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Abstract

A Perfect Phylogeny TG for a set of genes G describes their com-
mon evolutionary lineage under the constraint that no two properties
have evolved in separate places within that lineage. The problem of
Reconciliation, under one particular model, is that of mapping the evo-
lutionary tree TG to a species tree S of the species that harbor the genes
in G, with the goal of annotating the internal vertices with duplication
or speciation. The biological significance is that this provides insight
into which gene sequences are paralogous and orthologous. We develop
a combined algorithm for excecuting both tasks based on merging two
existing algorithm for each separate task of finding a perfect phylogeny,
and then reconciling it.
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1 Introduction

Phylogenetic trees are used in biology to model the evolutionary history
and common ancestry of genes or species, and to study the relationship
between them. By considering the elements of such a tree to be a
sequence of characters (such as, for example, a DNA-string), the prob-
lem of constructing a phylogenetic tree is turned in to a mathematical
task. A constrained version, the perfect phylogeny problem, considers
lineages in which no property is evolved in two different places, and an
algorithm for constructing such a phylogeny is given by R. Agarwala and
D. Fernández-Baca [AFB94]. A different, but related problem, is that of
reconciliation. By considering gene-trees, which are phylogenetic trees
that consist of gene sequences as vertices, one can refine the lineage data
by comparing the structure of the gene-tree with a known species tree
of the species that harbor those genes. The method can be used to fill
in informational gaps in terms of data loss, gene loss, gene duplications,
and more. Completing the gene tree in terms of duplications is essential
for inferring orthologous and paralogous sequences, which among other
things, has implications for protein functions. A common approach for
reconciliation is to minimize the number of duplications needed and a simple
method for reconciliation is provided by C.M. Zmasek and S.R. Eddy [ZE01].

When reconciling a phylogenetic tree, the structure of that tree is vi-
tal to the outcome. Looking at the perfect phylogeny problem in isolation,
a tree is constructed with no regard to any impact of the structure of the
tree on any reconciliation. To our knowledge, there does not currently exist
any algorithm that incorporates this impact when constructing a perfect
phylogeny. In this thesis, we take a first step towards such an advancement
by showing how one can merge the two algorithms previously mentioned.

Each chapter is self-contained and assumes only basic knowledge of
graph theory and algorithms. In Chapter 2, we provide necessary and
detailed theory to understand the algorithm of [AFB94]. Chapter 3 covers
the topic of reconciliation and gives an explanation of the algorithm of
[ZE01]. In Chapter 4, we discuss the incompatibilities between the two
procedures and provide a method for dealing with these. Then, in Chapter
5 we state the main result and explain the modifications we have made.
Finally in Chapter 6, we discuss different ways in which the main result
can be improved. The Appendix A is reserved for lengthy examples.

4



2 Perfect Phylogeny

Our goal for this chapter is to describe in detail an algorithm that solves the
perfect phylogeny problem. The algorithm we have chosen to describe and
will ultimately modify in later chapters is the one given by R. Agarwala and
D. Fernández-Baca [AFB94]. We will closely follow this article, providing
the same framework and results which are needed in order to understand the
correctness of the algorithm, while often deviating in the level of detail of
the proofs, the discussions, and also deviating entirely on some of the topics
covered; while the article provides notes on the complexity and running time
of the procedures, we will instead omit these since they are not relevant to
our goal. The curious reader is referred to the article itself.

2.1 Type I splits

To start, we will introduce the central concept of this chapter, namely a
perfect phylogeny. The idea is that given a set of character sequences, such
as for example a set of genes, we would like to model their evolutionary
history while restricting the structure of that history in certain ways. Let
us formalize what we mean.

We have a character set C = {1, . . . ,m} in which the elements are
called characters. For any character c ∈ C we have the allowable states
Ac = {α0, . . . , αrc}, the elements of which will usually be referred to
as character states of c. A sequence s = (s1, . . . , sm) is an element of
the multiset of sequences S ⊆ A1 × · · · × Am. That is to say, we allow
multiples of each sequence s. The element sc will be called the state of s on c.

As an example consider DNA-sequences. These are represented by
strings of characters in which each character has the allowable states
{A,C,G,T} which symbolize the adenine, cytosine, guanine, and thymine
bases found in DNA sequences. When referring to sequences we will
sometimes omit the parenthesis and commas, for example a species of
(A,B,A) would be written ABA.

We can now define the central concept of this chapter.

Definition 2.1 (Perfect Phylogeny). Given a set of species S, if there exists
a tree TS such that

(i) S ⊆ V (TS) ⊆ A1 × · · · ×Am,

(ii) each leaf in TS is an element of S,
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(iii) for each c ∈ C and each k ∈ Ac, the set of all v ∈ V (TS) such that
vc = k induces a subtree of TS,

then we say that TS is a Perfect Phylogeny of S.

The perfect phylogeny problem is that of determining whether a perfect phy-
logeny exists and if so, produce one. The tree TS , if it exists, models a
possible evolutionary history of the species (sequences) in S and how they
have been derived from common ancestry. The first two conditions of 2.1 are
quite straightforward, (i) tells us the species we consider should be contained
in the tree, and that the tree is made up of species, while (ii) tells us that we
only infer ancestors of the elements of S. The first two conditions define a
phylogeny, and a phylogeny is said to be perfect if it also satisfies (iii). The
third condition imposes the evolutionary relation that character states can
not be evolved by two different species. Hence if two different species has
a character state in common then they must both have a common ancestor
from which the state is inherited. This can be considered too restrictive for
real data sets, the authors in [FBL03] for example consider ”near-perfect”
phylogenies in which sets of species are allowed to deviate from (iii) by a
fixed parameter measure.

The perfect phylogeny problem can be stated in a multitude of different
ways, such as in terms of n×m matrices in which each row is a species, and
each column corresponds to a character. One can state the problem such
that TS needs to be rooted, with or without specifying an explicit starting
vertex. In this case the perfect phylogenies are technically unrooted,
however we will sometimes think of them as being rooted as this will be
required in later chapters. We will explain how we can do this once we have
introduced splits of type I and II. The authors in [AFB94] are the first to
have shown that the perfect phylogeny problem is solvable in polynomial
time for any fixed maximum number of character states. The algorithm
constructed takes a dynamical programming approach to construct perfect
phylogenies from the bottom up.

We would like to note here that the species set S and vertex set
V (TS) can be thought of in two ways, as a set or as a multiset. In practice
a species may occur many times so it is convenient for us to allow this.
However, for the sake of simplifying some proofs we may need to restrict S
and V to contain distinct elements. Any vertex v ∈ V (TS) can be safely
replaced with multiple copies v1, . . . , vk with an arbitrary tree between
these, as this will not affect perfect phylogeny. Similarly if there are
multiples then these must be directly connected to each other due to
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condition (iii) of Definition 2.1. So we may safely remove all v1, . . . , vk
and replace them with a single copy v that has all the connections and
neighbours of all the previous multiples.

Although the converse of condition (ii) does not need to hold, we may
consider it to be true if needed. That is, all the species of S are leaves in
TS , if any s ∈ S is not a leaf in TS then we could add another copy of s as
a vertex in TS and add an edge between the original and the copy, making
the newly added vertex a leaf.

Now let us illustrate Definition 2.1 with an example.

Example 2.2.Let C = {1, 2, 3, 4} and Ai = {A,C,G, T} for each i ∈ C.
Consider the species set

S =


(AGATG),

(CGCAA),

(AGAAG),

(CTCAA)1,
(CTCAA)2



Then as one perfect phylogeny we get TS =

(CTCAA)1

(CTCAA)1 (CTCAA)2 (CGCAA)

(CGCAA) (AGAAG)

(AGAAG) (AGATG)

We can easily verify that each character state induces a subtree. In this
example we did not need to infer the existence of any species outside our
set, later on we will see examples where that is not the case. The species
(CTCAA) has a multiplicity of 2, and in TS many of the species appear
in multiple vertices. Removing the duplicates would also give a perfect
phylogeny.
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It is not always the case that a perfect phylogeny exists for a set of
species, as shown in the following example.

Example 2.3.Consider the species set S := {11, 01, 10, 00}. The species 01
has to have an edge to 11 since they share a character state 1 on the second
character, and no other species does. Similarly 10 shares a character state
with 11 on the first character. But for analogous reasons the species 01 and
10 must also both have edges to 00, forcing the existence of a loop. Hence
there can be no perfect phylogeny for S.

One important consequence to Definition 2.1 is that, if we would like a
vertex v to belong to a perfect phylogeny and if v is on the path between
two species with equal character state on c then the v itself must also
have that character state on c. So in other words if v is a vertex of some
perfect phylogeny TS which lies on the path between two species a, b with
ac = bc = α, then vc = α. We note an important detail. Whenever we have
a perfect phylogeny TS then we may safely assume that for any v ∈ V (TS)
and any c ∈ C we have that vc is the character state of some s ∈ S.

We now introduce some of the key concepts used in [AFB94] that
are vital to the understanding of their algorithm. These are the ideas of
distinguishing characters, and splits. We would like some characteristics of
a set of species which separate them from the rest of the set in terms of
their own branch in any perfect phylogeny. If we look back to condition
(iii) from Definition 2.1, this condition gives us a way to look at a tree as
subtrees distinguished by the character states that are unique to them. See
Figure 1. In general if some subset of species has a distinguishing character,
one which differs in all states from the rest of the species, then we are
inclined to try to view these as their own respective branches in a perfect
phylogeny. For this to work we need to put limitations on the characters
which are not distinguishing so we can connect the two separate sets back
together. With all this in mind we make the following definition.

Definition 2.4. Let G ⊂ S and let G′ = S \ G in S. The set D(G) is
the set of all characters c ∈ C such that for all a ∈ G and b ∈ G′ we have
ac ̸= bc. The set D(G) is called the distinguishing characters of G. The
common characters of G is the set M(G) = C \ D(G). For any c ∈ C
define

Mc(G) := {α ∈ Ac | ∃s ∈ G, t ∈ G′ : sc = tc = α}

Dc(G) := {α ∈ Ac | ∃s ∈ G : sc = α,∀t ∈ G′ : tc ̸= α}.
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(CTCAA)1

(CTCAA)1 (CTCAA)2 (CGCAA)

(CGCAA) (AGAAG)

(AGAAG) (AGATG)

Figure 1: The character state C on the first character, marked in red, is
distinct to the set on the upper left. The character state A, marked in
blue, is distinct to the lower right part of the tree. If we look at the species
without having the complete perfect phylogeny first, we could easily suggest
that the red and blue should be their own branches since they completely
differ on the first character.

Mc(G) and Dc(G) are called the set of common character states and
distinguishing character states of G on c respectively.

While M and D denote the common and distinguishing characters, the sets
Mc and Dc denote the set of states on those characters. Note that for any
G ⊂ S and G′ = S \ G we have D(G) = D(G′), M(G) = M(G′), and
Mc(G) = Mc(G

′) for all c. However we always have Dc(G) ∩ Dc(G
′) = ∅.

The concepts of Mc(G) and Dc(G) are not explicitly defined in [AFB94], we
have added them for convenience. Now we introduce the concept of splits.

Definition 2.5. Let G ⊂ S and G′ = S \G. Then we call (G,G′) a split if
∀c ∈ M(G) we have that

|Mc(G)| ≤ 1.

If (G,G′) is a split then we call G and G′ partitions and mc denotes the
singular element of Mc(G) for each c. If also D(G) ̸= ∅ then we call (G,G′)
a c-split and we call G and G′ c-partitions.

Remark. This implies that if |G| = 1 or |S \G| = 1 then (G,G′) is trivially
a split.

We ask in 2.5 that for each character there will not be more than one char-
acter state in common between G and G′. If there were two or more then
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that particular choice of (G,G′) would not be appropriate for a split, since
in that case we would need to connect G and G′ in multiple places when
building TS , which is not necessarily a problem but it is not what we want.
The following Lemma is the first result presented in [AFB94] and suggests
that if G or G′ does not have a perfect phylogeny then neither does S.

Lemma 2.6. Let S be a set of species. Then S has a perfect phylogeny if
and only if every subset of S has one.

Proof. If every subset of S has a perfect phylogeny then S as a subset of
itself has one. Conversely assume that S has a perfect phylogeny TS . Let
G ⊂ S and let TG denote the tree TS where we have removed any leaf in TS

which is not in G. Then TG satisfies G ⊂ V (TG) ⊂ A1 × · · · ×Am hence (i)
of Definition 2.1 holds. But also (iii) holds because we have not removed
any internal node of TS to obtain TG. Since we removed the leaves which
are not in G we know that also (ii) holds.

This lemma tells us that if we are ever in a situation where a set G ⊂ S does
not have a a perfect phylogeny then we can immediately stop the procedure
because there will not be one for S either. If the set G does have one
however, we would like a way to use this to build a perfect phylogeny for
S. So we would want to find a split (G,G′) with a perfect phylogeny for
each partition and glue the two trees together. If the two partitions do have
a perfect phylogeny then in order to glue them together we would need a
species which has the appropriate character state in the common characters
of G and G′ so as to preserve condition (iii) of Definition 2.1. This leads us
to the following definition.

Definition 2.7. A vector s ∈ A1 × · · · ×Am is said to be compatible with
a subset G ⊂ S if for all c ∈ M(G), sc = mc. Likewise we say in that case
that G is compatible with s.

Now we are ready to define the different kinds of splits which the article
describes.

Definition 2.8. For any split (G,G′), if there exists a species s ∈ G that is
compatible with G, and if also |G \ {s}| ≥ 1 and |G′| ≥ 1, then we call this
a split of type I and we call s a connecting species. Otherwise we say it
is of type II.

In other words we ask that if G and G′ have common character states,
which are at most 1 each in the case where (G,G′) are a split, then s must
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have that common character state for each character. This makes s fitting
for connecting the respective trees together. In the recursive algorithm
which [AFB94] builds up to, one of the first steps is to search for type I
splits (G,G′), then with a connecting species s call the algorithm again
with G ∪ S and G′ ∪ s as inputs separately. If both calls succeed then the
perfect phylogenies TG and TG′ can be connected to one for S through s.
We try to do this as far as possible, however we will sometimes run in to
the case where all the remaining splits are of type II. We will see in the
following section how to deal with these. Note that we may think of s as a
root of TG and of TG′

Lastly for this section we would like to mention a key detail which is
not explicitly worked out in the article. When dealing with type I splits,
the algorithm that is constructed in [AFB94] works exclusively with c-splits
and the reason for this is that the complexity of the algorithm reduces
significantly in that case. We want to comment on the justification of doing
it this way. Lemma 2.6 tells us that if there are c-splits then we could
restrict ourselves to looking at these. However, it might be that S contains
only splits with no distinguishing characters. In that case we would argue
that all the species of S are the same. We state the following theorem and
provide a proof for it by induction.

Theorem 2.9. If S has no c-splits then S contains only one element with
multiplicities.

Proof. If |S| = 1 then the claim is trivial. Take S to be such that |S| = n
and such that S has no c-splits. Let S′ be the species set S with any one
species removed, and assume for the sake of reasoning by induction that
the claim holds for any species set of size n − 1. To apply the inductive
hypothesis to S′, we only need to show that S′ has no c-splits. Assume
that S′ has a c-split (G,G′), then both (G ∪ {s}, G′) and (G,G′ ∪ {s}) are
not c-splits since we assumed that S has none. We must have for every
c ∈ D(G) that sc ∈ Dc(G) and sc ∈ Dc(G

′). This can not happen however
since Dc(G) ∩Dc(G

′) = ∅. So S′ can not have any c-splits.

Since |S′| = n − 1 and S′ has no c-splits, by the induction hypothe-
sis, S′ contains nothing other than one element t with multiplicities. Then
because S = S′ ∪ {s} has no c-splits, s can not be different from t since
otherwise ({s}, S′) would be a c-split in S. Hence s = t and that concludes
the proof by induction.
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As we have mentioned before, the case where S contains multiples, or in
this case only one element with multiples, causes us no problems due to
how perfect phylogenies are defined. We can easily move between both
cases at our convenience.

This concludes the discussion on type I splits and we can now begin
to cover the type II case.
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2.2 Type II splits

In the last section we introduced the concept of a Perfect Phylogeny and
some important definitions related to these. The algorithmic approach which
the article takes is dependent on splits of various types, which are partitions
in the species set signifying a possible branching in the final perfect phy-
logeny. These splits are subdivided into two categories, type I which was
covered in the last section, and type II which is the lengthier case to navi-
gate. To start we have the following Lemma which is presented in [AFB94].
We will reconstruct the proof here in more detail.

Lemma 2.10. If all c-splits are of type II, then in every perfect phylogeny
T of S, each species s ∈ S is a leaf in T .

The idea of the proof is that if there are any s ∈ S that are internal in a per-
fect phylogeny, then we could construct a type I c-split with s as connecting
species.

Proof. Assume that all c-splits of S are of type II. Let T be any perfect
phylogeny of S and assume that there exists some s ∈ S which is not a leaf.
Then let T ′ be any connected component of T \ {s} and let G′ be the set of
species of T ′, with G := S \G′.

We start by showing that the pair (G,G′) is a split. Take any
c ∈ M(G), if |Mc(G)| = n > 1 then there are n pairs (g, g′) with g ∈ G,
g′ ∈ G′ where gc = g′c and with all the pairs having different character
states on c. Since s is a vertex separating G and G′ in T , we must have that
s lies on the path between each (g, g′) in T . So sc is forced in n > 1 ways
which is impossible. Hence for each c ∈ M(G) we must have |Mc(G)| ≤ 1,
and so (G,G′) is a split.

Now we show that the split (G,G′) is a c-split. Since T ′ is a
single component it must contain one and only one t which is a neighbour
of s. This t must differ in at least one character c from s. If any children
of t were to have any common character state on c with any species in G,
then s would be forced to have this character state, and hence also t. But
this contradicts that sc ̸= tc. So the split (G,G′) is a c-split.

Finally we show that (G,G′) is of type I. Since s is an internal
vertex of T and since every leaf in T is a species according to (ii) of 2.1, we
get that |G \ {s}| ≥ 1 and |G′| ≥ 1 because s ∈ G. Finally the species s
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has the character states necessary to connect G and G′, hence (G,G′) is a
c-split of type I in S. This contradicts the assumption that all c-splits are
of type II, so we can not have any species s ∈ S as a non-leaf.

Let us now look at an example concerning type II splits.

Example 2.11. Consider the species set

S =


AAAB,
AABA,
ABAA,
BAAA


One perfect phylogeny is given by TS =

AAAA

AAAB AABA ABAA BAAA

The example illustrates the concept of type II splits because there is no ex-
isting species which can act as a common ancestor to the others. Whichever
subset we choose will not contain a species that is compatible with that set
and its complement. So we need to infer the common ancestor AAAA.

From now on we only concern ourselves with the case where S has no type I
splits, we may assume so for every S unless stated otherwise. Now since all
the species are leaves in any perfect phylogeny, in order to connect subsets
of S together we must do this through vertices in T that we infer, meaning
ones that are not species. What properties would we require from such a
vertex x ∈ A1 × · · · × Am? Same as before this vertex is meant to be the
connection between two subsets of species G,G′, and so must at least be
compatible with them in the sense of Definition 2.7. This time however,
we are inferring the connection and so the state of such a connection on
any c ∈ D(G) is not forced. Therefor we impose that the state on those
characters does not deviate from those of the elements of G. This leads to
the following definition.

Definition 2.12 (Subphylogeny). A subphylogeny T̃G of G ⊂ S is a per-
fect phylogeny of G containing a vertex x that is compatible with G (with
respect to S), such that xc ∈ Dc(G) for all c ∈ D(G). The vertex x is called
the connection of T̃G.
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In the previous section, on type I splits, we introduced the concept of a
connecting species, and now we have introduced the concept of a connection.
What is not explicitly mentioned in [AFB94] is that we can think of these
as the roots of the respective trees, and it is convenient to think of them in
this way when we build larger phylogenies from smaller ones. We should
keep in mind that connecting two phylogenies together is always done at
the roots, or connections, hence the name.

Recall that Dc(G) denotes the set of distinguished character states of
G. In other words the vertex x should have the character state of some
species of G on each distinguished character. Now we want to show the
importance of subphylogenies by relating them to the concept we are after,
namely perfect phylogenies. To do so we will first need the following helpful
Lemma.

Lemma 2.13. Let the species set S be such that it has a perfect phylogeny
TS. For any edge {u, v} in TS let T1 be the subtree of T \ {u, v} containing
u and let G1 be the set S ∩ T1. Then there exists a tree T̃ ′

1 such that it is a
subphylogeny for G1 with u as connection.

Proof. Let T2 be the subtree of T \{u, v} containing v and let G2 := S \G1.
It follows immediately that T1 is a perfect phylogeny for G1 since T1 is a
connected subtree of TS . Now take any c ∈ D(G1) such that uc /∈ Dc(G1)
and consider the set Bc(G1) of all b ∈ V (T1) such that bc = uc. Then
take any d ∈ V (T1) \Bc(G1) such that d is a neighbour of some element of
Bc(G1). If such a d does not exist then this would mean that uc = xc for all
x ∈ V (G1), contradicting that uc /∈ Dc(G1). Recall from the previous section
that we may safely assume that each character state of each vertex is also
the character state of some species. So either dc ∈ Dc(G1) or dc ∈ Dc(G2).
However, the latter could not happen because we also have uc ̸= dc, so if
dc occurs as a state in both T1 and T2 with no path between them, then
condition (iii) would not be satisfied for TS ; hence dc ∈ Dc(G1). Now let T̃ ′

1

be the tree obtained by setting each bc to be dc, which gives the vertex u
the desired property of having uc ∈ Dc(G1) for all c ∈ D(G1) Thus the tree
T̃ ′
1 is a subphylogeny of G1 with u as connection.

Lemma 2.13 is not written separately as a Lemma in [AFB94] but rather as
part of the proof of the next result. We have decided to state it separately
because it will be used in multiple upcoming results such as the following
useful fact.
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Lemma 2.14. S has a perfect phylogeny ⇔ There exists a split (G,G′) such
that both G,G′ have subphylogenies.

Proof. (⇐) Let (G,G′) be a split such that G,G′ both have subphylo-
genies and let T̃ , T̃ ′ be the respective subphylogenies with connections
x ∈ T̃ , x′ ∈ T̃ ′. We may connect the trees T̃ , T̃ ′ in different ways to obtain
a perfect phylogeny of S. If D(G) = ∅ then M(G) = M(G′) = C and we
must then have that the sequence defining the vertex x is the same as the
sequence defining x′. So we simply identify x = x′ as vertices. Otherwise we
add an edge between x, x′ and the resulting tree will be a perfect phylogeny
of S. Since the condition (i) of 2.1 holds for T̃ , T̃ ′ it will hold for TS . Since
we also have not added any new vertices to obtain TS , condition (ii) holds
as well. Finally if there are no distinguishing characters of either partition
then (iii) holds due to how x, x′ are defined on their common characters. If
instead D(G) ̸= ∅ then condition (iii) still holds for each character of D(G)
since T̃ , T̃ ′ are phylogenies, and for each character of M(G) the condition
holds due to how x, x′ are defined.

(⇒) Assume S has a perfect phylogeny TS . Firstly we may assume
that any element of V (TS) which is not in S has degree of at least
3. Otherwise by condition (ii) such an element v would need to have
deg(v) = 2, and then we would get another perfect phylogeny by deleting
v and adding an edge between the neighbours of v. The resulting tree
satisfies (iii) because any subtree that passes through v will not be broken.
The same is not true if deg(v) > 2.

Take any edge {u, v} ∈ TS , then Lemma 2.13 gives us a subphy-
logeny for the subtree T̃1 ⊂ TS \ {u, v} containing u, applying Lemma 2.13
again with {u, v} provides us a subphylogeny for the tree T̃2 ⊂ TS \ {u, v}
which contains v.

Lemma 2.14 firstly guarantees us that pursuing subphylogenies is meaningful
in an attempt of finding perfect phylogenies, since if we find a split with
subphylogenies for each partition then they can be glued together to form
a perfect phylogeny. Secondly, it tells us that if G ⊂ S has no type II
splits (G1, G2) with subphylogenies, then we may stop since there will not
be a perfect phylogeny for G, and by Lemma 2.6 there will not be one for
S. In the final algorithm of [AFB94], the subphylogenies are constructed
exclusively from c-partitions, which is justified by the following Lemma.
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Lemma 2.15. Let G ⊂ S be a partition. Then G has a subphylogeny if and
only if there exists pairwise disjoint c-partitions G1, . . . , Gk and a vector x
such that

• G = G1 ∪ · · · ∪Gk.

• x is compatible with each G,G1, . . . , Gk.

• Each Gi has a subphylogeny.

Proof. (⇐) Let T̃1, . . . , T̃k be the respective subphylogenies for G1, . . . , Gk

with connections x1, . . . , xk. Let T̃ be the tree obtained by starting with
x and T̃1, . . . , T̃k, and adding edges (x1, x), . . . , (xk, x) to each T̃i. Since
each T̃i is a perfect phylogeny and x is compatible with each xi, T̃ is also a
perfect phylogeny for G. If D(G) = ∅ then x is also a connection of G and
so T̃ is a subphylogeny of G.

Assume that D(G) ̸= ∅ then consider any c ∈ D(G). If c /∈ D(Gi)
for any i then for each Gi there exists some Gj with i ̸= j such that Gi and
Gj share a character state α on c. Since both Gi and Gj are compatible
with x, and since α ∈ Mc(Gi) and α ∈ Mc(Gj), we must have that xc = α
and hence x has a character state on c of some species in G which makes
x a connection of T̃ . If instead c ∈ D(Gi) for some i then the connection
xi of Gi has xic ∈ Dc(Gi), so we may assign xc = xic and get that xc is the
character state of some species in G. Again x is the connection of T̃ , which
means that T̃ is a subphylogeny of G.

(⇒) Let T̃G be a subphylogeny for G and let x be its connection.
Our goal is to find sets G1, . . . , Gk with the desired properties, the proof
of the (⇐) part suggests that we should consider starting with x and
its neighbours. So let x1, . . . , xk be the neighbours of x in T̃G and let
T̃1, . . . T̃k be the subtrees of T̃G \ {x} containing x1, . . . , xk respectively.
Take Gi := S ∩ T̃i for each i = 1, . . . , k. Firstly we note that by Lemma 2.13
applied to each xi, there exists a subphylogeny T̃ ′

i for each Gi. Next we

note that each element of G is in some subtree T̃i, hence G1 ∪ · · · ∪Gk = G.
Since x is a connection of TG, it is compatible with G. If Gi has a shared
state on character c with S \ Gi then any path between them must go
through x, so xc is forced and must be compatible with each Gi since T̃G

is a subphylogeny, and hence also a perfect phylogeny for which condition
(iii) of Definition 2.1 is upheld.
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Finally recall from our discussion in the previous section that we
may safely assume that each vertex of any perfect phylogeny is distinct. So
if we assume that D(Gi) = ∅ for some i, then xi and x must be equal on
each character, since they have exactly one character state in common on
every c ∈ C. Hence xi = x. But this contradicts the assumption that each
vertex is distinct and that xi is a neighbour of x. Then we must have that
D(Gi) ̸= ∅ for each i. This shows that all the G1, . . . , Gk are c-splits which
concludes the proof.

So far, in this section dedicated to type II splits, we have made a definition
of a suitable kind of perfect phylogeny that deals with this case, namely
subphylogeny, and shown that we can restrict our search to c-splits, as well
as showing that we can indeed stitch the subphylogenies together to form
a perfect phylogeny. Behind all of this is the motivation for a recursive
algorithm which works its way up from the simplest cases, that is what
we are building towards. What we have at the moment is not enough to
satisfy that goal. If G,G1, G2 are partitions of S with G1 ∪ G2 = G and
G1 ∩G2 = ∅ then we could end up in one of three situations. Either both,
or one, or none of G1 and G2 have subphylogenies. If none of G1, G2 have
subphylogenies then we could simply keep searching among other partitions
since by Lemma 2.14 there must be some split which has one if S is to have
a perfect phylogeny. For the two other cases we formulate the following
questions.

• Can we form a subphylogeny for G if G1 and G2 both have subphylo-
genies?

• What can we say about G if one of G1 and G2 has a subphylogeny?

The first question is answered by the following Lemma.

Lemma 2.16. If G,G1, G2 ⊂ S are partitions such that G1 ∪G2 = G and
G1 ∩G2 = ∅, and such that G1, G2 both have subphylogenies, then G has a
subphylogeny.

Note that although G1 and G2 are subsets of G, they are partitions with
respect to all of S.

Proof. Let T̃1 and T̃2 with connections u and v be the respective subphy-
logenies of G1 and G2. Let x be a vertex such that xc ∈ Mc(G) for each
c ∈ M(G) and with xc = uc for each c ∈ D(G). The tree T̃ is formed by
taking T̃1, T̃2, adding x, and connecting them with the edges (u, x) and
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(v, x). Then for any c ∈ D(G), if c ∈ D(G1) then x has the character states
necessary to be a connection since uc = xc is the character state of some
character in G1. Assume then that c /∈ D(G1). Then there must be some
character state sc that is common to both G1 and G2. This once again
means that xc is the character state of some character on G1, this is because
u must have the unique character state sc on character c, so xc = uc = sc.

Next we need to show that T̃ is a perfect phylogeny. By T̃1 and T̃2

being subphylogenies and by xc having the state of some species in G1 ∪G2

on each c ∈ C, it follows that T̃ satisfies conditions (i) and (ii) of Definition
2.1. Now again since T̃1, T̃2 are subphylogenies, they uphold condition (iii)
in and of themselves. What we need to check is that the addition of the
connection x is sound with respect to the condition. Take any c ∈ D(G), if
uc = vc then our assignment of xc = uc assures that (iii) holds in this case.
If c ∈ M(G) and if uc = vc, then there must exist some s ∈ G such that
sc ∈ Mc(G). This species must either be in G1 or G2, so either xc = uc
or xc = vc, in both cases we are assured that uc = xc = vc so that (iii) holds.

Finally we note that if D(G1) or D(G2) is empty then we simply
need to assign x = u or x = v respectively.

Now we arrive at the final missing piece before we can start describing the
algorithm of [AFB94]. The following Lemma will give us an answer to the
second question, which is sufficient for our purposes.

Lemma 2.17. Assume that G,G1, G2 ⊂ S are partitions such that G1 ∪
G2 = G and G1 ∩G2 = ∅. Suppose that G1 has a subphylogeny T̃1, and that
G has a subphylogeny T̃ with connection x. If T̃1 is a subtree of T̃ at x and
if G2 is not a c-partition, then the value of xc on every c ∈ D(G) is forced.

Note, we mean subtree here in the sense that any path in T̃ from any vertex
of G2 to x does not go through any vertex in T̃1. So any path from G2 to
G1 has to go through x.

Proof. Assume that G2 is not a c-partition, which would mean that
M(G2) = C, and take any c ∈ D(G). What we want to show is that
there exists some character state on c that is common to both G1 and G2,
since any path going from G1 to G2 goes through x under our assumptions,
this would imply that xc is forced. Since c ∈ M(G2) then there must exist
some s ∈ G2 such that sc is a character state in S \G2. If sc is a character
state in G1 then we are done by what we mentioned earlier. If instead sc is
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a character state in S \G then this would contradict that c ∈ D(G), so this
can not be the case. So xc is forced.

Lemma 2.17 is the last result needed for the algorithm by [AFB94] and with
it we may safely conclude this section to start describing the procedure.
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2.3 Subphylogeny algorithm

We now arrive at the algorithms. As previously discussed, the problem of
finding a perfect phylogeny can be broken down to dealing with type I and
type II cases respectively. If we have no more cases of type I left in our
procedure then we would like to produce a subphylogeny for any of the type
II cases remaining, this is more or less the heart of the entire procedure. So
we will begin by describing an algorithm dubbed SUBPHYLOGENY.

Algorithm 2.18 (SUBPHYLOGENY).
Input: A partition G ⊂ S.

Output: A subphylogeny for G if one exists, otherwise FAILURE.

Setup: For every c-partition G′ ⊂ G, a subphylogeny has already
been constructed and recorded if one exists.

The algorithm:

1 SUBPHYLOGENY(G) :
2 if |G| = 1 then

3 T̃G = the tree given by the single element of G

4 return T̃G

5 for each c-partition G1 ⊂ G such that G1 has a subphylogeny T̃1 do
6 G2 = G \G1

7 if G2 is a c-partition with a subphylogeny then

8 T̃G = subphylogeny of G given by Lemma 2.16

9 return T̃G

10 x = vector with forced states given by Lemma 2.17

11 Initialize T̃G as x together with T̃1 as a subtree
12 for each c-partition H ⊂ G2 do

13 if H has a subphylogeny T̃H that is compatible with x then
14 G2 = G2 \H
15 T̃G = T̃G ∪ T̃H at connection x

16 if G2 = ∅ then return T̃G

17 return FAILURE

To clarify, the initialization in Line 9 is done by adding an edge between
the connection of T̃1 and x, which can be done due to how a connection is
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defined. There are several things to immediately check with Algorithm 2.18
to ensure that it works as intended.

Lemma 2.19 (Correctness of SUBPHYLOGENY). Let G ⊂ S be a parti-
tion and assume for each c-partition G′ ⊂ G that a subphylogeny of G′ has
been constructed if one exists. Then if G has a subphylogeny, the algorithm
SUBPHYLOGENY constructs it, otherwise it returns FAILURE.

Proof. If |G| = 1 then the tree consisting of the single species of G as a
vertex is a subphylogeny of G and so the tree that is returned in Line 4 is
indeed correct. So we may assume that |G| > 1.

If G has a subphylogeny then there are some different cases to
consider. Firstly by Lemma 2.15 there are c-partitions that are compatible
with x and have subphylogenies, so if we are going to find a subphylogeny
of G then we are justified in searching for c-partitions as we do in Line
5. If G2 = G \ G1 is another c-partition with a subphylogeny then by
Lemma 2.16 we may combine them to form a subphylogeny for G, as is
returned in Line 9. If instead G2 is not a c-partition and if x is a connection
for a possible subphylogeny T̃G, then x is compatible with G and has xc
forced for each c ∈ D(G), as given by Lemma 2.17. So the states of x are
completely determined in that case and we may initialize such a vector
together with T̃1 as we do in Lines 10 and 11.

The loop starting at Line 12 will connect c-partitions compatible with x to
T̃G until all species left to consider are already a vertex of T̃G, by Lemma
2.15 this does indeed produce a subphylogeny for G.

We also argue that any subphylogeny for G with T̃1 as a subtree,
which is not constructed in a previous step of the algorithm, is constructed
in the loop of Line 12. Firstly note that the tree G2 is finite and will either
shrink if some c-partition H has a subphylogeny that is compatible with x,
or remain unchanged if no such H is found, in either case the loop of Line
12 will terminate, and if it terminated while G2 = then a subphylogeny
was found. So if there exists some subphylogeny with T̃1 as a subtree at
x that is not found in this loop, that must mean that the loop terminated
with G2 nonempty. We argue that this could not happen, or in other words
that G2 must contain some c-partition H with a subphylogeny, and that
is compatible with x. If G has a perfect phylogeny then by Lemma 2.6,
G2 ∪ {x} has a perfect phylogeny T̃G2∪{x}. Let y be any neighbour of x in

T̃G2∪{x}, let T̃y be the subtree of T̃G2∪{x} \ {x} which contains y, and let J
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be the set of species contained in Ty.

Firstly we note that J is a partition since it is the set of species of a
subtree of a perfect phylogeny, and therefor for each character in c ∈ M(J)
there can be at most one character state in common between J and S.
Secondly we recall that we can safely assume that each vertex is distinct.
In that case J is a c-partition, the argument for this is the same as the
argument made in the (⇒) part of Lemma 2.15, if D(J) = ∅ then x = y
which contradicts the uniqueness. Finally by Lemma 2.13 we get that J is
indeed a subphylogeny with y as a connection. So if G has a subphylogeny
then in each iteration of the loop of Line 12 we remove such a subset J
from G2 until there is nothing left. This shows that the algorithm does
produce a subphylogeny as required.

We have established that the non-FAILURE returns of SUBPHYLOGENY
work as intended, if Line 17 is reached then either there are no G1 that fit
the criteria for the loop in 5, or each such choice of G1 failed to produce a
subphylogeny for G. Since we may safely assume that species are distinct
and since we assumed |G| > 1, the first case can not occur. In the second
case there is no subphylogeny of G by Lemma 2.15.

With Algorithm 2.18 we now have the last ingredient needed to describe the
full procedure. Examples where this algorithm is being run will be given
later once we have described the full procedure, which will be covered next.
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2.4 Phylogeny algorithm

We arrive now at the algorithm which is the culmination of all the previous
sections, and the main result of [AFB94]. The recursive algorithm which is
called PHYLOGENY, first handles type I splits while leaving the type II
cases to SUBPHYLOGENY. The case of type I is dealt with recursively as
we will describe now.

Algorithm 2.20.
Input: A species set S with |S| = n.

Output: A perfect phylogeny for S if one exists, otherwise FAILURE.

1 PHYLOGENY(S) :
2 if |S| = 1 then
3 TS = the tree given by the single element of S
4 return TS

5 if there exists type I c-split (G1, G2) then
6 s = connecting species of (G1, G2)
7 Call PHYLOGENY(G1 ∪ {s}) and PHYLOGENY(G2 ∪ {s})
8 if both calls succeed then
9 Combine the result into a perfect phylogeny TS

10 return TS

11 else return FAILURE
12 else
13 size = 1
14 while size ≤ n− 1 do
15 for each c-partition G such that |G| = size do
16 Call SUBPHYLOGENY(G)

17 if G has a subphylogeny T̃G, record T̃G and its connection
18 endfor
19 size = size + 1
20 endwhile
21 Pick any s ∈ S

22 if G = S \ {s} has a subphylogeny T̃G then

23 x = the connection of T̃G

24 TS = T̃G ∪ {s} at the connection x
25 return TS

26 else return FAILURE
27 endif
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Remark. As previously discussed it is safe to assume that the species are
distinct, and we should do so. Consider for example the case where S consists
of a single species with a multiplicity of 2. In that case the algorithm would
return FAILURE since there are no c-splits.

Finally what remains is to show that PHYLOGENY works as intended.

Theorem 2.21. The procedure PHYLOGENY will construct a perfect phy-
logeny for S if one exists, otherwise it will return FAILURE.

Proof. The tree consisting of a single vertex as a species is a perfect
phylogeny for that lone species, so if |S| = 1 then a perfect phylogeny is
correctly returned in Line 4. Assume now that |S| > 1. There are two cases
to consider, either S has type I splits or not.

If S has a type I c-split (G1, G2) with connecting species s, then by
Lemma 2.14 every subset has one, so we can call PHYLOGENY with
G1 ∪ {s} and G2 ∪ {s}. If both calls succeed then the perfect phylogenies
can be combined by merging the two vertices s in each tree to one vertex
with all the combined neighbours and edges, as is done in Line 10. If any
of the calls fail then there is no perfect phylogeny for S. Note that the line
4 will only be reached on the first call of PHYLOGENY and not on any
subsequent recursive calls due to how type I splits are defined.

If all splits are of type II, then we first record all subphylogenies of
c-partitions G ⊂ S such that |G| < |S|, by Lemma 2.19 this produces
exactly all subphylogenies of these c-partitions. Now we note two things,
firstly that the tree consisting of any one species s is a subphylogeny as
discussed in the proof of Lemma 2.19. Secondly, by Lemma 2.14 we have
that if {s} and S \ {s} both have subphylogenies then we may combine
these to a perfect phylogeny for S, as is returned in Line 25.

So in both cases the returned tree is a perfect phylogeny for S, what
remains is to show that PHYLOGENY does not return FAILURE if there
exists a perfect phylogeny. Assume that S has a perfect phylogeny, then
again there are two cases to consider. If S has a type I split then we will
call PHYLOGENY again, which will either result in more recursive calls or
there will be no type I splits.

Assume there are no type I splits and pick any s ∈ S. By Lemma
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2.10 the species s is a leaf in any perfect phylogeny of S, so the split
({s}, S \ {s}) is a c-split in S. Recall that we may assume each s to be
distinct, so if s is a leaf then at least one character must be distinct,
otherwise the neighbour of s must be identical to s. If s were not a leaf
in some perfect phylogeny of S, then it might be that two children of s
have common states with s on partially non-overlapping characters of C.
In that case none of the children need necessarily be identical to s, but the
union of both could eliminate the possibility of s to have distinct characters.

A subphylogeny for {s} is {s} itself as a single vertex. A subphy-
logeny for S \ {s} must exist since S has a perfect phylogeny TS , then the
existence is assured by Lemma 2.13. Finally we note that the subphylogeny
for S \ {s} must have been constructed in some iteration of the loop in Line
14. This shows that PHYLOGENY(S) returns a phylogeny for S if and
only if it has one.

With this we are finished on the part of constructing perfect phylogenies. For
those wanting to better understand how the algorithm runs we recommend
working through Example A.1 in Appendix A.
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3 Gene Reconciliation

In Chapter 2 we described a process which constructs a perfect phylogenetic
tree if it exists, for a set of sequences. That study, although interesting in
and of itself, can be put in a broader context to provide insight in to the
study of protein functions. By considering DNA or protein sequences we
may compare the resulting phylogenetic tree with a known species tree in a
process called reconciliation, to gain a more complete evolutionary history of
the sequences. A simple algorithm for gene reconciliation is given by C.M.
Zmasek and S.R. Eddy [ZE01], our goal is to give a clear understanding of
that algorithm.

In the framework of constructing phylogenetic trees, as in Chapter 2,
sequences were sometimes referred to as species. We should now think of
species as merely in the biological sense. The sequences we will consider as
members of our produced perfect phylogenetic tree will be called genes. We
consider these to carry two different pieces of information; firstly a sequence
of proteins that define the gene, and secondly a biological species in which
the gene has been observed. Any perfect phylogenetic tree with genes as
input will be called a gene tree and given any set of genes (or gene tree) G,
we refer to the set of biological species which harbor the genes in G as S(G).

When we have obtained a gene tree G for a set of genes, whether it
is by using PHYLOGENY or by any other method, we want to consider
a known evolutionary species tree S of the species S(G) which harbor
the genes found in G. The reason is that we can use S to give us more
information about G, more specifically we would like to know if the vertices
of G branch off due to duplication events or speciation events. The details
of what these mean biologically will not be covered here, although to
highlight their significance we mention that duplication and speciation has
implications for the study of protein functions. We are soon going to define
them mathematically.

By looking at G and comparing it to S we gain a more complete picture
of the history being told by G in terms of duplications. Loosely speaking,
we reconcile G by embedding it in S and in doing so we can see which genes
should be marked as duplication and which should be marked as speciation.
Before we proceed to talk about duplications, let us first explicitly define
the embedding function that is used in [ZE01].

Note. For the remainder of this chapter we consider all phylogenetic
trees, both G and S, to be rooted and binary. We also assume that the
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observed genes which have been used to construct G, are leaves in G.

Definition 3.1. Let G be a gene tree and let S be a known species tree of
S(G), the species which harbor the genes in G.

i. Let T be any rooted tree. Then define σ : T → T by letting σ(α) be the
set of leaves of T which have α as ancestor.

ii. Define γ : G → S by letting γ(g) 7→ S(σ(g))

iii. Let M : G → S be such that M(g) is the lowest vertex in S satisfying
γ(g) ⊆ σ(M(g)). Then M is called the embedding or mapping
function of G and S.

In other words, we map each gene g ∈ G to the lowest species in S which
has as descendants (including itself) at least all the species names found in
the descendants of g. Let us illustrate Definition 3.1 with an example.

Example 3.2.Consider the set of genes

{a1, a2, b, c, d}

contained as leaves in the tree G =

r

g1

a1 a2

g2

g3

b c

d

with A := S({a1}) = S({a2}), B := S({b}), C := S({c}), and D := S({d}).
The corresponding species set consists of {A,B,C,D}, let the species tree
be given by S =
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r

A s1

B s2

C D

i) In general for any leaf α ∈ G we get that σ(α) = α. For the non-leaf
vertices we get σ(g1) = {a1, a2}, σ(g3) = {b, c}, σ(g2) = {b, c, d} and finally
σ(r) = {a1, a2, b, c, d}.

ii) For the leaf-vertices α ∈ G we get that γ(α) = S(σ(α)) = S(α)
by what we described in i). For the non-leaf vertices we get γ(g1) = {A},
γ(g3) = {B,C}, γ(g2) = {B,C,D} and finally γ(r) = {A,B,C,D}.

iii) Firstly we notice same as above that each leaf gets mapped to
each corresponding species. Let us look at the non-leaf vertices. The
node g1 has γ(g1) = {A} and we can see that the lowest species in S that
contains A is the species A itself. For g3 we get that s1 is the lowest species
that has B and C as descendants. Similarly s1 is the lowest species with
B,C and D as descendants. This gives us that M(g1) = A, M(g2) = s1,
M(g3) = s1, and finally M(r) = r.

The embedding function M now gives us a clear way to define exactly
what a gene duplication is.

Definition 3.3. Let G be a gene tree with species tree S and mapping func-
tion M . Let g ∈ G be any non-leaf vertex and let g1 and g2 be the two
children of g. Then g is a duplication if and only if M(g) = M(g1) or
M(g) = M(g2). Otherwise it is a speciation.

We should note that Definition 3.3 gives one way (among many) to reconcile
G with S and that this definition assumes a minimal number of duplications
as well as placing those duplications as far down in S as possible. In Example
3.2 we get that g1 and g2 are duplications sinceM(g1) = M(a1) andM(g2) =
M(g3).
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Once the mapping function has been calculated then assigning the dupli-
cations is straightforward. What about determining the function M? One
approach would be to compute γ(g) and σ(s) for each g ∈ G and s ∈ S.
However, this is needlessly expensive. We notice that both γ and σ depend
only on the leaves of each respective tree, and that both these functions
are increasing in the sense that f(E1) ⊆ f(E2) if E1 ⊆ E2, where f can
be either of the two functions. Finally we notice that each leaf g of G gets
mapped to the single species S(g). This leads us to think that if we traverse
G recursively in the right order, then we can assign duplications in a simple
way without having to calculate M explicitly first. Let us see how this is
done.

Algorithm 3.4 (Reconciliation).
Input: A rooted binary gene tree G, and a rooted binary species tree S.

Output: An assignment of duplication or speciation to each g ∈ G.

Setup: Number the vertices of S in preorder traversal with root = 1. For
each leaf g ∈ G, assign M(g) to be the number of the species S(g).

Recursion:

1 Traverse non-leaves of G in postorder with g being the current vertex:
2 Let g1 and g2 be the two children of g
3 set α1 = M(g1)
4 set α2 = M(g2)
5 while α1! = α2:
6 if α1 > α2:
7 set α1 = parent vertex of α1

8 else:
9 set α2 = parent vertex of α2

10 set M(g) = α1

11 if (M(g) == M(g1)) or (M(g) == M(g2)):
12 g is a duplication
13 else:
14 g is a speciation

Due the traversal being done in postorder, the recursion will start at the
near bottom and work upward from there. Since the labeling in S was done
in preorder, the recursion will move up through S to find the lowest (highest
label) common ancestor of M(g1) and M(g2). While doing so it also assigns
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the values of duplication or speciation, which is possible due to the fact that
the dynamical programming approach taken here works from the bottom up.
Example A.2 in Appendix A shows a detailed computation of the algorithm.

With this we can now conclude the topic of reconciliation and we
will move on to discuss how we can merge the two ideas that have been
presented so far.
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4 Incompatibilities

4.1 Problem Formulation

We started in Chapter 2 by considering sequences which represent biologi-
cal information of species, such as proteins or DNA. After having carefully
introduced the necessary theory, we presented the algorithm of [AFB94]
which takes the sequences as an input and outputs a perfect phylogeny tree
of the sequences. Next, in Chapter 3 we presented the method by [ZE01]
to compare the phylogeny tree to a known species tree to give significant
annotations to the vertices in the phylogeny.

The output of the first algorithm is roughly the input of the second one.
However, there are some incompatibilities between them. We recall from
Chapter 3 that we assume all gene trees G to be rooted and binary. There
are cases in which Algorithm 2.20 produces non-binary trees, see Example
A.1. The algorithm also does not assign any root vertex. Furthermore
Algorithm 3.4 requires that the observed sequences are leaves, which is not
guaranteed by PHYLOGENY. We make the following explicit formulation.

Problem:
There are the following incompatibilities between PHYLOGENY 2.20 and
Reconciliation 3.4.

• Reconciliation requires a rooted tree.

• Reconciliation requires a binary tree.

• Reconciliation requires observed sequences to be leaves.

We address these problems in the following section.
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4.2 Solutions

To start, observe that any tree can be made in to a rooted tree with any
vertex as the root. Despite this, we can not merely assign an arbitrary root
in the setup-phase of the algorithm. Firstly the choice of root, although
can be made arbitrarily, is certainly not unessential for the outcome with
regards to duplications. We will not make an analysis of how to attain the
best choice. However, we will show that the choice can be incorporated in
to the algorithm. Secondly, in order to determine duplications we require an
orientation in the tree at any recursion step. In other words, it is not enough
that we have one global root assigned, we need to have local orientations
that remain consistent across different iterations of the recursion. In our
discussion of the type I and II cases we mentioned that one can think of
connections or connecting sequences as the root. With this in mind we can
introduce a method of labeling the vertices so that we can keep track of the
hierarchy when we need to.

Recall from our discussion on constructing perfect phylogenies that we
can add or remove copies of any sequence. If the connecting sequence is in
the gene set then we can use the above fact to create enough copies of the
connection that we keep a binary structure on the tree while having the
connection be a leaf. Let us formalize how this refinement can be done.

Let G be a set of genes and assume that s ∈ G is a connection or connecting
sequence. If s is problematic, meaning that it violates one of the conditions
mentioned in the problem formulation, then we would like a way to alter s.
First we describe the handful of different ways in which s can be problematic.

A. s is in G and has one child.

B. s is in G and has two or more children.

C. s is not in G and has one child.

D. s is not in G and has three or more children.

In a process we call refinement, we alter s depending on which case
it belongs to. The result of one such alteration may in some cases not
be enough. We perform the steps multiple times until the result is no
longer problematic. To perform the process we need to have an underlying
orientation to keep track of parents and children. Starting with 0, each
time we consider a new connection or connecting sequence, we assign it
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a higher integer than any previously assigned. Using this, we know that
lower labels are higher up in the hierarchy while unlabeled or higher labeled
vertices are lower. Since the refinement changes the hierarchy, it will be
convenient to explicitly resolve what happens to the labels. We explain
the details of the procedure now. In the following, let l denote the label of s.

Scenario A: We add a vertex s1 that is a copy of s and transfer
any parent and child edges from s to s1. We let s be a child of s1. This
ensures that s is a leaf and that s1 has two children. Vertex s1 is given
label l while s is relabeled with l + 1

Scenario B: We add two copies s1 and s2. Then we transfer all the
child edges from s to s2 while transferring parent edges to s1. We let s and
s2 be children of s1. Vertices s1 and s2 are labeled l and l + 2 respectively,
while s is relabeled with l + 1. In this case s is turned in to a leaf and s2
is a non-leaf copy of s which acts as a connecting sequence in its place.
See Figure 2. The result will depend on the number of children that s had
before we refined it. If there were two children, then no further refinements
are needed since the new connection s2 is not in G. If there were three or
more children then the vertex s2 would be in scenario D and we refine it.

Scenario C: In this case the vertex s does not need to exist and we
can remove it. If s has a parent then we connect the child of s with that
parent.

Scenario D: We add a copy s1 of s and connect s as a parent of
s1. Then we transfer all but one of the child edges from s to s1 and give s1
the label l + 1. If s1 still has three or more children then we refine s1.

Otherwise: If a vertex does not fall in to any of the previous cate-
gories then we do not need to perform any operation, and the refinement is
done.

Unless otherwise stated, when we say that a sequence or vertex was refined
then we mean that it was altered as a result of refinement. Keep in mind
that the order of when we label and when we refine is important; we label the
connections on the way down in recursion depth, and we refine on the way
up. This operation raises some other issues. Recall from Chapter 2 that if
G has a type I split (G1, G2) with perfect phylogenies T1 and T2 respectively
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s

G1 G2 =⇒

s1

s s2

G1 G2

Figure 2: Scenario B refinement of a connecting sequence s for the split
(G1, G2). In the tree on the left, we need s to be a leaf, so we add s1 and
s2 and connect them as in the tree on the right.

at connection g, then we can merge these by identifying g in T1 with g in T2.
The same process would not directly work in our current context because we
could easily end up with a result that is again problematic, furthermore if g
has been altered through refinement then that poses the question of which
version we should merge. However, we can avoid these issues by carefully
choosing where to merge the trees after any refinement. We do the following.

Merge(T1, T2):
if g was refined in T1 or T2:

A = any one of T1 or T2 in which g was refined
B = {T1, T2} \A
g1 = the parent copy of g ∈ A
Identify g1 ∈ A with g ∈ B

Recall that by ”refined”, we mean that g was altered through refinement.
Since T1 and T2 are phylogenies for the respective partitions of a type I
split, the connection g is assumed to be in G and so is never problematic of
scenario C. The label of g can be kept from either of the previous versions
without relevance. An illustration of the procedure is shown in Figure 3.
By how the final algorithm will be constructed, g will in fact be refined in
one or two of the trees T1 and T2.

Finally we discuss the reconciliation. For any perfect phylogeny TG, the
embedding of TG in a known species tree S of the species S(G) is heavily
dependant on the topological structure of TG. Since we change the structure
when we refine the connections, we only consider finding the mapping M
and reconciling the sequences after we have connected trees together, and
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a

b gB

g1

gA c

Figure 3: Merging of two perfect phylogenies after a refinement. The tree
A := {g1, gA, c} and the tree B := {a, b, gB} with connection g, denoted
by gA and gB for each tree respectively. The dashed line between the trees
indicates the vertices that are identified. Since g has been refined in A
producing the extra vertex g1, we identify this vertex with gB when we
merge the trees together.

after having refined the result at the connection g. Due to the refinement,
there might be several non-reconciled copies of g and so we would possibly
need to reconcile several of these vertices. For the binary subtree Tg rooted
at g, we do the following assuming that S is the appropriate species set and
is set up as in Algorithm 3.4.

Reconcile(Tg, S):
Traverse non-reconciled non-leaf vertices of Tg in postorder:

With g as the current vertex, and S as species tree:
Do lines 2 to 14 in Algorithm 3.4

With this, we are now ready to present the main result.

36



5 Main Result

Now that we have introduced all the topics needed and discussed how they
can be put together, we are ready to present the resulting algorithm Rec-
Phylogeny in detail.

Algorithm 5.1 (RecPhylogeny).
Input: A set of genes G with |G| = n and a known binary rooted species
tree S of the set of species S(G).

Output: A reconciled binary rooted perfect phylogeny TG of G if
one exists, otherwise FAILURE.

Setup: Initiate l = 0 as label. Set up S as is needed for Algorithm
3.4.

1 RecPhylogeny(G) :
2 if |G| = 1 then
3 TG = the tree given by the single element of G
4 return TG

5 if there exists type I c-split (G1, G2) then
6 s = connecting sequence of (G1, G2)
7 Give s label l and set l = l + 1
8 Call RecPhylogeny(G1 ∪ {s}) and RecPhylogeny(G2 ∪ {s})
9 if both calls succeed with phylogenies T1 and T2 then

10 Merge(T1, T2) to a perfect phylogeny TG

11 g = the lowest label vertex of TG

12 Tg = the subtree of TG with root at g
13 Reconcile(Tg, S)
14 return TG

15 else return FAILURE
16 else
17 size = 1
18 while size ≤ n− 1 do
19 for each c-partition G′ such that |G′| = size do
20 Call SUBPHYLOGENY(G′)

21 if G′ has a subphylogeny T̃G′ then

22 Record T̃G′ and its connection
23 endfor
24 size = size + 1
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25 endwhile
26 Pick any s ∈ G

27 if G′ = G \ {s} has a subphylogeny T̃G′ then

28 x = the connection of T̃G′

29 TG = T̃G′ ∪ {s} at the connection x
30 Traverse non-reconciled vertices of TG with lowest label as root:
31 g = current vertex of the traversal
32 if g has no label then give g label l and set l = l + 1
33 Refine TG at g
34 Tg = subtree of TG with lowest label copy of g as root
35 Reconcile(Tg, S)
36 return TG

37 else return FAILURE
38 endif

After a run of RecPhylogeny, we can mark the vertex with label 0 as global
root. Although we recursively run RecPhylogeny, the labelings done in Lines
7 and 32 must persist across any recursion depth because the very purpose of
the labels is to keep track of the hierarchical structure of the tree. Since the
structure is determined by recursion depth, the label must remain global.
Furthermore, note that for the purpose of reconciliation, we only need to
know which vertex is the root; if we start at the root then we can assign
some order to the children of the current vertex and traverse down in pos-
torder (whether the tree is binary or not). Because of this, it is not strictly
necessary to give labels to copies in a refinement, though we have found it
convenient to do so. After merging trees in Line 10, the lowest label vertex
in TG may have gained more descendants. So although we have already rec-
onciled it, we need to do so again as is done in Line 13. The refinement in
Line 33 ensures that the tree is binary before we reconcile. Once completed,
the procedure provides us with a binary tree that has been reconciled, with
the lowest label vertex as the root. An example run of RecPhylogeny is given
in the Appendix, Example A.3. With this we are finished with presenting
the main result. We conclude this thesis in the following section with a
discussion on different approaches for optimizing the result in future work.
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6 Conclusion and Future Work

The result presented in Chapter 5 showed that it is possible to merge the
two algorithms for a combined procedure, and in arriving at this we also
detailed in Chapter 2 some justifications for choices made in [AFB94].

The main focus of our work has been in producing one combined
Algorithm for phylogeny and reconciliation, however, the result presented
in 5.1 is far from optimal. By measuring the number of duplications in
reconciled phylogenetic trees, one could compare the quality of different
results. A natural continuation to this work is to implement the methods
here, to empirically test the quality of the method on real or synthesized
data.

The assignment of duplications is dependant, among other things, on
the topology of the tree TG, the position of the genes, and the choice of
root. So consider the following choices we made. If a vertex s of TG is
problematic then we made the choice in scenario B to place s as close to
the first copy as possible, and in scenario D we expand the vertex s as
much as possible in an unbalanced way. Both of these choices affect the
structure in a possibly erroneous way. Authors Durand et al., [DHV06]
give a method of correcting topological errors on a rooted gene tree
with respect to minimizing duplications. In our case the choice of root
is made arbitrarily, which also influences the outcome. Methods by P.
Górecki and O. Eulenstein [GE12] provide simultaneous rooting and error-
correction. The impact of various choices of root on the outcome of a more
general reconciliation model is studied by S. Kundu and M.S. Bansal [KB18].

Part of the reason for the refinement procedure we introduced is that
the process of PHYLOGENY leads to non-binary vertices in some cases.
The authors Y. Zheng and L. Zhang [ZZ17] consider optimal reconciliation
with non-binary gene-trees by expanding non-binary vertices in a way that
is consistent with minimizing duplications. It could very well be possible to
expand Algorithm 5.1 by incorporating these methods, or parts of them, in
the procedure, for an optimized algorithm.

Finally, consider the following observation. For any non-leaf vertex g
of a binary rooted perfect phylogeny, let g1 and g2 denote the children of g.
With γ as in Definition 3.1, if γ(g1) ∩ γ(g2) ̸= ∅ then g will be marked as
duplication when reconciled with any species tree. However, the converse

39



statement does not hold in general. Consider the gene tree G =

g1

a g2

b c

and the corresponding species tree S =

S1

B S2

A C

with capital letters in S as the species of the corresponding letters in G.
Then g1 is a duplication since M(g1) = M(g2) = S2. However, we have
γ(a) ∩ γ(g2) = ∅. Authors K. M. Swenson et al [SDEM12] denote these
types of vertices as non-apparent duplications and provide methods for
eliminating them by restructuring the gene-tree.
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A Appendix

Example A.1 (Phylogeny algorithm). First let us note the output of a
commonly occurring case in most runs of the algorithm. If the input S of
PHYLOGENY is two distinct species s and t, then the output will be a tree
consisting of the two species as vertices connected by an edge. Firstly there
can not be any type I c-splits because of the size requirement. Secondly
we will call SUBPHYLOGENY on s and t respectively which will return s
and t as trivial subphylogenies. Then we will connect either s or t with its
complement in S which produces the same result.

Now consider the sequences given by the table

Denotation Sequence
a 1000000
b 1100000
c 1200000
d 0021110
e 0012110
f 0011210
g 0011120
h 0031111
i 0013111
j 0011311

and let S := {a, b, c, d, e, f, g, h, i, j}. To simplify the notation we will
omit brackets and commas when referring to sets of S. A bar over the
set indicates the set complement with regards to the set S of the current
running of PHYLOGENY. So in PHYLOGENY(defghij), we would write
hij to mean {d, e, f, g}.

PHYLOGENY(S):
Since |S| > 1 we move on to see if there are any type I c-splits in S and
see that (abc, defghij) is such; character 1 and 7 are common with at most
one common state, a is compatible with both partitions, and D(abc) ̸= ∅.
PHYLOGENY(abc):
We see that (a, bc) is a type I c-split with b as connecting species.
PHYLOGENY(ab) and PHYLOGENY(bc):
By our above discussion this will return trees consisting of a, b and b, c
respectively. We attach these together at the connection b and get the
following tree.
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b

a c

PHYLOGENY(adefghij):
One can verify that there are no type I c-splits in adefghij. With size = 1
there are the eight trivial subphylogenies, one for each singleton c-partition.
With size = 2 we get each of the sets ad, ae, . . . , aj as c-partitions, we will
show SUBPHYLOGENY(ad) only as the others are done in an analogous
way.

SUBPHYLOGENY(ad):
We choose the c-partition G1 = a which has a subphylogeny, and let
G2 = d. Then we note that also G2 has a subphylogeny, so we return the
combined tree as given by Lemma 2.16, depending on our choice of u and
v in the Lemma the connection will be a different vertex. Either of the
following trees could be the result.

0021110

a d

0001110

a d

For size = 3 we get the c-partition hij, so we run SUBPHYLOGENY on
this partition.

SUBPHYLOGENY(hij):
Let G1 = h which has a subphylogeny T̃h, so that G2 = ij which does not
have a subphylogeny. Then x1 = 0011111 is the vector with forced states
as given by Lemma 2.17. We set T̃G to be x1 with T̃h as a subtree. Now
since i is a c-partition with a subphylogeny T̃i that is compatible with x,
we may remove i from G2 and connect T̃h with T̃G at the connection x. We
do similarly with j, and after having done so, G2 is now empty. We return
the tree T̃G which now looks like the following.

0011111 (x1)

h i j
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There are no other c-partitions of size 3. For size = 4 it is once again
possible to check that there does not exist any c-partitions, however with
size = 5 we have one c-partition adefg.

SUBPHYLOGENY(adefg):
The case is analogous to the previous one of hij and produces the following
tree.

a

0011110 (x2)

d e f g

The orientation of a is kept upward to remind us that it is the connecting
species in this run of PHYLOGENY. For size = 6 there are no c-partitions.
Finally for size = 7 we get the c-partitions a, d, . . . , j. We will look at the
first one.
SUBPHYLOGENY(a):
Take the c-partition G1 = hij which has the subphylogeny T̃hij and connec-
tion xhij = 0011111. Then G2 = defg does not have any subphylogeny, so

we let xa be the vertex with forced states 0011110 and form the tree T̃a with
xa and the tree T̃hij as a subtree at xa. Finally we look at the c-partitions
of G2 which have subphylogenies compatible with xa, these are d, e, f and g.
We attach each of these to connection xa and return T̃a, the following tree.

0011110 (xa)

0011111 (xhij)

h i j

d e f g

SUBPHYLOGENY for each of d, e, f , g will be the same in every regard
except for which leaves are attached to 0011110. For the case of h, i and j the
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difference will be that instead of taking G1 = hij we will take G1 = adefg,
otherwise it will be done in a similar manner, so we omit these.

One thing to note is that our choice of G1 = hij is arbitrary, we could
have chosen G1 = h for example. In that situation however, we would
have attached i and j to xhij but then been forced to choose a different
c-partition as G2 = defg ̸= ∅ and there are no more c-partitions compatible
with xhij .

Now we are finished with the loop that produces the subphylogenies
and can go on to the final step. We take an arbitrary species, say a, and
consider a. Since a has a subphylogeny T̃a we can connect T̃a with {a} at
the connection xa. The result is the following tree.

a

0011110 (xa)

0011111 (xhij)

h i j

d e f g

This ends the call of PHYLOGENY(adefghij). Now finally we may
combine the two resulting outputs into
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a

b

c 0011110

0011111

h i j

d e f g

which is the output of PHYLOGENY(S).
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Example A.2 (Reconciliation algorithm). Consider the gene tree G =

r

γ1

γ2

a b

c

d

with corresponding species A, . . . ,D respectively for each gene a, . . . , d. Let
the species tree be given by S =

r

s1

s2

A C

B

D

After the setup, the tree S looks like

(1)r

(2)s1

(3)s2

(4)A (5)C

(6)B

(7)D
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with numberings indicated in paranthesis and with initial M given by the
following table.

g M(g) spec/dup

a A -
b B -
c C -
d D -
γ1 ? ?
γ2 ? ?
r ? ?

Starting our traversal in postorder, the first vertex we consider is g = γ2
with g1 = a and g2 = b. Then we set α1 = A and α2 = B. Since α1 < α2 we
set α2 = s1, then α1 > α2 so we set α1 = s2. We now have that α1 > α2 so
we set α1 = s1, this finishes the loop since α1 = α2. We set M(γ2) = s1 and
since (M(γ2) ̸= M(g1) and M(γ2) ̸= M(g2) we get that γ2 is a speciation.

Continuing the postorder traversal with g = γ1 we set α1 = s1 and
α2 = B. Since α1 < α2 we set α2 = s1 which ends the loop. We set
M(γ1) = s1 = M(γ2) and hence γ1 is marked as a duplication.

Finally we let g = r and set α1 = M(γ1) = s1 and α2 = D. Since
α1 < α2 we set α2 = r. Now we have that α1 > α2 so we set α1 = r which
ends the loop. This gives us that M(r) = r and is marked as a speciation.
The complete table of g, M , and speciation/duplication is given by the
following.

g M(g) spec/dup

a A -
b B -
c C -
d D -
γ1 s1 duplication
γ2 s1 speciation
r r speciation
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Example A.3 (RecPhylogeny). Consider the the sequence set G =
{a, b, c, d, e, f, g, h, i, j} as in Example A.1, with the addition of sequence
set S(G) = {s1, s2, s3, s4} where S({a, d, h}) = s1, S({b, e, i}) = s2,
S({c, f}) = s3 and S({g, j}) = s4. We have the following table.

S(E) E ⊂ G

s1 a, d, h
s2 b, e, i
s3 c, f
s4 g, j

Let the species tree of S(G) be given by S =

r

σ1

s1 s2

σ2

s3 s4

Then we may do roughly the same as in Example A.1 while applying the
modified steps this time. To start, if we again choose the type I split
(abc, defghij) with a as connection, and then choose type I split (a, bc)
with b as connection, then we call RecPhylogeny(ab) with a being consid-
ered higher up in the tree than b. Same as before, there are no more type I
splits so we form the subphylogeny consisting of a connected with b. Now
we traverse the tree ab to refine and reconcile it. Since a has the single child
b, we refine it at a and get

a1

a b

with M(a1) = σ1. Similarly for RecPhylogeny(bc), we refine at b and get
the tree

b1

b c
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with M(b1) = r. Merging these two together, we get. Since we have added
more descendants to a1, we need to reconcile that vertex again. This gives
us M(a1) = r.

a1

a b1

b c

Moving on to RecPhylogeny(adefghij), we get the same subphylogeny as
before with a as connection, and := xhij and xx as connecting sequences.
This time we traverse the tree to refine xhij and get the tree

a

(xa)

(xhij)1

h (xhij)2

i j

d e f g

with M((xhij)2) = r and M((xhij)1) = r. Then we move on in our traversal
to refine and reconcile xx. We get the tree
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a

(xa)1

(xhij)1

h (xhij)2

i j

(xa)2

d (xa)3

e (xa)4

f g

with M((xa)4) = σ2 and M((xa)3) = M((xa)2) = M((xa)1) = r Finally we
refine and reconcile a, we get the tree

a2

a (xa)1

(xhij)1

h (xhij)2

i j

(xa)2

d (xa)3

e (xa)4

f g

with M(a2) = r, which ends this run of RecPhylogeny(adefghij). Now
finally we merge the two trees of (abc) and (adefghij) together. This gives
us
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a2

a1

a b1

b c

(xa)1

(xhij)1

h (xhij)2

i j

(xa)2

d (xa)3

e (xa)4

f g

and since we have added more descendants to a2, we need to reconcile it
again. However, we already have M(a2) = r so there is no other possible
lowest common ancestor which we could map a2 to. Hence we return the
above tree and this finishes this run of the algorithm. The following table
shows M with speciation and duplication.

x M(x) spec/dup

b1 r speciation
a1 r duplication
a1 r duplication

(xhij)2 r speciation
(xhij)1 r duplication
(xa)4 σ2 speciation
(xa)3 r duplication
(xa)2 r duplication
(xa)1 r duplication

The end result of this artificial example contained a large amount of dupli-
cations, but this might not be the case for examples on real data.

51



References

[AFB94] Richa Agarwala and David Fernández-Baca. A polynomial-time
algorithm for the perfect phylogeny problem when the num-
ber of character states is fixed. SIAM Journal on Comput-
ing, 23(6):1216–1224, 1994. arXiv:https://doi.org/10.1137/
S0097539793244587, doi:10.1137/S0097539793244587.

[DHV06] Dannie Durand, Bjarni V. Halldórsson, and Benjamin Vernot.
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