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Abstract:

This thesis is about elliptic curve cryptography (ECC) which is a power-
ful form of public-key cryptography that utilizes the mathematical properties
of elliptic curves over finite fields. Finite fields, play a crucial role in ECC by
defining the arithmetic operations on curve points. The security of ECC lies in
the difficulty of solving the elliptic curve discrete logarithm problem (ECDLP),
which involves finding the scalar value that, when multiplied by a base point,
equals a public point. ECC finds applications in key exchanges, digital signa-
tures, and encryption, making it suitable for resource-constrained environments
like mobile devices and the Internet of Things. Its adoption in industry stan-
dards and implementation in modern cryptographic systems is due to its strong
security properties and efficient performance. In summary, ECC and finite fields
provide a robust framework for secure communication and cryptographic pro-
tocols, enabling efficient and secure solutions for diverse applications in today’s
digital landscape.
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1 Introduction

This essay will focus on some of the fundamental structures in cryptology and
we will go through some of the properties of elliptic curves and explain how
they are implemented in today’s field of cryptology. The first part of the paper
will be a short preliminary part going through some important fundamental
mathematical structures that will be used in the later chapters. After that, we
will discuss some fundamentals of cryptology to get a better understanding of
a few different methods that we then will use in the later chapters when we
talk about elliptic curves and how they are used. We will also talk about a few
things that we use cryptology for today such as the security of digital signatures
and digital cash.

Cryptology is the study of encrypting and securing data. The practice of
encrypting messages and hiding their meaning from unauthorized readers has
been used for millennia by governments, military organizations, individuals, and
other organizations to protect their secrets. Civilizations such as the Greeks and
the Romans were known to use cryptology, however, early ciphers and codes were
relatively simple compared to today’s standards and were easily deciphered. The
most famous example of this type of cipher is the Caesar cipher, named after
the Roman emperor Julius Caesar. The Caesar cipher was a substitution cipher
where each letter of the alphabet is replaced with another letter or symbol.
Julius Caesar used this cipher to send messages to his officers during wartime, so
even if the enemies got their hands on the messages they would not understand
what was communicated1. Since then the evolution of mathematics allowed for
the development of more sophisticated encryption methods, and the ones we
use today are so complex that they would not be usable without the help of
computers.

2 Preliminaries

This section introduces a few different mathematical terms so they easier can
be understood in the later chapters of this essay.

2.1 Fields

A field is a set of elements that fulfills the axioms named in definition 1. A
field can be both finite or infinite but the most used fields might be R or Q,
that is all real numbers and all rational numbers, but the ones we will mostly
be talking about are finite fields.

1Simon Singh (2002). The Code Book. p. 14
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Definition 1. A field is a set F containing at least two elements that satisfy
the following properties. The elements in F need to work with two operations
+ and · (called addition and multiplication) that are defined so that for each
pair of elements x, y ∈ F there are elements x + y ∈ F and x · y ∈ F . Also
there needs to be elements 0, 1 ∈ F for which the following axioms are true for
all elements x, y, z, (−x) ∈ F :

(i) x+ y = y + x (commutativity of addition)

(ii) (x+ y) + z = x+ (y + z) (associativity of addition)

(iii) x+ 0 = x (additive identity)

(iv) there exists an element (−x) such that x+ (−x) = 0 (additive inverses)

(v) x · y = y · x (commutativity of multiplication)

(vi) (x · y) · z = x · (y · z) (associativity of multiplication)

(vii) (x+ y) · z = x · z + y · z (distributive)

(viii) x · 1 = x (multiplicative identity)

(ix) if x ̸= 0 then there exists x−1 ∈ F such that x−1 · x = 1 (multiplicative
inverses)

2.2 The modular inverse

As seen above in the definition of fields, an element in a field needs to have an
inverse, except the element 0. Well since the fields that will be discussed in this
essay will mostly be finite fields that use modular arithmetic to stay within the
boundary of the finite field, we need to clarify what the modular inverse is.

Definition 2. Given two positive integers a and m, the modular inverse
of a mod m is b if a · b ≡ 1 mod m. in other words, the modular inverse of a
mod(m) is the multiplicative inverse of a modulo(m).

An example of how this is used is provided in example 1 in chapter 2.3 about
finite fields below.

4



2.3 Finite fields

Definition 3. A finite field is a field that consists of a finite number of elements.

A finite field also known as a Galois field is a finite number of elements that
satisfy the properties of being a field such as associativity, distributivity, and
the existence of additive and multiplicative inverses. The number of elements in
the field make up its size and is called the order of the field and the order of a
finite field is always a prime number or a power of a prime number2. GF (pn) is
the normal way to write the Galois field of order pn, where p is a prime number
and n is a positive integer. GF (p) is also the field of residue classes modulo p
which means the possible elements in the field will be 0, 1, ...., (p− 1). In Galois
Field (GF (p)), elements are represented as integers modulo p. So when we say
a = b in GF (p) it means the same as a ≡ b mod(p).

Theorem 1. If GF is a finite field, then GF most have pn number of elements,
where p is a prime number and n ∈ Z.

Proof. The proof of theorem 1 is provided in the attached source3.

Example 1. An example of a small finite field is {0, 1, 2, 3, 4, 5, 6} with
addition and multiplication modulo 7. It is easy to see in this case that every
operation regarding addition and multiplication involving the elements in the
field will stay within the boundaries of the given finite field. Thus it is easy to
see that the field fulfills the axioms i − viii. Then we also need to check if all
of the elements have a multiplicative inverse except 0 which does not have a
multiplicative inverse.

1 · 1 = 1 ≡ 1 mod(7)

2 · 4 = 8 ≡ 1 mod(7)

3 · 5 = 15 ≡ 1 mod(7)

4 · 2 = 8 ≡ 1 mod(7)

5 · 3 = 15 ≡ 1 mod(7)

6 · 6 = 36 ≡ 1 mod(7)

2Birkhoff, G. and Mac Lane(1996), S. A Survey of Modern Algebra, 5th ed. New York:
Macmillan, p. 413

3John A. Beachy William D. Blair (2006), Third Edition Abstract Algebra, p.295
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Because {0, 1, 2, 3, 4, 5, 6} fulfills every axiom that is needed to be a field and
have a finite element of numbers we can now surely state that this is a finite
field.

So is every finite field that easy to ”find”? We know that a finite field with 4
elements should be possible since 4 = 22 so if we use the same example as above,
adjusting for the different number of elements we get {0, 1, 2, 3} with addition
and multiplication modulo 4. When checking the inverses for the elements we
find that 2 has no inverse, so this can not be a field. There is another way to
build the fields if you have a number of elements that is a power of a prime.

Example 2. One field we can use that have 4 elements is {0, 1, α, α + 1}
where we add and multiply coefficients modulo 2 and α2 = α+ 1.

In this case, we can see that the addition of the objects will stay in the
boundaries of the given field since the coefficients are regulated by modulo 2,
ex (α+ 1) + α = 2α+ 1 = 1.

When multiplication is used between the objects there will be times were
you need to simplify by using α2 = α + 1 to stay within the boundaries of the
field, ex α · (α+ 1) = α2 + α = 2α+ 1 = 1.

All the elements in the field also have inverses(except 0)

1 · 1 = 1

α · (α+ 1) = α2 + α = 2α+ 1 = 1

(α+ 1) · α = α2 + α = 2α+ 1 = 1

therefore {0, 1, α, α+ 1} is a finite field under the given circumstances.

In cryptography, finite fields are used in the design of algorithms for secure
communication between computers. This is because computers can not handle
a nonfinite quantity very well. By using a finite field it is possible to ensure that
information is handled with the preciseness that is needed while working with
cryptology. This is also one of the reasons that makes society value big prime
numbers as much as we do, since the bigger prime numbers the finite field uses
the more elements it contains. We will talk more about why a lot of elements
in a set is important in chapter 3.2.2 and 4.3.1.
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2.4 The Fast Powering Algorithm

The fast powering algorithm is used to calculate a large powers of a number g
modulo N , where N is a significantly large number. We will use this algorithm
when we want to calculate the computation time to crack a cryptosystem in
chapter 4.3.1.

Theorem 2. Let g,A and N be constants, then the maximum amount of mul-
tiplications needed to calculate gA ≡ mod N will be 2 log2 A when using the fast
powering algorithm.

Proof. So If we want to calculate a number gA ≡ mod N the conventional way
would be to multiply g by itself A amount of times. If A is a relatively small
number gA is easy to calculate this way but if A is a really big number the
fast powering algorithm will compute gA way faster. the way the fast powering
algorithm works is by splitting A into a binary expansion, so

A = A0 +A1 · 21 +A2 · 22 +A3 · 23 + .....+Ar · 2r

Where A0, A1, ...., Ar−1 ∈ {0, 1} and Ar = 1. After this, the algorithm

calculates all powers of g2
i

mod N when 0 ≤ i ≤ r, we will call each value of
this ai as shown below.

a0 ≡ g (mod N)

a1 ≡ a20 ≡ g2 (mod N)

a2 ≡ a21 ≡ g2
2

(mod N)

a3 ≡ a22 ≡ g2
3

(mod N)

.....

ar ≡ a2r−1 ≡ g2
r

(mod N)

Since every term of a is the square of the previous one we get that there is
only needed one multiplication for each term, meaning a total of r multiplica-
tions to calculate every term of a from a0 to ar. The last step of the algorithm
is to calculate gA, and that is done the following way:
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gA = gA0+A1·21+A2·22+A3·23+.....+Ar·2r =

= gA0 · (g2)A1 · (g22)A2 · (g23)A3 · ..... · (g2r )Ar =

= aA0
0 · aA1

1 · aA2
2 · aA3

3 · ..... · aAr
r (mod N)

And since every value of ai has been calculated and the values of Ai can only
be 0 or 1 the maximum amount of multiplications needed to calculate gA will
be when every possible value of Ai = 1. This scenario will bring another total
of r multiplications, meaning the maximum amount of multiplications needed
to calculate gA ≡ mod N to become 2r. Another way to write how many
multiplications at max is needed is 2 log2 A since A ≥ 2r

3 Some fundamentals of cryptology

This chapter will discuss some of the more basic concepts that modern cryptol-
ogy is built upon. This is to make sure that the understanding of the concepts
that elliptic curve cryptology works with is in place before we start discussing
them.

3.1 Hash functions

A hash function is a function that takes an input (ex a data file or password)
and returns a fixed-size string of characters. For a hash function to be useful
it should make sure that the same input will always produce the same output,
but even a small change to the input will produce a very different output. Hash
functions are used for many things such as data integrity and digital signatures,
this will be discussed more in chapter 4.5.

Definition 4. Let d be a arbitrarily long bit string so that d = {0, 1}w
and w ∈ Z. A hash function takes d as an input and transforms it to a hash
value that has a length of q, q being a positive integer. So we can write the
transformation as follows

h : {0, 1}w → {0, 1}q.

Here {0, 1}w consists of all 0− 1 strings with only finitely many ones e.g. all
the possible bit strings d can have. While {0, 1}q consists of all possible hash
values the hash function can return. A specific hash function will always return
hash values of the same length.
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To better understand what makes a hash function good, here are some qual-
ities that a good hash function should have.

1: If you hash a document the hash value of the document always has to be
the same.

2: The calculation of the hash value needs to be fast.

3: The hash values that are possible for a hash function should be evenly
distributed for all possible inputs, and even a small change in the input should
change the hash value significantly.

4: The original document should not be possible to recreate from the hash
value itself.

5: It should be very hard to find inputs to the hash function that gives the
same hash value.

A hash function works by taking a binary string (that is the input/document)
and transforming it into its hash value. The function can do this in many
different ways but let us make a few examples of how it can be done.

Example 3. We shall describe two different hash functions called Hash1

and Hash2 that will hash a Document D. The two hash functions are not
functions that are in use today. They are two that are made up just for us to
get a better understanding of how a hash function could be able to work. Let’s
say that the document we want to hash is the following

D = 1001101100100111.

The way Hash1 calculates its hash value is rather simple and very fast,
Hash1 will always take the two last numbers of the bit string of the document
and that will be its hash value. So let’s start by calculating the hash value of
D for the hash functions Hash1. So, in this case, we get that

Hash1(D) = 11

So Hash1 transforms a bit string from its original length to a bit string of
the length of two as shown bellow

Hash1 : {0, 1}w → {0, 1}2.
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So let’s now take a look at how Hash2 calculates its hash value. The way
Hash2 works is that it first split the bit string of the document into sections of
4 bits so that

D = D1|D2|D3|D4

Then Hash2 inverts every part of the document’s bit string with an even
index (in this case D2 and D4). Then it combines the parts of the documents
in pairs, so D1 and D2 while D3 and D4 are combined and each pair will
create a new bit string with a length of four. The way they are combined is
by an operation called XOR, the way the XOR operation works is by taking
two individual bits, and if the bits are the same the XOR operation makes the
combined value a zero otherwise it will become one. When the XOR operation
adds bit strings the bits will be added separately with the bit in the other bit
string with the same index in the other bit string. So the way Hash2 creates
its hash value is as follows

D = 1001101100100111 → 1001 1011 0010 0111 →

→ 1001 0100 0010 1000 →

→ 1101 1010.

So after this transformation, we also get the hash value from the second hash
function Hash2 for the document D showing that

Hash2(D) = 11011010

So Hash2 transforms a bit string from its original length to a bit string of
the length of eight as shown bellow

Hash2 : {0, 1}w → {0, 1}8.

But how does the Hash2 function handle documents that are not of the
same length as D and still get a hash value that has the length of eight bits?
The way Hash2 solves this problem is to add zeros to the document if needed
so that it has a length of 8 · 2c and c ∈ N, it will always add as little amount
of zeros as possible to meet the criteria. This means the amount of four-bit
strings that the document is divided into will always be a power of two, the
hash function Hash2 can then add all pairs of the four-bit strings until there
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are only two four-bit strings left. Bringing us a hash value that has a length of
eight bits.

So let’s take a look at Hash1 and Hash2 to see what good and not good
qualities they have. We have already named 5 qualities that a good hash func-
tion should have. The first is that a hash function always creates the same hash
value for a given document. This both Hash1 and Hash2 make sure of, and if
this is not met the hash function can not be used for much. The second property
that is valued is how quickly the function calculates its hash value. Since Hash1

requires way fewer steps to calculate its hash value than Hash2 it will be faster
than Hash2, but even if Hash1 is faster, Hash2 is still considered to be a fast
function as well.

If we look at the third wanted quality for a hash function that is for their hash
values to be evenly distributed and that small changes should drastically change
the output. We can see that Hash1 will have a perfectly even distribution of its
hash values as long as the possible documents will be evenly distributed in their
last two digits, and we assume that they are. Hash2 should also have pretty
evenly distributed hash values, but since the document will be given zeros in
some cases it will affect its value so it is not as perfectly distributed but it will
have a good spread of its hash values overall. The second part of criteria three
is if the hash value changes a lot with even small changes in the input. Hash1 is
bad at this, since if not the last two numbers in the document change the hash
value will not change, and since Hash1 has a hash value that only is two bits
long it can not change that much anyway. This Hash2 does better than Hash1

since every bit of the input will have an impact on the hash value of the function,
although if only one bit is changed in the input a maximum of one bit is changed
in the hash value for Hash2, which is not a drastic change. The fourth quality
is that one shall not be able to recreate the document from its hash value. This
is true for both hash functions Hash1 and Hash2, as long as the document is
longer than the hash value for the function, and most documents are way bigger
than eight bits. The last and final quality we are looking for is that it shall be
very hard to find inputs that create the same hash value. In Hash1s case this is
not hard, it only has four possible hash values so, therefore, it will not be long
for someone to find two inputs that have the same hash value. Hash2 does this
way better than Hash1. Hash2 has 256 different hash values making it harder
to find two inputs that have the same hash value than if it would only have
four different hash values. Although in chapter 3.2 about collisions there will
be made clear that even 256 different hash values are way less than is needed
to make a hash function meet this criterion.

Now after comparing both Hash1 and Hash2 with the wanted qualities of
a good hash function, we can say that both are considered too weak to use in
today’s society. But with that said Hash2 has more of the wanted qualities
than Hash1 since it is more complex and has a way bigger set of possible hash
values.
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A way a hash function can be used is for password storage. The way, for
example, a website can store the hash value of your password instead of storing
the password itself. So when someone logs in the hash value of the entered
password is compared to the stored hash value and if they match the user gets
access to the information protected. This is used so if there is a data breach
your password does not leak, only the hash value of it leaks. This is one of the
reasons that a hash function is designed to be a one-way operational function
meaning that one should not be able to recreate the original document from the
hash value, the forth quality for a good hash function.

In some cases, a hash function can be ”solved” meaning people learn how to
generate a specific hash value at will. One example of a hash function with this
problem is MD5. Because of this MD5 is not recommended to use as a hashing
algorithm anymore since it is considered to be broken from a cryptographic point
of view4, which is why newer and more robust hash functions like SHA-256 are
used in many applications and bitcoin5.

3.2 Collisions

A collision algorithm is a method of finding matching objects in a set amount
of objects. In other words, given a noninjective function f , a collision algorithm
is designed to find two distinct inputs x and y such that f(x) = f(y). In this
chapter, the focus will be on the probability of a collision happening and not
on the algorithms that are used to find collisions. An example of an algorithm
is explained in theorem 8 in chapter 4.3.1 and how a collision can crack a cryp-
tosystem. But in this chapter, we will focus on how the size of a set impacts
the probability of collisions happening and how to calculate the probability of
a collision happening.

The birthday paradox can show how easy it can be to find a collision if the
set is not big enough. It also shows how much easier it is to find two persons
with the same birthday than a person with a specific birthday.

3.2.1 Birthday paradox

The Birthday paradox is an example of how easy it is for collisions to happen
in a data set if there are not enough given outcomes. The Paradox is based on
the probability that in a group of n people, there are at least two of them that

4Chad R Dougherty (2008). MD5 vulnerable to collision attacks. Carnegie Mellon Univer-
sity Software Engineering Institute.

5Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman (2014). An Introduction to Mathemat-
ical Cryptography Second Edition. p. 489
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share their birthday. The number of people needed in the group so that there
is a bigger chance that two people share a birthday than not is only 23 people.
We begin by showing this.

Example 4. If we have a random group of 23 people what are the odds
that two people share a birthday?

We start by naming the variables:

Let’s call the event of at least two people sharing a birthday A

and

call the event of everyone having different birthdays B

The easiest way to solve this problem is to first calculate the probability that
everyone has different birthdays in the group and then use that to calculate the
probability that at least two people share their birthdays. Because there are
only two possible outcomes in this scenario we get that

P (A) + P (B) = 1

must be true where

P (A) = the probability that two people share their birthday

and

P (B) = the probability that everyone has different birthdays.

The way we find P (B) is that we take in one person at a time in the group
until we have 23 people, We will assume that the people’s birthdays are jointly
independent random variables, meaning that we have no twins and so on in this
example. So when taking in the first person in the group it does not matter
which birthday the person has since there is no one that the first person can
share a birthday with. The second person can now only have 364 of the possible
birthdays since otherwise there would be two people sharing a birthday, the
third person can then have 363 different possible birthdays, and so on. When
using this way to solve the problem we get that the i:th person has a chance of

sharing a birthday with someone else to be 365−(i−1)
365 , we do also assume that no

person in this example is born on the 29:th of February(the extra day on a leap
year). We can multiply all the probabilities of every person entering the group
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sharing a birthday with someone already in the group to find the probability
that everyone has different birthdays, we can do this since the people’s birthdays
are jointly independent random variables.

We use this to calculate P (B):

P (B) =
∏23

i=1
365−(i−1)

365 = 365
365 · 364

365 · 363
365 ....

343
365 = 0, 4927 = 49, 27%

then we can use that to calculate P(A):

P (A) + P (B) = 1 ⇔ P (A) = 1− P (B) ⇔ P (A) = 50, 73%

So as we can see there is a slightly higher chance that two people share a
birthday than not if we have a group of 23 randomly selected people.

To get a better understanding of how often people share a birthday, figure
1 will show how likely it is that at least two persons share their birthday in
a randomly selected group of a set amount of people. The graph in figure 1

uses the same principle as we use in example 1 (
∏n

i=1
365−(i−1)

365 ) showing the
probability that two people have the same birthday in a group if the group is
between 1 and 100 people. Figure 1 did take the possible groups containing 1
to 100 people then made a curve going through all the points that the different
groups gave, this was done since a curve looks more esthetic than 100 different
points.

As we can see in figure 1 it only shows the probabilities that someone shares
a birthday of groups of people up to 100, but as we can see in the diagram, by
then it is almost 100% chance that two people share a birthday and that will
only continue after that.

3.2.2 A Collision Theorem

In this chapter, we will go through a more general way of collisions happening
that instead of having a set of 365 elements as shown in the birthday paradox
we will work with a set of N numbers. From this set we will create two different
sets, the sets will be called n and n−1, so N = n+ n−1.

If the numbers in m are selected from the original set of numbers N , where
every number is selected individually and the same number can be selected more
than once. Then the following theorem will be true:

14
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Figure 1: A diagram showing the chance that 2 persons share their birthday

Theorem 3. If m objects are selected individually from a set of N elements,
where N can be divided into two subsets, n and n−1 so N = n+ n−1. Then the
probability of selecting an element from n will be:

P(at least one element from n being picked) = 1− (1− n
N )m

Proof. To prove this first we note that since there are two subsets of N that:

P(at least one element from n being picked)= 1− P (All m elements picked
being in subset n−1)

Since the probability that one element from the set n−1 is picked in one
operation is N−n

N and since the probability of an element being picked does not
change by the earlier operations, meaning every element selected is an indepen-
dent random operation. We get that the probability of picking elements from
the subset n−1 m-times in a row to be

∏m
i=1

N−n
N . We can substitute this into

the earlier statement and get:

P(one element from n being picked)= 1−
∏m

i=1
N−n
N =

We can rewrite
∏m

i=1
N−n
N =

∏m
i=1(

N
N − n

N ) = (1− n
N )m

After knowing this we get that

P(at least one element from n being picked) = 1− (1− n
N )m
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This concept is one of the easiest ways of approximating how hard it can be
to find collisions in a set of elements, and we can show how much the size of the
set N affects how hard it is to find a collision.

Example 5. Let’s show how hard it is to find a collision when you have a
set N1 that includes 100 objects and N2 that have 100 000 objects.

We note that since there are only two different outcomes in this example
(either there is a collision or there is not). We can note that the probability of
finding a collision is the same as the probability of choosing an element from n
in theorem 3.

We start by picking objects from the N1 and then from N2 and show how
hard it is to find collisions depending on the size of the set.

N1 picking 10 numbers:

P(a collision picking 10 objects from N1) = 1− (1− 10
N1

)10 ≈ 65%

N1 picking 50 numbers:

P(a collision picking 50 objects from N1) = 1− (1− 50
N1

)50 ≈ 100%

Now we show the probability of a collision when the set is much bigger, as it is
in N2.

N2 picking 10 numbers:

P(a collision picking 10 objects from N2) = 1− (1− 10
N2

)10 ≈ 0, 1%

N2 picking 50 numbers:

P(a collision picking 50 objects from N2) = 1− (1− 50
N2

)50 ≈ 2, 47%

As we can see in example 2 the size of the set N matters a lot if you want
to make it hard to find collisions in a set. To make a cryptosystem secure there
needs to be extremely hard to find collisions, otherwise, intruders can crack the
system that is used, and that makes it insecure. More about how that works in
chapter 4.3.1.
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3.3 Ciphers

A cipher is a method of encrypting a message to make sure that only the ones
who intended to get the message can read it. The most common way of en-
crypting a message like this is to switch around letters, numbers, and symbols
with other characters until the message becomes unreadable to most people and
machines. What a cipher uses to transform the messages is called a key, and a
key is for both the decryption and encryption of the messages. Depending on
how the cipher is structured, there can be either one key that both encrypts
and decrypts the cipher or there can be two keys where one encrypts and the
other decrypts, this is the difference between symmetric- and asymmetric ci-
phers. The security of a cipher depends on the secrecy of the encryption key,
the decryption key, as well as the complexity of the cipher itself.

Definition 5. A Cipher is pair of functions, one encryption function(E) and
one decryption function (D). This function is used to transform an input (m),
where m ∈ M and M is a set of all possible inputs, into a cipher text (c), where
c ∈ C and C is a set of all possible cipher texts. Both E and D use a key (k)
chosen from a set K that is the set of all possible keys for the transformations,
the key has two different parts one encryption part (ke) and one decryption part
(kd). The way the transformations work is as follows:

(ke, kd) ∈ K

E : ke ×M −→ C

D : kd × C −→ M

In definition 5 ke ×M −→ C means that the encryption key is used to trans-
form the input into the ciphertext and kd ×C −→ M means that the decryption
key is used to transform the ciphertext back to the original input. This means
that the following needs to be true for a cipher to work as intended

D(kd, E(ke,m)) = m

meaning that someone can both transform the message to make it unreadable
and then back to make it readable again.
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3.3.1 Symmetric ciphers

Definition 6. A symmetric cipher is a cipher where ke = kd

Symmetric ciphers use the same key for both encryption and decryption of
data, therefore making the keys symmetric hence the name symmetric ciphers.
There are different sorts of symmetric ciphers which transforms the data in
different ways. The first one is stream ciphers and the second is block ciphers6.
Stream ciphers use an algorithm that encrypts data one byte(which is 8 bits)
at a time to make the cipher text out of the original message. Block ciphers
instead of encrypting the data byte by byte the plain text is divided into blocks
of a fixed size and then transformed block by block to create the cipher text, it
usually uses blocks with 64 or 128 bits in size.

One of the main advantages of block ciphers over stream ciphers is their
security. They are generally considered to be more secure than stream ciphers
as they are less vulnerable to certain attacks. But the things that make block
ciphers more secure than stream ciphers are also what makes them slower to
operate. Therefore stream ciphers are used more widely than block ciphers
when data needs to be encrypted in real-time when the speed of the cipher is
valued higher. Some applications that typically would fit this genre are wireless
communication or video streaming. Block ciphers are instead used more in cases
like digital signatures when the speed is not as important but security is a big
focus and other applications where data is not transferred in real-time.

Example 6. Let’s show what a simple symmetric cipher can look like. The
operation we are gonna use to combine the input and the key will be the XOR
operation explained in example 3, we will denote the XOR operation as ⊗ in
this example. Of course, the key for encrypting and decrypting will be the same
since we are working with a symmetric cipher, so we will just call the used key
k. So let’s name the input that we want to encrypt

m = 1011

and the key we will be using

k = 0010.

So if we first are going to encrypt the input that we call m it would be done
as followed

6Pelzl & Paar (2010). Understanding Cryptography. Berlin: Springer-Verlag. p. 30
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E(k,m) = k ⊗m = 0010⊗ 1011 = 1001

So the encrypted message is now 1001. If we now decrypt 1001 we should
have the start input that is 1011, so let’s see if that is the case.

D(k,E(k,m)) = k ⊗ E(k,m) = 0010⊗ 1001 = 1011

Now we have both encrypted and decrypted the original input and we can
see that it is the same before and after the transformations e.g. the cipher works
as intended and since the key is the same it is a symmetric cipher.

3.3.2 Asymmetric ciphers

Definition 7. An asymmetric cipher is a cipher where ke and kd may be
different.

Asymmetric ciphers use different keys for encryption and decryption of data,
therefore making the keys asymmetric hence the name asymmetric cipher. The
two keys in an asymmetric cipher are called a private and a public key. The
private key is used to decrypt data while the public key is used to encrypt the
message. The different keys need to be handled differently, the public key is fine
to share with anyone without compromising the security of the cipher while the
private key needs to stay secret for the line of communication between the two
parts to be secure7.

As demonstrated in Figure 2 we can see that no messages can be compro-
mised by the public key since the public key just is used for sending messages
that only Alice can decrypt, but if someone gets access to Alice’s private key
that person will have the possibility to get all of her private messages. Many ev-
eryday applications make use of asymmetric ciphers to secure their content such
as email communication, online transactions, and securing digital signatures.

Example 7. Let’s show what a simple asymmetric cipher can look like. We
will show how an asymmetric cipher looks like using an RSA cryptosystem, we
will have a private key and a public key that looks as followed,

the public key

7Stallings, William (1990). Cryptography and Network Security: Principles and Prac-
tice.Prentice Hall. p. 165
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Figure 2: A typical Asymmetric cipher

kpub = (ppub, N)

and the private key

kpriv = (ppriv, N).

The keys will be used to encrypt E a message m into a cipher text c and
decrypt D the cipher text back to the original message, as shown below

E : mppubmod(N) ≡ c.

D : cpprivmod(N) ≡ m.

It is important to know that kpriv and kpub have been made together to make
sure that they work as intended and one can not just combine any numbers and
expect them to work as intended. But since we are not going to use RSA in the
later stages of this essay we will just use an example of this to show what an
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asymmetric cipher can look like and not the process that is used to make the
keys.

Let say that we have a message m = 2, a public key kpub = (5, 14) and a
private key kpriv = (11, 14). Then we start by encrypting the message

E : 25mod(14) ≡ 4

so we get that the cipher text c = 4 in this case. Then if we want to decrypt
it to get the original message we will need to use the private key. Then we get

D : 411mod(14) ≡ 2.

So as we can see we get the original message again after encrypting and
decrypting it as intended, hence the procedure works as intended.

4 Elliptic curves

An elliptic curve is related to an equation of the form Y 2 = X3+AX+B where
A and B are constants. What makes elliptic curves so widely used in the field
of cryptology is that they possess remarkable properties in that they allow for
the combination of two points to produce a third point and that the curve is a
reflection of itself in the x-axis. The procedure that these qualities can be used
for is called ”adding” or ”points addition”, although the procedure is not exactly
like regular addition between constants it shares some vital properties that make
it viable to use in cryptology. The values that point addition shares with regular
addition are that they are both commutative and associative and there is an
identity. Initially, we will focus on elliptic curves over the field R to establish
the geometrical framework of point addition. Afterward, we will transition to
elliptic curves over finite fields, which are used in modern cryptography.

Definition 8. An elliptic curve E over R is a set of real solutions to the
equation

E : Y 2 = X3 +AX +B,

21



Figure 3: Example of two elliptic curves

where A and B are constants satisfying 4A3 + 27B2 ̸= 0, also a point at
infinity O needs to be included in the set.

Theorem 4. Let l be a line that intersects an elliptic curve E in two points.
Then l intersects E exactly three times as long as the two points are not reflec-
tions of each other in the x-axis, counting multiplicity.

Proof. To prove this first we take a look at a general line and elliptic curve,
which brings us

E : y2 = x3 + ax+ b

l : cy = dx+ g

where a, b, c, d, g are constants ∈ R while x and y are the variables in the
functions. If we set d ̸= 0 we get that

x = cy−g
d .

We can now use the expression for x in the elliptic curve so that we get a
one variable function of y when c ̸= 0. If we do this we get

y2 = x3 + ax+ b ⇔ y2 − x3 − ax− b = 0 ⇔

⇔ y2 − ( cy−g
d )3 − a( cy−g

d )− b = 0.
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This is a polynomial with a leading factor of y3. We already have two roots
of y being y1 and y2 from the known points where the line l intersects with E.
Given that we have two existing roots, the equation will fully split, and since the
leading coefficient is y3, we will obtain a third root, denoted as y3 that brings a
third intersection point.

There are two cases where the calculation above does not apply, those are
when d = 0 and when c = 0. So we will take a look at them.

When c = 0 we get that x = −g
d , since −g

d is a constant we know that the two
points have the same x coordinate, in that case, the two points that intersect
the line and the elliptic curve most be reflections of each other in the x-axis
since an elliptic curve is a function that is a reflection of itself in the x-axis.

When d = 0 the function of the line will be y = g
c , if we then use the value

of y in the function for the elliptic curve we get

( gc )
2 − x3 − ax− b = 0.

This is a polynomial with a leading factor of x3, and this brings a third
intersection point in the same way that the polynomial with a leading factor of
y3 did earlier in this proof.

Theorem 4 shows that point adding is possible but that does not necessarily
mean that the same is true for point dubbing. We need another theorem for
that.

Theorem 5. A tangent line l in a point on an elliptic curve will always have a
second intersection point as long as the tangent line is not parallel to the y-axis.

Proof. The proof is almost the same as the one in theorem 4, except instead
of knowing two points on the curve we know one point on the curve that is a
double root to the equation that the function of the line and the elliptic curve
brings.

Now to define the procedure that is points addition.

Definition 9. Let P and Q be two points on an elliptic curve E over R.
Then P +Q on E is as follows.
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(a) if P ̸= Q

To add P and Q in this case we draw a line through the two points and find
where it intersects the curve again as proven in theorem 4. The intersection
point (the point −R in Figure 4) is then reflected across the x-axis to find the
point R and R = P +Q.

(b) if P = Q

This uses a method that looks similar to the one in (a) but instead of drawing
a line between two points the line that is used will be the tangent line in the
point P . This line will then have a second intersection point as theorem 5
suggests that is not equal to P and Q, this second intersection point will then
be reflected across the x-axis to find the point that is equal to P +Q or P + P
in this case. This is called point doubling and an example of this is provided in
figure 5.

Example 8. Let’s calculate an example of points adding.

Let’s work with the elliptic curve

E : y2 = x3 − x+ 1

and we want to add the points

P = (1, 1) and Q = (0, 1).

To calculate what P + Q is we need to find the line that intersects both
points, in this case, it is the line y = 1. Then we want to find the intersection
points between y = 1 and E, therefore we substitute y = 1 into E and get:

1 = x3 − x+ 1 ⇔ x3 − x = 0 ⇔ x(x2 − 1) = 0

we know that there are three solutions for x, and by using the points P and
Q we can get that x1 = 1 and x2 = 0. We can then see that x3 = −1

Since the line y = 1 has its third intersection point of the elliptic curve E in
x = −1, the intersection point −R = (−1, 1). Then to get what P+Q is we need
to reflect the point −R in the x− axis, which gives us the point R = (−1,−1)
where P +Q = R. This example is visualized in Figure 4.

24



Figure 4: Visualising the addition between points P and Q

4.0.1 The point at infinity

So as we can see looking at Figure 4 if we would like to add the points R and
−R there will be no third intersection point. This is true since R and −R are
reflections of each other in the x-axis, so the line that intersects both of them
will be parallel to the y − axis and all lines parallel to the y − axis will never
intersect with an elliptic curve more than twice. This is a problem since points
adding is based on there being a third intersection point.

The problem is solved by introducing an extra point O that exists ”at infin-
ity” hence the name of it, the point at infinity. The point O therefore does not
exist in the regular xy − plane but we will use it like the point exist at the end
of every vertical line while adding points, so −R+R = O.

Adding a regular point with the point at infinity will always be equal to itself
so R+O = R, hence the line that intersects R and O will be a vertical line and
the third intersection point will be the point −R (the first two points being R
and O). When reflecting −R in the x − axis we get the point R proving that
R+O = R for all points R that are on a given elliptic curve.
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Figure 5: Visualising of doubling the point S

4.1 The properties of Elliptic curves

Now that the basic concepts of point addition have been explained we will dive
into the more general qualities of the procedure that can make it useful.

Theorem 6. Let P ,Q,R ∈ E(R) be points over an elliptic curve over R, and
let O be the point at infinity. Then adding points over an elliptic curve E will
have the following four qualities.

(i) P +O = O + P = P

(ii) P + (−P ) = O

(iii) P +Q = Q+ P

(iv) (P +Q) +R = P + (Q+R)

Proof. The laws (i) and (ii) have been clarified in chapter 4.0.1 and in (iii)
we can see is true since the line that someone draws thru P and Q will be the
same line that is drawn through Q and P . But the associative law (iv) is more
complex to prove and will not be provided in this essay 8.

8 J.H. Silverman, J. Tate (1993). Rational Points on Elliptic Curves. Undergraduate Texts
in Mathematics. p. 18-20

26



Now let’s generalize how to calculate adding points algebraically. This is
to make it very clear how it is calculated in every possible scenario for all the
different points that can be on an elliptic curve that is used for adding points.

Theorem 7. This is the Elliptic Curve Addition Algorithm:

First let E be an elliptic curve where E : y2 = x3 + Ax + B and the points
we will be adding is P and Q where P , Q ∈ E.

(a) If P = O then P +Q = Q and if Q = O then P +Q = P

(b) If P = (x1, y1), Q = (x2, y2) while x1 = x2 and y1 = −y2 then P+Q = O

(c) in all other cases P +Q = (x3, y3),

where x3 = ξ2 − x1 − x2 and y3 = ξ(x1 − x3)− y1

and ξ is defined as followed

ξ =

{
y2−y1

x2−x1
, if P ̸= Q

3x2
1+A
2y1

, if P = Q

Proof. (a) and (b) has been made clear in the chapter 4.0.1, while (c) is yet to
be proven. In (c) ξ is defined to be the slope of the line that intersects both
point P and Q if P ̸= Q, or if P = Q the tangent line thru P and Q. Therefore
the line that goes thru both points will always be the line:

y = ξx+ γ where γ = y1 − ξx1.

If we substitute the equation of the line y = ξx + γ in the equation of the
elliptic curve we get:

(ξx+ γ)2 = x3 +Ax+B ⇔

⇔ x3 − ξ2x2 + (A− 2ξγ)x+B − γ2 = 0

Since x1 and x2 are known it is easy to find the x−coordinate x3 of the
remaining point on the line satisfying the equation
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x3 − ξ2x2 + (A− 2ξγ)x+B − γ2 = (x− x1)(x− x2)(x− x3) =
x3 + x2(−x1 − x2 − x3) + x(x1x2 + x1x3 + x2x3) + x1x2x3

If we look at the x2 terms we see that x3 satisfies

⇔ −ξ2 = −x1 − x2 − x3 ⇔

⇔ x3 = ξ2 − x1 − x2

Now the x coordinate (x3) is proven to follow the rules of theorem 7. The
y coordinate (y3) is given by reflecting the third intersection point of the line
y = ξx + γ in E across the x − axis. The y−coordinate yint of the third
intersection point then satisfies

yint = ξx3 + γ = ξx3 + y1 − ξx1 = ξ(x3 − x1) + y1

By negating yint we get that y3 = ξ(x3 − x1)− y1 and that makes all the
properties of the elliptic curve addition algorithm proven.

4.2 Elliptic curves over finite fields

Elliptic curves over finite fields are used for a lot of different mathematical
concepts but one way that they are used is to make computers able to handle
elliptic curves and points adding so it can be used efficiently in today’s society.
This is because computers can not handle infinities very well, therefore we need
a way to work with a set of data that has a finite number of elements.

Definition 10. An elliptic curve over a finite field is defined as follows,

we have an equation E : y2 = x3 + Ax + B and a finite field GF (p) where
p ≥ 3, also A,B ∈ GF (p) and 4A3 + 27B2 ̸= 0. Then E(GF (p)) = {(x, y) :
x, y ∈ GF (p) satisfy y2 = x3 +Ax+B} ∪ {O}.

Definition 11. Points addition on an elliptic curve over a finite field is
defined by the properties in theorem 7.

Points adding in elliptic curves over finite fields are calculated very similarly
to the way of adding points in regular elliptic curves, although they are not as
easy to follow visually. So let’s make an example of how an elliptic curve over
a finite field can look like:
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Example 9. Let’s take E : y2 = x3 + 2x + 1 over GF (5) now we want to
find all the points that are included ∈ E(GF (5)).

We know that the possible values of x will be 0, 1, 2, 3 and 4 we can use that
to find the points ∈ E(GF (5)).

When x = 0, E‘s equation says y2 ≡ 1 mod(5) which has the solutions
y = 1, 4. So we get the points

(0, 1) and (0, 4) on E.

When x = 1, E‘s equation says y2 ≡ 4 mod(5) which has the solutions
y = 2, 3. So we get the points

(1, 2) and (1, 3) on E.

When x = 2, E‘s equation says y2 ≡ 3 mod(5) which has no solutions for y.

When x = 3, E‘s equation says y2 ≡ 4 mod(5) which has the solutions
y = 2, 3. So we get the points

(3, 2) and (3, 3) on E.

When x = 4, E‘s equation says y2 ≡ 3 mod(5) which has no solutions for y.

So we get that E(GF (5)) = {(0, 1), (0, 4), (1, 2), (1, 3), (3, 2), (3, 3),O}

So just as shown in example 9, we can take an elliptic curve with an infinite
number of elements and use a finite field to create a set of only 7 points. If
we were not able to do this the way we would encrypt and decrypt data today
using elliptic curves would look very different. With that said, the fields used
in modern cryptology are much larger than those demonstrated in example 9.
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4.3 Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem is a way to explain how hard it is
to decipher a message that is transformed using elliptic curve cryptology since
one wants to make it hard to know how many times you add a point to itself.

Definition 12. Given an elliptic curve(E) over a finite field(GF (p)) and
the points P and Q where P and Q ∈ E the elliptic curve discrete logarithm
problem(ECDLP) is to find a number n so that P ·n = Q. Where n is the elliptic
discrete logarithm of Q with respect to P or in technical terms n = logP (Q).

In Definition 12 there is said that n = logP (Q), for this to be correct Q needs
to be a multiple of P , otherwise n = logP (Q) will not be defined. Therefore
when someone is ”building” the relation P · n = Q you start by selecting the
point P and the multiple n to then calculate the point Q, in that way, it is sure
that Q is a multiple of P and n = logP (Q) will be defined.

The reason that one wants to make it hard to find the value of n is because
n is the private key when using ECC. Q is the public key and P is a base point
that is also known by the public. So the security of ECC relies on that the
ECDLP is hard to solve.

Example 10. Let E be the elliptic curve

y2 = x3 + 2x+ 1 over GF (23),

where

P = (4, 2) and Q = (16, 14) are points on E.

We know that there exists a constant n so that P · n = Q, our mission is to
find the value for n.

So if there is known that P · n = Q, because that E works over the finite
field there will be more numbers that solve P · n = Q such that P · n1 = Q,
P · n2 = Q and so on. This also means that a number s exists so P · s = O
is true. Since E(GF (p)) has a finite number of points on it and P ∈ E, all
multiples of the point P can not be unique. Therefore the values n1 and n2

exists so that P · n1 = P · n2 where n2 − n1 = s and n2 > n1. The value of
s is called the order of P and can be used to find all the values that can solve
P ·n = Q. Since s is the number of operations between closely related solutions
to P · n = Q we get the universal solution of the n to be n = n1 + a · s where
a ∈ Z.

Knowing this we need to find both a solution to P · n = Q and P · s = O.
The way we will do this is by start adding the point P to itself.
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P = (4, 2)

2P = (16, 9)

3P = (15, 5)

4P = (17, 7)

5P = (8, 0)

6P = (17, 16)

7P = (15, 18)

8P = (16, 14) = Q =⇒ n1 = 8

9P = (4, 21)

10P = O =⇒ s = 10

After adding the point P to itself ten times we get to the point at infinity,
meaning the order that we call s = 10. While doing this we also find a solution
to P · n = Q where n = 8, if you would not find it before the point at infinity
there would not exist a solution to P ·n = Q. But now since we know the value
of n1 and the order we get that all possible solutions of n to be n = 8 + a · 10
where a ∈ Z.

The way the ECDLP is solved in example 10 is not very effective. The
average time to find a solution to the ECDLP using this method will be half
of the order of P ( s2 in example 10). In cases where the order will be much
larger this method will be unfeasible to use. In the next chapter, we will go
thru another way of solving the ECDLP that is more efficient than the one that
is used in example 10.

4.3.1 Applying the collision algorithm

The point with the ECDLP is to make it hard to find the number n, where n
is the elliptic discrete logarithm of Q with respect to P. This is because when
sending messages using ECC the number n holds the ”hidden” message that
someone wants to keep safe, so if you solve n in the problem P · n = Q you get
access to the message that is being sent, but even if n is hard to find it is not
impossible. If we apply a collision algorithm to the ECDLP we can show an
example of how a possible way of solving the ECDLP can look like. The way
the algorithm works is that it uses randomly selected points in two different lists
that look like the following.
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List 1: a1 · P , a2 · P , a3 · P , ... , an · P

List 2: b1 · P +Q , b2 · P +Q , b3 · P +Q , ... , bn · P +Q

The simulation of points in both lists will continue until a collision between
List 1 and List 2 is found. When a collision is found then the user will get that
ai ·P = bj ·P +Q ⇔ Q = P (ai−bj) where ai−bj will be a solution to P ·n = Q
which means that ai − bj = n. When a value for n is found the message that
the ECDLP holds will get in the hands of the ”attacker” using the algorithm.

Theorem 8. If we have a group G and an element g such that g ∈ G and g has
the order N , meaning gN = e and there is no smaller number than N making
the statement true then, a solution to the discrete logarithm problem gx = h can
with 98 % chance be found in 2

√
N operations by using a randomized algorithm,

where every operation is an exponentiation in the group G.

Proof. To prove this we first rewrite

x = y − z

after substituting this into gx = h we then get

gx = h ⇔ gy = h · gz.

Then to solve gy = h · gz we make two lists, one list with values from gy and
one list of values from h · gz. The first list is made by choosing random values
of y between one and N and creating a list of them. This will make the first
list look like the following

List 1: gy1 , gy2 , gy3 , ...., gyn

and then the second list is made by choosing random values of z between
one and N . That will look like

List 2: h · gz1 , h · gz2 , h · gz3 , ...., h · gzn

all elements from both list 1 and list 2 will be in G. We can also note that
the elements in List 1 lie in the set
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S = {e, g, g1, g2, ...., gN−1}

and since we assume that gx = h have a solution, h needs to be a power of
g which means that h · gzi also need to be in the set S, where zi is one of the
possible values of z. Because of this, we can use the fundamentals from theorem
3 to solve the probability of a collision between list 1 and list 2. This gives us
the probability of a collision between the two lists after n operations be

P (a collision between list 1 and list 2) = 1− (1− n
N )n.

After a collision is found between the two the discrete, meaning finding a
solution to gy = h · gz the discrete logarithm problem is solved.

If we set the value of n = 2
√
N we can get the accuracy that is searched for

in theorem 8.

P (a collision between list 1 and list 2 after 2
√
N operations) =

1− (1− 2
√
N

N )2
√
N ≈ 98.17%

Since 98.17% > 98% theorem 8 is correct.

But if we want to know how long it will take to compute a solution to
the problem in theorem 8, we get the following. First, we know that both
lists list 1 and list 2 are of the same length and the length of them we call n,
thus it requires roughly 2n steps to construct each list. Every single step of
constructing these lists needs us to compute gi when i is a number between
1 and N . Then using theorem 2 we get that every one of these operations
takes roughly 2 log2(i) group multiplications to compute one value if gi. So now
knowing how many multiplications it takes to do one operation and how many
operations that is needed to assemble the two lists we get that the total amount
of multiplications needed is approximately 4n log2(N). Then it also takes about
n log2(n) multiplications to check for collisions between the two lists so the total
number of multiplications be

4n log2(N) + n log2(n) = n log2(N
4) + n log2(n) =

= n log2(N
4 · n)
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So if we want to know how long the computation time in theorem 8 would
be we can set n = 2

√
N . We call the computation time of theorem 8 CTT8 and

this brings that

CTT8 = 2
√
N log2(N

4 · 2
√
N) = 2

√
N log2(N

4.5 · 2) =

= 2 · 4.5 ·
√
N log2(N · 21/4.5) = 9

√
N log2(N · 22/9).

So the computation time needed to do theorem 8 will be 9
√
N log2(N ·22/9).

4.4 Elliptic curve cryptology

Elliptic curve cryptology is a cryptographic system based on the specific qualities
that elliptic curves over finite fields hold, and at the same time implements the
features of an asymmetric cryptosystem.

4.4.1 Elliptic Diffie–Hellman Key Exchange

The elliptic Diffie–Hellman key exchange is an algorithm that two individuals
can use to create a secure line of communication between one another. This
chapter will discuss how an asymmetric cryptosystem can be used to set up
a symmetric cryptosystem. Since a symmetric cryptosystem is way faster to
operate than if you always use an asymmetric cryptosystem one rather wants
to use a symmetric cryptosystem to communicate, but it is hard to set up
a symmetric cryptosystem securely therefore one needs to use an asymmetric
cryptosystem to set it up safely.

There is also a Diffie–Hellman key exchange that has the same purpose but
we will focus on how the exchange works while using elliptic curves.

Definition 13. Let an elliptic curve E(GF (p)) exist and a point P where
P ∈ E(GF (p)). Then the elliptic Diffie–Hellman key exchange problem is to
calculate P · ka · kb from the values P · ka and P · kb.

The elliptic Diffie–Hellman key exchange uses an asymmetric cryptosystem
between two parts to create a secure symmetric cryptosystem between the same
parties.

The way the key exchange works is, first there are two people that we will
call A and B. A and B agrees to use a elliptic curve E(GF (p)) and a point P
where P ∈ E(GF (p)). Then both parties choose a number, that will be their
private key. Then they calculate the multiplies between their secret key (ka and
kb) and the shared point P .
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A: P · ka = Qa

B: P · kb = Qb

Then when both A and B have their respective points Qa and Qb. They
will share their points so A sends Qa to B and B sends Qb to A.

So how can the line stay secure even tho A and B send information over a
not already secure line? After A gets Qb and B gets Qa both parts multiply
their given point by their secret key, as follows.

A: Qb · ka = Qc

B: Qa · kb = Qc

So as we can see, both A and B get the same outcome after the procedure,
Qc. So even if someone else than A or B gets access to Qa or Qb they will not
be able to find Qc. A and B can then use Qc to set up a secure symmetric
cryptosystem using Qc as the symmetric key.

Proof. The points Qc are always the same since P ·ka ·kb = P ·kb ·ka according
to the additive laws of elliptic curve addition.

With that said though the secure symmetric cryptosystem that uses Qc as
the symmetric key, will only be as secure as the ECDLP is hard to solve for
their chosen elliptic curve E, point P and their respective private keys. This is
because the system is set up using ECC where P · ka · kb = Qc, this is the same
form of P · n = Q that chapter 4.3 about the ECDLP discusses. In this case,
ka ·kb = n and that is the value the ones setting up the symmetric cryptosystem
want to keep as secure as possible because if someone finds the value of n the
line that is set up will not longer be secure.

4.5 Digital signature

A digital signature is a way of using cryptology to make it possible to sign a
document without being there in person to do a physical signing, but still let
everyone know that you agree to what the document states. This has become a
big part of our community in the last decades because most documents are not
signed in person anymore.

Digital signatures use an asymmetric cryptosystem, this is so a private key
and a public key to can be used to identify the person who wants to make

35



a signature, we will explain how this works by an example of how singing a
document can look like using a digital signature.

Example 11. Let’s call the signer Adam. If Adam wants to sign a document
the first that is done is that the document D that he wants to sign is hashed so
that a fixed bit-string is created.

Hash(D) = Dhash

Dhash is a bit-string where Dhash ∈ {0, 1}q and {0, 1}q is all possible hash
values that the hash function used can create. Adam will then encrypt the bit-
string Dhash that is produced from the document D by using his private key
kpriv creating a new privately encrypted bit-string that is the digital signature.

E(kpriv, Dhash) = DAdam

Adam will then attach his digital signature DAdam to the document D and
in practice, it looks the same as physically signing a document.

After Adam has attached his signature to the document his part is done and
the signed document is finished, although Bella who is Adams’s business partner
needs to make sure that the signature on the document is Adams’s signature.

The way Bella checks if the signature is Adams’s signature is by first hashing
the document with the same hash function that Adam used to create the original
bit-string Dhash that Adam also used. After that, she will take Adams’s digital
signature and use the public key kpub to decrypt the bit string that Adam
created.

D(kpub, DAdam) = Dhash

When Adams bit-string is decrypted, Bella will check if the decrypted bit-
string is the same as the original bit-string from the document. If it is the same
then she will know that Adam is the one who signed the document and if it’s
not then she will know that it is not his signature. One thing that differentiates
a digital signature from a physical signature is that since a digital signature
will look different every time since it is made by transforming the hash of the
document, this also makes sure that the signature, in this case, DAdam can only
be used for the document D. This is because otherwise when Bella is checking
the signature, the signature will not match the hash value of the document it
is signing making it invalid. The example of Adam and Bella’s document being
signed is visually shown in Figure 6.
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Figure 6: The process of Adam and Bellas’s contract being signed

4.6 Blind digital signatures and digital cash

Blind digital signatures are a type of digital signature where the one that signs
the document can not see the document that they are signing. This can be used
for a variety of things like online voting systems or digital cash.

The reason blind signatures are used in digital cash is that the person using
the digital cash still wants the anonymity that regular cash can give you. In
other words, if you buy something with digital cash the organization that holds
the digital cash you use (e.g. a bank) should not be able to know to who you
are sending the money, but they still need to authorize the transaction. This is
where the blind signature comes in. So the organization can approve what you
want to do with your digital cash without ever being able to see what you want
to do with it.

The way digital cash is explained in the paragraph above one still needs
an organization that is trusted to control the digital cash. But a centralized
organization does not control digital cash like Bitcoin or Ethereum. This is
because these currencies instead use blind signatures to link every transaction
to one another in a long chain, this is what is called blockchain. In these cases,
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the transactions go thru when the transaction is attached to the chain, where
every link in the chain is a previous transaction. So instead of an organization
signing the transaction the blockchain approves the transaction by including it
in the chain. To make the chain safe, much computing power is needed to make
a transaction happen. It takes about 5-10 minutes to add a link to the chain
and that is intentional so that one can not cancel a payment in a transaction or
mess with the chain in another way5.

If we take a closer look at the biggest blockchain based currency at the time
of this essay, bitcoin. We can see that it uses an elliptic curve digital signature
algorithm where the elliptic curve E, prime number p, and a specific point P
on the elliptic curve are known. They are:

E : y2 = x3 + 7

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

P = (x, y)

where x and y are numbers containing 77 digits5.

x and y don’t need to be 77 digits in general but it is just that the point in
this case is chosen to be that.

The way the calculations to add a link to the chain works is that the com-
puters try to find a specific input to the hash function that is used (for Bitcoin
the one that is used is called SHA-256) that gives a hash value that begins with
a specific amount of zeros. The computers will use brute force and try a very
large amount of inputs in the hash function to try to find this specific output.

A way we get a better understanding of how hard it can be to find a hash
value with this specific output is by looking at theorem 3. If we call the outputs
that satisfy the specific conditions needed n and all the other outputs n−1 where
N are all possible outputs, and N = n+n−1. We call the number of inputs tried
in the hash function m, then theorem 3 states that the probability of finding
the specific output in the number of tries to be

P(at least one hash value from n being found in m tries) =

= 1− (1− n
N )m.

38



So to make sure that it takes about 5-10 minutes to add a link to the chain,
it is needed that the expected amount of hash values a computer can calculate
in about 7,5 minutes is ma. If ma gives

P(at least one hash value from n being found in ma tries) = 50%.

To make sure that the time of finding a hash value in n does not differ even
when computers get faster, usually the hash functions that are used will be
updated to have a more complex way to calculate the hash value so the time
can stay consistent.

After finding the value that gives a wanted hash value the input will be
linked to the transaction and add one more link to the chain. Once added to
the chain the link will not change, therefore one can always follow the chain
backward to see all the previous transactions that are connected in the chain5.
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