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Introduction

The concept of derived category were first introduced by J. P. Verdier in
1967 [Ver96], in his doctoral thesis written under the supervision of A.
Grothendieck. A few years before P. Gabriel in a seminal article [Gab62]
developed some fundamental aspects of the theory of abelian category, which
were used and expanded by the Grothendieck-Verdier work.
The main idea that led to the construction of derived categories is that one
would like to work with complexes rather than with their (co-)homology 1,
since passing directly to the (co-)homology means losing too much informa-
tion. On the other hand we would like to consider as equivalent complexes
that have isomorphic (co-)homology groups. An object of an abelian category
should then be considered equivalent to its resolutions, moreover, adopting
this point of view, one can obtain a ’correct’ definition of functors between
abelian categories that in general can be directly defined only on well-behaved
objects (e.g. injective, projective and flat modules). To adopt this point of
view one has then to consider the category of complexes (where the objects
of the abelian category are considered as complexes concentrated in degree
zero) from the beginning and extend the identification with the respective
resolutions to arbitrary complexes.

The main results of this work is the Reconstruction Theorem proved by
A.Bondal and D.Orlov in [BO01], for a smooth projective X with ample or
anti-ample canonical bundle, the derived category Db(X) of bounded coher-
ent sheaves on X determines up to isomorphism the variety. The idea behind
this results is to build a scheme isomorphic to X by constructing objects in
the category Db(X) which play the role of points and invertible sheaves, thus,
using the fundamental hypothesis of ampleness of the canonical bundle, Bon-
dal and Orlov derived an isomorphism between the varieties X and Y from
the exact equivalence between their derived categories of coherent sheaves.

1For motivating examples arising from algebraic topology and homological algebra we
refer to [Tho01]
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Chapter 1

Triangulated categories

In this chapter we are going to introduce two fundamental concepts to develop
the theory of derived category. An abelian category is the categorification (in
a sense that would be clarified later) of the category Ab of abelian group and
is the right environment to generalize the standard definition of (co)homology
and all the important and structural properties of it. The first non-trivial
example of abelian category will be the category R-Mod of R-modules for
some ring R, and it is often said that if you need to prove something in
an abelian category you can think of it as R-Mod and ’prove the statement
there’. More precisely a result by Peter Freyd and Barry Mitchell, known as
Freyd-Mitchell embedding, says that for any abelian category A there exists
a ring R such that the category A can be embedded as a full subcategory
of R-Mod. However, following the Johnstone’s thesis that in [Joh14] talks
about this embedding, if one has to prove a results in a category of modules,
one might as well work in an abelian category and the embedding ensures
that the results holds in generality, this will help to concentrate only on
the essential property of the structure, exactly the ones that characterize an
abelian category.

For all the notion from category theory we will use in this work we refer
to standard and complete introduction to the subjects, such as the classical
[Mac71] and the modern [Rie17]. The interested reader can find there all the
basic notions spread out and deeply investigated.

1.1 Abelian categories

Definition 1.1.1. A category A is an additive category if the following
conditions are satisfied

5
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i) For every objects A,B in A the hom-set Hom(A,B) is endowed with the
structure of an abelian group.

ii) For every objects A,B,C in A the composition functor Hom(A,B) ×
Hom(B,C)→ Hom(A,C) is bilinear.

iii) There exists a zero object 0 in A, i.e. 0 is both the trivial and the
terminal object.

iv) A has finite products and coproducts and they are isomorphic, i.e. for
every objects A1, A2 in A both exist A1×A2 and A1⊔A2 and A1×A2

∼=
A1 ⊔ A2.

Remark 1.1.2. This definition worth some comments. The points (i) and
(ii) are equivalent to ask that A is enriched over Ab, moreover in the Ab-
enriched context we can replace (iii) and (iv) by requiring that A has finite
products (or coproducts). More precisely, if A has finite products in par-
ticular has a terminal object 1 then Hom(1, 1) is the trivial group with one
element, but this implies that 1 is also the initial object 0, hence a zero
object. Having this particular object we can define the zero morphism in
Hom(A,B) as the unique morphism that factorize

A B

0
@A

0

!B

Now, if A1 × A2 exists, using the zero morphism we can define two ’copro-
jections’

A1 A2

A1 A1 × A2 A2 A1 A1 × A2 A2

idA1 0
i1

0 idA2
i2

p1 p2 p1 p2

Moreover the following equality i1 ◦ p1 + i2 ◦ p2 = idA1×A2 makes A1 × A2

(isomorphic to) the coproduct A1 ⊔ A2. We call this object direct sum and
we will denote it A1 ⊕ A2.
Finally let us recall that point (iii) can be stated using representable enriched
functors, more precisely having products and coproducts means that for any
A,B in A the following

F : A −→ Ab
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X 7→ Hom(X,A)× Hom(X,B)

and
G : A −→ Ab

X 7→ Hom(A,X)× Hom(B,X)

are representable, and by the above discussion, isomorphic functors.

Definition 1.1.3. A functor F : A → B between additive categories is an
additive functor if the action on morphisms

Hom(A,B)→ Hom(F (A), F (B))

is a group homomorphism.

Even if the results presented and proved in the following chapters hold
for general additive categories, in the practice we will be interested in a little
more specific case, since all the geometric construction will be over a fixed
field k.

Definition 1.1.4. A k-linear category A is an additive category enriched
over k-vector spaces, i.e. the hom-set Hom(A,B) is also endowed with
the structure of k-vector space and the composition functor Hom(A,B) ×
Hom(B,C)→ Hom(A,C) is k-linear.
An additive functor F : A → B between two k-linear categories is k-linear if
the action on morphisms

Hom(A,B)→ Hom(F (A), F (B))

is k-linear.

In an category with an initial object the kernel of a morphism f : A→ B
is defined to be the following pullback

ker(f) 0

A B

@B

f

Dually, in a category with a terminal object the cokernel of a morphism
f : A→ B is defined to be the following pushout

A B

1 coker(f)

f

!A
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Equivalently, in a category with zero morphism we can define ker(f) as the

equalizer of the parallel maps A
f−→
−→
0

B, and dually the coker(f) as the coequal-

izer of the same pair A
f−→
−→
0

B.

Definition 1.1.5. An additive category A is abelian if for each morphism
f ∈ Hom(A,B) there exists a kernel and a cokernel. Moreover the natural
map induced by f

CoIm(f)
u−→ Im(f)

is an isomorphism, where CoIm(f) :− coker(ker(f)
i−→ A) and Im(f) :−

ker(B
π−→ coker(f)) and the natural map is the dashed arrow in the following

diagram induced by the universal properties of Im(f) and CoIm(f)

ker(f) A B coker(f)

CoIm(f) Im(f)

i f π

u

Remark 1.1.6 (Abelian categories are finitely complete and cocomplte).
In an abelian category A we can compute eqalizer of two morphism f, g ∈
Hom(A,B) by taking the kernel of the difference of the two maps ker(f − g),
and dually, for the coequalizer we take coker(f − g). Hence A has all finite
products and equalizer then A has all finite limits. Dually, A has all finite
coproducts and coequalizer then A has all finite colimits.

Example 1.1.7. • The category of abelian group Ab.

• Given a ring R the category of R-modules R-Mod.

• Given a schemeX the category of sheaves of abelian groups on it Sh(X)
is abelian, as well the categories Coh(X) and QCoh(X) of coherent and
quasi-coherent sheaves respectively are abelian.

• The category of filtered modules over a ring R is an additive category
that is not abelian, in particular it admits kernels and cokernels but the
morphism between the image and the coimage is not an isomorphism.

As said before, in the context of abelian categories we are allowed to de-
fine chain complexes, moreover almost every result in ’standard’ homological
algebra will hold in this generalized environment. The last ingredient we
need to do so, is the concept of exactness.
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Definition 1.1.8. A sequence of morphisms

A B C
f g

is called exact if ker(g) = Im(f).

Let us note that if the sequence A
f−→ B

g−→ C is exact then the composite
g ◦f is the zero morphism in Hom(A,C), since by the epi-mono factorization
induced by Im(f) we obtain the following commutative diagram

A B C

Im(f) 0

f g

Definition 1.1.9. A functor F : A → B, between abelian categories, is
called left exact if the short exact sequence

0 A B C 0
f g

(1.1)

is mapped to the following exact sequence

0 F (A) F (B) F (C)
F (f) F (g)

Similarly F is called right exact if the short exact sequence in (1.1) is mapped
to the exact sequence

F (A) F (B) F (C) 0
F (f) F (g)

F is called exact if the short exact sequence in (1.1) is mapped to

0 F (A) F (B) F (C) 0
F (f) F (g)

Often the above exactness properties are defined in the following equiva-
lent formulations

Proposition 1.1.10. Let F : A → B be a functor between abelian cate-
gories, then

i) F preserves finite limits if and only if F is left exact

ii) F preserves finite colimits if and only if F is right exact
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iii) F preserves both finite limits and colimits if and only if F exact

Remark 1.1.11. Let F : A → B be a functor between abelian categories,

then if F is additive, any sequence A
f−→ B

g−→ C such that g◦f = 0 is mapped

by F to a sequence F (A)
F (f)−−→ F (B)

F (g)−−→ F (C) such that F (g) ◦ F (f) =
F (g ◦ f) = F (0) = 0.
Conversely the exactness hypothesis is stronger, more precisely if F is either
left or right exact then F is additive.

Lemma 1.1.12. Let A be an abelian category then the Hom functor

Hom(A,−) : A → Ab

Hom(−, A) : Aop → Ab

are left exact.

Definition 1.1.13. An object P in a category C is projective if has the left
lifting property against epimorphisms, i.e. for any epimorphism q : X → Y
and any morphism f : P → Y there exist a lift h : P → X making the
diagram commute

X

P Y

q

f

h

Dually, an object I is injective if it has the right extension property against
monomorphisms, i.e. for any monomorphism j : X → Y and any morphism
g : X → I there exists an extension k : Y → I making the diagram commute

X I

Y

g

j
k

Definition 1.1.14. Let A be an abelian category, an injective resolution of
an object A in A is an exact sequence

0 A I0 I1 I2 . . .

where all I i are injective.
Dually a projective resolution of an object A in A is an exact sequence

. . . P−2 P−1 P 0 A 0
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In the context of abelian categories we have a nice characterization of
projective and injective objects

Proposition 1.1.15. Let A be an abelian category, then

i) P is projective in A if and only if the functor

Hom(P,−) : A → Ab

is exact.

ii) I is injective in A if and only if the functor

Hom(−, I) : Aop → Ab

is exact.

Note that by Lemma 1.1.12 it is enough to check that the two functors
are right exact.

We are now going to introduce a notion that is strictly connected with
Serre duality in the sense that generalized the functor given by the duality
to an equivalence with an additional natural isomorphism.

Definition 1.1.16. Let A be a k-linear category, then a Serre functor is a
k-linear equivalence S : A → A such that for any objects A,B ∈ A there
exist an isomorphism

ηA,B : Hom(A,B)
∼−→ Hom(B, S(A))∗

which is natural in both variables.

As a safe hypothesis we are going to assume that all the Hom-sets are finite
dimensional k-vector spaces. A Serre functor has two important properties:
it commutes with any k-linear equivalence and given a left (right) adjoint we
can construct a right (left) adjoint. More specifically:

Lemma 1.1.17. Let A and B be k-linear categories endowed respectively
with Serre functors SA and SB, then for any k-linear equivalence F : A → B
there exists an isomorphism of functors

F ◦ SA ∼= SB ◦ F

Lemma 1.1.18. Let F : A → B a functor between k-linear categories en-
dowed respectively with Serre functors SA and SB, if F admits a left adjoint
G ⊣ F , then F has also a right adjoint

F ⊣ SA ◦G ◦ S−1
B

Dually, if F admits a right adjoint F ⊣ H, then F has also a left adjoint

S−1
A ◦H ◦ SB ⊣ F
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1.2 Triangulated categories

1

We now introduce the concepts of triangulated categories. The main point
is the definition of a class of distinguished triangles that, as said before, will
play the role of short exact sequence in an additive category. The axioms for
a triangulated category are given in such a way all the ’essential’ properties
of short exact sequences hold also in this more general structure for the
triangles.

Definition 1.2.1. Let D be an additive category, then the structure of a a
triangulated category is the datum of an additive (endo-)equivalence

T : D −→ D

called the shift (or suspension) functor and a collection of distinguished tri-
angles, i.e. triples of objects and morphisms arranged as follows

A B C T (A)u v w

and subject to the following axioms TR1-TR4.
The name comes from the fact that we can arrange these objects into ’actual
triangles’

C

A B

w

u

v

A morphism between two triangles is a triple (f, g, h) such that the following
commutes

A B C T (A)

A′ B′ C ′ T (A′)

u

f

v

g

w

h T (f)

u′ v′ w′

TR1

i) Any triangle of the form

A A 0 T (A)
idA

is distinguished.

1For a detailed proof of some technical statements left in this section without proof we
refer to standard text on homological algebra as [GM03] and [Wei94]
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ii) Any triangle isomorphic to a distinguished triangle is distinguished.

iii) Any morphism f : A→ B can be completed to a distinguished triangle
of the form

A B C T (A)
f

TR2 (Closed under rotation)
A triangle

A B C T (A)
f g h

is distinguished if and only if the triangle

B C T (A) T (B)
g h −T (f)

is distinguished.
TR3
Assume there exists a commutative diagram between two distinguished tri-
angles given by the vertical arrows f and g

A B C T (A)

A′ B′ C ′ T (A′)

f g h T (f)

then the diagram can be completed (not necessary uniquely) to a morphism
of distinguished triangles by a morphism h : C → C ′.
TR4 (Octahedron axiom)
Given the following distinguished triangles

A B C ′ T (A)

B C A′ T (B)

A C B′ T (A)

u f g

v h k

vu i j

there exists a distinguished triangle

C ′ B′ A′ T (C ′)a b kf

that complete the octahedron



14 CHAPTER 1. TRIANGULATED CATEGORIES

B

A′ C

C ′ A

B′

i.e. given the following situation we can complete the lower cap (the diagram
on the left) to a octahedron

A′ C A′ C

B B′

C ′ A C ′ A′

⋆

⋆ ⋆

⋆

Here the triangles decorated with ⋆ are distinguished and the others are
commutative, moreover the two possible composite morphism from B to B′

are equal, i.e. a ◦ f = i ◦ v.

Remark 1.2.2. The axiom TR4 can be stated equivalently in a 2-dimensional
form by saying that there exists a distinguished triangle

C ′ B′ A′ T (C ′)a b kf

such that the following diagram with rows distinguished triangles, commutes

A B C ′ T (A)

A C B′ T (A)

B C A′ T (B)

C ′ B′ A′ T (C ′)

idA

u

v

f g

a idT (A)

vu

u

i

idC

j

b T (u)

f

v

i

h

idA′

k

T (f)

a b kf
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This axiom in a sense enhance the fact that for a sequence of nested inclusions
A ↪→ B ↪→ C of abelian groups there exists a canonical isomorphism

C/B ∼= (C/A)/(B/A) (1.2)

then if we replace the short exact sequences given by the inclusions with
distinguish triangles

A B B/A T (A)

B C C/B T (B)

A C C/A T (A)

the axiom says that there exists another distinguished triangle

B/A C/B C/A T (B/A)

that ’corresponds’ to the short exact sequence giving (1.2).

To make more clear the motto ’distinguished triangles play the role of
short exact sequence’, we are now going to state some properties that can
be seen as a generalization of facts holding for short exact sequences. In the
following discussion we assume D a triangulated category with shift functor
T .

Proposition 1.2.3. Given a distinguished triangle A
f−→ B

g−→ C → T (A),
the composite g ◦ f is trivial.

Proof. By TR1 we can complete A
idA−−→ A to a distinguished triangle

A A 0 T (A)
idA !A

Then

A A 0 T (A)

A B C T (A)

idA

idA

!A

f h idT (A)

f g

commutes, and by TR3 there exists a map h : 0→ C, i.e. h = @C , complet-
ing the diagram, hence g ◦ f is the trivial morphism.
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Proposition 1.2.4. Given a distinguished triangleA
f−→ B

g−→ C
k−→ T (A),then

any object X in D induces two exact sequences (in Ab)

Hom(X,A) Hom(X,B) Hom(X,C)
f◦− g◦−

Hom(C,X) Hom(B,X) Hom(A,X)
−◦g −◦f

Using the closure under rotation axiom we can apply the Proposition

1.2.4 to the triangle B
g−→ C

k−→ T (A)
−T (f)−−−→ T (B) and get other similar exact

sequences

Hom(X,B) Hom(X,C) Hom(X,T (A))
g◦− k◦−

Hom(T (A), X) Hom(C,X) Hom(B,X)
−◦k −◦g

Hence, composing them respectively, what we actually obtain are two long
exact sequences.

Proposition 1.2.5. Let A B C T (A)
f g h a distinguished

triangle in A. If f, g or h are zero morphism then the triangle splits, i.e.,
supposing h = 0 without loss of generality, if

A B C T (A)
f g 0

is a distinguished triangle then it is isomorphic to

A A⊕ C C T (A)

Proof. By TR1 both A
idA−−→ A → 0 → T (A) and C

idC−−→ C → 0 → T (C),

then by TR2, up to modify a sign, we obtain that 0→ C
idC−−→ C → 0 is again

distinguished. The direct sum of distinguished triangles, which is computed
level-wise on objects and on morphisms, is a distinguished triangle, hence we
get the following

A A⊕ C C TX0

Now by TR3 there exists a morphism α : B → A⊕ C making the following
commute

A B C T (A)

A A⊕ C C T (A)

f

idA

g

α

0

idC idT (A)

0
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Moreover α must be an isomorphism, since all the other vertical morphisms
are isomorphisms.

We are now going to define a right notion of functor between triangulated
categories that, as one could expect, should preserve all the triangulated
structure, for this reason it is been called ’exact’ in analogy with the standard
notion of exact functor in a abelian category.

Definition 1.2.6. An additive functor F : D → D′ between triangulated
categories is called exact if the following are satisfied

i) F commutes with the shift functor, i.e. there exists a natural isomor-
phism

F ◦ TD ∼= TD′ ◦ F

ii) Any distinguished triangle

A B C TD(A)

is mapped by F to the distinguished triangle

F (A) F (B) F (C) TD′(FA)

Not surprisingly, triangulated categories and exact functors of triangu-
lated categories form a category. Moreover this concept will allow us to
define a meaningful notion of subcategory of a triangulated category

Definition 1.2.7. A subcategory C of a triangulated category D is a trian-
gulated subcategory if it admits a triangulated structure and the inclusion
functor i : C ↪→ D is an exact functor

Remark 1.2.8. If C is a full subcategory of a triangulated category D, then
it is a triangulated subcategory if and only if the inclusion functor commutes
with the shift functor and the following condition holds:
for any distinguished triangle in D

A B C T (A)

if A,B ∈ C then C is isomorphic to an object in C.

We conclude this chapter stating a result due to A. Bondal and M. Kapra-
nov

Proposition 1.2.9. Any Serre functor in a k-linear triangulated category is
exact.
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Chapter 2

Derived categories

The aim of this chapter is to construct the notion of derived category of an
abelian category.

We start our presentation by recalling what a category of complexes of
an abelian category is.

Definition 2.0.1. Let A be an abelian category, we denote with Ch(A) the
category of complexes of A. An object A• consist of a diagram in A

. . . Ai−1 Ai Ai+1 . . .di−1 di

where di ◦ di−1 = 0. A morphism of complexes f : A• → B• consists of a
collection of morphism of A f i : Ai → Bi such that the following commutes

. . . Ai−1 Ai Ai+1 . . .

. . . Bi−1 Bi Bi+1 . . .

di−1
A

f i−1

diA

f i f i+1

di−1
B diB

Remark 2.0.2. It is straightforward to prove that a category of complexes
of an abelian category A is again abelian. Essentially all the objects and
property we need can be constructed level-wise, for example the zero object
will be the complex with the object 0 at each level, the direct sum of A• and
B• will be the complex

. . . Ai−1 ⊕Bi−1 Ai ⊕Bi Ai+1 ⊕Bi+1 . . .
di−1
A +di−1

B diA+diB

and again the kernel of a morphism f : A• → B• will be the complex of
kernels

. . . ker(f i−1) ker(f i) ker(f i+1) . . .
f i−1 f i

19
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Moreover we can consider A as a full subcategory of Ch(A), the em-
bedding is given by the functor the sends an object A of A in the complex
concentrated in the zero level

. . . 0 A 0 . . .

Definition 2.0.3. The category of complexes comes naturally equipped with
a shift functor T : Ch(A) → Ch(A) that sends and object A• to A•[1],
the complex defined as (A[1])i :− Ai+1 and diA[1] :− −di+1

A . A morphism

f : A• → B• is mapped to f [1] : A•[1] → B•[1], the morphism defined by
f [1]i :− f i+1

Proposition 2.0.4. The shift functor (−)[1] : Ch(A) → Ch(A) defined
above, is an equivalences of category.

It important to note that this shift functor does not define a triangulated
structure on Ch(A), we need to provide a collection of distinguished triangles.
Indeed, since the category of complexes is abelian, in general it will not be
triangulated, for example the natural choice of considering a short exact
sequence in Ch(A)

0 A• B• C• 0
f g

as a triangle

A• B• C• A•[1]
f g 0

will not satisfies the axioms of triangulated category.
The last preliminary ingredient is the fact that we can define the cohomology
functor

Definition 2.0.5. Let A• be in Ch(A) then its i-th cohomology is

Hi(A•) :− ker di/Im(di−1)

or more precisely Hi(A•) = coker(Im(di−1) → ker(di)). Using the universal
property of the coker we can define the action on morphism of the functor

Hi : Ch(A) −→ A

A complex A• is acyclic if Hi(A•) = 0 for all i ∈ Z.

Having now the cohomology functor, we can define a special class of mor-
phism called quasi-isomorphisms. This class will play the central role in
the construction of the derived category, we would like to not distinguish
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complexes that have same cohomology without however passing to the coho-
mology, since this would mean loose too much information. In order to do
so we will invert formally these special morphisms and consider two quasi-
isomorphic complexes as isomorphic objects in the derived category.

Definition 2.0.6. A morphism of complexes f : A• → B• is called quasi-
isomorphism, or quis, if for all i ∈ Z the induced map on the cohomology
Hi(f) : Hi(A•)→ Hi(B•) is an isomorphism.

Let us provide some examples of quasi-isomorphisms arising in the prac-
tice.

Example 2.0.7. 1. Homotopy equivalences are clearly quis.

2. The Excision Theorem provides another example, given topological
spaces Z ⊆ A ⊆ X such that Z̄ ⊆ int(A), then the inclusion map

i : (X/Z,A/Z) ↪→ (X,A)

is a quis.

3. An injective resolution M
ε−→ I•

M 0 0 . . .

I0 I1 I2 . . .

ε

is a quis.
Dually, a projective resolution P • η−→M

. . . P−2 P−1 P 0

. . . 0 0 M

η

is a quis.

4. Taking a complex A• such that there exists a finite m :− max{k ∈
Z | Hk(A•) ̸= 0} then there exists a quasi-isomorphism from the trun-
cated complex to the initial one

s : σ≤m(A
•)→ A•



22 CHAPTER 2. DERIVED CATEGORIES

. . . Am−2 Am−1 Am Am+1 . . .

. . . Am−2 Am−1 ker(dm) 0 . . .

dm−2 dm−1 dm

dm−2

idAm−2

dm−1

idAm−1

The commutativity is either trivial or comes from the following

Am−1 Am Am+1

Im(dm−1)

Am−1 ker(dm) 0
dm−1

idAm−1

dm−1

dm

⌟

5. Similarly, taking a complex A• such that there exists a finite m :−
min{k ∈ Z | Hk(A•) ̸= 0} then there exists a quasi-isomorphism from
the complex to its truncation

t : A• → σ<m(A
•)

. . . Am−1 Am Am+1 Am+2 . . .

. . . 0 coker(dm−1) Am+1 Am+2 . . .

dm−1 dm

idAm+1

dm+1

idAm+2

dm+1

It is instructive to define at first the derived category of A by its universal
property and then provide a precise definition of what objects and morphism
actually constitute the category. We will state the universal property as a
theorem

Theorem 2.0.8 (Universal property of D(A)). Let A be an abelian category
and Ch(A) its category of complexes, then there exists a category D(A) called
the derived category of A and a funtor

Q : Ch(A)→ D(A)

such that

i) each quasi-isomorphism in Ch(A) is sent to an isomorphism in D(A)
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ii) any functor F : Ch(A)→ C satisfying the property (i) factorizes uniquely
(up to isomorphism) through Q i.e there exists a functor G : D(A)→ C
that fits in the following triangle

Ch(A) C

D(A)
Q

F

∼= G

The objects in the derived category will be the same as in the respective
category of complexes, but to define morphisms in D(A) we will first need
to pass to the homotopy category of complexes, where the morphisms are
considered up to homotopy, and then ’localize’ it by inverting the quasi-
isomorphisms.

Definition 2.0.9. Two morphism in Ch(A) f, g : A• → B• are called ho-
motopy equivalent, and we denoted it with f ∼ g, if there exists a collection
of maps hi : Ai → Bi−1 such that

f i − gi = hi+1 ◦ diA + di−1
B ◦ hi

depicted as follows

. . . Ai Ai+1 Ai+2

Bi−1 Bi Bi+1 . . .

f ihi

diA

gi hi+1

di+1
A

gi+1f i+1

hi+2

di−1
B

diB

Then we define the homotopy category of complexes K(A) as the category
whose objects are the ones in Ch(A) and morphisms HomK(A)(A

•, B•) :−
HomCh(A)(A

•, B•)/ ∼

Noting that the homotopy equivalence just defined is an equivalence re-
lation is easy to show that identities and compositions are well defined and
the above construction is actually a category.Moreover there exists a functor
K : Ch(A) → K(A) which is the identity on objects and the quotient map
on morphisms, this functor sends in particular homotopy equivalences into
isomorphisms. K(A) then, comes as well with a universal property

Theorem 2.0.10 (Universal Property of K(A)). Let A be an abelian cate-
gory and Ch(A) its category of complexes, then any functor F : Ch(A)→ C
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that sends homotopy equivalences to isomorphism in C, factors through K(A)
i.e there exists a functor G : K(A)→ C fitting in the following triangle

Ch(A) C

K(A)

F

K G

The intermediate step in the construction of the derived category can then
be express as follows, since homotopy equivalences are quasi-isomorphism and
those are sent into isomorphisms in D(A), by 2.0.10 there exists a functor
Q′ : K(A)→ D(A) making the following commute

Ch(A) D(A)

K(A)

Q

K Q′

We are now ready to define objects and morphisms in the derived category:

• Objects are the objects of the homotopy category

ObD(A) :− ObK(A) = ObjCh(A)

• A morphism in HomD(A)(A
•, B•) is a set of equivalences class of dia-

gram of the form

C•

A• B•

s f

where s : C• → A• is a quasi-isomorphism and f : C• → B• is a
morphism in K(A). Two such a diagrams A• ← C•

1 → B•, A• ←
C•

2 → B• are equivalent if exists a third span C•
1 ← C• → C•

2 such
that the following commutes in K(A)

C•

C•
1 C•

2

A• B•

r h

s f g

t
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Here the weaker requirements of the commutativity in K(A) (i.e. up
to homotopy) will became clear later in the definition of the triangu-
lated structure, in particular since s ◦ r is a quis and is homotopically
equivalent to the other leg t ◦ h, then the latter is a quis as well.

– The identity morphism A• → A• is

A•

A• A•

idA• idA•

– Given two morphisms A• s←− C•
1

f−→ B• and B• t←− C•
2

g−→ C•, their
composition is given by a commutative diagram in K(A) of the
form

C•
0

C•
1 C•

2

A• B• C•

s f t g

In order to prove the existence and the uniqueness up to homotopy of the
above composition we have to introduce another concept: the mapping cone.
This will solve this problem and will be a fundamental ingredient to define
the triangulated structure on the derived category.

Remark 2.0.11. As a small remark let us note that the usual composition
performed in a category of spans does not work in general, i.e. taking the
pullback to complete the desired square is not the right choice. For example,
consider the diagram

A• C•

B•
f s

where B• :− B0 α−→ B1 such that α is sujective, A• :− B1[−1] and C• :−
C0 = ker(α); f arises from the identity on B1 and s from the inclusion
ker(α) ↪→ B0. Moreover H0(B•) = ker(α) = H0(C•) and the isomorphism
is realized exactly by the morphism s, which is then a quis. Completing
now the diagram as a pullback (that is defined as the complex with pullback
computed level-wise) results in the zero object, thus in general the resulting
span is not an admissible morphism of the derived category.
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Working in the homotopy category K(A) (and in D(A)) there is, in gen-
eral, no notion of kernel and cokernel, this is due to the fact that only the
additive structure is preserved in both categories. To overcome this problem
we introduce the mapping cone. Loosely this object can be thought as the
homotopy cofiber Cf of a map f that arise in algebraic topology, this intu-
ition is fruitful in the sense that all structural properties of the homotopy
cofiber will hold for the mapping cone, for example taking an inclusion of
CW-complexes f : X ↪→ Y we get that Cf is homotopy equivalent to Y/X
and denoting with i the inclusion Y → Cf , we obtain that Ci is homotopy
equivalent to the suspension of X, ΣX and all this data fits in the sequence

X Y Y/X ΣX . . .
f

Passing to the cohomology we obtain the long exact sequence of the pair
(Y,X).
Let us then give the precise definition.

Definition 2.0.12. Let f : A• → B• a map between complexes, the mapping
cone of f is the complex cone(f) defined as

cone(f)i :− Ai+1 ⊕Bi

with differentials

dif :−
(
−di+1

A 0
f i+1 diB

)
One can be easily check that this is actually a complex and using the

universal property of the direct sum that there exist two canonical maps

τ : B• → cone(f) and π : cone(f)→ A•[1]

that are respectively the inclusion and the projection level-wise. Moreover
both the composite A• → B• → cone(f) and B• → cone(f) → A•[1] are
homotopic to the respective trivial map.

Remark 2.0.13. We actually obtain something more

B• cone(f) A•[1]τ π

is a short exact sequence of complexes that gives rise to a long exact coho-
mology sequence

. . . Hi(B•) Hi(cone(f)) Hi+1(A•) Hi+1(B•) . . .
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where we used the canonical isomorphism Hi(A•[1]) ∼= Hi+1(A•).
Moreover, this give us the following property, f : A• → B• is a quasi-
isomorphism if and only if its mapping cone cone(f) is acyclic.

Remark 2.0.14. To justify the intuition of the mapping cone playing the
role of both kernel and cokernel we can consider the following case. Let
A• = A and B• = B complexes centered in degree zero and a map between
them f : A• → B•, then cone(f) is the complex

. . . 0 A B 0 . . .
f

hence, passing to the cohomology we recover exactly H0(cone(f)) = ker(f)
and H1(cone(f)) = coker(f)

Lemma 2.0.15. Given a commutative square in K(A), it can be completed
as following

A•
1 B•

1 cone(f1) A•
1[1]

A•
2 B•

2 cone(f2) A•
2[1]

u

f1

⟲ v

τ1

g

π1

u[1]

f2 τ2 π2

Proof. Let us denote the homotopy between the composites v ◦ f1 and f2 ◦ u
with hi : Ai

1 → Bi−1
2 , thus we have vi ◦ f i

1 − f i
2 ◦ ui = hi+1 ◦ di1 + di−1

2 ◦ hi.
Then we define the required map is given by gi : Ai+1

1 ⊕Bi
1 → Ai+1

2 ⊕Bi
2

gi :−
(
ui+1 0
hi+1 vi

)
It is then straightforward to check the commutativity.

Let us now prove the fundamental result for this construction

Lemma 2.0.16. Let f : A• → B• a morphism of complexes together with its
mapping cone, then there exists g : A•[1]→ cone(τ) that is an isomorphism
in K(A) making the following

B• cone(f) A•[1] B•[1]

B• cone(f) cone(τ) B•[1]

τ

idB•

π

idcone(f)

−f

g idB•[1]

τ ττ πτ

commutes in K(A).
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Proof. Since cone(τ)i = Bi+1 ⊕ cone(f)i = Bi+1 ⊕ Ai+1 ⊕ Bi, we define
g : A•[1] → cone(τ) by the universal property of the direct sum by the
maps gi := ⟨−f i+1, idAi , 0⟩. The inverse up to homotopy is the given by
taking the projection on the middle term, i.e. (g−1)i :− πAi+1 : cone(τ)i →
Ai+1. The homotopy between idcone(τ) and g ◦ g−1 is given by the maps
hi : Bi+1 ⊕ Ai+1 ⊕Bi → Bi ⊕ Ai ⊕Bi−1 defined as

hi :−

0 0 idBi

0 0 0
0 0 0


Now to check the commutativity of the diagram, we note that

A•[1] B•[1]

cone(τ) B•[1]

−f

g idB•[1]

πτ

commutes strictly in Ch(A) by definition of g. Then

cone(f) A•[1]

cone(τ)

π

ττ
g

commutes only up to homotopy, i.e. in K(A), by noticing that ττ ∼ g◦g−1◦ττ
and that g−1 ◦ ττ = π.

Proposition 2.0.17. Let f : A• → B• be a quis and g : C• → B• a
morphism, then there exists a commutative diagram in K(A)

C•
0 C•

A• B•

s

g

f

such that the morphism s is a quasi-isomorphism.

Proof. By Lemma 2.0.16 we obtain an isomorphism cone(τ) → A•[1] that
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fits in the commutative diagram

cone(τ ◦ g)[−1] C• cone(f) cone(τ ◦ g)

cone(τ)[−1] B• cone(f) cone(τ)

A• B• cone(f) A•[1]

σ

g

τ◦g

⟲ idcone(f)

∼= idB•

τ

idcone(f) ∼=

f τ π

the dashed arrows are obtained by applying Lemma 2.0.15 to the commuta-
tive square on top. The only thing to check is if σ is actually a quis. Passing
to the long exact cohomology sequence on the top row and using the fact
that f is a quis by hypothesis, hence its mapping cone cone(f) is acyclic, we
get that for each i ∈ Z

Hi(cone(τ ◦ g)[−1]) Hi(C•)
Hi(σ)

is an isomorphism. Thus σ is a quis and we define C•
0 :− cone(τ ◦ g)[−1].

Corollary 2.0.18. The composition of morphisms A• s←− C•
1

f−→ B• and

B• t←− C•
2

g−→ C• in the derived category D(A) is then defined as

cone(τt ◦ f)[−1]

A• C•

s◦σ

2.1 Derived categories are triangulated

We are now ready to define the triangulated structure on the derived cate-
gory D(A) (the construction we are giving will works also for the homotopy
category K(A)). As mention before the shift functor inherited by the one on
the category of complexes Ch(A) is the suspension functor on the derived
category. Let us then define the collection of distinguished triangles.

Definition 2.1.1. A triangle of the form

A•
1 B•

1 C•
1 A•

1[1]

is a distinguished triangle in D(A) (respectively in K(A)) if it is isomorphic
in D(A) (respectively in K(A)) to a triangle of the form

A• B• cone(f) A•[1]
f
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Remark 2.1.2. Even if in the homotopy category (and in the derived cate-
gory) distinguished triangles play the role of short exact sequences, one could
then be tempted to embed a short exact sequence 0→ A• → B• → C• → 0
into a distinguished triangle A• → B• → C• → A•[1], but this is not true in
general. For example, let us consider the short exact sequence

0 Z/2Z Z/4Z Z/2Z 0·2

we have then that Z/2Z Z/4Z Z/2Z Z/2Z[1]·2 must be

isomorphic to Z/2Z Z/4Z cone(·2) Z/2Z[1]·2 , so in par-

ticular must exists an isomorphism in K(A) between Z/2Z ∼= cone(·2), there
is no hope to find such isomorphism up to homotopy since the only to pos-
sible morphisms of complexes Z/2Z→ cone(·2) are either the trivial map or
the multiplication by 2 and the only possible morphism of complex in the
opposite direction is the trivial one.
This problem can be partially solved when we consider the category D(A),
i.e. we have a canonical way to embed a short exact sequence into a distin-
guished triangle. We can take a projective resolution of Z/2Z

P • : 0 Z/2Z Z Z/2Z 0·2 π

and, as we will show, there is an isomorphism HomD(A)(Z/2Z, C•) ∼= HomD(A)(P
•, C•)

where C• :− cone(·2). Now the following is a quis

P • : 0 Z/2Z Z Z/2Z 0

C• 0 0 Z/2Z Z/4Z 0

·2 π

π ·2

·2

So the required distinguished triangle is Z/2Z Z/4Z P • Z/2Z[1]·2 .

In this section we are going to verify that the above definition gives actu-
ally the required triangulated structure on the derived category, we will just
sketch the proof and refer for a fully detailed one to [GM03] IV. 2. The only
technical difficulty is the fact that we are dealing with morphism expressed as
span with the left leg a quis, moreover we are giving for granted the proof of
the triangulated structure on the homotopy category K(A), in this direction
Lemma 2.0.16 and Lemma 2.0.15 give essentially a proof for TR2 and TR3
respectively.
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Theorem 2.1.3. Let A be an abelian category, then the derived category
D(A) with the shift functor inherited by the category of complexes and the
collection of distinguished triangle in 2.1.1 is a triangulated category.

Proof. (Sketch of proof )
TR1
Considering a morphism f : A• → B• in D(A), i.e. a span of the form

A• s←− C• f ′
−→ B•, we can completed f ′ to a distinguished triangle

C• B• cone(f ′) C•[1]
f ′ g h

and then using that s is a isomorphism in D(A) we obtain the following
isomorphism of triangles

C• B• cone(f ′) C•[1]

A• B• cone(f ′) A•[1]

s

f ′

idB•

g

idcone(f ′)

h

s[1]

f g s[1]◦h

TR2
Given a distinguished triangle

A• B• C• A•[1]

A• B• cone(f) A•[1]

f

α ∼=

g

β ∼=

h

γ ∼= α[1] ∼=
f τ

then the following is the rotated distinguished triangle

B• C• A•[1] B•[1]

B• cone(f) cone(τ) B•[1]

g

β ∼=

h

γ ∼=

−f [1]

iA•[1]◦α ∼= β[1] ∼=
τ

TR3
Taking two distinguished triangles in D(A) with f, g in D(A) we have to find
a morphism h such that the following commutes

A•
1 A•

2 A•
3 A•

1[1]

B•
1 B•

2 B•
3 B•

1 [1]

f

u

g

v w

h f [1]

u′ v′ w′′
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This amounts to find a quis r and a morphism h′ in K(A) such that the
following commutes

C•
1 C•

2 C•
3 C•

1 [1]

A•
1 A•

2 A•
3 A•

1[1]

B•
1 B•

2 B•
3 B•

1 [1]

s

f ′

t

g′

r

h′

s[1]

f ′[1]

u′′ v′′ w′′

Up to replace conveniently C•
1 and C•

2 in such a way that the obtained spans
still represent the morphisms f and g respectively, we can ensure the existence
of a morphism u′′ : C•

1 → C•
2 making the front and the back square commute.

Now we can complete u′′ to a distinguished triangle

C•
1 C•

2 C•
3 C•

1 [1]
u′′ v′′ w′′

and use twice TR3 for the homotopy category K(A) to get both the required
morphisms h′ and r, where r is a quis since both s and t are.
TR4
Considering an upper cap in D(A)

A′ C

B

C ′ A

⋆

⋆

where the triangles decorated with a star are distinguished triangles and the
remaining ones are commutative, then considering each morphism appearing
above as a spans we can again modifying conveniently them (without chang-
ing the morphism represented) in order to find an isomorphism between the
cap above and a cap in K(A), i.e. isomorphisms of (distinguished) triangles
that preserves the structure. Using now TR4 in the homotopy category we
can complete the new upper cap to an octahedron and then extend its lower
cap to a lower cap in D(A).

Theorem 2.1.4. Let A an abelian category, then the functor defined in
2.0.10

QA : K(A)→ D(A)
is an exact functor of triangulated categories.
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The complexes we consider as objects of the categories K(A) and D(A)
were in general unbounded, but it is important to have a bounded version
of this categories. We now define and give a characterization of the derived
categories were objects are bounded complexes.

Definition 2.1.5. Let A be abelian, we denote Ch∗(A) where ∗ = b, +, −
for the category of complexes where objects are complexes respectively bounded,
bounded below or bounded above.
We denote K∗(A) for the homotopy category of Ch∗(A) and D∗(A) for the
localization at quasi-isomorphisms of K∗(A) where ∗ = b, +, −.

The categories are also K∗(A) and D∗(A) examples of triangulated sub-
categories. We will denote as well the functor QA : K∗(A)→ D∗(A).

Proposition 2.1.6. The inclusion functor D∗(A) → D(A), where ∗ =
b, +, −, defines an equivalence between D∗(A) and the full subcategory
of D(A) of complexes A• such that there exists k0 such that Hk(A•) = 0 for
|k| > k0, k < k0 and k > k0 respectively.

Proof. The proof essentially follows from the quasi-isomorphisms defined in
2.0.7, for example taking A• in D(A) such that there exists a finite m such
that Hk(A•) = 0 for k > m then we can consider the quis s : σ≤m(A

•)→ A•

where σ≤m(A
•) is in D−(A).

Lemma 2.1.7. Let A• be a complex in D(A) such that there exists a finite
m :− max{k ∈ Z | Hk(A•) ̸= 0}, then there exists a morphism in D(A)

φ : A• → Hm(A•)[−m]

such that Hm(φ) is isomorphic to the identity. Dually, if A• is a complex in
D(A) such that there exists a finite m :− min{k ∈ Z | Hk(A•) ̸= 0}, then
there exists a morphism in D(A)

ψ : Hm(A•)[−m]→ A•

such that Hm(φ) is isomorphic to the identity.

Proof. Let A• a complex as in the hypothesis and we have the quis s :
σ≤m(A

•) → A•, then we can define another morphism π : σ≤m(A
•) →

Hm(A•)[−m]

. . . Am−1 ker(dm) 0 . . .

. . . 0 ker(dm)/Im(dm−1) 0 . . .

dm−1

0 π 0
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The require morphism φ in the derived category is the represented by the
span

σ≤m(A
•)

A• Hm(A•)[−m]

πs

Now Hm(s) is an isomorphism and Hm(π) is the identity. The dual statement
is completely similar.

We conclude this section with a focus on the interaction between the
concept of abelian and triangulated categories. We have explained how, in
a loosely way, a distinguished triangle is a generalization of a short exact
sequence, although these two notions are competing, i.e. if a triangulated
category is in addition abelian then all short exact sequences must split. An
abelian category in which every short exact sequence split is called semi-
simple. For example the category of finite-dimensional k-vector spaces is
semi-simple, instead the category Ab is not semi-simple, e.g. consider the
not-splitting short exact sequence in 2.1.2.

Proposition 2.1.8. Let A be a triangulated category, if A is abelian then
it is semi-simple and any distinguished triangle is of the form

X Y ker(f)[1]⊕ coker(f) X[1]
f

Proof. Let 0→ X
f−→ Y

g−→ Z → 0 be an exact sequence in A, then it is easy
to check that f is a monomorphism and g is an epimorphism. By TR1 we
can complete f to a distinguished triangle

X Y C T (X)
f α β

And rotating it by TR2 we obtain

T−1(C) X Y C
T−1(β) f α

Since the triangle is again distinguished f ◦ T−1(β) = 0, but f is a mono,
hence T−1(β) = 0 and so β = 0. We obtained a distinguished triangle with
a trivial morphism then by 1.2.5 for the triangulated category D(A) the
triangle splits and in particular Y ∼= X ⊕ C.
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2.2 Derived Functors

An additive functor between abelian categories F : A → B can be naturally
extended to an additive functor between the respective categories of com-
plexes Ch(F ) : Ch(A)→ Ch(B), for the same reasons, F preserves homotopy
equivalences between chain maps so it can be extended as well to a functor be-
tween the homotopy categoriesK(F ) : K(A)→ K(B). Moreover F commutes

with the shift functor and F (cone(A• f−→ B•)) ∼= cone(F (A•)
F (f)−−→ F (B•)),

so F sends distinguished triangle in K(A) to distinguished triangles in K(B),
i.e. K(F ) is an exact functor of triangulated categories. All these assign-
ments are functorial and would then be natural to ask the functionality of
the assignment that sends a category of complexes of an abelian category into
its derived category. Unfortunately this does not happen in general, when
F is exact it easy to extend it to a functor D(A) → D(B), but many of the
functors we would like to consider, e.g. the hom-functor, the tensor product,
the global section functor and the direct image, are either just left or right
exact. Under the assumption of F being left (or right) exact we will be able
to define a functor between the derived categories D(A)→ D(B) which will
be called right (or left) derived functor.
All the results presented in this section have clearly a dual statement, for the
sake of readability we will discuss only one side of the story and will leave
the dualizing process to the careful reader.
In order to make precise this discussion we first prove some results that will
make calculations on the derived category easier, we give conditions that
allows to find an injective (respectively projective) resolution for objects in
the derived category and so to work with better-behave objects.

Definition 2.2.1. An abelian category A has enough injectives if for any
object A there exists an injective object I and a monomorphism A→ I
Dually, A has enough projectives if for any object A there exists a projective
object P and an epimorphism P → A

If A contains enough injectives any object A has an injective resolution.
Following almost the same strategy we can prove that a similar results holds
for an a complex in the homotopy category.

Proposition 2.2.2. Let A be an abelian category with enough injectives,
then for any complex A• in K+(A) there exists a complex of injectives I•

and a quasi-isomorphism A• → I•.

Proof. We construct the complex of injectives and the quasi-isomorphism
inductively. Since A• is bounded below we can assume, for simplicity, that
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Ai = 0 for i < 0. Since A has enough injectives, there exists an injective
object I0 and a monomorphism i0 : A0 → I0, we then construct the next
object of the complex by taking the following push-out square and apply the
same reasoning to I0

∐
A0 A1

0 A0 A1 . . .

0 I0 I0
∐

A0 A1

I1

i0

d0A

v1

u1

j1

where we define i1 :− j1 ◦ v1 and the differential d0I :− j1 ◦ u1. The inductive
step follows the same strategy of the zero step above with a small variant in
order to make sure that what we obtain is actually a complex. Given I i we
proceed as follows

Ai Ai+1

I i coker(diA) coker(diA)
∐
Ai+1 I i+1

diA

pii
vi+1

q ui+1 ji+1

where the morphism q : I i → coker(diA) is defined by the universal property
of I i, we then define di+1

I :− ji+1 ◦ ui+1 ◦ q and ii+1ji+1 ◦ vi+1. With this
definition is now clear that di+1

I ◦ diI = 0. To show that i : A• → I• is a
quis we use again induction. With the first step we defined a morphism of
complex

t0 : A
• → (· · · → 0→ I0 → 0→ . . . )

where Hk(t0) is a monomorphism by definition for k = 0 and it is trivial an
isomorphism for k < 0. Now, given the morphism

ti : A
• → (· · · → I i−1 → I i → 0→ . . . )

such that, by inductive hypothesis, Hk(ti) is a monomorphism for k = i and
an isomorphism for k < i, we have constructed I i+1 and the morphisms diI
and ii+1 such that for the resulting morphism

ti+1 : A
• → (· · · → I i−1 → I i → I i+1 → 0→ . . . )

holds Hk(ti+1) is a monomorphism for k = i + 1 and an isomorphism for
k < i+ 1.
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Lemma 2.2.3. Let A• and B• in K+(A) and consider q : A• → B• a quis,
then for any complex of injectives I• in K+(A) the induce map on the hom-set

HomK(A)(B
•, I•) HomK(A)(A

•, I•)
−◦q

is a natural isomorphism

As a direct consequence we obatin the following

Lemma 2.2.4. Let A•, I• in Ch+(A) where I• is a complex of injectives,
then the natural map

HomK(A)(A
•, I•)→ HomD(A)(A

•, I•)

is an isomorphism

Proof. The natural map send a morphism f : A• → I• in K(A) to the span

A• idA•←−− A• f−→ I• in D(A) is clearly injective. Now taking a morphism in
D(A) represented by the span

B•

A• I•

fq

it corresponds, by Lemma 2.2.3, to a unique morphism g : A• → I• such that
g ◦ q ∼ f , i.e. that fills the diagram up to homotopy.

Let us consider now the full additive subcategories I of A of injectives ob-
jects, we can now define, following the same procedure, its homotopy category
K∗(I) that is again a triangulated category. Dually we consider the category
K∗(P), where P is the full additive subcategory of A of projectives objects.
We obtain two obvious functor ι : K+(I)→ D+(A) and π : K−(P)→ D−(A)
given by composing the functor Q∗

A with the inclusions of the homotopy cat-
egories of complexes of injectives and projectives respectively. We can now
prove the fundamental theorem that allow us the define derived functors.

Theorem 2.2.5. If A has enough injectives then the functor

ι : K+(I)→ D+(A)

is an equivalence of categories.
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Proof. Let us firstly note that ι is an exact functor of triangulated categories
since is the composite of two exact functors. We then need to show that the
action of the functor on morphisms

HomK+(I)(I
•, J•)→ HomD+(A)(I

•, J•)

is an isomorphism. But this is exactly what we proved in Lemma 2.2.4. By
Proposition 2.2.2, for any complex A• in K+(A), hence for any complex in
D(A), there exists a quis to into a complex of injectives q : A• → I•, but
this gives an isomorphism in the bounded derived category between A• and
a bounded below complex of injectives, thus ι is essentially surjective.

As noted above, if a functor between abelian categories F : A → B is
exact, then we can define in a functorial way an exact functor (of triangulated
categories) between the derived categories D(A)→ D(B). Moreover, consider
a generic exact functor of triangulated categories G : K∗(A) → K∗(B), not
necessarily coming from a functor between the abelian categories, it can be
extended to an exact functor of triangulated categories D∗(A) → D∗(B) if
either sends quis to quis, using the universal properties of D∗(A)

K∗(A) K∗(B) D∗(B)

D∗(A)
QA

G QB

Alternatively the same result holds if the functor G sends acyclic complexes
to acyclic complex, since an acyclic complex A• in K∗(A) is quasi-isomorphic
to the zero complex, then, in order to obtain the required extension, it must
be sent by G to a trivial complex in D∗(B) i.e. to an acyclic one. Let us
collect these results in a Proposition.

Proposition 2.2.6. Let G : K∗(A) → K∗(B) be an exact functor of trian-
gulated categories, then if one of the following conditions holds

i) G map quasi-isomorphisms to quasi-isomorphisms.

ii) If A• in K∗(A) is acyclic, then G(A•) is acyclic in K(B).

G induces an exact functor between the derived categories that fits in the
following commutative diagram

K∗(A) K∗(B)

D∗(A) D∗(B)

G

QA QB
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Let now take a left exact functor between abelian categories F : A → B
then the functor obtained by applying point-wise F to the complex of injec-
tives, induced an exact functor of triangulated category K(F ) : K+(IA) →
K+(B).

Definition 2.2.7. Let A an abelian category with enough injectives and
F : A → B a left exact functor, we define the right derived functor to be the
composite

RF :− QB ◦ K(F ) ◦ ι−1 : D+(A)→ D+(B)

given by

K(IA) K∗(A) K∗(B)

D∗(A) D∗(B)

ι

K+(F )

QA QB

RF

ι−1

where ι−1 is the weak inverse of the equivalence defined in 2.2.5.

The right derived functor is clearly exact functor of triangulated cate-
gories since QB and K(F ) are exact, and ι−1 is the weak inverse of an exact
functor, thus exact as well. Hence RF is the composite of three exact func-
tors. Dually if we start with a right exact functor F : A → B, where A
enough projectives, we can define in a completely similar manner, the left
derived functor of F denoted with LF : D−(A)→ D−(B).

Definition 2.2.8. Let F : A → B a left exact funcor and RF : D+(A) →
D+(B) its right derived functor, we can define the classical (or higher) derived
functor by

RiF (A•) = Hi(RF (A•))

for A• in D+(A).

Remark 2.2.9. If we consider the induced functor at the level of the abelian
categories we obtain the classical derived functors

RiF : A → B

that sends A in A into Ri(A) = Hi(RF (A)) = Hi(F (I•)) where A→ I• is an
injective resolution. Moreover a short exact sequence 0→ A→ B → C → 0
in A yields a long exact sequence in B

· · · → RiF (A)→ RiF (B)→ RiF (C)→ Ri+1F (A)→ Ri+1F (B)→ . . .
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It is natural then to ask how the functorial construction we made behaves
with composition, what we expect would be a relation of the form

R(G ◦ F ) ∼= RG ◦RF

This does not happen straightforward, the problem is that some left exact
functors do not take injectives to injectives, but this can be fixed by enlarge
the class to objects acyclic for the two composable functors respectively.

Example 2.2.10. Let X, Y and Z noetherian schemes and X
f−→ Y

g−→
Z morphisms between them. Considering the abelian category of quasi-
coherent sheaves and the push-forward functors given by f and g, we know
that g∗ ◦ f∗ ∼= (g ◦ f)∗, but f∗ dose not take injectives to injectives. Thus
without any other assumption we cannot compose K(g∗) and K(f∗) since
the latter has codomain K(QCoh(Y )) and cannot be restricted in general to
K(IY ).

Definition 2.2.11. Given a left exact functor F : A → B, an object A in A
is F -acyclic if RiF (A) = 0 for i > 0.

Definition 2.2.12. Let F : A → B a left exact functor then a class of object
IF ⊂ A is called F -adapted if the following conditions are satisfied

i) It is closed under direct sums.

ii) If A• in K+(A) is acyclic with Ai in IF for all i, then F (A•) is acyclic.

iii) Any object of A can be embedded in an object of the adapted class IF .

Remark 2.2.13. Given a left exact functor F : A → B and its adapted
class IF , the localization K+(IF )→ D+(A) by inverting quasi-isomorphisms
is then an equivalence of categories by condition (iii) of 2.2.12. Moreover,
taking a quis f of complexes with elements in I, its mapping cone is again in
K(IF ) by condition (i), thus cone(f) is acyclic and is mapped by F into an
acyclic complex by condition (ii). This then ensures that quasi-isomorphism
are mapped by F into quasi-isomorphism and allows us to define the right
derived functor in a completely similar way with the respect to the F -adapted
class.
The adapted class are a fruitful extension of the class of injectives, if we make
the assumption of Definition 2.2.7, i.e. that A contains enough injectives, we
obtain that the class of injective objects IA is F -adapted for any left exact
functor F , and even further throwing inside IA all the F -acyclic objects
yields to a larger F -adapted class.
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We can now make precise the discussion above on the composition of
derived functors.

Theorem 2.2.14. Let F : A → B and G : B → C two left exact functors
between abelian categories. If there exist adapted classes IF ⊂ A and IG ⊂ B
respectively for F and G, such that F (IF ) ⊂ IG, then the right derived
functor R(G◦F ) : D+(A)→ D+(B) exists and there is a natural isomorphism

R(G ◦ F ) ∼= RG ◦RF

Proof. By Remark 2.2.13, both derived functors RF : D+(A)→ D+(B) and
RG : D+(B)→ D+(C) are well defined, the hypothesis F (IF ) ⊂ IG ensures,
for the same reasons, that also the right derived functor of the composition
R(G ◦ F ) : D+(A) → D+(C) is well defined. The natural morphism α :
R(G ◦ F ) ⇒ RG ◦ RF comes from the universal property of the derived
functor

K+(IF ) K+(C)

K+(IG)

D+(B)

D+(A) D+(C)

K(F )

K(G◦F )

∼=

QC

K(G)

ιG

RG

⇑

R(G◦F )

ιF

RF

(2.1)

Then for a complex A• in D+(A) there exists a quis A• → I•, where
I• is a complex in K+(IF ), such that RF (A•) ∼= K(F )(I•), then since IF
is ad adapted class also for the composition G ◦ F , we calculate as well
R(G ◦ F )(A•) ∼= K(G ◦ F )(I•). Now αA• : K(G ◦ F )(I•) → RG(RF (A•)),
but RG(RF (A•)) ∼= RG(K(F )(I•)) ∼= K(G)(K(F )(I•)), where the last iso-
morphism hols since K(F )(I•) is in K+(IG). Thus αA• : K(G ◦ F )(I•) →
K(G)(K(F )(I•)) is exactly the isomorphism in (2.1).

If it is required an explicit calculation of the composite of two derived
functor there exists a spectral sequence that compute the value R(G◦F )(A•).
We defer this discussion to Appendix A.

We conclude this section focusing on the connection between the extension
classes and the morphisms in the derived category.
Let A be an abelian category with enough injective then the hom-functor
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HomA(A,−) : A → Ab for any A in A is a left exact functor and we can
define its higher right derived functor as

Exti(A,−) :− Hi ◦RHom(A,−)

As explained in [Căl05], considering a short exact sequence in A

0→ A→ B → C → 0

thought of as B an extension of C by A, we can construct the following span

. . . 0 C . . . C

. . . A B . . . F •

. . . A 0 . . . A[1]

f

idA

g s

h

where s is a quis, hence what we obtained is a morphism C → A[1] in the
derived category, this gives the relation

Ext1(C,A) ∼= HomD(A)(C,A[1])

We can generalize this construction to extension classes of any length in the
following statement.

Proposition 2.2.15. Let A an abelian category with enough injectives, then
there exists a natural isomorphism

Exti(A,B) ∼= HomD(A)(A,B[i])

where A and B are considered as complexes concentrated in zero.

Proof. Consider an element in Exti(A,B) as an extension of length i of A by
B

· · · → 0→ B
fi−→ Ci−1 → · · · → C0

f0−→ A→ 0→ . . .

then we can construct the following

. . . 0 0 . . . A . . . A

. . . B Ci−1 . . . C0 . . . C̄•

. . . B 0 . . . 0 . . . B[i]

fi

idB

f0 s

h
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where the morphism s is a quis, hence we obtain an element of HomD(A)(A,B[i]).
The assignment is actually an isomorphism and we refer to [Ver96] Chapter
3 Proposition 3.2.2 for a proof of this technical properties.

Under the assumption that A contains enough injectives we can gener-
alized the above discussion to any element of the derived category. We can
define the functor

Hom•(A•,−) : K+(A) −→ K(Ab)

B• 7→ Hom•(A•, B•)

where Hom•(A•, B•) has a natural structure of complex given by

Homi(A•, B•) :−
⊕
k

Hom(Ak, Bk+i)

with differentials

di(fk) :− dk+1
B ◦ fk + (−1)ifk+1 ◦ dkA

thus we can define the corresponding derived functor

RHom•(A•,−) : D+(A)→ D(Ab)

and the higher derived functor

Exti(A•, B•) :− Hi ◦RHom•(A•, B•)

Remark 2.2.16. It is easy to extend the argument in 2.2.15 when we are
working with general complex and not just with complex concentrated in
degree zero, and thus obtain that the relation holds in this more general case

Exti(A•, B•) ∼= HomD(A)(A
•, B•[i])

2.3 Derived Category of Coherent Sheaves

We now present the derived category we are interested to work in, the
bounded derived category of coherent sheaves D(Coh(X)) for X a scheme.
The fundamental idea that lead us to the construction of derived category is
that we would like to replace a coherent sheaves with an injective resolution,
here arise the first problems, usually the category of coherent sheaves does
not contain non-trivial injective object (Example ?? ) and where they exists
the injective resolutions are rarely bounded. For these reasons usually we
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are force to work in bigger abelian as the category of quasi-coherent sheaves
QCoh(X).
Let us briefly recall the definition of coherent and quasi-coherent sheaves, we
will just state some properties, for a more detailed presentation of the topic
we recommend standard literature as [Har66] and [Har77].

Definition 2.3.1. Let X be a scheme, a sheaf F of OX-modules is quasi-
coherent if for each x ∈ X there exists an open U such that the sequence

O|⊕I
U O|⊕J

U F|U 0

is exact, where I and J are possibly infinite sets of indices.

Remark 2.3.2. An equivalent definition for a quasi-coherent sheaf F is ask
that for every affine open U ⊂ X

F|U ∼= M̃

for some OX(U)-module M .
This concept can be seen as the sheaf-theoretic notion of a modules and look
at the exact sequence as a presentation of the module F|U where I represents
the relations and J the generators.

Requiring additionally the sets of indices to be finite we obtain the fol-
lowing notion.

Definition 2.3.3. Let X be a scheme, a sheaf F of OX-modules is coherent
if locally is a finitely generated OX-module, i.e. for each x ∈ X there exists
an open U such that the sequence

O|nU F|U 0

is exact, where n is a natural number.

We can arrange these collections of objects into categories. We call the full
subcategories of OX-Mod spanned by coherent and quasi-coherent sheaves
Coh(X) and QCoh(X) respectively. Those are clearly abelian categories and
it is trivial to note that Coh(X) ⊂ QCoh(X).
When X = Spec(R) is an affine scheme quasi-coherent sheaves and coherent
sheaves corresponds, via tilde construction B.2.2, to R-module and finitely
generated R-module respectively.

Lemma 2.3.4. Let X be a scheme and 0 → F → F ′′ → F ′ → 0 a short
exact sequence in QCoh(X). If two of the sheaves are coherent, so is the
third one.
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Notation 2.3.5. Let X be a scheme, we denote the bounded derived cate-
gory of coherent sheaves as Db(X) :− Db(Coh(X)).

The general setting where we are working in can be expressed as follows.

Definition 2.3.6. Let A a full abelian subcategory of the abelian category
B, then A is a thick subcategories if it is closed under subobjects, quotients
and extensions, i.e. if for any short exact sequence in B

0→M →M ′′ →M ′ → 0

M ′′ is in A if and only if M,M ′ are in A.

Proposition 2.3.7. LetA a thick subcategory of B. Suppose that any object
A in A can be embedded in an object A′ in A which is injective as an object
in B, then the functor induced by the inclusion D+(A)→ D+(B) induces an
equivalence between D+(A) and D+

A(B) the full triangulated subcategory of
D+(B) of complexes with cohomology in A.

Proof. A fully detailed proof can be founded in [GM03].

We will be mostly interested assuming X a smooth projective variety,
thus the results in this section will be stated in the more general case where
X is a noetherian scheme.

Proposition 2.3.8. Let X a noetherian scheme then QCoh(X) has enough
injectives. Moreover any quasi-coherent sheaf F admits a resolution F → I•
by quasi-coherent sheaves I i which are injectives as object in OX-Mod.

By the above Proposition the derived category of quasi-coherent sheaves
QCoh(X) satisfies the hypothesis of 2.3.7, hence we obtain the following
equivalence.

Proposition 2.3.9. Let X a noetherian scheme, then the inclusion functor
induces an equivalence

D+(QCoh(X)) D+
qcoh(OX-Mod)

∼=

We cannot apply similarly 2.3.7 when we restrict to the category of coher-
ent sheaves. Even if Coh(X) is a thick subcategory, it has too few injectives,
however we can prove a similar result
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Proposition 2.3.10. Let X be a noetherian scheme, then the natural in-
clusion functor D(X)→ D(QCoh(X)) induces an equivalence

Db(X) Db
coh(QCoh(X))

∼=

between the derived bounded category of coherent sheaves and Db
coh(QCoh(X))

the full triangulated subcategory of bounded complexes of quasi-coherent
sheaves with coherent cohomology.

Proof. The proof is based on the fact that for a noetherian scheme and a sur-
jection f : G ↠ F of a quasi-coherent sheaf G into a coherent sheaf F , there
exists a sub-presheaf G ′ of G which is coherent and such that the restriction
G ′ ↠ F ′ remains surjective. This can be verified locally, since quasi-coherent
and coherent sheaves corresponds to module and finitely generated module
respectively and the statement holds in R-Mod.
Taking then a bounded complex of quasi-coherent sheaves G• with coherent
cohomology, we will produce a coherent sheaf which is quasi-isomorphic to the
first one by induction. Since G• is bounded existm such that Gm = ker(dm) ∼=
Hm(G•) which is then coherent. Let thus assume that there exists j such
that Gi is coherent for i > j. We have two sujections dj : Gj ↠ Im(dj) and
ker(dj) ↠ Hj(G•), so by the above discussion there exist two sub-presheaves
Gj1 ⊂ Gj and Gj2 ⊂ ker(dj) ⊂ Gj which are coherent, then let us call Ḡj the
coherent sheaves generated by Gj1 and Gj2 and Ḡj−1 to be the pre-image of Ḡj
under dj−1. Hence the resulting complex Ḡ• is such that Ḡi is coherent for
i ≥ j, and the inclusion Ḡ• ↪→ G•

. . . Ḡj−1 Ḡj Gj . . .

. . . Gj−1 Gj Gj+1 . . .

dj

dj−i dj

is a quis by construction.

2.4 Serre Duality

One of the main reason of the of the introduction of the derived category by
Grothendieck and Verdier was the possibility to generalize the Serre duality,
and following their philosophy Bondal and Kapranov in [BK90] generalize
further this concept giving the definition of Serre funcort 1.1.16.
Considering then a smooth projective variety X over a field, the fundamental
object of this construction is the canonical sheaf ωX which is actually the
object that realizes the duality.
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Definition 2.4.1. Let X be a smooth projective variety of dimension n, we
define the exact functor SX as the composition

D∗(X) D∗(X) D∗(X)
ωX⊗− [n]

for ∗ = +,−, b.

Not surprisingly we will call SX the Serre functor of X, the sense of this
notation is explained by the following result.

Theorem 2.4.2 (Serre Duality). Let X be a smooth projective variety over
a field k, then the functor SX : Db(X)→ Db(X) is a Serre functor in the sense
of definition 1.1.16, i.e. for any E ,F in Db(X) there exist an isomorphism
natural in both arguments

ηE,F : HomDb(X)(E ,F)
∼−→ HomDb(X)(F , E ⊗ ωX)

∗
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Chapter 3

Bondal-Orlov Reconstruction
Theorem

3.1 Point like and Invertible objects

Let us define two import classes of objects that generalize skyscraper sheaves
and invertible sheaves respectively, these objects will play a fundamental role
in the reconstruction of the variety. Before giving these definition let us
discuss one important feature of the classes of object we want generalize:

Definition 3.1.1. A collection Ω of objects in a triangulated category D is
a spanning class of D if for all B ∈ D the following two condition holds

i) if Hom(A,B[i]) = 0 for all A ∈ Ω and i ∈ Z, then B ∼= 0

ii) if Hom(B[i], A) = 0 for all A ∈ Ω and i ∈ Z, then B ∼= 0

Remark 3.1.2. If we are working with a triangulated category endowed with
a Serre functor, using the isomorphism Hom(A,B)→ Hom(B, SA)∗ and the
essential surjectivity of S, we get that the two conditions are equivalent.

In the following esposition we will denote the residue field of the local
ring at a point x of a scheme X as k(x) :− OX,x/mx

Proposition 3.1.3. Let X a smooth projective variety, then the skyscraper
sheaves k(x) at a closed points of of X, form a spanning class for Db(X).

Proof. For the previous remark, it is enough to prove that for any non triv-
ial F• ∈ Db(X) there exist a closed point x ∈ X and i ∈ Z such that
Hom(F•, k(x)[i]) ̸= 0. We use the spectral sequences (A.5)

Ep,q
2 :− Hom(H−q(F•), k(x)[p])⇒ Hom(F•, k(x)[p+ q])

49
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Since F• ̸= 0 we can consider m := max{k ∈ Z | Hk(F•) ̸= 0}. Then the
differentials in the spectral sequence d0,−m

r : E0,−m
r → Er,−m−r+1

r are trivial
as their targets are trivial in each page. Moreover, as negative Ext groups
between coherent sheaves are trivial, for p < 0 we obtain

0 = Extp(H−q(F•), k(x)) ∼= Hom(H−q(F•), k(x)[p]) = Ep,q
2

hence d−r,−m+r−1
r : E−r,−m+r−1

r → E0,−m
r are trivial as well, since their do-

mains are trivial. Thus the objects of the form E0,m
2 stabilize after page 2

i.e. E0,m
2
∼= E0,m

∞ . Summarizing, for each x ∈ suppHm(F•)

E0,−m
2 = Hom(Hm(F•), k(x)) ̸= 0

so by the spectral sequence we obtain exactly H(F•, k(x)[−m]) ̸= 0.

Definition 3.1.4. A sequence of objects Li with i ∈ Z in a k-linear abelian
category A is called ample if for any objects A ∈ A there exist i0 (depending
on A) such that for any i < i0 the following hold

i) the natural morphism Hom(Li, A)⊗k Li → A is surjective

ii) Hom(Li, A[j]) = 0 for j ̸= 0

iii) Hom(A,Li) = 0

Remark 3.1.5. The tensor product in the above definition worth a comment.
In order define it we will either assume that HomA(L,A) is a finite dimension
k-vector space or thatA has arbitrary direct coproducts. In a k-linear abelian
category, i.e. an abelian category enriched over the closed monoidal category
k-Vect, the tensor (copower) between an object V of k-Vect and L ∈ A is
the object V ⊗ L ∈ A with the natural isomorphism

HomA(V ⊗ L,G) ∼= Homk-Vect(V,HomA(L,G))

More concretely we can think of V ⊗ L as⊕
vi

L

where vi are elements of the basis of V . Since we are going to work with the
category Coh(X) with X smooth projective variety, HomCoh(X)(−,−) will be
finite dimension k-vector spaces

Proposition 3.1.6. Let Li with i ∈ Z an ample sequence in a k−linear
abelian category A of finite homological dimension, then the objects of the
ample sequence form a spanning class for Db(A).
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Proposition 3.1.7. Let X a smooth projective variety over a filed k and
let L be an ample line bundle on X, then the powers Li with i ∈ Z form an
ample sequence in the abelian category Coh(X)

Proof. By definition B.1.2 L is ample if for any coherent sheaf F there exists
n0 such that for n ≥ n0 F ⊗Ln is generated by global section, meaning that
the map in (iv) of B.1.3

H0(X,F ⊗ Ln)⊗OX → F ⊗Ln (3.1)

is surjective. Using that H0(X,F⊗Ln) ∼= Hom(OX ,F⊗Ln) ∼= Hom(L−n,F)
and tensoring (3.1) with L−n we obtain a surjective map

Hom(L−n,F)⊗ L−n → F

and this holds for each n ≥ n0, hence for i0 :− −n0 this fulfills the condition
(i).
Let now j ̸= 0, then

Hom(L−n,F [j]) ∼= H0(X,F [j]⊗ Ln)

∼= H0(X, (F ⊗ Ln)[j])

∼= Hj(X,F ⊗ Ln)

But by Serre vanishing theorem B.1.7, Hj(X,F ⊗ Ln) = 0 for j > 0 and
n > n0. This proves condition (ii).

Again for F coherent, it follows straightforward from Serre duality and
Lemma 3.2.3

Hom(F ,Li) ∼= Hom(F ⊗ L−i,OX)

∼= Hom(OX , (F ⊗ L−i ⊗ ωX)[n])

∼= H0(X, (F ⊗ L−i ⊗ ωX)[n])
∗

∼= Hn(X,F ⊗ L−i ⊗ ωX)
∗

where the latter term is trivial again by B.1.7, this proves (iii).

Since we are working with the category of coherent sheaves on a projective
varieties, by taking two coherent sheaves and apply the Serre duality we get

Exti(F ,G) ∼= Exti−n(F ,G ⊗ ωX)
∗

that is trivial for i− n < 0, hence Exti(F ,G) = 0 for i > n, that means the
homological dimension of Coh(X) is n. Hence Proposition 3.1.6 does apply
to our case, giving us the expected spanning class.
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Definition 3.1.8. Let D a k−linear triangulated category with Serre functor
S, an object P ∈ D is called point like of codimension d if

i) S(P ) ∼= P [d]

ii) Hom(P, P [i]) = 0 for i < 0

iii) k(P ) :− Hom(P, P ) is a field

An object P that satisfies the property (iii) is called simple. Moreover is
worth to recall that, since we are assuming all Hom’s are finite dimensional
k−vector spaces, k(P ) is a finite extension of k, hence if k is algebraically
closed k(P ) is just k.

Remark 3.1.9. Let X a variety with trivial canonical sheaf ωX
∼= OX , e.g.

if X is an abelian variety, any simple sheaf is a point like object.

We are now ready to define a generalization of line bundles that live in
the derived category.

Definition 3.1.10. Let D a k-linear triangulated category with a Serre func-
tor S, an object L is called invertible if for any point like object P ∈ D there
exist a nP ∈ Z, depending on P and L, such that

Hom(L, P [i]) =

{
k(P ) if i = nP

0 otherwise

It is important to point out that in the case of a smooth projective variety
with ample or anti-ample canonical sheaf, point like and invertible objects
have a nice (as we could expect) characterization.

Proposition 3.1.11. Let X a smooth projective variety with ωX ample or
anti-ample, then the point like objects in Db(X) are isomorphic to k(x)[m]
with x ∈ X a closed point and m ∈ Z

Proof. Taking k(x)[m] as in the statement, the conditions (i)-(iii) are trivially
fulfilled since

(ωX ⊗ k(x)[m])[n] ∼= k(x)[m+ n]

Hom(k(x)[m], k(x)[m+ i]) = 0

since the skyscraper sheaf is supported in one point, and

Hom(k(x)[m], k(x)[m])
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has a natural structure of a field.
For the other direction we will need the ampleness hypothesis. Let P ∈
Db(X) a point like object, i.e the condition (i)-(iii) in defined in 3.1.8 hold.
By (i) (P ⊗ ωX)[n] ∼= P [d] then (P ⊗ ωX)[n − d] ∼= P and iterating this
isomorphism we get P ∼= (P ⊗ ωk

X)[(n − d)k] for any k, but P must be a
bounded complex, so the only way this can be satisfied is for n = d.
Moreover, considering the cohomology of the complex P , we have the follow-
ing

Hi(P ) ∼= Hi(P )⊗ ωX (3.2)

We now claim that by (anti)-ampleness of ωX the support of Hi(P ) is a
collection of closed isolated points {xj | j ∈ J}.
Iterating (3.2) we obtain Hi(P ) ∼= Hi(P ) ⊗ ωk

X , then for a large enough k
Hi(P ) is generated by global sections. Hence Hi(P ) can be decomposed as

Hi(P ) ∼=
⊕
j∈J

Gj

where each Gj has support of every cohomology sheaves on a single point xj.
This is a contradiction because by (iii) P is indecomposable, since if it was
decomposable so would be Hom(P, P ) = k(P ), thus Hi(P ) has its support
concentrated only in one closed point.
Let us consider the Kunneth spectral sequence that compute Extm(P, P )

Ep,q
2 =

⊕
k−j=q

Extp(Hj(P ),Hk(P ))⇒ Extp+q(P, P )

and let us recall that for any two sheaves of finite length having their sup-
port in the same single closed point, there exists a non trivial morphism
between them. Considering Extm(Hj(P ),Hk(P )) with minimal k − j such
that E0,k−j

2 =
⊕

k−j=q Hom(Hj(P ),Hk(P )) ̸= 0, by Hom(Hj(P ),Hk(P )) ̸= 0
we get that k − j ≤ 0.
Moreover E0,k−j

2 stabilizes in the spectral sequence i.e. E0,k−j
2

∼= E0,k−j
∞ .

Hence Extk−j(P, P ) ̸= 0, so by (iii) we obtain exactly k− j = 0. This means
that all but one (precisely the one for k = j) cohomology sheaves are trivial.
Finally (iii) implies that P is a skyscraper sheaf at the closed point x (that
is the only point in the support).

Proposition 3.1.12. Let X a smooth projective variety with ωX ample or
anti-ample, then the invertible objects in Db(X) are L[m] where L is a line
bundle on X and m ∈ Z
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Proof. Let L an invertible object in Db(X), i.e.

Exti(L, P ) ∼= Hom(L, P [i]) =

{
k(x) i = nP

0 otherwise
(3.3)

where np is an integer depending on P . Let us fix m := max{k | Hk(L) ̸= 0},
then by Lemma 2.1 there exists a natural morphism in Db(X)

φ : L→ Hm(L)[−m]

such that Hm(φ) is the identity, so it is enough to show that Hm(L) is a line
bundle.
Considering now a point x0 ∈ suppHm(L), we have a natural non trivial map
Hm(L)→ k(x0), hence

0 ̸= Hom(Hm(L), k(x0)) ∼= Hom(L[m], k(x0))
∼= Hom(L, k(x0)[−m])

Thus, by (3.3), nk(x0) :− −m, recalling that skyscraper sheaves are always
point like objects. Taking the spectral sequence (A.5)

Ep,q
2 = Hom(H−q(L), k(x0)[p])⇒ Hom(L, k(x0)[p+ q])

we can notice that by hypothesis Hom(L, k(x0)[1+nk(x0)]) = 0, and E1,−m
2 =

Hom(Hm(L), k(x0)[1]) stabilizes, since every morphism with source Ep,−m
2 is

trivial. Hence by the spectral sequence

Ext1(Hm(L), k(x0)) = Hom(Hm(L), k(x0)[1]) = 0

To prove that Hm(L) is free we are going to use the following lemma from
commutative algebra

Any finite module M over an arbitrary noetherian local ring (A,m) such
that Ext1A(M,A/m) = 0, is free.

We cannot apply the lemma just like that, first we need to use the local-
to-global Ext spectral sequence in A.0.16

Ep,q
2 = Hp(X, Extq(Hm(L), k(x0)))⇒ Extp+q(Hm(L), k(x0))

in order to transfer the vanish property from Ext1(Hm(L), k(x0)) to Extq(Hm(L), k(x0)).
Now, since the skyscraper k(x0) is concentrated in x0, so it is Ext0(Hm(L), k(x0)).
Hence E2,0

2 = H2(X, Ext0(Hm(L), k(x0))) = 0, but this is the target of
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the differential d0,12 : E0,1
2 → E2,0

2 , thus E0,1
2
∼= E0,1

∞ stabilizes. Now by
Ext1(Hm(L), k(x0)) = 0 applying the local-to-global spectral sequence we
obtain

0 = E0,1
2 = H0(X, Ext1(Hm(L), k(x0))) = Γ(X, Ext1(Hm(L), k(x0)))

For the same reason as above Ext1(Hm(L), k(x0)) is concentrated in x0 as
well, so in particular is globally generated, but as its global section are trivial,
so it must be i.e. Ext1(Hm(L), k(x0)) = 0.
We can finally apply the Lemma and obtain that Hm(L) is free in x0 ∈ X
as OX,x0-module. By assumption X is irreducible, hence supp(Hm(L)) must
coincide with X. Then for any x ∈ X we have a non trivial map Hm(L) →
k(x), so as above

0 ̸= Hom(Hm(L), k(x)) ∼= Hom(L, k(x0)[−m])

Since L is an invertible object nk(x) = −m does not depend on k(x) anymore,
moreover

k(x) = Hom(Hm(L), k(x))

which means that the stalks of Hm(L) are of dimension one.
Conversely, we now show that L[m] with L line bundle and m ∈ Z is an

invertible object. Here we need the ampleness assumption in order to apply
3.1.11 and consider point like object P ∼= k(x)[n] for some integer n. Then

Hom(L[m], P [i]) ∼= Hom(L[m], k(x)[n+ i])
∼= Hom(L, k(x)[n+ i−m])
∼= Hom(OX , L

∗ ⊗ k(x)[n+ i−m])
∼= Hom(OX , k(x)[n+ i−m])

∼= H0(X, k(x)[n+ i−m])

∼= Hn+i−m(X, k(x))

where the last there is k(x) = k(P ) when i = m − n and 0 otherwise. So it
is enough to take iP :− m− n.

3.2 The Bondal-Orlov Theorem

Lemma 3.2.1. Let X and Y two smooth projective variety over a field k, if
there exists an equivalence between their derived categories

F : Db(X)
≃−→ Db(Y )
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then
dim(X) = dim(Y )

and their canonical bundle ωX and ωY are of the same order.

Proof. For a detailed proof of this result we refer to [Huy06].

Lemma 3.2.2. Let X a smooth projective variety and L an ample invertible
sheaf, then

X ∼= Proj(
⊕
m≥0

H0(X,L⊗mk))

Proof. Let us first fix some notation, Pn = Proj(S) where S :=
⊕

m H0(Pn,O(m)),
and RL⊗k :−

⊕
m H0(X,L⊗mk). By B.1.5 there exists k > 0 such that L⊗k

is very ample i.e. the corresponding ι : X → Pn is a closed immersion with
L⊗k ∼= ι∗(O(1)). Consider then IX the ideal sheaf of X in Pn this gives rise
to the following short exact sequence

0 IX OPn L⊗k 0 (3.4)

that is obtained by applying the ˜(−) functor, defined in B.2.5, to

0 IX S M 0

with M = S/IX . Then applying −⊗OPn(m) to (3.4), the sequence remains
exact, since we are tensoring with a locally free module that is in particular
flat

0 IX ⊗OPn(m) OPn(m) L⊗mk 0

that naturally extend to

0
⊕
m

IX ⊗OPn(m)
⊕
m

OPn(m)
⊕
m

L⊗mk 0

Finally taking the global section functor Γ that is only left exact

0 Γ∗(IX) S RL⊗k . . .

and moreover

0 S/Γ∗(IX) RL⊗k . . .

X is a closed subscheme, so it arises as Proj(S/Γ∗(IX)), by B.1.7 Hi(X, IX⊗
OPn(m)) = 0 for i > 0 and m >> 0, thus we have isomorphisms in the
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higher graded parts of these modules, by [Sta23] section 27.11, this provides
the required isomorphism

Proj(S/Γ∗(IX)) ∼= Proj(RL⊗k)

Lemma 3.2.3. Let X a scheme, then for any F ∈ OX-Mod

H0(X,F) = Γ(X,F) ∼= Hom(OX ,F)

Theorem 3.2.4 (Bondal-Orlov). Let X be a smooth projective variety
with ample or anti-ample canonical sheaf. If there exists an exact equivalence
F : Db(X)

≃−→ Db(Y ) for Y a smooth projective variety, then X is isomorphic
to Y

It is worth to note that this result is more general than a reconstruction
theorem for smooth projective variety with ample or anti-ample canonical
bundle, since we are not assuming any positivity on the canonical sheaf of
Y , in fact this property will descend just from the equivalence between their
derived categories.

Proof. The proof will be composed by various steps, but the idea behind it
is quite simple and geometric.

Step 1. Let us assume, for the moment, that OX and OY are equivalent under
F , i.e. F (OX) = OY . Since an equivalence commute with both the
Serre functor and the shift functor and by 3.2.1 dim(X) = dim(Y ),
using the trivial ωX = SX(OX)[−n] we get

F (ωk
X) = F (Sk

X(OX)[−kn]) ∼= Sk
Y (F (OX))[−kn] ∼=

∼= Sk
Y (OY )[−kn] ∼= ωk

Y

Using now the fully-faithfulness of F and Lemma 3.2.3

H0(X,ωk
X)
∼= Hom(OX , ω

k
X)
∼= Hom(F (OX), F (ω

k
X))
∼=

∼= Hom(OY , ω
k
Y )
∼= H0(Y, ωk

Y )

We can now give a graded structure to
⊕

k H
0(X,ωk

X), taking sk ∈
Hom(OX , ω

k
X) and sh ∈ Hom(OX , ω

h
X) we define sk · sh to be the com-

posite

Ox ωk
X ωk+h

X

sk Sk
X(sh)[−kn]
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A completely similar definition can be given for
⊕

k H
0(Y, ωk

Y ). More-
over, the above isomorphisms between the graded parts extend to an
isomorphism between the grade rings⊕

k

H0(X,ωk
X)
∼=

⊕
k

H0(Y, ωk
Y )

and so to their Proj

X ∼= Proj(
⊕
k

H0(X,ωk
X))
∼= Proj(

⊕
k

H0(Y, ωk
Y ))

where the first isomorphism comes from Lemma 3.2.2. If we assume
now that ωY is ample or anti-ample, for the same Lemma, we get the
desired isomorphism

X ∼= Proj(
⊕
k

H0(X,ωk
X))
∼= Proj(

⊕
k

H0(Y, ωk
Y ))
∼= Y

Step 2. We are now going to remove the assumption we did in the first step,
showing that we can reduce to the previous situation just by consider
the equivalence F and the ampleness on X.
Since the concepts of point-like and invertible objects depend only on
the Serre functor and on the hom-set of the derived category, again by
fully-faithfullness and the commutativity with the Serre functor of the
equivalence, is trivial to conclude that F : Db(X) → Db(Y ) induces
bijections between the class of point-like object of Db(X) and the class
of point-like objects in Db(Y ) and between the class of invertible objects
of Db(X) and Db(Y ) respectively.
Let us now remove the first assumption we made. By 3.1.12 any line
bundle on X define an invertible object in Db(X), so in particular OX

is an invertible object, and it is mapped by F to an invertible object
in Db(Y ), i.e. F (OX) = L[m] for L line bundle on Y and m ∈ Z. Thus
up to compose F with two equivalences given by tensoring with the
line bundle −⊗ L∗ and the shift (−)[−m], and with abuse of notation
calling this composition F again we obtain F (OX) = OY .

Step 3. The last thing to prove is that ωY is either ample or anti-ample, but
before doing this let us check that point-like object in Db(Y ) are of
the form k(y)[m]. Without any ampleness assumption on the canonical
sheaf of Y, k(y)[m] is a point-like object in Db(Y ), and since F preserves
and reflects point-like objects, there exist a closed point xy ∈ X such
that F (k(xy)[my]) ∼= k(y)[m]. Suppose then that P is a point-like
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in Db(Y ) which is not of the form k(y)[m], nevertheless there exists
xP ∈ X and an integer mP such that F (k(xp)[mP ]) ∼= P . For each
y ∈ Y and m ∈ (Z)

Hom(P, k(y)[m]) ∼= Hom(F (k(xp)[mP ]), F (k(xy)[my +m])) ∼=

∼= Hom(k(xP ), k(xy)[my +m−mP ]) ∼= 0

but k(y) form a spanning class for Db(Y ) by Proposition 3.1.3, hence
P ∼= 0 which is a contradiction.

Step 4. By Proposition B.1.5 ωY is ample if and only if ωk
Y is very ample. Given

that ωk
X is very ample, we are going to prove that ωk

Y separates closed
points and tangent vectors and then apply B.1.8. In the following dis-
cussion we add to the assumptions that k is an algebraically closed field.

Given two different points y1, y2 ∈ Y , consider the natural restriction
map to the fibers

ρy1,y2 : ω
k
Y −→ ωk

Y (y1)⊕ ωk
Y (y2)

where ωk
Y (yi)

∼= k(yi) since the canonical sheaf is invertible. Saying
that ωk

Y separates points is equal to require that the induced map on
the global section is surjective

Γ(ρy1,y2) : Γ(Y, ω
k
Y ) −→ Γ(Y, k(y1)⊕ k(y2))

s 7−→ (0, s)

where s ∈ my1ω
k
Y (y1) and s /∈ my2ω

k
Y (y2) (or the contrary, having then

s 7→ (s, 0)).
Since the equivalence F carries skyscrapers to skyscrapers and ωk

X to
ωk
Y , there exists two different closed points x1, x2 ∈ X such that ρy1,y2

corresponds to a map

ρx1,x2 : ω
k
X −→ k(x1)⊕ k(x2)

By hypothesis ωk
X separates points, i.e. Γ(ρx1,x2) is surjective, more-

over the isomorphism in Lemma 3.2.3 comes from an isomorphism of
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sheaves, then the following diagram commutes

Γ(Y, ωk
Y ) Γ(Y, k(y1)⊕ k(y2))

Hom(OY , ω
k
Y ) Hom(OY , k(y1)⊕ k(y2))

Hom(OX , ω
k
X) Hom(OX , k(x1)⊕ k(x2))

Γ(X,ωk
X) Γ(X, k(x1)⊕ k(x2))

Γ(ρy1,y2 )

∼= ∼=
ρy1,y2◦−

∼= ∼=
ρx1,x2◦−

∼= ∼=
Γ(ρx1,x2 )

Hence the surjectivity of the bottom map implies the surjectivity of the
top map.
The last thing to prove is that ωk

Y actually separates tangent vectors.
Let us note that a tangent vector at a closed point y ∈ Y is equiva-
lent to the datum of a subscheme of length two with structure sheaf
concentrated at y. Tangent vectors in (my/m

2
y)

∗ at rational point y
are just elements of Hom(Spec(k[ε]), Y ) with k[ε] :− k[ε]/(ε)2, then for
φ ∈ Hom(Spec(k[ε]), Y ) choosing the closed point y, we can consider
the closed subscheme of Y defined as Zy :− φ(Spec(k[ε])), this comes
with the short exact sequence

0 IZy OY OZy 0

where OZy is supported in y and OZy ,y
∼= OY,y/IZy . Moreover as Zy is

a subscheme of length two we get another short exact sequence

0 k(y) OZy k(y) 0

of sheaves concentrated in y. The latter corresponds to an element in
Ext1(k(y), k(y)) that we could call extension class, then by

Ext1(k(y), k(y)) ∼= Hom(k(y), k(y)[1])
∼= Hom(F (k(y)), F (k(y))[1])

∼= Hom(k(xy), k(xy)[1]) ∼= Ext1(k(xy), k(xy))

the above extension class corresponds to a subscheme of length two
concentrated in xy, namely

0 k(xy) OZxy
k(xy) 0
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Moreover by the above characterization is straightforward to note that
F (OZxy

) ∼= OZy , thus

H0(X,OZxy
) ∼= Hom(OX ,OZxy

)

∼= Hom(F (OX), F (OZxy
))

∼= Hom(OY ,OZy)

∼= H0(Y,OZy)

Taking the short exact sequence that identifies the subscheme OZxy

0 IZxy
OX OZxy

0

and tensoring it with ωk
X we obtain again a short exact sequence where

the most right map is the restriction map we are interesting in

0 IZxy
⊗ ωk

X ωk
X OZxy

0
resxy

The map ωk
Y

resY−−→ OZy arise in a similar way. Considering now the
naturality square for F

H0(X,ωk
X) H0(X,OZxy

)

H0(Y, ωk
Y ) H0(X,OZy)

∼= ∼=

since the top row is surjective, the bottom row must be surjective as
well. The above commutative square is given by the fact that ωk

X

resX−−→
OZxy

is mapped to ωk
Y

resY−−→ OZy :

This concludes the proof.

Remark 3.2.5. The original proof from A.Bondal and D.Orlov in [BO01] is
slightly different: after proving, as we did, the correspondence induced by the
equivalence F for both the classes of point-like objects and invertible objects
in X and Y , they deduce from it a bijection between the underlying sets
of the projective schemes. The proof follows by reconstructing the Zarisky
topology for X and Y and showing that actually coincide. Taking L1, L2

invertible object, α ∈ Hom(L1, L2) and P a point like object, let us denote
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the pre-composition map with α∗
P : Hom(L2, P ) → Hom(L1, P ), then it can

be defined
Uα := {P ∈ PD | α∗

P ̸= 0}

such that, letting α run over Hom(L1, L2) and L1, L2 among the invertible
objects, give a basis for the Zariski topology for bothX and Y . From this can
be deduce that ωY is either ample or antiample. The proof is then concluded
by given the structure of grade ring to

A :=
⊕
i∈Z

Hom(L0, Li)

and noticing that is isomorphic to both the canonical graded rings of X and
Y .
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Appendix A

Spectral sequences

Our aim for this appendix is to briefly explain the machinery of the spectral
sequences and how they are related to the discussion of this work. The main
result of this section is that this framework will provide a direct way to com-
pute the derived functor of the composite. However there is a counterpart
of this methods, often the actual computation could become long and nested.

Definition A.0.1. Let C := C• a complex in Ch(A), where A is abelian,
considered as a graded complex with grading given by the differential d :
C → C. A decreasing filtration of C is a collection of subobject {F pCn}p for
each n such that

i) F p+1Cn ⊂ F pCn ⊂ · · · ⊂ Cn

ii)
⋃

p F
pCn = Cn and

⋂
p F

pCn = 0

iii) dn(F pCn) ⊂ F pCn+1

. . . Cn−1 Cn Cn+1 . . .

. . . F 1Cn−1 F 1Cn F 1Cn+1 . . .

. . . F 2Cn−1 F 2Cn F 2Cn+1 . . .

dn−1 dn

dn−1 dn

dn−1 dn

Definition A.0.2. Given a filtration {F pCn}p of a complex C, a graded
module associated to the filtration is a graded object defined by

grpCn :− F pCn/F p+1Cn

65
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Given then a filtration {F pCn}p of a complex C, we can define some
special graded module associated to it

Zp,q
r :− d−1(F p+rCp+q+1) ∩ F pCp+q

Bp,q
r :− Zp+1,q−1

r−1 + dZp−r+1,q+r−2

Ep,q
r :− Zp,q

r /Bp,q
r

where p, q, r are integers, with r ≥ 1.
Now we claim that the differential of the graded complex d : C → C induces
a complex Er with differential

dp,qr : Ep,q
r → Ep+r,q−r+1

r

such that the chain cohomology of the complex Er is isomorphic to the com-
plex Er+1.
The construction above take the name of spectral sequence

Definition A.0.3. Let A an abelian category, a spectral sequence is a collec-
tion {Ep,q

r }p,q,r of objects in A with p, q, r integers and r ≥ 1 and morphisms

dp,qr : Ep,q
r → Ep+r,q−r+1

r

called differentials, such that

i) dp+r,q−r+1
r ◦ dp,qr = 0

ii) there exists an isomorphism

Ep,q
r+1
∼= H0(Ep+•r,q−•r+1)

The subscript r stands for the number of the page were are collected the
objects {Ep,q

r }p,q, hence, roughly speaking we can express the condition (ii)
of A.0.3 by saying that the r-th page is the cohomology of the previous one.
The power of this machinery is that we can get information on the page for
r =∞ knowing the spectral sequence for r <∞. To make this claim precise
we need to introduce the notion of convergence a spectral sequence.

Definition A.0.4. Let {Ep,q
r }p,q,r a spectral sequence, if for each (p, q) there

exists r0 such that for each r ≥ r0

Ep,q
r
∼= Ep,q

r0

we say that the sequence abuts to E∞, where E∞ is the page defined by
Ep,q

∞ :− Ep,q
r0
.
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Definition A.0.5. We say that the spectral sequence {Ep,q
r }p,q,r collapses on

an page if there exists rs ≥ 2 such that the rs-page is concentrated only on
a column of a row.

Definition A.0.6. A spectral sequence {Ep,q
r }p,q,r converges to a complex

H• with a decreasing filtration {F pHn}p if there exist isomorphisms

Ep,q
∞
∼= F pHp+q/F p+1Hp+q

In the practice one does not goes often beyond the second or the third
page, i.e. we will obtain some type of convergence by knowing the terms of
the first two pages and checking that they stabilize.
Spectral sequences were initially introduced to compute the cohomology of a
total complex of some bi-complex. In fact, starting from a double complex,
will occur in a natural way a well-behaved filtration on the total complex
under some boundedness assumption.

Definition A.0.7. A double complex K•,• consists of a collection of objects
Ki,j with i, j integers and morphisms

di,jI : Ki,j → Ki+1,j and di,jII : Ki,j → Ki,j+1

giving the bi-grading, such that d2I = 0 = d2II and satisfying the relation

dp,q+1
I ◦ dp,qII + dp+1,q

II ◦ dp,qI = 0

dI and dII are called horizontal and vertical differential respectively.

Definition A.0.8. Given a double complex K := K•,•, the total complex
associated to it is the complex tot(K) defined by

tot(K)n :−
⊕
i+j=n

Ki,j

with differentials

dn :−
∑

p+q=n

dp,qI + dp,qII

It is trivial to check that (tot(K), d) is actually a complex, moreover for
the total complex there exists a natural decreasing filtration, to be precise
there are two natural decreasing filtration due to the symmetry of the situ-
ation. We will define just one of them but all the results will hold for the
other one.
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Definition A.0.9. Given a double complex K := K•,•, we define the filtra-
tion on the total complex as

F ptot(K)n :−
⊕
j≥p

Kn−j,j

i.e. the direct sum of all the elements of the double complex which are on
the right side of a column p.

We observe that the graded objects associated to this filtration are of the
form

grptot(K)n = F ptot(K)n/F p+1tot(K)n =
⊕
j=p

Kn−j,j = Kn−p,p

hence we can arrange this objects together with the differential dI into a
complex K•,p[−p]. So passing to the cohomology of this complex we obtain

Hk(grptot(K)) = Hk
I (K

•,p[−p]) = Hk−p
I (K•,p)

and passing again to the cohomology with the respect to the remaining dif-
ferential dII we get Hp

II(H
k−p
I (K•,•)).

Now under some boundedness conditions on the shape of the double complex
the natural filtration defined above induces a spectral sequence.

Theorem A.0.10. Let K•,• be a double complex such that for any n there
exist integers p+n and p−n such that Kn − p, p = 0 for p > p+n and p > p−n .
Then the filtration defined in A.0.8 induces a natural spectral sequence

Ep,q
2 = Hp

II(H
k−p
I (K•,•))⇒ Hp+q(tot(K))

Remark A.0.11. The boundedness condition ensures that for a fixed diago-
nal of the double complex the elements composing it will eventually become
zero, for example this condition is trivially satisfied for a double complex
in the first or in the third quadrant or for a double complex with a finite
number of rows and columns.
The results in A.0.10 holds actually in a more general form, considering a
filtered complex that not necessary comes from a double complex. Moreover
yields another spectral sequence that that starts from the page 1

Ep,q
1 :− Hp+q(F pC•/F p+1C•)

We can now state the main result of this section that give us a procedure
to compute the exact value of the derived functor of the composite.
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Theorem A.0.12 (Grothendieck Spectral Sequence). Let F : K+(A) →
K+(B) and G : K+(B) → K+(C) be two exact functor. If A and B contain
enough injectives and a complex of injectives in K+(IA) is mapped by F into
a G-adapted triangulated, then for any complex A• in D+(A) there exists a
spectral sequence

Ep,q
2 = RpG(RqF (A•))⇒ Rp+q(G ◦ F )(A•)

Remark A.0.13. This general results is actually used more often considering
the the first functor the identity, then we obtain a spectral sequence of the
form

Ep,q
2 = RpF (Hq(A•))⇒ Rp+qF (A•) (A.1)

Moreover using (A.1) we can deduce the general statement as follows. Taking
A• in D+(A) and a complex I• in K+(IF ) which is quasi-isomorphic to A•

then RF (A•) = F (I•) −: B•. Then by (A.1)

RpG(Hq(B•))⇒ Rp+qG(B•)

We also have Rp+q(G ◦ F )(A• ∼= Hn(R(G ◦ F )(A•)) ∼= Hn(RG(RF (A•))) ∼=
Hn(RG(B•)), so putting everything together we get the general case of the
spectral sequence.

We conclude this section by recalling some useful spectral sequence used
in this work that are all instances of the Grothendieck spectral sequence in
Theorem A.0.12.

Proposition A.0.14. Let A• in D(A), where A contains enough injectives,
then we can consider the functor Hom(A•,−) : K+(A) → K(Ab) and its
higher derived functor RpHom(A•,−) −: Extp(A•,−). Then there exists a
spectral sequence

Ep,q
2 = Extp(A•,Hq(B•))⇒ Extp+q(A•, B•) (A.2)

Dually, if A contains enough projective we can define the derived functor of
the contravariant hom-functor Hom(−, B•) : K−(A) → K(Ab). Then there
exists

Ep,q
2 = Extp(H−q(A•), B•)⇒ Extp+q(A•, B•) (A.3)

Remark A.0.15. Recalling the isomorphism in 2.2.16

Exti(A•, B•) ∼= HomD(A)(A
•, B•[i])

we can express the two spectral sequence above using the hom-set of the
derived category

Ep,q
2 = HomD(A)(A

•,Hq(B•)[p])⇒ HomD(A)(A
•, B•[p+ q]) (A.4)
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Ep,q
2 = HomD(A)(H

−q(A•), B•[p])⇒ HomD(A)(A
•, B•[p+ q]) (A.5)

Let us now consider the abelian category of quasi-coherent sheaves QCoh(X)
on a noetherian scheme X, taking two sheaves F and E we can define the so
called ’local Hom’ sheaf Hom(F , E) on the opens as

U 7→ Hom(F|U , E|U)

It easy to check that this is actually a sheaf, moreover if F and E are (quasi-
)coherent, the local Hom sheaf is (quasi-)coherent as well. It is worth to note
that the global section of the local Hom coincides with the standard hom
functor Γ(Hom(F , E), X) = Hom(F , E).
For a quasi-coherent sheaf F we define the left exact functor

Hom(F ,−) : QCoh(X)→ QCoh(X)

Hence since for a noetherian scheme QCoh(X) has enough injectives there
exists the right derived functor

RHom(F , ) : D+(QCoh(X))→ D+(QCoh(X))

and its higher derived functors are called ’local Ext’

Exti(F , E) :− RiHom(F , E)

Proposition A.0.16 (Local to Global Ext). Let F and E in QCoh(X), for
a noetherian scheme X, then there exists a spectral sequence

Ep,q
2 = Hp(X; Extq(F ,F))⇒ Extp+q(F , E)



Appendix B

Standard results in Scheme
Theory

B.1 Ample and anti-ample canonical bundle

In these section we want to introduce the concept of ampleness for an invert-
ible sheaf. This feature will be an crucial hypothesis on the canonical sheaf
for the Bondal-Orlov theorem.
Let us recall that give a morphism from X → Pn

Y , where X is a scheme over
Y , can be characterized by giving an invertible sheaf L on X and a suitable
set of generating global section, or more precisely the functor

Sch→ Set

that sends a scheme X to the set of (n + 1)-decorated sheaves on X up
to isomorphisms, i.e. invertibles sheaves with a set n + 1 generating global
sections, is represented by Pn

Y .
Then an invertible L sheaf is said to be very ample relative to Y if there
is an immersion i : X → Pn

Y such that L ∼= i∗O(1). In the special case of
Y = SpecA this is the same as asking that L admits a set of n + 1 global
section, such that the corresponding morphism X → Pn

A under the above
natural isomorphism is an immersion. Moreover we have the following

Proposition B.1.1. If L is a very ample invertible sheaf on a projective
scheme X over a noetherian ring A, then for any coherent sheaf F there
exists n0 > 0 such that for all n ≥ n0 F ⊗Ln is generated by global sections.

We are going to use this property as a definition for a more general con-
cept.

71
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Definition B.1.2. An invertible sheaf L on a noetherian scheme X is ample
if for any coherent sheaf F there exists n0 > 0 such that for all n ≥ n0 F⊗Ln

is generated by global sections.

Let us briefly recall what means to be generated by global sections.

Definition B.1.3. The collection {si | i ∈ I} of global sections generates
the sheaf L ∈ OX-Mod if one of the following equivalent conditions hold

i) ∀x ∈ X {si,x | i ∈ I} generates Lx as OX,x-module

ii) ∀x ∈ X ∃i ∈ I such that si,x generates Lx as OX,x-module

iii) The collection of

Xsi :− {x ∈ X | si,x generates Lx as OX,x-module}

for i ∈ I form an open cover of X

iv) The map ⊕
i∈I

OX → L

determined by the maps OX
·si−→ L, is surjective.

Proposition B.1.4. Let L be an invertible sheaf on a noetherian scheme
X, then the following are equivalent

i) L is ample

ii) Lm is ample for m > 0

iii) Lm is ample for some m > 0

In general ample sheaves need not to be very ample, but under suitable
assumptions these two definitions coincide

Proposition B.1.5. Let X be a scheme of finite type over a noetherian ring
A and let L be an invertible sheaf on X, then L is ample if and only if Lm

is very ample over SpecA for some m > 0.

Remark B.1.6. If X = Pn
k , O(1) is ample by definition, moreover for d > 0

also O(d) is ample since is the twisting sheaf of the Proj construction on
shifted graded ring, moreover those are the only ample ones, since for d < 0
O(d) has no global sections, so it cannot be ample.
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Ample invertible sheaves can also be characterized in term of vanishing
of higher cohomology groups. The following result is due to Serre.

Proposition B.1.7 (Serre Vanishing Theorem). Let X be a projective
scheme over a noetherian ring A and let L be an invertible sheaf on X, then
the following are equivalent

i) L is ample

ii) for each F ∈ Coh(X) there exists n0 > 0 depending on F , such that for
i > 0 and n ≥ n0

Hi(X,F ⊗ Ln) = 0

The following is a criterion for a morphism to a projective space to be
a closed immersion, i.e. for the corresponding invertible sheaf to be very
ample.

Proposition B.1.8. Let X be a scheme over an algebraically closed field k,
φ : X → Pn

k a morphism with corresponding invertible sheaf L and s0, . . . , sn
generating global sections and V ⊆ Γ(X,L) a subspace spanned by the si’s.
Then φ is a closed immersion if and only if the following hold

i) elements of V separates points, i.e. for any two distinct closed point
P,Q ∈ X, there exists s ∈ V such that s ∈ mPLP and s /∈ mQLQ

ii) elements of V separates tangent vectors, i.e. for each closed point P ∈ X
the set {s ∈ V |sP ∈ mPLP} spans the k-vector space mPLP/m

2
PLP

We are now going to define the canonical sheaf associated to a scheme X
as the n-th external power of the cotangent sheaf, in order to do so let us
recall the following definition and basic properties.

Definition B.1.9. Let X be a scheme over Y with f : X → Y and ∆ : X →
X ×Y X be the corresponding diagonal map, we define the cotangent sheaf
ΩX/Y :− ∆∗(I/I2) where I is the shaef of ideaL associated to ∆.

At first sight this could seem a not completely immediate definition, but
it reduces to a more ’reasonable’ concept when we consider the affine case,
in fact taking X = SpecB and Y = SpecA using the standard equivalence
AffSch ≃ Ringop the following diagram

X

X ×Y X X

X Y

∆

f

f
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corresponds to

B

B ⊗A B B

B A

then, setting I = ker(B⊗AB → B), we get that ΩB/A :− I/I2 is the module
of relative differential form of B over A defined in [Har77] Chapter II section
8, that comes with the A-derivation

d : B → I/I2

b 7→ b⊗ 1− 1⊗ b

and the universal property that for any other B-module M and A-derivation
d′ : B → M there exists a unique module morphism I/I2 → M such that
the following commutes

B M

I/I2
d

d′

Proposition B.1.10. Let f : X → Y be a morphism of scheme and Z a
closed subscheme of X with corresponding sheaf of ideals J . Then there is
a short exact sequence in Sh(Z)

J /J 2 ΩX/Y ⊗OZ ΩZ/Y 0 (B.1)

Proposition B.1.11. Let Y = Spec(A) and X = Pn
A, then there is a short

exact sequence in Sh(X)

0 ΩX/Y

⊕
n+1O(−1) OX 0 (B.2)

Proposition B.1.12. If X is a non singular projective variety over a field
k, then ΩX/k is a locally free sheaf of rank n = dim(X).

Definition B.1.13. Let X be a non-singular variety over k, we define the
canonical sheaf of X to be ωX :− ΛnΩX/k where n = dim(X).

Since we are going to work with singular projective variety, by Proposition
B.1.12 we get that ωX is locally free of rank one, i.e. an invertible sheaf.
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Example B.1.14. Let X = Pn
A := Pr

Z × Spec(A) and Y = Spec(A), taking
the exterior power of the exact sequence in (B.2) with degree the rank of
each term respectively, we get

Λn(ΩPn
A
)⊗ Λ1(OPn

A
) ∼= Λn+1(

⊕
n+1

O(−1))

but the n-th exterior power of n copies of one object is the tensor product n
times of that object, so ωPn

A

∼= O( − n− 1).
Similarly taking Z a non singular hypersurface of degree d in X and applying
the same reasoning to (B.1) we get ωY

∼= O(d− n− 1).

B.2 Tilde construction

We now briefly present the so called ’tilde construction’ in the affine and the
projective case. The tilde construction is a procedure that allow us to define
a large variety of well-behaved OX-module, more precisely an OX-module
that locally is of the form the tilde construction is quasi-coherent.
Let X = Spec(R) be an affine scheme and let us recall that for the structure
sheaf we have OX(Xf ) = Rf and OX,p = Rp with p a prime ideal of R and
f ∈ R.

Definition B.2.1. Let X = Spec(R) be an affine scheme and M an R-
module, we can define

M̃(Xf ) :−M ⊗R Rf and M̃p :=M ⊗R Rp

Now the resulting sheaf, defined on the basis as M̃(Xf ) and with stalks M̃p,
for an open set U ⊆ Spec(R) is the set M̃(U) of sections s ∈

∏
P∈U Mp such

that holds the gluing condition: for all p ∈ U there exist V ⊆ U with p ∈ V ,
m ∈M and f ∈ R such that for all q ∈ V with f ̸= q the restriction is given
by s(q) = m

f
in Mq.

Proposition B.2.2. Let X = Spec(R) be an affine scheme, then the tilde
functor

R-Mod −→ OX-Mod

M 7→ M̃

is fully-faithful and exact. Moreover it has a right adjoint given by the global
section functor

R-Mod OX-Mod

˜(−)

Γ(X,−)

⊣
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This adjunction becomes an equivalence of categories if we restrict to QCoh(X).

Let A be a ring and r ∈ N, we consider X = Pr
A and the polynomial ring

S = A[X1, . . . , Xr] which is naturally positively graded by considering the
homogeneous polynomials of degree d.

Definition B.2.3. Let S be a graded ring, then a graded S-module M is an
S-module with a decomposition M =

⊕
e∈ZMe such that Sd ·Me ⊆Md+e.

Let then M be a graded S-module and f ∈ S an homogeneous element, we
define the homogeneous localization of M at the element f as

(Mf )o :−
{
m

f e
| e ∈ Z, m ∈Me·deg(f)

}
which is a module over the homogeneous localization (Sf )o.

Definition B.2.4. Considering now the standard affine covering of X given
by Ui = Spec(Ri), where Ri := A[. . . Xji . . . ]j ̸=i for i = 0, . . . , r, we define a
quasi-coherent OX-module M̃ by setting

M̃(Ui) :− ˜(MXi
)o

with the gluing conditions on the overlaps Ui∪Uj given, at the ring level, by
the isomorphisms

(MXi
)o,Xj/Xi

∼= (MXj
)o,Xi/Xj

Let S graded ring as above and consider the graded ring S(d) shifted by d,
defined by S(d)m := Sm+d which has a trivial structure of graded S-module,
then applying the tilde construction to it we re-obtain the standard twisted
sheaf

˜S(d) ∼= OX(d)

Proposition B.2.5. Let X = Pr
A, then the tilde functor

Graded S-Mod −→ QCoh(X)

M 7→ M̃

is fully-faithful and exact. Moreover it is an equivalence of categories with
(waek) right inverse functor

Γ∗ : QCoh(X) −→ Graded S-Mod

F 7→
⊕
d∈Z

Γ(F ⊗OX(d))

where Γ∗(F) is naturally a graded S-module considering S =
⊕

d∈Z Γ(X,OX(d)).
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Proposition B.2.6. Let S :=
⊕

m Sm be a graded ring generated by S1 as
S0-algebra, and let X = Proj(S) the corresponding projective scheme. Let
now S(d) the grade ring shifted by d, then there exists an isomorphism

X ∼= Proj(S(d))

Moreover the invertible sheaf O(1) on Proj(S(d)) corresponds under this
isomorphism to the sheaf OX(d).
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Mathématique de France 90 (1962), pp. 323–448.

[Har66] Robin Hartshorne. Residues and duality. Vol. 20. Springer, 1966.

[Mac71] Saunders Mac Lane. Categories for the working mathematician.
Springer Verlag, 1971.

[Har77] Robin Hartshorne. Algebraic Geometry. Vol. 52. Springer, 1977.

[BK90] A I Bondal and M M Kapranov. “Representable functors, Serre
Functors, and Mutations”. In: Mathematics of the USSR-Izvestiya
35.3 (1990), p. 519.

[Wei94] Charles A. Weibel. An Introduction to Homological Algebra. Cam-
bridge Studies in Advanced Mathematics. Cambridge University
Press, 1994.

[Ver96] Jean-Louis Verdier. “Des catégories dérivées des catégories abéliennes”.
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