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Abstract

We present a proof of the uniformization theorem for simply connected Riemann
surfaces. The proof is based on the construction of harmonic functions via Perron’s
method, and closely follows the approach in Theodore Gamelin’s book ’Complex
Analysis’ and a summary provided by Sébastian Picard. We reorganize the material
and give additional proofs, explanations, and graphical illustrations to make the
topic accessible with knowledge equivalent to an undergraduate course in topology
and complex analysis.
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1 Introduction

The field of complex analysis offers various essential techniques to approach problems
in both physics and other branches of mathematics. As its name indicates, it is
the study of functions defined on the complex number plane C. One of the key
distinctions from real analysis that makes complex analysis so useful is the rigidity
of holomorphic functions. Complex differentiability is a far more restrictive property
than real differentiability because C possesses more structure than R2. In return,
however, holomorphic functions come with additional interesting properties that
prove useful for a broad range of tasks.

The Dirichlet problem, for instance, which plays a major role in various physical
applications, is the task of finding a harmonic function on a given domain in C that
attains prescribed values on the boundary of the domain. Harmonic functions are
real-valued functions on C that satisfy the two-dimensional Laplace equation; that
is, the sum of their second partial derivatives is zero. This definition gives them
similarly rigid properties as holomorphic functions possess, which is why in some
sense they can be seen as the real equivalent of the latter.

Solving the Dirichlet problem centrally relies on the shape of the given domain
and, in particular, on the boundary. It is therefore reasonable to investigate if one
can transform one domain to a simpler one, without altering the properties that
holomorphic and harmonic functions on this domain have. This could then allow
us to first solve the problem on the simpler domain, and then translate the solution
back to the original one. Domains that can be transformed to one another in this
sense are called biholomorphic, and one sufficient condition for the existence of such
a transformation to a very simple domain is provided by the Riemann mapping
theorem. The latter states that as long as the domain is simply connected, that is,
as long as it has no holes, it is biholomorphic to the open unit disc D or to C.

In many practical situations, however, the domain of a given problem need not
be planar. This leads to the notion of a Riemann surface, which can be seen as a
deformation of the complex plane. Intuitively, Riemann surfaces are objects that
locally look like C, but that have different shapes when considering them globally.
This local similarity allows to expand the theory of holomorphic and harmonic
functions to Riemann surfaces, and to approach Dirichlet problems as well as a
wide range of other tasks on them.

It is therefore natural to ask if domains on Riemann surfaces can also be trans-
formed to simpler domains, similarly as for domains in C. This is covered by the
uniformization theorem, which can be seen as a generalisation of the Riemann map-
ping theorem to Riemann surfaces. It states that every simply connected Riemann
surface is biholomorphic to one of three Riemann surfaces: the Riemann sphere, the
complex plane, or the open unit disc. The theorem was first proven independently
by Koebe and Poincaré in the year 1907. Today, it can be proven in various ways,
one of which we present in this work.
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The approach we present relies on the construction of harmonic functions by use
of Perron’s method. The latter gives certain conditions under which the supremum
of a family of subharmonic functions, which is a similar but slightly weaker property
than harmonicity, is a harmonic function. The key property of subharmonic and
harmonic functions that powers the proof is that they both satisfy the maximum
principle, which states that the maximum cannot be attained on the interior of the
domain unless the function is constant. Another fact we heavily use is that harmonic
functions are locally the real part of holomorphic functions.

In the first chapter, we introduce all those prerequisites that are typically not
taught in undergraduate courses in topology and complex analysis. We introduce
the concept of a Riemann surface, holomorphic, harmonic, and subharmonic func-
tions on Riemann surfaces, and Perron’s method on a Riemann surface. We then
introduce a special harmonic function called Green’s function, and show how it can
be constructed from subharmonic functions, as well as prove some existence and
symmetry results. We also define a harmonic function similar to Green’s function
but with an additional pole, which we call bipolar Green function, and show that it
always exists on a simply connected Riemann surface. In the last chapter, we prove
the uniformization theorem using our previous results, and provide some consequen-
tial characterization for simply connected Riemann surfaces.

The proof in the last chapter follows a two-part structure:

(A) Assuming that a Green’s function exists, we extend it to a holomorphic
function with certain properties, which we call holomorphic lift. We show
that this lift is a biholomorphism onto its image and map the image onto
the open unit disc using the Riemann Mapping Theorem.

(B) Assuming that Green’s function does not exist, we take a bipolar Green
function and use its harmonicity to extend it to a meromorphic map with
certain properties. We show that this meromorphic lift is a biholomorphism
onto its image and use the Riemann Mapping Theorem, along with the
assumption that Green’s function does not exist, to conclude that the image
is either the Riemann sphere or biholomorphic to the complex plane.

We encourage the reader to first read through the appendix, where we collected
some central results about holomorphic, harmonic, and subharmonic functions in
the plane that are most frequently used in our proof, and especially in the concepts
we introduce in the first chapter.
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2 Functions on Riemann Surfaces

2.1 Riemann Surfaces

In this section, we introduce the notion of a Riemann surface and prove some el-
ementary properties. Recall that a n-dimensional manifold is a second countable
Hausdorff space which is locally euclidean of dimension n. That is, any two points
can be separated by disjoint open sets, there exists a countable basis for its topology,
and every point has a neighborhood homeomorphic to Rn.

Definition 2.1. Let M be a two-dimensional manifold. A (complex) chart for M
is a pair (U, z), where z : U → V is a homeomorphism from an open subset U ⊆ M
onto an open subset V ⊆ C. Two charts (U1, z1) and (U2, z2) are (holomorphi-
cally) compatible if U1 ∩ U2 = ∅ or the transition map

z2 ◦ z−1
1 : z1(U1 ∩ U2) → z2(U1 ∩ U2)

is holomorphic. A collection of compatible charts {(Ui, zi)} such that {Ui} covers
M is called a (complex) atlas on M . Two atlases A1 and A2 are equivalent if
every chart in A1 is compatible with every chart in A2. An atlas that is not strictly
contained in any larger atlas is called maximal.

Figure 1. Transition map

The notion of equivalent atlases allows us to consider equivalence classes, and it
can be verified that the union of one equivalence class forms a maximal atlas. Intu-
itively, an atlas extends the structure of the complex numbers to the manifold, and
the holomorphicity of the transition maps ensures that the structure is transferred
across the entire manifold in a uniform way. This concept is given a name:

Definition 2.2. A Riemann surface is a connected, two-dimensional manifold
equipped with a maximal atlas.

We want to emphasize that every Riemann surface is path-connected. In fact, it is
connected by definition, and locally path-connected since it is locally homeomorphic
to open subsets of C. Now it is a well-known fact from topology that every connected
and locally path-connected space is path-connected.
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Intuitively, Riemann surfaces can be understood as deformations of the complex
plane that preserve the structure of the complex numbers. It is an immediate
consequence from the definition that every connected open subset Ω of a Riemann
surface R is a Riemann surface in its own right. In fact, we can restrict all charts
in an atlas for R to their intersection with Ω to obtain an atlas for Ω. We call such
a subset a subsurface or a domain on R.

While it is possible to explicitly describe a maximal atlas, it is generally incon-
venient to do so. However, the maximal atlas is uniquely determined by a choice of
one arbitrary atlas, as the following proposition demonstrates.

Proposition 2.3. Every atlas for a Riemann surface is contained in a unique max-
imal atlas.

Proof. Suppose that an atlas A is contained in two maximal atlases A1 and A2.
Now if we take any two charts (U1, z1) ∈ A1 and (U2, z2) ∈ A2, then for any
w ∈ z1(U1 ∩ U2) there is a chart (U, z) ∈ A with z−1

1 (w) ∈ U , and we can write

z2 ◦ z−1
1 = (z2 ◦ z−1) ◦ (z ◦ z−1

1 ).

Since (U, z) is compatible with both (U1, z1) and (U2, z2), this map is holomorphic
on its domain, in particular at the point w. Hence z2 ◦ z−1

1 is holomorphic on
z1(U1 ∩U2), or in other words, (U1, z1) and (U2, z2) are compatible. But A1 and A2

are assumed to be maximal, thus we must have A1 = A2.

This result simplifies the task of describing a Riemann surface, as we can use a
collection of charts instead of specifying the maximal atlas. Therefore, from now
on, we will simply refer to the manifold as the Riemann surface and implicitly work
with the maximal atlas that contains the charts we use. One type of chart that is
particularly convenient to work with is the following:

Definition 2.4. Let R be a Riemann surface and (U, z) a chart for R such that
D ⊆ z(U). Then for D = z−1(D), the chart (D, z) is called a coordinate disc. If
z(p) = 0, the coordinate disc is said to be centered at p.

It may seem unnecessary to require D ⊆ z(U) instead of only D ⊆ z(U). The first
property, however, ensures that the coordinate disc is well-defined on ∂D since z is
well-defined on U . Further, since z is a homeomorphism, we must have z(∂D) = ∂D.
The next two propositions justify to use coordinate discs instead of arbitrary charts
in various situations.

Proposition 2.5. Let R be a Riemann surface. Then for every p ∈ R, there exists
a coordinate disc centered at p.

Proof. Let p ∈ R, and let (U, z) be a chart with p ∈ U . Since z(U) is open, there
exists some r > 0 such that Bz(p)

r ⊆ z(U), where Bz(p)
r ⊆ C is a closed disc of radius

r centered at z(p). If we let ẑ = (z− z(p))r−1, then (U, ẑ) is a chart with D ⊆ ẑ(U),
thus for D = ẑ−1(D) we obtain a coordinate disc (D, ẑ) centered at p.
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Proposition 2.6. Let R be a Riemann surface. Then R has a countable basis of
coordinate discs.

Proof. Since R is second countable, there exists a countable basis B̂ for the topology
on R. Define B to be the set

B = {B ∈ B̂ | B ⊆ D for some coordinate disc (D, z)}.

We first show that B is a countable basis. Clearly B is countable since B ⊆ B̂. Now
let Ω ⊆ R be any open set in R and p ∈ Ω. By the previous proposition, there exists
a coordinate disc (D̂, ẑ) centered at p. But 0 = ẑ(p) ∈ ẑ(Ω ∩D) and the latter set
is open in C, thus there exists some r > 0 such that D0

r ⊆ ẑ(Ω ∩ D), where D0
r is

an open disc in C of radius r centered at 0. But then by letting D = ẑ−1(D0
r) and

z = ẑ/r, we obtain a coordinate disc (D, z) centered at p with D ⊆ Ω. Since D is
open in R and B̂ is a basis, there exists some B ∈ B̂ with p ∈ B ⊆ D. But then
also B ∈ B since it is contained in the coordinate disc (D, z), and by construction
we have p ∈ B ⊆ Ω. Hence B is a countable basis.

Now pick any B ∈ B, and let (D, z) be a coordinate disc with B ⊆ D. The set
z(B) is open in C, thus can be written as a countable union of open discs Dn in
C with rational radius rn and center pn of rational coordinates. Now by defining
Dn = z−1(Dn) and zn = (z − pn)r

−1
n , we obtain a countable number of coordinate

discs (Dn, zn) such that B =
⋃

nDn, so B can be written as a countable union of
coordinate discs.

By repeating this for each of the countably many B in the basis B, we obtain a
countable basis of coordinate discs.

2.2 Holomorphic Maps

The requirement for the transition maps to be holomorphic is crucial, as it allows
the global definition of holomorphic maps on the Riemann surface. Before reading
this section, in which we introduce these concepts and prove some central results, it
is recommended to first recall the basic properties of holomorphic functions in the
plane, which are summarized in Appendix A.

Definition 2.7. Let R,S be Riemann surfaces. A continuous map f : R → S is
holomorphic at p ∈ R if for any chart (UR, zR) on R with p ∈ UR and any chart
(US , zS) on S with f(p) ∈ US, the map

zS ◦ f ◦ z−1
R : zR(UR) → zS(US ∩ f(UR))

is holomorphic at zR(p). A map f : R → C ∪ {∞} which is holomorphic at some
p ∈ R is called meromorphic at p.
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Figure 3. Holomorphic map between Riemann surfaces

It seems cumbersome to verify that a map is holomorphic as the above definition
addresses all possible charts in the two atlases. Since the transition maps are holo-
morphic, however, this definition becomes independent of the charts used. In fact,
if zS ◦ f ◦ z−1

R is holomorphic at zR(p) for some charts (UR, zR), (US , zS), then for

any other pair of charts (ÛR, ẑR), (ÛS , ẑS) with p ∈ ÛR and f(p) ∈ ÛS , we can write

ẑS ◦ f ◦ ẑ−1
R = (ẑS ◦ z−1

S ) ◦ (zS ◦ f ◦ z−1
R ) ◦ (zR ◦ ẑ−1

R ),

which is a composition of holomorphic functions and is thus holomorphic at ẑR(p).
Using this, it is straightforward to verify that all local properties of holomorphic
functions on the complex plane carry over to Riemann surfaces.

In the special case when S = C, the definition of a holomorphic map reduces
to the following: A function f : R → C is holomorphic at p ∈ R if for any chart
(UR, zR) on R with p ∈ UR, the map f ◦ z−1

R is holomorphic at zR(p). It is worth
noting that the chart maps themselves are such functions, but the fact that they
are homeomorphisms gives them additional special properties:

Proposition 2.8. Let (U, z) be a chart on a Riemann surface R. Then z is holo-
morphic, and if z has a zero on U , then it is simple.

Proof. This follows directly from the requirement that the transition maps are holo-
morphic, and that the charts are homeomorphisms. In fact, if p ∈ U and (Û , ẑ) is
any chart on R with p ∈ Û , then (U, z) and (Ũ , z̃) are compatible, which means
that the transition map ẑ ◦ z−1 is holomorphic on its domain and, in particular, at
the point z(p). Hence z is holomorphic at p. Now suppose that z(p) = 0 for some
p ∈ U . Since z is holomorphic and injective at p, we must have z′(p) ̸= 0, hence the
zero at p is simple.

As explained in the introduction, the uniformization theorem yields the existence
of a particular kind of holomorphic map, which we introduce next.
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Definition 2.9. Let R,S be Riemann surfaces. A biholomorphism is a bijective
holomorphic map f : R → S with holomorphic inverse. If such f exists, R and S are
called biholomorphic. A biholomorphism f : R → R is called an automorphism.

We emphasize that every biholomorphism is a homeomorphism since every holo-
morphic map is continuous. Moreover, it turns out that bijectivity of a holomorphic
map is sufficient for being a biholomorphism, which is a direct consequence of the
complex inverse function theorem. Since this fact will be of of central use for us
when proving the uniformization theorem in section 5, we state it as a proposition:

Proposition 2.10. Let R,S be Riemann surfaces and f : R → S a bijective holo-
morphic map. Then f is a biholomorphism.

Proof. Let q ∈ S, (US , zS) a chart on S with q ∈ US , and (UR, zR) a chart on R with
f−1(q) ∈ UR. We want to show that the map zR ◦f−1 ◦z−1

S is holomorphic at zS(q).
Since f is injective and zR, zS are homeomorphisms, we know that zS ◦ f ◦ z−1

R

is injective, thus we must have (zS ◦ f ◦ z−1
R )′ ̸= 0 on its domain zR(UR), and

in particular at the point zR(f
−1(q)). By the complex inverse function theorem,

zS ◦ f ◦ z−1
R admits a local inverse zR ◦ f−1 ◦ z−1

S that is holomorphic in some
neighborhood of (zS ◦ f ◦ z−1

R )(zR(f
−1(q))) = zS(q).

Another central ingredient when dealing with coordinate discs and for proving
the uniformization theorem are the automorphisms of the unit disc:

Proposition 2.11. For every α ∈ D, the map

Aα(z) 7→
α− z

1− αz

is an automorphism of D.

Proof. First note that for every α ∈ D, the function Aα is well-defined and holo-
morphic on C \ {1/α}. But 1/α ̸∈ D since |1/α| > 1, thus Aα is well-defined and
holomorphic on D. We need to show that Aα maps D bijectively onto itself. Note
that for z ∈ ∂D, we have

|Aα(z)| =
∣∣∣∣ α− z

1− αz

∣∣∣∣ · |z| = ∣∣∣∣αz − 1

1− αz

∣∣∣∣ = 1.

By the maximum modulus principle, the restriction of |Aα| to D can not attain its
maximum on D, thus we must have |Aα| < 1 on D. Therefore Aα maps from D to
D, and so does the composition Aα ◦Aα. Further observe that

Aα ◦Aα(0) = 0 and Aα ◦Aα(α) = α,

thus by Schwarz’s lemma Aα ◦Aα is the identity on D. Hence Aα is bijective on D,
and thus an automorphism of D by the previous proposition.
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One can even show that the automorphisms of D are precisely given by the func-
tions of this form, multiplied by a simple rotation. We do not need this stronger
fact, but a proof can for instance be found in Chapter 8 of [Gam01].

The uniformization theorem yields the existence of a biholomorphism from a
simply connected Riemann surface to one of three Riemann surfaces: the Riemann
sphere, the complex plane, or the open unit disc. To reveal the significance of this
statement, however, we should first convince ourselves that these three Riemann
surfaces are not biholomorphic, which is how we conclude this section.

Proposition 2.12. Neither two of the Riemann sphere, the complex plane, and the
open unit disc are biholomorphic.

Proof. It is immediate that the Riemann sphere C∪{∞} is not biholomorphic to C
or D since it is not homeomorphic to both of them; in fact, C∪{∞} is compact but
C and D are not, and compactness is preserved under homeomorphisms. That C
and D are not biholomorphic is a direct consequence of Liouville’s theorem: Every
holomorphic map from C to D is constant, thus can not be bijective.

Figure 3. The Riemann sphere, the complex plane, and the open unit disc

2.3 Harmonic and Subharmonic Functions

As mentioned before, harmonic and subharmonic functions possess the central prop-
erty of satisfying the so-called maximum principle, which we establish in this section.
This will later prove useful for deriving upper and lower bounds on functions, and
in this way become one of the main ingredients powering the the proof in section
5. Before reading this and the following chapter, however, we recommend to first
familiarize with the basic properties of harmonic and subharmonic functions in the
plane, some of which we summarized in Appendix B.

From now on, we will state all definitions with coordinate discs since this will
facilitate an easier translation to the Dirichlet problem on the unit disc, which has a
particularly simple solution via the Poisson integral. Recall that a harmonic function
in the plane is defined as a twice continuously differentiable function that satisfies
the Laplace equation. We carry over this definition to Riemann surfaces in a similar
fashion as for holomorphic maps:

Definition 2.13. A continuous function h : R → R on a Riemann surface R is
harmonic at p ∈ R if for every coordinate disc (D, z) containing p, the function
h ◦ z−1 : D → R is harmonic at z(p).

10



Similarly as in the definition of a holomorphic map, harmonicity is independent of
the chosen coordinate disc. In fact, if h◦z−1 is harmonic at z(p) for some coordinate
disc (D, z), then for any other coordinate disc (D̂, ẑ) with p ∈ D̂, the map

h ◦ ẑ−1 = (h ◦ z−1) ◦ (z ◦ ẑ−1)

is the composition of a harmonic with a holomorphic function, thus is harmonic
at ẑ(p). Again, it is straightforward to verify that all local properties of harmonic
functions in the plane — and, in particular, the equivalent characterisations given
in Proposition B.1 — carry over to Riemann surfaces. In the following, we present
some of these properties that are of frequent use for us.

Proposition 2.14. Let R be a Riemann surface and f : R → R holomorphic and
nonzero. Then log |f | is harmonic on R.

Proof. Let p ∈ R and (D, z) a coordinate disc containing p. Then f ◦ z−1 is holo-
morphic and nonzero, thus log(f ◦ z−1) is holomorphic. Now log

∣∣f ◦ z−1
∣∣ is its real

part, thus is harmonic, in particular at the point z(p).

Proposition 2.15. Let R be a Riemann surface, (D, z) a coordinate disc on R, and
h : D → R a harmonic function on D. Then there exists a holomorphic function
φ : D → C with

|φ| = e−h,

which is unique up to a multiplication by eiθ with θ ∈ R.

Proof. Since h is harmonic on D, the function h ◦ z−1 : D → R is harmonic. Now D
is simply connected and harmonic functions are locally the real part of holomorphic
functions, thus there is a holomorphic function f : D → C such that

Re(f) = h ◦ z−1,

and the harmonic conjugate Im(f) is uniquely determined up to adding a real con-
stant, as stated in Proposition B.1 (3). We can lift this function to our Riemann
surface R by defining f̂ : D → C as f̂ = f ◦ z, and we have

Re(f̂) = Re(f̂ ◦ z) = Re(f) ◦ z = h.

Now defining φ : D → C by φ = e−f̂ yields

|φ| = |e−Re(f̂)−iIm(f̂)| = e−h,

where we used that e−iIm(f̂) ∈ S1 and thus has modulus 1. Furthermore, since Im(f̂)
is unique up to an additive real constant, φ is unique up to a multiplication by eiθ

with θ ∈ R.
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We now introduce the definition of a subharmonic function on a Riemann surface
in a similar fashion. Recall that a subharmonic function in the plane is a function
that is pointwise bounded from above by its average value over the boundary of any
disc in the domain centered at that point. Equivalently, if a subharmonic function
is bounded from above by a harmonic function on the boundary of any disc in the
domain, then the bound also holds on the interior of the disc.

Definition 2.16. A continuous function u : R → R∪{−∞} on a Riemann surface
R is subharmonic at p ∈ R if for every coordinate disc (D, z) containing p, the
function u ◦ z−1 : D → R ∪ {−∞} is subharmonic at z(p).

In general, subharmonic functions are allowed to be only upper semi-continuous;
as noted in [Gam01], however, this would lead to no gain for the proof we present,
which is why we work exclusively with continuous subharmonic functions.

Intuitively, subharmonic and harmonic functions behave similarly to convex and
linear functions on the real line. In fact, if a convex function is bounded from above
by a linear function on the boundary of some interval, then the bound also holds on
the interior of the interval. As mentioned before, a similar characterization holds
for subharmonic and harmonic functions, with discs taking the place of intervals.

It can be shown that this definition is also independent of the coordinate disc since
the composition of a subharmonic with a holomorphic function is again subharmonic.
A proof of the latter requires a number of techniques from harmonic function theory
and can for instance be found in [Ran95].

This has the effect that, similarly as for harmonic functions, all local properties of
subharmonic functions in the plane — including the equivalent conditions presented
in Proposition B.3 — can be extended to Riemann surfaces. In addition to the fact
that the sum and maximum of subharmonic functions is again subharmonic, one
property will be of particularly frequent use for us:

Proposition 2.17. Let R be a Riemann surface and f : R → C a holomorphic
function. Then log |f | is subharmonic on R.

Proof. By Proposition 2.14, the function log |f | is harmonic on supp(f). But if
f(p) = 0 and (D, z) is a coordinate disc containing p, then log

∣∣f ◦ z−1(z(p))
∣∣ = −∞,

thus is subharmonic at z(p) as it trivially satisfies the mean value inequality stated
in Proposition B.3. Hence log |f | is subharmonic on R.

We next state the maximum principle, which is perhaps the central property of
subharmonic and harmonic functions that powers the proof in section 5. We state
it for subharmonic functions, but it is of course also valid for harmonic functions as
every harmonic function is subharmonic. Recall that the maximum principle in the
plane states that a subharmonic function on a domain U in C can not attain a local
maximum on U unless it is constant.

12



Proposition 2.18 (Maximum principle). Let u : R → R∪{−∞} be a subharmonic
function on a Riemann surface R. If u attains its maximum at some point of R,
then u is constant.

Proof. Suppose that u attains its maximum at a point p ∈ R, and let M = u(p)
be the maximum. If (D, z) is a coordinate disc containing p, then the function
u ◦ z−1 : D → R ∪ {−∞} is subharmonic on D, and it attains its maximum at the
point z(p) ∈ D. Thus by the maximum principle for subharmonic functions in the
plane we have that u ◦ z−1 ≡ M on D, and by bijectivity of z we get u ≡ M on D.

For any other coordinate disc (D̂, ẑ) with D∩D̂ ̸= ∅, we then also have u(q) ≡ M
for some q ∈ D ∩ D̂, thus we similarly get u ≡ M on D̂.

Now let w ∈ R be any point. Since R is path-connected, there exists a path π
in R from p to w. But by use of Proposition 2.6, we can cover the compact set
Γ = π([0, 1]) with finitely many coordinate discs. In the same fashion as before, we
get that u ≡ M on Γ, and particularly at the point w. Hence u ≡ M on R.

Note in particular that if h is a harmonic function on R, then both h and −h
are subharmonic, thus can not attain a local maximum on R unless h is constant.
Hence h can not attain a local extremum on R unless h is constant. We further
need the following immediate consequence of the maximum principle:

Proposition 2.19. Let u : R → R∪{−∞} be a subharmonic function on a Riemann
surface R. If u ≤ c outside of a compact subset of R for some constant c > 0, then
u ≤ c on all of R.

Proof. Let u ≤ c outside of a compact subset K of R. Since u is continuous and
K is compact, u attains its maximum on K, say max{u(p) | p ∈ K} = M . Now if
M > c then u ≤ M on all of R, so M would be the maximum of u on all of R. But
then by the maximum principle u ≡ M on R, contradicting the assumption that
u ≤ c < M on R \K. Thus M ≤ c, so u ≤ c on K and hence on all of R.

2.4 Perron’s Method

In this section, we prove Perron’s theorem, which gives certain conditions under
which the supremum of a family of subharmonic functions is harmonic. This will
allow us to construct a harmonic function out of subharmonic functions, which is
why this procedure is called Perron’s method.

Recall that the Dirichlet problem on a planar domain is the task of finding a
harmonic function that coincides with a specified function on the boundary of the
domain. This problem equally applies to Riemann surfaces, and we are particularly
interested in one specific Dirichlet problem:

Proposition 2.20. Let R be a Riemann surface, (D, z) a coordinate disc on R,
and u : R → R ∪ {−∞} a subharmonic function which is finite on ∂D. Then there
exists a unique harmonic function h on D satisfying h = u on ∂D.
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Proof. The problem translates to the Dirichlet problem in the unit disc{
h ◦ z−1 is harmonic on D
h ◦ z−1 = u ◦ z−1 on ∂D

,

which we can solve using the Poisson integral stated in Proposition B.2. This yields
a unique harmonic function ĥ on D, which extends to a continuous function on D
that coincides with g on ∂D. Now h = ĥ ◦ z is the desired harmonic function.

This justifies the next definition:

Definition 2.21. Let R be a Riemann surface, (D, z) a coordinate disc on R, and
u : R → R ∪ {−∞} a subharmonic function which is finite on ∂D. The harmonic
extension of u to D is the subharmonic function uD : R → R ∪ {−∞} defined by

uD =

{
u on R \D
h on D

,

where h is the unique harmonic function on D satisfying h = u on ∂D.

Figure 1. Harmonic extension

We will encounter a situation where the subharmonic function is bounded from
above by a constant. It turns out that in this case, the harmonic extension is
bounded by the same constant:

Proposition 2.22. Let R be a Riemann surface, (D, z) a coordinate disc on R,
and u : R → R ∪ {−∞} a subharmonic function which is finite on ∂D. If u ≤ c for
some constant c, then uD ≤ c.

Proof. Let p ∈ D. Then z(p) ∈ D, thus the map Az(p) defined in Proposition 2.11
is an automorphism of D, and we have Az(p)(z(p)) = 0. By letting ẑ = Az(p) ◦ z,
we obtain a coordinate disc (D, ẑ) centered at p. Recall that in Appendix B, we
abbreviated the mean value of a continuous function f on the boundary of some
disc Da

r in the domain by M [f, ∂Da
r ]. The function uD ◦ ẑ−1 is harmonic on D, thus

satisfies the mean value equality in Proposition B.1 (2) at the point ẑ(p). But on
∂D we have uD ◦ ẑ−1 = u ◦ ẑ−1 by definition, so we get

uD(p) = uD ◦ ẑ−1(ẑ(p)) = M [uD ◦ ẑ−1, ∂D] = M [u ◦ ẑ−1, ∂D] ≤ M [c ◦ ẑ−1, ∂D] = c.

Hence uD ≤ c on D. On R \D we have uD = u ≤ c by the previous definition.
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It is clear that the harmonic extension is a subharmonic function, and we also
know that the maximum of subharmonic functions is again subharmonic. Therefore,
the following definition makes sense:

Definition 2.23. A Perron family P on a Riemann surface R is a collection of
continuous functions u : R → R ∪ {−∞} satisfying:

(P-1) P is nonempty;

(P-2) every u ∈ P is subharmonic;

(P-3) if u, v ∈ P, then max(u, v) ∈ P, and

(P-4) if u ∈ P is finite on ∂D for some coordinate disc (D, z), then uD ∈ P.

These conditions are sufficient to ensure that the supremum of the family is
harmonic unless it is identically infinite, as the following result shows.

Proposition 2.24 (Perron’s theorem). Let P be a Perron family on a Riemann
surface R. Then sup{u | u ∈ P} is either harmonic or sup{u | u ∈ P} ≡ +∞.

Proof. Let h = sup{u | u ∈ P}. We will show that if h(p) < ∞ for some p ∈ R, then
h is harmonic on D for every coordinate disc (D, z) containing p, and then extend
harmonicity of h to R by using path-connectedness of R.

Suppose that h(p) < ∞, and let (D, z) be a coordinate disc containing p. We
can find a sequence {ûn} of functions in P such that ûn(p) converges to h(p). Now
define un = max{û1, . . . , ûn} to obtain an increasing sequence {un} of subharmonic
functions. Note that un ∈ P and also (un)D ∈ P for each n by (P-3) and (P-4)
of the above definition. Thus {(un)D} is an increasing sequence of functions in P
that are harmonic on D. By Harnack’s principle, as stated in Proposition B.6, the
function

u = sup{(un)D}

is either harmonic or u ≡ +∞ on D. But since (un)D ∈ P for all n, we have u ≤ h,
and in particular

u(p) ≤ h(p) < ∞.

Thus u is harmonic on D. We want to show that h = u on all of D to derive
harmonicity of h on D.

For each n, we have un = (un)D on ∂D. But un is subharmonic and (un)D is
harmonic on D, thus property (1) in Proposition B.3 yields un ≤ (un)D on D, and
in particular at the point p. Since un(p) is increasing and converges to h(p) by
construction, we get

u(p) = sup{(un)D(p)} ≥ sup{un(p)} = h(p).

Hence we can conclude that u(p) = h(p).
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Now pick any other q ∈ D, and suppose for contradiction that u(q) < h(q). Then
we can again find a sequence {ĝn} in P such that ĝn(q) converges to h(q). Now if
we define gn = max{ĝ1, . . . , ĝn, û1, . . . , ûn}, then {gn} is an increasing sequence in P
with gn ≥ un. Again by Harnack’s principle, the function g = sup{(gn)D} is either
harmonic or g ≡ +∞ on D. But again {(gn)D} is a sequence in P, and therefore
g(p) ≤ h(p) < +∞, which is finite by assumption, so g must be harmonic on D. But
we have already shown that u(p) = h(p) and by construction we have u ≤ g ≤ h,
thus we must have

u(p) = g(p) = h(p).

Furthermore, g(q) ≥ h(q) by construction of the sequence {gn}, so we also have

u(q) < g(q) = h(q).

But the function u− g is harmonic on D and satisfies u− g ≤ 0 and (u− g)(p) = 0,
so u − g attains its maximum at p. By the maximum principle, u = g on D,
contradicting the assumption that u(q) < h(q) = g(q). Hence we can conclude that

u = h

on D, thus h is harmonic and, in particular, finite on D.
The extension to all of R is now similar as in the proof of the maximum principle.

In fact, if (D̂, ẑ) is any other coordinate disc with D ∩ D̂ ̸= ∅, then h(x) < ∞ for
some x ∈ D ∩ D̂, so we get that h is also harmonic on D̂ by the previous.

Now for any other point w ∈ R and any path π from p to w, we can cover the
compact set Γ = π([0, 1]) with finitely many coordinate discs by Proposition 2.6,
and conclude that h is harmonic on Γ and, in particular, at the point w. Hence h is
harmonic on R.
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3 Green’s Function

3.1 Definition and Holomorphic Lift

In this section, we introduce a certain harmonic function called Green’s function,
and prove that it can in some sense be extended to a holomorphic function if the
Riemann surface is simply connected. We call this extension a holomorphic lift, and
we will show in Section 5 that it is a biholomorphism onto its image, which will then
allow us to prove the first part of the uniformization theorem.

Definition 3.1. Let R be a Riemann surface and q ∈ R. A Green function (with
pole at q) is a continuous function gq : R \ {q} → R satisfying:

(G-1) gq is harmonic;

(G-2) for some coordinate disc (D, z) centered at q, the function gq+log |z| extends
to a harmonic function on D;

(G-3) gq > 0, and

(G-4) gq is the smallest function that satisfies (G-1), (G-2), and (G-3). That is,
if ĝq : R \ {p} → R satisfies (G-1), (G-2), and (G-3), then gq ≤ ĝq.

Note that condition (G-4) ensures uniqueness, thus it is reasonable to speak of
Green’s function (with pole at q), provided that it exists. Further, Green‘s function is
not defined at the point q; condition (G-2), however, ensures that it has a logarithmic
pole at q, in the sense that gq grows with the same speed when approaching q as − log
grows when approaching 0. In fact, for some coordinate disc (D, z), the function
gq + log |z| is harmonic on D and, in particular, at the point q. Note that we here
implicitly refer to the extension of gq + log |z| to all of D since gq is originally not
defined at the pole q. Since a harmonic function is finite, the poles of gq and log |z| at
q must cancel. We will see in section 3.3 that the location of the pole q is negligible.
Fortunately, condition (G-2) is independent of the coordinate disc:

Proposition 3.2. Let R be a Riemann surface, q ∈ R, and gq a Green function.
Then for every coordinate disc (D, z) centered at q, the function gq + log |z| extends
to a harmonic function on D. Moreover, if f : R → C is holomorphic and f(q) = 0,
then gq + log |f | extends to a subharmonic function on R.

Proof. By (G-2) of the above definition, there is a coordinate disc (D̂, ẑ) centered
at q such that gq+log |ẑ| extends to a harmonic function on D̂. Now if (D, z) is any
other coordinate disc centered at q, then we can write

gq + log |z| = gq + log |ẑ|+ log
∣∣∣z
ẑ

∣∣∣ .
We know that gq+log |ẑ| is harmonic on D̂, and in particular onD∩D̂. Furthermore,
by Proposition 2.8, both z and ẑ are holomorphic on their domains and have a
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simple zero at q. The zeroes cancel in z/ẑ, which thus is holomorphic and nonzero
on D ∩ D̂. Hence log |z/ẑ| is harmonic on D ∩ D̂ by Proposition 2.14, and since the
sum of harmonic functions is again harmonic, it follows that gq + log |z| is harmonic
on D ∩ D̂. But gq + log |z| is clearly harmonic on D \ {q} since both gq and log |z|
are. Hence gq + log |z| is harmonic on D.

For the second part, we can equally write

gq + log |f | = gq + log |ẑ|+ log

∣∣∣∣fẑ
∣∣∣∣ .

Again, gq + log |ẑ| is harmonic on D̂, and log |f/ẑ| is subharmonic on D̂ by Propo-
sition 2.17, since the zero of ẑ at q cancels in f/ẑ. Thus gq + log |f | is subharmonic
on D̂. But gq + log |f | is clearly subharmonic on R \ {q} since gq is harmonic and
log |f | is subharmonic on this set, hence gq + log |f | is subharmonic on all of R.

Assuming that the Riemann surface is simply connected, we next show the exis-
tence of a holomorphic function with modulus equal to the inverse exponential of
Green’s function. We call this function a holomorphic lift as it can in some sense
be seen as an extension of Green’s function to a holomorphic function. The key for
proving the existence of this lift is that harmonic functions are locally the real part
of holomorphic functions, which we utilize in the following.

Proposition 3.3. Let R be a simply connected Riemann surface, q ∈ R, and gq a
Green function. Then there exists a holomorphic function φ : R → C with

|φ| = e−gq

and with a simple zero at q.

Proof. Let A = {(Dα, zα)} be a basis of coordinate discs for R, which exists by
Proposition 2.6. We will show that such a function exists on each Dα, and then use
the Monodromy theorem to derive global existence on R. Pick some (Dα, zα) ∈ A,
and consider the following two cases.

If q ̸∈ Dα, then gq is harmonic on Dα by property (G-1) of Definition 3.1, and
thus by Proposition 2.15 there exists a holomorphic function φα : Dα → C with
|φα| = e−gq , which is unique up to a multiplication with eiθα for θα ∈ R.

If q ∈ Dα, then Azα(q) is an automorphism of D by Proposition 2.11, thus by
setting ẑα = Azα(q) ◦ zα we obtain a coordinate disc (Dα, ẑα) centered at q. By
the previous proposition, the function f = gq + log |ẑα| is harmonic on Dα. Again
by Proposition 2.15, there exists a holomorphic function φ̂α : Dα → C such that
|φ̂α| = e−f , which is again unique up to a multiplication with eiθα for θα ∈ R. Now
let φα : Dα → C be defined by φα = ẑαφ̂α, which is also uniquely defined up to
multiplication with eiθα , and holomorphic on Dα since both φ̂α and ẑα are. By
construction, this function satisfies

|φα| = |ẑα| |φ̂α| = |ẑα| e−gqe− log|ẑα| = e−gq .
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In particular, note here that f(q) is finite since f is harmonic in Dα, thus |φ̂α(q)|
is finite, so |φα(q)| = 0 and therefore φα(q) = 0. This zero is independent of the
multiplication with eiθα , and it is simple since the zero of ẑα at q is simple by
Proposition 2.8.

We have shown that on each Dα, there exists a holomorphic function φα with
the desired properties. Now suppose that Dα ∩ Dβ ̸= ∅ for two coordinate discs
(Dα, zα), (Dβ, zβ) in A. We want to show that a similar function also exists on
Dα∪Dβ. Since A is a basis of coordinate discs and Dα∩Dβ is open and nonempty,
there must be a coordinate disc (Dγ , zγ) ∈ A such that Dγ ⊆ Dα∩Dβ. By the same
reasoning as before, there is a holomorphic function φγ : Dγ → C with |φγ | = e−gq ,
which is unique up to a multiplication with eiθγ . But φα and φβ are such functions
when restricting their domains to Dγ , so we must have φγ = φαe

iθα = φβe
iθβ on Dγ

for some θα, θβ ∈ R, and thus φαe
iθα = φβe

iθβ on Dα ∩Dβ. Therefore the function
φ : Dα ∪Dβ → C defined by

φ =

{
φα on Dα

φβe
i(θβ−θα) on Dβ

is well-defined and holomorphic, so φ is a holomorphic extension of φα to Dα ∪Dβ.
Note that still |φ| = e−gq , and if q ∈ Dα ∪Dβ, then φ has a simple zero at q since
multiplication with a non-zero constant does not affect zeroes.

Now let π : [0, 1] → R be any path in R starting in Dα and Γ = π([0, 1]). Since
the charts in A cover R, they also cover Γ, and we can obtain a finite subcover {Di}
by compactness of Γ. But then, starting with Dα, we can holomorphically extend
φα to ∪iDi, and therefore along π, in the same fashion as before.

Hence we can holomorphically extend φα along any path in R starting in Dα.
Since R is simply connected, the Monodromy theorem, which is stated in Theo-
rem A.7, yields that the function φα can be extended to a holomorphic function
defined on all of R, which is the function we wanted.

Figure 3. Extending φα along Γ

Assuming that Green’s function exists, we will show in Section 5 that this holo-
morphic lift is a biholomorphism onto its image, which we can then map biholomor-
phically onto the open unit disc using the Riemann mapping theorem.
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3.2 Construction via Perron’s Method

As we have seen before, being subharmonic is a far less restrictive property than
being harmonic, but it still allows us to utilize the maximum principle. By this
reason, we will now make use of the powerful Perron‘s method, and prove that
Green‘s function is precisely given by the supremum of a certain Perron family. This
will then allow us to first consider subharmonic functions in this family, apply the
maximum principle, and then pass over to Green’s function by taking the supremum.
We first define the family:

Definition 3.4. Let R be a Riemann surface, and q ∈ R. Define Gq to be the set
of all continuous functions u : R \ {q} → R ∪ {−∞} satisfying:

(1) every u ∈ Gq is subharmonic;

(2) for every u ∈ Gq, the set supp(u) ∪ {q} is compact in R, and

(3) for every u ∈ Gq, there exists a coordinate disc (D, z) centered at q such
that u+ log |z| extends to a subharmonic function on D.

Similarly as for Green’s function, we want to emphasize that the function u+log |z|
in condition (3) is originally not defined at the point q since u is only defined on
R\{q}. In the following, when considering this function on all of D, then we always
implicitly refer to its extension to D. Again, condition (3) is independent of the
coordinate disc, and it turns out that we can even replace the coordinate disc with
any holomorphic map that has a zero at q:

Proposition 3.5. Let R be a Riemann surface and f : R → C a holomorphic func-
tion with f(q) = 0. Then for every u ∈ Gq, the function u+ log |f | is subharmonic
on R. In particular, u+log |z| is subharmonic on D for every coordinate disc (D, z)
centered at q.

Proof. We proceed similarly as in the proof of Proposition 3.2. If u ∈ Gq, then by
(3) of the above definition there is a coordinate disc (D̂, ẑ) centered at q such that
u+ log |ẑ| is subharmonic on D̂. Now we can write

u+ log |f | = u+ log |ẑ|+ log

∣∣∣∣fẑ
∣∣∣∣ .

Now by Proposition 2.8, ẑ is holomorphic and has a simple zero at q. The zeroes
cancel in f/ẑ, which thus is holomorphic on D̂. Hence log |f/ẑ| is subharmonic on
D̂, and since the sum of subharmonic functions is again subharmonic, it follows that
u+log |f | is subharmonic on D̂. But u+log |f | is clearly subharmonic on R\D̂ since
both u and log |f | are, hence u + log |f | is subharmonic on R. For the remaining
part, simply note that if (D, z) is a coordinate disc centered at q, then z : D → D is
holomorphic and satisfies z(q) = 0.
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As mentioned before, the goal of this section is to construct Green’s function
as the supremum of the family Gq, which we will prove using Perron’s theorem.
However, we should first verify that Gq is a Perron family:

Proposition 3.6. Let R be a Riemann surface and q ∈ R. Then Gq is a Perron
family on R \ {q}.

Proof. We show that Gq satisfies the conditions of Definition 2.23. First note that
R \ {q} is a Riemann surface since it is a connected open subset of R.

Further, each u ∈ Gq is subharmonic by definition, and Gq is nonempty since
0 ∈ Gq. In fact, 0 is subharmonic, supp(0) ∪ {q} = {q} is compact in R, and log |z|
is subharmonic on D for every coordinate disc (D, z) centered at q.

It is left to prove (P-3) and (P-4). Let u, v ∈ Gq, and let (D, z) be any coordinate
disc in R \ {q} such that u is finite on ∂D. We need to show that max(u, v) ∈ Gq

and uD ∈ Gq.
We start with max(u, v). Clearly max(u, v) is subharmonic, and we have

supp(max(u, v)) ∪ {q} ⊆ (supp(u) ∪ {q}) ∪ (supp(v) ∪ {q}),

where the right hand side is compact in R since it is the union of two compact
sets. Recall that supp(max(u, v)) is closed by definition, so supp(max(u, v)) ∪ {q}
is a closed subset of a compact set, thus compact in R. Now let (D̂, ẑ) be any
coordinate disc centered at q. Then both u+ log |ẑ| and v+ log |ẑ| are subharmonic
on D̂ by Proposition 3.5, thus also their maximum

max(u+ log |ẑ| , v + log |ẑ|) = max(u, v) + log |ẑ|

is subharmonic on D̂. Hence max(u, v) ∈ Gq.
Next we show that uD ∈ Gq. Clearly also uD is subharmonic, and we have

supp(uD) ∪ {q} ⊆ (supp(u) ∪ {q}) ∪D,

where the right hand side is again a union of two compact sets, thus compact in
R. Hence by the same reasoning as before, supp(uD) ∪ {q} is compact in R. Now
let (D̂, ẑ) be any coordinate disc centered at q. Then u+ log |ẑ| is subharmonic on
D̂ and u = uD on D̂ \ D, thus uD + log |ẑ| is subharmonic on D̂ \ D. But since
q ̸∈ D and uD is harmonic on D, uD + log |ẑ| is clearly subharmonic on D̂ ∩D, and
therefore on all of D̂. Hence uD ∈ Gq, which completes the proof.

It is now an immediate consequence of Perron‘s theorem that the supremum over
all functions in Gq is either identically infinite or harmonic on R \ {q}. In the latter
case, conditions (1)–(3) in the definition of Gq indicate that the supremum could be
Green‘s function, which we verify next.
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Proposition 3.7. Let R be a Riemann surface and q ∈ R. If sup{u | u ∈ Gq} is
finite, then it is Green’s function with pole at q. Conversely, if gq exists, then it is
given by sup{u | u ∈ Gq}.

Proof. Let h = sup{u | u ∈ Gq} and suppose that h < ∞. We show that h satisfies
the conditions of Definition 3.1. First note that by Perron’s theorem, h is harmonic
on R \ {q} since Gq is a Perron family.

For (G-2), let (D, z) be any coordinate disc centered at q. We want to show that
f = h+log |z| extends to a harmonic function on D. It is clearly harmonic on D\{q}
since both h and log |z| are. We show that f is bounded in a neighborhood of q,
since then the singularity at q is removable and f is holomorphically extendable to
D by Riemann’s removable singularity theorem, which is stated in Proposition A.1.
The extension must then also be harmonic on D since the Laplacian is continuous.

Let M = max{h(p) | p ∈ ∂D}. Note that z is well-defined on ∂D and satisfies
|z| = 1 on ∂D, thus for any u ∈ Gq, we have u + log |z| = u ≤ h ≤ M on ∂D. But
u+log |z| is subharmonic on D, thus by the maximum principle also u+log |z| ≤ M
on D. Now taking the supremum over all u ∈ Gq gives

f = h+ log |z| ≤ M

on D. On the other hand, the function v : R \ {q} → R+
0 defined by

v =

{
− log |z| on D \ {q}
0 on R \D

is in Gq. In fact, v is subharmonic on R \ {q}, supp(v) ∪ {q} is compact in R since
it is a closed subset of the compact set D, and for the coordinate disc (D, z), the
function v+log |z| is zero and therefore subharmonic on D, when extended by zero.
Hence v ≤ h, and we can conclude that on D we have the bound

0 = v + log |z| ≤ f ≤ M.

Thus f is extendable to a harmonic function on D.
For (G-3), observe that h ≥ 0 since 0 ∈ Gq, as showed in the proof of Proposi-

tion 3.6. The function −h is harmonic, thus by the maximum principle, −h cannot
attain zero on R \ {q} unless h ≡ 0. But 0 < v ≤ h on D \ {q}, thus we must have
h > 0 on R \ {q}.

It is left to prove the uniqueness property (G-4). Suppose that ĝq is another
function satisfying (G-1), (G-2), and (G-3) of Definition 3.1. Then for u ∈ Gq, the
function u− ĝq is subharmonic on R\{q}. Now if (D, z) is a coordinate disc centered
at q, then we can write

u− ĝq = (u+ log |z|)− (ĝq + log |z|).

By Proposition 3.5, the function u + log |z| is subharmonic on D, and by Proposi-
tion 3.2, the function ĝq + log |z| is harmonic on D. Thus u− ĝq is subharmonic on
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D, and thus on all of R. But since ĝq > 0 on R \{q}, we have u− ĝq < 0 outside the
compact subset supp(u)∪{q} of R, and thus u ≤ ĝq on all of R by Proposition 2.19.
Now taking the supremum over all u ∈ Gq gives h ≤ ĝq. Hence h is the Green’s
function with pole at q.

To prove the reverse direction of the proposition, suppose that gq is a Green
function with pole at q. Then gq satisfies (G-1), (G-2), and (G-3) of Definition 3.1,
thus by the same argument as before we have u ≤ gq for all u ∈ Gq, and consequently
sup{u | u ∈ Gq} ≤ gq < ∞. But we have just shown that if the supremum is finite,
then it is the Green’s function, and since gq is unique by property (G-4) we can
conclude that sup{u | u ∈ Gq} = gq.

Let us take a moment to appreciate the significance of this result. Being a Green’s
function is a quite restrictive property, and it is crucial to bear in mind that it does
not exist on every Riemann surface, which we show in Section 5. In some cases,
however, we can derive its existence by picking any subharmonic function in Gq and
proving that it is bounded from above, as then the same bound also holds for the
supremum.

3.3 Existence

In this section, we prove that the existence of Green‘s function is independent of the
location of the pole; that is, if Green‘s function with pole at q exists for some q ∈ R,
then it exists with pole at every point in R. As indicated before, the strategy to
accomplish this will be to apply the maximum principle to arbitrary subharmonic
functions in the Perron family Gq. This will allow us to show upper bounds, and to
construct Green‘s function as the finite supremum of Gq.

We first introduce some abbreviation. If (D, z) is a coordinate disc centered at q
and r ∈ [0, 1], we define

Bq
r = z−1(B0

r) = {p ∈ R | |z(p)| ≤ r} ⊆ D

to be the corresponding closed disc of radius r centered at q. Recall that z is well-
defined on ∂D and that z(∂D) = ∂D, so Bq

1 = D and Bq
0 = {q}. We shall bear in

mind in the following that Bq
r depends on the corresponding coordinate disc (D, z),

and in particular on the coordinate map z.
The first result we prove is an easy consequence of the maximum principle:

Proposition 3.8. Let R be a Riemann surface, q ∈ R, and gq a Green function for
R with pole at q. Then

inf{gq(p) | p ∈ R \ {q}} = 0.

Moreover, for r ∈ (0, 1) and any coordinate disc (D, z) centered at q, we have

inf{gq(p) | p ∈ R \Bq
r} = 0.
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Proof. Let a = inf{gq(p) | p ∈ R \ {q}}, and let (D, z) be a coordinate disc centered
at q. We know that a ≥ 0 since gq > 0, and for u ∈ Gq we can write

u− gq + a = (u+ log |z|)− (gq + log |z|) + a,

which is subharmonic onD since u+log |z| is subharmonic and gq+log |z| is harmonic
on D. But u − gq + a is clearly subharmonic on R \ D, hence on all of R. Now
outside of the compact subset supp(u)∪{q} of R we have u− gq + a = −gq + a ≤ 0,
and thus u ≤ gq −a on all of R by Proposition 2.19. But then taking the supremum
over all u ∈ Gq gives gq ≤ gq − a, which implies a = 0 since a is non-negative.

Now let r ∈ (0, 1). Since gq+log |z| is harmonic on D and harmonic functions are
finite, we must have gq(p) → +∞ as p → q, thus there exists an open neighborhood
U of q such that gq ≥ 1 on U \ {q} and such that U ⊆ Bq

r . Now suppose that
inf{gq(p) | p ∈ R \ Bq

r} > 0. Since inf{gq(p) | p ∈ R \ {q}} = 0 by the previous
part and gq ≥ 1 on U \ {q}, the infimum must lie in the compact annulus Bq

r \ U ,
thus must be a minimum, so we have gq(w) = 0 for some w ∈ Bq

r \ U . But this
contradicts gq > 0, hence inf{gq(p) | p ∈ R \Bq

r} = 0.

Proposition 3.9. Let R be a Riemann surface, (D, z) a coordinate disc centered at
q, and r ∈ (0, 1). Define F to be the following set of functions:

F = {v : R \Bq
r → R | v subharmonic, supp(v) ∪Bq

r compact in R, v ≤ 1}.

Then ṽ = sup{v | v ∈ F} is a harmonic function on R \ Bq
r , and either ṽ ≡ 1, or

ṽ ∈ (0, 1) and ṽ(p) → 1 as p → ∂Bq
r .

Proof. For the first part, we show that F is a Perron family on the Riemann surface
R \Bq

r ; harmonicity of ṽ then follows from Perron’s theorem since ṽ ≤ 1.
First, F is nonempty since 0 ∈ F . Now if u, v ∈ F , then similarly as in the proof

of Proposition 3.6 we get that both max(u, v) and uD are subharmonic and satisfy
the compact support condition. It is obvious that max(u, v) ≤ 1, and we showed in
Proposition 2.22 that uD ≤ 1 if u ≤ 1. Thus F is indeed a Perron family, and hence
ṽ is a harmonic function on R \Bq

r by Perron’s theorem.
For the remaining part, consider the function v0 : R \Bq

r → R defined by

v0 =

{
log |z| / log(r) on D \Bq

r

0 on R \D
.

Clearly v0 is subharmonic, supp(v0)∪Br is compact in R since it is a closed subset
of the compact set D, and on D \ Bq

r we have r < |z| < 1, so 0 ≤ v0 < 1 on all of
R \Bq

r . Hence v0 ∈ F , and we can further see that v0(p) → 1 as p → ∂Bq
r .

But note that 0 ≤ v0 ≤ ṽ ≤ 1 since ṽ is the supremum over all functions in F .
Thus we also have ṽ(p) → 1 as p → ∂Bq

r . Now if ṽ(p) = 0 for some p ∈ R \Bq
r , then

the harmonic function −ṽ attains its maximum at p, thus must be constantly zero
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by the maximum principle. But if ṽ ≡ 0 then it can not tend to 1 as p → ∂Bq
r , which

is a contradiction. Hence ṽ ∈ (0, 1]. Once more applying the maximum principle
shows that ṽ ≡ 1 if ṽ(p) = 1 for some p ∈ R\Br. Hence we can conclude that either
ṽ ∈ (0, 1) or ṽ ≡ 1. That ṽ(p) → 1 as p → ∂Br was shown during the proof.

We are now equipped to prove the main result in this section:

Proposition 3.10. Let R be a Riemann surface. If Green’s function with pole at q
exists for some q ∈ R, then Green’s function with pole at w exists for all w ∈ R.

Proof. Let q ∈ R, and suppose that Green’s function gq with pole at q exists. Let
(D, z) be a coordinate disc centered at q and r ∈ (0, 1). We want to show that
Green’s function with pole at y exists for all y ∈ Int(Bq

r ), and then use path-
connectedness of R to derive global existence on R.

Using (D, z) and r, define F and ṽ as in the previous proposition. We first prove
that ṽ ∈ (0, 1). If v ∈ F , then we can continuously extend v to ∂Bq

r since 0 ≤ v ≤ 1.
Thus for a = min{gq(p) | p ∈ ∂Bq

r} > 0, the function v − gq/a is well-defined on
R \ Int(Bq

r ) and subharmonic on R \Bq
r . Further, the set

K = supp(v) ∪ ∂Bq
r

is compact in R \ Int(Bq
r ) since supp(v) ∪ Bq

r is compact in R by definition of F .
Note that outside of K we have v − gq/a = −gq/a < 0, and on ∂Bq

r we have
v−gq/a ≤ 1−gq/a < 0 by definition of a. But the function v−gq/a is subharmonic
on R \ Bq

r , thus by Proposition 2.19 we also have v − gq/a ≤ 0 on K and therefore
on all of R \Bq

r . Rearranging and taking the supremum over all v ∈ F now gives

ṽ ≤ gq/a

on R \Bq
r . But since 0 ≤ ṽ ≤ 1 and inf{gq(p) | p ∈ R \Bq

r} = 0 by Proposition 3.8,
we get that inf{ṽ(p) | p ∈ R \ Bq

r} = 0. Hence ṽ ̸≡ 1, so ṽ ∈ (0, 1) by the previous
proposition.

Now pick any point y ∈ Int(Bq
r ) and u ∈ Gy. Then Az(y) is an automorphism of

D by Proposition 2.11, thus by setting ẑ = Az(y) ◦ z we obtain a coordinate disc
(D, ẑ) centered at y. Therefore the function u + log |ẑ| is subharmonic on D by
Proposition 3.5. Now since y ̸∈ ∂D, we can choose C > 0 large enough such that
|log |ẑ|| ≤ C on ∂D. Now let Mu > 0 be large enough such that Mu ≥ max{u(p) |
p ∈ ∂D}, which exists since ∂D is compact. Then

u+ log |ẑ| ≤ Mu + C

on ∂D, and by the maximum principle also on D since u+log |ẑ| is subharmonic on
D. But then, after rearranging, on ∂Bq

r we have

u ≤ Mu + 2C = (Mu + 2C)ṽ,
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where ṽ is extended by 1 on ∂Bq
r . But the function u− (Mu +2C)ṽ is subharmonic

on R \ Bq
r , and since supp(u) ∪ Bq

r is compact we can use the same argument as
before to conclude that u ≤ (Mu + 2C)ṽ on R \Bq

r . But then taking the maximum
on ∂D and rearranging gives

Mu ≤ 2C(1−max{ṽ(p) | p ∈ ∂D})−1 = L,

where L is a constant independent of u, and finite since ṽ ∈ (0, 1). Thus u ≤ L on
∂D, and taking the supremum over all u ∈ Gy yields sup{u | u ∈ Gy} ≤ L < +∞
on ∂D. But then the supremum is not identically infinite, thus by Proposition 3.7,
sup{u | u ∈ Gy} is Green’s function with pole at y. Hence Green’s function with
pole at y exists for all y ∈ Int(Bq

r ).
We have now shown that if Green’s function with pole at q exists for some q ∈ R,

then for any coordinate disc (D, z) centered at q, Green’s function with pole at y
exists for all y ∈ Int(Bq

r ). Now let w ∈ R be arbitrary, π a path from q to w, and
Γ = π([0, 1]). For every point wi on Γ there is a coordinate disc centered at wi by
Proposition 2.5. Since the radius r ∈ (0, 1) could be chosen arbitrary and did not
depend on the point q, by compactness of Γ we can find a finite collection {(Di, zi)}
of coordinate discs such that the sets {Int(Bwi

r )} cover Γ, and such that their centers
are mutually intersecting. But starting with wi0 = q and going along Γ, we can see
that Green’s function with pole at y exists for each y ∈

⋃
i Int(B

wi
r ). Hence Green’s

function with pole at w exists.

Figure 3. Covering Γ with associated sets Bwi
r

We have now shown that the existence of Green’s function does not depend on the
location of the pole. One special situation where Green‘s function exists is described
by the following:

Proposition 3.11. Let R be a Riemann surface. If there exists a non-constant and
bounded holomorphic function on R, then Green’s function exists.

Proof. Let q ∈ R, and let g : R → C be non-constant, holomorphic and bounded by
some C > 0. Then the function f : R → D defined by

f =
g − g(q)

2C

is holomorphic and satisfies f(q) = 0. Thus if u ∈ Gq, then by Proposition 3.5, the
function u + log |f | is subharmonic on R, and we have u + log |f | < 0 outside of

26



the compact set supp(u) ∪ {q} since |f | < 1. Hence by Proposition 2.19, we have
u ≤ − log |f | on all of R. Since g is assumed to be non-constant, f(w) must be
nonzero for some w ∈ R, and for this w we have

sup{u(w) | u ∈ Gq} ≤ − log |f(w)| < ∞,

so sup{u | u ∈ Gq} is not identically infinite and thus Green’s function with pole at
q by Proposition 3.7. Hence Green’s function with pole everywhere on R exists by
the previous proposition.

3.4 Symmetry

In the case of simply connected Riemann surfaces, Green‘s function has, assuming
that it exists, a remarkable symmetry property:

Proposition 3.12. Let R be a simply connected Riemann surface and q, w ∈ R
with q ̸= w. If Green’s function exists, then gq(w) = gw(q).

Proof. Fix q, w ∈ R with q ̸= w, and let gq be Green’s function with pole at q. By
Proposition 3.3, there exists a holomorphic function φq : R → C with |φq| = e−gq

and a simple zero at q. Note that φq(R) ⊆ D since gq > 0 on R \ {q}.
In particular, we have φq(w) ∈ D, hence the map Aφq(w) : D → D given by

Aφq(w)(z) =
z − φq(w)

1− φq(w)z

is an automorphism of D by Proposition 2.11. Since φq(R) ⊆ D, the composition

Φ = Aφq(w) ◦ φq : R → D

is still well-defined, holomorphic, and has its image in D. Hence if u ∈ Gw, then
u + log |Φ| is subharmonic on R by Proposition 3.5. But u + log |Φ| = log |Φ| < 0
outside of the compact subset supp(u) ∪ {q} of R, thus u + log |Φ| ≤ 0 on all of R
by Proposition 2.19. Note that gw exists by Proposition 3.10, and that it is given
by sup{u | u ∈ Gw} by Proposition 3.7. Thus taking the supremum over all u ∈ Gw

yields that
gw + log |Φ| ≤ 0

on R. Now note that by construction of Φ and since φq has a zero at q, we have
|Φ(q)| = |−φq(w)| = e−gq(w), thus evaluating at q gives

gw(q) + log |Φ(q)| = gw(q)− gq(w) ≤ 0.

We can switch q and w and repeat the whole argument to get gq(w) − gw(q) ≤ 0,
thus we can conclude that

gq(w) = gw(q),

which is what we wanted to show.
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4 Bipolar Green Function

4.1 Definition and Meromorphic Lift

In this section, we introduce a harmonic function similar to Green’s function, but
with an additional pole. We prove that on a simply connected Riemann surface, this
function can be extended to a meromorphic map in a similar fashion as we extended
Green’s function to its holomorphic lift.

Definition 4.1. Let R be a Riemann surface and q1, q2 ∈ R two distinct points.
A bipolar Green function (with poles at q1 and q2) is a continuous function
Gq1,q2(p) : R \ {q1, q2} → R satisfying:

(B-1) Gq1,q2 is harmonic;

(B-2) for some coordinate disc (D1, z1) centered at q1, the function Gq1,q2+log |z1|
extends to a harmonic function on D1;

(B-3) for some coordinate disc (D2, z2) centered at q2, the function Gq1,q2−log |z2|
extends to a harmonic function on D2, and

(B-4) for some coordinate discs (D1, z1), (D2, z2) centered at q1, q2, respectively,
the function Gq1,q2 is bounded on R \ (D1 ∪D2).

In contrast to Green’s function, a bipolar Green function is not unique, and it
is defined on the Riemann surface with two points removed, which are both poles.
Conditions (B-2) and (B-3) ensure that Gq1,q2 has a positive logarithmic pole at q1
and a negative logarithmic pole at q2. As before, this definition is independent of
the choice of coordinate discs:

Proposition 4.2. Let R be a Riemann surface and Gq1,q2 a bipolar Green function.
Then for any two coordinate discs (D1, z1), (D2, z2) centered at q1, q2, respectively,
Gq1,q2 + log |z1| extends to a harmonic function on D1, Gq1,q2 − log |z2| extends to a
harmonic function on D2, and Gq1,q2 is bounded on R \ (D1 ∪D2).

Proof. We know by property (B-2) of the above definition that Gq1,q2 + log |ẑ1| is
harmonic on D̂1 for some coordinate disc (D̂1, ẑ1) centered at q1. Now similarly as
in the proof of Proposition 3.2, we can write

Gq1,q2 + log |z1| = Gq1,q2 + log |ẑ1|+ log

∣∣∣∣z1ẑ1
∣∣∣∣ ,

which is harmonic on D1 since the zeroes of z1 and ẑ1 are both simple, and thus
cancel in z1/ẑ1. The proof for D2 is similar. Further, we know that Gq1,q2 is bounded
on R \ (D̂1 ∪ D̂2) for some coordinate discs (D̂1, ẑ1) and (D̂2, ẑ2) centered at q1 and
q2, respectively. If we define W = (D̂1 ∪ D̂2) \ (D1 ∪ D2), then W is compact in
R \ {q1, q2}, thus |Gq1,q2 | attains its maximum on W . Hence Gq1,q2 is bounded on
W and thus on all of R \ (D1 ∪D2).
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We now use harmonicity of a bipolar Green function to lift it to a holomorphic
map, similarly as we did for Green’s function. Since a bipolar Green function has
an additional pole, the lift will, however, be meromorphic:

Proposition 4.3. Let R be a simply connected Riemann surface, q1, q2 ∈ R with
q1 ̸= q2 and Gq1,q2 a bipolar Green function. Then there exists a meromorphic map
φ : R → C ∪ {∞} with

|φq1,q2 | = e−Gq1,q2 ,

a simple zero at q1, and a simple pole at q2.

Proof. We proceed similarly as in the proof of Proposition 3.3, with slight modifi-
cations and one extra case. Again, let A = {(Dα, zα)} be a basis of coordinate discs
for R, and pick some (Dα, zα) ∈ A. Now four cases can occur:

If none of q1, q2 is in Dα, or only q1 ∈ Dα, then the proof is similar as in Propo-
sition 3.3, since away from q2, the function Gq1,q2 has similar properties as Green’s
function with pole at q1 would have.

Now suppose that q2 ∈ Dα and q1 ̸∈ Dα. Then for ẑα = Azα(q2) ◦ z, we obtain
a coordinate disc (Dα, ẑα) centered at q2. Thus by the previous proposition, the
function f = Gq1,q2 − log |ẑα| is harmonic on Dα. By Proposition 2.15, there exists
a holomorphic function φ̂α : Dα → C with |φ̂α| = e−f , which is unique up to a
multiplication with eiθα for θα ∈ R. Now let φα : Dα → C ∪ {∞} be defined by
φα = ẑ−1

α φ̂α, which is also uniquely defined up to multiplication with eiθα , and
meromorphic on Dα since φ̂α is holomorphic and ẑ−1

α holomorphic on Dα \{q2} and
has a simple pole at q2. By construction, this function satisfies

|φα| =
∣∣ẑ−1

α

∣∣ |φ̂α| =
∣∣ẑ−1

α

∣∣ e−f = e−Gq1,q2 .

Now observe that f(q2) is finite since f is harmonic on Dα, so |φ̂α(q2)| is finite,
thus φα must have a simple pole at q2. Note that this pole is independent of the
multiplication with eiθα .

Now suppose that both q1, q2 ∈ Dα. The sets Dα \ {q1} and Dα \ {q2} are open
and contain q2 and q1, respectively. Since A is a basis of coordinate discs, there
exist coordinate discs (Dγ , zγ), (Dδ, zδ) ∈ A such that q2 ∈ Dγ ⊆ Dα \ {q1} and
q1 ∈ Dδ ⊆ Dα \ {q2}. But now the previous cases yield our desired functions φγ on
Dγ and φδ on Dδ. Since Dα is simply connected, we can write Dα \ {q2} as a union
of two simply connected open sets, and apply the Monodromy theorem to each of
them in a similar way as in the proof of Proposition 3.3. In this way we obtain a
meromorphic map φα on Dα with the desired properties.

We have now shown that such a meromorphic map exists on every coordinate disc
in A. The extension to all of R by use of the Monodromy theorem is now similar as
before, by writing R \ {q2} as a union of two simply connected open sets.

We prove in Chapter 5 that, assuming that Green’s function does not exist, this
lift is a biholomorphism onto its image, which will then allow us to construct a
biholomorphism onto the Riemann sphere or the complex plane.
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4.2 Existence

Next to the number of poles, another important difference between Green’s function
and a bipolar Green function is that the latter always exist on a simply connected
Riemann surface, while the former does not. Showing the existence of a bipolar
Green function is the aim of this section.

To begin, we need a preparatory result about the existence of Green’s function
in a special situation; we omitted stating this in Section 3.3 as we exclusively use it
in this section for showing the existence of a bipolar Green function.

Proposition 4.4. Let W,S be simply connected open subsets of a Riemann surface
R such that W ⊆ S, and such that both W and S have a finite atlas of coordinate
discs. Then Green’s function exists on S, and for any two distinct q1, q2 ∈ W and
coordinate discs (D1, z1), (D2, z2) centered at q1, q2, we have∣∣∣g(S)q1 − g(S)q2

∣∣∣ ≤ C,

on S \ (D1 ∪D2), where C > 0 is a constant independent of S.

Proof. We only sketch the proof. For a more detailed version we refer the reader to
[Gam01] or [Pic11].

The first part is to show that Green’s function exists for S. To do this, we select
a coordinate disc (D, z) on the edge of S, that is, such that D ∩ (R \S) ̸= ∅. We fix
a point b ∈ ∂D ∩ ∂S, and define the function w : D → R by

ζ = Re(z(b) · z)− 1,

which is subharmonic onD, non-positive, and its extension to ∂D has a zero precisely
at b. This function ζ can be extended to the finitely many coordinate discs that cover
S, and thus to all of S, such that the extension is still non-positive and has a zero
precisely at b. Now by a similar argument as applied in the proof of Proposition 3.10,
ζ gives an upper bound for the function ṽ that we introduced in Proposition 3.9.
But by construction we have ζ(p) → 0 as p → b, thus ṽ ∈ (0, 1), which implies that
Green’s function exists, as we showed in the proof of Proposition 3.10.

For the second part, we take two distinct points q1, q2 ∈ W , disjoint coordinate
discs (D1, z1), (D2, z2) centered at q1, q2, respectively, and the corresponding Green

functions g
(S)
q1 and g

(S)
q2 , which exist by the previous. By using several estimates for

subharmonic functions, one can show that

Cq1 − C ≤ g(S)q1 ≤ Cq1

on ∂Bq1
r ∪ Bq2

r for some r ∈ (0, 1), where Cq1 is a constant depending on q1, C a
constant independent of S, and Bqi

r the closed ball introduced in section 3.3. A

similar result can be shown for g
(S)
q2 . By evaluating these inequalities at q1 and q2

and using the symmetry property

g(S)q1 (q2) = g(S)q2 (q1),
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which we showed in Proposition 3.12, one then arrives at |Cq1 − Cq2 | ≤ C, which
is a bound independent of S. Once more applying the maximum principle and
rearranging then finally gives ∣∣∣g(S)q1 − g(S)q2

∣∣∣ ≤ 2C

on S \ (D1 ∪D2), with a bound 2C that is independent of S.

We will now construct our simply connected Riemann surface as an increasing
sequence of simply connected Riemann surfaces to use this result, and to prove the
universal existence of a bipolar Green function:

Proposition 4.5. Let R be a simply connected Riemann surface. Then for any two
distinct points q1 and q2 of R, there exists a bipolar Green function with poles at q1
and q2.

Proof. Let q1, q2 ∈ R be distinct, and let (D1, z1), (D2, z2) be coordinate discs
centered at q1, q2, respectively. By rescaling, we can choose the discs such that
D1 ∩D2 = ∅. By Proposition 2.6 there exists a countable basis of coordinate discs,
thus we can write

R =

∞⋃
i=1

Di

for some coordinate discs (Di, zi). To apply our previous proposition, we aim to
write R as a union of simply connected sub-Riemann surfaces Si that have finite
atlases of coordinate discs and satisfy Si ⊆ Si+1. We will define this sequence
inductively using the Di. First, let π be a path in R from q1 to q2, and Γ = π([0, 1]).
Since Γ is compact and the Di are an open cover of Γ, we can pick a finite subcover
{Dik}mk=1. Now let

S1 = D1 ∪D2 ∪
m⋃
k=1

Dik .

Since R is simply connected, we can pick our subcover such that S1 is simply con-
nected, and it has a finite atlas of coordinate discs by design. Now for a given Si,
the set Si is compact and covered by the Di, thus again admits a finite subcover
{Dij}nj=1, which we can again pick in a way such that

Si+1 = Si ∪
n⋃

j=1

Dij

is simply connected. By construction, each Si+1 contains at least one coordinate
disc that is not contained in Si. But the Di are a countable cover of R, thus we
must have

R =

∞⋃
i=1

Si.

31



Figure 3. Increasing sequence of Riemann surfaces

We now construct a bipolar Green function for R by use of the previous result and
by use of basic convergence properties of uniformly bounded sequences of harmonic
functions. We stated the main results we use in Appendix B, but for a more detailed
study of harmonic function theory we refer the reader to [ABR01] or [Gam01].

For each Si with i ≥ 2, there exists Green functions (gq1)i and (gq2)i by the
previous proposition. Now define the sequence

(Gq1,q2)i = (gq1)i − (gq2)i.

Clearly (Gq1,q2)i is harmonic on Si \ {q1, q2} since (gq1)i and (gq2)i are, and we
further have |(Gq1,q2)i| ≤ C on R \ (D1 ∪ D2) with a bound C independent of i
by the previous proposition. In other words, {(Gq1,q2)i} is a uniformly bounded
sequence of harmonic functions, thus has a subsequence {(Gq1,q2)ik} that converges
to a harmonic function Gq1,q2 on R \ (D1 ∪ D2) by Proposition B.5, which is also
bounded by C.

It is left to prove that Gq1,q2 satisfies (B-2) and (B-3) of Definition 4.1 and that
it can be harmonically extended to (D1 ∪D2) \ {q1, q2}. We can write

(Gq1,q2)ik + log |z1| = (gq1)ik + log |z1| − (gq2)ik ,

which is harmonic on D1 by Proposition 3.2 and since q2 ̸∈ D1. But on ∂D1 we
have log |z1| = 0, thus we get

|(Gq1,q2)ik + log |z1|| = |(gq1)ik − (gq2)ik | ≤ C,

and by the maximum principle the bound also holds on D1. Similarly as before,
by use of Proposition B.5, we can pick a subsequence {(Gq1,q2)il} of {(Gq1,q2)ik}
such that {(Gq1,q2)il + log |z1|} converges to a harmonic function Ĝq1,q2 + log |z1| on
D1. On ∂D1, this sequence converges to Gq1,q2 as the logarithm is zero and since a
subsequence of a convergent sequence has the same limit. Thus we can continuously
extend Gq1,q2 to D1 \{q1} by defining it to be the function Ĝq1,q2 on D1 \{q}, which
is harmonic since log |z1| is harmonic on D1 \ {q1}. For the coordinate disc (D2, z2)
we can write

(Gq1,q2)ik − log |z2| = (gq1)ik − ((gq2)ik + log |z2|),

and now harmonically extend Gq1,q2 to D2 \ {q2} in a similar way as for D1. Our
extension Gq1,q2 is now a bipolar Green function with poles at q1 and q2.
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5 Uniformization Theorem

We are now equipped with all prerequisites to give a proof of the uniformization
theorem, which states that every simply connected Riemann surface is biholomorphic
to either the Riemann sphere, the complex plane, or the open unit disc. As explained
in the introduction, the proof is divided into two parts.

First, we assume that Green‘s function exists, and show that its holomorphic lift,
whose existence we proved in Section 3.1, is a biholomorphism onto its image. We
then use the Riemann mapping theorem to map the image biholomorphically onto
the open unit disc:

Proposition 5.1. Let R be a simply connected Riemann surface for which Green’s
function exists. Then R is biholomorphic to the open unit disc.

Proof. We start similarly as in the proof of Proposition 3.12. Fix q, w ∈ R with
q ̸= w, and let φq : R → C be a holomorphic function with |φq| = e−gq . Consider
the map Φ : R → D given by

Φ =
φq − φq(w)

1− φq(w)φq

.

We have already shown in the proof of Proposition 3.12 that Φ is well-defined and
holomorphic on R, and that gw + log |Φ| ≤ 0. We used this inequality in Propo-
sition 3.12 to prove symmetry of Green’s function. Recall here that gw exists by
Proposition 3.10, and that gq(w) = gw(q) by its symmetry property. But similarly
as in Proposition 3.12, we then get

gw(q) + log |Φ(q)| = gw(q)− gq(w) = 0,

so the function gw+log |Φ| attains its maximum at q. But gw+log |Φ| is subharmonic
on R by Proposition 3.2, hence by the maximum principle gw + log |Φ| = 0 on all of
R. Rearranging and taking exponential gives

|φw| = e−gw = |Φ|.

Now φw only has a zero w by Proposition 3.3, thus so has Φ. But by construction,
Φ(p) = 0 if and only if φq(p) = φq(w); thus φq is injective.

Hence φq : R → φq(R) is a bijective holomorphic map, thus a biholomorphism
by Proposition 2.10. Further, since φq is a homeomorphism, φq(R) is a non-trivial
simply connected open subset of C. By the Riemann mapping theorem, there exists
a biholomorphism f from φq(R) onto D. The composition f ◦φq is now our desired
biholomorphism from R onto D.

Figure 1. Uniformization via Green’s function
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We shall emphasize here that this result also proves that Green’s function does
not exist on every Riemann surface, which we mentioned before without giving a
proof. In fact, Green’s function cannot exist on C ∪ {∞} or C since they are not
biholomorphic to D, as we showed in Proposition 2.12.

For the remaining case, we assume that Green‘s function does not exist, and show
that the meromorphic lift of any bipolar Green function, whose existence we showed
in Section 4.1, is a biholomorphism onto its image. The image is then either the
Riemann sphere or biholomorphic to the complex plane:

Proposition 5.2. Let R be a simply connected Riemann surface for which Green’s
function does not exist. Then R is biholomorphic to the Riemann sphere or the
complex plane.

Proof. Fix some distinct q1, q2 ∈ R and let Gq1,q2 be a bipolar Green function, which
exists by Proposition 4.5. By Proposition 4.3 there exists a meromorphic function
φq1,q2 : R → C ∪ {∞} with |φq1,q2 | = e−Gq1,q2 . Similarly as in the previous case, we
will show that this function is a biholomorphism onto its image.

Let q0 ∈ R be distinct from q1, q2, and let Φ : R → C be defined by

Φ =
φq1,q2 − φq1,q2(q0)

φq0,q2

.

We aim to show that Φ is a nonzero constant to derive injectivity of φq1,q2 . To do
this, we prove that Φ is holomorphic and bounded, and then use Proposition 3.11
together with our assumption that Green’s function does not exist.

We first prove that Φ is holomorphic. The points q0 and q2 are the only critical
points to investigate, since everywhere else φq0,q2 and φq1,q2 −φq1,q2(q0) have neither
zeroes nor poles by Proposition 4.3. Note that φq0,q2 only has a simple zero at q0
and φq1,q2 − φq1,q2(q0) also has a simple zero at q0, and that both φq1,q2 − φq1,q2(q0)
and φq0,q2 only have a simple pole at q2. Thus the zeroes and poles cancel in Φ, so
Φ is indeed holomorphic.

Next, we show that Φ is bounded. We know by property (B-4) of Definition 4.1
that Gq1,q2 is bounded away from q1 and q2, and that Gq0,q2 is bounded away from
q0 and q2, thus Φ is bounded away from q0, q1 and q2. But we have just shown that
Φ is holomorphic, so it must also be bounded at the points q0, q1 and q2; thus Φ is
bounded on all of R.

Now Φ is a bounded holomorphic function on R and Green’s function does not
exist on R by assumption. Hence Φ must be constant by Proposition 3.11, and
nonzero since Φ(q1) = −φq1,q2(q0)/φq0,q2(q1) ̸= 0. But then on R \ {q0} we have
φq1,q2 − φq1,q2(q0) ≡ Φ · φq0,q2 ̸= 0. Hence φq1,q2 is injective and therefore a biholo-
morphism from R onto its image by Proposition 2.10.

We now show that the set S = (C∪{∞})\φq1,q2(R) can contain at most one point.
Suppose for contradiction that S has more than one point, and let w ∈ S. Note that
the complement of every simply connected subset of C ∪ {∞} is simply connected;
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hence so is S, as it is the complement of the simply connected set φq1,q2(R). Now

let f̂w : C ∪ {∞} → C ∪ {∞} be the fractional transformation

f̂w(z) =
z + w

z − w
,

and set fw = PN ◦ f̂w, where PN is the stereographic projection from the north pole
of C ∪ {∞} onto C. Then fw is a biholomorphism, and the set (fw ◦ φq1,q2)(R) is
a simply connected open subset of C. Now since S contains more than one point
by assumption, (fw ◦ φq1,q2)(R) is non-empty and not all of C, thus there exists a
biholomorphism φ̂ onto the open unit disc by the Riemann mapping theorem. But
then φ̂ ◦ fw ◦ φq1,q2 : R → D is a non-constant, bounded and holomorphic function
on R, thus by Proposition 3.11, Green’s function exists for R, contradicting our
assumption. Hence S can contain at most one point.

If S contains precisely one point, say w, then fw ◦φq1,q2 is a biholomorphism from
R onto C. If S = ∅, then φq1,q2 is a biholomorphism from R onto C ∪ {∞}.

Figure 1. Uniformization via a bipolar Green function

It is important to note that the meromorphic lift of a bipolar Green function is
only injective if we assume that Green’s function does not exist. Therefore, the
division into these two cases is crucial to make the proof work.

This two-part structure, however, automatically yields a characterisation of sim-
ply connected Riemann surfaces. In fact, we have the following:

Proposition 5.3. Let R be a simply connected Riemann surface. Then R is biholo-
morphic to the open unit disc if and only if Green’s function exists for R, and R is
biholomorphic to the Riemann sphere if and only if R is compact.

Proof. We already showed the first part with Proposition 5.1 and Proposition 3.11.
For the second part, simply note that the Riemann sphere is compact while the
complex plane and the open unit disc are not, and compactness is preserved under
biholomorphisms.

Those simply connected Riemann surfaces that are biholomorphic to the open
unit disc are also called hyperbolic, those biholomorphic to the Riemann sphere are
called elliptic, and those biholomorphic to the complex plane are called parabolic.
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A Holomorphic Functions in the Plane

We provide here some elementary properties of holomorphic functions in the plane
that we frequently use. Throughout the whole chapter, let U denote a domain in
C, that is, a connected open subset of C.

Proposition A.1 (Riemann’s removable singularity theorem). Let f : U \{w} → C
be a holomorphic function. Then the following are equivalent:

(1) f is continuously extendable to U ;

(2) f is holomorphically extendable to U , and

(3) f is bounded on some neighbourhood of w.

If the conditions are satisfied, then w is called a removable singularity.

Proposition A.2. Let f : U → C be an injective holomorphic function. Then
f ′(z) ̸= 0 for all z ∈ U .

Proposition A.3 (Complex inverse function theorem). Let f : U → C be a holo-
morphic function. If f ′(w) ̸= 0 for some w ∈ U , then there exists an open neigh-
bourhood V of w such that f is injective on V , and such that f−1 : f(V ) → V is
holomorphic.

Proposition A.4 (Maximum modulus principle). Let f : U → C be holomorphic
and non-constant. Then |f | can not attain its maximum on U . In particular, for
every compact set K ⊆ U the maximum of f on K must be attained on ∂K.

Proposition A.5 (Schwarz’s lemma). Let f : D → C be a holomorphic function
with f(0) = 0 and |f | ≤ 1 on D. Then

|f(z)| ≤ |z| and
∣∣f ′(0)

∣∣ ≤ 1

for all z ∈ D. Furthermore, if |f(z)| = |z| for some z ∈ D \ {0} or if |f ′(0)| = 1,
then f is a rotation, that is, f(z) = eiθz for some θ ∈ R.

Proposition A.6 (Liouville’s theorem). Let f : C → C be a bounded holomorphic
function. Then f is constant.

Theorem A.7 (Monodromy theorem). Let U be a simply connected open subset of
C, and f : U → C holomorphic at z0. If f can be holomorphically extended to any
curve in U starting at z0, then f can be holomorphically extended to all of U .

Theorem A.8 (Riemann mapping theorem). Every nontrivial simply connected
open subset of C is biholomorphic to the open unit disc.
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B Harmonic and Subharmonic Functions in the Plane

We provide here some elementary properties of harmonic and subharmonic functions
in the plane that we frequently use. Again, U denotes a domain in C.

If f : U → R is a continuous function and Da
r is an open disc in U of radius r

centered at a, we abbreviate the mean value of f on ∂Da
r by

M [f, ∂Da
r ] =

1

2π

∫ π

−π
f(a+ reiθ)dθ.

Proposition B.1. Let h : U → R be a twice continuously differentiable function.
Then the following conditions are equivalent:

(1) h is a solution to the Laplace equation, that is, ∆h = 0;

(2) f satisfies the mean value equality, that is, h(a) = M [h, ∂Da
r ] for every disc

Da
r in U centered at a;

(3) h is locally the real part of a holomorphic function, whose imaginary part
is unique up to an additive real constant.

A function that satisfies these properties is called harmonic.

Especially by the third property, harmonic functions can be thought of as the real
equivalent to holomorphic functions. Holomorphic functions have far more rigid
properties than real differentiable functions; harmonic functions, however, show
similar rigidity as we shall see shortly with the maximum principles.

Proposition B.2 (Poisson Integral). Let g : ∂D → R be a continuous function, and
for r ∈ [0, 1) define the function Pr : [0, 2π] → R by

Pr(θ) = Re

(
1 + reiθ

1− reiθ

)
=

1− r2

1− 2r cos(θ) + r2
.

Then the function h : D → R defined by

h(reiθ) =
1

2π

∫ π

−π
Pr(θ − t)g(eit)dt

is the unique harmonic function on D such that its extension to ∂D coincides with
g almost everywhere on ∂D. The function Pr is called the Poisson kernel.

Note here that it is possible that the extension does not coincide with g at isolated
points of ∂D. These points, however, have measure zero and do not affect our defi-
nition of the harmonic extension in Section 2.4, as harmonicity and subharmonicity
are properties characterised by integrals. We thus neglect this fact in the text, and
for a more detailed study of the Poisson integral we refer the reader to [Gam01].
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Proposition B.3. Let u : U → R ∪ {−∞} be a continuous function. Then the
following conditions are equivalent:

(1) If h is a harmonic function with u ≤ h on ∂Da
r for some open disc Da

r in
U of radius r and center a, then u ≤ h on Da

r ;

(2) u satisfies the mean value inequality, that is, u(a) ≤ M [u, ∂Da
r ] for every

open disc Da
r in U of radius r and center a;

(3) If u is twice continuously differentiable, then ∆u ≥ 0;

A function that satisfies these properties is called subharmonic.

It is an immediate consequence of this definition that both the sum and the
maximum of subharmonic functions is again subharmonic.

The following result is the main property why subharmonic functions are so useful
for the proof of the uniformization theorem. It also shows similarities between being
subharmonic or harmonic and holomorphic, when comparing this proposition to the
maximum modulus principle. We shall emphasize here that the maximum princi-
ple also holds for harmonic functions, as every harmonic function is automatically
subharmonic. Further, when restricting to harmonic functions, a similar statement
holds for minima.

Proposition B.4. Let u : U → R∪ {−∞} be a subharmonic function. Then u can
not attain its maximum on U unless u is constant. In particular, for every compact
set K ⊆ U the maximum of u on K must be attained on ∂K.

Proposition B.5. Let {un} be a sequence of harmonic functions on U that is
uniformly bounded on each compact subset of U . Then there exists a subsequence of
{un} that converges uniformly to a harmonic function on each compact subset of U .

Proposition B.6 (Harnack’s principle). Let {un} be an increasing sequence of sub-
harmonic functions on U . Then either un → ∞ as n → ∞, or {un} converges
uniformly on compact subsets of U to a harmonic function.
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