance to detect the edges of an object in an image. If a black and white image
consists of a written number, as shown below:

Figure 3: Excerpt from the MNIST dataset

It is reasonable to assume that the pixels on the edges of the written number
may be characterized by a sharp increase/decrease in opacity. This increase/decrease
can be detected using an appropriate convolution matrix. The convolution matrix

23

is multiplied peicewise with the matrix of pixels representing the image, allowing
for only the edges to be visually identifiable afterwards. For instance, using the
following matrix as a convolution matrix:

−1 −1 −1
−1 8 −1
−1 −1 −1


and by considering that a triangular matrix represents an edge in an image:

−1 −1 −1
−1 8 −1
−1 −1 −1

 ∗


0 0 255
0 255 255

255 255 255



=


−255 −1020 510
−1020 765 255

510 255 0


while a matrix without zeroes represents a part of an image without edges:

−1 −1 −1
−1 8 −1
−1 −1 −1

 ∗

255 255 255
255 255 255
255 255 255



=


0 0 0
0 0 0
0 0 0


we can see how the outputs generated by the convolution matrix differs based on the
presence of edges in an image. Using the ImageConvolve function in Mathematica,
we can see some visual examples of applying the convolution matrix below:

24

Figure 4: Images before and after processing using the convolution matrix

25

2
Group convolutional neural net-
works
A central notion when discussing disirable properties of neural networks is equivari-
ance:

Definition 2.1. A function F : X → Y is equivariant to some group action by G

on X and Y if:
∀x ∈ X : F (gx) = gF (x).

Analogously to the previously described situation with arbitrary convex sets, we
can now consider ways of classifying datasets that are equivariant to some group
action. If we consider the datasets C = C− ∪ C+ ⊂ R2 consisting of an infinite
amount discs of radius 1 centered at x = −3 and x = 3 separated by a distance of 3
along the y-axis and the dataset A consisting of an infinite amount of similar discs
centered at the origin of the same distance between each other. We can see that
both sets are equivariant, in fact even invariant, to reflection about the y-axis. This
can be seen as an action of Z2. The datasets could not be classified using a finite
amount of MPNs whose weights represent lines not equivariant to this action, in the
form of e.g a zigzag pattern, but could be classified by using only two MPNs f1, f2

with their respective weights and biases being

W1 = (1, 0), B2 = (1.5, 0)

W2 = (−1, 0), B2 = (−1.5, 0)

as the lines they represent are equivariant to the action. We can see it visually
below:

26

y

x

f3(f2(x, y), f1(x, y))

Figure 5: Sets and artificial neuron invariant to reflection

Where f4 is an AN with bias 0, the weights (1, 1) and the following activation
function:

α(x) =

1 if x ≥ 2

0 if x < 2

It can be shown that convolutional neural networks, most famously used to great suc-
cess in the domain of object recognition[KSH12], are equivariant under spatial trans-
lation. Spatial translation of images can be represented by actions of Z/n1Z×Z/n2Z,
where n1, n2 represent the dimensions of the image being translated. They are a
special case of what is known as group convolutional neural networks, for which the
equivariant property will be proven in one direction below. There are however dis-
tinct operations beyond purely convolution that are necessary in practice, and that
allow for the property of equivariance to be generalized beyond finite group actions
and to new types of data entirely[RT18]. Specifically, the notion of G-convolution

27

and G-pooling, along with a nonlinearity layer.

To start with, it is useful to introduce some of the mathematical machinery nec-
essary to describe equivariance more generally. An object known as a topological
group that lies in the intersection of two areas, topology and algebra, is necessary.
A useful introduction to general topology can be found at [TWT20]. First we define
a topological space and it’s topology:

Definition 2.2. A topology τ of the topological space (X,τ) is a set of subsets of
the set X that is closed under arbitrary unions and finite intersections. The empty
set ∅ and X must also be contained in τ .

Elements of τ are known as open sets, and their complements in X as closed
sets. It is common to refer to X as the topological space itself if it’s topology is not
ambiguous. Let [n] = {1, 2, 3...n} for n ∈ N. Then we can see:

Proposition 2.3. The set of all subsets of [n], also known as the power set P([n]),
is a topology on [n] known as the discrete topology.

Proof. By convention, [n] and the empty set ∅ are elements of P([n]). As P([n]) is
finite, any set of unions or intersections can at most be finite. Assuming an index
set I, we can see that for any family of subsets (ai)i∈I of [n] that

⋃
i∈I

ai ⊆ [n] =⇒
⋃
i∈I

ai ∈ P([n])

and ⋂
i∈I

ai ⊆ [n] =⇒
⋂
i∈I

ai ∈ P([n])

thus P([n]) satisfies the definition of a topology on [n].

Much as with the vectors of a vector space, it may in some cases be quite cumber-
some to give an explicit description of all open sets of a topological space. Therefore
there is use in defining a basis of a topological space.

Definition 2.4. A basis B of a topological space X is a set such that every open
set of X can be written as a union of members of B.

For instance, in the case of the previously mentioned topology of [n], it can be
seen that the so called singleton sets {i} for i ∈ [n] forms a basis for P([n]). A well

28

known topology on the set of real numbers R is known as the euclidean topology.
It has the set of open intervals {(r1, r2)|r1 < r2 ∧ ri ∈ R} as its basis. There are
multiple properties of functions between topological spaces that signify that they
in some sense preserve the topological structure of the respective spaces. One such
property is known as continuity:

Definition 2.5. A function f : X1 → X2 between topological spaces is continuous
if the inverse image f−1(U) of an open set U ⊂ X1 is open in X2.

Continuity of a real function f : R → R is usually defined as the property that
for any x0 ∈ R and ϵ > 0 there exists some δ > 0 such that

|x− x0| < δ =⇒ |f(x)− f(x0)| < ϵ.

By the following propositions:

Proposition 2.6. A function f : R→ R is continuous if and only if for each a ∈ R
and each open set U containing f(a), there exists and open set V containing a such
that f(V) ⊆ U .

Proof. Assume that f is continuous. Let a ∈ R and let U be any open set containing
f(a). Then there exist real numbers c and d such that f(a) ∈ (c, d) ⊆ U . Put ϵ

equal to the smaller of the two numbers d− f(a) and f(a)− c, so that

(f(a)− ϵ, f(a) + ϵ) ⊆ U.

As the mapping f is continuous there exists a δ > 0 such that f(x) ∈ (f(a) −
ϵ, f(a) + ϵ) for all x ∈ (a − δ, a + δ). Let V be the open set (a − δ, a + δ). Then
a ∈ V and f(V) ⊆ U , as required. Conversely assume that for each a ∈ R and
each open set U containing f(a) there exists an open set V containing a such that
f(V) ⊆ U . We have to show that f is continuous. Let a ∈ R and ϵ be any positive
real number. Put U = (f(a) − ϵ, f(a) + ϵ). So U is an open set containing f(a).
Therefore there exists an open set V containing a such that f(V) ⊆ U . As V is an
open set containing a, there exist real numbers c and d such that a ∈ (c, d) ⊆ V . Put
δ equal to the smaller of the two numbers d−a and a− c, so that (a− δ, a + δ) ⊆ V .
Then for all x ∈ (a−δ, a+δ), f(x) ∈ f(V) ⊆ U , as required. So f is continuous.

Proposition 2.7. Let f be a mapping of a topological space (X,τ) into a topological
space (Y, τ ′). Then the following two conditions are equivalent:

29

1. for each U ∈ τ ′, f−1(U) ∈ τ

2. for each a ∈ X and each U ∈ τ ′ with f(a) ∈ U , there exists a V ∈ τ such
that a ∈ V and f(V) ⊆ U .

Proof. Assume that condition 1. is satisfied. Let a ∈ X and U ∈ τ ′ with f(a) ∈ U .
Then f−1(U) ∈ τ . Put V = f−1(U), and we have that a ∈ V, V ∈ τ , and f(V) ⊆ U .
So condition 2. is satisfied. Conversely, assume that condition 2. is satisfied. Let
U ∈ τ ′. If f−1(U) = ∅ then clearly f−1(U) ∈ τ . If f−1(U) ̸= ∅, let a ∈ f−1(U).
Then f(a) ∈ U . Therefore there exists a V ∈ τ such that a ∈ V and f(V) ⊆ U . So
for each a ∈ f−1(U) there exists a V ∈ τ such that a ∈ V ⊆ f−1(U). This implies
that f−1(U) ∈ τ . So condition 1. is satisfied.

We can see that the inverse of any non-constant f on an open interval in R is an
open interval in R. Open intervals in R are open sets with regards to the euclidean
topology. Since the inverse of a constant function on an open interval is either X

or ∅, both open sets in the euclidean topology, continuity in the general topological
sense with regards to the euclidean topology can be seen as a strict generalization
of continuity as commonly defined for real functions. By first defining the product
topology:

Definition 2.8. The product topology τ X×Y on X × Y is defined as the topology
having the set {U1 × U2 |U1 ∈ τ X , U2 ∈ τ Y } as it’s basis, where τ X ,τ Y are the
topologies on X and Y respectively.

we can now define a topological group:

Definition 2.9. A topological group is a group G with a topology and a continuous
group operation, as seen as a map from the product topology G×G to G, and that
has a continuous inverse function i : g → g−1.

It is worth noting that the topology constructed on [n] where every subset is
open works for any set, and is then also known as the discrete topology. One useful
fact is that:

Proposition 2.10. An arbitrary group G can be made into a topological group via
the discrete topology.

Proof. Note that τ G×G is also discrete, so all subsets are open. The inverse image
U of an element g consists of all pairs (g1, g2) such that g1g2 = g. As the inverse

30

image of a subset H ⊂ G is the union of the inverse images of it’s elements, the
group operations is shown to be continuous. The inverse operation i : g → g−1

is necessarily continuous as the axioms of a group forces inverse elements for each
element to be part of the same group, thus i−1(H) ⊂ G is an open set.

The metric topology on a metric space(Definition 1.2) is defined as the topology
with the set of open balls Ba,r = {x ∈ X|d(a, x) < r} for points in a ∈ X as its basis.
Using the standard notion of distance in Rn, referred to in topological settings as
the euclidean metric, it can be seen that this basis is the same as the basis for the
euclidean topology given earlier for R, but now generalized to arbitrary dimensions.
As the set of real numbers has been shown above to be a topological space, it can be
worth asking if real analysis can be done on topological spaces. To a certain extent,
and under specific circumstances, it can. Using the concept of a homeomorphism:

Definition 2.11. A homeomorphism f : X1 → X2 is a bijective continuous function
between topological spaces whose inverse is also continuous.

one can define a manifold:

Definition 2.12. A manifold is a topological space X for which all elements x ∈ X

there exists in an open set x ∈ U ⊆ X that is homeomorphic to an open subset of
euclidean n-space.

For any function f defined on a topological space X that is a manifold, composing
it with the homeomorphisms from X to Rn would allow for integration and derivation
in Rn. There are however compatibility conditions that need to be in place for these
operations to be well-defined. Thus it is necessary to define an atlas on a manifold:

Definition 2.13. An atlas A of a manifold X is a set of pairs (φ, U) of maps φ : U →
Rn and open sets U that cover X. On U1∩U2 we have two maps φ1 : U1∩U2 → Rn,
φ2 : U1 ∩ U2 → Rn. The transition map ⊔21 : φ1(U1 ∩ U2)→ φ2(U1 ∩ U2) is defined
as φ2 ◦φ−1

1 , and is thus a map from an open subset of Rĺn to an open subset of Rn.
Transition maps are also homeomorphisms.

The elements of A are known as charts. A manifold can thus be said to be
differentiable if the transition maps of it’s charts are differentiable. A differentiable
manifold where the transition maps of its charts are C∞ is known as a smooth man-
ifold. A good source for further information on differentiable manifolds is [MS99].
Combining the notion of a smooth manifold with that of a topological group, we
arrive at what is known as a Lie group:

31

Definition 2.14. A Lie group is a topological group that is also a smooth manifold,
whose group operation and inverse operation are both smooth.

A well-known example of a Lie group is the subset SO(3) ⊂ GL3(R) consisting
of orthogonal matrices of determinant 1.

Proposition 2.15. The group SO(3) is a Lie group

Proof. Multiplication and inversion of matrices are given by a number of polynomials
in several variables: Let X = (xij]) and Y = (yij), then XY = (∑

xikykj) and the
entries are polynomials ∑

xikykj that are clearly smooth. There is always an open
subset of points for the set of solutions M to some set of equations, as in the definition
of SO(3), around M which is a manifold. The group action on M = SO(3) ensures
that any neighbourhood of such a point can be moved anywhere on the group, hence
all points of the group have a neighbourhood that is a manifold. The transition maps
for a smooth structure on SO(3) can be constructed by composing the inversion
function with the functions from any set of homeomorphisms that make SO(3) a
manifold.

2.1 G-convolution layer

Black and white images, also known as greyscale images, can be represented as
two dimensional grids of pixels. Each pixel in the grid is an integer in the interval
[0, 255], where a white pixel has the value 255, and a black pixel the value 0. The
translation of a square greyscale image I in the x or y-axis can be viewed as a group
action of the additive quotient group Z/256Z. We can capture the cyclical nature
of image translations by deforming I into a cylinder and then a torus. Formally
this can be done by sequentially constructing quotient spaces using the respective
equivalences (r, t) ∼ (0, t) and (t, r) ∼ (t, 0) where r is the resolution of I and
0 ≤ t ≤ r. The group action of Z/256Z on I naturally induces a group action on
the set of functions defined on I. In order to incorporate both the translation in
the x and y-axis at the same time, we can instead look at the action of the group
G = (Z/256Z) ⊕(Z/256Z) defined by (g1, g2)(x, y) = (g1x, g2y), where gix, gjy are
calculated with regards to the group action from before. It can be shown that
convolution is equivariant to this group action. In order to define convolution on
compact groups, we need to generalize integration to compact groups. One way to
of doing so is to define integration with regards to a measure on a set and then find

32

a suitable measure for compact groups. Before doing so, it is necessary to define the
σ-algebra:

Definition 2.16. A σ-algebra on a set X is a set of subsets of X that are closed
under complement, countable unions and countable intersections.

An example of a σ-algebra on an arbitrary topological group G is the σ-algebra
generated by the open subsets of G, also known as a Borel algebra:

Definition 2.17. The σ-algebra generated by a family F of subsets of a space X is
the set that contains all subsets of X that can be formed from elements of F using
a countable number of unions, intersections and complement operations.

The elements of a Borel algebra are known as Borel sets. We can now define a
measure:

Definition 2.18. A measure is a function µ : Σ→ R+ ∪ {+∞} for some σ-algebra
Σ that is zero on the empty set and satisfies

µ(
∞⋃

k=1
Ek) =

∞∑
k=1

µ(Ek)

for all countable collections {Ek}∞
k=1 of pairwise disjoint sets in Σ

An example of a measure on the power set P(X) of an arbitrary set X is the
function:

µ(A) =

|A| if A is finite

+∞ if A is infinite

commonly known as the counting measure. A measure defined on the Borel sets of
a topological space is known as a Borel measure. We also need something known as
a haar measure:

Definition 2.19. A (left) haar measure of a compact group G is a non-trivial
measure on its Borel sets that satisfies the following criteria:

• Left-translation invariance: µ(gS) = µ(S) for g ∈ G and Borel sets S ⊆ G

• Finiteness on compact sets: µ(K) <∞ for compact K ⊆ G

• Outer regularity: µ(S) = inf({µ(U) : S ⊆ U, U open}) for Borel sets
S ⊆ G

33

• Inner regularity: µ(U) = sup({µ(K) : K ⊆ U, K compact}) for open sets
U ⊆ G

Compact groups can be shown to always have a unique haar measure by what
is known as Haar’s theorem. Convolution of complex valued functions f, g on a
compact group G can now be defined as follows:

(f ∗ g)(u) =
∫

G
f(uv−1)g(v) dµ(v)

where µ is the Haar measure of G. Given that (Z/256Z) ⊕(Z/256Z) is finite, and
thus necessarily a compact group under the discrete topology:

Proposition 2.20. The counting measure is a haar measure on G

Proof. Since the topology of G already contains all the Borel sets of G, and their
cardinalites are unaffected by G acting on them, it is clear that the counting measure
is left-translation invariant. Since G is finite, it is also clear that the measure is finite
on all compact sets in G. Since all Borel sets in G are open sets in G, and vice versa,
it is clear that µ(S) ∈ {µ(U) : S ⊆ U, U open}, and thus µ(S) must also be a
greatest lower bound as S cannot be contained in a strict subset of itself. Since
all subsets of G are compact by its finiteness, inner regularity follows by analogous
reasoning.

Since the counting measure of a discrete group satisfies the criteria of a Haar
measure we can see that µ(v) = |[v]| = 1. Group convolution of two functions
f : G→ R,g : G→ R using the counting measure implies

(f ∗ g)(x) =
∑
y∈G

f(xy−1)g(y)µ(y)

=
∑
y∈G

f(xy−1)g(y)

Thus we can see that group convolution over finite groups H < R with regards to
the counting measure becomes regular convolution, as described by equation 2(page
22). This illustrates that group convolution, also known as G-convolution, can be
seen as as a strict generalization of "regular" convolution.

34

2.2 G-CNN construction

For the purpose of constructing group convolutional neural networks, it may be
easier to view MLPs in a way different from how it has been presented so far. By
first defining:

Definition 2.21. Let X be an arbitrary set, and V a vector space. Then LV (X)
contains the set of functions f : X → V .

We can redefine MLPs as follows:

Definition 2.22. Let X0, ..., XL be a sequence of index sets, V0, ..., VL vector spaces,
ϕ1, ..., ϕL linear maps

ϕℓ : LVℓ−1(Xℓ−1)→ LVℓ
(Xℓ),

and σℓ : Vℓ → Vℓ appropriate pointwise nonlinearities, such as the sigmoid function.
The corresponding MLP is then a sequence of maps f0 → f1 → f2 → ... → fL,
where fℓ(x) = σℓ(ϕℓ(fℓ−1)(x)).

In this definition, as opposed to definition 1.12, we treat an MLP as a sequence
of functions rather than a series of function compositions. The index sets contain
the neurons of each layer and the vector spaces represent the domain and codomains
of the layers(assumed to be equivalent). The linear maps represent the operations
applied to the outputs of each layer before passing it through an activation func-
tion and on to the next layer, in the case of definition 1.12 this has always been
assumed to be matrix multiplication of weights and matrix addition of biases. By
first generalizing convolution to quotient spaces of G:

Definition 2.23. Let G be a finite or countable group, X and Y be (left or right)
quotient spaces of G, f : X → C, and g : Y → C. As X and Y are quotient spaces,
there exist canonical maps ηx : G→ X and ηy : G→ Y that consist of reducing an
element g modulo X and Y respectively. By defining f ◦ηX = f ↑G and g◦ηY = g ↑G

we can then define the convolution of f with g as

(f ∗ g)(u) =
∑
v∈G

f ↑G (uv−1)g ↑G (v), u ∈ G.

f ↑G and g ↑G are known as the lifted functions of f and g respectively. We may
formally define a G-Convolutional Neural Network for some group G as follows:

35

Definition 2.24. Let G be a compact group and N an L + 1 layer MLP in which
the i’th index set is G/Hi for some subgroup Hi of G. We say that N is a G-
convolutional neural network(G-CNN) if each of the linear maps ϕ1...ϕL in N is a
generalized convolution as defined in Definition 2.23 of the form

ϕℓ(fℓ−1) = fℓ−1 ∗Xℓ

with some filter Xℓ ∈ LVℓ−1×Vℓ
(Hℓ−1\G/Hℓ).

By first defining G-equivariance with regards to MLPs:

Definition 2.25. Let N be an MLP as defined in Definition 2.22, and G be a group
that acts on each index space X0, ..., XL. Let T0,T1, ...,TL be the corresponding
actions on LV0(X0), ..., LVL

(XL). We say that N is a G–equivariant feed-forward
network if, when the inputs are transformed f0 → T0

g(f0) (for any g ∈ G), the
activations of the other layers correspondingly transform as fℓ → T ℓ

g (fℓ).

We can see via theorem 1 of [RT18], that G-CNNs are equivariant to the action
of G, although we only prove the forward implication:

Theorem 2.26. Let G be a compact group and N be an L + 1 layer MLP in which
the ℓ’th index set is of the form Xℓ = G/Hℓ, where Hℓ is some subgroup of G. Then
N is equivariant to the action of G if and only if it is a G-CNN.

Proof. The theorem can be proved in the forward direction as follows: Assume that
we translate fℓ−1 by some group element g ∈ G and get f ′

ℓ−1, i.e., f ′
ℓ−1 = Tℓ−1

g (fℓ−1),
where f ′

ℓ−1(x) = fℓ−1(g−1x). Then

θℓ(f ′
ℓ−1)(u) = (f ′

ℓ−1 ∗Xℓ)(u)

=
∑
v∈G

f ′
ℓ−1(ηX(uv−1))Xℓ(v)

=
∑
v∈G

fℓ−1(g−1(ηX(uv−1)))Xℓ(v).

By g−1(ηX(uv−1)) = ηX(g−1uv−1) this is further equal to

∑
v∈G

fℓ−1(ηX(g−1uv−1))Xℓ(v) = (fℓ−1 ∗Xℓ)(g−1u) = ϕℓ(fℓ−1)(g−1u).

Therefore, ϕℓ(fℓ−1) is equivariant with fℓ−1. Since σℓ is a pointwise operator, so is
fℓ = σℓ(ϕℓ(fℓ−1)). By induction on ℓ, using the transitivity of equivariance, this

36

implies that every layer of N is equivariant with layer 0. Note that this proof holds
not only in the base case, when each fℓ is a function X → C, but also in the more
general case when fℓ : Xℓ → Vℓ and the filters are Xℓ : Xℓ → Vℓ−1 × Vℓ.

3
Linguistic convolution on finite
language graphs
Some languages translate better between each other than others. For simplicity it
would be best to restrict things to a set L of similar languages, e.g those of latin
origin, and assume that there exists some perfect translation function between texts
written in them. It would be good to further place the elements of L as nodes in
a directed graph with the translation function describing it’s edges. From there
we choose a random cycle and identify it with the permutation T : L → L that
the cycle represents. By composing T with the function ϕrep that maps a text
document to it’s token matrix, we can generate sets of graphs that may look very
different in their representation, but that convey the same linguistic information.
This allows us to develop theories about translational equivariance irrespective of
the method used for representing the text graphs(tokens, bytes etc) or embedding
of the text in graphs(sentence vs word level nodes). This abstraction also allows
us to incorporate knowledge upwards from the representation space through the
representation function(e.g explicit tokenization), and downward from the linguistic
domain through the translation function(e.g a more refined, potentially probabilistic
structure for L).

37

3.1 Sample dataset

For this text, we will define L as consisting of the languages english and swedish.
Each language is defined as consisting of a finite set of phrases as shown below:

Peng = {"How long before the train arrives?", "Why are they striking?", "Should we get a taxi?"},

Pswe = {"Hur lång tid är det tills tåget anländer?", "Varför strejkar dom?", "Ska vi ta en taxi?"}.

Thus |L| = |{eng∪swe}| = 6. Machine learning models can however not process lan-
guage directly, they need an intermediary representation of it more suitable for doing
computations. Transformer style models rely on tokenization. If we denote tiktoken
by E, the tokenizer used in the transformer model GPT-4 by OpenAI[TT033], we
can see that the languages can be represented as:

eng = E(Peng),

= {[4438, 1317, 1603, 279, 5542, 30782, 30],

[10445, 527, 814, 610, 10789, 30],

[15346, 584, 636, 264, 33605, 30]},

swe = E(Pswe),

= {[98428, 70469, 983, 13413, 19106, 3474, 259, 3385, 259, 3870, 456, 459, 44283, 910, 30],

[4050, 96061, 5527, 73, 29234, 4824, 30],

[50, 4657, 3355, 9637, 665, 33605, 30]},

As the phrases of each language have such different meanings, the translation func-
tion T between them should be evident for those who speak both languages. Made
explicit below:

T ([4438, 1317, 1603, 279, 5542, 30782, 30])

= [98428, 70469, 983, 13413, 19106, 3474, 259, 3385, 259, 3870, 456, 459, 44283, 910, 30],

T ([10445, 527, 814, 610, 10789, 30]) = [4050, 96061, 5527, 73, 29234, 4824, 30],

T ([15346, 584, 636, 264, 33605, 30]) = [50, 4657, 3355, 9637, 665, 33605, 30].

38

As we have chosen to represent L in the same way that the Transformer represents
text documents, we can see that ϕrep reduces to an identity function. Token level
translation is however nonsensical for languages that have significant grammatical
differences, as between english and japanese, but would be made less nonsensical
by introducing a chain of translations between intermediary languages. It would be
optimal for the translations to be done at a higher level with a more sophisticated
framework, such as DisCoCat[DCC18] for instance. The rigidity of frameworks
such as DisCoCat do however introduce challenges when trying to implement it
across many sets of languages, therefore a learned component to L may need to be
introduced.

3.2 Translation group

We can now see that T generates a subgroup < T >= {T n| 0 ≤ n ≤ |L|} of the
symmetry group SL. As L is finite, SL must be finite, and thus T ⩽ SL is compact
with regards to the discrete topology. We can therefore conduct G-Convolution with
regards to < T >.

4
Conclusions & next steps
In the context of natural language processing, neural networks operate on the lan-
guages themselves, not their translations. Given the above definition of language
and translation, it is however possible to view languages as heterogeneous spaces of
translation. Thus a way to apply G-convolution in existing neural networks focused
on language is by convolving the lifted activations of the layers in the network using
G-convolution equation.

Overall, there are many steps remaining in order to implement a G-CNN with
regards to linguistic translation. Even beyond building appropriate models of lan-
guage and translation. In terms of computational performance, it would likely also

39

be a challenge to find a good translation function that can be evaluated in real-time
along with the remainder of the neural network, especially during training. I believe
that the most viable solution in the short-term is to set up G-CNN layers inside
of an existing pre-trained neural network, e.g a Transformer, for "finetuning" and
when running it in production. Possibly as a way of allowing greater performance
for neural networks built under data and compute restraints. Exploring language
and translation model improvements as well as removing bottlenecks for efficient
training, preferably from a mathematical perspective, is something I am personally
interested in continuing to explore.

40

References
[GBA16] I. Goodfellow, Y. Bengio and A. Courville. Deep Learning. MIT Press,

2016.

[RT18] R. Kondor and S. Trivedi. On the Generalization of Equivariance and
Convolution in Neural Networks to the Action of Compact Groups. https:
//arxiv.org/abs/1802.03690, arXiv, 2018.

[CW16] T.S. Cohen and M. Trivedi. Group Equivariant Convolutional Neural Net-
works. https://arxiv.org/abs/1602.07576, arXiv, 2016.

[GDL] Bronstein, M. M., Bruna, J., Cohen, T., Veličković, P. (2021). Geomet-
ric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint
arXiv:2104.13478, Pages 80-82.

[DCC18] T. Bradley, M. Lewis, and B. Theilman. Translating and Evolving:
Towards a Model of Language Change in DisCoCat. arXiv arXiv:1811.11041
https://arxiv.org/pdf/1811.11041.pdf, 2018

[TWT20] S.A. Morris Topology without tears. https://www.
topologywithouttears.net/topbook.pdf, 2020

[KSH12] A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks. https://papers.nips.cc/paper/2012/
hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html, Advances in Neu-
ral Information Processing Systems 25, (NIPS 2012).

[MS99] M. Spivak. A Comprehensive Introduction to Differential Geometry. Vol.1,
Publish or Perish, Inc; 3rd edition.

[TT033] OpenAI, Tiktoken. https://github.com/openai/tiktoken, GitHub,
package version 0.3.3.

[PB2] A. Persson, L-C. Böiers. Analys i flera variabler. tredje upplagan, Studentlit-
teratur AB, 2005.

[ZZSL19] R. Kondor and S. Trivedi. PEGASUS: Pre-training with Extracted
Gap-sentences for Abstractive Summarization. https://arxiv.org/abs/1912.
08777, arXiv, 2019.

https://arxiv.org/abs/1802.03690
https://arxiv.org/abs/1802.03690
https://arxiv.org/abs/1602.07576
https://arxiv.org/pdf/1811.11041.pdf
https://www.topologywithouttears.net/topbook.pdf
https://www.topologywithouttears.net/topbook.pdf
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://github.com/openai/tiktoken
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777

[CH23] G. Garrigos Handbook of Convergence Theorems for (Stochastic) Gradient
Methods. https://arxiv.org/pdf/2301.11235.pdf, arXiv, 2023.

42

https://arxiv.org/pdf/2301.11235.pdf

	63b8c01a-1386-4273-9c3b-ef1b3a561219.pdf
	Artificial neural networks
	Binary classification
	Artificial neurons
	Deep neural networks
	The convolution layer

	Group convolutional neural networks
	G-convolution layer
	G-CNN construction

	Linguistic convolution on finite language graphs
	Sample dataset
	Translation group

	Conclusions & next steps
	References

