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Abstract

This article is a journey which starts from the Borsuk-Ulam theorem and
ends in the topological Tverberg conjecture. These two topics are the main
concerns of this article. We first discuss the Borsuk-Ulam theorem and give
some of its applications within and outside of mathematics. Later we present
two generalizations of the Borsuk-Ulam theorem and show how they can be
used to prove the topological Tverberg conjecture for the prime and prime
power situations. In the end, we state the idea about how to disprove the
topological Tverberg conjecture for the non prime power situation.
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1
Introduction
This article mainly addresses two topics: the first one regarding the Borsuk-Ulam
theorem and its applications; the seond one is about the topological Tverberg con-
jecture.

The Borsuk-Ulam theorem and its applications Our journey starts from the
Boruk-Ulam theorem, which is one of the most useful tool in algebraic topology.
The theorem not only is interesting in itself—it has many different equivalent for-
mulations and many different kinds of proofs, but also has lots of generalizations
and numerous important applications in various fields within and outside of math-
ematics.

The most common version of the theorem says that: for any continuous map
f : Sn → Rn, there exists a pair of antipodal points (points that are opposite with
respect to the center of Sn) x and −x in Sn, such that f(x) = f(−x). There
is a popular interpretation of the theorem which says that, there are always two
antipodal locations on earth admitting the same temperature and the same air
pressure. However, since the temperature on earth is obviously not continuous, this
interpretation is interesting but might not be correct.

Given its importance, we introduce the Borsuk-Ulam theorem and give some of
its applications in section 3. More precisely, in subsection 3.1, we give 4 equivalent
formulations of the Borsuk-Ulam theorem, and offer a proof of the theorem using
more advanced knowledge of algebraic topology. In the subsection 3.2, we state
the combinatorial equivalent version of the Borsuk-Ulam theorem—the Tucker’s
lemma, and give a combinatorial proof of the lemma. This gives another proof
of the Boruk-Ulam theorem using pure combinatorical knowledge. In addition, we
state a set covering equivalent version of the Boruk-Ulam theorem—the LSB theo-
rem, and show the equivalence between them. We also give an important corollary
of the Boruk-Ulam theorem—the Brouwer’s fixed point theorem. Similarly with the



(a) case 1 (b) case 2

Figure 1: r = 2, d = 2

Boruk-Ulam theorem, we offer a combinatorial equivalent version of the Brouwer’s
fixed point theorem—the Sperner’s lemma, and a set covering equivalent version of
the Brouwer’s fixed point theorem—the KKM theorem. The Brouwer’s fixed point
theorem is another important tool in topology. It is used in many different fields
including mathematical programming, game theory, and economics. For example,
the well-known mathematician John Nash used the Brouwer’s fixed point theorem
and its generalization—the Kakutani fixed-point theorem to prove the existence of
Nash equilibrium.

The topological Tverberg conjecture The second topic of the article is the
topological Tverberg conjecture, which was considered to be a central unsolved prob-
lem in topological combinatorics. The conjecture says that, for every positive integer
r, d, any continuous map f : ∆(d+1)(r−1) → Rd of a (d+1)(r−1)-dimensional simplex
∆(d+1)(r−1), there exists r pairwise disjoint faces F1, . . . , Fr ⊆ ∆(d+1)(r−1), such that
f(F1) ∩ · · · ∩ f(Fr) ̸= ∅.

The topological Tverberg conjecture comes from the Tverberg theorem, which
says that for every positive integer r, d, any (d + 1)(r − 1) + 1 points in Rd can be
decomposed into r disjoint parts, such that the intersection of all the convex hulls
of the r parts is non-empty. When r = 2, this is called the Radon’s theorem.

For r = 2, d = 2, the intersection has two situations as in figure 1. The Tver-
berg’s theorem can be reformulated using affine map, which is for every positive
integer r, d, for any affine map f : ∆(d+1)(r−1) → Rd there exists r pairwise dis-
joint faces F1, . . . , Fr such that the intersection of their images is non-empty, i.e.,
f(F1)∩ f(F2) · · · ∩ f(Fr) ̸= ∅. The topological Tverberg conjecture says that we can
generalize the affine map above into continuous map.

The conjecture was proved by Bajmóczy and Bárány in 1981 for r a prime
number, and by Özaydin(1987), Volovikov(1996), and Sarkaria(2000) for r a prime
power. Whether the conjecture is true for r non prime power remained unsolved for

8



quite a long time. Until 2015, a counterexample of dimension d ≥ 3r + 1 was con-
structed by Florian Frick using some important technique (the r-fold Van Kampen
finger moves and r-fold Whitney trick) developed by Mabillard and Wagner. Thus
the topological Tverberg conjecture was shown to be false for r non prime power.
The lowest dimension of counterexamples which have been constructed is d ≥ 2r+1.
The problem of whether there exists counterexamples for r non prime power, d ≤ 2r
is still open.

In this article, we discuss the topological Tverberg conjecture by first introduc-
ing two generalizations of the Borsuk-Ulam theorem in subsection 3.3. We later use
these two generalizations to prove the topological Tverberg conjecture for r prime
and prime power. After that, in subsection 4.1 we give a short history of the con-
jecture. In subsection 4.2 we prove the conjecture for prime power case by showing
the nonexistence of a Σr-equivariant map, which gives the non existence of almost
r-embedding. In subsection 4.3, we disprove the topological Tverberg conjecture
for r non prime power. We do this as follows: we first show the Topological Tver-
berg conjecture implies the generalized Van Kampen-Flores conjecture in section
4.3.2, and then in section 4.3.3, we show the existence of a Σr-equivariant map using
equivariant obstruction theory and then show this implies the existence of an almost
r-embedding using r-fold Van Kampen finger moves and r-fold Whitney trick, which
gives a counterexample for the the generalized Van Kampen-Flores conjecture. How-
ever, due to the codimension restriction of the r-fold Whitney trick, the topological
Tverberg conjecture is still open for low dimensional cases.

Finally, section 2 is the foundation of this article, which contains some prelimi-
nary knowledge and lots of important examples for later discussion.
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2
Foundations
2.1 Notations

In this thesis we will adopt the following notations:

• Rn: the n-dimensional Euclidean space

• e: the identity element of a group

• Σn: symmetric group of degree n.

• Bn: the unit n-ball.

• Sn−1: the unit n− 1 sphere.

• ∆n or ∆n: a standard n-simplex.

• Id(X): the identity map Id : X → X.

2.2 Cell Complexes

In this subsection, we introduce cell complexes and simplicial complexes. Cell com-
plexes are topological spaces built by attaching cells of increasing dimensions along
their boundaries. Many topological spaces can be built in this way and the cell struc-
ture of the topological space gives important information about the space. Simplicial
complexes are a special kind of cell complexes. They are topological spaces built by
gluing simplicies of different dimensions along their boundaries under some particu-
lar rules.

2.2.1 cell complexes

Definition 2.2.1 (n-cell). A n-cell en is a space which is homeomorphic to the unit
n-dimensional ball Bn.
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Definition 2.2.2 (Cell Complex(CW complex)). A cell complex (CW complex) X
is a topological space constructed in the following way:

1. start with a discrete set X0, whose points are regarded as 0-cells, and X0 is
the 0-skeleton of X.

2. form the n-skeleton Xn from the Xn−1 inductively on n: let en
α
∼= Bn

α be a
n-cell with boundary ∂en

α
∼= ∂Bn

α
∼= Sn−1 and interior Int(en

α) ∼= Int(Bn
α), we

attach it to Xn−1 along the boundary ∂Bn
α by the attaching map φα : ∂Bn

α
∼=

Sn−1 → Xn−1. And we define Xn to be the quotient space of the disjoint union
Xn−1 ⊔α B

n
α of Xn−1 with a collection of n-cells Bn

α under the identifications
x ∼ φα(x) for x ∈ ∂Bn

α. Thus Xn = Xn−1 ⊔α Int(en
α) where each Int(en

α) is an
open n-cell.

3. we can either stop the above procedure at some finite n and have a finite
dimensional cell complex(n-dimensional), or we can continue the procedure
infinitely and have X = ∪nXn. We equip X with the weak topology: a set
S ⊆ X is open (or closed) if and only if its intersections S ∩ Xn with each
n-skeleton Xn of X is open (or closed) in Xn for all n.

A cell complex with its top dimensional cells being n-dimensional is a n-dimensional
cell complex. A cell complex with finitely many cells is a finite cell complex. Obvi-
ously a finite cell complex is finite dimensional but the converse it not true. A cell
complex can be finite dimensional but has infinitely many cells.

Each n-cell en
α has its characteristic map which is defined by ϕα : Bn

α ↪−→ Xn−1⊔α

Bn
α → Xn ↪−→ X.

A subcomplex of a cell complex X is a closed subspace A ⊆ X which is a union
of cells of X. And A itself is a cell complex.

Example 2.2.1 (cell complex structure of real projective space RP n). Real projective
n space RP n is defined to be the quotient space of Rn+1 \ {0} under the equivalence
relation v ∼ λv for v ∈ Rn+1 \ {0} and λ ∈ R, λ ̸= 0. If we restrict to v of length
1, RP n can also be defined to be Sn/(v ∼ −v), i.e., the quotient space of Sn by the
equivalence of the antipodal points v and −v. This is also the same with saying that
RP n is the quotient space of the hemisphere Bn identifying the antipodal points on
its boundary ∂Bn. Since ∂Bn ∼= Sn−1 with its antipodal points identified is again
RP n−1, we can see thatRP n is obtained fromRP n−1 by attaching a n cell en along its
boundary ∂en through the attaching map ∂en ∼= Sn−1 q−→ Sn−1/(v ∼ −v) ∼= RP n−1
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where q is the quotient map. By induction on n we can see that RP n has a cell
complex structure e0 ∪ e1 ∪ · · · ∪ en with one cell ek in each dimension k ≤ n.

Definition 2.2.3 (cellular map). Let X, Y be two cell complexes, let Xn, Yn be the
n-skeleton of X and Y respectively, a cellular map f : X → Y is a continuous map
which maps the n-skeleton of X to the n-skeleton of Y for all n = 0, 1, . . . , n, . . . ,
i.e., f(Xn) ⊆ Yn for all n.

The following theorem tells us that any continuous map between cell complexes
can be deformed to a cellular map.

Theorem 2.2.1 (cellular approximation theorem). Any continuous map f : X → Y

between two cell complexes is homotopic to a cellular map.

Proof. The proof can be found in [Hat02, section 4.1].

2.2.2 simplicial complex

Definition 2.2.4 (convex combination). A convex combination is a linear combina-
tion of points where the coefficients are non negative and sum to 1. More precisely,
given a set of finite points {v0, . . . , vn} in Euclidean space Rm , a convex combination
of these points is any point of the form λ1v1 + λ2v2 + · · · + λnvn where 0 ≤ λi ≤ 1
for all i, and ∑n

i=0 λi = 1.

Definition 2.2.5 (affine combination). An affine combination is a linear combina-
tion of points where the coefficients sum to 1. More precisely, given a set of finite
points {v0, . . . , vn} in Euclidean space Rm , an affine combination of these points is
any point of the form λ1v1 +λ2v2 + · · ·+λnvn where λi ∈ R for all i, and ∑n

i=0 λi = 1.

Definition 2.2.6 (convex hull). Given a subset S ⊆ Rm, the convex hull conv(S)
of the subset is the smallest convex set in Rm containing S, where a subset C ⊆ Rm

is convex if and only if it contains all the convex combination of its points.
Equivalently, the convex hull of S is the set of all convex combination of finite

points in S.

Definition 2.2.7 (affine hull). Given a subset S ⊆ Rm, the affine hull of the subset
is the smallest affine set in Rm containing S, where a subset C ⊆ Rm is affine if and
only if it contains all the affine combination of its points.

Equivalently, the affine hull of S is the set of all affine combination of finite points
in S.
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Definition 2.2.8 (affinely independent points(points in general position)). A set
of n points {v0, v1, . . . , vn−1} ⊆ Rm are affinely independent(in general position) if
they are not contained in any affine subspace of dimension less than n− 1, i.e., the
smallest affine subspace containing them has dimension n− 1.

Equivalently, a set of n points {v0, v1, . . . , vn−1} ⊆ Rm are affinely independent
if the set of n− 1 vectors {vi − v0|i = 1, . . . , n− 1} is linearly independent.

The definition implies n − 1 ≤ m, i.e., there is no more than m + 1 affinely
independent points in Rm.

Definition 2.2.9 (n-simplex). An n-dimensional simplex (n-simplex) σn is the con-
vex hull of n + 1 affinely independent points {v0, . . . , vn} in Euclidean space Rm.
The vi’s are the vertices of σn. We say σn is spanned by its vertices and write
σn = conv(v0, . . . , vn) or σn = [v0, . . . , vn]. We can also denote σn using barycentric
coordinates:

σn = {
n∑

i=0
λivi|0 ≤ λi ≤ 1 for all i, and

n∑
i=0

λi = 1},

where λi’s are the barycentric coordinates of x in σn. And ∑n
i=0

1
n+1vi is the barycen-

ter of σn. Since any subset of affinely independent points are still affinely indepen-
dent, any subset S of {v0, . . . , vn} spans a simplex, we call it a face of σn. A face is
called proper if S is a proper subset of {v0, . . . , vn}. The face of σn which contains
x as an interior point is the support supp(x) of x in σn. The union of all faces of
the simplex σn of dimension ≤ d is the d-skeleton skeldσ

n of σn.

Example 2.2.2 (standard n-simplex ∆n). The standard n-simplex ∆n in Rn+1 is the
simplex with vertices at the n + 1 points {ei, i = 0, . . . , n} of Rn+1 where ei =
(0, . . . , 1, . . . , 0)(only the i-th component is 1, others are 0.), i.e. the vertices of the
standard n-simplex are the unit vectors along the coordinate axes of Rn+1. We can
denote ∆n by conv(e0, . . . , en) or [e0, . . . , en]. We can also write ∆n as:

∆n = {(λ0, . . . , λn) ∈ Rn+1|0 ≤ λi ≤ 1 for all i, and
n∑

i=0
λi = 1}

We can glue the simplicies together to form a geometric simplicial complex:

Definition 2.2.10 (geometric simplicial somplex). A (geometric) simplicial complex
K is a collection of simplices in Rm which satisfies:

1. any face of a simplex in K is also a simplex in K.
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2. the intersection of any two simplices in K is a face of both simplices.

The dimension of the simplicial complex is the largest dimension of the simplices of
K. A simplicial complex is finite if it contains only finite number of simplices.

Definition 2.2.11 (polyhedron of geometric simplicial complex). Let ∥K∥ = ∪{σ|σ ∈
K} be the subset of Rm which is the union of the simplices σ of K, we can define
a topology on ∥K∥ by giving each simplex σ the natural subspace topology as a
subspace of Rm, and then define any subset S of ∥K∥ to be open if and only if for all
σ ∈ K, the intersection S ∩σ is open in σ. This defines a topology on ∥K∥ since the
collection of open subsets are closed under arbitrary unions and finite intersections.
The space ∥K∥ is called the polyhedron of K.

Definition 2.2.12 (subcomplex). If L ⊆ K is a subcollection of K that contains all
faces of its elements, then L is itself a simplicial complex, called a subcomplex of K.
One subcomplex of K is the collection of all simplices of K of dimension at most k,
and we call it the k-skeleton of K, and denoted it by skelkK. The 0-skeleton of K is
called the vertices of K.

Definition 2.2.13 (triangulation of topological space). A triangulation T of a topo-
logical space X consists of a geometric simplicial complex K and a homeomorphism
T : ∥K∥ → X, where ∥K∥ is the polyhedron of K. The vertices and simplices of
the geometric simplicial complex K are said to be the vertices and simplices of the
triangulation T . A topological space which admits a triangulation is said to be
triangulable.

Definition 2.2.14 (subdivision of simplicial complex). A geometric simplicial com-
plex K′ is a subdivision of a geometric simplicial complex K, denoted as K′ ≺ K,
if

• |K′| = |K|

• for any simplex σ ∈ K′, there exists a simplex τ ∈ K such that σ ⊆ τ .

Subdivision is a special kind of triangulation.

Definition 2.2.15 (barycentric subdivision of geometric simplicial complex). We
first define barycentric subdivision of a simplex: let [v0, . . . , vn] be a simplex, we
can define the barycentric subdivision of [v0, . . . , vn] inductively on n as follows: for
n = 0, the barycentric subdivision of a vertex [v0] is defined to be [v0] itself; for n =
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k − 1, k ≥ 1, suppose we have defined the barycentric subdivision of [v0, . . . , vk−1];
for n = k, let b = ∑k

i=0
1

k+1vi be the barycenter of [v0, . . . , vk], the barycentric
subdivision of [v0, . . . , vk] is a decomposition of it into k-simplices [b, w0, . . . , wk−1]
where [w0, . . . , wk−1] is any k − 1 simplex of each barycentric subdivided (k − 1)-
dimensional face [v0, . . . ,

∧
vi, . . . , vk] of [v0, . . . , vk], where ∧

vi means the vertex vi is
deleted.

The above definition can be generalized to barycentric subdivision of a simplicial
complex by the same process with induction on the n-skeleton of the simplicial
complex.

We can approximate any continuous map between simplicial complexes by a
simplicial map:

Theorem 2.2.2 (Simplicial Approximation Theorem). Let K be a finite simplicial
complex, L be an arbitary simplicial complex, then any continuous map f : K → L
is homotopic to a map that is simplicial with respect to some barycentric subdivision
of K.

Proof. The proof can be found in [Hat02, section 2.C].

There is a combinatorial equivalent notion of the geometric simplicial complex
which is more convenient to use in many situations, i.e., the abstract simplicial
complex.

Definition 2.2.16 (abstract simplicial complex). An abstract simplicial complex is
a pair (V,K) where V is a set of points, and K ⊆ 2V is a hereditary system of subsets
of V , which is, if F ∈ K and G ⊆ F , then G ∈ K. In particular, ∅ ∈ K if K ̸= ∅. The
points in V are called the vertices of the abstract simplicial complex, and the sets in
K are called (abstract) simplicies. We define the dimension of each simplex F ∈ K to
be dim(F ) = |F |−1, and the dimension of K to be dim(K) = max{dim(F )|F ∈ K}.

We can see from the definition that V = ∪K, i.e., the vertex set V of the abstract
simplicial complex is the union of the one-point sets of K, thus we can write an
abstract simplicial complex (V,K) simply as K.

Abstract simplicial complex and geometric simplicial complex determine each
other: each geometric simplicial complex K determines an abstract simplicial com-
plex (V,K) as follows: let V be the set of vertices of K, let the sets in K be the
vertex sets of the simplices of K, we call K a geometric realization of K, and call
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the polyhedron ∥K∥ of K also to be the polyhedron of K. Conversely, each abstract
simplicial complex (V,K) determines a geometric simplicial complex K: let σn be a
n-dimensional simplex where n = |V |− 1, let K to be a subcomplex of σn consisting
of simplices conv(F ) for all F ∈ K.

Thus in some sense we can say the definition of abstract simplicial complex and
geometric simplicial compelx are equivalent.

Definition 2.2.17 (simplicial map). Let K, L be two abstract simplicial complexes,
a simplicial map from K to L is a map f : V (K) → V (L) sending simplices to
simplices, i.e., for each F ∈ K, f(F ) ∈ L.

A bijective simplicial map whose inverse map is also simplicial is called an iso-
morphism of abstract simplicial complexes. Two abstract simplicial complexes K
and L are said to be isomorphic if there is an isomorphism between them, denoted
as K ∼= L.

Definition 2.2.18 (affine extension of simplicial map). Let K, L be geometric
simplicial complexes, let K, L be their associated abstract simplicial complexes, let
f : V (K) → V (L) be a simplicial map from K to L. We define the affine extension
∥f∥ of f to be the following map

∥f∥ : ∥K∥ → ∥L∥

by extending f affinely to the relative interiors of the simplices of K: let σ ∈ K
be any simplex with vertices v0, . . . , vk, any x in the relative interior of σ can be
written as x = ∑k

i=1 λivi, with λi ≥ 0, 1 ≤ i ≤ k, and ∑k
i=1 λi = 1, and we define

∥f∥(x) = ∑k
i=1 λif(vi).

One can easily show that for every simplicial map f , its affine extension is a
continuous map; if f is injective, so does ∥f∥; if f is an isomorphism, then ∥f∥ is a
homeomorphism.

2.3 Group action

In this subsection, we define group action on a set, on an abelian group, and on a
topological space respectively. Moreover, we give some crucial examples which are
important for later discussion.
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2.3.1 group action on a set

Definition 2.3.1 (symmetric group). A symmetric group ΣX of the set X is the
group of all permutations (bijections) from X to itself with function composition as
group operation. Since the composition of two bijections is a bijection, the inverse
of a bijection is a bijection, and function composition is associative, the group is
well defined.

If X is a finite set of n elements, we denote ΣX as Σn and call it the symmetric
of degree n.

Definition 2.3.2 (group action on a set). Let G be a group and X be a set, a left
action of G on X is a map

G×X → X

(g, x) 7→ g · x

which satisfies e · x = x and (g1g2) · x = g1 · (g2 · x) for all g1, g2 ∈ G and all x ∈ X.
Similarly, a right action of G on X is a map

X ×G→ X

(x, g) 7→ x · g

with the same properties as left action except the composition works in reverse
direction: (x · g1) · g2 = x · (g1g2).

The left and right action determine each other by the correspondence g · x =
x · g−1. Thus they are equivalent and we can use any of them. In this thesis we
choose to use left action.

From the above definition we observe that for each fixed g ∈ G we get a map
ρg : X → X defined by ρg(x) = g · x. And the following two important facts can be
shown easily:

• for each fixed g ∈ G, ρg : X → X is a permutation(bijection) of X. Since for
each ρg, there is an inverse map ρg−1 : X → X.

• the map ρ : G → ΣX defined by g 7→ ρg is a group homomorphism. Since for
all g1, g2 ∈ G, x ∈ X, we have ρg1g2(x) = (g1g2) ·x = g1 · (g2 ·x) = (ρg1 ◦ρg2)(x).

Thus we have the following equivalent definition of group action:
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Definition 2.3.3 (group action on a set). A left action of G on X is the group
homomorphism ρ from G to the symmetric group ΣX of X:

ρ : G→ ΣX

g 7→ ρg : x 7→ g · x

It is also called the associated permutation representation of the group G on the set
X.

There are different kinds of group actions:

• A group action G on X is said to be fixed point free if no element x ∈ X is
fixed by all g ∈ G, i.e., ∀x ∈ X, there exists g ∈ G, such that g · x ̸= x.

• A group action G on X is said to be free if no element x ∈ X is fixed by any
nontrivial element g ̸= e, g ∈ G, i.e., ∀x ∈ X, ∀g ̸= e ∈ G, g · x ̸= x.

• A group action G on X is said to be transitive if ∀x1, x2 ∈ X, ∃g ∈ G, such
that x1 = g · x2.

• A group action G on X is said to be faithful or effective if distinct group
elements corresponds to distinct actions, i.e., if g1 ̸= g2, then ∃x ∈ X such
that g1 ·x ̸= g2 ·x. Thus the associated permutation representation is injective.

Example 2.3.1 (ΣX acts on X). Let X be a set, ΣX be its symmetric group, then ΣX

acts on X by permutations, which is, for all σ ∈ ΣX , for all x ∈ X, σ ·x = σ(x). The
associated permutation representation is the identity map from ΣX to itself. This
action is obviously transitive since for any x1, x2 ∈ X, there exists σ = (x1x2) ∈ ΣX ,
where (x1x2) is the transition of x1 and x2, such that σ(x1) = x2.

Definition 2.3.4 (transitive subgroup of Σn). If X in the above example is a finite
set, denoted as {1, 2, . . . , n}, let Σn acts on {1, 2, . . . , n} by permuting its order,
let H ⊆ Σn be a subgroup of Σn, define the action of H on {1, 2, . . . , n} to be the
restriction of the action of Σn on {1, 2, . . . , n}. If this action is transitive, H is said
to be a transitive subgroup of Σn.

Example 2.3.2 (any finite group G of n elements can embed into Σn as a transitive
subgroup). Let G be a group, define a group action of G acting on itself by left
multiplication, i.e, for all g ∈ G, for all x ∈ G, g · x = gx where gx is the group
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multiplication of g and x. This group action is transitive since for any g1, g2 ∈ G,
there exists g2(g1)−1 ∈ G such that (g2(g1)−1)g1 = g2; it is free since gx = x gives
g = e by multiplying x−1 on the right of each side of the equation; it is also faithful
since it is free.

Equivalently, this group action is a group homomorphsim ρ : G → ΣG, g 7→ ρg

where ρg : G→ G, x 7→ gx. The action being faithful means ρ is injective, and thus
G ∼= ρ(G). The action being transitive means ρ(G) acts on G transitively. If G is
a finite group of n elements, in this case we say G embeds into Σn as a transitive
subgroup. Thus we have any finite group G of n elements can embed into Σn as a
transitive subgroup.

In the following we give two lemmas regarding the transitivity of the Sylow p-
subgroup of symmetric group. Before that, we first introduce Sylow p-subgroup and
Sylow’s theorem.

Definition 2.3.5 (p-group). Let p be a prime number, a group of order pα for some
integer α ≥ 0 is a p-group.

Definition 2.3.6 (p-subgroup). Let G be a group and p be a prime number, a
subgroup of G which is a p-group is a p-subgroup of G.

Definition 2.3.7 (sylow p-subgroup). Let G be a group of order pαm where p is a
prime number, p ∤ m, and α ≥ 0 is an integer, then a subgroup of G of order pα is a
Sylow p-subgroup of G.

Remark 2.3.1. For p a prime number not dividing the order |G| of G, we have α = 0.
In this case, the Sylow p-subgroup has order 1, and it is the trivial subgroup {e}.

The Lagrange theorem in group theory tells us that the order of any subgroup
of a finite group G divides the order |G| of the group G. A natural converse of the
question is for any positive integer n which divides the order |G| of G, whether there
exists a subgroup of G of the corresponding order n. Cauchy theorem answers partly
the question: for any prime number p dividing the order of the group, there exists
a cyclic subgroup of the corresponding order p. The following Sylow’s theorem is
a generalization of the Cauchy theorem, and it tells us that: let p be any prime
number, pα(α is a non negative integer) be its maximal power dividing the order of
the group G, then there exists a subgroup of G which has the corresponding order
pα.
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Theorem 2.3.1 (Sylow’s theorem). Let G be a finite group, for any prime number
p, there exists a Sylow p-subgroup of G. Furthermore, any two Sylow p-subgroups
are conjugate and thus isomorphic.

Proof. A proof can be found in [DF04, section 4.5].

Now we give two lemmas regarding the transitivity of the Sylow p-subgroup of
the symmetric group Σn.

Lemma 2.3.1. If n is not a power of a prime number, the Sylow p-subgroup of the
symmetric group Σn acts on the set {1, 2, . . . , n} non transitively.

Before we prove this lemme, we first give a theorem from number theory without
proof, and readers can consult [Fin47, theorem 1] for a proof.

Theorem 2.3.2 (Lucas’ theorem). Let n,m be two integers, p be a prime number,
then the binomial coefficient

(
n
m

)
modulo p is

(
n

m

)
≡

k∏
i=0

(
ni

mi

)
(mod p)

where n = n0 + n1p + · · · + nkp
k and m = m0 + m1p + · · · + mkp

k are the base p
expansions of n and m respectively with k being the maximal integer such that pk ≤ n

or pk ≤ m, and with the convention
(

n
m

)
= 0 if n < m.

proof of lemma 2.3.1. Let p be a prime number, we can expand n in the base p as
n = n0 + n1p+ n2p

2 + · · ·+ nkp
k, where 0 ≤ ni < p,∀i = 0, 1, . . . , k− 1, 0 < nk < p.

If n is not a power of p, we have pk < n, and Spk × Sn−pk ⊆ Sn is a subgroup of
Sn which obviously does not act transitively on the set {1, . . . , n}. Now we show
Spk × Sn−pk contains a Sylow p-subgroup of Sn: since

[Sn : Spk × Sn−pk ] = n!
pk!(n− pk)! =

(
n

pk

)
,

by above Lucas’ theorem 2.3.2, we have(
n

pk

)
≡
(
n0

0

)(
n1

0

)
· · ·

(
nk−1

0

)(
nk

1

)
(mod p) ≡ nk (mod p)

where 1 ≤ nk < p and thus [Sn : Spk × Sn−pk ] ≡ nk (mod p). Since 1 ≤ nk < p, we
have p ∤ [Sn : Spk × Sn−pk ]. Assume n! = pαc where p ∤ c, since p ∤ [Sn : Spk × Sn−pk ]
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we have |Spk × Sn−pk | = pαd where d|c, thus by Sylow’s theorem 2.3.1, Spk × Sn−pk

contains a Sylow p-subgroup of order pα which is also a Sylow p-subgroup of Sn.
Since Spk × Sn−pk acts on the set {1, . . . , n} non transitively, its subgroup also acts
on it non transitively. Furthermore, since all Sylow p-subgroup are conjugate by
theorem 2.3.1, we have all Sylow p-subgroup of Sn acts on the set {1, . . . , n} non
transitively.

Lemma 2.3.2. If n = pα is a power of prime p, the Sylow p-subgroup of the sym-
metric group Σn acts on the set {1, 2, . . . , n} transitively.

Proof. Let α ≥ 0 be an integer, p be a prime number, n = pα be a power of p,
we can see from example 2.3.2 that the abelian group (Zp)α of rank α can embed
into Spα as a transitive subgroup and thus acts transitively on the set {1, . . . , n}.
Since (Zp)α is a p-subgroup of Sn, it is contained in a Sylow p-subgroup of Sn, which
implies the Sylow p-subgroup is a transitive subgroup. Since all Sylow p-subgroups
are conjugate, all Sylow p-subgroups acts on {1, . . . , n} transitively.

2.3.2 group action on an abelian group

Definition 2.3.8 (G-module). Given a group (G,×), a G-module is an abelian
group (M,+) with a left group action, which is a map

ρ : G×M →M

(g,m) 7→ g ·m := ρ((g,m)).

such that ρ satisfies e ·m = m and (g1 × g2) ·m = g1 · (g2 ·m), and the group
action is compactible with the operation of the abelian group M , i.e.,

g · (m1 +m2) = g ·m1 + g ·m2

Definition 2.3.9 (morphism of G-modules). Let (M,+), (N,+) be two G-modules,
f : M → N is called a morphism between G-modules if it is a group homomorphism
and G-equivariant, i.e.,

f(m1 +m2) = f(m1) + f(m2)

f(g ·m) = g · f(m)

22



The set of all morphisms from M to N is denoted by HomG(M,N). It is
an abelian group under pointwise addition: (f + g)(m) = f(m) + g(m),∀f, g ∈
HomG(M,N),∀m ∈M .

2.3.3 group action on a topological space

Definition 2.3.10 (group action on a topological space). Let G be a group and let
X be a topological space, the group action of G on X is a group action of G on X as
a set, with a further requirement that for all g ∈ G, the map ρg : X → X defined by
x 7→ g ·x is a continuous map. Since ρg−1 : X → X is also a continuous map, and by
the definition of the group action on a set we have ρg ◦ρg−1 = ρg−1 ◦ρg = ρe = Id(X),
it follows that ρg : X → X is a homeomorphism of X for all g ∈ G. We call this
action an action by homeomorphism.

Thus we can equivalently define the action of G on a topological space X to be
a group homomorphism ρ : G → Homeo(X) given by g 7→ ρg : x 7→ g · x, where
Homeo(X) is a group of all homeomorphisms of X with function composition to be
group operation, and the identity map Id(X) to be the identity element.

In later text, all group action on a topological space would adopt the above
action without explicit mention.

Definition 2.3.11 (G-Space). A G-space is a pair (X, ρ) consisting of a topological
space X with a group action ρ of G on X. We shall usually denote the G-space (X, ρ)
only by its underlying topological space X. A free G-space is a G-space with a free
G-action; a fixed point free G-space is a G-space with a fixed point free G-action.

Definition 2.3.12 (Orbit Space, G-orbit). Let X be a G-space, the relation R =
{(x, gx)|x ∈ X, g ∈ G} is an equivalence relation on X since G is a group. Denote
the set of equivalence classes X mod R as X/G and define the quotient topology on
X/G as: U ⊆ X/G is open if and only if q−1(U) ⊆ X is open, where q : X → X/G

maps x ∈ X to its equivalence class Gx in X/G. X/G is called the orbit space of
the G-space X and the equivalence class Gx of x ∈ X is called the G-orbit of x.

Definition 2.3.13 (G-subspace). Let X be a G-space, Y ⊆ X be a subspace of X,
if ∀y ∈ Y, ∀g ∈ G, we have g · y ∈ Y , then Y is called G-invariant or a G-subspace
of X. In this case the G-action on X induces a G-action on Y , which makes Y also
a G-space.
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Remark 2.3.2. The orbit Gx are the smallest G-subspace of X, and any G-subspace
of X is a union of some orbits Gx.

Definition 2.3.14 (G-map). Let X, Y be two G-spaces, a continuous map f :
X → Y is called a G-map or a G-equivariant map if ∀x ∈ X, ∀g ∈ G, we have
f(g · x) = g · f(x).

Remark 2.3.3. A G-map f : X → Y induces a map between its orbit spaces: f/G :
X/G→ Y/G,Gx→ Gf(x).

Definition 2.3.15 (G-homotopic of G-maps). Two G-maps f1, f2 : X → Y between
two G-spaces X and Y are said to be G-homotopic if there exists a G-homotopy
between them, i.e., a family of G-maps ht : X → Y, t ∈ [0, 1] such that h0 = f1,
h1 = f2.

Definition 2.3.16 (fixed point set). Let X be a G-space, let H ⊆ G be a subgroup
of G, then XH = {x ∈ X|h · x = x for all h ∈ H} is called the H-fixed point set of
X.

We now give some simple examples regarding G-spaces and G-maps:

Example 2.3.3 (Sn is a free Z2-space). Let Z2 = {e, v} be a cyclic group of two
elements where e is the identity and v2 = e. Let Z2 acts on Sn antipodally, i.e.,
e · x = x, v · x = −x. The action is free since for any nontrivial element v ∈ Z2, we
have v · x ̸= x for all x ∈ Sn. Thus Sn is a free Z2-space under this action.

Example 2.3.4 (Rn is a non free Z2-space). let Z2 acts on Rn antipodally, i.e., e ·x =
x, v · x = −x. This action is not free since for x = 0 ∈ Rn, v · x = −x = x. Rn is a
non free Z2-space under this action.

Example 2.3.5 (antipodal map is Z2-equivariant). Let Sn, Rn be Z2-spaces on which
Z2 acts antipodally as above. Let f : Sn → Rn defined by f(−x) = −f(x) be the
antipodal map. Obviously f is a Z2-map by definition.

Now we define two special kinds of G-spaces, the cell G-complex and the simpli-
cial G-complex.

Definition 2.3.17 (cell G-complex). A cell G-complex is a cell complex X with
a cellular action, which is a group action of G on X such that for each g ∈ G,
ρg : X → X is a cellular map, i.e, a continuous map sending cells to cells.
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Definition 2.3.18 (simplicial G-complex). A simplicial G-complex is a simplicial
complex K with a simplicial action, which is a group action of G on K such that for
each g ∈ G, ρg : V (K)→ V (K) is a simplicial map.

Remark 2.3.4. By the definition of group action, we have for all g ∈ G, ρg ◦ ρg−1 =
ρg−1 ◦ ρg = ρe = Id, and ρg−1 is also a simplicial map. Thus ρg is an isomorphism
of the abstract simplicial complex K, i.e., a bijective simplicial map whose inverse
is also simplicial. Thus the affine extension ∥ρg∥ of ρg on the polyhedron ∥K∥ of
K is a homeomorphism, i.e.,∥ρg∥ : ∥K∥ → ∥K∥ is a homeomorphism. Thus the
above defined group action on a simplicial complex is consistent with the definition
of group action on a topological space.

We define a particular kind of G-space called EnG space.

Definition 2.3.19 (EnG-space). Let G be a nontrivial finite group, let n ≥ 0 be
an integer, an EnG space is a n-dimensional, (n− 1)-connected finite free simplicial
G-complex(or cell G-complex.)

An important kind of EnG-space is given in example 2.4.6 below.

2.4 Product and Deleted product, Join and Deleted join

We define product and deleted product, join and deleted join of topological spaces
and simplicial complexes respectively.

2.4.1 product and deleted product

Product and deleted product of topological spaces We first define product
and n-fold n-wise deleted product of topological spaces.

Definition 2.4.1 (product of n spaces). Let X1, . . . , Xn be spaces, define their
n-fold product X1 ×X2 · · · ×Xn to be their cartesian product:

X1 ×X2 · · · ×Xn = {(x1, x2, . . . , xn)|xi ∈ Xi,∀i = 1, . . . , n}

with the product topology.

We can also define the product of maps between spaces:
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Definition 2.4.2 (product of two maps). Given maps f : X1 → X2, g : Y1 → Y2,
we can define their product to be f × g:

f × g : X1 × Y1 → X2 × Y2,

is given by
(x, y) 7→ (f(x), g(y)).

Similarly we can define product of finitely many maps between spaces.
If the above X1, . . . , Xn are the same space, we can define the n-fold n-wise

deleted product of X:

Definition 2.4.3 (n-fold n-wise deleted product X×n − diag of a space X). Let X
be a space, the n-fold n-wise deleted product X×n − diag of a space X is the n-fold
product (X)×n of X minus the diagonal diag = {(x, . . . , x)|x ∈ X} ⊂ (X)×n of
(X)×n:

(X)×n − diag = {(x1, x2, . . . , xn)|xi ∈ X, ∀i = 1, . . . , n} − {(x, . . . , x)|x ∈ X}

For any r-fold r-wise deleted product of a space we can define a standard Σr-
action on it:

Definition 2.4.4 (standard Σr-action on (X)×r−diag). Let X be a space, (X)×r−
diag be its r-fold r-wise deleted product, then we can define a Σr-action on it by
permuting its r components and call it the standard Σr-action. (X)×r − diag is a
Σr-space with standard ΣR-action.

For any subgroup H of Σr, we can define the standard H-action on (X)×r−diag

to be the restriction of the standard Σr-action, and (X)×r − diag is a H-space with
this standard H-action. For example, let Zr ⊆ Σr be a cyclic group generated
by the cycle permutation µ = (1, . . . , r), we can define the standard Zr-action on
(X)×r − diag to be the restriction of the standard Σr-action on (X)×r − diag, which
is the generator µ ∈ Zr acts on (X)×r − diag by shifting each of its component to
the left by one position.

We now give a theorem regarding the standard Σn-action on the n-fold n-wise
deleted product of a topological space which would be very useful for our later
discussion of the topological Tverberg conjecture.

Before that, we first need a lemma:
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Lemma 2.4.1. [MBZ03, observation 6.1.3] Let p be a prime number, let (X)×p −
diag be the p-fold p-wise deleted product of the topological space X with the standard
Zp-action, this action is free if and only if the generator ν of Zp has no fixed point.

proof. If the generator ν has no fixed point, assume the standard Zp-action on
(X)×p − diag is not free, we then have x0 ∈ (X)×p − diag, νm ∈ Zp for some
2 ≤ m ≤ r − 1, such that νm · x0 = x0. Since p is a prime number, we have m
and p coprime, thus there exists integers k1 and k2 such that k1p + k2m = 1. Thus
we have x0 ̸= ν · x0 = νk1p+k2m · x0 = νk1p(νk2m · x0) = νk1p · x0 = e · x0 = x0, a
contradiction.

Theorem 2.4.1. [MBZ03, P158 and P161, exercise 1,2.] For n ≥ 2, let (X)×n −
diag be a n-fold n-wise deleted product of a space X with at least two points equipped
with a standard Σn-action, i.e., Σn acts on it by permuting components, this Σn-
action is not free for n ≥ 3; let Zn be a subgroup of Σn, for all n ≥ 2, Zn acts on
(X)×n − diag fixed point freely; Furthermore, Zn acts on (X)×n − diag freely if and
only if n is prime.

proof. We first show when n ≥ 3, the Σn action on (X)×n − diag is not free: let
(1, 2) be a permutation in Σn which exchanges the first and second coordinates of
(X)×n − diag, then it fixes those elements in (X)×n − diag which has the same first
and second coordinates.

We then show for all integer n ≥ 2, Zn acts on (X)×n − diag fixed point freely:
if there exists x = (x1, . . . , xn) ∈ (X)×n − diag fixed by all elements of Zn, then it
must be fixed by the generator ν of Zn, which would imply x1 = x2 = · · · = xn, and
thus x ̸∈ (X)×n − diag.

Finally, we show Zn acts on (X)×n − diag freely if and only if n is prime: when
n is prime, by lemma 2.4.1 we only need to show the generator ν of Zn has no
fixed point: if (x1, . . . , xn) ∈ (X)×n − diag is fixed under the generator ν, then we
have (x1, x2, . . . , xn) = ν · (x1, x2, . . . , xn) = (x2, . . . , xn, x1) which gives x1 = x2 =
· · · = xn, but (x, . . . , x) do not lie in diag. Conversely, if n is not prime, w.l.o.g,
we can let n = a × b where a, b are positive integers ≥ 2. We can take the n

components of (X)×n − diag to be a a× b matrix with the requirement that not all
components are the same. If we take a matrix m ∈ (X)×n−diag whose each column
has the same components respectively but not all columns are equal, then each row
of m are the same. And m is fixed by an nontrivial element νb of Zn, where νb is
the b times composition of the generator ν of Zn. We can see that m is fixed by
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νb since νb cyclically permutes the rows of the matrix m. More precisely, denote
m = (mij)i=1,...,a;j=1,...,b, and for 1 ≤ j ≤ b, we have mj1 = mj2 = · · · = mja, then
νb sends the first row (m11, . . . ,m1,b) of m to the second row (m21, . . . ,m2b) of m,
the second row to the third row, etc. Since each row of m are the same, we have νb

fixes m.

Now we will give an example of r-fold r-wise deleted product (Rd)×r − diag of
the Euclidean space Rd and show that it is homotopy equivalent to Sd(r−1)−1. This
example is also important for the discussion of topological Tverberg conjecture.

Example 2.4.1 (r-fold r-wise deleted product (Rd)×r−diag of Rd). The r-fold r-wise
deleted product (Rd)×r − diag of the euclidean space Rd is

(Rd)×r − diag = {(x1, . . . , xr)|xi ∈ Rd, ∀i = 1, . . . , r} − {(x, . . . , x)|x ∈ Rd}

where diag = {(x, . . . , x)|x ∈ Rd} ⊂ (Rd)×r is the diagonal of (Rd)×r.
Furthermore, it is homotopy equivalent to the d(r − 1) − 1 dimensional sphere

Sd(r−1)−1(more precisely, Sd(r−1)−1 is a deformation retract of (Rd)×r − diag):
we can define a Σr(Zr) equivariant map from (Rd)r − diag to Sd(r−1)−1 by the

following two steps:

1. project (Rd)×r − diag to the orthogonal complement (diag)⊥ of diag.

2. normalize (diag)⊥ \ {0} into its unit sphere.

step 1: (Rd)×r is a Σr-space with the symmetric group Σr acts on it by permuting
its components. The subspace (Rd)×r − diag of (Rd)×r is also a Σr-space with the
same Σr-action since it is invariant under this action.

Define (diag)⊥ ⊂ (Rd)×r to be the orthogonal complement subspace of the diag-
onal diag of (Rd)×r, we can write down the expression of (diag)⊥ explicitly:

(diag)⊥ = {(x1, x2, . . . , xn)|xi ∈ Rd,∀i = 1, . . . , n,
n∑

i=1
xi = 0⃗}.

We can see from the expression above that (diag)⊥ is also a Σr-invariant subspace
of (Rd)×r, and it is homeomorphic to Rd(r−1).

We define the orthogonal projection p from (Rd)×r to the orthogonal complement
(diag)⊥ of diag:

p : (Rd)×r → (diag)⊥
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given by

(x1, x2, . . . , xr) 7→ (x1 −
1
r

r∑
i=1

xi, x2 −
1
r

r∑
i=1

xi, . . . , xr −
1
r

r∑
i=1

xi)

which is obviously a Σr-equivariant map.
We can restrict the above map p and get another Σr-equivariant map:

ρ : (Rd)×r − diag→ (diag)⊥ \ {0}

where {0} is the origin of (Rd)×r.
Furthermore, define the inclusion map l : (diag)⊥\{0} → (Rd)×r−diag, compose

ρ with l we have l ◦ ρ : (Rd)×r − diag → (Rd)×r − diag and it is homotopic to the
identity map Id : (Rd)×r − diag → (Rd)×r − diag by the following straight line
homotopy F and thus (diag)⊥ \ {0} is a deformation retract of (Rd)×r − diag:

we can define a straight line homotopy F from Id to l ◦ ρ as

F : ((Rd)×r − diag)× [0, 1]→ (Rd)×r − diag

given by
(x, t) 7→ (1− t)Id(x) + t((l ◦ ρ)(x))

.
step 2: Now we normalize (diag)⊥\{0} ∼= Rd(r−1)\{0} to its unit sphere Sd(r−1)−1.

The normalization
µ : (diag)⊥ \ {0} → Sd(r−1)−1

is given by
x = (x1, x2, . . . , xr) 7→ µ(x) = ( x1

∥x∥
, . . . ,

xr

∥x∥
)

where ∥x∥ =
√
∥x1∥2 + . . . ∥xr∥2 is the norm of x and for xi = (xi1 , . . . , xid

) ∈ Rd,
∥xi∥ =

√
(xi1)2 + · · ·+ (xid

)2 is the Euclidean norm. µ is well defined since ∥µ(x)∥ =
1 and x1, . . . , xr are not all equal.

We can write down the explicit expression of Sd(r−1)−1:

Sd(r−1)−1 = {(x1, x2, . . . , xr)|xi ∈ Rd, i = 1, . . . , r,
r∑

i=1
xi = 0⃗,

r∑
i=1
∥xi∥2 = 1}

Thus, Sd(r−1)−1 can be made into a Σr-space with Σr acting on it by permuting
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components and µ is obviously a Σr-equivariant map. Similar with step 1 we can
show that Sd(r−1)−1 is a deformation retract of (diag)⊥ \ {0}: define the inclusion
map l : Sd(r−1)−1 → (diag)⊥ \ {0}, there is a straight line homotopy F from Id :
(diag)⊥ \ {0} → (diag)⊥ \ {0} to l ◦ µ : (diag)⊥ \ {0} → (diag)⊥ \ {0} which is

F : ((diag)⊥ \ {0})× [0, 1]→ (diag)⊥ \ {0}

given by
(x, t) 7→ (1− t)Id(x) + t((l ◦ µ)(x)).

Compose ρ and µ we get a Σr-equivariant map:

µ ◦ ρ : (Rd)×r − diag→ Sd(r−1)−1.

By the above discussion, Sd(r−1)−1 is a deformation retract of (Rd)×r − diag and
they are thus homotopy equivalent.

By theorem 2.4.1 we know that when r ≥ 3, the action Σr on (Rd)×r − diag and
Sd(r−1)−1 is not free, and Zr acts on (Rd)×r − diag and Sd(r−1)−1 freely if and only if
r is prime.

In the above example we have encountered another important Σr-space—the
d(r − 1) − 1-dimensional sphere Sd(r−1)−1. We give its precise definition and some
important properties as follow:

Example 2.4.2 (Sd(r−1)−1 with standard Σr-action). In example 2.4.1 we have give a
geometric description of Sd(r−1)−1, i.e., Sd(r−1)−1 is the unit sphere of the orthogonal
complement (diag)⊥ of the diagonal diag of (Rd)×r. And we have given the explicit
expression of Sd(r−1)−1:

Sd(r−1)−1 = {(x1, x2, . . . , xr)|xi ∈ Rd, i = 1, . . . , r,
r∑

i=1
xi = 0⃗,

r∑
i=1
∥xi∥2 = 1}

where for i = 1, . . . , r, xi = (xi1 , . . . , xid
) ∈ Rd, ∥xi∥ =

√
(xi1)2 + · · ·+ (xid

)2 is
the Euclidean norm. We have also defined a standard Σr-action on Sd(r−1)−1 by
permuting its r components. In later text, when we think of Sd(r−1)−1 as a Σr-space,
it is always equipped with this standard action without explicit saying.

We now give a lemma regarding fixed points of Sd(r−1)−1 under the standard
Σr-action.
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Lemma 2.4.2. ([Oza87, lemma 2.1]) Let r ≥ 2, d ≥ 1 be integers, let Σr acts on
Sd(r−1)−1 by permuting its r components as in example 2.4.2, let H be a subgroup of
the symmetric group Σr, then Sd(r−1)−1 has a H-fixed point if and only if H is not
a transitive subgroup of Σr.

proof. A point (x1, . . . , xr) in Sd(r−1)−1 is fixed by H if and only if xi = xj when
i, j are in the same H orbit. If H acts on the set {1, . . . , r} transitively, there is
only one H-orbit. Thus we have x1 = · · · = xr. Since points in Sd(r−1)−1 satisfies∑r

i=1 xi = 0, we have x1 = · · · = xr = 0. But the origin (0, . . . , 0) is not in Sd(r−1)−1,
a contradiction.

Conversely, if H acts on the set {1, . . . , r} non transitively, we can construct a
fixed point in Sd(r−1)−1: define a point x = (x1, . . . , xr) in (Rd)×r − diag with the
components in the same H-orbit to be the same, while x1, . . . , xr are not all the
same. This point is fixed by H. Now we first project this point to the orthogonal
complement subspace of diag in (Rd)×r by projection ρ and then normalize it to the
unit sphere Sd(r−1)−1 by the normalization µ as in example 2.4.1 and get a new point
µ(ρ(x)). This is a H-fixed point in Sd(r−1)−1.

Remark 2.4.1. The standard Σr-action on Sd(r−1)−1 (more generally on (X)×r−diag)
as in example 2.4.2 has some special properties depending on whether r is prime,
prime power or non prime power. We summarize as follows:

let H ⊆ Σr be a subgroup,

1. when H = Σr:

– Σr acts on Sd(r−1)−1 fixed point freely for all r.

– when r ≥ 3, Σr acts on Sd(r−1)−1 non freely.

2. when H = Zr:

– Zr acts on Sd(r−1)−1 fixed point freely for all r.

– Zr acts on Sd(r−1)−1 freely if and only if r is a prime number by theorem
2.4.1.

3. when H = p is a Sylow p-subgroup:

– when r = pα for some positive integer α, then by lemma 2.3.2, any Sy-
low p-subgroup p is a transitive subgroup of Σr. Thus by lemma 2.4.2,
Sd(r−1)−1 has no p-fixed point.
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– when r is not prime power, by lemma 2.3.1, the Sylow p-subgroups p

of Σr for all prime numbers p are not transitive. Thus by lemma 2.4.2,
Sd(r−1)−1 has a p-fixed point for all p.

Product and deleted product of simplicial complex We now define product
and n-fold 2-wise deleted product of simplicial complexes.

Definition 2.4.5 (product of n simplicial complexes). Let K1, . . . ,Kn be simplicial
complexes, its n-fold product of simplicial complexes K1×· · ·×Kn is a cell complex
whose cells are all the products σ1 × · · · × σn of simplices of K1, . . . ,Kn as spaces.

If the above K1, . . . ,Kn are the same simplicial complex K, we can define its
n-fold 2-wise deleted product (K)×n

∆(2) to be the subcomplex of the n-fold product
K×n of K.

Definition 2.4.6 (n-fold 2-wise deleted product of simplicial complex K). Let K
be a simplicial complex, its n-fold 2-wise deleted product (K)×n

∆(2) is the subcomplex
of the n-fold product K×n of K whose cells are all the products σ1 × · · · × σn of n
pairwise disjoint simplices of K:

(K)×n
∆(2) = {σ1 × · · · × σn|σi a simplex of K, σi ∩ σj = ∅ for every i ̸= j}

We now give an important example:

Example 2.4.3 (r-fold 2-wise deleted product (∆n)×r
∆(2) of the standard n-simplex

∆n). The r-fold 2-wise deleted product (∆n)×r
∆(2) of the standard n-simplex ∆n is

(∆n)×r
∆(2) = {σ1 × · · · × σn|σi a simplex of ∆n, σi ∩ σj = ∅ for every i ̸= j}

One can show that it is a (n − r + 1)-dimensional, (n − r)-connected free Σr-
complex(a cell complex with a free and cellular Σr-action), which is an important
fact for later. In order to show this, we first give some examples to gain some
intuition of the structure:

• when r = 2, n = 1, the 2-fold 2-wise deleted product (∆1)×2
∆(2) of the standard

1-simplex ∆1 is two singletons, thus it is 0-dimensional, (−1)-connected (non
empty). The Z2-action acting on it by permuting its components maps one
cell to another cell, and thus it is cellular and free.
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• when r = 2, n = 2, the 2-fold 2-wise deleted product (∆2)×2
∆(2) of the standard

2-simplex ∆2 is homeomorphic to S1, and thus it is 1-dimensional, 0-connected.
And Z2 acts on it cellularly and freely, thus it is a 1-dimensional, 0-connected
free Z2-complex.

We now sketch the proof:
(∆n)×r

∆(2) is (n − r + 1)-dimensional since: a general cell in (∆n)×r
∆(2) is of the

form σ1 × · · · × σr where σ1, . . . , σr are pairwise disjoint. Thus the sum of the
number of the vertices of the simplices σ1, . . . , σr is no more than the number of
the vertices of ∆n, i.e., (dim(σ1) + 1) + · · · + (dim(σr) + 1) ≤ n + 1, which gives
dim(σ1)+ · · ·+dim(σr) ≤ n−r+1. When a cell σ1×· · ·×σr used all the vertices of
∆n, we have dim(σ1) + · · ·+ dim(σr) = n− r+ 1. In this case, dim(σ1× · · ·×σr) =
dim(σ1) + · · ·+ dim(σr) = n− r + 1. Thus (∆n)×r

∆(2) is (n− r + 1)-dimensional.
(∆n)×r

∆(2) is (n − r)-connected since: by Hurewicz theorem 2.6.1 below, we only
need to show π1((∆n)×r

∆(2)) = 0 (which impliesH1((∆n)×r
∆(2)) = 0) andH2((∆n)×r

∆(2)) =
· · · = Hn−r((∆n)×r

∆(2)) = 0. This is the most difficult part of the proof and we omit
it here. Readers can consult [BSS81, Lemma 1] and [BZ17, Theorem 3.4].

Furthermore, the symmetric group Σr acts on (∆n)×r
∆(2) by permuting its com-

ponents and this action is cellular since permuting the order of the product of a
cell σ1 × · · · × σr ∈ (∆n)×r

∆(2) is still a cell; and the action is free since any cell
σ1 × · · · × σr of (∆n)×r

∆(2) is the product of pairwise disjoint simplex. Thus (∆n)×r
∆(2)

a free Σr-complex.

2.4.2 join and deleted join

We first define join and n-fold n-wise deleted join of topological spaces.

Join of topological spaces

Definition 2.4.7 (join of two topological spaces). Let X, Y be two spaces, define
their join X∗Y to be the cartesian product X×Y ×[0, 1] quotient by the equivalence
relation ∼, i.e., X∗Y = X×Y ×[0, 1]/ ∼, where the equivalence relation ∼ is defined
by

• (x1, y, 0) ∼ (x2, y, 0),∀x1, x2 ∈ X

• (x, y1, 1) ∼ (x, y2, 1),∀y1, y2 ∈ Y

• (x, y, t) ∼ (x, y, t),∀x ∈ X, y ∈ Y, 0 < t < 1
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We denote the equivalence class (x, y, t) ∈ X∗Y = X×Y ×[0, 1]/ ∼ as tx⊕(1−t)y
which indicates the equivalence relation: we identify all x ∈ X when t = 0, and
identify all y ∈ Y when t = 1. Thus we have

X ∗ Y = {tx⊕ (1− t)y|0 ≤ t ≤ 1, x ∈ X, y ∈ Y }.

Define the topology on X ∗ Y to be the quotient topology of the map q : X ×
Y × [0, 1] → X ∗ Y = X × Y × [0, 1]/ ∼ sending (x, y, t) ∈ X × Y × [0, 1] to its
equivalence class tx⊕ (1− t)y.

When two topological spaces are bounded, there is a geometric interpretation of
their join:

Proposition 2.4.1 (geometric join). Let U and V be two skew affine subspaces of
some Rn, i.e., U ∩ V = ∅, and the affine hull of U and V has one more dimension
than the sum of the dimensions of U and V . Let X ⊆ U and Y ⊆ V be two bounded
subspaces. Then their join X ∗ Y is homeomorphic to the following space:

{tx+ (1− t)y|t ∈ [0, 1], x ∈ X, y ∈ Y } ⊆ Rn

This means that the space consisting of all line segments connecting a point of X to
a point of Y is homeomorphic to X ∗ Y .

We omit the proof and readers can consult [MBZ03, proposition 4.2.4].
We can define the join of n-spaces by induction:

Definition 2.4.8 (join of n spaces). Let X1, . . . , Xn be n spaces, define their join
X1 ∗ · · · ∗Xn to be the join of X1 ∗ · · · ∗Xn−1 and Xn and inductively define X1 ∗
· · · ∗ Xn−1 to be the join of X1 ∗ · · · ∗ Xn−2 and Xn−1, etc. Similarly as above we
have

X1 ∗ · · · ∗Xn = {t1x1 ⊕ t2x2 · · · ⊕ tnxn|ti ∈ [0, 1],
n∑

i=1
ti = 1, xi ∈ Xi}.

Example 2.4.4 (join of (n+ 1)-points is a n-simplex). Let v0, . . . , vn be n+ 1 points,
then their join is a n-simplex: v0 ∗v1 = {t0v0⊕ t1v1|ti ∈ [0, 1],∑2

i=1 ti = 1}, (v0 ∗v1)∗
v2 = {t2(t0v0 ⊕ t1v1) ⊕ (1 − t2)v3|ti ∈ [0, 1], t2t0 + t2t1 + (1 − t2) = 1}, similarly we
have v0 ∗ · · · ∗ vn = {t0v0⊕ · · · ⊕ tnvn|ti ∈ [0, 1],∑n

i=0 ti = 1} which is by definition a
n-simplex.
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We can also define the join of two maps between spaces:

Definition 2.4.9 (join of two maps). Given maps f : X1 → X2, g : Y1 → Y2, we
can define their join to be f ∗ g:

f ∗ g : X1 ∗ Y1 → X2 ∗ Y2,

is given by
tx⊕ (1− t)y 7→ tf(x)⊕ (1− t)g(y).

We can generate new G-space by joining two G-spaces:

Example 2.4.5 (the join of two G-spaces). Let (X,Φ), (Y,Ψ) be two G-spaces with
G-actions φg : X → X and ψg : Y → Y respectively, we can make their join
(X ∗ Y,Φ ∗Ψ) into a G-space by defining a G-action on X ∗ Y as φg ∗ ψg : X ∗ Y →
X ∗ Y, tx ⊕ (1 − t)y 7→ tφg(x) ⊕ (1 − t)ψg(y) where φg ∗ ψg denote the join of two
maps. Obviously, the join of two free G-space is a free G-space.

We now give a prototypical example of EnG-space—the n-fold join G∗(n+1) of
the group G itself. Before that, we state a theorem about the connectivity of join
without proof. Readers can consult [MBZ03, proposition 4.4.3] for more details.

Theorem 2.4.2 (connectivity of join). Let X, Y be triangulable topological spaces(or
CW-complexes), if X is k-connected, Y is l-connected, then their join X ∗ Y is
(k + l + 2)-connected.

Now we give the example.

Example 2.4.6 (G∗(n+1) is a EnG-space). As a topological space, G∗(n+1) is the (n+1)-
fold join of a |G|-points discrete space. It is a n-dimensional simplicial complex since:
a general cell of G∗(n+1) has the form t1g1⊕· · ·⊕ tn+1gn+1 where g1, . . . , gn+1 ∈ G are
singletons. By example 2.4.4, we know that the join of n+ 1 points is a n-simplex.
Thus G∗(n+1) is a union of n-simplices, and thus it is a n-dimensional simplicial
complex. In addition, we have seen in example 2.3.2 that G acts on itself freely by
left multiplication. If we equip G with the discrete topology, then G acts on itself
freely by homeomorphisms with the same action. Thus G is a free G-space. If we join
G with itself n+ 1 times as in example 2.4.5, we get a free G-space G∗(n+1). The G-
action on G∗(n+1) is given by ∀g ∈ G, ρg : G∗(n+1) → G∗(n+1), t1x1⊕· · ·⊕ tn+1xn+1 7→
t1(gx1) ⊕ · · · ⊕ tn+1(gxn+1), which is obviously a simplicial map. Thus G∗(n+1) is
a n-dimensional free simplicial G-complex. Since G is (−1)-connected(non-empty),
the (n− 1)-connectivity of G∗(n+1) follows from theorem 2.4.2,
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Deleted join of topological space

Definition 2.4.10 (n-fold n-wise deleted join of a topological space). Let X be a
space, we can define the n-fold n-wise deleted join (X)∗n−diag of X to be the n-fold
join (X)∗n of X minus the diagonal diag = { 1

n
x⊕ 1

n
x · · · ⊕ 1

n
x|x ∈ X} of (X)∗n, i.e.,

(X)∗n − diag =

{t1x1 ⊕ t2x2 · · · ⊕ tnxn|xi ∈ X, ti ∈ [0, 1],
n∑

i=1
ti = 1} − { 1

n
x⊕ 1

n
x · · · ⊕ 1

n
x|x ∈ X}

We now give an important example of r-fold r-wise deleted join (Rd)∗r − diag of
the Euclidean space Rd, and show that it is homotopy equivalent to S(d+1)(r−1)−1.

Example 2.4.7 (r-fold r-wise deleted join (Rd)∗r − diag of Rd). The r-fold r-wise
deleted join (Rd)∗r − diag of Rd is

(Rd)∗r − diag =

{t1x1 ⊕ t2x2 · · · ⊕ trxr|xi ∈ Rd, ti ∈ [0, 1],
r∑

i=1
ti = 1} − {1

r
x⊕ 1

r
x · · · ⊕ 1

r
x|x ∈ Rd}

We can define the Σr-action on (Rd)∗r − diag by permuting its components, and
thus make it a Σr-space. We can also define a Σr-equivariant map f : (Rd)∗r−diag→
(Rd+1)×r− diag from the r-fold r-wise deleted join of Rd to the r-fold r-wise deleted
product of Rd+1 by the following two steps:

1. embed r times Rd into (Rd+1)×r as r pairwise skew affine subspaces

2. project and normalize (Rd+1)×r into S(d+1)(r−1)−1 as in example 2.4.1.

We illustrate them in detail:
Step 1: embed r times Rd into (Rd+1)×r as r pairwise skew affine subspaces (Two

subspaces U, V ⊂ Rn are skew affine if U∩V = ∅, and their affine hull has dimension
dim(U) + dim(V ) + 1)by r mappings ψ1, . . . , ψr : Rd → (Rd+1)×r where

ψi : Rd → (Rd+1)×r

given by
(x1, . . . , xd) 7→ (0, . . . , 0, 1, x1, . . . , xd, 0 . . . , 0)
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i.e., the i-th component of ψi(x1, . . . , xd) ⊂ (Rd+1)×r has values (1, x1, . . . , xd) and
others are 0.

Now define a Σr-equivariant map

ψ : (Rd)∗r − diag→ (Rd+1)×r − diag

given by
t1y1 ⊕ · · · ⊕ tryr 7→ t1ψ1(y1) + · · ·+ trψr(yr)

which is well defined since the elements of the diagonal diag of (Rd+1)×r satisfy

(t1, t1y11, . . . , t1y1d) = (t2, t2y21, . . . , t2y2d) = · · · = (tr, tryr1, . . . , tryrd)

where yi = (yi1, . . . , yid) ∈ Rd, and it implies

t1 = · · · = tr = 1
r
, y1 = · · · = yr,

but such points {1
r
y⊕ · · · ⊕ 1

r
y|y ∈ Rd} are contained in the diagonal diag of (Rd)∗r,

thus are not in (Rd)∗r − diag.
It is continuous since it is a linear combination of continuous maps. It is Σr-

equivariant since it commutes with the Σr-actions on (Rd)∗r − diag and (Rd+1)×r −
diag by permuting its components respectively.

Step 2: define another Σr-equivariant map µ◦ρ : (Rd+1)×r−diag→ S(d+1)(r−1)−1

as in example 2.4.1 and compose it with ψ : (Rd)∗r−diag→ (Rd+1)×r−diag defined
above we get the following Σr-equivariant map:

µ ◦ ρ ◦ ψ : (Rd)∗r − diag→ S(d+1)(r−1)−1.

In fact, (Rd)∗r−diag and S(d+1)(r−1)−1 are homotopy equivalent([MBZ03, P160])
since the maps defined above are deformation retractions.

We now define join and n-fold 2-wise deleted join of simplicial complexes.

Join of simplicial complexes

Definition 2.4.11 (Join of two abstract simplicial complexes). Let K, L be two
abstract simplicial complexes with vertex set V (K) and V (L) respectively, define their
join K∗L to be the abstract simplicial complex with vertex set V (K∗L) = V (K)⊔V (L)
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which is the disjoint union of V (K) and V (L), and with simplices to be all the
combination of simplices of K and simplices of L, i.e.,

{F ⊔G|F ∈ K, G ∈ L}

where F ⊔ G is the disjoint union of F and G, i.e., F ⊔ G = F × {1} ∪ G × {2}.
Thus we have K ∗ L = {F ⊔G|F ∈ K, G ∈ L}.

That is, to construct the join of two abstract simplicial complexes K and L, we
first take the disjoint union of two vertex sets to be the vertex set of the join, and
then we combine each simplex of K and each simplex of L to be the simplices of
the join. Observe that in this case, K and L are subcomplex of the join, since the
combination of all simplices of K with the empty simplex of L gives K itself, and the
combination of all simplices of L with the empty simplex of K gives L itself.

Remark 2.4.2 (the equivalence of the join of simplicial complexes with that of spaces).
From the above definition we get the polyhedron ∥K ∗ L∥ of the join K ∗ L of two
abstract simplicial complexes K and L. From the definition of the join of topological
spaces we get the join ∥K∥ ∗ ∥L∥ of two polyhedra ∥K∥ and ∥L∥ of two abstract
simplicial complexes K and L. We can show that this two definitions are equivalent.
This means to show ∥K ∗ L∥ ∼= ∥K∥ ∗ ∥L∥. This can be seen from the geometric
interpretation of the join ∥K∥∗∥L∥: for each m-simplex σm of K and each n-simplex
σn of L, their join σm ∗ σn as abstract simplicial complexes is a simplex σn+m+1 of
n+m+2 vertices; while their geometric join ∥σm∥∗∥σn∥ consists of all line segments
from a point of ∥σm∥ and a point of ∥σn∥, which is ∥σn+m+1∥.

With the above equivalence, we can write the polyhedron ∥K ∗ L∥ of the join K∗L
of two abstract simplicial complexes K and L as:

∥K ∗ L∥ = {tx⊕ (1− t)y|t ∈ [0, 1], x ∈ ∥K∥, y ∈ ∥L∥}.

We can define the join of n simplicial complexes by induction.

Definition 2.4.12 (join of n abstract simplicial complexes). Let K1, . . . ,Kn be n
abstract simplicial complexes with vertex set V (K1), . . . , V (Kn) respectively, define
their join K1 ∗ · · · ∗Kn to be the join of K1 ∗ · · · ∗Kn−1 and Kn and inductively define
K1 ∗ · · · ∗ Kn−1 to be the join of K1 ∗ · · · ∗ Kn−2 and Kn−1, etc.

Remark 2.4.3 (comparison between product and join of simplicial complexes). while
the construction of the product of simplicial complexes is more straight forward
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than the join, the construction of the join of simplicial complexes has its own advan-
tages: even though the product of two simplicial complexes is no longer a simplicial
complex, the join of two simplicial complexes is still a simplicial complex.

Deleted join of simplicial complexes If the simplicial complexes K1, . . . ,Kn

are the same simpicial complex K, we can define the n-fold 2-wise deleted join of K.

Definition 2.4.13 (n-fold 2-wise deleted join of a simplicial complex). Let K be
a simplicial complex, the n-fold 2-wise deleted join (K)∗n

∆(2) of K has the vertex set
V (K) × [n], and has simplices which are the combination of the pairwise disjoint
simplices of K, i.e.,

(K)∗n
∆(2) = {F1 ⊔ F2 · · · ⊔ Fn|Fi ∈ K, Fi ∩ Fj = ∅ for every i ̸= j}

The polyhedron of (K)∗n
∆(2) can be written as

∥∥∥(K)∗n
∆(2)

∥∥∥ = {t1x1⊕t2x2 · · ·⊕tnxn|xi ∈ ∥K∥, supp(xi)∩supp(xj) = ∅, ti ∈ [0, 1],
n∑

i=1
ti = 1}

Definition 2.4.14 (standard Σn-action on (K)∗n
∆(2)). We can define a standard Σn-

action on (K)∗n
∆(2) by permuting the coordinates of

∥∥∥(K)∗n
∆(2)

∥∥∥, i.e., for some ρ ∈ Σn,
ρ : t1x1 ⊕ t2x2 · · · ⊕ tnxn 7→ tρ(1)xρ(1) ⊕ tρ(2)xρ(2) · · · ⊕ tρ(n)xρ(n), and this action
makes (K)∗n

∆(2) into a simplicial Σn-complex. This action is free for all n since the
coordinates of

∥∥∥(K)∗n
∆(2)

∥∥∥ are pairwise disjoint.
For any subgroup H ⊆ Σn, we can define a standard H-action on (K)∗n

∆(2) to be
the restriction of the standard Σn-action.

The following example will be useful in later text.
Example 2.4.8 (r-fold 2-wise deleted join (∆n)∗r

∆(2) of ∆n). The r-fold 2-wise deleted
join of the standard n simplex ∆n is (think of ∆n as an abstract simplicial complex
with vertex set V (∆n) = {1, . . . , n}, and the simplices to be all the subsets of
V (∆n).):

(∆n)∗r
∆(2) = {σ1 ⊔ σ2 ⊔ · · · ⊔ σr|σi ∈ ∆n, σi ∩ σj = ∅ for every i ̸= j}.

Its polyhedron can be written as

∥∥∥(∆n)∗r
∆(2)

∥∥∥ = {t1x1⊕t2x2 · · ·⊕tnxn|xi ∈ ∥∆n∥, supp(xi)∩supp(xj) = ∅, ti ∈ [0, 1],
n∑

i=1
ti = 1}
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We have seen before that the standard Σr-action on (∆n)∗r
∆(2) is free for all r. We

now show (∆n)∗r
∆(2) is a EnΣr-space, i.e., a n-dimensional, (n − 1)-connected, free

simplicial Σr-complex since:

(∆n)∗r
∆(2)
∼= ((∆0)∗(n+1))∗r

∆(2)
∼= ((∆0)∗r

∆(2))∗(n+1) ∼= (Zr)∗(n+1),

and by example 2.4.6, (Zr)∗(n+1) is a EnZr space.

2.5 Fundamental groups and Homotopy groups

In the following subsections, we will describe some important algebraic topology
machinery that we need later.

Algebraic topology is a subject that study topology questions through algebra,
which is, it associates topological spaces and the continuous map between them with
some kind of groups and the group homomorphism between them by some kind of
relation called ’functor’. If such a functor is constructed good enough, we might be
able to get the corresponding group with enough detail so that we can study the
topological space by studying the properties of the corresponding group.

For example, the following fundamental group is a such kind of functor.

2.5.1 fundamental group and covering space

Fundamental group As mention above that the fundamental group π1 is a func-
tor from the category of pointed topological spaces to the category of groups. For
example, let f : (X, x0)→ (Y, y0) be a continuous map between two pointed topolog-
ical spaces (X, x0) and (Y, y0), the functor π1 projects them to the groups π1(X, x0)
and π1(Y, y0), and it also projects f to f∗ := π1(f), which gives us a group homo-
morphsim f∗ : π1(X, x0)→ π1(Y, y0).

Before we define the fundamental group properly, we need some preparations.
Let X be a topological space, a path in X is a continuous map f(s) : I →

X where I = [0, 1] is the unit interval. The inverse path of f is defined to
be f−1 := f(1 − s). Two paths f and g with the same end points (i.e.,f(0) =
g(0), f(1) = g(1)) are said to be homotopic, denoted as f ≃ g, if one path can be
continuously deformed into another with the end points fixed during the deformation.
Mathematically, this means there exists a homotopy that is stationary on the

40



subset {0, 1} ⊂ I between these two paths, i.e., there exists a family of maps

ht : I → X, ∀t ∈ I

such that

• h0 = f, h1 = g.

• ht(0) = f(0) = g(0), ht(1) = f(1) = g(1),∀t ∈ I, which is, the two end points
of the paths are fixed during the deformation.

• The homotopy H : I × I → X given by H(s, t) = ht(s) is continous.

The relation of homotopy of paths with fixed end points defined above are easily
seen to be an equivalence relation:

Proposition 2.5.1. The relation of homotopy of paths with fixed end points defined
above is an equivalence relation.

Proof. We sketch the proof: a path f is obviously homotopic to itself by letting
ht = f be the constant homotopy; if f ≃ g by ht, then reversing the deformation we
have g ≃ f by h(1− t); if f ≃ g by the deformation ht, g ≃ l by the deformation h′

t,
then f ≃ l by h̄t which is the combination of these two deformation, i.e., h̄t = h2t

for t ∈ [0, 1/2], and h̄t = h′
2t−1 for t ∈ [1/2, 1].

Thus we can denote the equivalence class of the path f under the equivalence
relation of homotopy as [f ] and call it the homotopy class of f .

Now we are ready to define the fundamental group of a topological space X. We
consider a special kind of paths of the space X, which are the loops. A loop in a
space X is a path f : I → X with the two end points coinside, i.e. f(0) = f(1).
Take an arbitrary point x0 ∈ X and call it the base point of X, similarly as above,
we can partite all the loops f : I → X with the base point x0 as their end points into
homotopy classes [f ], and denote the set of all such homotopy classes as π1(X, x0).
We now show that we can make π1(X, x0) into a group and call it the fundamental
group of space X:

Proposition 2.5.2. π1(X, x0) is a group under a suitably defined group operation.

Proof. We first define the product on the level of maps, i.e., we define the product of
any two loops f, g : I → X at the base point x0 to be the their composition, which
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is

(f · g)(s) =

f(2s), 0 ≤ s ≤ 1
2

g(2s− 1) 1
2 ≤ s ≤ 1

i.e., the product f · g is given by: in the first half of I travels through f twice as
fast as before, and in the second half of I, travels through g again twice as fast as
before. This product is obviously well defined and the product of any two loops is
again a loop. The product is not associative since (f · g) · l ̸= f · (g · l). But we have
(f ·g)·l ≃ f ·(g·l) since one can be deformed into the other continuously while keeping
the end points fixed by adjusting the traveling speed on f, g, l appropriately. We can
define the identity element of the product to be the constant loop c : I → X, s 7→ x0

which maps all elements of I to the base point x0, since for any loop f , we have
f · c = c · f = f . In addition, we can define the inverse element of the loop f(s) to
be f−1(s) = f(1− s) since f · f−1 = f−1 · f = c.

This product respects homotopy classes since if f0 ≃ f1 by ht, g0 ≃ g1 by h′
t, then

f0 · g0 ≃ f1 · g1 by their product ht · h′
t. Thus we can define the product on the level

of homotopy classes, i.e., [f ] · [g] = [f · g], and it is well defined. It is also associative
since (f · g) · l ≃ f · (g · l) gives ([f ] · [g]) · [l] = [(f · g) · l] = [f · (g · l)] = [f ] · ([g] · [l]).
Similarly, we can define the identity element [c] in π1(X, x0) to be the homotopy class
of loops which are homotopic to the constant loop c : I → X, s 7→ x0. In addition,
we can define the inverse of the homotopy class [f(s)] to be [f−1(s)] = [f(1 − s)].
Thus we have shown π1(X, x0) is a group with the above group operation.

Since we define fundamental group using a base point, it is natural to think about
to what extend is the fundamental group of a space depends on the choice of the
base point. And it turns out that for path connected space, the fundamental groups
with respect to different base points are isomorphic. It can easily be seen from:

Let x0, x1 be two arbitrary points in a path connected space X, let p(s) be a path
from x0 to x1 and let p−1 := p(1− s) be the inverse of the path, then any loop l0 at
x0 gives a loop p · l0 · p−1 at x1; conversely, any loop l1 at x1 gives a loop p−1 · l1 · p
at x0.

Thus for any path connected space X, different choice of base point x0 gives
isomorphic fundamental group π1(X, x0). We can thus write it simply as π1(X).

Using fundamental group we can define an important kind of space: a space which
is path connected and has trivial fundamental group is called simply connected.
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We can see from the definition that any loop of a simply connected space is
homotopic to a constant loop. Any map which is homotopic to a constant map is
called null homotopic. There is another important property of simply connected
space:

Proposition 2.5.3. Any path between any two points of a simply connected space
are homotopic.

Proof. Let X be a simply connected space and let x0, x1 be any two points of X,
let f, g be two paths from x0 to x1, and let g−1 be the inverse path of g, then
f ≃ f · (g−1 · g) ≃ (f · g−1) · g ≃ g since g−1 · g and f · g−1 are null homotopic.

We now show that the n sphere Sn is simply connected when n ≥ 2:

Proposition 2.5.4. π1(Sn) = 0 if n ≥ 2.

Proof. We sketch the proof and the whole proof can be found in [Hat02, proposition
1.14].

we only need to show any loop l : [0, 1] → Sn is homotopic to a non surjective
loop l̃ (which is only possible when n ≥ 2), say l̃ lies in Sn \ {x} for some x ∈ Sn.
Then any loop l in Sn is in fact homotopic to a loop l̃ in Sn \ {x}. Since Sn \ {x}
is homeomorphic to Rn, and Rn is obviously simply connected, we have l̃ is null
homotopic. Thus any loop l is null homotopic, and Sn is simply connected when
n ≥ 2.

Despite Sn being simply connected for n ≥ 2, the circle S1 is not simply con-
nected. In fact, the fundamental group of S1 is the infinite cyclic group Z, which
means there are infinitely many kinds of nontrivial loops in S1. We state this im-
portant fact [Hat02, Theorem 1.7] without proof:

Proposition 2.5.5. π1(S1) = Z.

Given any continuous map φ : (X, x0) → (Y, y0) between topological spaces
taking the base point x0 of X to the base point y0 of Y , it induced a group homo-
morphism between fundamental groups, which is

φ∗ :π1(X)→ π1(Y )
[f ] 7→ [φ ◦ f ]
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φ∗ is called the homomorphism induced by φ. It is well defined since if f1 ≃ f2

by ht, then φ ◦ f1 ≃ φ ◦ f2 by φ ◦ ht. It is a group homomorphism since φ∗([f ][g]) =
[φ ◦ (f · g)] = [(φ ◦ f) · (φ ◦ g)] = φ∗([f ]) · φ∗([g]).

Covering Space We now introduce an important tool for computing the funda-
mental group, which is the covering space.

We begin by definition. A covering space of a space X is a space X̃ together
with a map p : X̃ → X which satisfies: there exists an open cover {Uα} of X such
that for each α, p−1(Uα) is a disjoint union of open subsets of X̃, each of which is
mapped by p homeomorphically onto Uα. The map p : X̃ → X is called a covering
map. Given a covering map p : X̃ → X, a lift of a map f : Y → X is a map
f̃ : Y → X̃ such that p ◦ f̃ = f . We are interested in the behaviour of covering
spaces with respect to the lifting of maps.

We now state some lifting properties of covering spaces and some applications
of them without proofs. For their proofs, readers can consult the corresponding
citation.

First is the homotopy lifting property.

Proposition 2.5.6 (homotopy lifting property). Given a covering space p : X̃ → X,
a homotopy ft : Y → X, a map f̃0 : Y → X̃ lifting f0, then there exists a unique
homotopy f̃t : Y → X̃ of f̃0 lifting ft.

If we let Y be a point, we have the path lifting property for a covering space
p : X̃ → X which says that: for any path f : I → X, for any lift x̃0 of the starting
point x0 := f(0) of the path, there exists a unique path f̃ : I → X̃ lifting f starting
at x̃0.

As an application we have the following proposition:

Proposition 2.5.7. The map p∗ : π1(X̃, x̃0) → π1(X, x0) induced by a covering
space p : (X̃, x̃0) → (X, x0) is injective. The image subgroup p∗(π1(X̃, x̃0)) in
π1(X, x0) consists of the homotopy classes of loops in X based at x0 whose lifts
to X̃ starting at x̃0 are loops.

Given a covering space p : X̃ → X and a general map f : Y → X, it is natural to
ask about the existence and uniqueness of lift of f . The following lifting criterion
answers the question about when does a lift exists:
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Proposition 2.5.8 (lifting criterion). Given a covering space p : (X̃, x̃0)→ (X, x0)
and a map f : (Y, y0) → (X, x0) with Y path connected and locally path connected,
then a lift f̃ : (Y, y0)→ (X̃, x̃0) exists if and only if f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)).

As for the uniqueness, we have the following unique lifting property.

Proposition 2.5.9 (unique lifting property). Given a covering space p : X̃ → X

and a map f : Y → X with two lifts f̃1, f̃2 : Y → X̃ that agree at one point of Y ,
then if Y is connected, these two lifts must agree on all of Y .

The fundamental group of real projective space Related with covering space
there is a special kind of group action called covering space action, which can give
rise to a covering space. We now take a look at these kind of action and use it to
calculate the fundamental group of RP n.

Recall that a group action of the group G on a topological space Y is a group
homomorphsim ρ from G to the group Homeo(Y ) of all homeomorphisms from Y to
itself. Each group element g ∈ G is associated with a homeomorphism ρg : Y → Y .
A group action is called a covering space action if for any y ∈ Y , there is a
neighborhood Uy of y such that for any distinct group elements g1, g2, we have
ρg1(Uy) ∩ ρg2(Uy) = ∅. Equivalently, for any g ̸= e, we have ρg(Uy) ∩ Uy = ∅.

The following proposition tells us that if G acts on space Y is a covering space
action, then Y is a covering space of the orbit space Y/G:

Proposition 2.5.10. If a group action of a group G on a space Y is a covering
space action, then

• The quotient map p : Y → Y/G which maps each y ∈ Y to its orbit, is a
covering space.

• If Y is path connected and locally path connected, we have G ∼= π1(Y/G)/p∗(π1(Y )).

Now we can use the above proposition to compute π1(RP n):

Example 2.5.1 (π1(RP n)). Let Z2 acts on Sn by antipodality, i.e., for a nontrivial
element v ∈ Z2, for any x ∈ Sn, define v · x = −x. The orbit space of this action
is the real projective space RP n. This action is a covering space action: for any
x ∈ Sn, take Ux to be an open neighborhood of x contained in the open hemisphere
of Sn in which x is contained. Obviously, −Ux ∩ Ux = ∅. By the above proposition
we know that the quotient map p : Sn → RP n is a covering space. Since π1(Sn) = 0
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when n ≥ 2, we have Z2 ∼= π1(RP n) when n ≥ 2. As for n = 1, since S1 ∼= RP 1, we
have π1(RP 1) = π1(S1) = Z. In conclusion,

π1(RP n) =

Z, n = 1

Z2, n ≥ 2

2.5.2 homotopy groups

Homotopy groups πn(X) are higher dimensional analogs of the fundamental groups
π1(X).

Let In be the n-dimensional cubes, i.e., the product space of n-copies of the unit
interval [0, 1], let ∂In be the boundary of In, which is the subspace consisting of the
points of In with at least one coordinates equal to 0 or 1, let X be a topological
space with base point x0, define a map f : (In, ∂In)→ (X, x0) sending In to X and
∂In to x0, define the n-th homotopy group πn(X, x0) to be the set of homotopy
classes of f , and the homotopy ht : (In, ∂In)→ (X, x0),∀t ∈ I should be stationary
on the subset ∂In ⊂ In, i.e., for all t ∈ I, ht(∂In) = x0. For n = 0, we can define
I0 to be a point, ∂I0 to be the empty set, and extend the definition of πn(X, x0) to
n = 0: the map f : (I0, ∅) → (X, x0) sending the singleton I0 to a point of X, and
any two maps f1, f2 with images f1(I0), f2(I0) lying in the same path component
of X are homotopic with the path between f1(I0) and f2(I0) being the homotopy.
Thus π0(X, x0) is in one to one correspondence with each path component of X.

We now define the group operation on πn(X, x0) for n ≥ 2 to be the generalization
of the group operation of the fundamental group: for any f, g : (In, ∂In)→ (X, x0),
define its sum f + g to be

(f + g)(s1, s2, . . . , sn) =

f(2s1, s2, . . . , sn), 0 ≤ s1 ≤ 1
2

g(2s1 − 1, s2, . . . , sn), 1
2 ≤ s1 ≤ 1

The above operation is well defined on the level of homotopy classes of maps, i.e.,
[f ] + [g] = [f + g] since if f1 ≃ f2, g1 ≃ g2, then we have f1 + g1 ≃ f2 + g2. Using the
same argument as fundamental group, we can also show that πn(X, x0) is a group
with identity with the identity element to be the homotopy class of the constant map
sending In to x0, and the inverse of [f(s1, s2, . . . , sn)] to be [−f(s1, s2, . . . , sn)] =
[f(1− s1, s2, . . . , sn)].

Different from the fundamental group π1(X, x0) being non abelian in general, the

46



homotopy groups πn(X, x0) are abelian for n ≥ 2, i.e., f + g ≃ g + f . We refer the
readers to [Hat02, page 340] for a detailed explanation.

There is also another way to define the homotopy group: the maps f : (In, ∂In)→
(X, x0) is the same with the maps (In/∂In, ∂In/∂In) → (X, x0), and if we let
In/∂In = Sn, let ∂In/∂In) = s0, we have a map (Sn, s0) → (X, x0). Thus we
can view πn(X, x0) to be the homotopy classes of maps (Sn, s0)→ (X, x0). And the
sum f + g is the composition Sn c−→ Sn ∨ Sn f∨g−−→ X where c collasping the equator
Sn−1 of Sn to a point, and we choose the base point s0 of Sn to lie in this equator.

We now show that similar with the fundamental group, if X is path connected,
then its homotopy groups πn(X, x0) with different base points x0 are isomorphic.
Thus in this case, we can write πn(X, x0) simply as πn(X). In order to do this,
we will define a change-of-base-point isomorphism βγ : πn(X, x1) → πn(X, x0) by
βγ([f ]) = [γf ] where γ : I → X is a path from a base point γ(0) = x0 to another
base point γ(1) = x1. For any map f : (In, ∂In) → (X, x1) we associate it with
γf : (In, ∂In) → (X, x0) using γ as follows: first restrict the domain of f to a
smaller cube Ĩn lying in the center of In, and then divide In \ Ĩn into line segments
connecting ∂In and ∂Ĩn. Let γf send ∂In to x0, ∂Ĩn to x1, then the line segments
can be viewed as paths γ from x0 to x1. Since a homotopy of f which is stable on
∂In gives a homotopy of γf which is stable on ∂In, βγ is well defined. It can be
shown that βγ is an isomorphism with inverse βγ−1 , where γ−1(s) = γ(1− s) is the
inverse path of γ. For more details readers can see [Hat02, section 4.1]. We have
shown that if X is path connected, for any two base points x0 and x1, any path γ

connecting them gives an isomorphism βγ between πn(X, x0) and πn(X, x1).
Now we define the action of π1 on πn using the above βγ: we restrict γ to be paths

with the same start and end points, i.e. to be loops at some base point x0. Similar
with above, the map βγ : πn(X, x0) → πn(X, x0), [f ] 7→ [γf ] is an automorphism of
πn(X, x0). Observe that a homotopy of γ which is stable on ∂I gives a homotopy of
γf which is stable on ∂In, we can associate the homotopy class [γ] ∈ π1(X, x0) to
βγ ∈ Aut(πn(X, x0)), i.e., we can define a map ρ : π1(X, x0)→ Aut(πn(X, x0)), [γ] 7→
βγ. It can be shown that (γ1γ2)f ≃ γ1(γ2f). Thus we have βγ1γ2 = βγ1βγ2 , which
gives ρ is a group homomorphism. And we call ρ the action of π1(X, x0) on
πn(X, x0).

A space X is called n-simple if π1(x) acts on πn(X) trivially. When n = 1, this
corresponds to π1(X) being abelian. A space is called simple if it is n-simple for
every n.
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A space X with base point x0 is called n-connected if πi(X, x0) = 0 for all
0 ≤ i ≤ n. And 0-connected means path connected, 1-connected means simply
connected. Since n-connected implies 0-connected, and for path connected space
the homotopy groups of different choices of base points are isomorphic, we have
πi(X, x0) = 0 for some base point x0 implies πi(X, x) = 0 for any base point x. A
space X is called n-connected if πi(X, x0) = 0, 0 ≤ i ≤ n for some base point(and
thus for all base points) x0.

For n-connectivity, it can easily be shown that the following three condition are
equivalent:

• πi(X, x0) = 0 for all x0 ∈ X.

• any map f : Si → X is homotopic to a constant map.

• any map f : Si → X can extend to a map f̃ : Bi+1 → X where Bi+1 is a
(i+ 1) dimensional ball with boundary Si.

2.6 Homology and Cohomology

2.6.1 singular homology

Introduction The fundamental group that we defined above involves only maps
from 1 dimensional space( the 1 dimensional cube I) to topological space. Given this
definition, it is natural that the fundamental group can only reflect the low dimen-
sional structure of a topological space. For example, the fundamental group of cw
complexes X only depends on the 2-skeleton of X. In order to reflect the properties
of higher dimensional topological space, we can define a higher dimensional analog
of the fundamental group—the homotopy group πn(X) which invloves maps from
the n dimensional cube In to topological space X.

However, despite having a straightforward definition, the homotopy group is dif-
ficult to compute in general. It would be nice if we can define another kind of group
which has connection which the homotopy group on one side, and easier to compute
on the other side. The topic in this subsection—the homology group, would be such
kind of group.

Singular Homology The price for computability of the homology group is that
it has a less straightforward definition. We need some preparations before we give
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the definition:
A singular n-simplex in a space X is a map σ : ∆n → X where ∆n is the

stardard n simplex. Let Cn(X) be the free abelian group with basis the set of
singular n simplices in X, i.e., Cn(X) = {∑k

i=0 niσi|ni, k ∈ Z, σi : ∆n → X}. The
elements of Cn(X), which is the finite formal sum ∑

i niσi are called n chains. We
define the boundary map ∂n : Cn(X) → Cn−1(X) on each basis element σ of
Cn(X) by the following formula and then extent to the whole group Cn(X) linearly:

∂n(σ) =
∑

i

(−1)iσ|[v0, . . . ,
∧
vi, · · · , vn]

where [v0, . . . ,
∧
vi, · · · , vn] is a (n − 1) dimensional simplex of ∆n which lies in the

boundary of the n simplex ∆n = [v0, · · · , vn] with vertices {v0, . . . , vi−1, vi+1, · · · , vn}.
∧
vi indicates that the vertex vi is deleted from the sequence v0, . . . , vn. And σ|[v0, . . . ,

∧
vi, · · · , vn]

represents the restriction of σ to the n − 1 dimensional face [v0, . . . ,
∧
vi, · · · , vn] of

∆n, i.e., it is a singular (n− 1) simplex ∆n−1 → X.
There is an important property of the boundary map which we state without

proof:

Proposition 2.6.1. For each n, ∂n ◦ ∂n+1 = 0.

Thus now we have a sequence of homomorphisms of abelian groups

· · · → Cn+1(X) ∂n+1−−−→ Cn(X) ∂n−→ Cn−1(X) · · · → C1(X) ∂1−→ C0(X) ∂0−→ 0

with ∂n◦∂n+1 = 0 for each n. Such a sequence is called chain complex. ∂n◦∂n+1 = 0
indicates that Im∂n+1 ⊆ Ker∂n where Im and Ker represent image and kernel. We
define the n-th singular homology group of the chain complex to be the quotient
group Hn = Ker∂n/Im∂n+1. The elements of the kernel are called cycles and the
elements of the image are called boundaries. Elements of Hn are called homology
classes. Two cycles different by a boundary are in the same homology class and are
called homologous.

We now show that any map f : X → Y induces a group homomorphsim f∗ :
Hn(X)→ Hn(Y ):

Let f : X → Y be a map between two spaces, it induces a group homomorphism
f# : Cn(X) → Cn(Y ) by first define on each basis σ : ∆n → X of Cn(X) to be
f#(σ) = f ◦σ and then extend linearly to all Cn(X),.i.e., f#(∑i ni)σi = ∑

i nif#(σi).
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Furthermore, f# commutes with the boundary map ∂, i.e., f# ◦ ∂ = ∂ ◦ f# since

f#∂(σ) = f#(
∑

i

(−1)iσ|[v0, . . . ,
∧
vi, · · · , vn]) =

∑
i

(−1)ifσ|[v0, . . . ,
∧
vi, · · · , vn] = ∂f#(σ)

We call f# a chain map from the singular chain complex of X to that of Y .
The fact that f# commutes with the boundary map implies that f# takes cycles
to cycles and takes boundaries to boundaries. Thus f# induces a homomorphism
f∗ : Hn(X)→ Hn(Y ) between the homology groups of the two chain complexes.

Cellular Homology In order to compute the singular homology group of the
CW complexes, we introduce another important concept called cellular homology
group. It turns out that cellular homology group and singular homology group are
isomorphic, which makes cellular homology group an efficient tool to compute the
singular homology group of the CW complexes.

We first introduce the relative singular homology group.
Let X be a space and A be a subspace of X, there is a natural inclusion map

Cn(A)→ Cn(X). The group of relative singular chains is defined as

Cn(X,A) = Cn(X)/Cn(A)

The boundary map ∂ : Cn(X) → Cn(X) restricts to the boundary ∂ : Cn(A) →
Cn(A) and thus induces a boundary map ∂ : Cn(X)/Cn(A) → Cn(X)/Cn(A) on
relative chains. We now have the following singular chain complex of the pair
(X,A):

· · · → Cn+1(X,A) ∂n+1−−−→ Cn(X,A) ∂n−→ Cn−1(X,A) · · · → C1(X,A) ∂1−→ C0(X,A) ∂0−→ 0

Similarly as above, ∂∂ = 0 gives the homology group of this chain complex, which
are called the singular homology groups of the pair (X,A) and are denoted
Hn(X,A).

A sequence of homomorphism

· · · → An+1
αn+1−−−→ An

αn−→ An−1 → · · ·

is said to be exact if Ker αn = Im αn+1 for all n.
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There is an important long exact sequence of the pair (X,A):

Proposition 2.6.2. There exists a connecting homomorphism ∂∗ : Hn(X,A) →
Hn−1(A) such that the sequence of homology groups

· · · → Hn(A) i∗−→ Hn(X) j∗−→ Hn(X,A) ∂∗−→ Hn−1(A) i∗−→ Hn−1(X)→ · · ·

is exact, where i∗ is the homomorphism induced by the inclusion i : Cn(A)→ Cn(X)
and j∗ is the homomorphism induced by the quotient map j : Cn(X)→ Cn(X,A).

Now we can define the cellular homology of the CW complex:
Let X be a CW complex, let Hn(Xn, Xn−1) be the singular homology group of the

pair (Xn, Xn−1) where Xn, Xn−1 be the n and n − 1 skeleton of X. We can show
that Hn(Xn, Xn−1) is a free abelian group with basis of the n cells of CW complex
X:

Proposition 2.6.3. [Hat02, Lemma 2.34] If X is a CW complex, then Hk(Xn, Xn−1)
is zero for k ̸= n and is free abelian for k = n, with a basis in one to one correspon-
dence with the n-cell of X.

Define the boundary map dn : Hn(Xn, Xn−1) → Hn−1(Xn−1, Xn−2) to be the
composite

Hn(Xn, Xn−1) ∂∗−→ Hn−1(Xn−1) j∗−→ Hn−1(Xn−1, Xn−2)

Again we have dn ◦ dn+1 = 0 since

Hn−1(Xn−1) j∗−→ Hn−1(Xn−1, Xn−2) ∂∗−→ Hp−2(Xp−2)

is exact. Thus we have the following cellular chain complex of X:

· · · → Hn+1(Xn+1, Xn) dn+1−−−→ Hn(Xn, Xn−1) dn−→ Hn−1(Xn−1, Xn−2)→ · · ·

The homology group Hcw
n (X) given by the above cellular chain complex are called

the cellular homology group of X, and it can be shown that it is isomorphic to
the singular homology of X. Thus in order to compute the singular homology group
of a CW complex, we only need to compute its cellular homology group.

Proposition 2.6.4. [Hat02, Theorem 2.35] Hcw
n (X) ∼= Hn(X).

In the following, we will give the formula to compute the cellular boundary map.
Before that, we first need the definition of degree for maps between spheres:
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any map f : Sn → Sn induces a group homomorphism f∗ : Hn(Sn) → Hn(Sn).
Since Hn(Sn) ∼= Z, f∗ must be of the form f∗ : x 7→ dx for some integer d. Then d

is called the degree of f .
The cellular boundary map is given by the following formula:

Proposition 2.6.5. [Hat02, P140] The boundary map dn : Hn(Xn, Xn−1)→ Hn−1(Xn−1, Xn−2)
of the cellular chain complex is given by

dn(en
α) =

∑
β

dαβe
n−1
β

where en
α is a n cell of X and a generator of Hn(Xn, Xn−1), en−1

β is a n− 1 cell of
X and a generator of Hn−1(Xn−1, Xn−2), dαβ is the degree of the map

Sn−1
α
∼= ∂en−1

β

χn
α−→ Xn−1 q−→ Xn−1

Xn−1 \ en−1
β

∼= Sn−1
β

which is the composition of the attaching map χn
α : ∂en−1

β → Xn−1 of en
α and the

quotient map q : Xn−1 → Xn−1

Xn−1\en−1
β

collapsing Xn−1 \ en−1
β to a point. The sum is

taken over all n− 1 cells of X.

Homology group of real projective space Now we compute the singular ho-
mology group of the real projective space RP n using cellular homology.

Example 2.6.1 (Homology group of RP n). By example 2.2.1 we know that RP n has
a cw structure with one cell ek in each dimension k ≤ n, and the attaching map of
ek is the covering map φ : Sk−1 → RP k−1 identifying the antipodal points of Sk−1.
In order to apply the above formula for the boundary map, we first need to calculate
the degree for the composition q ◦ φSk−1 φ−→ RP k−1 q−→ RP k−1/RP k−2 = Sk−1. We
compute the degree of q ◦ φ using local degree: the map q ◦ φ is a homeomorphsim
when restricted to each component of Sk−1−Sk−2, and these two homeomorphisms
are obtained from each other by precomposing with the antipodal map of Sk−1,
which has degree (−1)k. Hence deg q ◦ φ = 1 + (−1)k. Thus when k is odd, dk = 0;
when k is even, dk = 2. Thus we have the following cellular chain complex for RP n:

0→ Z 2−→ Z 0−→ · · · 2−→ Z 0−→ Z 2−→ Z 0−→ Z→ 0, when n is even

0→ Z 0−→ Z 2−→ · · · 2−→ Z 0−→ Z 2−→ Z 0−→ Z→ 0, when n is odd
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which induce the homology group of RP n:

Hk(RP n) =


Z k = 0, or k = n and k is odd.

Z2 k is odd and 0 < k < n

0 otherwise

Connection between homotopy and homology The following theorem is one
of the cornerstones of algebraic topology, and it demonstrates a direct connection
between homotopy and homology.

Theorem 2.6.1 (Hurewicz Theorem). [Hat02, Theorem 4.32] Let X be a space
with base point x0, there is a naturally defined group homomorphism (the Hurewicz
map1)between the homotopy groups πn(X, x0) and the homology groups Hn(X) given
as follows:

ρ : πn(X, x0)→ Hn(X)
[f ] 7→ f∗(α)

where f : (Sn, s0)→ (X, x0) is a map from Sn to X sending the base point s0 of Sn

to the base point x0 of X, and f induces a map on homology which is f∗ : Hn(Sn)→
Hn(X), and α ∈ Hn(Sn) is a generator of Hn(Sn) ∼= Z. Then we have

• for n = 1, if X is 0-connected, i.e., π0(X, x0) = 0, the Hurewicz map ρ induces
a group isomorphism

ρ̃ : π1(X, x0)/[π1(X, x0), π1(X, x0)]→ H1(X)

from the abelianization of π1(X, x0) to H1(X), where [π1(X, x0), π1(X, x0)] is
the commutator subgroup of π1(X, x0).

• for n ≥ 2, if X is (n − 1)-connected, i.e., πi(X, x0) = 0, 0 ≤ i ≤ n − 1, then
the reduced homology groups H̃i(X) = 0, 0 ≤ i ≤ n− 1, and the Hurewicz map
ρ : πn(X, x0)→ Hn(X) is an isomorphism.

The above Hurewicz theorem tells us that for a simply connected (1-connected)
space X, its first nontrivial homotopy group πn(X) is isomorphic to its first non
trivial homology group Hn(X).

1The Hurewicz map is well-defined since by [Hat02, Theorem 2.10], if two maps f, g : X → Y
are homotopic, they induces the same homomorphism f∗ = g∗ : Hn(X)→ Hn(Y )
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2.6.2 cohomology groups and cohomology rings

cohomology group Let X be a space, we have the following singular chain com-
plex

· · · → Cn+1(X) ∂n+1−−−→ Cn(X) ∂n−→ Cn−1(X)→ · · · → C1(X) ∂1−→ C0(X) ∂0−→ 0

and we dualize this chain complex by replacing each chain group Cn(X) by its dual
cochain group Cn(X,G) := Hom(Cn(X), G) where Hom(Cn(X), G) is the group
of all homomorphisms from Cn(X) to an abelian group G and call it singular n

cochains with coefficients in G. Define the coboundary map δ : Cn(X,G)→
Cn+1(X,G) to be the dual ∂∗ of the boundary map ∂ : Cn+1(X) → Cn(X), i.e.,
for a cochain φ ∈ Cn(X,G), its coboundary δ(φ) ∈ Cn+1(X,G) is the composition
Cn+1(X) ∂−→ Cn(X) φ−→ G. The composition δ ◦ δ of two coboundary maps is a
zero map since the composition of two boundary maps is zero. Thus we have the
following cochain complex

· · · ← Cn+1(X;G) δ←− Cn(X;G) δ←− Cn−1(X;G)← · · · ← C1(X;G) δ←− C0(X)← 0

Thus we can define the cohomology group Hn(X;G) with coefficients in G to be
the quotient Kerδ/Imδ at Cn(X;G) in the above cochain complex. Elements of
Kerδ are called cocyles and elements of Imδ are called coboundaries.

Since cohomology group is obtained from homology group, it is natural to ask
about their relationships. The following universal coefficient theorem for co-
homology tells us that the cohomology group with arbitrary coefficients are deter-
mined purely by homology groups with Z coefficients.

Theorem 2.6.2 (universal coefficient theorem for cohomology). [Hat02, Theorem
3.2] Let X be a space, G be an abelian group, then the cohomology groups Hn(X;G)
of the cochain complex Hom(Cn(X);G) are determined by the exact sequence

0→ Ext(Hn−1(X), G)→ Hn(X;G)→ Hom(Hn(X), G)→ 0

Cohomology group of real projective space We can use the above theorem
to compute the cohomology group of RP n with Z coefficient. Before that, we first
give three properties of Ext(H,G) for finitely generated group H:

• Ext(H ⊕H ′, G) ∼= Ext(H,G)⊕ Ext(H ′, G)
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• Ext(H,G) = 0 if H is free

• Ext(Zn, G) ∼= G/nG

Example 2.6.2 (cohomology group of RP n). We see from example 2.6.1 the ho-
mology group of RP n is either Z or Z2 or 0. When k > n, Hk(RP n) = 0,
thus Ext(Hk−1(X), G) ∼= Hk(X;G). Since Hk−1(X) is either 0 or Z, we have
Hk(X;G) = 0. When k = n, n is odd, Hk(X) = Z and Hk−1(X) = 0. Then
we have Ext(Hk−1(X),Z2) = 0, thus Hk(X;G) ∼= Hom(Hk(X), G). Furthermore,
since Hom(Z,Z2) = Z2, we have Hk(X;G) = Z2. Other cases are quite similar,
thus we have

Hk(PRn;Z2) =

Z2, 0 ≤ k ≤ n

0, k>n

cohomology ring We first define a multiplication between cohomology groups,
which is the cup product:

consider cohomology with coefficients in a ring R, e.g., Z, Zn, Q, for cochain
φ ∈ Ck(X;R), ψ ∈ C l(X;R), define their cup product φ ⌣ ψ ∈ Ck+l(X;R) to be
a cochain whose value on a singular simplex σ : ∆k+l → X is given by the formula

(φ ⌣ ψ)(σ) = φ(σ|[v0, . . . , vk])ψ(σ|[vk, . . . , vk+l])

where multiplication on the right hand side is the ring multiplication of ring R. The
following proposition shows that cup product of cochain induces a cup product on
cohomology classes

Lemma 2.6.1. δ(φ ⌣ ψ) = δφ ⌣ ψ + (−1)kφ ⌣ δψ for φ ∈ Ck(X;R) and
ψ ∈ C l(X;R).

From the above formula we can see that the cup product of two cocycles is a
cocycle, and the cup product of a cocyle and a coboundary is a coboundary. Thus
the cup product between cochains induces a cup product between cohomology

Hk(X;R)×H l(X;R) ⌣−→ Hk+l(X;R)

The cup product between cohomology is associative and distributive since the
cup product between cochains are obviously associative and distributive. Now we
can make the cup product into a multiplication in the following ring structure:
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define H∗(X;R) to be the direct sum of the groups Hn(X;R), i.e.,

H∗(X;R) = ⊕nH
n(X;R)

Elements in H∗(X;R) are finite sums ∑i αi with αi ∈ H i(X;R). We can make
H∗(X;R) a ring by defining the product of any two elements∑i αi,

∑
i βi ∈ H∗(X;R)

to be (∑i αi)(
∑

j βj) = ∑
i,j αiβj.

The cohomology ring is in fact a graded ring, i.e., the cohomology ringH∗(X;R)
can be decomposed into a sum ⊕nH

n(X;R) of additive subgroups Hn(X;R) such
that the ring multiplication takes elements in Hk ×H l(X;R) to Hk+l(X;R). If an
element x ∈ H∗(X;R) lies in Hk(X;R) we say it has dimension k.

We now give an example of cohomology ring without proof.

Example 2.6.3. [Hat02, Theorem 3.12] H∗(RP n;Z2) ∼= Z2[x]/(xn+1) with x has di-
mension 1.

2.7 Equivariant Obstruction theory

Given a relative CW complex (X,A), assume we have a map f : Xn → Y from the
n-skeleton of X to Y , obstruction theory deals with the problem regarding whether
f can extend one more dimension to Xn+1.

More precisely, we have the following main theorem of obstruction theory:

Theorem 2.7.1 (Main Theorem of Classical Obstruction Theory). [DK01, chapter
7] Let (X,A) be a relative CW-complex, n ≥ 1, Y be a path connected n-simple
space(i.e. [Sn, Y ] = πnY ), let f : Xn → Y be a continuous map, then we have

1. f extends to a map Xn+1 → Y if and only if the obstruction cocycle θn+1(f) ∈
Hom(Cn+1(X,A), πnY ) vanishes.

2. the restriction f |Xn−1 : Xn−1 → Y extends to a map Xn+1 → Y if and only if
the cohomology class [θn+1(f)] ∈ Hn+1(X,A; πn(Y )) vanishes.

In order to prove the theorem 2.7.1, we first define the obstruction cocycle:
Let (X,A) be the relative CW-complex as before, let Jn index all the n-cells of

(X,A), Cn+1(X,A) be the free abelian groups with basis to be all the (n + 1)-cells
of (X,A), and Cn+1(X,A; πnY ) = Hom(Cn+1(X,A), πnY ) be the abelian group of
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all group homomorphism from Cn+1(X,A) to πnY . For any n+ 1 cell en+1
i of (X,A)

there is a characteristic map of en+1
i

ϕi : (Bn+1, Sn)→ (en+1
i , ∂en+1

i ) ⊂ (Xn+1, Xn).

Restricting it to Sn we have the attaching map of en+1
i :

φi = ϕi|Sn : Sn → ∂en+1
i ⊂ Xn,

compose φi with f : Xn → Y we have the following map:

Sn φi−→ Xn
f−→ Y,

which gives an element [f ◦ φi] ∈ [Sn, Y ]. Since we assume Y is n-simple, [Sn, Y ] =
πnY . Now we have associated to every n + 1 cell en+1

i an element [f ◦ φi] in πnY ,
and we can define the obstruction cochain:

Definition 2.7.1 (obstruction cochain). The obstruction cochain θn+1(f) ∈ Cn+1(X,A; πnY )
is a group homomorphism from Cn+1(X,A) to πnY , which is defined on each n+ 1
cell en+1

i of Cn+1(X,A) by

θn+1(f)(en+1
i ) = [f ◦ φi]

and extend to all Cn+1(X,A) linearly, i.e., for any element ∑i nie
n+1
i in Cn+1(X,A),

θn+1(f)(
∑

i

nie
n+1
i ) =

∑
i

niθ
n+1(f)(en+1

i ).

A map Sn → Y is homotopic to a constant map if and only if it can extend to
Bn+1, and f ◦ φi : Sn → Y can extend to Bn+1 if and only if f can extend to Xn+1.
Thus we have prove the first part of the theorem 2.7.1:

Lemma 2.7.1. f : Xn → Y can extend to Xn+1 if and only if θn+1(f) = 0.

Furthermore, the obstruction cochain θn+1(f) is in fact a cocycle:

Theorem 2.7.2. The obstruction cochain θn+1(f) is a cocycle.

Proof. We omit the proof and refer the readers to [DK01, Theorem 7.6].

Thus the obstruction cocycle θn+1(f) defines a cohomology class [θn+1(f)] ∈
Hn+1(X,A; πnY ).
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In order to prove the second part of the theorem 2.7.1, we first show if f : Xn → Y

can extend to Xn+1 after modifying f on the n-cells of Xn (if f |Xn−1 can extend to
Xn+1), then the obstruction cocycle θn+1(f) ∈ Cn+1(X,A; πnY ) is also a coboundary,
i.e. 0 = [θn+1(f)] ∈ Hn+1(X,A; πnY ):

Theorem 2.7.3. Given f : Xn → Y , the cohomology class [θn+1(f)] ∈ Hn+1(X,A; πnY )
vanishes if the restriction f |Xn−1 can extend to Xn+1.

In order to prove the theorem 2.7.3, we need the following lemma:

Lemma 2.7.2. Let f0, f1 : Xn → Y be two maps whose restriction to Xn−1 are
homotopic, i.e., f0|Xn−1 ≃ f1|Xn−1, then the choice of homotopy G : Xn−1 × I → Y

defines a difference cochain d(f0, G, f1) ∈ Cn(X,A; πnY ) such that

δd = θn+1(f0)− θn+1(f1)

where δ : Cn(X,A; πnY ) → Cn+1(X,A; πnY ) is the differential of the cochain com-
plex C∗(X,A; πnY ).

Remark 2.7.1. The above lemma shows that for any two maps f1, f2 : Xn → Y ,
if their restriction to Xn−1 are homotopic, i.e., if f1|Xn−1 ≃ f2|Xn−1 , then their
obstruction cocyles differ by a coboundary, i.e., [θn+1(f1)] = [θn+1(f2)].

Proof. We omit the proof and refer readers to [DK01, lemma 7.8].

proof of theorem 2.7.3. If f : Xn → Y can extend to Xn+1 after modifying the n-
cells of X, denote the modified f to be g : Xn → Y , we have g can extend to Xn+1,
thus by lemma 2.7.1, the obstrution cocycle θn+1(g) = 0. Since f |Xn−1 = g|Xn−1 , by
lemma 2.7.2, we have [θn+1(f)] = [θn+1(g)] = 0, thus θn+1(f) is a coboundary.

Now we prove another direction of theorem 2.7.1: if the obstruction cocycle
θn+1(f) ∈ Cn+1(X,A; πnY ) is a coboundary, then the restriction f |Xn−1 can extend
to Xn+1:

Theorem 2.7.4. Given a map f : Xn → Y , and let its obstruction cocycle θn+1(f) ∈
Cn+1(X,A; πnY ) to be a coboundary δd for some cochain d ∈ Cn(X,A; πnY ), then
the restriction f |Xn−1 can extend to Xn+1.

In order to prove the theorem 2.7.4, we need the following proposition:
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Proposition 2.7.1 (realization proposition). Given a map f0 : Xn → Y , a ho-
motopy G : Xn−1 × I → Y such that G(−, 0) = f0|Xn−1 and an element d ∈
Cn(X,A; πnY ), there exists a map f1 : Xn → Y such that G(−, 1) = f1|Xn−1 and
d = d(f0, G, f1), i.e., δd = θn+1(f0)− θn+1(f1).

Proof. We omit the proof and refer the readers to [DK01, proposition 7.10].

proof of theorem 2.7.4. By the above realization proposition 2.7.1, for f , d, and the
stationary homotopy G : X × I → Y from f |Xn−1 to itself: G(x, t) = f |Xn−1 ,∀t ∈ I,
there exists a map f ′ : Xn → Y which agrees with f on Xn−1, and satisfies δd =
θn+1(f) − θn+1(f ′). Then we have θ(f ′) = 0 so f ′ extends to Xn+1, which is f can
extend to Xn+1 after modifying the n-cells of X.

Combining all above, we have prove theorem 2.7.1, the main theorem of obstruc-
tion theory.

The above classical obstruction theory can be stated in an equivariant setting.
The proof and properties of the equivariant obstruction theory are similar with the
classical obstruction theory. Readers are refered to [tD11, Chapter II.3] for free
G-complex situation, and [Bre06, Chapter II] for general G-complex situation. We
state the main theorem of equivariant obstruction theory for general G-complex
without proof:

Theorem 2.7.5 (Main Theorem of Equivariant Obstruction Theory). [Bre06, chap-
ter II.] Let G be a group. let X be a cell G-complex. We require the cellular action
of G on X satisfy an additional condition: for any g ∈ G, {x ∈ X|g · x = x} is a
subcomplex of X, i.e., if g ·x = x for some g ∈ G, x ∈ X, then g fixes the support(the
smallest subcomplex containing x) of x pointwisely. let Y be a G-space, we assume
for simplicity that, for each subgroup H ⊆ G, the set Y H of stationary points of
H on Y is non-empty, arcwise connected, and n-simple. Assume we have given an
G-equivariant map f : Xn → Y . Then we have

1. f extends to a map Xn+1 → Y if and only if the equivariant obstruction cocycle
θn+1(f) ∈ HomG(Cn+1(X), πn(Y )) vanishes.

2. the restriction f |Xn−1 : Xn−1 → Y extends to a map Xn+1 → Y if and only if
the cohomology class [θn+1(f)] ∈ Hn+1

G (X, πn(Y )) vanishes.

The following theorem regarding the existence of G-map is a special case of the
above theorem which we would use very often later:
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Theorem 2.7.6. [MBZ03, Lemma 6.2.2]
There is a G-map from any at most n-dimensional free simplicial G-complex

K(or a cell G-complex) to any (n − 1)-connected G-space X. And any two maps
f1, f2 : K → X are G-homotopic when restrict to the n− 1-skeleton Kn−1 of K.

proof. We construct the G-map f : K → X inductively using the (n−1)-connectivity
of X. Suppose we have defined f on the (d − 1)-skeleton of K where d ≤ n. Since
K is a simplicial G-complex, the group action G on K is a homeomorphism and a
simplicial map from K to itself which maps simplices to simplices by linear maps,
we can then partition the d-simplices of K into equivalence classes under this group
action. Since the group action is free, the stablizer of each simplex is the trivial
subgroup. Hence the fixed point space X{e} = X is (d − 1)-connected and we can
extend f as follow: we first choose one d-simplex σ from each equivalence class and
extend f continuously on those simplices using the fact that f is (d− 1)-connected,
after that we extend f on other d-simplices in each equivalence class using the
property of G-map(i.e., f(g · σ) = g · f(σ)), so that f becomes a G-map.

For the second statement, we need to construct a G-homotopy H : Kn−1×I → X

between f1|Kn−1 and f2|Kn−1 . Let H(x, 0) = f1(x), H(x, 0) = f2(x), we have a G-
equivariant map H : Kn−1 × {0, 1} → X. We show that we can extend H to the
whole Kn−1 × I G-equivariantly: define a G-action on Kn−1 × I by letting G acts
on Kn−1 as before, and G acts on I trivially, i.e., for g ∈ G, for (x, t) ∈ Kn−1 × I,
g ·(x, t) = (g ·x, t). Since Kn−1 is a free G-complex, Kn−1×I is also a free G-complex.
Kn−1× I is obtained from Kn−1×{0, 1} by attaching cells of at most n-dimensional.
Since X is (n − 1)-connected G space, and Kn−1 × I is a free G-complex, we can
extend H to the whole Kn−1 × I cell by cell G-equivariantly as the proof of the
first statement: for each cell e ∈ H of a G-orbit, we have e has dimension at most
n. Thus let ∂ : ∂e → Kn−1 × I be the attaching map of e, we can extend the
map H ◦ ∂ : ∂e ∂−→ Kn−1 × I

H−→ X continuously to the interior using the (n − 1)
connectivity of X, which defines H(e), and then extends H to the whole G-orbit of
e equivariantly.

Remark 2.7.2. The above theorem can in fact be refined as(which is from my director
Gregory):

Theorem 2.7.7. Let X be an n-dimensional cell complex, with a cellular action of a
finite group G. We require the cellular action satisfy an additional condition: for
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any g ∈ G, {x ∈ X|g · x = x} is a subcomplex of X, i.e., if g · x = x for some
g ∈ G, x ∈ X, then g fixes the support(the smallest subcomplex containing x) of x
pointwisely. Suppose that for all 0 ≤ i ≤ n, for every subgroup H of G that occurs as
a stabilizer of a cell of X of dimension i, the fixed point space Y H is (i−1)-connected.
Then there exists a G-equivariant map from X to Y .

Remark 2.7.3. By lemma 2.7.2 we know that, for any two maps f1, f2 : Xn → Y ,
if their restrictions on Xn−1 are homotopic, then their corresponding obstruction
cocycles differ by a coboundary. By the above theorem we can see that if the target
space Y is (n−1)-connected, then any two maps f1, f2 : Xn → Y when restricted to
Xn−1 are homotopic, thus [θn+1(f1)] = [θn+1(f2)], i.e., the obstruction cohomology
class of extending f : Xn → Y is independent of f . We call it the primary
obstruction to extending f .
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3
The Borsuk-Ulam theorem
Our journey starts at an important theorem in topology– the Borsuk-Ulam theorem,
which is one of the most applied topological theorem and it has lots of applications
within and outside of mathematics, including combinatorics, economics and even
physics.

The Borsuk-Ulam theorem was conjectured [FRI05] by Ulam at the Scottish
Café in Lvov and has many equivalent formulations. One of its form was proven
by Borsuk in 1933 in his paper [Bor33a]. Hence we have the name ’Borsuk-Ulam
theorem’.

In this section, we will state the theorem and some of its equivalent formulations
in the subsection 3.1, and then give some of the applications of the theorem in the
subsection 3.2. Finally in the last subsection 3.3, we will give two generalizations of
the theorem which would be essential for later discussion of the topological Tverberg
theorem.

3.1 The Borsuk-Ulam theorem

We first state the Borsuk-Ulam theorem and some of its equivalent versions.

Theorem 3.1.1 (Borsuk-Ulam theorem and its equivalent formulations). For n ≥ 0,
the following statements are true and equivalent:

(BU1.) For any continuous map f : Sn → Rn, there exists x ∈ Sn such that f(x) =
f(−x). 2

(BU2.) For any continuous antipodal map f : Sn → Rn, there exists x ∈ Sn such that
f(x) = 0. A map f : Rn → Rm is antipodal if ∀x ∈ Rn, f(−x) = −f(x), where
for x = (x1, . . . , xn) ∈ Rn,−x = (−x1, . . . ,−xn).

2(BU1.) is the most common version of the Borsuk-Ulam theorem, and it is also the version
that Borsuk has proved.
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(BU3.) There is no antipodal continuous map f : Sn → Sm when n > m.

(BU4.) There is no continuous map f : Bn → Sm which is antipodal on the boundary
when n > m.

Before we prove the theorem, we first show their equivalence which is easy to
show and it would help us gain some intuition of the theorem:

Claim. The above theorems are equivalent.

proof of claim. • (BU1) =⇒ (BU2): let f : Sn → Rn be an antipodal map, by
(BU1), there exists a ∈ Sn such that f(a) = f(−a). Since f is antipodal, we
have f(a) = f(−a) = −f(a) which gives f(a) = 0.

• (BU2) =⇒ (BU3): for m ≤ n, any antipodal map f : Sn → Sm is an
antipodal map f̃ : Sn → Rn if we compose f with an inclusion map from Sm

to Rn. By (BU2) we know that there exists a ∈ Sn such that f̃(a) = 0. Since
the origin 0 do not lie in any Sm, there is no such map.

• (BU3) =⇒ (BU4): if when m < n, there exists a continuous map f :
Bn → Sm antipodal on the boundary, we can construct an antipodal map
g : Sn → Sm to be: divide Sn into an upper and an lower hemisphere H+ and
H− which are both closed and include the boundary, denote their boundary
as Sn−1. define g : Sn → Sm as ∀x ∈ H+, let g(x) = f(x), g(−x) = −f(x).
g is well defined since f is antipodal on the boundary and g is by definition
antipodal.

• (BU4) =⇒ (BU1): if there exists a map f : Sn → Rn such that ∀x ∈
Sn, f(x) ̸= f(−x), we can construct a map h : Bn → Rn antipodal on the
boundary: if we think of the upper hemisphere of Sn as Bn, the map restricts
to a map f : Bn → Rn which satisfies ∀x ∈ Bn, f(x) ̸= f(−x). Define h :
Bn → Rn as h(x) = g(x)− g(−x), then for all x ∈ Bn, h(−x) = g(−x)− g(x),
i.e., h is antipodal on the boundary.

The proof of the theorem is however not easy. There are mainly two ways to
prove the theorem: either to use combinatorics or to use algebraic topology. We will
first give a proof using some advanced knowledge of algebraic topology. We will later
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give a combinatorial proof of the theorem by proving its combinatorial euqivalent
statement — the Tucker’s lemma, using pure combinatorics.

We now prove (BU3) in theorem 3.1.1 using algebraic topology. Before that, we
first state (BU3) using the language of equivariant topology:

Let Z2 be a cyclic group of two elements, as in example 2.3.3, 2.3.5, we can
view Sn as a free Z2-space, an antipodal map f : Sn → Sm, f(−x) = −f(x) as a
Z2-equivariant map, then we can rewrite (BU3) as:

Theorem 3.1.2 ((BU3), equivariant statement). There is no Z2-equivariant map
from Sn to Sm when n > m.

proof of (BU3) by algebraic topology. The proof is from [FRI05].
We prove by contradiction. Assume that when n > m ≥ 1, there exists an

Z2-equivariant map f : Sn → Sm between two Z2 spaces, which induces a map
f̄ : Sn/Z2 → Sm/Z2 between their orbit spaces. Since the orbit of Sn under the
antipodal Z2 action is the real projective space RP n, we have f̄ : RP n → RPm.
And the quotient map qn : Sn → RP n, qm : Sm → RPm are covering maps with Sn

and Sm being the universal cover of RP n and RPm. f̄ also induces a map between
fundamental group f̄∗ : π1(RP n)→ π1(RPm), φ 7→ f̄ ◦ φ.

Let x ∈ Sn be a base point of Sn, and f(x) = f(−x), qn(x) = qn(−x), qm(f(x)) =
qm(f(−x)) be the corresponding base points of Sm, RP n, RPm; let α : [0, 1]→ RP n

be a loop at the base point qn(x), i.e., α(0) = α(1) = qn(x), since [0, 1] is simply
connected, by lifting criterion, there exists a unique lift A : [0, 1] → Sn of α with
A(0) = x. Given all above, we have the following commutative diagram:

Sn Sm

(0, 1) RP n RPm

f

qn qm
∃!A

α f̄

Given A : [0, 1] → Sn a lift of α as above, we know that A(1) is either x or −x
since qn(A(1)) = α(1) = qn(x) = qn(−x). When A(1) = x, A is a loop at x ∈ Sn,
and since Sn is simply connected when n ≥ 2(n > m ≥ 1 implies n ≥ 2), A is
null homotopic. The composition qn ◦ A is also homotopic equivalent to a constant
map, i.e., the homology class [qn ◦ A] ∈ π1(RP n) is the trivial element. When
A(1) = −x, the composition qn ◦ A is not null homotopic and the homology class
[qn ◦A] ∈ π1(RP n) is a nontrivial element( If [qn ◦A] ∈ π1(RP n) is a trivial element,
then it has to be a image of the group homomorphism (qn)∗ : π1(Sn) → π1(RP n),
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i.e., there exists a loop A′ : [0, 1] → Sn with A(0) = A(1) = x which is null
homotopic and which satisfies that qn ◦ A′ = α. Thus A′ is also a lift of α. Since
A(0) = A′(0) = x, by the uniqueness of lift, we should have A = A′, which is however
not true.) Since f : Sn → Sm is a Z2 equivariant map, we have f(A(1)) = f(−x) =
−f(x). Similarly with the above argument, qm ◦ f ◦A is not null homotopic and the
homology class [qm ◦ f ◦A] ∈ πm(RPm) is a non trivial element. Furthermore, since
qm ◦ f ◦ A = f̄ ◦ qn ◦ A, we have f̄∗([qn ◦ A]) = [f̄ ◦ qn ◦ A] = [qm ◦ f ◦ A] being a
group homomorphism from πn(RP n) to πm(RPm) sending a nontrivial element to a
non trivial element, i.e, f̄∗ is not a zero map.

In example 2.5.1 we have seen that the fundamental group of the real projective
space RP n is Z when n = 1, and it is Z2 when n > 1. If n > m = 1, by above
argument, f̄∗ : π1(RP n)→ π1(RP 1) is a non zero group homomorphism f̄∗ : Z2 → Z
which is not possible, since the generator 1 of Z2 has order 2, but there is no
element of Z has order 2. Thus we have shown that there is no Z2 equivariant map
f : Sn → S1 when n > 1.

If n > m > 1, similarly, f̄∗ : π1(RP n)→ π1(RPm) is a non zero group homomor-
phism f̄∗ : Z2 → Z2, which can only be the identity map. By Hurewicz theorem, we
have the homology group H1(RP n) is isomorphic to the abelianization of π1(RP n).
Since π1(RP n) is an abelian group, we have H1(RP n) ∼= π1(RP n). By above we
have an identity map between fundamental groups f̄∗ : π1(RP n) → π1(RPm),
which gives an isomorphism between homology groups H1(RP n) ∼= H1(RPm). And
this also induces an isomorphism between cochain groups Hom(H1(RPm),Z2) ∼=
Hom(H1(RP n),Z2). Furthermore, The universal coefficient theorem for cohomol-
ogy tells us that Hom(H1(RP n),Z2) ∼= H1(RP n,Z2):

By the universal coefficient theorem for cohomology, there is a short exact se-
quence

0→ Ext(H0(RP n),Z2)→ H1(RP n,Z2)→ Hom(H1(RP n),Z2)→ 0

Since H0(RP n) = Z is a free abelian group, we have Ext(H0(RP n),Z2) = 0. Thus
Hom(H1(RP n),Z2) ∼= H1(RP n,Z2).

Thus we have f̄ ∗ : H1(RPm,Z2) → H1(RP n,Z2) is an isomorphism. We see
from example 2.6.2 that for all n, H1(RP n,Z2) = Z2, and the only isomorphsim
between Z2 is the identity map. Thus f̄ ∗ : H1(RPm,Z2) → H1(RP n,Z2) is the
identity map.
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Borsuk-Ulam theorem Tucker’s lemma LSB theorem

Brouwer’s fixed point Sperner’s lemma KKM theorem

equal equal

equal equal

implies implies implies

Figure 2: equivalence relations between three domains

We have seen from example 2.6.3 the cohomology ring with Z2 coefficient of RP n

is H∗(RP n,Z2) = Z2[x]/(xn+1).
Thus the ring homomorphism

f̄ ∗ : H∗(RPm,Z2)→ H∗(RP n,Z2)

is the ring homomorphism

f̄ ∗ : Z2[x]/(xm+1)→ Z2[y]/(yn+1), x 7→ y

which maps x to y since f̄ ∗ : H1(RPm,Z2)→ H1(RP n,Z2) is an isomorphism.
However, since n > m, we have 0 = f̄ ∗(xm+1) = (f̄ ∗(x))m+1 = ym+1 ̸= 0, which is

a contradiction. Thus there is no Z2-equivariant map f : Sn → Sm when n > m > 1.
Combine the above discussion, we have proved (BU3).

3.2 Applications of the Borsuk-Ulam theorem

In this section, we will give some applications of the Borsuk-Ulam theorem. In sub-
section 3.2.1, we will give two equivalent formulations of the Borsuk-Ulam theorem
(a topological theorem) in two different domains — the Tucker’s lemma in combi-
natorics and the LSB theorem in set covering. In subsection 3.2.2, we will first show
that the Borsuk-Ulam theorem implies another important theorem — the Brouwer’s
fixed point theorem, and then similar with before, we gives two equivalent formula-
tions of the Brouwer’s fixed point theorem(a topological theorem) in two different
domains — the Sperner’s lemma in combinatorics and the KKM theorem in set
covering. More intuitively, we will show the following relations as in figure 2.
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For more applications and combinatorial direction information of the above the-
orems, [DLGMM19] is a good reference.

3.2.1 Borsuk-Ulam theorem and the Tucker’s lemma

Tucker’s lemma: a combinatorial equivalent formulation of the Borsuk-U-
lam theorem We will first give a combinatorial equivalent formulation of the
Borsuk-Ulam theorem, which is the Tucker’s lemma. We first state the most com-
mon formulation of the Tucker’s lemma:

Lemma 3.2.1 (The first statement of Tucker’s lemma). Let T be a triangulation of
Bn which is antipodally symmetric on the boundary, which means for any simplex
σ, if σ ∈ T ∩ ∂Bn, the antipodal simplex −σ ∈ T ∩ ∂Bn. Define a labeling l of the
vertices of T to be a map:

l : V (T )→ {±1, . . . ,±n}

which satisfies l(−v) = −l(v) for any v ∈ ∂Bn. For any such labeling l, there
exists an edge e ∈ T such that the two vertices of the edge e are labelled by opposite
numbers. We call this edge e a complementary edge.

An algorithmic proof of the above Tucker’s lemma was given in [FT81a] and was
reformulated in [MBZ03, section 2.3]. We sketch the proof briefly as follows : the
idea is to construct a graph using fully labeled simplices as nodes and connect the
nodes under some relations of the simplices. Later it is shown that only the nodes
of the origin and the simplices which contain a complementary edges has degree 1,
other nodes has degree 2. Finally using the property that an undirected graph must
have even number of nodes of odd degree we can show that there is at least one fully
labeled simplex having a complementary edge(in fact, we have prove there are odd
number of fully labeled simplices having a complementary edge.). In addition, this
proof can be turned into an algorithm to find out the position of the complementary
edge.

It is surprising that the two seemingly unrelated theorem, i.e., the Borsuk-Ulam
theroem and the Tucker’s lemma are in fact equivalent. The equivalence will be
more obvious if we reformulate Tucker’s lemma into another equivalent statement.
Before that, we first define a geometric object called cross-polytope which will be
used in our reformulation.
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(a) n = 1 (b) n = 2 (c) n = 3

Figure 3: n-dimensional cross-polytope

Definition 3.2.1 (cross-polytope). The n-dimensional cross-polytope 3n in Rn is
the convex hull

3n = conv(e1,−e1, . . . , en,−en)

of the vectors {e1, e2, . . . , en} of the standard orthonormal basis of Euclidean space
Rn and their negative vectors {−e1,−e2, . . . ,−en}.

Equivalently, the n-dimensional cross-polytope is the unit ball of the l1-norm:

3n = {x ∈ Rn|∥x∥1 ≤ 1}.

For example, we draw the 1, 2, 3-dimensional cross-polytope in figure 3.
For the goal of reformulation, we denote the boundary of the cross polytope using

abstract simplicial complex as follows: let P n−1 be the boundary of n dimensional
cross-polytope 3n. Then P n−1 can be denoted as an abstract simplicial complex
with vertex set V (P n−1) = {±1, . . . ,±n}, and with simplices to be the subsets
F ⊆ V (P n−1) where there is no i ∈ {1, 2, . . . , n} such that both i ∈ F and −i ∈ F .

Now we reformulate the Tucker’s lemma 3.2.1:

Lemma 3.2.2 (The second statement of Tucker’s lemma). Let T be a triangulation
of Bn which is antipodal symmetric on the boundary. Define P n−1 to be the boundary
of n-dimensional cross-polytope 3n, then there is no simplicial map from Bn to P n−1

defined by f : V (T )→ V (P n−1) which satisfies f(−v) = −f(v) for v ∈ ∂Bn, i.e., f
is antipodal on the boundary.

The equivalence of the two statements of the Tucker’s lemma is obvious:

Claim 3.2.1. Lemma 3.2.1 and lemma 3.2.2 are equivalent statements of the Tucker’s
lemma.

proof of claim. We first show lemma 3.2.1 implies lemma 3.2.2: if there exists a
simplicial map f : V (T ) → V (P n−1) from Bn to P n−1 which is antipodal on the
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boundary, then f gives a labeling of V (T ) using {±1, . . . ,±n} which is antipodal
on the boundary and has no complementary edge, contradicting lemma 3.2.1(since
a complementary edge having opposite label would be map outside of P n−1 under
f .).

We now show lemma 3.2.2 implies lemma 3.2.1: if there exists a labeling l of
V (T ) using {±1, . . . ,±n} which is antipodal on the boundary and is without com-
plementary edge, then this labeling gives a simplicial map l : V (T )→ V (P n−1) from
Bn to P n−1 antipodal on the boundary, contradicting lemma 3.2.2.

We now will show that the Tucker’s lemma is equivalent to the Borsuk-Ulam
theorem:

Claim 3.2.2. Tucker’s lemma is equivalent to (BU4) of the Borsuk-Ulam theorem
3.1.1.

proof of claim. (BU4) implies lemma 3.2.2 is obvious: if there exists a simplicial
map f : V (T ) → V (P n−1) from Bn to P n−1 which is antipodal on the boundary,
since P n−1 ∼= Sn−1, compose f with this homeomorphism we have a continuous map
from Bn to Sn−1 which is antipodal on the boundary, contradicting (BU4).

Lemma 3.2.1 implies (BU4) is more complicated: if there exists a continuous
map f : Bn → Sn−1 which is antipodal on the boundary, let T be a triangulation
of Bn of which the diameters δ of the simplices are sufficiently small(how small will
be specified later), we can define a labeling l : V (T ) → V (P n−1) = {±1, . . . ,±n}
using f : since for any v ∈ V (T ), f(v) ∈ Sn−1 ⊆ Rn, then there exists i ∈ {1, . . . , n},
such that the i-th component f(v)i of f(v) satisfies f(v)i ≥ 1√

n
, otherwise we would

have the euclidean norm ∥f(v)∥ of f(v) smaller than 1, contradicting f(v) ∈ Sn−1.
We can define the labeling l of the vertices of the triangulation T to be: for any
v ∈ V (T ),

l(v) =

min{i : |f(v)i| ≥ 1√
n
} if f(v)i > 0

−min{i : |f(v)i| ≥ 1√
n
} if f(v)i < 0

This labeling is antipodal on the boundary since f is antipodal on the boundary.
By lemma 3.2.1, this label l has a complementary edge, say e = {v1, v2}, and l(v1) =
−l(v2) = i for some i ∈ V (P n−1). By the definition of l we have |f(v1)i − f(v2)i| ≥

2√
n
, i.e. the maximum norm ∥f(v1)− f(v2)∥∞ ≥

2√
n
.

In addition, since f is a continuous function and Bn is a compact set, we have f
being uniformly continuous on Bn, i.e., for any ϵ ≥ 0, there exists δ ≥ 0 such that
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if ∥x1 − x2∥ ≤ δ we have ∥f(x1)− f(x2)∥∞ < ϵ. If we take ϵ = 2√
n
, we can find the

corresponding δ, and if we bound the diameter of the triangulation by δ, we would
have ∥v1 − v2∥ ≤ δ but ∥f(v1)− f(v2)∥∞ ≥

2√
n
, which is a contradiction.

We now give a constructive proof of Tucker’s lemmma by pure combinatorics.
Since Tucker’s lemma is equivalent to the Borsuk-Ulam theorem, this can also be
considered as a combinatorial proof of the Borsuk-Ulam theorem:

A constructive proof of the Tucker’s lemma. The proof is from [MBZ03] and I spec-
ify it more detailedly. It initially comes from [FT81b].

The idea of the proof is to construct a graph whose nodes are a special kind
of simplexes and connect these nodes in a way such that only the origin and the
simplexes with a complementary edge has degree 1 and all other nodes have degree
2. Since a graph has even number of nodes with odd degree, we conclude that there
must be at least one simplex with a complementary edge(In fact, we have shown
that there are odd number of simplexes with a complementary edge). Furthermore,
following the path of the graph from the origin to one of the node with degree 1,
we can find out the corresponding way from the origin to one of the simplex with
a complementary edge, which gives us an algorithm to compute the location of the
complementary edge.

We now give the precise description of the proof. We first replace the n dimen-
sional Euclidean ball Bn by the n dimensional crosspolytope 3n, i.e., the unit ball
of l1-norm.

Let ⊠
n be the natural triangulation of the crosspolytope 3n induced by the

coordinate hyperplane of the Euclidean space Rn. Let T be a triangulation of 3n

which is a refinement of the natural triangulation ⊠
n, i.e. any simplex of T is

contained in a simplex of ⊠
n, we call T a special triangulation of 3n. Furthermore,

we can construct a special triangulation of arbitrary small diameter. For example,
we can repeatedly take the barycentric subdivision of the natural triangulation ⊠

n.
Now let l : V (T )→ {±1, . . . ,±n} be a labeling of the vertices of T which is an-

tipodal on the boundary. For any simplex σ ∈ T , define l(σ) := {l(v)|v is a vertex of σ},
i.e., l(σ) is the set of all the labels of the vertices of σ. We now define another set of
labels of σ: let x = (x1, . . . , xn) ∈ σ ⊂ 3n ⊂ Rn be any point in the relative interior
of σ, define

S(σ) := {+i|xi > 0} ∪ {−i|xi < 0}
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S(σ) is well defined, since in our special triangulation T , the Euclidean coordinates
of any interior point x of σ have the same sign and thus gives the same S(σ).

Now using these two set of labels of simplexes σ ∈ T , we specify a special kind of
simplexes in T and use them as nodes to construct a graph. These kinds of special
simplexes σ ∈ T should satisfy S(σ) ⊆ l(σ) and we call them happy simplexes.

The happy simplexes σ can be divided into two kinds according to their dimen-
sions: suppose |S(σ)| = k, then σ is contained in the linear subspace Lσ ⊆ Rn

spanned by the coordinates axes of {x|i||i ∈ S(σ)}, thus dim σ ≤ k. On the other
hand, dim σ ≥ k − 1 since |S(σ)| ≤ |l(σ)| which implies σ need to have at least k
vertices. If dim σ = k, we call such simplex loose; if dim σ = k− 1, we call such sim-
plex tight. A happy simplex on the boundary is tight, while a nonboundary happy
simplex can be tight or loose. The origin {0} is happy(S({0}) = ∅) and loose.

In order to construct a graph, we also need to specify which two nodes are
adjacent to each other. We define the following relationships:

Two nodes σ, τ ∈ T are adjacent (connected by an edge) if they satisfy one of
the following conditions:

• σ and τ are antipodal boundary simplexes, i.e., σ, τ ∈ ∂3n and σ = −τ .

• σ is a facet of τ(i.e., a (dim τ − 1)-dimensional face) and l(σ) = S(τ).

The origin {0} is a node of degree 1, i.e., with one and only one adjacent node.
Since {0} has label l({0}), it is a facet of a 1 dimensional simplex σ of T with
l({0}) = S(σ), which means σ lies in the half coordinate axes of x|l({0})|: the positive
half if l({0}) > 0 and the negative half if l({0}) < 0. There can not be any other 1
simplex with {0} as a facet.

For other happy simplexes, we distinguish them into several cases and show that
any happy simplex with no complementary edge has degree 2, and since any graph
has to have even number of nodes with odd degree, there must be at least one node
except from the origin has odd degree, i.e., there must be at least one happy simplex
with a complementary edge.(In fact, we have shown that there must be odd number
of happy simplexes with a complementary edge.

1. σ is a tight happy simplex, then it can be a boundary or non boundary simplex.

1.1. If σ is a boundary happy simplex, then −σ is one of its neighbors.
W.L.O.G. we can assume that σ is a k − 1 dimensional boundary of
3k, thus σ can be the facet of exactly one k dimensional simplex τ , and
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we now show τ is also a happy simplex and thus another neighbor of σ.
As a happy simplex σ satisfies |S(σ)| = |l(σ)| ≤ k and as a boundary
simplex we have k = |S(σ)|, thus we have |S(σ)| = |l(σ)| = k which
means each vertex of σ should have distinct labels. Furthermore, com-
bine S(σ) ⊆ l(σ) and |S(σ)| = |l(σ)| = k, we have S(σ) = l(σ). This
gives S(τ) = S(σ) = l(σ) ⊆ l(τ), which means τ is also happy.

1.2. If σ is not a boundary simplex, W.L.O.G we can assume σ is k − 1
dimensional and |S(σ)| = k. Obviously, σ is a facet of two k dimensional
simplexes and we now show they are all happy and are neighbors of σ. For
any k dimensional simplex τ with σ as a facet, we have S(τ) = S(σ) since
|S(σ)| = k indicates that σ is a k−1 dimensional simplex lies in the linear
subspace Lσ spanned by the coordinate axes of {x|i||i ∈ S(σ)} with σ not
lying in any hyperplane spanned by the coordinate axes of any proper
subset of {x|i||i ∈ S(σ)}. Furthermore, since σ is happy, we have S(σ) ⊆
l(σ). And since σ is k − 1 dimensional, we have k = |S(σ)| ≤ |l(σ)| ≤ k,
which gives S(σ) = l(σ). Thus we have S(τ) = S(σ) = l(σ) ⊆ l(τ), which
means τ is happy and it is a neighbor of σ.

2. σ is a loose happy simplex and thus a non boundary simplex.

2.1. If S(σ) = l(σ), i.e., if one of the l labels of σ occurs twice in σ, then there
are exactly two facets f1, f2 of σ such that l(f1) = l(f2) = l(σ). And these
two facets are exactly the two neighbors of σ: fistly, these two facets are
happy simplexes since S(f1) ⊆ S(σ) = l(f1), same for f2. Secondly, these
two facets satisfy l(f1) = l(σ) = S(σ), same for f2. Furthermore, σ can
not be a facet of a happy simplex τ with l(σ) = S(τ) and thus has no
more other neighbors: S(σ) = l(σ) implies that the l labels of σ are
given by those {i} which satisfy x|i| are among the coordinate axes that
spanned σ, which means σ cannot be a facet of one more dimensional
happy simplex τ and still satisfies l(σ) = S(τ).

2.2. If S(σ) ⊊ l(σ), i.e., there is an extra label i ∈ l(σ) \ S(σ), if we assume
further that −i /∈ S(σ), then we can see that the xi coordinate of points
of σ is zero, which means σ lie in the hyperplane with xi = 0. Now we
show that σ is a facet of a one more dimensional happy simplex τ with
l(σ) = S(τ), i.e., τ is a neighbor of σ in the graph that we construct:
obviously, σ is a facet of two one more dimensional simplex; if i > 0, we
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let τ be the simplex which lies in the half hyperplane of the positive part
of the axis of xi; if i < 0, let τ be the simplex which lies in the other
half hyperplane of the negative part of the axis of xi; τ is happy and a
neighbor of σ since S(τ) = S(σ) ∪ {i} = l(σ) ⊆ l(τ). The other neighbor
of σ is the facet σ′ ⊂ σ with l(σ′) = S(σ) ⊂ l(σ). σ′ is happy since
S(σ′) ⊆ S(σ) = l(σ).

In addition, if −i ∈ S(σ), similar with the argument of 2.1, σ can not
be a facet of a happy simplex τ with l(σ) = S(τ) and thus has only one
neighbor, which is the facet σ′ of σ: −i ∈ S(σ) implies that the l labels of
σ are given by those {i} which satisfy x|i| are among the coordinate axes
that spanned σ, which means σ cannot be a facet of one more dimensional
happy simplex τ and still satisfies l(σ) = S(τ).

Remark 3.2.1. The above proof is a proof of the Tucker’s lemma in a special case
instead of the general situation: instead of proving for any general triangulation T

of 3n, we give some restrictions on T , i.e., T should be a refinement of the natural
triangulation ⊠

n of 3n. Luckily, this special case of the Tucker’s lemma that we
have proved enough to deduce the Borsuk-Ulam theorem(By the above equivalence of
the Tucker’s lemma and the Borsuk-Ulam theorem we can see that Tucker’s lemma
implies Borsuk-Ulam theorem if and only if the triangulation T is small enough
which can be achieved in our case by repeatedly taking barycentric subdivision.)
Thus we can obtain the proof of the Tucker’s lemma by taking the following path: a
special case of the Tucker’s lemma implies the Borsuk-Ulam theorem which implies
the Tucker’s lemma the other way around.

LSB theorem: a set covering version of the Borsuk-Ulam theorem In
addition to the combinatorial equivalent version of the Borsuk-Ulam theorem — the
Tucker’s lemma, there is also a set-covering equivalent version of the Borsuk Ulam
theorem, which is the Lusternik–Schnirelmann–Borsuk theorem [Bor33b]. We give
the statement of the theorem:

Theorem 3.2.1 (Lusternik–Schnirelmann–Borsuk theorem). If the sphere Sn is
covered by n + 1 closed sets, then one of the set contains a pair of antipodal points
x and −x of Sn.
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The LSB theorem can be shown to be equivalent to the Borsuk-Ulam theorem
without much difficulty:

Claim 3.2.3. The LSB theorem and Borsuk-Ulam theorem are equivalent.

Proof. The proof is from [MBZ03]. One direction is (BU1) of theorem 3.1.1 implies
the LSB theorem: Let C1, . . . , Cn+1 be subsets of Sn and their union cover Sn, i.e.,
Sn = ∪n+1

i=1 Ci. We can define a function f : Sn → Rn, f(x) = (d(x,C1), . . . , d(x,Cn)),
where d(x,Ci) is the distance between a point and a set. f is obviously continuous
since each of its components are continuous. By (BU1), there exists x,−x ∈ Sn such
that f(x) = f(−x). If there exists i ∈ {1, . . . , n} such that d(x,Ci) = d(−x,Ci) = 0,
then we have x and −x are both in Ci; if no such i, then x,−x are both in Cn+1.

The other direction is LSB theorem implies (BU3) of theorem 3.1.1: for a sphere
Sn−1, there exists a set of closed subsets C1, . . . , Cn+1 of Sn−1 which cover Sn−1 but
non of the subsets contain an antipodal point of Sn−1. For example, we can take
Ci to be the projection of the n faces of the standard n + 1 simplex inscribed in
Sn from the center. If there exists a continuous antipodal map f : Sn → Sn−1,
f−1(Ci), i ∈ {1, . . . , n + 1} would be a closed cover of Sn which does not contain
antipodal point, contradicting the LSB theorem: if x,−x ∈ f−1(Ci) for some i, then
f(x),−f(x) would be in Ci, but we assumed that C1, . . . , Cn+1 is a cover of Sn−1

without antipodal points.

Now we have shown the first row of the figure 2, and we will show the second
row in the next subsection.

3.2.2 Brouwer’s fixed point theorem and Sperner’s lemma

Borsuk-Ulam theorem implies the Brouwer’s fixed point theorem We
first show that the Borsuk-Ulam theorem implies the Brouwer’s fixed point theorem,
which is due to the Dutch mathematician L. E. J. Brouwer:

Theorem 3.2.2 (Brouwer’s fixed point theorem, 1912). Let C be a nonempty, com-
pact, convex subset of Rn, f : C → C be a continuous map from C to itself, then
there exists an x ∈ C such that f(x) = x, i.e., x is a fixed point of f .

Remark 3.2.2. We can generalize C to any subset of Rn which is homeomorphic to
a closed unit ball.

proof using (BU4): Since any nonempty, compact, convex subset C of Rn is home-
omorphic to a closed unit ball Bm ∈ Rn where m ≤ n, denote the homeomorphism
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by ϕ : Bm → C, we only need to show any continuous map from Bm to itself has
a fixed point: let g = ϕ−1 ◦ f ◦ ϕ : Bm → Bm, if there exists an x ∈ Bm such that
g(x) = ϕ−1(f(ϕ(x))) = x, then we have f(ϕ(x)) = ϕ(x), i.e., ϕ(x) ∈ C is a fixed
point of f .

Now we show any continuous map from Bm to itself has a fixed point: assume
there exists a continuous map g : Bm → Bm has no fixed point, we define a new
map h : Bm → Sm−1 by defining h(x) to be the unique intersection of Sm−1 with
the open ray starting from g(x) and go through x, i.e.,

h(x) = Sm−1 ∩ {g(x) + λ(x− g(x))|λ ≥ 0}

since g has no fixed point, h is well defined, and when x ∈ ∂Bm, h(x) = x, i.e., h is
identity on the boundary. Since identity map is also antipodal, h is antipodal on the
boundary. Furthermore, since g(x) is continuous and h(x) is uniquely determined
by g(x), h(x) is also continuous. Thus we have a continuous map h : Bm → Sm−1

which is antipodal on the boundary, contradicting (BU4).

Remark 3.2.3. • The above proof is by contradiction and not constructive. It
only shows the existence of a fixed point, but does not give us any information
about the location of the fixed point. It would be nice to know how to find
out the location of the fixed point because it could offer us an algorithm which
would be useful for applications. We will see that the following Sperner’s
lemma can solve the problem and offer us an algorithm to approximate the
Brouwer’s fixed point.

• Brouwer’s fixed point theorem is one of the most important theorem about
fixed point and it has lots of applications within and outside of mathematics:
John von Neumann use it to prove the Minimax theorem in game theory,
which is equivalent to strong duality in linear programming; John Nash use it
to prove the existence of the famous Nash equilibria in strategic games [DL16].

Sperner’s lemma: a combinatorial version of the Brouwer’s fixed point
theorem Similarly with the Tucker’s lemma being a combinatorial equivalent for-
mulation of the Borsuk-Ulam theorem, there is also a combinatorial equivalent for-
mulation of the Brouwer’s fixed point theorem, which is the Sperner’s lemma [NS13].
The equivalence is in the sense that two theorems can imply each other, which will
be specified later.
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Lemma 3.2.3 (Sperner’s lemma). Let S be a n-simplex, T be a triangulation of
S(in this case we require |T | = S), define a Sperner labeling of S to be a map

l : V (T )→ V (S)

where V (T ) and V (S) are the vertex set of T and S respectively, such that for any
v ∈ V (T ), l(v) ∈ V (supp(v)) where supp(v) is the support of v in S,i.e., any vertex
v of the triangulation T of the simplex S can only be labeled by one of the vertices
of the face of the simplex S which contains v as its interior point. Then, there is a
n-simplex σ of T such that σ is completely labeled, i.e., the vertices of σ are labeled
pairwise distinctly with all vertices of S.

More precisely, we can show that there are odd number of completely labeled
n-simplices.

proof. The proof is an elementary combinatorial proof by induction on dimension n
of the simplex. This proof is from the paper [XU].

Induction base: When n = 0, a 0-simplex itself is trivially completely labeled.
When n = 1, let S1 = (1, 2) be a 1-simplex with boundaries vertices denoted

by 1 and 2, let T be any triangulation of S1, there are odd number of 1-simplices
of T are labeled completely(call it ’1-2’simplex), which is with boundaries vetrices
being labeled 1 and 2 respectively since: the boundaries vertices of S are 1 and 2,
and only odd number of 1-simplies with distinct boundaries can change 1 to 2(e.g.
three ’1-2’ simplices have effect 1-2-1-2 which changes 1 to 2), while even number
of such 1-simplies would keep 1 or keep 2 fixed(e.g, two ’1-2’ simplices have effect
1-2-1 which keeps 1 fixed).

Induction hypothesis: Assume when n = k − 1, the lemma is correct.
Consider when n = k, Sk is a k-dimensional simplex with vertices {0, . . . , k}, T

is any triangulation of Sk, let C be the set of all k− 1 simplices of T whose vertices
are completely labeled by the vertices {0, . . . , k−1} of Sk, we now count the number
|C| of elements c in C in two ways:

way 1. for any c ∈ C, c is either contained in the k − 1 dimensional face of Sk with
vertices {0, . . . , k − 1} or is contained in the interior of Sk. For those are
contained in the interior, we count them twice since they are faces of two
k-simplices of T . Thus we have

|C| = |c in the boundary |+ some even number.
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way 2. a k simplex of T is completely labeled by {0, . . . , k} if and only if it contains
one and only one c ∈ C. Other k simplices of T which are not completely
labeled might contain 0 or 2 such c ∈ C. Thus we have

|C| = | completely labeled k simplices|+ some even number.

By the above two way we have

| completely labeled k simplices| − |c in the boundary | = some even number.

By induction hypothesis, the number |c in the boundary | is odd, thus we have odd
numeber of completely labeled k simplices of T .

We now show the equivalence of the Brouwer’s fixed point theorem and the
Sperner’s lemma:

Claim 3.2.4. The Brouwer’s fixed point theorem and the Sperner’s lemma are equiv-
alent.

Proof. We first show that the Brouwer’s fixed point theorem implies the Sperner’s
lemma, and the proof is from [Yos74]: the idea is for any triangulation T of any
n simplex S, for any Sperner labeling l of T , we construct a continuous function
fl : S → S associated with l, and then show that if there is no n simplex of T which
is completely labeled, then f has no fixed point, contradicting the Brouwer’s fixed
point theorem.

More precisely, let T be a triangulation of an n simplex S with vertices V (T ) =
{v1, . . . , vm} with (xi0, . . . , xin) being the barycentric coordinates of vi, i ∈ {1, . . . ,m},
let l be the Sperner labeling of V (T ), we now construct a continuous function
f : S → S by first defining f on V (T ) and then extend to the whole S linearly: Let
l(i) be the Sperner label of vi, let ϵ = minn

i=1 vil(i) where it is the l(i)-th coordinate
of vi, define the l(i)-th coordinate of f(vi), i = {1, . . . ,m} to be the l(i)-th coor-
dinate of vi minus ϵ, and the other n coordinates of f(vi) to be the corresponding
coordinates of vi plus ϵ

n
, which is:

f(vi) =

vij − ϵ if j = λ(i)

vij + ϵ
n

if j = {0, . . . , n} \ {λ(i)}
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We now extend f linearly to the whole S by extending it linearly to each of the n sim-
plexes of the triangulation T : if σn ∈ T is a n simplex with vertices {w0, . . . , wn} ⊆
V (T ), we can denote it by its barycentric coordinates as

σn = {x ∈ S|x =
n∑

i=0
λiwi, 0 ≤ λ ≤ 1,

n∑
i=0

λi = 1}

and we can define f(x) to be f(x) = f(∑n
i=0 λiwi) = ∑n

i=0 λif(wi).

f is obviously well defined and continuous. We now show that if S has no
completely labeled n simplex under the triangulation T and Sperner labeling l,
then the function f we construct above will has no fixed point, contradicting the
Brouwer’s fixed point theorem: by assumption, for any n simplex σn of T , there is a
label p ∈ {0, . . . , n} which is not used by any vertex of σn. For any x ∈ σn, the p-th
coordinate of f(x) is the p-th coordinate of x plus ϵ

n
. Thus for any x ∈ S, the p-th

coordinate of x and the p-th coordinate of f(x) can not be equal, i.e., f : S → S

has no fixed point. Thus, S must has a completely labeled simplex.

Another direction is showing the Sperner’s lemma implies the Brouwer’s fixed
point theorem, and the proof is from [Fox09]: Let S be a standard n-simplex in Rn+1

with vertices {e1, . . . , en+1} where ei is the i-th unit vector of the i-th coordinate
axes of Rn+1, assume the Brouwer’s fixed point theorem is not true, which is, there
exists a continuous map f : S → S such that f(x) ̸= x,∀x ∈ S, we can draw a
contradiction using Sperner’s lemma. For all j ∈ N, let Sj be a triangulation of S
such that Sj is a triangulation of Sj−1, and the diameter of the triangulation tends
to zero as j tends to infinity, let V (Sj) = {V j,1, . . . , V j,r} be the vertices of the
triangualtion Sj, denote the k-th barycenteric coordinate of each V j,i as V j,i

k , we
now give a Sperner labeling L of Sj using f :

L : V (Sj)→ {1, . . . , n+ 1}
x 7→ L(x)

where L(V j,i) should satisfy that it is the smallest coordinate such that f(V j,i)L(V j,i) ≤
(V j,i)L(V j,i). This is possible since f has no fixed point, and thus f(V j,i) ̸= V j,i,
which is their barycenteric coordinates are not all equal. And since the sum of
their barycenteric coordinates are both 1, there exists k ∈ {1, . . . , n + 1} such that
f(V j,i)k ≤ (V j,i)k. This labeling is a Sperner labeling since for any vertices ek,
its i-th barycenteric coordinate is 1 and others are 0, and thus i is the only pos-
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sible labeling such that f(ek)i ≤ (ek)i. Similarly for other vertices of V (Sj): if
V j,i ∈ conv(ei, i ∈ A ⊆ {1, . . . , n + 1}), then i ∈ A are the only possible labeling of
V j,i.

By Sperner’s lemma, for all j, for any triangulation Sj, there exists a completely
labeled n-simplex σj with vertices {vj,i, i = 1, . . . , n+ 1} where vertex vj,i is labeled
i. By the above construction of the labeling L, we have f(vj,i)i ≤ (vj,i)i. Since
the diameter of the triangulation Sj tends to zero, we have ∀i ∈ {1, . . . , n + 1},
limj→∞ vj,i = v∗. Thus by the continuity of f , we have ∀i ∈ {1, . . . , n+ 1}, f(v∗)i ≤
(v∗)i. However, since f has no fixed point, we have f(v∗) ̸= v∗, so there exists an
d ∈ {1, . . . , n+ 1}, such that f(v∗)d > (v∗)d, a contradiction.

Remark 3.2.4. The second direction of the above proof, i.e., the proof showing how
Sperner’s lemma implies the Brouwer’s fixed point theorem in fact gives us an algo-
rithm to approximate the location of the Brouwer’s fixed point, which is the limit
v∗.

KKM theorem–A set covering version of the Brouwer’s fixed point the-
orem In addition to Sperner’s lemma being a combinatorial equivalent version of
the Brouwer’s fixed point theorem, the follwing KKM theorem can be viewed as a
set covering equivalent version of the Brouwer’s fixed point theorem.

Before we state the statement of the KKM theorem, let’s first take a look at the
following example to gain some intuition of the theorem:

Example 3.2.1 (KKM theorem of 2-simplex). Let S be a 2 dimensional simplex with
vertex set I = {x0, x1, x2}, let {A0, A1, A2} be the set of closed subsets of S such
that for any i ∈ I, each 0-face xi of S is contained in Ai; for any i, j ∈ I, i ̸= j,
each 1-face (xi, xj) of S is contained in Ai ∪ Aj; the only 2-face (x0, x1, x2) of S is
contained in A1 ∪ A2 ∪ A3. Then we have A1 ∩ A2 ∩ A3 ̸= ∅.

Now we give the general statement of the theorem:

Theorem 3.2.3 (Knaster-Kuratowski-Mazurkiewicz theorem). Let S be an n di-
mensional simplex with vertex set I = {x0, . . . , xn}, denoted by S = conv({xi}i∈I),
let {Ai}i∈I be a set of closed subsets of S such that for each Ĩ ⊆ I , conv({xi}i∈Ĩ) ⊆
∪i∈ĨA

i, i.e., any face (xi0 , . . . , xik
) is covered by the union of the set Ai0 , . . . , Aik

.
Then, ∩i∈IA

i ̸= ∅.
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proof of KKM theorem using Sperner’s lemma. Now we proof the KKM theorem us-
ing Sperner’s lemma, the proof is from [Ale98, P162].

We first state an intuitive lemma which can help our proof.

Lemma 3.2.4 (Lebegue’s lemma). Let C = {A1, . . . , An} be a set of closed subsets
of a compact set S which covers S, then there is a positive number δ such that: if
M ⊆ S has diameter ≤ δ and {Aij

|1 ≤ j ≤ k} ⊆ C are such that M ∩ Aij
̸= ∅ for

all 1 ≤ j ≤ k, then ∩k
j=1Aij

̸= ∅.

The proof of the lemma can be found in [Ale98, P35].
Using the above Lebegue’s lemma, the KKM theorem follows from the following

theorem:

Theorem 3.2.4. Let T be any triangulation of the n simplex S whose diameter is
arbitrary small, then there is at least one simplex of T which intersects all of the
sets {Ai}i∈I .

To prove the above theorem, we label each vertex v of T by a vertex λ(v) = xi of
the support supp(v) of v ∈ S such that v ∈ Ai. We can do this because we require
the support of v is covered by the union of Ai where xi is a vertex of supp(v). And
this labeling is obviously a Sperner labeling. Now apply Sperner’s lemma we can
find a completely labeled simplex σ of T . σ intersects all of the sets {Ai}i∈I since
its vertices which are labeled by distinct xi, i ∈ I lies in distinct Ai, i ∈ I.

We can also deduce Brouwer’s fixed point theorem from the above KKM the-
orem instead of from the Borsuk-Ulam theorem. Interested reader can consult
[GDGJFJ10, Thm 2.13.3].

Now we have shown the second row of figure 2, and have also shown that the
first row implies the second row by showing the Borsuk-Ulam theorem implies the
Brouwer’s fixed point theorem.

For more detailed history of the Brouwer’s fixed point theorem, Sperner’s lemma,
KKM theorem and their applications in mathematical programming problems, in
economic equilibrium theory, and in game theoretic problems, one can consult the
survey [Par99].
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Kakutani fixed point theorem and Nash equilibrium Now we give the fol-
lowing Kakutani fixed point theorem which is a corollary of Brouwer’s fixed point
theorem and it can be used to show that each strategic game has at least one Nash
equilibrium in a quite direct way. Interested reader can consult [GDGJFJ10, Thm
2.2.3].

Theorem 3.2.5 (Kakutani fixed point theorem). Let A ⊂ Rn be a non empty,
compact, convex set. Let F : A→ A be an upper hemicontinuous, nonempty-valued,
closed-valued, and convex-valued correspondence. Then there is x̃ ∈ A such that
x̃ ∈ F (x̃), i.e., F has a fixed point.

3.3 Two generalizations of the Borsuk-Ulam theorem

We state two generalizations of the Borsuk-Ulam theorem which would be useful
in later text(in the proof of topological Tverberg theorem for prime power case in
section 4.2.) Before that, we first state (BU3) in theorem 3.1.1 using the language
of equivariant topology:

Let Z2 be a cyclic group of two elements, as in example 2.3.3, we can view Sn

as a free(fixed point free) Z2-space with antipodal action; as in example 2.3.5, an
antipodal map f : Sn → Sm, f(−x) = −f(x) is a Z2-equivariant map, then we can
rewrite (BU3) as:

Theorem 3.3.1 (Borsuk-Ulam theorem, equivariant statement). There is no Z2-
equivariant map from Z2-space (Sn,Z2) to the free(fixed point free) Z2-space (Sm,Z2)
when m < n.

We can see from above that the Boruk-Ulam theorem under the language of
equivariant topology is about the non-existence of Z2 map. We will generalize the
theorem in the following two directions:

1. generalize the group Z2 to a general finite group G with a stronger condition
on the codomain: the group G acts on the codomain freely.

2. generalize the group Z2 to a more restricted group (Zp)n with a looser condition
on the codomain: (Zp)n only need to acts on the codomain fixed point freely.

The first generalization is generalizing Z2 to any finite group G while keep re-
quiring the group G acts on codomain freely:
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Theorem 3.3.2 (The first generalization of Borsuk-Ulam theorem(Dold’s theo-
rem)). Let G be a finite group, there is no G-equivariant map from a n-connected
G-space X to an at most n-dimensional free G-complex Y .

Proof. The proof can be found in Dold’s paper [Dol83].

Remark 3.3.1. The same as Borsuk-Ulam theorem has a combinatorial version–the
Tucker’s lemma, the first generalization of Borsuk-Ulam theorem(Dold’s theorem)
also has its combinatorial version–the Zq-Fan’s lemma. Interested reader can consult
[DLGMM19, prop 2.5].

The second generalization generalizes Z2 to a more restricted group (Zp)α than
the above G but only requires (Zp)α acts on the codomain fixed point freely:(which
is theorem 3.3.3)

Theorem 3.3.3 (The second generalization of Borsuk-Ulam theorem). ([Oza87,
lemma 3.3] or [Vol96a, lemma] or [Sko18, theorem 2.6].) Let p be a prime, α be a
positive integer, (Zp)α be a direct product of α copies of the group Zp(an abelian p-
group of rank α), then there is no (Zp)α-equivariant map from an n-connected (n+1)-
dimensional (Zp)α-complex to an at most n-dimensional (Zp)α-complex without any
(Zp)α-fixed points.

Proof. We omit the proof of the theorem which can be found in [Oza87, lemma 3.3]
or [Vol96a, lemma] or [Sko18, theorem 2.6].
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4
Topological Tverberg Conjecture
In this section, for the convenience of notation, we use ∆n to denote the stardard
n-simplex instead of the stardard notation ∆n.

4.1 Introduction

The goal of this section is to prove that the topological Tverberg conjecture is true for
prime power case, i.e., theorem 4.1.4, using the generalised Borsuk-Ulam theorem we
have seen before in section 3.3. And then we will show that the topological Tverberg
conjecture is false for non prime power case, i.e., prove the theorem 4.1.5.

Before that, we first give a brief history of the topological Tverberg conjecture:
The topological Tverberg conjecture comes from the Tverberg theorem which

was initially a conjecture by B. Birch [Bir59] in 1959:

Conjecture(Theorem) 4.1.1 (Tverberg’s theorem). For d ≥ 1, r ≥ 2, any (d +
1)(r − 1) + 1 points in Rd admits a partition into r disjoint subsets A1, . . . , Ar

such that the intersection of all the convex hulls of each subsets is non empty, i.e.,
conv(A1) ∩ conv(A2) . . . conv(Ar) ̸= ∅.

Birch conjectured the theorem and proved it for the case d = 2. For the case
r = 2, it was a lemma (the following Radon’s theorem) proved by J. Radon in 1922
[Rad21], which is used by Radon to prove the Helly’s theorem:

Theorem 4.1.1 (Radon’s theorem). For d ≥ 1, any d + 2 points in Rd admits a
partition into two disjoint subset A1, A2 such that the intersection of their convex
hulls is non empty, i.e., conv(A1) ∩ conv(A2) ̸= ∅.

Tverberg first prove the Tverberg’s theorem 4.1.1 for d = 3 in 1963 and solve it
completely in 1964 [Tve66]. The story about how he found the proof is both sad and
encouraging — ’I recall that the weather was bitterly cold in Manchester. I awoke
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very early one morning shivering, as the electric heater in the hotel room had gone
off, and I did not have an extra shilling to feed the meter. So, instead of falling back
to sleep, I reviewed the problem once more, and then the solution dawned on me!’

In 1979, Bajmóczy and Bárány reformulated Radon’s theorem and Tverberg’s
theorem using affine map, which are:

Theorem 4.1.2 (Radon’s theorem, affine map version). For any affine map f :
∆d+1 → Rd there exists two disjoint faces F1, F2 of the d+ 1 simplex ∆d+1 such that
the intersection of their images is non empty, i.e., f(F1) ∩ f(F2) ̸= ∅.

Theorem 4.1.3 (Tverberg’s theorem, affine map version). For d ≥ 1, r ≥ 2, for
any affine map f : ∆(d+1)(r−1) → Rd there exists r pairwise disjoint faces F1, . . . , Fr

(Fi ∩ Fj = ∅, for all i ̸= j) such that the intersection of their images is non empty,
i.e., f(F1) ∩ f(F2) · · · ∩ f(Fr) ̸= ∅.

The affine map version and the original version can easily be show to be equiva-
lent:

Claim 4.1.1. The affine map reformulation of the Tverberg theorem is equivalent
to the original statement.

Proof. Assuming the affine map version, for any (d + 1)(r − 1) + 1 points in Rd,
there exists an affine map f : ∆(d+1)(r−1) → Rd such that the images of the vertices
of ∆(d+1)(r−1) corresponds to the (d + 1)(r − 1) + 1 points. The r pairwise disjoint
faces F1, . . . , Fr ∈ ∆(d+1)(r−1) gives a partition of the (d + 1)(r − 1) + 1 points
into r parts. For the other direction, assuming theorem 4.1.1, for any affine map
f : ∆(d+1)(r−1) → Rd, the images of its vertices are (d + 1)(r − 1) + 1 points in
Rd. And the partition of the images into r disjoint subsets gives r disjoint faces of
∆(d+1)(r−1) whose images under f has non empty intersection.

Bajmóczy and Bárány also conjectured that the theorems still holds if we gen-
eralise the affine map in the theorems to continuous map [BB79], which are the
following Topological Radon conjecture and Topological Tverberg conjecture:

Conjecture(Theorem) 4.1.2 (Topological Radon conjecture(theorem)). For any
continuous map f : ∆d+1 → Rd there exists two disjoint faces F1, F2 of the d + 1
simplex ∆d+1 such that the intersection of their images is non empty, i.e., f(F1) ∩
f(F2) ̸= ∅.
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Conjecture* (Topological Tverberg conjecture). For d ≥ 1, r ≥ 2, for any con-
tinuous map f : ∆(d+1)(r−1) → Rd there exists r pairwise disjoint faces F1, . . . , Fr

(Fi ∩ Fj = ∅, for all i ̸= j) such that the intersection of their images is non empty,
i.e., f(F1) ∩ f(F2) · · · ∩ F (Fr) ̸= ∅.

Obviously, the topological Radon conjecture is a special case of the topological
Tverberg conjecture, i.e. it is the topological Tverberg conjecture for r = 2. In this
section, we will see that the topological Radon conjecture (the topological Tverberg
conjecture when r = 2) is true. And this can be generalized to the case when r is a
prime number and more generally, when r is a power of a prime number. However,
when r is not prime power, the topological Tverberg conjecture is no longer true.

We give some equivalent statements of the topological Tverberg conjecture which
would be helpful in later text:

Conjecture* (Topological Tverberg conjecture, r-Tverberg point version). For d ≥
1, r ≥ 2, any continuous map f : ∆(d+1)(r−1) → Rd has a r-Tverberg point, which
is there exists r points x1, . . . , xr ∈ ∆(d+1)(r−1) with pairwise disjoint supports, i.e.,
supp(xi)∩supp(xj) = ∅ for all i ̸= j, with the same images, i.e., f(x1) = · · · = f(xr).
The image of these r points is called a r-Tverbeg point, which is a point of Rd with
r preimages of disjoint supports.

We can call a map f : ∆(d+1)(r−1) → Rd with no r-Tverberg point to be an almost
r embedding, and restate the topological Tverberg conjecture simply as:

Conjecture 4.1.1 (Topological Tverberg conjecture, almost r-embedding version).
For d ≥ 1, r ≥ 2, there is no almost r-embedding ∆(d+1)(r−1) → Rd.

The topological Tverberg conjecture when r = 2(the topological Radon conjec-
ture) is proved by Bajmóczy and Bárány using the Borsuk-Ulam theorem so that it
became a theorem. The idea of their proof is firstly to show that there exists a contin-
uous map g : Sd → ∆d+1 such that for any x ∈ Sn, g(x), g(−x) ∈ ∆d+1 have disjoint
supports. And then for any continuous map f : ∆d+1 → Rd, composite it with g

and get a continuous map f ◦ g : Sd → Rd. Finally, apply Borsuk-Ulam theorem to
f ◦ g and get x0 ∈ Sn such that f(g(x0)) = f(g(−x0)). Thus g(x0), g(−x0) ∈ ∆d+1

are two points with disjoint supports and have the same image under f .
For r is a prime number, they later(1981) mimicked the above idea and also

prove it successful [BSS81]. Their original proof used deleted product and later
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other proofs using deleted join were also invented by Sarkaria ([Sar90, Sar91a]). We
will show the proof in section 4.2.1.

For the case r is a power of a prime number, the topological Tverberg conjecture
was first proved (1987) by Özaydin in an unpublished manuscript [Oza87] and much
later(1996) by Volovikov [Vol96a] and by Sarkaria(2000) [Sar00]. We will see that
proof in section 4.2.2.

Thus for the case r is a prime power, we can now list the topological Tverberg
conjecture 4.1.1 as a theorem:

Theorem 4.1.4 (Topological Tverberg theorem). For d ≥ 1, r ≥ 2, r is a power of
a prime number, there is no almost r-embedding ∆(d+1)(r−1) → Rd.

This is the first theorem we aim to show in this section. We will prove this
theorem in section 4.2.

In fact, Özaydin not only has proved the prime power case, but also has shown
that for the case when r is not a prime power, there actually exists a Σr-equivariant
map which makes the configuration space–test map scheme method fail for this
situation.

For r a non prime power case, the topological Tverberg conjecture remained open
until 2015, and was considered to be one of the most important open problems in
topological combinatorics. In 2015, a counterexample was constructed by Florian
Frick [Fri15] who combined the work of Mabillard and Wagner [MW14] and the
constraint method of Blagojević, Ziegler and himself [BFZ14]. Hence the topological
Tverberg conjecture is shown to be false when r is not a power of a prime number.
We state this as follows:

Theorem 4.1.5 (Topological Tverberg conjecture failed for non prime power case).
For d = 3r+ 1, r ≥ 6 be an integer that is not a prime power, there exists an almost
r-embedding ∆(3r+2)(r−1) → R3r+1.

This is the second theorem we aims to show in this section. We will prove this
theorem in section 4.3.

4.2 Proof of Theorem 4.1.4

4.2.1 proof of theorem 4.1.4 when r is prime

We will give two proofs of the theorem with the same idea but using different con-
structions: one with deleted product and the other with deleted join. Each of them
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has its own advantages and disadvantages over the other.
The proofs use a typical method in topology: the configuration space-test map

scheme. The idea is to derive the result from the non existence of some equivariant
map (test map) between two topological spaces (configuration space and target
space). In our proof we will show the non existence of some Σr-equivariant map
between some configuration space and target space, from which we can deduce the
non existence of any almost r-embedding of ∆(d+1)(r−1) → Rd when r is prime.

We first recall the theorem 4.1.4 and then we will give two proofs of the theorem
for the case when r is a prime number:

Theorem (Topological Tverberg theorem). For d ≥ 1, r ≥ 2, r is a power of a
prime number, there is no almost r-embedding ∆(d+1)(r−1) → Rd.

proof 1 using deleted product. The first proof using deleted product is from [BSS81]
and and has the following two steps:

1. If there is an almost r-embedding f : ∆(d+1)(r−1) → Rd, then there is a Σr

equivariant map from (∆(d+1)(r−1))×r
∆(2) to Sd(r−1)−1.

2. The first generalization of Borsuk-Ulam theorem 3.3.2 shows there is no such
Σr-equivariant map. Thus there is no almost r-embedding.

Now we give the details of the proof. For simplicity, we write N = (d+1)(r−1).
By computation, we have N − r = d(r − 1)− 1.

Step 1: If there is an almost r-embedding f : ∆N → Rd, we can define the r-fold
product of f :

f×r : (∆N)×r
∆(2) → (Rd)×r − diag

given by
(x1, . . . , xr) 7→ (f(x1), . . . , f(xr))

where (∆N)×r
∆(2) is the r-fold 2-wise deleted product as in example 2.4.3, (Rd)×r−diag

is the r-fold r-wise deleted product of Rd as in example 2.4.1.
f×r is well defined: since f has no r-Tverberg point, we have for any x1, . . . , xr of

∆N with disjoint supports, i.e., for (x1, . . . , xr) ∈ (∆N)×r
∆(2), their images f(x1), . . . , f(xr)

are not all the same, i.e., (f(x1), . . . , f(xr)) ∈ (Rd)×r−diag avoids the diagonal diag
of (Rd)×r. It is obviously a Σr-equivariant map since it commutes with the Σr-
actions on (∆N)×r

∆(2) and (Rd)×r−diag which acts on the r components of the spaces
componentwisely.
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Now, compose f×r and the Σr-equivariant map µ ◦ ρ : (Rd)×r− diag → Sd(r−1)−1

as in example 2.4.1 we get a Σr-equivariant map:

µ ◦ ρ ◦ f×r : (∆N)×r
∆(2) → Sd(r−1)−1

Step 2: we use the first generalization of Borsuk-Ulam theorem(theorem 3.3.2)
to show that there is no Σr-equivariant map from (∆N)×r

∆(2) to Sd(r−1)−1.
We recall the theorem:

Theorem (The first generalization of Borsuk-Ulam theorem(Dold’s theorem)). Let
G be a finite group, there is no G-equivariant map from a n-connected G-space X
to an at most n-dimensional free G-complex Y .

Let G = Zr where r is a prime number, from example 2.4.3 we know that
(∆N)×r

∆(2) is a (N − r + 1)-dimensional (N − r)-connected Σr-complex, thus it is
a (N − r + 1)-dimensional (N − r)-connected Zr-space with Zr action being the
restriction of the Σr action. In addition, from example 2.4.2 and theorem 2.4.1 we
know that Sd(r−1)−1 is a (N − r) = d(r − 1) − 1 dimensional free Zr-space with
Zr action being the restriction of the Σr action. Now apply the above theorem we
have shown that there is no Zr-map from the Zr-space (∆N)×r

∆(2) to the free Zr-space
Sd(r−1)−1. Thus, there is no Σr from the Σr-space (∆N)×r

∆(2) to the Σr-space-Sd(r−1)−1.

proof 2 using deleted join. This proof is from [MBZ03, section 6.4] and used the
same idea as the first proof. The proof consists of two steps:

1. If there is an almost r-embedding f : ∆(d+1)(r−1) → Rd, then there is a Σr

equivariant map µ ◦ ρ ◦ ψ ◦ f ∗r : (∆(d+1)(r−1))∗r
∆(2) → S(d+1)(r−1)−1

2. There is no Σr-equivariant map by the first generalization of Borsuk-Ulam
theorem 3.3.2 and thus no almost r-embedding.

Again denote N = (d+ 1)(r − 1).
step 1: If f : ∆N → Rd has no r-Tverberg point (is an almost r-embedding), we

can define the r-fold join f ∗r of f :

f ∗r : (∆N)∗r
∆(2) → (Rd)∗r − diag

given by
t1x1 ⊕ · · · ⊕ trxr 7→ t1f(x1)⊕ · · · ⊕ trf(xr)
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which is well-defined since: if f has no r-Tverberg point, f(x1), . . . , f(xr) are not all
equal. Thus the images {t1f(x1)⊕· · ·⊕ trf(xr)|f(xi) ∈ Rd, i = 1, . . . , r,∑r

i=1 ti = 1}
avoids the diagonal diag = {1

r
x⊕· · ·⊕ 1

r
x|x ∈ Rd} of (Rd)∗r. f ∗r is also Σr-equivariant

since it commute with the Σr-actions on the domain and codomain.
Now define a Σr-equivariant map µ ◦ ρ ◦ψ : (Rd)∗r − diag→ SN−1 as in example

2.4.7 and compose it with f ∗r : (∆N)∗r
∆(2) → (Rd)∗r − diag above, we can get a

Σr-equivariant map:
µ ◦ ρ ◦ ψ ◦ f ∗r : (∆N)∗r

∆(2) → SN−1

Step 2: we now use the first generalized Borsuk-Ulam theorem 3.3.2 again to show
no such Σr-equivariant map can exist: from example 2.4.8, we know that (∆N)∗r

∆(2) is
(N − 1)-connected Zr-space. SN−1 is a (N − 1)-dimensional sphere and by theorem
2.4.1 we know that Zr acts on SN−1 freely when r is prime. Apply the generalized
Borsuk-Ulam theorem 3.3.2, there is no Zr-equivariant map from a (N−1)-connected
Zr-space (∆N)∗r

∆(2) to a (N − 1)-dimensional free Zr-space S(d+1)(r−1)−1. Since Zr is
a subgroup of Σr, no Zr-map implies no Σr-map.

Remark 4.2.1. We need to be careful that the above two proofs requires r to be a
prime number. Since in order to apply Dold’s theorem(the first generalized Borsuk-
Ulam theorem), Zr needs to acts on the target space Sd(r−1)−1 and S(d+1)(r−1)−1

freely. By theorem 2.4.1 we see that this happens if and only if r is a prime number.

4.2.2 proof of theorem 4.1.4 when r is prime power

proof of topological Tverberg theorem when r is a prime power: The idea of the proof
is the same with the case when r is prime: first show that having an Σr-equivariant
map is a necessary condition for having an almost r-embedding, and then show no
such Σr-equivariant map can exists using the second generalization of the Borsuk-
Ulam theorem. Hence the non-existence of almost r-embedding is proved.

We recall the two steps:

1. If there is an almost r-embedding f : ∆(d+1)(r−1) → Rd, then there is a Σr

equivariant map from (∆(d+1)(r−1))×r
∆(2) to Sd(r−1)−1.

2. The second generalization of Borsuk-Ulam theorem 3.3.3 shows there is no
such Σr-equivariant map.

Denote N = (d+ 1)(r − 1). By computation we have N − r = d(r − 1)− 1.
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step 1: let p be a prime number, α be a positive integer, r = pα be a power of
prime p, if there exists an almost r-embedding f : ∆N → Rd we can use the same
method as the first proof(using deleted product) of theorem 4.1.4 when r is prime in
section 4.2.1 to construct a Σr-equivariant map from (∆N)×r

∆(2) to Sd(r−1)−1, which is

(∆N)×r
∆(2)

f×r

−−→ (Rd)×r − diag µ◦ρ−−→ Sd(r−1)−1.

step 2: We now show no such equivariant map can exists using the second gen-
eralized version of Borsuk-Ulam theorem 3.3.3.

We recall the theorem:

Theorem (The second generalization of Borsuk-Ulam theorem). ([Oza87, lemma
3.3] or [Vol96a, lemma] or [Sko18, theorem 2.6]) Let p be a prime, α be a positive
integer, (Zp)α be a direct product of α copies of the group Zp(an abelian p-group
of rank α), then there is no (Zp)α-equivariant map from an n-connected (n + 1)-
dimensional (Zp)α-complex to an at most n-dimensional (Zp)α-complex without any
(Zp)α-fixed points.

We see from example 2.3.2 that (Zp)α can be embedded into Sr = Spα in a
particular way such that (Zp)α acts on the set {1, . . . , pα} transitively.

From example 2.4.3 we know (∆N)×r
∆(2) is a (N − r + 1)-dimensional, (N −

r)-connected free Σr(thus (Zp)α)-complex. In addition, Sd(r−1)−1 is a (N − r)-
dimensional Σr(thus (Zp)α)-complex without (Zp)α-fixed point since: (Zp)α acts on
Sd(r−1)−1 by components transitively. By lemma 2.4.2, it has no (Zp)α-fixed point
in Sd(r−1)−1.

Now let n = N − r and apply theorem 3.3.3, we get that there is no (Zp)α-
equivariant map from (∆(d+1)(r−1))×r

∆(2) to Sd(r−1)−1 and since (Zp)α is a subgroup of
Σr, there is no Σr-equivariant map from (∆(d+1)(r−1))×r

∆(2) to Sd(r−1)−1.

4.3 Proof of Theorem 4.1.5

4.3.1 introduction and sketch of proof

Naturally, we want to apply the same method (the configuration space–test map
scheme) to try to prove the case when r is not a power of a prime number, which
is, we want to show the nonexistence of almost r-embeddings ∆(d+1)(r−1) → Rd by
showing the the nonexistence of Σr-equivariant map (∆(d+1)(r−1))×r

∆(2) → Sd(r−1)−1.
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However, this wish failed after Özaydin proved that when r is not a prime power,
there actually exists Σr-equivariant map from (∆(d+1)(r−1))×r

∆(2) → Sd(r−1)−1, which
is the theorem 4.3.2.

Surprisingly, Özaydin’s theorem 4.3.2 combined with two other important results
can actually disprove the topological Tverberg conjecture 4.1.1 when r is not a prime
power:

The question about whether Topological Tverberg conjecture is true or not when
r is not prime power remained unknown for about 50 years. Until 2015, Florian
Frick [BFZ19a] rediscovered that the Topological Tverberg conjecture implies the
generalized Van Kampen conjecture by constrain method(This has in fact previously
been proved by Gromov earlier in 2010 but wasn’t recognized.). And he observed
that if we combined this result, and Özaydin’s theorem 4.3.2, with another important
result from Mabillard and Wagner(theorem 4.3.3) we can construct a counterexample
for the Topological Tverberg conjecture when r is not prime power, i.e., we can prove
theorem 4.1.5.

We first recall theorem 4.1.5:

Theorem (Topological Tverberg conjecture failed for non prime power case). For
d = 3r + 1, r ≥ 6 be an integer that is not a prime power, there exists an almost r-
embedding ∆(3r+2)(r−1) → R3r+1. Equivalently, there exists a map f : ∆(3r+2)(r−1) →
R3r+1 without r-Tverberg points.

We will prove the theorem by constructing counterexample. The construction
consists of three important ingredients. We first sketch the main idea of the con-
struction as follows:

step 1. firstly show Topological Tverberg conjecture 4.1.1 implies the generalized Van
Kampen-Flores conjecture using constraint methods. This would be shown in
section 4.3.2.

step 2. secondly construct counterexample for the generalized Van Kampen-Flores
conjecture by two steps: let r ≥ 2, d = 3r, k = d(r−1)

r
= 3(r − 1), K =

skelk∆(d+2)(r−1), we will construct an almost r-embedding g : K → Rd as
follows:

step 2.1. first use a result by Özaydin, showing there exists a Σr-equivariant map
F : (K)×r

∆(2) → Sd(r−1)−1 when r is not prime power;
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step 2.2. then use a result by Mabillard and Wagner, showing that the existence
of the Σr-equivariant map F : (K)×r

∆(2) → Sd(r−1)−1 implies the existence
of an almost r-embedding g : K → Rd.

Combine 2.1 and 2.2 we have: there exists a map f : K → Rd without r-tverberg
points (there exists an almost r embedding) when r is not prime power. This means
that the generalized Van Kampen-Flores conjecture failes for r non prime power.
We show this in section 4.3.3.

4.3.2 topological Tverberg implies generalized Van Kampen-Flores

We now give the details of step 1 and show that the Topological Tverberg conjecture
4.1.1 implies the generalized Van Kampen-Flores conjecture by constrain method.

We first state the generalized Van Kampen-Flores conjecture:

Conjecture 4.3.1 (The generalized Van Kampen-Flores conjecture [BFZ19b]). Let
r ≥ 2, d ≥ 1 be integers, k ≥ ⌈ r−1

r
d⌉, for any continuous map f : ∆(r−1)(d+2) →

Rd, there exists r points x1, . . . , xr ∈ K := skelk∆(r−1)(d+2) with pairwise disjoint
supports such that f(x1) = f(x2) = · · · = f(xr), where K := skelk∆(r−1)(d+2) is the
k-th skeleton of ∆(r−1)(d+2). It is equivalent to the following two formulations:

1. Any continuous map f : K → Rd has a r-Tverberg point.

2. There is no almost r-embedding f : K → Rd.

Now we show that the topological Tverberg conjecture implies the generalized
Van Kampen-Flores conjecture.

Claim. The topological Tverberg conjecture implies the generalized Van Kampen-
Flores conjecture, i.e., if for any map f : ∆(d+2)(r−1) → Rd+1, there exists r points
x1, . . . , xr ∈ ∆(d+2)(r−1) with pairwise disjoint support, such that f(x1) = · · · =
f(xr), then for any map g : skelk∆(d+2)(r−1) → Rd, k ≥ ⌈ r−1

r
d⌉, there exists r

points x1, . . . , xr ∈ skelk∆(d+2)(r−1) with pairwise disjoint support, such that g(x1) =
g(x2) = · · · = g(xr).

proof of claim. Assuming the topological Tverberg conjecture is true, we want to
show that for any map g : skelk∆(d+2)(r−1) → Rd, there exists r points x1, . . . , xr ∈
skelk∆(d+2)(r−1) with pairwise disjoint support, such that g(x1) = g(x2) = · · · =
g(xr). We first extend g : skelk∆(d+2)(r−1) → Rd continuously to a map g̃ :
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∆(d+2)(r−1) → Rd in some way, which is possible by the Tietze extension theo-
rem. Then we define a new map f : ∆(r−1)(d+2) → Rd+1 using g̃, which is given by
f(x) = (g̃(x), dist(x, skelk∆(r−1)(d+2))), where the first d components are the same
with g̃ and the last component is the Euclidean distance between x and the k-th
skeleton skelk∆(r−1)(d+2) of ∆(r−1)(d+2). Since g̃ and dist are both continuous, f is
also continuous. By the topological Tverberg conjecture, f has a r-Tverberg point.
This means there exists x1, . . . , xr ∈ ∆(r−1)(d+2) with pairwise disjoint support, such
that f(x1) = · · · = f(xr). If there exists a point xi lies in skelk∆(r−1)(d+2), then we
have dist(x1, skelk∆(r−1)(d+2)) = · · · = dist(xr, skelk∆(r−1)(d+2)) = 0. This means
g : skelk∆(d+2)(r−1) → Rd has a r-Tverberg point, and we are done. Otherwise,
assume all x1, . . . , xr are not in skelk∆(r−1)(d+2). This means the dimensions of all
supports of x1, . . . , xr are greater than or equal to k+ 1, i.e., dim(supp(xi)) ≥ k+ 1,
for all 1 ≤ i ≤ r. Since x1, . . . , xr are pairwise disjoint, the sum of the vertices
of the supports of the points x1, . . . , xr is no more than the sum of the vertices of
∆(d+2)(r−1). Thus we have the inequality (d+2)(r−1)+1 ≥ r(k+2) ≥ (r−1)d+2r =
(d+ 2)(r − 1) + 2, which is a contradiction.

Remark 4.3.1. The above proof shows how to construct counterexample for topolog-
ical Tverberg conjecture for r non prime power: since topological Tverberg conjec-
ture implies the generalized van Kampen-Flores conjecture, it suffices to construct
counterexample for the generalized van Kampen-Flores conjecture for r non prime
power, i.e., construct g : skelk∆(d+2)(r−1) → Rd such that for any r pairwise disjoint
faces F1, . . . , Fr of skelk∆(d+2)(r−1), we have g(F1) ∩ · · · ∩ g(Fr) = ∅. And then we
extend g continuously arbitrarily to the whole ∆(d+2)(r−1) and use it to construct
f : ∆(d+2)(r−1) → Rd+1 such that f(x) = (g(x), dist(x, skelk∆(r−1)(d+2))) similarly as
above. Now f is a counterexample for the topological Tverberg conjecture since if f
has a r-Tverberg point, similar as above this would imply g has a r-Tverberg point,
contradicting our definition of g.

Therefore, in order to construct counterexample for topological Tverberg conjec-
ture we only need to prove the following:

Theorem 4.3.1 (The generalized van Kampen-Flores conjecture fails for r non
prime power ). Let r ≥ 2, d ≥ 1 be integers, k ≥ ⌈ r−1

r
d⌉, there exists a con-

tinuous map f : ∆(r−1)(d+2) → Rd, such that for any r points x1, . . . , xr ∈ K :=
skelk∆(r−1)(d+2) with pairwise disjoint supports, there images f(x1), . . . , f(xr) are
not all equal.
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Remark 4.3.2. We have already shown that the topological Tverberg conjecture is
true when r is a power of prime number in section 4.2. This implies the generalized
Van Kampen-Flores conjecture is also true for r prime power. Historically, the gen-
eralized Van Kampen-Flores conjecture was proved by Sarkaria [Sar91b] for primes
and by Volovikov [Vol96b] for prime powers.

However, when r is not a prime power, we will see in section 4.3.2 that the
generalized Van Kampen-Flores conjecture is no longer true, which implies the failure
of Topological Tverberg conjecture for r non prime power.

4.3.3 counterexample of generalized Van Kampen-Flores conjec-
ture

In this section we show step 2, i.e., we construct a counterexample for the generalized
Van Kampen-Flores conjecture for r non prime power:

let r ≥ 2, d = 3r, k = d(r−1)
r

= 3(r−1), K = skelk∆(d+2)(r−1), we will construct an
almost r-embedding g : K → R3r, i.e., g has no r-Tverberg point. This will disprove
the generalized Van Kampen-Flores conjecture for r non prime power and by above
discussion in section 4.3.3 thus disprove the topological Tverberg conjecture for non
prime power case.

Remark 4.3.3. The above condition d = 3r, k = 3(r − 1) is specified in order to
satisfy the codimension condition d−k ≥ 3 so that we can apply the r-fold Whitney
trick. We will see it in later text.

We first give details of step 2.1, which is to show the existence of Σr-equivariant
map F : (K)×r

∆(2) → Sd(r−1)−1 when r is not a prime power.
Step 2.1: the construction of Σr-equivariant map F : (K)×r

∆(2) → Sd(r−1)−1

Let K×r
∆(2) = {σ1×σ2×· · ·×σr|σi ∈ K, σi∩σj = ∅, for every i ̸= j} be the r-fold 2-

wise deleted product of K, define a Σr-action on it by permuting its r components.
This action is obvious free and cellular. We now show that when r is not prime
power, there is a Σr-equivariant map F : (K)×r

∆(2) → Sd(r−1)−1 using an important
result of Özaydin:

Theorem 4.3.2 (when r is non prime power, exists Σr-equivariant map). ([Oza87,
theorem 4.2]) Let d ≥ 1 and r ≥ 2, if r is not a prime power, let X be an at most
d(r − 1)-dimensional free Σr-complex(a cell complex with a free cellular Σr-action),
then there exists a Σr-equivariant map from X to Sd(r−1)−1.
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Remark 4.3.4. • For this theorem it is important that Σr acts on X freely, cel-
lularly, and the dimension of X is at most two more than the connectivity of
Sd(r−1)−1.

• This theorem is in fact only one direction of [Oza87, theorem 4.2].3 The other
direction of the theorem, which is theorem 3.3.3, can be used to prove the
Topological Tverberg conjecture for r being a prime power.

• The existence of the Σr-map f̃ : skeld(r−1)−1X → Sd(r−1)−1 for any integer
r ≥ 2 is a direct consequence of the theorem 2.7.6, since X is a d(r − 1) − 1-
dimensional free Σr-complex and Sd(r−1)−1 is a (d(r − 1) − 2)-connected Σr-
space. Thus the above theorem in fact states that when r is not a prime power,
f̃ can extend G-equivariantly one more dimension, to the whole X.

Since K×r
∆(2) is a free Σr-complex of dimension at most rk = d(r − 1), apply

the above theorem 4.3.2 of Özaydin, there is a Σr-equivariant map F : (K)×r
∆(2) →

Sd(r−1)−1.
Now we give a proof of the theorem 4.3.2. In order to prove the theorem, we

need a lemma:

Lemma 4.3.1. [Oza87, lemma 4.1] Let G be a finite group, Gp be a Sylow p-subgroup
for each prime p dividing the order of G, n be a positive integer, X be a (n + 1)-
dimensional free G-complex, and Y be a (n − 1)-connected G-complex (if n = 1 we
also assume that π1Y is abelian). There is a G-map from X to Y if and only if there
is a Gp-map from X to Y for each p.

The proof of the lemma requires a lot of work. We postpone it until later and
first prove theorem 4.3.2 assuming the lemma.

proof of theorem 4.3.2. When r is non prime power, let p be a prime number dividing
the order of Σr, by lemma 2.3.1, any Sylow p-subgroup p of Σr acts on {1, . . . , r}
non transitively. By lemma 2.4.2, this implies Sd(r−1)−1 has a p-fixed point for all
Sylow p-subgroup p. Let X be an at most d(r − 1)-dimensional free Σr-complex,

3Theorem 4.2 of Özaydin’s paper states that: Let d ≥ 1 and r ≥ 2, there exists an Σr-equivariant
map

f : Ed(r−1)Σr
Σr−−→ Sd(r−1)−1

if and only if r is not a prime power. The theorem has two directions: one is when r is not a
prime power, there exists a Σr-equivariant map; the other is when r is a power of prime, there is
no Σr-equivariant map. In fact, Özaydin has proved more in both directions and we state them as
theorem 4.3.2 and theorem 3.3.3 respectively in this article.
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for any p, we can define a p-map from X to Sd(r−1)−1 to be a constant map which
maps X to the p-fixed point. Thus by lemma 4.3.1, there is a Σr-map from X to
Sd(r−1)−1.

Now we prove the lemma 4.3.1:

proof of lemma 4.3.1. One direction is obvious: any G-map is also a H-map for any
subgroup H of G.

We prove the other direction using theorem 2.7.5, the main theorem of equivari-
ant obstruction theory:

Cn+1(X) is a free abelian group with basis of all n + 1 cells of X, observe that
it is a G-module for all n: X is a free G-complex with a free cellular G-action on
X, which induces a free G-action on the set of all n+ 1 cells of X, i.e., on the basis
of Cn+1(X). Thus we can define a free G-action on Cn+1(X) by extend the free
G-action on the set of all n+ 1 cells of X linearly.

Since we have assumed that Y is (n − 1)-connected, and for n = 1, we assume
further that π1Y is abelian, we can apply Hurewicz theorem 2.6.1, and get that
the Hurewize homomorphism h∗ : πnY → Hn(Y ) is an isomorphism. Since Y is a
G-space, the G-action on Y induces a well defined G-action on Hn(Y ), given by:

G×Hn(Y )→ Hn(Y )
(g, [f ]) 7→ g · [f ] = [g · f ]

where for an n-cell σn of Y , (g · f)(σn) = g · f(σn) and the latter · is the G-action
on the G-space Y . This gives a well defined G-action on πnY through the above
Hurewicz isomorphism h∗ : πnY → Hn(Y ). Thus we can also regard the abelian
groups πnY as a G-module with the this G-action as the scalar multiplication.

Denote the group of all morphisms between the G-modules Cn+1(x) and πnY as
HomG(Cn+1(x), πnY ). We have the following cochain complex:

· · ·HomG(Cn+1(X), πnY ) δ←− HomG(Cn(X), πnY ) δ←− HomG(Cn−1(X), πnY ) · · · ,

the coboundary map δ : HomG(Cn(X), πnY ) → HomG(Cn+1(X), πnY ) is defined
by δ(f) = f ◦ ∂ where ∂ : Cn+1(X) → Cn(X) is the boundary map of the cellular
chain complex. Since ∂ and f are both G-equivariant, we have δ(f) is G-equivariant.
Hence δ is well defined. Since δ ◦ δ = 0, this cochain complex induces a cohomology
group Hn

G(X, πnY ).
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Similarly for all p-sylow subgroup Gp of G, Cn+1(x) and πnY are also Gp-modules
and HomGp(Cn+1(x), πnY ) denotes the group of all morphisms between these two
Gp-modules. We also have the following cochain complex:

· · ·HomGp(Cn+1(X), πnY ) δ←− HomGp(Cn(X), πnY ) δ←− HomGp(Cn−1(X), πnY ) · · ·

which also induces a cohomology group Hn
Gp

(X, πnY ).

Since X is a (n + 1)-dimensional free G-complex, and Y is a (n − 1)-connected
G-complex, by theorem 2.7.6, we already have a G-map f : Xn → Y from the n-
th skeleton Xn of X to Y . We now show that there exists G-map g : X → Y if
there exists Gp-map fp : X → Y . By obstruction theory 2.7.5, it suffices to show
f |Xn−1 : Xn−1 → Y can extends to X G-equivariantly from Xn−1, i.e., to show the
obstruction cocycle [θn+1

G (f)] ∈ Hn+1
G (X, πnY ) vanishes.

We first define obstruction cocycle θn+1
G (f) as follows: since X is a free G-

complex, we have G acts freely and cellularly on the set of all the n+ 1 cells of X.
This G-action gives a partition of the set of all n + 1 cells into equivalence classes,
called G-orbits. For a n+1 cell en+1

i of each G-orbit G ·en+1
i , we can associate it with

a map f ◦ φi : Sn φi−→ ∂en+1
i ⊂ Xn

f−→ Y where ∂en+1
i is the boundary of en+1

i and φi

is the attaching map of en+1
i . And f ◦φi defines an element [f ◦φi] ∈ [Sn, Y ] = πnY .

Let Cn+1(X) be the free abelian group with basis consisting of all n+ 1 cells of X,
since we have defined a map θi(f) : en+1

i 7→ [f ◦φi] for all en+1
i , we can extend θi(f)

G-equivariantly to their G-orbits G ·en+1
i and now θi(f) is defined on all n+1 cells of

Cn+1(X). Since each element of Cn+1(X) is a finite linear combination of n+1 cells,
we can extend θi(f) linearly to the whole Cn+1(X). Now we have a G-equivariant
map θn+1

G (f) : Cn+1(X)→ πnY,
∑
nie

n+1
i 7→ ∑

ni[f ◦φi]. Thus we have defined an G-
equivariant obstruction cochain θn+1

G (f) ∈ Cn+1
G (X, πnY ) = HomG(Cn+1(X), πnY ).

This obstruction cochain is also a cocycle since X is (n + 1)-dimensional which
makes Cn+2(X, πn(Y )) = {0}. Thus the obstruction cocycle θn+1

G (f) represents a
cohomology class [θn+1

G (f)] ∈ Hn+1
G (X, πnY ).

Now we only need to show the cohomology class [θn+1
G (f)] ∈ Hn+1

G (X, πnY ) van-
ishes, i.e., θn+1

G (f) is a G-equivariant coboundary: since Y is a (n − 1)-connected
Gp-complex, by theorem 2.7.6, f |Xn−1 and fp|Xn−1 areGp-homotopic. Thus by lemma
2.7.2, their corresponding obstruction cocycles of extending f |Xn−1 and fp|Xn−1 Gp-
equivariantly toX differs by a coboundary, i.e., [θn+1

Gp
(f)] = [θn+1

Gp
(fp)] ∈ Hn+1

Gp
(X, πnY ).

Since fp|Xn−1 can extend to X Gp-equivariantly, we have [θn+1
Gp

(f)] = [θn+1
Gp

(fp)] = 0
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in Hn+1
Gp

(X, πnY ).

We now define an restriction homomorphism i∗ : Hn+1
G (X, πnY )→ Hn+1

Gp
(X, πnY ),

where Gp ⊆ G is a p-sylow subgroup of G for each p divides |G| as follows:

since any G-equivariant map are also Gp-equivariant, HomG(Cn+1(x), πnY ) is a
subgroup of HomGp(Cn+1(x), πnY ). Let

i : HomG(Cn+1(X), πnY )→ HomGp(Cn+1(X), πnY )

denote the inclusion map, we have the following commutative diagram:

· · ·HomG(Cn+1(X), πn(Y )) HomG(Cn(X), πn(Y )) HomG(Cn−1(X), πn(Y )) · · ·

· · ·HomGp(Cn+1(X), πn(Y )) HomGp(Cn(X), πn(Y )) HomGp(Cn−1(X), πn(Y )) · · ·

i

δ

i

δ

i

δ δ

which satisfies δ ◦ i = i ◦ δ, i.e., the inclusion map i maps G-equivariant cocycles to
Gp-equivariant cocyles, G-equivariant coboundaries to Gp-equivariant coboundaries.
Thus i induces a map on cohomology i∗ : Hn+1

G (X, πnY )→ Hn+1
Gp

(X, πnY ), which is
the restriction map we need. And we have i∗([θn+1

G (f)]) = [θn+1
Gp

(f)] = 0.

Now we define a map between two cochain complexes:

t : HomGp(Cn+1(X), πnY )→ HomG(Cn+1(X), πnY )

x 7→
m∑

k=1
gkx

where gk, k = 1, · · · ,m are the representatives of the left coset of Gp in G.

We can see that the map t is independent of the choice of the representatives
and t(x) ∈ HomG(Cn+1(X), πnY ) since ∀g ∈ G, g · (∑m

k=1 gkx) = ∑m
k=1(g · gk)x =∑m

k=1 gkx.

Thus we have the following commutative diagram:

· · ·HomGp(Cn+1(X), πn(Y )) HomGp(Cn(X), πn(Y )) HomGp(Cn−1(X), πn(Y )) · · ·

· · ·HomG(Cn+1(X), πn(Y )) HomG(Cn(X), πn(Y )) HomG(Cn−1(X), πn(Y )) · · ·

t

δ

t

δ

t

δ δ
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which induced a map on the level of cohomology and we call it the transfer map:

tr : Hn+1
Gp

(X, πnY )→ Hn+1
G (X, πnY )

x 7→
m∑

k=1
gkx

The composition of restriction map i∗ and the transfer map tr is multiplication by
the index [G : Gp]:

Hn+1
G (X, πnY ) Hn+1

Gp
(X, πnY ) Hn+1

G (X, πnY )

x 7−→ x 7−→ ∑m
k=1 gkx = [G : Gp]x

i∗ tr

Since i∗([θn+1
G (f)]) = [θn+1

Gp
(f)] = 0, we have (tr◦i∗)([θn+1

G (f)]) = [G : Gp][θn+1
G (f)] =

0 for all prime p dividing |G|. For all prime pi dividing |G|, i = 1, . . . , n, we have
gcd([G : Gp1 ], . . . , [G : Gpi

], . . . ) = 1 since: denote the order of pi in |G| to be ei, we
have |G| = pe1

1 ·pe2
2 · · · pen

n . Thus [G : Gpi
] = pe1

1 · · · p
ei−1
i−1 ·p

ei+1
i+1 · · · pen

n , and [G : Gpi
] for

i = 1, . . . , n has no common divisor except 1. Thus there exists integers s1, . . . , sn

such that s1[G : Gp1 ] + · · ·+ sn[G : Gpn ] = 1.
Hence we have [θn+1

G (f)] = 1 · [θn+1
G (f)] = gcd([G : Gp1 ], . . . , [G : Gpn ])[θn+1

G (f)] =
(s1[G : Gp1 ] + · · ·+ sn[G : Gpn ])[θn+1

G (f)] = 0 in Hn+1
G (X, πnY ).

Now we show that the existence of the equivariant map F : (K)×r
∆(2) → Sd(r−1)−1

can prove theorem 4.3.1, which is, it implies the generalized van Kampen-Flores
conjecture is not true for r non prime power, and thus disprove the topological
Tverberg conjecture for r non prime power.

Step 2.2. the existence of equivariant map F : (K)×r
∆(2) → Sd(r−1)−1 implies map

g : K → Rd with no r-fold Tverberg points, which is, there exists r pairwise disjoint
faces of K such that their images has no common intersection.

Theorem 4.3.3 (Sufficiency of the Deleted Product Criterion for Tverberg Points).
([MW15, theorem 7],[MW14, theorem 3]) Suppose r ≥ 2, (r − 1)d = (≥?)rk, and
d− k ≥ 3. If K is a finite k-dimensional simplicial complex, then there exists a map
f : K → Rd without r-Tverberg point if and only if there exists an Σr-equivariant
map F : K×r

∆(2) → Sd(r−1)−1.(Equivalently, if and only if the primary obstruction of
K×r

∆(2) vanishes, i.e., o(K×r
∆(2)) = 0.)
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Remark 4.3.5. • In our case, we can let d = 3r, let K be the 3(r − 1) skeleton
of ∆(d+2)(r−1), thus d − k = 3 and we can apply the theorem. Thus we have
there exists a map f : K → R3r without r-Tverberg point if and only if there
exists an Σr-equivariant map F : K×r

∆(2) → S3r(r−1)−1.

• We only need one direction of above theorem in our proof of theorem 4.3.1,
i.e. the existence of Σr-equivariant map F : K×r

∆(2) → S3r(r−1)−1 implies the
existence of a map f : K → R3r without r-Tverberg point.

proof of theorem 4.3.3. One direction is obvious: if there exists a map f : K →
Rd without r-Tverberg point, we can construct its r-fold product f×r : (K)×r

∆ →
(Rd)×r − diag, which is obviously a Σr-equivariant map. And then, as in example
2.4.1, we can compose it with the projection ρ : (Rd)×r − diag → (diag)⊥ \ {0}
and the normalization µ : (diag)⊥ \ {0} → Sd(r−1)−1, and get a Σr-equivariant map
F̄ = µ ◦ ρ ◦ f×r : (K)×r

∆(2) → Sd(r−1)−1.
The other direction is to show that the existence of Σr-equivariant map F :

K×r
∆(2) → S3r(r−1)−1 implies the existence of a map f : K → R3r without r-Tverberg

point. This is highly nontrivial, and it involves lots of advance techniques developed
by Mabillard and Wagner in their paper [MW15] and [MW14]. We will only sketch
the proof:

We need to apply the r-fold Whitney trick and the r-fold Van Kampen finger
moves(which are the generalizations of the 2-fold Whitney trick and 2-fold Van
Kampen finger moves) and show the following:

recall that K = skelk∆(d+2)(r−1) where k = d(r−1)
r

= 3(r − 1), d = 3r, dim
K×r

∆(2) = rk = (r − 1)d = 3r(r − 1),

1. let f : K → R3r be any map in general position, let f×r be its r-fold product
f×r : K×r

∆(2) → (R3r)×r, since f is in general position, only the images of
top dimensional (3(r − 1)-dimensional) simplices of K can intersect, i.e., only
3r(r−1) dimensional simplices σ1×· · ·×σr ∈ K×r

∆(2) where dim(σi) = 3(r−1)
can have F (σ1×· · ·×σr)∩diag ̸= ∅. Thus if we restrict f×r to (3r(r−1)−1)-
skeleton of K×r

∆(2), its image avoid the diag, and we have a Σr-equivariant map
f×r

−1 : skel3r(r−1)−1K×r
∆(2) → (R3r)×r − diag.

2. let φf×r
−1

be the obstruction cocycle of f×r
−1 representing the primary obstruction

o(K×r
∆(2)) of K×r

∆(2), i.e., for any 3r(r − 1)-cell σ = σ1 × · · · × σr of K×r
∆(2), φf×r

−1

associate it with the degree of the map which is the composition of its attaching
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map and f×r
−1 : ∂σ(≃ S3r(r−1)−1) → skel3r(r−1)−1K×r

∆(2)
f×r

−1−−→ (R3r)×r − diag(≃
S3r(r−1)−1), i.e., φf×r

−1
(σ) = deg(f×r

−1 |∂σ) ∈ Z

3. the degree of the map f×r
−1 |∂σ is equal to the sum of the signs of the intersection

points of f×r(σ = σ1 × · · · × σr) and diag, i.e., deg(f×r
−1 |∂σ) = ∑

y sgny where
sgny is the (r-fold) intersection sign of y ∈ f(σ1) ∩ · · · ∩ f(σr).

4. by Özadyin’s theorem 4.3.2, we know that there exists Σr-equivariant map
F : K×r

∆(2) → (Rd)×r − diag. Thus by equivariant obstruction theory, the
primary obstruction o(K×r

∆(2)) vanishes. Thus we have [φf×r
−1

] = o(K×r
∆(2)) = 0,

i.e., φf×r
−1

is a Σr-equivariant coboundary, which is the finite sum of elementary
coboundary.

5. modifying f by an r-fold van Kampen finger move has the effect that φf×r
−1

changes by an elementary coboundary. Thus by applying finitely many r-fold
van Kampen finger moves on f we get a modified map f̃ : K → R3r such that
φf̃×r

−1
= 0.

6. since for any 3r(r − 1)-dimensional cell σ = σ1 × · · · × σr of K×r
∆(2), φf̃×r

−1
(σ) =

deg(f̃×r
−1 |∂σ) = ∑

y sgny is the sum of the signs of the intersection points y of
f̃(σ1)∩ · · · ∩ f̃(σr),

∑
y sgny = 0 means the intersection points of f̃(σ1)∩ · · · ∩

f̃(σr) can be divided into pairs of opposite signs.

7. since for all i = 1, . . . , r, 3r − dimσi = 3r − 3r(r − 1) = 3 satisfies the
codimension condition of the r-fold Whitney trick, and the intersection points
of their images f̃(σ1)∩· · ·∩ f̃(σr) can be paired up into pairs of opposite signs,
we can thus apply the r-fold Whitney trick on f̃ to each pair locally to eliminate
the intersection points pair by pair without introducing new intersection point
during the process. Repeat the same process to all 3r(r− 1)-dimensional cells
σ = σ1 × · · · × σr of K×r

∆(2), we have f̃(σ1) ∩ · · · ∩ f̃(σr) = ∅ for all σ. Denote
the modified map as g : K → R3r, since g is a map in general position and
only the images of top dimensional cells of K can intersect, it is a map without
r-Tverberg point, which is exactly the map we need.

In conclusion, by constructing the map g : K → R3r without r-Tverberg point,
we have disprove the generalized van Kampen-Flores conjecture for r non prime
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power, i.e., we have prove theorem 4.3.1. Furthermore, using the procedure in the
remark 4.3.1, we can use g : K → R3r to construct a map f : ∆(3r+2)(r−1) →
R3r+1 without r-Tverberg point, and thus give a counterexample for the topological
Tverberg conjecture 4.1.1 for r non prime power, d = 3r + 1. Thus we have prove
the theorem 4.1.5.

Remark 4.3.6 (failure of topological Tverberg conjecture of lower dimension implies
failure of higher dimension). By [dL01, proposition 2.5.], if the topological Tverberg
theorem holds for any r ≥ 2, d+ 1 ≥ 2, then it also holds for r ≥ 2, d ≥ 1. Thus the
failure of the topological Tverberg conjecture for d implies its failure for d+1. Since
we have already construct a counterexample for the topological Tvereberg conjecture
for r non prime power and d = 3r + 1, we now have the failure of the topological
Tverberg conjecture for r non prime power and d ≥ 3r + 1, which is the following
theorem.

Theorem 4.3.4. If r is not a prime power and d ≥ 3r + 1, there exists an almost
r-embedding ∆(d+1)(r−1) → Rd.

Further developments In conclusion, using the above techniques, we have con-
structed counterexamples of topological Tverberg conjecture for non prime power
r and for dimensions d ≥ 3r + 1. The restriction on d has been further improved
to d ≥ 2r + 1: the lowest dimensional counterexample is an almost 6-embedding
∆70 → R13, which is given in [AMSW21, theorem 1.1]. The problem of whether
there exists counterexamples for r non prime power, d ≤ 2r is still open.
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