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Abstract

In this thesis we do two things; first we present the theory of elementary topoi, for
which we first present the notions of subobjects and subobject classifiers, as well as
cartesian closed categories. Then we show how to construct, for each elementary topos,
a formal language which interprets into the topos, the internal language. Atop the
formal language we the build a proof system, and show its soundness. This allows for
reasoning about the topos from the “inside”, and we provide examples of this form of
reasoning, including a proof that every elementary topos has an image factorisation.
We go on to show how natural numbers may be defined for elementary topoi, and
show that for a topos which has an object of natural numbers, the induction principle
is sound with respect to the proof system we defined earlier. Finally, we give two
examples of topoi: the category of finite sets, which has no notion natural numbers,
and presheaf topoi, which generally do not validate the law of excluded middle.
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1 Introduction

In 1969 Lawvere and Tierney introduced the notion of elementary topoi [MR11, p. 2], in
what Freyd called the “most important event in the history of categorical logic” [Fre72,
p. 1]. They not only produced a first-order axiomatisation of the notion of topoi used
by Grothendieck in algebraic geometry and sheaf theory, but also connected the idea
to higher-order logic and type theories [MR11, p. 2]. In fact, “they saw that the usual
models of (...) mathematics known at that time as well as the forcing method of Cohen
were specific cases of these toposes” [MR11, p. 33].

The idea of interpreting a logical theory in a topos appeared in a paper by William
Mitchell, published in 1972 [MR11, p. 68]. He introduced explicitly a language L(E) for a
topos £ and its interpretation into £. This was what would later develop into the internal
language of a topos, a variant of which is presented in this thesis, and as will be shown,
can be used to reason about the logic internal to the topos [MR11, p. 68].

Before the definition of elementary topoi was given, Lawvere presented a categorical
axiomatisation of the theory of sets, ETCS, [MR11, p. 17]. In this axiomatisation, the
notion of a natural numbers object was given, which provides ETCS what the axiom of
infinity provides ZFC [MR11, p. 18]. While ETCS was left without much further study,
the definition of natural numbers is still as useful for elementary topoi, and allows us to
carry out many of the constructions we are used to in their internal language.

The goal of this thesis is to present the theory of elementary topoi, as well as how
we can internalise a simple logical language inside such objects. We then show how we
may use the internal language to prove properties about the topos itself. We begin in
section 2 by recalling the basic concepts of category theory we require. In section 3 we
move on to generalising the notion of subsets to arbitrary categories, and similarly we
generalise the idea of function-sets in section 4. In section 5 we combine the work in
the previous two sections to give the definition of elementary topoi, and show how the
collections of subobjects in elementary topoi have rich structure. Next, in section 6,
we construct a language which interprets into elementary topoi, and then upon this a
system for proofs. We show the proof system sound, and then use it to show several
properties about elementary topoi themselves. Section 7 introduces further the notion
of natural numbers objects, and we show that the induction-principle is sound in any
elementary topos with such an object. We end the thesis in section 8 with some example
of elementary topoi, specifically FinSet, which is an elementary topos without a natural
numbers object, and presheaf categories, which are elementary topoi whose internal logic
is often not boolean.

The main reference used throughout thesis are a set of lecture notes for a course in
category theory and categorical logic by Streicher [Str04], as well as the book Elementary
categories, elementary toposes by McLarty [McL92].

2 Categorical preliminaries

This section is meant to cover the categorical preliminaries required for the development
of the rest of the thesis.
2.1 Categories, functors, and natural transformations

Definition 2.1 (Categories). A category C consists of the following data:

o a collection of objects Ob(C),



o for each pair of objects A, B € Ob(C) a collection Hom(A, B), the morphisms of C,
o for each object A € Ob(C) a morphism id4 € Hom(A, A).

o for each object A, B,C € Ob(C), f € Hom(B,C), and g € Hom(A, B), a morphism
fog € Hom(A,C)

with the constraints that for all objects A, B, C, D and morphisms f € Hom(A, B),g €
Hom(B, ), h € Hom(C, D) the equations foidg = f =idgo f and (hog)o f = ho(goh)
hold true.

Notation. When the category is clear from context, we write f : A — B for f €
Hom(A, B). When dealing with several categories we may write C(A, B) or Hom¢(A, B)
for the collection of morphisms from A to B in the category C.

Definition 2.2 (Small and locally small categories). Usually the collections of morphisms
of category C form a set, in which case we say that C is locally small. When furthermore
the collection of objects Ob(C) also forms a set, we say the category is small.

Definition 2.3 (Opposite category). Given a category C, we define its opposite cate-
gory, C°P, as having the same objects as C, and as collections morphisms Hom(A, B) the
collection C(B, A). That is, the opposite category of C is the same with the morphisms
flipped.

The prototypical example of a category is the category of sets, Set, having sets as
objects and functions between sets as morphisms. Another is FinSet, the category of
finite sets and functions between them.

Remark. Starting with the next section, we will generally write composition by juxtapo-
sition, so fg instead of fog in an arbitrary category. For specific categories, such as Set,
we still write f o g, so that it is harder to confuse with application f(x).

Definition 2.4 (Monomorphisms, epimorphisms and isomorphisms). Let C be a category.
A morphism f: A— B in C is said to be

e a monomorphism, or monic, if for every pair of morphisms g,h : X — A such that
fog= foh it follows that g = h,

e an epimorphism, or epic, if for every pair of morphisms ¢g,h : B — Y such that
go f=ho f it follows that g = h,

e an isomorphism if there exists a morphism g : B — A such that fog = idg and
gof=ida.

Every isomorphism is both monic and epic, but it is not necessarily the case that a
morphism which is both monic and epic is an isomorphism. When two objects A, B are
isomorphic, we write A = B. A monomorphism is denoted by an arrow with tail, that is,
f: A— B. Similarly, an epimorphism is denoted by f: A — B.

Definition 2.5 (Functors). Given two categories C, D, a functor F from C to D consists of
a mapping Fj from the objects of C to the objects of D, and for each pair of objects A, B of
C, a mapping F} between the morphisms from C(A, B) to C(Fy(A), Fo(B)). Furthermore,
we require for all A, B,C € Ob(C) and f: B — C, g: A — B that Fi(ida) = idg,(4) and
Fi(fog)=Fi(f)oFi(g).



We will usually omit the subscripts on the functor, write both F(A) for Fy(A) and
F(f) for Fi(f). When the mapping of morphisms is injective for all pairs of objects A, B,
we say the functor is faithful, and when it is surjective we call it full. If it is bijective on
morphisms we call it fully faithful.

For any category C there is an identity functor ide, which maps every object and
morphism to itself. Similarly, given functors F': D — £ and G : C — D, their composite
F o G is defined by composing the object and morphism mappings. Preservation of identity
and composition is in both cases a trivial exercise to show. The identities also act as units
for composition, and composition is associative.

Definition 2.6 (Natural transformations). Given two functors F,G : C — D, a natural
transformation o from F' to G consists of a family of morphisms ay : F(A) — G(A) for
each object A of C, such that for all f € C(A, B) the following square, usually called the
naturality square, commutes:

F(A) 24 G(A)

£(f) lG(f)

As with functors we are able to define the notion of an identity and composite natural
transformation. For any functors F,G, H : C — D and natural transformations o : G — H
and 8 : F' — G, the identity transformation idr is given by taking idp(4) at each A €
Ob(C). We define the composite ao 8 by composing object-wise; (w0 5)a4 = ag0 4 for
all objects A of C. Naturality holds in either case, as is easily inspected.

A natural isomorphism is a natural transformation with an inverse transformation,
or equivalently, a natural transformation in which each component is an isomorphism.
Similarly, it is monic precisely when every component is monic, and the same holds for
being an epimorphism.

Proposition 2.1
Given small category C and a category D, the collection of functors C — D and natural
transformations between them forms a category. This category will generally be denoted

by [C,D].

Definition 2.7 (Preshaves). A functor from C°P to Set is called a presheaf over C, and
the category of presheaves over C is denoted by Set®” or [C°P, Set].

Definition 2.8 (Yoneda embedding). Given a locally small category C and an object
A € C, we define the yoneda embedding of A, written X(A), to be the presheaf defined
by mapping objects B € C to C(B, A) and morphisms f : B — C to the function taking
g:A—Btogof:A—C.

In fact, the assignment of each object A to its yoneda embedding is also functorial.
That is, & is a functor from C to [C°P, Set] mapping objects to their yoneda embeddings
and morphisms f € C(A, B) to natural transformations mapping morphisms ¢ to fog.
Naturality is again trivial.

Lemma 2.2 (Yoneda lemma [Str04, p. 17-19))
For any presheaf F' over a small category C and object A of C, we have a natural bijection
[C°P,Set]|(x(A), F) = F(A). Furthermore, the yoneda embedding (%) is fully faithful.



A presheaf is said to be representable if it is naturally isomorphic to the yoneda embed-
ding of some object. That is, a presheaf F' : C°? — Set is representable when F' = C(—, X)
for some X.

Definition 2.9. Given two functors F' : C — D and G : D — C, we say that F' is left
adjoint to G if D(F(A), B) 2 C(A,G(B)) naturally in A € Ob(C) and B € Ob(D). In this
case we also say that G is right adjoint to F'.

Definition 2.10 (Slice categories). Given a category C and an object A of said category,
we may construct a new category C/A, the slice over A. The objects of this category are
morphisms B — A in C, and the morphisms between to objects B —+ A and C' — A are
morphisms f : B — C such that the following diagram commutes:

B—1 ¢

N/

A

2.2 Finite limits and colimits

In this subsection we define certain constructions, all falling under the label of either limit,
or dually, colimit. We fix a category C for this subsection.

Definition 2.11. A terminal object in C is an object 1, such that for any other A of C
there exists a unique arrow from A to 1. Dually, an initial object C is an object 0 such
that for any object A of C there exists a unique arrow from 0 to 7'

Proposition 2.3
If a terminal or initial object exists, then it is unique up to isomorphism.

Definition 2.12. Given two object A, B of C, the product of A and B is an object P with
morphisms w4 : P — A and 7g : P — B, such that for any pair of morphisms f: X — A
and g : X — B, there exists a unique morphism h : X — P such that the following
diagram commutes:

X
v
P
A B.

The product is, as with terminal and initial objects, unique up to isomorphism. Thus
we usually speak of the product, and denote the product of A and B by A x B.

Dually, we define the notion of coproduct by simply flipping all the morphisms in the
definition of a product.

Definition 2.13. The coproduct, or sum, of two objects A and B is an object S with
morphisms i4 : A — S and ip : B — S, such that for any pair of morphisms f: A — X



and g : B — X, there exists a unique morphism n : S — X such that the following
diagram commutes:

A B
y‘ V
S
f ; g
H!h:
¥
X

Note that a coproduct in C is a product in the opposite category C°P, and vice versa.
We say that the product is a limit and that the coproduct is a colimit. The coproduct
will generally be denoted by A + B.

Definition 2.14. For a given pair of parallel morphisms f,g : A — B, their equaliser is
an object E together with a morphism e : £ — A, such that for any morphism a: X — A
with foa = goa, there exists a unique morphism h : X — FE such that x = eoh.

The equaliser can be thought of as the largest sub-“object” of A that makes f and g
equal. This idea is made more precise in section 3. We denote the equaliser of f and g by

eq(f;9)-

Definition 2.15. The coequaliser of two parallel morphisms f,g: A — B is an object @
paired with a morphism ¢ : B — @ such that for any object X with morphism b: B — X
such that bo f = bo g, there exists a unique morphism h : Q — X with b = hogq.

Definition 2.16. Given morphisms f : A — C and g : B — C, the pullback of f and
g is an object P with morphisms p : P — A and ¢ : P — B such that fop = gog.
Furthermore, for any object X with morphisms ¢ : X — A and b : X — B such that
foa = gob we require that there exists a unique morphism A : X — P such that
poh = a and goh = b. That is, we require that there exists a unique morphism A such
that the diagram below commutes.

NS

Remark. We will often denote pulling back a morphism g : B — C' along a morphism
f:A— C by f*(B), with f*(g) denoting the projection from f*(B) to A.

Some useful properties of pullbacks include the following propositions, which tells us
that pulling back along a composite is the same as pulling back twice.

Proposition 2.4 ([McL92, p. 45, Theorem 4.8])
Suppose the diagram below commutes, and that the right-hand square is a pullback (for
j and g). Then the left-hand square is a pullback (for i and f) if and only if the outer



rectangle is a pullback (for j and gf):

Furthermore, pulling back a pullback square yields again a pullback, which is a conse-
quence of the following proposition.

Proposition 2.5 ([McL92, p. 47, Theorem 4.10])
Suppose each of the following diagrams are pullbacks:

E—k .D F—" ,(C
h n q m
m f
C B A B
G—+ D H—%* . F
S n w z
A—t . p At . p

where z = moh (and, since the first square commutes, z =nok). Then there are unique
arrows u,v that make the following diagram commute:

and every square in the diagram is a pullback. In particular, H,u,v is a pullback of s and
q.

Proposition 2.6 (Streicher [Str04, p. 25, theorem 7.1])
Let C be a category with a terminal object 1. Then the following are equivalent

1. C has all binary products and equalisers

2. C has all pullbacks.



A category which has a terminal object, all binary products, and all equalisers, or
equivalently a terminal object and all pullbacks, will be said to have all finite limits and be
called finitely complete. Similarly, if a category has an initial object, all binary coproducts,
and all coequalisers, we say it is has all finite colimits and is finitely cocomplete.

A useful property of adjunctions with respect to limits and colimits is that left adjoints
preserve colimits and right adjoints preserve limits.

Proposition 2.7 (Streicher [Str04, p. 43, Theorem 8.4])
Let C and D be two categories, and F 4 G an adjunction. Then F : C — D preserves
colimits and G : D — C preserves limits.

3 Subobjects and the subobject classifier

This section covers the notions of subobjects and the subobject classifier. Subobjects give
a categorical formulation of the notion of substructures, such as subsets and subgroups,
by way of specific types of morphisms. Similarly, subobject classifiers translate the notion
of characteristic maps, so that each subobject corresponds to a characteristic morphism.

3.1 Subobjects

Oftentimes when we study particular mathematical structures we consider their substruc-
tures as well, such as subgroups of some group, or subsets of some set. These then come
equipped with an inclusion into the set they are a subobject of, in general these are special
monomorphisms. In fact, in the other direction we have that all inclusions give rise to
a subobject by their image, such that this inclusion factor through an isomorphism. So
when we try to consider subobjects in a general category C, we might define a subobject
simply as a monomorphism.

Definition 3.1 (Subobjects). Given a category C and an object A of C, a subobject u of
A is simply a monomorphism u : U — A.

It remains to see that this definition really fits with our idea of subobjects. For example,
we would expect our collections of subobjects to be ordered by some form of inclusion.
Looking again at sets and subsets, we see that if we have two subsets U and V of some
set A such that U C V, then the inclusion of U into A factors through the inclusion of
V. In fact, for any pair of injections f, g into A, we have im(f) C im(g) precisely when f
factors through g, since the domains of both f and g are in bijection with their respective
images. This then hints at a correct definition for the ordering of subobjects.

Definition 3.2 (Ordering of subobjects). Let C be some category and A and object of
the category. If u: U — A and v : V — A are two subobjects of A, then we say u C v
precisely when wu factors through v. That is, when there is a morphism f : U — V such
that the diagram below commutes.

A good first heuristic that this is a good definition, beyond the fact that it (essentially)
corresponds to notions in categories we are familiar with, is that this relation forms a
preorder.



Proposition 3.1
The C relation is a preorder.

Proof. First note that for any subobject u, it is clear that u < u, since vidy = u makes
the triangle commute. Next we must show that the relation is transitive. Let u,v,w be
any three subobjects of A such that u < v and v < w. Then there are maps such that the
diagram

U<XI/7W

commutes. Then we have that wgf =vf =wu, so gf : U — W witnesses that u < w. [

The morphisms given by the ordering relation are unique monomorphisms as well, and
if two subobjects are both less than or equal to each other, that is 4 C v and v C u, then
they are isomorphic.

Proposition 3.2

Given subobjects w : U — A and v : V — A, if u C v, then there erists a unique
monomorphism f : U — V such that u = vf. If furthermore v C u, then f is an
isomorphism.

Proof. Since u C v, there exists a morphism f : U — V such that v« = vf. Suppose
that there were another such morphism g : U — V. Then vf = u = vg. But v is a
monomorphism, so f = g. Since g was arbitrary, it follows that f is unique.

If furthermore v C u, so that there exists a unique morphism ¢ : V' — U with v = ug,
then we have v = ug = vfg. But v is a monomorphism, so fg = idy. Similarly we can
show that ¢gf = idy. Hence f is an isomorphism with inverse g. O

Thus we almost have antisymmetry for our objects as well, since if u < v and v < u
we have u = v. However, note that this is not an equality. For example, in the category of
sets, we can produce two equivalent subobjects which are not strictly equal; simply take
the set 2 = {0, {0}} with subobjects u : {0} — 2;0 — 0 and v : {{0}} — 2;{0} — 0.
Clearly these are equivalent subobjects, since their images are the same, but the sets
themselves are not the same.

We see then that our definition of subobjects is somewhat lacking. It is however quite
easy to solve this issue; we simply define our subobjects not as specific monomorphisms,
but as equivalence-classes of monomorphisms:

Definition 3.3 (Better subobjects). A subobject U of A is an equivalence class of monomor-
phisms into A, given by the relation that two monomorphisms are equivalent when each
factors through the other. That is, we simply quotient the collection of monomorphisms
into A by the relation that u ~ v if and only if © C v and v C u with the ordering for
monomorphisms defined above.

Note that we can essentially keep the order-relation, changing it only slightly to
make up for the fact that our subobjects are now equivalence-classes rather than humble
monomorphisms:

Definition 3.4 (Ordering on better subobjects). For subobjects U and V of A, we say
that U C V if there exist w € U and v € V such that u factors through v.



Remark. While this is the definition we will officially use throughout the thesis, we will
generally conflate subobjects and monomorphisms, as monomorphisms are much easier
to work with. This is fine in most cases as almost all constructions we use are unique
up to isomorphism. However, when a construction is not clearly invariant under such
isomorphism, we will make note of it and be more careful.

Since equivalent monomorphisms are isomorphic, we may easily recover the proof that
it forms a preorder. Furthermore, since we made the definition of subobjects such that
antisymmetry holds by design, we in fact have a poset of subobjects.

Proposition 3.3

For each object A of C, and any two subobject U C V of A, for any two representatives
u € U and v € V, we have that u factors through v. Furthermore the collection of
subobjects Sub(A) of A forms a partially ordered set.

Proof. Let uw € U and v € V be given. Since U C V, there exist ' € U, v € V, and a
morphism f such that v/ = v'f. From u € U we have an isomorphism g between v’ and u,
and similarly h between v and v'. Thus u = v/g = v'fg = vhfg. So hfg is an morphism
from u to v.

Thus the proof of proposition 3.1 that monomorphisms are pre-ordered carries over
here. Antisymmetry holds by design, as mentioned before. Hence the subobjects are
partially ordered. O

Remark. Technically, we might not have a set of subobjects, as there may be too many
subobjects; they form a proper class rather than a set. When every object in a category
does have a set of subobjects, we call it well-powered [Str04, p. 50]. In this thesis however,
this distinction does not come up too much, since all examples we will have will be well-
powered, and furthermore every locally small topos can be shown to be well-powered.

3.2 Membership of subobjects

When working with subsets, most concepts are defined in terms of membership. Sadly,
since we are working with general categories, whose objects need not be sets, we don’t
have that notion as a primitive. However, we can define a similar notion, which for the
category of sets essentially coincides with the notion of set theory.

For a set A, an element z € A may equivalently be framed as a function from a
singleton set 1 = {x} to A, and vice versa. That is, the elements of A are in bijection
with the functions from 1 to A. Since 1 is a terminal object of Set, we may generalise this
notion to arbitrary categories a with terminal object. This gives us the definition of what
we will call global elements of an object.

Definition 3.5 (Global elements). Let C be a category with a terminal object. A global
element of an object A of C is a morphism 1 — A.

However, while this definition works for categories with terminal objects, it does suffer
from some deficiencies. For example, our categories may not have an equivalent of set-
extensionality; we may have two very different objects whose sets of global elements are
in bijection. Similarly, we may have morphisms which are equal at every global element
but still distinct. For example, in the category of groups, the global elements are group
homomorphisms from the trivial group. But for each group there exists only one such
morphism, so all groups have isomorphic sets of global elements. Clearly there is not only
one group, however; the notion of global elements is simply too strict in this case.

A better notion then for elements in a category is that of generalised elements.

10



Definition 3.6 (Generalised elements). Let C be a category with 7" and A objects of it.
A T-shaped generalised element of A is simply a morphism from 7 to A.

To say that « : T'— A is a T-shaped generalised element of A, we write x €p A. Note
that this is just a different framing of morphisms. Furthermore, if C has a terminal object
1, then global elements are simply 1-shaped generalised elements. This notion recovers
several of the properties we would want. If two morphisms are equal at every generalised
element, then they must be equal, since they are equal at identity as well.

With this notion at hand, we define membership of subobjects in the natural way.

Definition 3.7 (Membership of subobjects). Let U be a subobject of A and x a T-shaped
generalised element of A. Then we say z €7 U if z factors through any monomorphism
in U.

Similarly to what we showed earlier with the ordering relation, if z factors through
any monomorphism of a subobject U, then x factors through all monomorphisms of U.
Furthermore, this notion of membership reinforces that our definition of subobjects is the
right one, in that the following proposition holds.

Proposition 3.4
For any subobjects U,V of A, we have U CV if and only if for allx : T — A, if x €7 u
then x €1 v.

Proof. In the forward direction, suppose U C V and x €7 U. Then there are v € U and
v € V such that u = vf and x = ug for some f and g, so x = vfg, i.e. x factors through
v. Hence x €7 V.

In the other direction, assume that for all x : T" — A, x €p U implies x €7 V. Then
for some u € U, we have that u factors through U by u = widy, so v €y U, whereby
u €y V. But then that is the same as U C V. ]

3.3 Some properties of the collection of subobjects

Up until now, We have assumed very little of our category C, and have despite this to
some degree found a convincing notion of subobjects. However, for this definition to fully
bloom, we will generally require that C has finite limits, in particular that it has pullbacks.
That is because we then can construct a lot of the usual basic operations on subobjects
that we would expect for subsets.

There is one lemma we need before we are able to continue further, however; that the
pullback of a monomorphism is itself a monomorphism.

Lemma 3.5
Let X,Y,Z be objects of C, and f : X — Z, g: Y ~— Z be given, where g is a monomor-
phism. The pullback of g along f is also a monomorphism.

Proof. Let p,q be the projections from the pullback of f and g, such that the diagram

Xxz,V —25Y

[
x 1 Lz

commutes. Let r,s : W — X Xz Y be given such that pr = ps. Then we have that
gqr = fpr = fps = gqs, and since ¢ is mono, it follows that ¢r = gs. By the universal
property of pullbacks, if there is a morphism A : W — X Xz Y such that fph = gqh, then
it is unique. But fpr = ggr and fps = gqs, so we must conclude that r = h = s. ]

11



We may prove with this lemma that when C has pullbacks (of monomorphisms), then
the collections of subobjects have intersections; that is, we have for any pair of subobjects
of the same object another subobject representing their intersection.

Proposition 3.6
Let U and V' be subobjects of A in some category C. Then the pullback of one representative
of each equivalence-class is a representative of the intersection of U and V.

Proof. Since pullbacks are unique up to isomorphism, it suffices to show that the pullback
of a pair of monomorphisms is the meet in the preorder of monomorphisms. This then
translates to the level of subobjects.

Let w : U — Aand v : V — A be any given pair of monomorphisms. Then the
pullback of u and v is the meet of them. Specifically, we have for any other monomorphism
w: W »— Athat w C u x4 v if and only if w C v and w C v, which follows from the
universal property of pullbacks together with the fact that the ordering of monomorphisms
is a preorder. Hence u X 4 v is the meet of u and v, so it is a representative of the meet of
U and V. O

This subobject then also satisfies the expected property that x € U NV if and only
if x € U and x €7 V, which follows from the universal property of pullbacks.

Pullbacks give more beyond just intersections, however; they give us a notion of preim-
ages. Namely, given a morphism f : A — B, pulling back equivalent monomorphisms into
B along f give again equivalent monomorphisms into A; this follows from the universal
property of pullbacks. We can thus extend the notion of pullbacks of monomorphisms to
pullbacks of subobjects. This extended notion is then something akin to the notion of
preimages of functions in Set.

Proposition 3.7 (McLarty [McL92, p. 44, Theorem 4.7])
Let f : B— A and U a subobject of A be given. Then for any x : T — B we have fx € U

if and only if x €7 f*(U).

Proof. Let u be any representative of U. Then fx €7 U is equivalent to fx = uy for some
y and x €p f*(U) is equivalent to x = f*(u)z’ for some z’. We have from the universal
property of pullbacks that z = f*(u)a’ if and only if fz = uy for some y. The desired
result immediately follows. O

Moreover, taking these preimages is functorial, though contravariant; the preimage of
a subobject under an identity morphism is the same subobject, and the preimage of a
subobject under a composite is the preimage of the preimage of the subobject under first
the right factor, then the left. This gives us the following proposition.

Proposition 3.8

For C a well-powered category with pullbacks, there exists have a functor Sub : C°P? — Set
which assigns to each object A its poset of subobjects, and each morphism f: B — A we
assign the function f* taking each subobject of A to its preimage subobject of B.

Proof. Let f: B — A be given. We must show that pulling back f along
e identity is trivial, and

e a composite is equivalent to pulling back twice.
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For the former, it suffices to show that B is the pullback of f along id4. But for any
object X with morphisms z1 : X — A and z9 : X — B, such that id4 21 = fxo, then
both factor through B with z1, as required by pullbacks. So B is the pullback of f along
ida.

Composition follows directly from proposition 2.4. O

Furthermore, we have as with sets that taking the preimage preserves the ordering of
subobjects and their intersections.

Proposition 3.9
Let f: B — A be a morphism of C. Then for any subobjects U,V of A, we have that if
UCV, then f*(U) C f*(V). Similarly, we have that f*(UNV) = f*(U)N f*(V).

Proof. It suffices to show that the pullback preserves intersections, as then we have U C V
if and only if U NV = U, for any subobjects U and V. If f* preserves intersections and
U CV, then

[FU)=UnV)=fU)nf(v),

so f*(U) C f*(V).

Thus we show that taking the preimage preserves intersections. Let u,v be any rep-
resentatives of subobjects U and V respectively. Their intersection is then represented as
by their pullback, so that we have the following commutative diagram, pulling back each
morphism into A of the pullback square of u and v along f:

By proposition 2.5 we then have that every square in the cube is a pullback. In particular,
f*(UNV) is the pullback of f*(U) and f*(V'), so it represents the intersection of them.
Hence the intersection is preserved by pullbacks, and so also the ordering. ]

3.4 Subobject classifiers

As with reasoning about elements of sets, another useful tool in set theory is the fact that
every subset of some set A is exactly represented by a function from A to the set {0, 1} by
the characteristic function. More precisely, we can represent a subset U C A by a function
xv : A — {0,1}, such that xy(z) =1 if and only if z € U. In other words, the powerset
of A is in bijection with the set of functions from A to {0,1}. Let us call the latter .
This property, then, can be simply phrased in terms of preimages, saying that U is the
preimage of {1} under xyy. We can then also say that Q classifies subsets.



Thus we can say that in Set, there exists a set ) with an element t € {2, such that
every subset U of A is the preimage of {¢t} under some (unique) function yy : A — Q.
Since we have already generalised all of these notions earlier, we may simply adapt this
idea as given above to any category with finite limits.

Definition 3.8 (Subobject classifier). Let C be a category with all finite limits. A subobject
classifier is an object (2 together with a global element ¢ : 1 — €2, with the property that
for each object A and subobject U of A, there exists a unique morphism x, : A — € such
that U is the preimage of ¢ under xy. In other words, such that the following square is a

pullback:

U

—_

~+

A—X 0.

Remark. We say that the morphism ¢ : 1 — €) is the generic subobject, since it gives rise to
all others. Since it is a morphism from the terminal object, it is also monic. This follows
from the uniqueness of terminal objects.

Remark. It will be common that we compose the generic subobject with the unique termi-
nal arrow from some object X, i.e. that we write t!x : X — Q. Thus we will often simply
write the object subscript to ¢, as tx : X — () instead.

Note that we have several equivalent properties to those for sets. For example, we
have x €7 U if and only if xyyz = tr for all generalised elements x, which follows from
the universal property of pullbacks. Similarly, we have the property that the set of sub-
objects Sub(A) of A is in bijection with the set of morphisms Hom(A,2). In fact, this
bijection is natural in A, which means that (for a well-powered category), the Sub-functor
is representable.

Proposition 3.10 (Streicher [Str04, p. 80, lemma 12.1])
Let C be a (well-powered) category with pullbacks. Then C has a subobject classifier if and
only if Sube : C°P — Set is a representable presheaf.

Proof. In the forward direction, assume C has a subobject classifier. Then we may define
a natural isomorphism ¢ between Sube and X(€) by

ta(u:U»— A) = x, € Hom(A4,Q),

with inverse ¢, () = ¢*(t). That they are inverses comes fact that by definition u is
the pullback of t along x,, so u is isomorphic to x(t), and similarly ¢ would be the
characteristic morphism of ¢*(¢). Naturality then follows from observing that for any
f A — B, we have that Sub(f)(u) = f*(u), so the following squares commute and are
pullbacks squares:

1*(U) Ur—t—1
o |
Bl .4 X 9

Hence it follows that xf«(,) = xuf, that is, tpoSub(f) = X(Q)(f) ota, which is exactly
naturality for .. Hence Sub = x(Q).
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In the other direction, we must show that given a natural isomorphism ¢ : X(€2) — Subg
for some 2, we have that € is a subobject classifier. Let ¢ : T — Q denote 1 (idg). Then
from naturality follows that for any ¢ : A — Q we have

va(p) = a(k(p)(ide)) = Sub(p)(ta(idy)) = ¢*(1).
Specifically we then have for any subobject v : U »— A that
w =14ty (w) = x5 (t),

where x, = L;‘l(u), meaning every subobject is the pullback of ¢t : T' — € along its
characteristic morphism. Finally we must show that T is a terminal object. Note that
idg : A — A is always a subobject, and so the following is a pullback

A T
id 4 t
A 0
Hence there exists a morphism !4 from A to T. O

Since the morphisms into the subobject classifier represent subobjects, we may transfer
the order on subobjects to morphisms into the subobject classifier, as follows.

Definition 3.9 (Ordering on characteristic morphisms). For any morphisms ¢, 1 : A — Q,
we say that ¢ <1 when ¢*(t) C ¢*(¢t).

However, an equivalent characterisation of the ordering can be given as well, similar
to proposition 3.4. This then also corresponds to the pointwise ordering of functions A to
{0,1} for sets.

Proposition 3.11
Let o, : A — Q be given. Then ¢ < 1 precisely when for each x : X — A, px = tx
implies Yxr =tx.

Proof. By proposition 3.4 we have that x €x ¢*(¢) implies z €x ¢*(t) forall z : X — A
precisely when ¢*(t) C 9*(t), i.e. when ¢ < 1. But from the definition of the subobject
classifier and pullbacks, we have z €x ¢*(t) precisely when ¢*(z) = tx, and the same
holds for 2. O

4 Cartesian closed categories

This section covers the definition of cartesian closed categories, as well as some of their
properties. The idea of these special categories is to generalise the notion of function-sets
to the more general categorical setting, having for each pair of objects A, B an object
representing the set of morphisms from A to B.

More concretely, we often in Set consider for two sets the set of function from one to
the other. This can be can be characterised as having for each pair of sets A, B a set B4,
the set of functions, together with a function ev : B4 x A — B given by ev(f,z) = f(x).
This tells us that if we have a function and a value, we may apply the function to it.

15



While this gives us an idea for how we may generalise the notion of how to apply
a function, it does not give us the details of how we may construct one. The most
naive answer would come from noting that every function appears as a global point of
the function set. Thus we have a correspondence between Set(A, B) and Set(1, B4).
However, this does not take into account the surrounding context we may have.

For example, when considering group actions of a group G on some set X, we may
want to look at the permutation representation of it; assigning to each element g € G the
action of multiplying by g, itself a function on X. In this case, the context is the element
g of the group.

Really then, when we want to construct functions, taking a context C' into account,
we say that given a function f : C x A — B, we can construct a function f : ¢ — BA.
This function is given by f(c)(x) = f(c, ), as would be expected.

These considerations together then lead naturally to a categorical formulation, and
thus also generalisation, of the notion of function-sets.

Definition 4.1 (Cartesian Closed Categories). A category C is cartesian closed if it has
all finite products, and for each pair of objects A, B € Ob(C) there exists an object B4,
called the exponential object of A and B, and a morphism eva p : BA x A — A, the
evaluation morphism, such that for any f : X x A — B there is a unique f : X — B4,
which we will call the transpose of f, for which the following diagram commutes:

X x A
fol f
BAx A —— B.

Remark. Oftentimes the subscripts of the evaluation morphism will be clear from context,
in which case we will omit them.

With our definition at hand, we now wish to show that these, at least to a certain
degree, correspond with the notion of function-sets we are used to. To that end, we fix a
cartesian closed category C for the remainder of the section.

First we wish to see some relatively basic facts. For example, composing a transposed
morphism with any other morphism should correspond, in analogy with Set, to changing
only the context, leaving the dependent variable unchanged. That is, in Set, if we have
functions f: C x A — B and g : C' — C, then we should have

(fog)(e)(z) = f(g(e) (@) = folg x A)(c)(x).

This in fact holds in any cartesian closed category.

Lemma 4.1 ([Str04, p. 64, lemma 11.1])
Forany f: X xA—>Bandg:Y — X, we have

fog=folgxA).

Proof. Note that for any morphism h : Y x A — B, its transpose h uniquely determined
by ev(h x A) = h. Thus we have

ev((fg) x A) =ev(f x A)(g x A) = f(g x A) = ev(f(g x A) x A).

Then f(g x A) = f g by uniqueness of the transpose. O
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Similarly, we may look at Set to see that the transpose of an evaluation morphism,
which is of the right form to take the transpose of, should satisfy the equation &4 g(f)(z) =
f(z), so eva p(f) = f. Hence the transpose of evaluation should be identity.

Lemma 4.2
The transpose of ev s g is the identity morphism idga.

Proof. Notice that the diagram
BAx A
TN
BAxA-——B
commutes, so by the definition of transposes, eva p = idga. O

With these properties at hand, we can in fact show that not only does every morphism
from a product give rise to a morphism into the exponential, but also the converse.

Proposition 4.3
For any morphism f : C — B there exists a unique morphism g such that f = .

Proof. Let g = ev(f x A). Then g = ev(f x A) =&V f by lemma 4.1. But &V = idga, so
g = f. For any morphism ¢’ : C x A — B for which ¢’ = f, we have

g=evigx A=evfx A=evg x A=,
showing uniqueness. O

A simple consequence of this is then that exponentials can be probed for equality by
evaluating them, in analogy to how functions may be probed for equality by checking them
pointwise.

Corollary 4.4
For any pair of morphisms f,g:C — B4, ifev(f x A) = ev(g x A), then f = g.

Proof. Since ev(f x A) = ev(g x A) we have f = ev(g x A) by the previous corollary. But
then f = g by the uniqueness of transposes, since also g = ev(g x A). O

Looking back at the motivation for the definition of cartesian closed categories, we
should expect every morphism f : A — B to correspond to a point in the exponential
object BA.

Definition 4.2 (Name of a morphism). The name of a morphism f : A — B, "f7 is
defined as the transpose of fry : 1 x A — B, where m4 : 1 x A — A is the obvious
projection.

This definition will be especially useful later for internalising logic, for which the fol-
lowing expected proposition also will be required.

Proposition 4.5
For any morphism f: A— B and g: X — A, we have ev(" fx,g9) = fg.

Proof. Calculation, with heavy use of the definition of transposes, yields
ev("fx,9) = ev(fmalx,g) = ev(fma x A){lx, 9) = fralle,9) = f9g. O
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Thus we have showed at least some similarity with function-sets. Another common
operation on functions we care about is composition. Since points in the exponential
object are supposed to represent morphisms in some sense, we should expect that we
may post-compose the morphisms to produce new points in another exponential object.
In other words, we should have an equivalent to the function ¢ : BA — B4 given by
gA( f) =go f for each given g : B — B’, post-composing g to the result of each function.
This equivalent is in fact given by a functor for each object A.

Proposition 4.6 ([Fre72, p. 3])
For any fired A € Ob(C), the mapping (—)? is a functor C — C.

Proof. We first show how this functor is to act on morphisms. Given any f : B — B/,
take f4 to be the unique adjunct to the composite
/
PR
ev f
That is, f4 : BA — B4 with f4 = fev.
Next, we show functoriality. For identity, note that (idg)4 = & = idga by lemma 4.2,
as required. To show preservation of composition, first let g : B’ — B” be given. Then

gt fr=gevfev=gev(fevx A) =gfev=(gf)"
Hence the action is functorial. O

Symmetrically, we should have an equivalent of pre-composing, taking the function
g: A" — A to the function BI(f) = fog for each function f € B4,

Proposition 4.7
For any fized B € Ob(C), the mapping B is a functor C — C.

Proof. Let f: A" — A be given. We define B as the transpose of the composite

A
BAx A B, pAy A, B,
i.e. Bf =ev(BA x f).
Then Bid4 = ev(BA x id4) = & = idga, as before.
For composition, let g : A” — A’ be given. Then B/9 = ev(BA x fg) and BIB/ =
ev(BA x g) ev(BA x f). Thus

ev((BIBT) x A”) = ev(BY x A")(B' x A")
= ev(B4 x g)(Bf x A")
= ev(B! x A")(B* x g)
= (B x [)(B" x g)
= B x (fg)
= ev(B/9 x A").

By corollary 4.4, we thus have BIBf = Bf9_ i.e. B() acts contravariantly on morphisms.
Hence B(7) is a functor from C°P to C. O

Combining these two propositions, we should even expect a bifunctor, taking each pair
of objects to its exponential object, and morphisms to the composite of the two above
functors.
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Proposition 4.8
The mapping (—) =) taking each pair of objects (B, A) to B4 yields a functor C? x C' — C.

Proof. Tt suffices to show that B/ g4 = g Bf for any f: A’ — A and g: B — B, as we
may then define f9 = Bfg#4. Functorality then follows:

id5 = B4 (idp)* = idga

and
(f1f2)(9192) — B(f1f2)(9192)14 _ Blengf‘ggB _ Bflg]_ABfQQQB _ 9{1952.

So we need to show that B’ng — ¢4’ Bf. Note that

B'ng = ev(B' x

so we are done. O

Furthermore, we in fact have an adjunction with the functors (—)4 and (=) x A, which
should not be too surprising, given that we took as motivation for the definition that we
can for each morphism f : C x A — B construct a morphism C' — B4, and as shown
above, vice versa.

To show this, however, we first need the following lemma, whose similarity to lemma 4.1
should be noted.

Lemma 4.9 o _
Forany f: X x A— B and g: B— B’, we have gf = ¢”f.

Proof. The following series of equalities hold:

g f=gevf=gev(f x A) =gf O
Finally, we have the expected proposition.

Proposition 4.10
For each A € Ob(C), the functor (=) x A is left adjoint to the functor (—)4.

Proof. We need to show that C(B x A, C) = C(B,C#) naturally in B, C. First note that
for any f € C(B x A, C) its transpose is in C(B, C4), and vice versa by corollary 4.3, and
that these uniquely determine each other. Thus, we have a bijection between the sets. All
that remains then is to prove naturality in B,C. Let f: B — B and g : C' — C’ be given.
Then we need to show that the square

C(B x 4,0) —=1 ¢(B,c4)

C(foyg)l lc(f»g“‘)
c(B' x A,c") L c(B, A7)
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commutes, i.e. that for any a € C(B x A, C), we have ga(f x A) = g*af. But this holds
by lemma 4.1 and the previous lemma. O

We have a similar adjunction for the other functor, C(~) : C°P — C. However, in this
case the functor is adjoint to itself.

Proposition 4.11
For fized C, The functor C(7) : C°P — C is its own left (and thus also right) adjoint.

Proof. We have the following composition of natural isomorphisms:
CP(CB,A) = C(A,CP)=C(Ax B,C)=C(Bx A,C)=C(B,C*".0

With both of these adjunctions at hand, we can prove several preservation properties
of both functors, which also then motivate the name of “exponential”, since it behaves
much like exponents in arithmetic would. Similarly products behave much like products
of natural numbers with respect to both sums and exponentials.

Corollary 4.12
For any A, B,C € C, the following hold:

o« Al A4
o (Ax B)® = A x BC
. (AB)C = ABxC,
and assuming C has coproducts and initial object
e 0XA=0
e (A+B)xC=2AxC+BxC
o ABTC = AB o AC,

Proof. These all follow from proposition 2.7, proposition 4.10, and proposition 4.11. [

5 Elementary topoi

The previous two sections both generalised different aspects of the category of sets, first
the notion of subsets and characteristic maps, and then the notion of the set of functions
between two sets. But this then begs the question; if we have a subobject classifier and
exponentials, can we not have objects representing the collection of subobjects, rather than
just a set? That is, can we internalise the idea of subobjects, with ordering, intersections,
and all?

The goal of this section is to show that it is, in fact, possible to do just that. We
begin by defining elementary topoi, which are precisely cartesian closed categories with
all finite limits and a subobject classifier. Then we show how in this setting, we may
relate the properties we wish to show to mere equality of certain morphisms. The goal
of the next section is then to show how we may make use of these internalised notions to
make reasoning about subobjects purely by way of only morphisms possible, and so make
possible to wholly reason internally.

We begin by collecting the concepts we introduced earlier under one name [Tiell].

Definition 5.1 (Elementary Topoi). A category & is an elementary topos if it
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e has all finite limits,
e is cartesian closed, and
e has a subobject classifier.

The most obvious example of such a category is the category Set of sets and func-
tions, which we used as a motivating example for both the notion of subobject classifiers
and exponential objects. Thus there is no surprise that this category is in fact also an
elementary topos. Another example, which we show later in section 8, is that the category
of finite sets is also an elementary topos, although it obviously lacks certain features that
the category of all sets has.

For the remainder of this section, we fix an elementary topos £€. The plan now is
to somehow “internalise” the logic of truth-values, viewing the subobject classifier as the
object of such, and relating this to the algebra of subobjects we gave in section 3; much
in the same way that the set of truth-values in Set also describes the algebra of subsets.

We first show that conjunction of truth-values has an internal analogue, and how it
corresponds to intersections of subobjects.

Proposition 5.1
Any elementary topos € has a morphism A : Q2 X Q — Q such that for two subobjects U,V
of A € Ob(E), the meet UNV is precisely classified by N(xu,xv)-

Proof. Take A : Q x Q — Q be the classifier for (¢,t) : 1 — Q x Q, i.e. take A such that

1 — 1

<t,t>I lt

Ox0 250

is a pullback square.

Now we must show that for any subobjects U, V of A, the intersection UNV is classified
by A{xu, xv). Remember that U NV is characterised by the fact that for any generalised
element x : T — A, we have x € U NV if and only if x €r U and = €7 V, and that
x €r W if and only if xywz = tr for any subobject W.

Thus if A{xu,xv)x = tr if and only if xpx = tp and xyx = tr, then Alxu, xv)
must be the characteristic morphism of U NV, as such morphisms are unique. But by
the universal property of pullbacks, we have A(xy, xv)z = tr if and only if (xy, xv)x =
(t,t)!p, i.e. when xyx = t7 and yyz = tp.

Since x : T'— A was chosen arbitrarily, it must follow that A{xu, xv) = xunv- O

Remark. Since A{p, 1) is often cumbersome to write, we will generally write A infix instead.
So we write ¢ A 1) to mean A(p, ).

One way to view proposition 5.1 is as saying that €2 has an internal operation for
conjunctions, and that the intersection subobjects, viewed as morphisms into €2, can be
viewed as taking the conjunction pointwise. Note that in the category of sets, this analogy
is precise; the intersection of subsets is precisely the pointwise meet of truth-values when
the subsets are viewed as functions.

With conjunctions internalised we move on to the next target, internalising equality.
We start by looking at the usual constructions with sets, and generalise from there. Given
a set A, a relation on A should be a subset R C A x A, and the equality relation should
be exactly the subset R = {(a,a) | a € A}. In other words, R is the image of the diagonal
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map 04(a) = (a,a). Then R is classified by the function eqy : A x A — Q which gives ¢
on the diagonal, and false otherwise.

Note now that we already have categorical formulations of all of the required concepts
to state this categorically. The equality relation F4 can be seen as a subobject of A x A
given by the diagonal. Furthermore, the diagonal morphism 64 = (id4,id4) : A - A x A
is a monomorphism, so this relation can be represented precisely by the map §4. Finally
then, the morphism eqy : A x A — Q which checks if two values are equal should then be
the characteristic morphism of 4.

Proposition 5.2
For each object A of £, there is a morphism eqy : A X A — Q such that for any two
generalised elements a,b: X — A, we have a = b if and only if equ{a,b) =tx.

Proof. Take eqy to be the classifying morphism of 4 : A — A x A, the diagonal at
A. We show that this morphism satisfies the expected property. Let a,b : X — A be
some arbitrary morphisms. We want to show that a = b if and only if eqy(a,b) = tx.
The forward direction is trivial, so we examine the other. Suppose eq4(a,b) = tx. Then
(a,b) : X — A x A factors uniquely through 64 : A — A x A, since eqq classifies d4,
so {a,b) = dac for some ¢ : X — A, ie. {(a,b) = (¢,c). But then a = ¢ and b = ¢, i.e.
a=nb. O

Furthermore, we in fact have that the subobject classified by eqg(f, g) is precisely the
equaliser of arbitrary parallel morphisms f,g: A — B, which is analogous to how in Set
the equaliser is exactly the set eq(f;9) = {a € A | f(a) = g(a)}, or equivalently, the
preimage of the diagonal subset of B x B under (f, g).

Corollary 5.3
Given any pair of morphisms f,g: A — B, the subobject classified by eqp(f,g) is exactly
the equaliser of f and g.

Proof. Let E denote the subobject classified by eqp(f, g). Thus the diagram below com-
mutes:

E B 1

e ]

Since the outer and right squares are both pullbacks, it follows that the left square is also
a pullback. From proposition 2.6 then follows that E < A is the equaliser of f and g. [

Now that we have internal forms of both conjunction and equality, we can may mirror
the ordering as well by making use of the equivalence u < v <= u A v = u. In other
words, we construct a morphism =: Q x Q — Q such that ¢ = 1 corresponds to the
truth-value of the statement that v follows from ¢. If this is true, then we should also
have that ¢ < 1. Then we extend this pointwise to hold over characteristic morphisms
for some object A, and so for general subobjects of A.

Proposition 5.4
There exists an morphism =: Q x Q — Q such that for any subobjects U,V of A, it holds
that U C V if and only if = (xu, xv) = ta.

Proof. Note that U C V precisely when UNV = U, i.e. when xyAxy = xv. The latter is
then equivalent to eq 4 (Xu A Xuv, Xu) = ta by proposition 5.2. Further rewriting then yields
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eqo(A x m){xvu, xv) = ta, where eqq(A X m1) is independent of A, U, and V. Taking
= = eqq(A x 1) then gives the desired result for the characteristic morphisms of U and
V. Since A, U and V were all independent of = and arbitrary, we note that the statement
holds for any choice of those values, from which the desired conclusion follows. O

Remark. As with the internalised conjunctions, we write internal implication infix. That
is, we write = (p, ) infix as ¢ = 1. We will also write U = V for the subobject classified
by xu = xv, for any subobjects U,V of A some object.

It will be helpful to give a characterisation of membership of the implicate U = V of
subobjects U and V of A, both to give an intuition for how it behaves, and to soon prove
that the implicate acts as an exponential object in the poset of subobjects.

Corollary 5.5
Given subobjects U,V of A, we have for any generalised element x : T — A that x €p
U=V ifand only if x er U implies x €7 V.

Proof. This follows from the fact that U C V if and only if x €p U implies z €p V (
proposition 3.4), as well as the fact that U = V is characterised by xy = xv.
We have the following chain of equivalences:

zrer U=V iff
(xv = xv)x = tr iff
edo{xu A XV, xv)T = tr iff
(xv A xv)r = xuz iff

x €r UNYV exactly when x €p U

Soifr €ep U=V andxz €r U, then x € UNV, and so also x € V. In other words,
ifxer U=V, then x €r U implies x €7 V.

In the other direction, suppose x € U implies x €7 V. Then we have from that from
intersections that x € U NV if and only if x € U and = €r V. From the assumption
we then have x € U NV if and only if x €7 U, whence x €7 U = V. O

With this corollary at hand, we can easily show that implicates are right adjoint to
conjunctions, in the sense of cartesian closedness.

Proposition 5.6
For all U, V,W subobjects of A € Ob(E), we have U CV = W if and only if UNV C W.

Proof. Note that U C V = W if and only if for all x : T' — A, it holds that if x € U,
then x €7 V = W. But from the last corollary, z €7 V = W exactly if x €y implies
zer W.

Plainly, « €r U implies x €7 V implies x € W. But this is equivalent to having
that x €p U and = €p V implies x € W. From the membership-characterisation of
intersections we then equivalently have z € U NV implies x € W for all x : T — A.
Thus UNV CWifandonly if U CV = W. O

Up until now, we’ve only considered the propositional parts of the algebra of subob-
jects, and also ignored the cartesian closed structure of the topos. However, with the
exponential objects, we really unlock a very powerful language. Namely, the existence of
the subobject classifier €2 tells us that subobjects of an object A are equivalently morphisms
from A to €. Add to this the fact that exponential objects represent sets morphisms, we
then have that the object Q4 should represent the collection of subobjects of A; the power
object of A, in analogy with power sets.
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Then we may at least try to construct a morphism V4 : Q4 — Q, which would give true
when the input subobject is the maximal subobject. Alternatively, viewing subobjects as
formulas, which is commonly done with sets, the morphism V4 would tell us if the formula
is true everywhere, functioning as a universal quantifier in a sense.

Definition 5.2 (Universal quantifier). Let A be any object of £. The universal quantifier
Va: Q4 = Aat A is the classifier of the morphism "t47, where t4 : A — Q denotes the
characteristic morphism of the maximal subobject.

Alternatively, in the vein of internalising quantification, we could look at relations
R C B x A of B and A. Universally quantifying over A in this relation should give a
subobject S of B such that for every U C B, we have U C S precisely when U x A C R;
essentially, it is the subobject S of B such that whatever we pair an element of .S with,
we have a subobject of R.

Definition 5.3 (Universal quantification of relations [McL92, p. 121]). Given a relation
R C Bx A, we define the universal quantification of R over A, written Va.R, as the pullback
of the subobject represented by Tt47: 1 — Q4 along the transpose of g : B x A —

Va.R —— 1

[

BX—7R>QA

Note that since Va.R is defined by pulling back along Xg, its classifying morphism is
given by the composite Y4Xg, where ¥4 : Q4 — Q is the universal quantifier for A as
defined above.

The desired property for the universal quantification of relations, as motivated above,
follows immediately.

Proposition 5.7 ([McL92, thm. 13.8])
Let S € B and R C B x A be any given subobjects. Then S C Va.R if and only if
S x ACR.

Proof. Let s be a representative of S, overloading S to also mean the domain of s, and
similarly for some r € R. Then S C Va.R holds by definition exactly when Xrs ="t 'ls.
Transposing both sides then yields xg(s X A) = tgxa, hence sx A Cr ie. SxACR. O

Finally, just as we have characterised membership of implicates, it will prove useful to
give a similar result for the universal quantifier.

Proposition 5.8 ([McL92, p. 122, Theorem 13.9])
Let R C B x A be some relation. Then for any generalised element x : T — B, we have
x €r Va.R if and only if t X A €Epya R.

Proof. Let r € R be some representative, again writing R also for the domain of 7.
In the forward direction, suppose z €x Va.R. Then there is a morphism 2’ : X — Va.R
such that the diagram

X —%—Va.R 1
. Va.?] lrtjA
B,*’QA
XR
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commutes, where the right square is a pullback. Hence Xpxr = "ta'. But Ypzr =
Xr(x x A) = "ty x, so transposing both sides we have xygr(x x A) = txxa. Hence
X A€xxa R.

In the other direction, we have a morphism = : X — B such that £ x A €xx4 R.
Then xgr(z x A) =txxa, so transposing both sides we have xpz = yr(x X A) ="t4 x.
Thus there exists by the definition of pullbacks a morphism z’ : X — Va.R such that
x = (Va.R)2', so  €x Va.R. O

6 Internal language

This section introduces the internal language of a topos. The broad idea of the internal
language is to, in a sense, replicate the reasoning on elements we use in set theory. The
solution for allowing such reasoning we gave in section 3 was through generalised elements,
and while the concept is useful, we can take it further. Furthermore, it is not enough to
simply provide a method construct generalised elements; we also want to find a structured
method for reason about subobjects through these elements. That is what the internal
language provides.

We begin this section with constructing a language of terms and types, together with a
way of interpreting these syntactic objects as generalised elements and objects respectively.
Then we make use of the fact that generalised elements of the subobject classifier, as simply
morphisms into it, correspond to subobjects of their domain. Hence we can use this fact
to reason about subobjects simply as terms with the subobject classifier as type. With
this fact in mind, we construct a system for proofs about formulas in the style of natural
deduction. We prove that this system is sound, in the sense that any valid proof of a
statement implies that the statement holds internally. Finally we use this proof system,
together with some axioms which we prove hold in the internal logic of all internal topoi,
to show several properties about the topoi themselves. For example, we show that every
morphism factors as a monomorphism composed with an epimorphism, and that any monic
epimorphism is an isomorphism.

For the whole section, we fix an elementary topos £.

6.1 The term-language

The idea of the term language is to allow easy construction of generalised elements of
objects. One perspective on such elements would be as terms in a context: the morphism
itself is the term, the domain gives the context, and the codomain the type. We think of
the context as containing all variables our term may make use of, so the context should
be seen as a list of variables with their types, which can be interpreted as a product of
objects of the topos.

Remark. In the presentation of the internal language we use the language and notation of
type theory. Geuvers [Geu09] provides a good introduction for those uninitiated.

Since we interpret the types of our language simply as objects of £, we need only
concern ourselves with contexts and terms. We will generate these inductively, to make
reasoning about the terms easier.

Terms will always be given inside a context. Before any other terms are given, we will
require a countable supply of variables. Then we define contexts, as the name suggests,
as simply a list of distinct variables with an some type assigned, we write this as z : A. A
context I' is thus of the form x1 : A1,...,z, : A,
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A well-typed term t of type A in a context I' will be written as I" - ¢ : A. The remaining
terms, beyond just variables, are then given by the following inference rules:

(x:Ael)
I'tz: A I'kx*:1
I'Fa:A I'b:B I't:Ax B I't:Ax B
(a,b) : AX B DHfst(t): A I'Fsnd(t): B
I''z:A+b: B '-t:A— B F'tu:A
'FX:A.b:A— B 'ttu:B
(A, BeOb(&)) (fe&(4DB)) (AeOb()) (ce&(l,a))
'f:A— B I'ke: A,

where we use certain suggestive notation for some types; exponentials are written with
arrows, so A — B, and products are written as usual.

Remark. This presentation is really a simply typed A-calculus. More about this presen-
tation, with a focus on interpretation into general cartesian closed categories is given in
[Str04].

When types are clear from context, we will omit them. Next we show how to interpret
the types, contexts, and terms inside the topos £. We define interpretation of each by
structural recursion, starting with interpreting contexts as simply the product of each
variables type: [21 : A1,..., 2y ¢ A = [0y, [Ail

Terms are then interpreted as follows:

[['Fx:A] = 7 (where 4 is the index of z : Ain I")
[T'F*:1] = I

[TFc: A] = ¢l (A€ Ob(€)and ce £(1,4))
[TFf:A— B] = "f (A,B € Ob(€) and f € £(A,B))
[T+ (a,b): Ax B] = ([T +a],[TF0])

[T+ fst(t) : A] = m[lFt: Ax B]

[Tt snd(t) : B] = m['Ft: Ax B]

[TFAX:At:A—-B] = [I'z:AFt:DB]

[T'Ftwu: B] = ev([lFt: A— B],[I'Fu: A])

We also have some equational rules that we would expect to hold. For example,
we would expect a pair equal the pair of each projection; that is, (fst(p),snd(p)) = p.
Similarly, we would expect fst(a,b) = a and snd{(a,b) = b. We would also expect the
only term of 1 to be %, since 1 is terminal and plays the role of the singleton set. Simple
calculation shows that these rules are consistent with the interpretation; from the axioms
of cartesian closed categories, these equations hold in the interpretation. Hence it would
not be weird to include these rules.

Furthermore, since exponentials play the role of function-objects, we’d expect similar
rules for these; The A-terms are to be interpreted as constructing a function with a variable,
and application is meant to replace a variable with the applied to term. Thus we would
want (Azx : A. t)u = tlu/z], where the right-hand side is the term ¢ with every (free)
occurrence of x replaced by u. For this to make sense, we require a notion of substitutions
to begin with.
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Definition 6.1. Given a pair of contexts I', A, as substitution from I' to A is map from
the variables x : A of A to terms I' - ¢ : A.

We may apply a substitution o : I' — A to a term A ¢ : A, written t[o], to produce
a term of the same type in context I'. The method of substitution is capture-avoiding
substitution, similar to how Streicher [Str04] handles the situation.

With substitutions at hand, we may state all the equations we expect the terms of our
calculus to obey. We write ' H ¢t = u : A when ¢ and u both have type A in context I,
and they are supposed to be equivalent.

F+t: A 'Fu:B F-¢t: A 'Fu:B '+t:AxB
DFfst{t,uy=t: A I'Fsnd(t,u) =u: B 'kt = (fst(t),snd(t)) : Ax B
Nxz:A+t: B F'Fu:A ''+t:A— B '=t¢:1

F'F(Az: A t)u = tlu/x] 'F(MAz:Atz)=t:A— B FHEt=x:1
I'Fit=u:A 'kFs=t: A F'Ft: A I'Ft=u:A
'ks=u:A F'kt=t: A lFu=t: A
'kt=t':A Ttru=d:B F-t=t:AxB
I ({tu)=({t,u): AxB [ fst(t) =fst(t'): Ax B
F'~t=t:AxB Fz:AFt=t:A
['Fsnd(t) =snd(t'): Ax B F'-\z:At)=M\z:At): A= B

'tt=t:A—> B TFu=u:A
'ttu=t4:B

The proposition we then expect is that, if ' - ¢ = w : A, then [I' - t] = [I' F u]. The proof
of this is simply by structural induction on the equation-rules and the relevant properties
of cartesian closedness of the elementary topos. However, one small problem with proving
that these rules hold comes from the interpretation of terms with substitutions. To show
that substitutions behave well under interpretation, we require a few more things.

First of all, we require a way to interpret substitutions inside the topos. But this is
really quite simple; since a substitution is a list of terms, all in the same context, we may
simply interpret them as a product of the interpretation of each term; the interpretation
of a substitution ¢ : I' = A is just the morphism

<[[F [ O'(IL'Z) : Al]] ’ x; A € A> : [[F]] — [[A]]

Furthermore, we should expect substitutions to behave nicely with interpretation of
terms. Specifically, since substitutions are interpreted as morphisms between contexts, we
want to say that applying a substitution to a term, and then interpreting the result, is
really the same as composing the interpretations of each:

Lemma 6.1 (Substitution Lemma [Str04, Lemma 11.2])
Whenever T'Ht: A and o : A — T is a substitution, then

[Attlo]: Al =[T'Ft: A]o]o].

Proof. A proof for an analogous result is given by Streicher [Str04], and the same proof
applies here. ]
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With the substitution lemma at hand, we may prove that the equation-rules on terms
given above turn into equality in the interpretation.

Proposition 6.2
Suppose I' is a context and 't = u : A for some terms t and u, both of type A in context
. Then [I'Ft: Al =[I'Fu: A].

Proof. Proceed by induction on the equivalence rules. Most rules follow either immediately
from the induction hypothesis or the fact that equality is an equivalence relation. The only
cases which require further scrutiny are the specific rules regarding products, exponentials,
and the terminal object. But these cases all follow from the universal properties of the
respective kind of object. O

Further expectations on the interpretation of terms is with regards to applying a
function-constant to some term. Specifically, we would expect that this is simply pre-
composing the morphism with the interpretation of the argument.

Lemma 6.3
For any function constant f € E(A, B) and term I' -t : A, we have

[T'F ft:B] = f[l'Ft:A].
Proof. By definition of the interpretation of terms and proposition 4.5 we have

[CFft:B] =ev("f Y, [t A]) = f[LFt: Al O

6.2 A proof system for the internal language

Since the term-language is interpreted as morphisms in £, we may reason about sub-
objects of (the interpretation of) a context by simply looking at terms of type (2 in that
context. These terms may also be viewed as formulas in the context, which is partially mo-
tivated from section 5, where we obtained terms corresponding to the logical connectives
of conjunction and implication. By similar reasoning we also have a notion of universal
quantification, by way of the morphism V4 : Q4 — Q.

Remark. As we did for the connectives A and —, we will make use of certain additional
syntactic sugar for universal quantifiers: Vz : A. ¢ rather than V4(Az : A. @).

Thus, we may make these ideas more formal; we may construct a system for reasoning
with these connectives in a syntax similar to that of natural deduction. We will write
I' | © F ¢ (borrowing the notation from Streicher [Str04]) to mean that there is a deduction,
as will be given shortly, with assumptions in a list of formulas ® concluding a formula ¢,
all with free variables in the context I'. A list of formulas ® = ¢1, ..., @, will be called a
propositional context, distinguishing from the variable context I'.
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Structural rules

Before we get to the logical rules, we of course need certain structural rules.

TFe:Q) ek g I NCREY
_— X —— WEAK —— CONTR
L|®,pke L&,k L@,k
[ ®@1,0,0,P2Fp L|®Fp (0:I"=T)
ExcH ; SUBST
| ®1,1, 0,02 p I | @[o] - p[o]

Lo, ¢vFep L|okqy
Cu

T
| R )

where o : IV — T is a substitution and ®, ¢ are lists of formulas and formulas in context
.

Remark. Weakening of the variable context can be achieved with the substitution rule; in
the one-variable case, for example, simply let ¢ = (I',y : A), with I" the original context.
Then the substitution rule simply adjoins a single variable ¢ : A to each of the formulas;
it weakens them.

Logical rules
| R IR RONRT L'|®,oF
reET F|oFpAY FNokFp—v

My:A|®ko y
F|ok-VYy:A o

where y : A does not appear in I" nor free in ®.

We will also make use of several derived rules; certain rules, which while not part of
the collection of actual rules, may be derived from them. These are useful when reasoning
within the language, but do not add any difficulties when it comes to reasoning about the
system itself.

Theorem 6.4
For any variable context ', al context ®, and formulas ¢,, the rules
FNokFp—v | R C®oF e

MP —INST
Lfery L@, —=9pk

L@ t/ylFy

VINST
L'o,Vy: A pkE

are derivable.
Proof. Taking @, ¢, and 1 to be in context I', the first rule holds:

L@ p— 1
—
L' ®,pkF9 Mok
T|®F1

Cut
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The second rule can be given the following derivation tree:
Lok
Ax Weak
I A s Loty .
%
LQ,o—=yt-vy

With & and ¥ in context ', in context I',;y : A, and I' - ¢ : A, we may derive the
third rule by

Ax
F|<I>,Vy:A.cp|—Vy:A.g0VE
L' ®,pt/ylF Ny:A|d,Vy: A . oF
| @, 0[t/yl F o Woak y: AlQ,Vy: A g ? Subst /y
Lo, Vy: A p,0lt/ylFy L[®,Vy: A ok plt/y] Cut

L|o,Vy: A ok
O

Note that we don’t have rules, or even symbols, for falsehood, disjunction, nor exis-
tential quantifiers. That is because we can encode the connectives and derive associated
rules by clever use of universal quantifiers [Str04].

We are in fact able to derive formulas for each of falsehood, disjunction, and existential
quantification by reasoning about their expected elimination rules.

e We expect falsehood L to be a term of type {2 such that the rule

I'Fp:Q
Lo, LEy

holds for any context I', and formulas ® and . If we define 1 =V : Q. ¢, we may
derive the expected rule:

AX

Lo, (Ve: Q. p)FVe: Q. x
Fz:Q|Q,(Vp: Q. ¢p)Fx
DO, (Vo: Q. 9)Fo
T [®,LFg

SUBST

e For two formulas ¢ : ) and ¢ : Q, define ¢ V ¥ by

PV :=Vp: Q. (p=p) A =p)=p
with p not free in ¢ nor .

Then we can derive the characteristic rules

LjoFpvy T |Qpkp T|0kp
Lioekp

Lok Loty
| RO R RVET F'NoFepVvy
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First we give a derivation for the first rule, assuming the top row and proving the
bottom one:

| RN RVET
F\@I—Vm:Q.(ap:x)/\(w:x)::cw F\<I>,cp|—90:>p_>1 F|<I>,¢I—1/1=>p_>1
F,:U:Q\Q)I—(goéx)/\(w:x)ixSubst F|<I>|—g0:>pWeak F|<I)|—1/):>pWeak
LleFle=prW=p=pr . I'[okp=p Llerv=r .
I'[®(p=p)A([p=p)kp Llerle=pr@=p) .
C|®kp

Next we construct a derivation for I' | ® - ¢V ¢ assuming that we have a derivation

L|®F ¢
Ax
Fz: Q|0 (p=2)ANW=2)F(p=2)A W =2) AE
Fz:Q |0, (p=2)ANYp=>2)Fp=2x Fz:Q |k
=E Weak
Fe:Q o, (p=2)N(Y=2a),pka Fe:Q |0, (p=2)AN WY =2)F¢ Cut
u
Fz: Q|0 (¢p=2)\NWY=2)F=zx I
=
F75€39|‘I)|_(<P:>37)/\(¢:>37):>$VI

T|®FpVey

The derivation of I' | ® - ¢ V ¢ from I" | ® |- 1) is the same with ¢ replaced by ¢ in
several places.

o Similarly we may define 3z : A. ¢ :=Vp: Q. (Vx : A. ¢ = p) = p with p not free in
, and the corresponding bidirectional rule

Ly: Aok
Lo, Jy: A ok

holds for this definition [Str04, p. 94].

For the forward direction, with the assumption of a derivation for I,y : A | &, ¢ - 1,
we use the derivation tree

Ly:A| @,k
Fy:A| k=
F|®PFVy: A ¢ — )
—inst
Lo, (Vy:A o —=1p) =t
Vinst
Do, Jdy:A ok

In the other direction, we will need the following derivation of I'y : A | ®,p F Jy :
A. p:

Ax

Dy:Ap: Q| @0k ¢
Dyt Ap: Q| Q0,0 —=pkp
RwAmiHQwFMwAw%m%pv
Ny:A|®,pF3Jy: A ¢

—inst
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which we then use in the backward direction
L|®,Jy:A ok
Iy:A|®,Jy: A oF
y: AlQ,Jy: A ok Weal
Dy:A|®,p,dy: A ok Ly:A|®,pF3y: A ¢
Ly: Al @0k

Subst

Cut

6.3 Soundness of the proof system

A useful property, in fact, an essential property, of proof systems is their soundness. This
property states that any proof in the system is in fact true. Traditionally, this says that
whenever we have a derivation tree I' | ® ¢, then the formula ¢ is true whenever the
formulas ® are also true. In our case, however, we have no predefined notion of truth; we
will need to begin with defining that, before we are able to continue.

Definition 6.2 (Truth of a formula). Let I' F ¢ : Q be some formula in context I'. We
say ¢ is true when for any generalised element z : T — [I'], we have [I' F ¢]z = tr.

Equivalently, we could present this by viewing ¢ as cutting out a subobject of [I'].
Then ¢ is true whenever it cuts out the maximal subobject. For this, however, we require
a more precise meaning of “cutting out” a subobject of [I'].

Definition 6.3 (Extensions). For a given context I and a formula I' - ¢ : Q, the extension
of ¢, written [I" | ¢], is the subobject of [I'] classified by [I' F ¢].

Remark. For a list of formulas ® with formulas in context I', we write [[' | ®] for
Nyeall | #]-

With this definition, we have that a formula I' - ¢ : € is true whenever [I' | ¢] is the
maximal subobject, by the definition of the subobject classifier.

Now that we have an idea of what it means for a formula to be true, we can move on
to show that the proof system we devised in the previous subsection is sound with respect
to this definition.

Definition 6.4 (Soundness of a rule). We say that a deduction rule

Fl‘q)ll_Sal Fn’q)nl_wn

Fn—i—l ‘ ©n+1 F Pn+1

is sound, if, whenever [I'; | ®;] C [I; | ;] for all 1 < ¢ < n, it also holds that
L1 | Prga] € ot [ onpal-

Remark. An equivalent formulation of soundness goes as follows: A rule as above is sound,
if, whenever [I'; F ®;] < [I'; F ¢;] for all 1 < i < n, it follows that [I'y41 F $piq] <
[Trt1 B @nta].

The remainder of the section will show that all the structural and logical rules we
defined are sound. Furthermore, it is easy to see that a derived rule is sound if all rules
used to derive it are sound themselves. Thus all our derived rules will be sound, too.

We start with the structural rules.

Lemma 6.5
The structural rules are sound.
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Proof. That the structural rules are sound follows immediately from the definition of
binary meets:

e from commutativity follows that the exchange rule is sound,
e from idempotence follows that the contraction rule is sound, and

o from monotonicity, i.e. that if for any u, v, w subobjects of [I'] with v < v we have
uNw < vNw, follows that weakening is sound.

This leaves the rules for cut and substitution.
For cut, we use that for any subobjects u,v,w, if uNv C w and v C v, then v C w,
since v = uNwv. Thusif [['| ®] C ' | ¥] and [I" | ®,7] C [I' | ¢], then

Cle=[[en['[¢]=[]2,¢] < |¢l,

so the cut rule is sound.
Finally, for substitution, we assume o : A — I is a substitution, and that [I" | ®] C
[I' | ¢]. Thus we need to show that [A | ®[o]] C [A | ¢[o]]. But by the substitution-lemma
and the fact that the subobject classifier represents the functor Sub, this is equivalent to
showing that
[o]*[T [ @] € [o]*[T" | ]

But pullbacks preserve the ordering and [I' | ®] C [I" | ¢], so we may conclude the desired
result. Hence the substitution rule is sound. O

Next we show that the logical rules are sound.

Lemma 6.6
The logical rules are sound.

Proof. We show that each rule is sound.

o For the rule for truth, we have that [I" | T] is classified by #[r}, and so is the maximum
element of the poset. Hence for any @, [[' | ®] < [['| T].

o For conjunction, note that [I' | o AY] = [I' | ¢] AT | ¢| by proposition 4.5, and
[['| @] <[I'| p]Al | ] if and only if [I" | ®] is less than both. Hence the conjunction
rule holds in both directions.

o Implication is right adjoint to conjunction, so [I' | ®,¢] < [[' | 9] if and only if
@ <[|¢]=|9]=[|¢= 1], so the implication rule holds.

e Let I' be a context, y : A a variable of type A, ® a list of formulas in context I', and
@ a formula in context I',y : A.

Then there is a substitution nr : I,y : A — I' which simply forgets y : A. Since y
does not appear in ®, we have that ®[rp] = ®. Hence

Cy: Al @] = [T,y | @lrr]] = [wr]*[I' | ] = mppy [T | .

From proposition 5.7 pulling back along the projection is left adjoint to universal
quantification inside £ as defined in section 5. Thus

Cy: A[ @] =ap[l | @] < Iy : A ¢
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if and only if
T[] < Va. [Iy: A o]

Thus we need only show that [I' | Vy : A. ¢] = Va. I,y : A | ¢]. Remember
that Va. u is precisely the subobject classified by VX, so it suffices to show that
[T Yy : A ¢] = Va[l',y: A ¢]. But this follows from lemma 6.3 and the
definition of the interpretation.

Hence it must be the case that the rules for universal quantification are sound, so
we are done. O

With these lemmas, we may prove the soundness theorem we expect.

Theorem 6.7
The proof-system presented is sound, in the sense that for any context I', and propositional
context ® and formula ¢ in the context I' such that T' | ® - ¢, then [I' | ®] C [T | ¢].

Proof. The proof is by induction on deductions, using the soundness lemmas above. [

Since we derived the rules for falsity, disjunction, and existential quantification from
sound rules, they must also be sound. We may use the soundness of these formulas to show
that the posets of subobjects actually form lattices, and that the finite joins are preserved
under pullbacks.

Theorem 6.8 ([Str04, p. 94, theorem 13.5])
For all elementary topoi £

1. the posets Subg(A) contain least elements L 4 that are preserved by f* for arbitrary
f:B—Ain&.

2. the posets Subg(A) contain joins that are preserved by f* for arbitrary f : B — A
in &.

3. for all subobjects R C C x A there exists a subobject Ja. R C C such that for all
subobjects P C C' it holds that

da. RC P iff  RCwo(M),

where ma : C x A — C is the first projection and, moreover, for all morphisms
f:D — Cin & it holds that f*(3a. R) = Ja. (f x ida)*(R).

Proof. The proof is the same as given by Streicher [Str04, p. 94] with minor notational
differences. O

Beyond the structural and logical rules, we also wish to reason about equations in our
language. Since we proved in section 5 that topoi have for each object an arrow which
classifies equality, we would want to simply use that. We will write t =4 s for the term
eqy(t, s), omitting the type when obvious from context. To prove that the expected rules
for equality are sound, however; we require the following lemma.

Lemma 6.9
For any morphisms f,g: A — B and ¢ : A — QF we have eq(f, g) Aev{p, f) < ev(p,g).
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Proof. Let f,g, and ¢ be given. Then eq(f,g) A ev(p, f) < ev(p,g) if and only if for
all z : I — A, if (eq(f,g) N ev(p, f))x = t; then ev(p,g)x = t; by proposition 3.4.
Let such an = be given with (eq(f,g) A ev(p, f))z = t;. Then eq(fz,gz) = t; and
ev(pz, fr) = t1, so by proposition 5.2 we have fx = gx. But then ev{pz, fx) = ev(pz, gx),
so ev(pz, gx) = tg. O

Proposition 6.10 (Soundness of equality)
For any object A € Ob(E), the additional rules for equality

I'k¢t: A
T [OFt=t

'-s:A '+t A F'p:A—Q FokFs=t F'|oFes
T|oFopt

are sound.

Proof. For the first rule, note that [I' | t = ¢] is classified by [I' F ¢ = t], which by
lemma 6.3 is the same as eq ([I" - ¢], [I" - ¢]), which by definition of eq, is fjrj. Hence
To) <M [t=t=[|T]

For the second rule, suppose I' | ® - s =t and I' | & + ps. Then by assumption
@] <[C|s=tjand [['|®] <[ |ps],so[['|P®]<[['|s=¢t]A[l']ps]. But

[TEs=t] =equ([l'F s],[TFt]) and [I'F ¢ s] =ev([T'F ¢], [T} s]),

so by lemma 6.9, [I' s =t]A[['F ¢ s] < [I' F ¢ t]. By transitivity we then conclude
[['| @] < [T | ¢ t]. Hence both rules for equality are sound. O

6.4 Using the internal language

To show the power of the internal language, we will prove certain properties about the
topos & using it. For example, we may construct the image of a morphism f: A — B as
a subobject of B.

Proposition 6.11
For any objects A, B of £, all morphisms f : A — B factor as an epimorphism e followed
by a monomorphism m. This subobject given by the monomorphism m will be the image

of f.

Proof. Let A,B and f : A — B be given. Then take I to be the subobject given by
Ja. (f,ida), where (f,id4) is a subobject of B x A. From theorem 6.8 then follows that
there exists a morphism from A — I, since (f,ida) C w5 (Ja. (f,ida)) follows from the
fact that Ja. (f,ida) C w if and only if (f,ida) C 7mju for any u a subobject of B. Thus
at least f factors through we have a morphism e : A — I. Furthermore, if u : U — B is
any subobject of B such that f factor through u, i.e. f = ue’ for some ¢’ : A — U, then
mo(f,ida) = f = ue’, so f factors through 75u by the universal property of pullbacks.
But then (f,id4a) C mxu, so it follows that I = Ja. (f,ida) C u. Hence I is the least
subobject such that f factor through it.

Next we show that e is epic, for which we first show that if e = mg some monomorphism
m : X — I, then it follows that im : M ~— B is a subobject of B and f = ie = imyg,
so f factors through ¢m. From above then follows that ¢ C ¢m, so there is a morphism
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h : I — M such that imh = i. But ¢ is a monomorphism, so mh = idg, in which case m
is an isomorphism.

Finally, let g, h : I — X be given such that ge = he. Let U ~— [u]l denote the equaliser
of g and h. Since ge = he it holds that e factors through u, so e = ua for some a: A — U.
But « is monic, so by the previous paragraph follows that u is an isomorphism, and thus
also epic. Since gu = hu and w is epic, it follows that g = h. Since g, h were arbitrary, it
holds that e is epic. O

Corollary 6.12

The image of a morphism f : A — B is characterised by the extension [y : B | Jx :
A.y = fz], and f is an epimorphism precisely when f is surjective internally, i.e. when
[y:B|3Jz: A y= fz] = Tp.

Proof. For the first part, we show that (f,id4) is (isomorphic to) the subobject classified
by [y: B,z : Ay = fz], since [y : B+ 3z : A. y = fz] is precisely Ja. [y : B,z : A+
y = fz]. Note that

ly: B,x: Ak y= fz] =eqp(mp, fra) : Bx A — Q,

so by corollary 5.3 we have that [y : B,z : A | y = fxz] is the equaliser of 7 and fmy. Since
equalisers are unique up to isomorphism, it suffices to show that (f,id4) is also an equaliser
of 71, fma. Clearly (f,id4) : A — B x A satisfies m1(f,id4) = fma(f,id4). Furthermore,
given g : X — B x A such that mg = fmag, we that g factors through (f,id4) by mag :
X — A. Finally, if h : X — A such that g = (f,ida)h, then g = (fh, h) = (fm2g,m2g), so
h = mg. Thus (f,id4) is also an equaliser of 71 and fm.

For the second part, notice that [y : B | 3z : A. y = fz] = Tp if and only if any
representative monomorphism in [y : B | 3z : A. y = fx] is an isomorphsim. But then the
f factors as the composition of two epimorphisms, so f is also epic. Similarly, if f is epic,
then

ly:BF3x:Ay=fa]f=[2':ArTz: A fo' = fa] =ta=tpf

by lemmas 6.1 and 6.3, as well as viewing f as the substitution fz’ from y : B to 2’ : A
(This is similar to what is shown by Borceux [Bor94, p. 95]). But then [y : B F 3z :
A.y = fz] = tp since f is epic, so [y : B | 3z : A. y = fx] is the maximal subobject of
B. O

Corollary 6.13 (Streicher [Str04, p. 95])
For every epimorphism e : A — B, it holds that if e = mh for some monomorphism m,
then m is an isomorphism. In particular, if e is also monic, then e is an isomorphism.

Proof. Let e be given. We then have by validity of substitution that
[y:BF3x:A z=e(x)]oe=[2': ATz : A e(2)) =e(x)] =ta=tpoe,

and since e is epic, [y : BF 3z : A. z = e(x)] = tp. Hence the image of e is all of B, so
idp e is an image factorisation of e. But we showed earlier that for the epimorphism into
the image, the desired property holds. Since e is said morphism, e must also have said
property.

If furthermore e is monic, then e = eid 4, so e is an isomorphism. ]

Similar to f being epic if and only if it is internally surjective, we have that f is monic
precisely when it is internally injective.
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Proposition 6.14
Let f: A — B by any morphism in E. Then f is monic if and only if [ is internally
injective, that is, x : A,2' : A| fe = fa' bz =2a.

Proof. Note that = : A,2' : A | fx = fa' bz = 2 is equivalent to eq(fz, fa') = tx
implying eq(z,z’) for all z,2' : X — A by proposition 3.11, and eq(fz, fz') = t4 if and
only if fo = fa’ by proposition 5.2. Similarly eq(x,2’) = t4 precisely when x = /. Thus
we have a chain of equivalences which give the desired result. ]

Thus if f is internally both injective and surjective, then f is an isomorphism.

Furthermore, any elementary topos satisfies some additional properties. First, we
have function extensionality, which says that if two functions are equal at all points,
then they are equal. That is, we have that for any two morphisms f,g : A — B, the
formula (Vx : A. fz = gz) — f = g holds in all contexts. Similarly, the axiom of
propositional extensionality, which says that if two propositions are equivalent, then they
are equal, also holds. Finally we verify the axiom of unique choice, which states that any
total functional relation is the graph of some morphism, i.e. that if r : R — A x B,
classified by p : A x B — (Q, satisfies the formula Vz : A. 3ly : B. p(z,y), then there
exists a morphism f : A — B such that r = (id4, f). We define Jly : B. ¢(y) as

Jy: B.p(y) AVY : B. (e(y) Noy) =y =1).

Proposition 6.15
The following hold in all elementary topoi:

1. The aziom of function extensionality,
2. the axiom of propositional extensionality,
3. the axiom of unique choice.

Proof. We prove each in order.

1. We show that for any f,g : C — B?, we have that if for every ¢ : X — C we

have that ¢ €c Va.eq(ev(f x A);ev(g x A)), then ¢ €c eq(f;g). Then it follows
that for any context I" and terms I'  f : A — B, ' F g : A — B, we have
['|Ve: A fr=gx]<[['| f=g],s0 (Vr:A fr=gx)— f=gistrueinI.
Note that ¢ €¢ Va.eq(ev(f x A);ev(g x A)) if and only if ¢ x A €cxa eqev(f X
A);ev(gx A)). But then ev(fx A)(cx A) =ev(gx A)(cx A) for every ¢ : X — C, so
ev(fex A) =ev(ge x A). By the uniqueness of transposes the follows that fc = gc,
that is, ¢ €¢ eq(f;g). Thus Va.eq(ev(f x A);ev(g x A)) C eq(f;g). By the above
argument the follows that function extensionality is valid in every context I'.

2. For propositional extensionality, we need only show that for all ¢,¢ : A — Q and
z: X = A if (o= Y)x=tx and (¢ = p)z = tx, then px = Pz, so x €x eq(p; ).
But if (¢ = ¥)x = tx, then pxr < ¢z, and similarly we have ¥ < @x. Since
Hom(X, Q) is a poset, we have by antisymmetry that pz = ¢x.

Then we have in any context I" and terms I' F ¢ : Q, I' = ¢ : Q, that [I' | ¢ =
U, = ] < [I'| ¢ =], so the axiom (¢ = ) A (Y = ) — ¢ = 9 is valid in every
context I'.

3. We want to show that for any relation r : R — A x B which satisfies Va : A. Jly :
B. p(z,y), there is a morphism f : A — B such that r = (id4, f). Note that if
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r4 = wAT is an isomorphism, then the composition rBr;ll would be such a desired
morphism, and r = (ra,rg) = <idA,rBrAfl>rA, so r is isomorphic to the graph
of 7“37“;1. From earlier it suffices to show that r4 is internally both injective and
surjective. That is, [- Vp : R. 3la : A. a = rap] = t. But for any p in r4 we have
p(rp) = p(rap,rpp) = tr. Arguing internally, we have from the assumption that p
be functional that r4 is both injective, since if x = rap; = rapa, then p(z,rpp1)
and p(z,rpp2), so rgp1 = rEp2, hence p; = pa2, and surjective, since for each z : A
we have some y : B with p(z,y), so (z,y) is in . Hence 74 is an isomorphism, so r
is (isomorphic to) the graph of some morphism f: A — B.

Finally we then have that the axiom
Vp:Ax B — Q. (Ve: A Jy: B.p(x,y) - 3f : A— B.Va: A p(z, f )
is valid. n

Note that we we have in our internal language many axioms and rules similar to those of
ordinary mathematics. One crucial rule, however, is missing: the law of excluded middle,
or equivalently that of double negation elimination. That is because not every elementary
topos satisfies these laws; in fact, most do not. When these rules hold we say that the
topos is boolean; equivalently, a topos is boolean whenever the lattices of subobjects are
boolean. This holds in Set, since there subobjects are subsets, and every subset has a
complement. However, we will give a topos which is not boolean in section 8. Once we
have constructed such a topos, we have according to the soundness theorem that the law
of excluded middle is not provable; if that were the case, then no such example could exist.

Despite not necessarily having the law of excluded middle, we still have a lot of power
to formalise mathematics within the internal language. For example, we may construct
within the topos an initial object, it is given by the extension [ | L] [Str04, p. 97]. In
a similar manner, the coproduct of any two objects A and B may be found as certain
subobject of Q4 x QF.

In fact, we are even able to encode quotients in the usual way. That is, given an
internal equivalence relation p on an object A (that is, a morphism A x A — € which is
internally reflexive, symmetric, and transitive) we may form the object A/p given by the
extension [s : Q4 | 3z : A. s = {y : A | p(x,y)}]. The natural projection is then easily
defined by the axiom of unique choice, since every (generalised) element of A belongs
to exactly one equivalence class. Similarly, the universal property of quotients, that a
morphism f : A — B which respects p, in that the formula Vzy : A. [ p(x,y) = fx = fy
is true, factors through A/p uniquely, also follows from the axiom of unique choice and
function extensionality.

7 Natural numbers objects

Up until now any reasoning available has been, at least to some degree, finitistic; we cannot
with the tools provided in the last two sections construct an object which, internally, has
infinitely many terms. This is akin to how in set theory, we require the axiom of infinity
for such reasoning. For elementary topoi there is a corresponding axiom; the axiom that
there exists a natural numbers object, an object whose “elements” are natural numbers.

In this section we present the definition of natural numbers objects, and show how these
object support a form of recursion and the induction principle for subobjects. Finally we
make use of the induction principle to add in the internal language an inference rule for
induction, and show that this rule is sound.
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The idea of a natural numbers object is quite simple; it should be an object with a
global element “zero” and a successor morphism. Finally, it should support a form of
recursion, which here is given by a universal property.

Definition 7.1 (Natural Numbers Objects). Let £ denote an elementary topos. Then a
natural numbers object (abbreviated as NNO) in £ is an object N € £ with morphisms
z:1— N and s: N — N, such that for any other object X with morphisms z : 1 — X
and f : X — X there is a unique morphism u : N — X making the following diagram

commutes:
1 —2-5 N —=— N

N

X*>X

Remark. Note that the universal property gives rise to iteration, in the sense that for
object X with morphisms = : 1 — X and f : X — X, the unique morphism h from an
NNO N to X satisfies hn = f"z, where n : 1 — N denotes sz for n an external natural
number. This is easily proved by external induction.

Whilst the definition of NNOs only gives us unique morphisms by iteration, we can
actually use the cartesian closed structure to gain a form of iteration with parameters. In
fact, we can actually prove a stronger statement: if C has an NNO N, then every slice
category C/A has an NNO given by N x A =2 A.

Theorem 7.1
Suppose N is an NNO in E. Then for any object A of & it holds that N x A =2 A is an
NNO in E/A.

Proof. Take z4 = (2l4,ida): A—> Nx Aand sy =sx A: AxXx N — Ax N. We need to

show that for any A = X =5 X in & /A there exists a unique morphism h: A x N — X
such that the diagram below commutes:

AxN A5 Ax N

A I

S

\l/

Since N is an NNO, we have a unique morphism & : N — X4 such that the diagram

> N

Rl [

A s xA

commutes, which uniquely defines h by corollary 4.4. We then have by proposition 4.5
that

hza = h{z,id4) = ev(h x A)(z,id4) = ev(h z,id4) = ev("2'7,id4) = 2/ idy = 2'.
Similarly we have
hsa=h(sx A) =ev(h x A)(s x A) =ev(hs x A) =ev(s' x A) = 5.

Thus the chosen h makes the required diagram commute. Uniqueness follows from similar
computations. ]
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Iteration with parameters follows immediately from this result.

Corollary 7.2

Let N be an NNO in a cartesian closed category C. Then for any objects P and X with
a morphismb: P — X andi: P x X — X. Then there exists a unique morphism f from
P x N — X such that f(P,z!p)) =b and f(P x s) =i(np, f).

Proof. Notice that b : P — X in C gives rise to a global element (b,idp) : P — X x P
in C/P. Similarly, ¢ gives a morphism (iocx p,7p) : X x P — X x P in C/P, where
ox,p = (m,m): X x P — P x X. Since N x P is an NNO in C/P, we have a unique
morphism h : N x P — X x N such that hzp = (b,idp) and hsp = (iox p,mp)h in
C/P. Furthermore we have mp = mph in C since h is a morphism in C/P. The composite
f=mxhopn : PxN — X gives a morphism of the desired form, and computation shows
that the expected equations

f(P,zlp) =band f(P x s) =1i(np, f)

hold. Finally, uniqueness follows from uniqueness of h; any other f’ would yield A/ =
(f'on,p,idp) would yield a morphism from N x P to X x P with hA'zp = (b,idp) and
h,SP = <’L'O'X,p,71'p>h/, soh=~h. OJ

Beyond recursion with parameters, a useful property of the natural numbers is that we
can use them to prove statements by induction. The statement in set theory can be given
as saying that the only subset of the set of natural numbers containing zero and being
closed under successors is the whole set. This can equivalently be stated in our language
for subobjects as follows:

Theorem 7.3
Let U be a subobject of N a natural numbers object. Then if z € U and U C s*(U), then
U =T s the mazimal subobject.

Proof. Let u : U ~— A be a representative of U. From z € U there is some 2’ : 1 — U
such that z = uz’. Similarly there is an s’ : U — U such that su = us’. By the universal
property of NNOs there is then a morphism h : N — U for which hz = 2’ and hs = s'h.
But whz = uz’ = 2z and uhs = us’h = suh, so uh : N — N must be identity from the
universal property of natural numbers objects. Furthermore uhu = v = uly, and u is a
monomorphism, so hu = 1,. O

Furthermore, we can just as with recursion extend the statement to allow for parame-
ters.

Corollary 7.4
Let R be a subobject of A x N, where N is an NNO. If (A,z) € R and R C (A x s)*(R),
then R =T axn is the maximal subobject.

Proof. Notice that R is a subobject of the natural numbers object in £/A by theorem 7.1,
and that z4 = (A4,2) € R and R C (A x s)*(R) = s (R). Thus by the previous theorem
we have that R = T g« in £/A, and thus also in £. O

Finally we can prove that induction is valid in an elementary topos with a natural
numbers object.
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Theorem 7.5
In any topos £ with a natural numbers object N, the induction rule
F'kp:N—Q Lok pz Dn:N|®,onk ¢ (sn)
'|®FVn:N.on

s sound.

Proof. From the assumption we have [I' | ®] C [I" | ¢ 2] and
C,n:N|®]NC,n:N|en] C[T,n:N|p(sn).

Overloading notation somewhat, let ® and ¢ denote the classifying morphisms of [I" | @]
and [I',n : N | ¢n| respectively. Then let A := [I'] and define p := ®74 = ¢. Then we
have p(id, z!4) = t4 since ® < ¢(id 4, z!4) by substituting n for z. Similarly p < p(A x s)
since

P(A X 38)=(Pra = p)(AXs)=Pry = p(A X s),

and since ®ma A ¢ < (A x s), we may deduce Py = ¢ < Pmy = (A x s). So
p = Oy — ¢ classifies the maximal subobject, i.e. p = taxn, by the previous corollary.
Hence &1y < ¢, so ® < V¢, which is what we needed to prove. O

Once we have natural numbers and induction, most common constructions we use
throughout mathematics can be carried out in the internal language as well. For example,
integers can be constructed as a quotient of the object N x N as usual, rationals as
quotients of of pairs integers, etc.

8 Examples of elementary topoi

In this section we cover a few examples of elementary topoi. First we show how both Set
and FinSet, the category of finite sets and functions, form elementary topoi, with the
latter lacking a natural numbers object. Then we move on to the construction of presheaf
topoi, which are an important and useful class of topoi.

8.1 FinSet

We have already seen that Set is an elementary topos, since it was the motivating example
for both subobject classifiers and cartesian closedness. However, note that we never used
any appeals to infinite sets in these definitions. Thus one may wonder if finite sets are
enough, that is, if the category FinSet, of finite sets and functions, is also an elementary
topos. We show here that it is an elementary topos, and that it also, expectedly, has no
natural numbers object.

Proposition 8.1
FinSet is an elementary topos.

Proof. We first show that FinSet has all finite limits. This follows immediately from the
fact that Set has all finite limits, and as well as the fact that any singleton set is finite, the
product of two finite sets is finite, and any subset of a finite set is finite, so the equaliser
of two morphisms f,g: A — B between finite sets is as well.

For cartesian closure, it suffices to show that the set of functions between to finite sets
is also finite, since then we simply appeal to Set again. But this is a well-known fact.
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Finally, the same reasoning applies to the subobject classifier: in Set the subobject
classifier has exactly two elements, and so it is also a finite set. Then we apply the
reasoning motivating the definition of the subobject classifier in section 3, and we are

done. O

Since the set of natural numbers is not finite, we would expect FinSet not to have a
natural numbers object.

Proposition 8.2
FinSet does not have a Natural Numbers Object.

Proof. Suppose it did; that is, that (V,z,s) were some NNO in FinSet. Since s is a
monomorphism, it is injective in FinSet. But any injective function from a finite set to
itself is bijective, so s is an isomorphism. Let us denote the inverse by p, since p would
take a number to its predecessor. From the universal property of NNOs we then have a
morphism e : N — 2 given by the recursion data f : 1 — 2 the constant false function
and to = t!y the constant true function. Thus ez = f and es = tse = ty. But then
f =ez=espz =t,pz =t, which is a contradiction. ]

8.2 Presheaf topoi

In this section we investigate presheaf categories, that is, functor categories valued in Set,
and show that for C small, the category of presheaves on C is an elementary topos.

For the remainder of this section C will denote a (small) category, and [C°P, Set] will
denote the category of presheaves on C.

We start again by showing that the category [C°P,Set| has all finite limits, which
amounts to showing that it has a terminal object and pullbacks.

Proposition 8.3
The category [C°P, Set] has all pullbacks and a terminal object.

Proof. The terminal object is given by the presheaf 1 sending each object I of C to {x}.
Thus for any other presheaf A, we construct the natural transformation ! : A — 1 by
sending each I to !4, : A(I) — {*} in Set. Since at each component the corresponding
map exists uniquely, naturality follows.

For pullbacks, let F': A — C and G : B — C be natural transformations, with A, B, C
presheaves on C. The pullback P of F,G can then be constructed by taking pullbacks
component-wise on on objects; P(I) = A(I) X¢ () B(I). On morphisms f :J — I in C,
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we have the, the following diagram commutes by naturality of F, G and the definitions

Gy

where the dashed morphism P(f) exists by the universal property of the pullback P(.J).
Since the diagram commutes, it follows that the expected expected projections are natural
transformations. Uniqueness follows directly from the fact that each component has the
uniqueness condition for pullbacks. O

Note that products and equalisers are likewise given pointwise. That is, the product
of two presheaves A and B is given by the presheaf defined on objects as (A x B)(I) =
A(I) x B(I).

To show that the category of presheaves is cartesian-closed we will use the fact that
the exponential is right adjoint to the product, should it exist. Thus for any object I of
C we should have that Hom(Xx(I) x A, B) is isomorphic to Hom(x(I), B4) = BA(I) by
the yoneda lemma. But this completely determines the presheaf BA(I), that is, we may
define BA(I) = Hom(x(I) x A, B). Then all that remains is to show that this actually is
the exponential of A and B.

Proposition 8.4 (Streicher [Str04, p. 64, theorem 11.1])
Given presheaves A, B, their exponential is the presheaf B4 given by BA(I) = Hom(Xx(I) x
A, B) on objects and BA(f) = Hom(x(f) x A, B) on morphisms. The evaluation map
ev: BA x A — B is given by

evi(p,a) = ¢r(idr, a)

for ¢ € BA(I) and a € A(I). The transpose of a transformation 7 : X x A — B is given
by (T1(2))s(f,a) = 75(X(f)(x),a) with X a presheaf, x € X(I), f:J — I a morphism
in C, and a € A(J).

We can use the same trick to show that the presheaf category has a subobject classifier;
supposing a subobject classifier €2 exists in [C°P, Set], we would for each object I of C have
by the Yoneda lemma that Q(I) = [C°P, Set](x(]),2) = Sub(k(I)). Thus we may take
Q(I) = Sub(k([)) as the definition of 2. Then all that remains is to show that this
actually is the subobject classifier.

Proposition 8.5 ([Str04, p. 82, theorem 12.1])
The presheaf defined by Q(I) = Sub(Xk([)) is a subobject classifier.
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Using the same method as with sets, we may canonically represent subobjects of
presheaves as well:

Definition 8.1 (Subpresheaves). A subpresheaf U of a presheaf A over C is a presheaf
such that for each object ¢ of C, we have U(c) C A(c), and for each morphism f € C(c, d),
U(f) is the restriction of A(f) to the domain U(d); that is, U(f)(x) = A(f)(x) for all
xz e U(d).

Then a subpresheaf U of a representable functor C(—,c) for some object ¢ € C is
simply a set of morphisms of C into ¢, closed under precomposition; such sets are called
sieves [Str04, p. 82, theorem 21.1] of the object ¢. With this rephrasing of subobjects of
representables, we may explicitly compute the subobject classifier for certain presheaves.

For example, if C = [0 % 1] is the category with two objects 0 and 1, exactly one
non-identity morphism « : 0 — 1, then ©Q(0) = {0, {ido}}, since these are the only sieves
on 0, and Q(1) = {0, {a}, {a,id1}}. The global elements of 2 € [C°P, Set] are then

o f given by fo(x) =0 and f1(x) = (), corresponding to the minimal element of Q,
o u given by up(x) = {idp} and u; (%) = {a}, and lastly
o t given by to(x) = {idp} and t;(x) = {a,idy }.

Naturality for each of these is easy to check. Thus [C°P, Set](1, §2) has three elements. Fur-
thermore, we infer from this that [C°P, Set] is not boolean; if it were, then [C°P, Set](1, §2)
would be a boolean algebra, but it has three elements, where a finite boolean algebra must
have an even number of elements, since every element has a distinct complement.
Furthermore, every presheaf topos inherits a natural numbers object from Set:

Proposition 8.6

Let C be some small category, such that [C°P, Set] is a topos. Then C has a natural numbers
object given by N(c) =N for each object ¢, and which acts as identity on the morphisms
of C.

Proof. We must show that N satisfies the universal property, so let X be some presheaf
with natural transformations z : 1 — X and f : X — X. Then at each I € Ob(C), we
have a function hy : N(I) — X (I) by the universal property of N in Set. Thus we have a
candidate family of maps hy : N(I) — X (I), given uniquely by the N, to be the required
natural transformation. We need only show naturality: let f € C(J,I) be given. Then we
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have a diagram as below:

The top squares, bottom square, and diagonal square all commute. Similarly, the front and
back squares commute by the universal property of NNOs. Hence all squares commute,
so h is a natural transformation N — X. Uniqueness follows from uniqueness of each
morphism hy, since N is an NNO of Set. O

9 Conclusion

The goal of the thesis was to present the axioms of elementary topoi, and then to show
how to, for any elementary topos &, interpret a formal language into &£, with a sound
proof system built atop the language. With the internal language and proof system at
hand, we can show several properties about elementary topoi themselves, such as explicit
constructions of finite colimits and image factorisations. Furthermore, the internal lan-
guage provides a new possible semantics for higher-order intuitionistic logic, and so gives
another tool for studying independence properties of statements in such a logic.

We gave only a small sample of the elementary topoi which are interesting to consider.
Thus there are plenty more examples, such as the large and useful class of topoi of cat-
egories of shaves, which are covered in MacLane and Moerdijk [MM12]. As an example
of the nice logical properties of this class, we note that an equivalent to the notion of
Cohen forcing in set theory can be recovered using the language of sheaves [MM12, p. VI.
2]. Another interesting class of elementary topoi are so called realisability topoi [Van08|,
such as the effective topos, which verifies the statement that “all functions N — N are
computable” [Van08, p. 124, Proposition 3.1.6]. Further generalisation of the concept of
realisability may even be used to construct an elementary topos in which the real num-
bers are countable, in that there exists a surjection from the natural numbers object to a
construction of real numbers within the topos [And22].

Another direction that could have been explored is that of Kripke-Joyal semantics,
which allows for reasoning about the validity of formulas at generalised elements, instead
of just the internal notion of validity [McL92, ch. 18]. In a similar vein, we chose in this
thesis to present the internal language as a simple type theory, with a proof system built
atop it. Another option would have been to present the internal language as a dependent
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type theory, which would allow for lessening the distinction between proof and term, and
would have given a much richer language to reason within. However, that richness comes
at the cost of more complicated semantics.
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