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Abstract

By considering whether the correlations arising from a two-player non-local
game with measurements in a Hilbert space of the formH𝐴⊗H𝐵 are the same
as the correlations arising with commuting measurements in a Hilbert space
H , a Tsirelson problem is obtained. Due to recent results in this direction,
all Tsirelson problems can now be considered to be resolved in the negative.
William Sloftstra gave the �rst proof towards this resolution in [18]. The
following text aims to present the theory of non-local games, correlation sets,
and, most importantly, a proof of the Tsirelson problem originally given by
Slofstra as well as a proof of the Tsirelson problem arising by considering
�nite-dimensional Hilbert spaces.
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1. Introduction

The phenomenon known as quantum entanglement – when two or more
particles, or quantum systems, are correlated in such a way that they can no
longer be considered separate entities on a fundamental level – is arguably
the most fascinating and valuable property of quantum mechanics, and by
extension of quantum information theory. As intensive research in quantum
mechanics and quantum information theory has revealed, this phenomenon
stands unmatched in the classical counterpart of these �elds.

In 1935, physicists Albert Einstein, Boris Podolsky, and Nathan Rosen [10]
published a paper critiquing the implications of entanglement on physical
reality. The phenomenon implied that quantum mechanics could exhibit non-
locality in the sense that the actions of an observer of a system could produce
instantaneous changes in physical properties over a massive distance. How-
ever, in 1964, John Bell suggested an experiment [2] that promised to settle
the long-standing scienti�c debate: By entangling two particles, separating
them spatially, measuring their properties, and then comparing the observed
result to a statistical bound on the probabilities as predicted by quantum me-
chanics compared to classical mechanics, it would be possible to demonstrate
non-locality in action. Not long after, several scientists conducted the �rst
practical experiments verifying Bell’s theoretical claims, experiments which
were recently awarded the Nobel Prize in Physics in 2022 [23].

So-called non-local games can be used to model Bell experiments and is
a valuable construct to study non-locality. These information-theoretical
“games” take place between two or more players and a veri�er. Each player
receives a question from the veri�er and then responds with an answer. If
the question- and answer pairs satisfy a prede�ned criterion, the veri�er
concludes that the players win the game. The “catch” in this scenario is
that the players cannot communicate once the veri�er has distributed the
questions. They are thus limited to deciding on a clever strategy before the
game starts, based only on their knowledge of the game’s rules. The players
can share an entangled state in the quantum information theoretical scenario,
and their strategy entails choosing a set of measurement operators. As Bell
showed, non-local games exist such that the best quantum strategy results in
a greater winning probability than any classical strategy.

In the context of a quantum non-local game, we can mathematically model
the systems involved in several ways. The traditionally dominating model
is the so-called tensor-product model, in which we consider each player’s
measurements to be operators on separate Hilbert spacesH𝐴 andH𝐵 in the
context of a two-player non-local game. The entangled quantum state is
then a state in the space given by H𝐴 ⊗ H𝐵 . An alternative model is the
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commuting-operator model in which we instead allow the players to pick
measurement operators in a single Hilbert spaceH , but in such a way that
their operators are commuting.

As we will see, considering �nite-dimensional Hilbert spaces, these two
models are equivalent in that there are strategies in eithermodel producing the
same winning probabilities for any non-local game. A long-standing problem
in quantum information theory is Tsirelson’s problemwhich, in essence, asks if
this is true also for in�nite-dimensional Hilbert spaces. Perhaps surprisingly,
although both models describe a quantum theoretical scenario in which the
players share an entangled state, it was shown in [18] byWilliam Slofstra that
there are non-local games that can be played perfectly – i.e., with a winning
probability of 1 – using a commuting-operator strategy but not with any
tensor-product strategy. In this essay, we will concern ourselves with the
proof of this statement.

Currently, this result lies purely in the realm of the theoretical. Similar to the
early result by Bell, which suggested a separation between results achievable
through classical strategies and those achievable through entangled strategies,
our result suggests a separation of di�erent quantum strategies. At the time
of writing, this result is still awaiting the day of experimental veri�cation.
However, the theory of non-local games is still intensively studied and is
seeing signi�cant use in areas such as quantum key distribution and the
development of cryptosystems capable of achieving perfect secrecy [1,11].

The main result considered in this text is thus the embedding theorem of [18]
(Theorem 4.6), the proof of which we will ultimately reach in Section 6, where
we also provide some concluding remarks on the future of this problem. This
text aims to give a clear overview of the fundamental constructions involved
in this proof and provide some of the necessary background on Tsirelson’s
problem. Starting in Section 3, we present the theory of non-local games and
correlation sets of di�erent strategies. We also present a proof of the Tsirelson
problem concerning �nite-dimensional Hilbert spaces, giving full details to
the original sketch of this statement made in [20]. Here, we rely on some
basic theory of operator algebras presented in Section 2. Section 4 presents
the main results of [18], and we de�ne the type of non-local game from which
we can derive the separation of the two models. Section 5 introduces the
critical constructions necessary for the proof of Theorem 4.6.

A reader already familiar with the theory of non-local games may readily
rely on Sections 4 to 6 for the main result, necessary constructions, and proof
of the main statement. For the reader seeking the complete picture, however,
starting from the beginning of Section 3 is recommended, consulting Section
2 and Appendix A on quantum computing as necessary.
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2. Algebra prereqisites

The following section presents the unfamiliar reader with some fundamen-
tal concepts in the theory of 𝐶∗-algebras. After presenting the necessary
de�nitions of the area, our �rst goal is to prove the structure theorem of
�nite-dimensional 𝐶∗-algebras, which, although this text generally does not
dwell on the �nite-dimensional case for long, is needed to answer the Tsirelson
problem for �nite-dimensional Hilbert spaces, as seen in Section 3.3. We also
brie�y introduce the GNS construction, based on the presentation in [17],
and the notion of the universal 𝐶∗-algebra. Last, we introduce a few purely
group theoretical constructions needed to prove our main result in Section
4.2, namely Theorem 4.6.

§ 2.1. General concepts. Recall that an algebra is a vector spaceA together
with an associative bilinear multiplication map𝑚 : A ×A → A de�ned by
(𝑎, 𝑏) ↦→ 𝑎𝑏. A subalgebra is a vector subspace closed under this multiplication
map. IfA is endowed with a norm | | · | |, thenA is said to be a normed algebra.
If A contains a unit, then we say that it is a unital algebra.

De�nition 2.1. Let A be an algebra with a conjugate-linear map 𝑎 ↦→ 𝑎∗

such that 𝑎∗∗ = 𝑎 and (𝑎𝑏)∗ = 𝑏∗𝑎∗ for all 𝑎, 𝑏 ∈ A. Then the map is called an
involution, and the pair (A, ∗) is called a ∗-algebra.

A subset 𝑆 ⊆ A such that 𝑆∗ = 𝑆 is said to be self-adjoint. A self-adjoint
subalgebra of A is a ∗-subalgebra.

As the attentive reader has probably recognized, the involution ∗ can be seen
as a generalization of taking the adjoint of a matrix in a matrix algebra such
as𝑀𝑛 (C). Thus, this can be considered our canonical example of a ∗-algebra.
Another familiar example is C with complex conjugation. Often, we will
simply consider the set of bounded linear operators on a Hilbert space H ,
denoted by B(H), with the involution 𝐴 ↦→ 𝐴∗.

We now de�ne a few basic properties of elements of ∗-algebras:

De�nition 2.2. Let A be a ∗-algebra, and let 𝑎 ∈ A. The element 𝑎 is said
to be

• self-adjoint if 𝑎∗ = 𝑎,
• normal if 𝑎∗𝑎 = 𝑎𝑎∗,
• a projection if 𝑎 = 𝑎∗ = 𝑎2, and
• unitary if 𝑎∗𝑎 = 𝑎𝑎∗ = 1.

A projection 𝑝 in a �nite-dimensional 𝐶∗-algebra A is said to be minimal if
𝑝A𝑝 = C𝑝 .

Note that by this de�nition, a projection is necessarily also self-adjoint, and a
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unitary is also normal. These are all properties that we easily recognize in
elements of our previously mentioned examples of ∗-algebras.

De�nition 2.3. Let 𝜑 : A → B be a homomorphism of ∗-algebras such that
𝜑 (𝑎∗) = 𝜑 (𝑎)∗. Then, 𝜑 is said to be a ∗-homomorphism. If it is bijective, it is
said to be a ∗-isomorphism.

In the general �eld of quantum mechanics and the mathematical modeling
of such systems, the concept of 𝐶∗-algebras is instrumental. In Appendix
A, we give the standard description of quantum computing and quantum
mechanics in terms of Hilbert spaces, unit vectors, and unitary operators.
However, there is an equivalent formulation of the same concepts in terms of
𝐶∗-algebras, pure states, and self-adjoint elements, respectively.

We spend the remainder of this section exploring these concepts in greater
detail.

De�nition 2.4. Let A be a ∗-algebra with a complete sub-multiplicative
norm such that | |𝑎∗ | | = | |𝑎 | | and

| |𝑎∗𝑎 | | = | |𝑎 | |2 (2.1.1)

for all 𝑎 ∈ A. Then A is said to be a 𝐶∗-algebra, and the property (2.1.1) is
called the 𝐶∗-identity.

All of our previous examples of ∗-algebras are in fact also 𝐶∗-algebras, with
the usual norms.

De�nition 2.5. Let 𝜑 be a linear functional on a 𝐶∗-algebra A. Then 𝜑 is
said to be positive if 𝜑 (𝑎) ≥ 0 for all positive 𝑎 ∈ A, i.e., all 𝑎 ∈ A such that
𝑎 = 𝑏𝑏∗ for some 𝑏 ∈ A

De�nition 2.6. Let A be a 𝐶∗-algebra. A state on is A positive linear
functional on A of norm one. The set of states on A is denoted by S(A) ⊆
A∗, and is called the state space of A.

A state 𝜑 on A is said to be pure if for every positive linear functional 𝜌 on
A such that 𝜌 ≤ 𝜑 , there exists a number 0 ≤ 𝑡 ≤ 1 such that 𝜌 = 𝑡𝜑 .

By Corollary 3.3.4 of [17], we note that a necessary and su�cient criterion for
a linear functional 𝜑 of norm at most 1 to be a state is the property 𝜑 (1) = 1.

Importantly, it is possible to show (Proposition 2.9) that the state space of
a unital 𝐶∗-algebra is compact. However, this statement does not yet make
sense as we have no topology on the space of linear functionals of a 𝐶∗-
algebra. Therefore, we now introduce the so-called weak-∗ topology, which
can be de�ned more generally for the dual space of any normed vector space:
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De�nition 2.7. Let 𝑋 be a normed vector space with dual 𝑋 ∗. The weak-∗
topology of 𝑋 ∗ is the topology generated by the family of seminorms {𝑝𝑥 |
𝑥 ∈ 𝑋 }, where 𝑝𝑥 (𝑥∗) = |𝑥∗(𝑥) |.

That 𝑝𝑥 (𝑥∗) = |𝑥∗(𝑥) | describes a seminorm on 𝑋 ∗ for any 𝑥 ∈ 𝑋 is clear by
the familiar properties of | · |. We also note that the weak-∗ topology is the
coarsest topology on 𝑋 ∗ for which 𝑥∗ ↦→ 𝑥∗(𝑥) is continuous for all 𝑥 ∈ 𝑋 .
Indeed, 𝑥∗ ↦→ 𝑥∗(𝑥) is continuous in the weak-∗ topology by Theorem A.1 of
[17]. So if T is a topology on 𝑋 ∗ such that 𝑥∗ ↦→ 𝑥∗(𝑥) is continuous for all
𝑥 , then since | · | is a continuous map on the underlying scalar �eld, the maps
𝑥∗ ↦→ |𝑥∗(𝑥) | = 𝑝𝑥 (𝑥∗) are continuous for all 𝑥 . So the weak-∗ topology is
coarser than T .

Before stating and proving the compactness of S(A) for unital 𝐶∗-algebras,
we �rst consider the following important result from functional analysis, the
proof of which we here omit but can be found in [8], Chapter 4.3.

Theorem 2.8 (Banach-Alaoglu theorem). Let 𝑋 be a normed vector space with
dual 𝑋 ∗. The closed unit ball in 𝑋 ∗ is weak-∗ compact.

Proposition 2.9. LetA be a unital𝐶∗-algebra. The state spaceS(A) is weak-∗
compact.

Proof. We note that any state 𝜑 ∈ S(A) has norm 1, so in particular, the
state space is a subset of the closed unit ball of A∗. Furthermore, since the
condition 𝜑 (1A) = 1 characterizes states among the elements of this unit ball,
we conclude by the Banach-Alaoglu theorem that S(A) is weak-∗ closed as
it is a closed subset of a compact space.

We let the proof of this result conclude our section on basic results and
de�nitions in the theory of 𝐶∗-algebras and move on to discuss the structure
of �nite-dimensional 𝐶∗-algebras, as promised.

§ 2.2. Structure of �nite-dimensional 𝐶∗-algebras. This section aims to
show the structure theorem of �nite-dimensional 𝐶∗-algebras. Recalling that
𝑀𝑛 (C) is a 𝐶∗-algebra, we will show that for every every �nite-dimensional
𝐶∗-algebra, there exists a decomposition into a direct sum of such matrix
algebras. Before giving an overview of the steps included in this proof, we
�rst need to state a few additional de�nitions:

De�nition 2.10. An ideal 𝐼 of a 𝐶∗-algebra A is a vector subspace of A
such that if 𝑎 ∈ A and 𝑏 ∈ 𝐼 then 𝑎𝑏 ∈ 𝐼 and 𝑏𝑎 ∈ 𝐼 . The ideal 𝐼 is said to be
self-adjoint in A if it is closed under the ∗-operation, i.e., 𝑎∗ ∈ 𝐼 whenever
𝑎 ∈ 𝐼 . An ideal is said to be closed if it is closed in the topology induced by
the norm on A.
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By Theorem 3.1.3 in [17], we note that a closed ideal is also self-adjoint. We
say that a 𝐶∗-algebra is simple if it has no non-trivial closed ideals.

The �rst step towards proving the structure theorem is to show that there is
a decomposition of a �nite-dimensional 𝐶∗-algebra into simple 𝐶∗-algebras.
Then, by showing that𝑀𝑛 (C) is simple and that any �nite-dimensional simple
𝐶∗-algebra is isomorphic to𝑀𝑛 (C) the structure theorem will easily follow.

This promised decomposition of a �nite-dimensional 𝐶∗-algebra is given by
the center of the 𝐶∗-algebra in question, which we de�ne next.

De�nition 2.11. For a subset 𝐴 ⊆ A of a 𝐶∗-algebra A, the commutant 𝐴′

of 𝐴 is the set of elements of A which commute with all elements of 𝐴.

We note that the commutant depends on the larger space around A, usually
seen as a subspace of some B(H). However, in the following de�nition, we
do not need to consider this fact.

De�nition 2.12. The center, 𝑍 (A), of a 𝐶∗-algebra A is de�ned as the set
of elements of A which commute with all other elements in A.

Note that A′ ∩ A = 𝑍 (A).

Before we proceed to show how the center of a �nite-dimensional𝐶∗-algebra
yields a decomposition into simple 𝐶∗-algebras, we �rst need to prove the
following lemma:

Lemma 2.13. Let A be a �nite dimensional 𝐶∗-algebra, then A has a unit.

Proof. Let 𝑎 ∈ A be a non-zero, self-adjoint element. Then by the spectral
theorem, there exist a projection 𝑝 ∈ A such that 𝑝𝑎 = 𝑎 and 𝑝 is a polynomial
in 𝑎. If 𝑝𝑏 = 𝑏 for all 𝑏 ∈ A we have found a unit since

𝑏𝑝 = (𝑏∗𝑝∗)∗ = ((𝑝𝑏)∗)∗ = 𝑏.

So let 𝑏 ∈ A be such that 𝑝𝑏 ≠ 𝑏 and consider the non-zero, self-adjoint
element given by (𝑝𝑏 − 𝑏) (𝑝𝑏 − 𝑏)∗. Again, there is a projection 𝑞 ∈ A
corresponding to this self-adjoint element, as 𝑝 does to 𝑎 above.

Since 𝑝 (𝑝𝑏 − 𝑏) = 0 it follows that 𝑝𝑞 = 0, so 𝑝 + 𝑞 is a projection. Then,
(𝑝+𝑞)𝑎 = (𝑝+𝑞)𝑝𝑎 = 𝑎 and (𝑝+𝑞)𝑞 = 𝑞. Hence, the kernel of 𝑎 ↦→ (𝑝+𝑞)𝑎−𝑎
is strictly larger than the kernel of 𝑎 ↦→ 𝑝𝑎. Since A is �nite-dimensional,
the result follows by induction.

Proposition 2.14. The center of a �nite-dimensional 𝐶∗-algebra A results in
a decomposition

A =

𝑘∑︁
𝑖=1

𝑧𝑖A
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of A into simple 𝐶∗-algebras 𝑧𝑖A.

Proof. Let 𝐼 be a non-zero ideal ofA. SinceA is �nite-dimensional, so is 𝐼 , and
by Lemma 2.13 has a unit 1𝐼 . Since unitary conjugation is an automorphism,
for all unitary elements 𝑢 ∈ A, it holds that 𝑢1𝐼𝑢∗ = 1𝐼 . As A is spanned by
unitary elements, it follows that 1𝐼 is a non-zero central projection in A, and
1𝐼 ≠ 1A . Let 𝑧1 := 1𝐼 , so by induction on the dimension of A we obtain a
sequence of central projections 𝑧1, . . . , 𝑧𝑘 such that

∑𝑘
𝑖=1 𝑧𝑖 = 1.

For each 𝑖 ∈ {1, . . . , 𝑘} since the center of 𝑧𝑖A is trivial, i.e. 𝑍 (𝑧𝑖A) = C𝑧𝑖 ,
it follows by the same reasoning as above that 𝑧𝑖A is simple, and the claim
follows.

We are now ready to revisit𝑀𝑛 (C), and show that it is a simple 𝐶∗-algebra.
In𝑀𝑛 (C), we de�ne the matrix units (𝑒𝑖 𝑗 )𝑖 𝑗 to be the matrices such that 𝑒𝑖 𝑗 is
�lled with zeroes, and has a single 1 in the 𝑖 𝑗th position. Then,

𝑒𝑖 𝑗𝑒𝑘𝑙 = 𝛿 𝑗𝑘𝑒𝑖𝑙 , (2.2.1)

and
𝑒∗𝑖 𝑗 = 𝑒 𝑗𝑖, (2.2.2)

for all 𝑖, 𝑗, 𝑘, 𝑙 . The system of matrix units (𝑒𝑖 𝑗 )𝑖 𝑗 can be seen to form a basis
for 𝑀𝑛 (C). Note that multiplication of 𝑎 ∈ 𝑀𝑛 (C) on the right by a matrix
unit 𝑒𝑖 𝑗 yields a matrix with the 𝑗th column corresponding to the 𝑖th column
of 𝑎. Similarly, left multiplication of 𝑒𝑖 𝑗 results in a matrix with the 𝑖th row
corresponding to the 𝑗th row of 𝑎.

Proposition 2.15. 𝑀𝑛 (C) is simple.

Proof. Let 𝐼 be a non-zero ideal of𝑀𝑛 (C), and let 𝑎 ∈ 𝐼 be an arbitrary element
such that 𝑎𝑖 𝑗 ≠ 0 for some 𝑖, 𝑗 . Then by our previous observations 𝑒𝑖𝑖𝑎𝑒 𝑗 𝑗 =
𝑎𝑖 𝑗𝑒𝑖 𝑗 , by which it follows that 𝑒𝑖 𝑗 ∈ 𝐼 . Furthermore, for any 𝑒𝑘𝑙 ∈ (𝑒𝑖 𝑗 )𝑖 𝑗 we
have by (2.2.1) that 𝑒𝑘𝑙 = 𝑒𝑘𝑖𝑒𝑖𝑙 = 𝑒𝑘𝑖𝑒𝑖 𝑗𝑒 𝑗𝑙 . Thus, 𝑒𝑘𝑙 ∈ 𝐼 and the ideal 𝐼 must
be all of𝑀𝑛 (C). Thus,𝑀𝑛 (C) is simple.

One more lemma is necessary before we can show that simple �nite-
dimensional 𝐶∗-algebras have the desired structure, a result from which we
can easily deduce the structure theorem by Proposition 2.14.

Lemma 2.16. Let A be a �nite-dimensional 𝐶∗-algebra. Then there is a �nite
family of minimal projections 𝑝1, . . . , 𝑝𝑘 such that

∑𝑘
𝑖=1 𝑝𝑖 = 1.

Proof. If A has dimension 1, then the statement follows immediately by
considering the unit of A.
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Otherwise, there is an element 𝑎 ∈ A \C1, which is not a multiple of 1. By
considering 𝑎 + 𝑎∗ and 𝑖 (𝑎 − 𝑎∗), which are not both elements of C1, we �nd
a self-adjoint element 𝑏 ∈ A \ C1. By the spectral theorem, we can write
𝑏 =

∑𝑛
𝑗=0 𝜆 𝑗𝑝 𝑗 , for projections 𝑝 𝑗 ∈ A and scalars 𝜆 𝑗 ∈ R.

We claim that 𝑝0 ∉ {0, 1}. Indeed, 𝑝0 ≠ 0 by the de�nition of the spectral
decomposition since 𝑏 ≠ 0. Also, 𝑝0 ≠ 1 as otherwise we would have that
𝑛 = 0, since 𝑝 𝑗 is orthogonal to 𝑝 𝑗 ′ for 𝑗 = 𝑗 ′. Thus, 𝑝0 is the projection we
seek.

Now, either 𝑝0 is minimal or 𝑝0A𝑝0 ≠ C𝑝0, in which case induction on the
dimension of A �nishes the proof. We thus obtain the minimal projections
𝑝1, . . . , 𝑝𝑘 as desired.

Proposition 2.17. If A is a simple non-zero �nite-dimensional 𝐶∗-algebra, it
is ∗-isomorphic to a matrix algebra𝑀𝑛 (C).

Proof. Since A is �nite-dimensional, Lemma 2.16 shows that there exist
mutually commuting minimal (pairwise orthogonal) projections 𝑝1, . . . , 𝑝𝑘 ∈
A such that

∑𝑘
𝑖=1 𝑝𝑖 = 1. Furthermore, for all 𝑖, 𝑗 since 𝑝𝑖 and 𝑝 𝑗 are non-zero,

there exists 𝑎 ∈ A such that 𝑝𝑖𝑎𝑝 𝑗 ≠ 0. Otherwise, the set 𝐴𝑝𝑖𝐴 = 𝐼 , which is
non-zero, would be a non-trivial ideal of A, contradicting the simplicity of
A.

For 𝑗 ∈ {1, . . . , 𝑘} let 𝑎 𝑗 be such that 𝑝1𝑎 𝑗𝑝 𝑗 ≠ 0 and de�ne

𝑣1 𝑗 =
1
𝜆 𝑗
𝑝1𝑎 𝑗𝑝 𝑗

where 𝜆 𝑗 = | |𝑝1𝑎 𝑗𝑝 𝑗 | |. Note that 0 < 𝑣1 𝑗𝑣
∗
1 𝑗 ≤ 𝑝1. Since 𝑝1 is minimal and

| |𝑣1 𝑗𝑣∗1 𝑗 | | =
1
𝜆2
𝑗

| | (𝑝1𝑎 𝑗𝑝 𝑗 ) (𝑝1𝑎 𝑗𝑝 𝑗 )∗ | | =
1
𝜆2
𝑗

| |𝑝1𝑎 𝑗𝑝 𝑗 | |2 = 1,

we �nd that 𝑣1 𝑗𝑣∗1 𝑗 = 𝑝1. Similarly we �nd that 𝑣∗1 𝑗𝑣1 𝑗 = 𝑝 𝑗 , and we have a
sequence (𝑣1 𝑗 )𝑘𝑗=1 of partial isometries.

Let𝑤𝑖 𝑗 = 𝑣∗1𝑖𝑣1 𝑗 . We note that

𝑤∗
𝑖 𝑗 = 𝑣

∗
1 𝑗𝑣1𝑖 = 𝑤 𝑗𝑖 . (2.2.3)

Then, 𝜑 : 𝑀𝑘 (C) → A de�ned on the matrix units like 𝑒𝑖 𝑗 ↦→ 𝑤𝑖 𝑗 respects
the ∗-property since by (2.2.3) it follows that 𝜑 (𝑒𝑖 𝑗 )∗ = 𝜑 (𝑒∗𝑖 𝑗 ). Furthermore,
since

𝑤𝑖 𝑗𝑤𝑘𝑙 = 𝑣
∗
1𝑖𝑣1 𝑗𝑣

∗
1𝑘𝑣1𝑙 = 𝑣1𝑖𝛿 𝑗𝑘𝑣

∗
1𝑙 = 𝛿 𝑗𝑘𝑤𝑖𝑙
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and
𝜑 (𝑒𝑖 𝑗𝑒𝑘𝑙 ) = 𝜑 (𝛿 𝑗𝑘𝑒𝑖𝑙 ) = 𝛿 𝑗𝑘𝑤𝑖𝑙

by (2.2.1), it follows that 𝜑 is multiplicative, and hence a ∗-isomorphism.

Corollary 2.18. If A is a non-zero �nite-dimensional 𝐶∗-algebra, it is ∗-
isomorphic to a direct sum of matrix algebras

⊕𝑘

𝑖=1𝑀𝑛𝑖 (C).

Proof. The claim follows by Proposition 2.14 and Proposition 2.17.

This result concludes the classi�cation of �nite-dimensional 𝐶∗-algebras.
Before proceeding further to study concepts in the theory of 𝐶∗-algebras, we
state the following result, which will be helpful for our future discussions in
Section 3.3:

Proposition 2.19. Let 𝐴, 𝐵 ⊆ 𝑀𝑛 (C) be commuting 𝐶∗-subalgebras which
generate 𝑀𝑛 (C). Then, there are isomorphisms 𝐴 � 𝑀𝑛𝐴 (C) ⊗ 1𝑀𝑛𝐵

(C) and
𝐵 � 1𝑀𝑛𝐴

(C) ⊗ 𝑀𝑛𝐵 (C) such that 𝑛𝐴 · 𝑛𝐵 = 𝑛 and

𝑀𝑛𝐴 (C) ⊗ 1𝑀𝑛𝐵
(C), 1𝑀𝑛𝐴

(C) ⊗ 𝑀𝑛𝐵 (C) ⊆ 𝑀𝑛𝐴 (C) ⊗ 𝑀𝑛𝐵 (C).

Proof. Recall by Proposition 2.15 that 𝑀𝑛 (C) is simple, and since 𝐴 and
𝐵 commute it follows that the center of 𝐴 and 𝐵 are both trivial. So by
Proposition 2.14 both 𝐴 and 𝐵 are simple and by Proposition 2.17 there exist
integers 𝑛𝐴 and 𝑛𝐵 such that 𝐴 � 𝑀𝑛𝐴 (C) and 𝐵 � 𝑀𝑛𝐵 (C).

Furthermore, we recall that a matrix algebra has a basis given by the set of
matrix units, so let (𝑒𝑖 𝑗 )𝑖 𝑗 be the matrix units in 𝐴 given by the isomorphism,
and similarly (𝑓𝑘𝑙 )𝑘𝑙 the matrix units in 𝐵. Then, since 𝐴 and 𝐵 commute and
generate𝑀𝑛 (C), this yields a system of matrix units (𝑒𝑖 𝑗 𝑓𝑘𝑙 )(𝑖𝑘),( 𝑗𝑙) in𝑀𝑛 (C).
We thus obtain the desired isomorphisms.

§ 2.3. The GNS representation. We start by giving a summary of the
Gelfand-Neumark-Segal construction, or GNS construction, which describes
a correspondence between so-called cyclic representations of a 𝐶∗-algebra
and its states. As we will see, given a state 𝜑 ∈ S(A), there exists a ∗-
representation 𝜋 of A on a Hilbert space H with cyclic vector 𝜉 uniquely
determined up to unitary conjugation by the relation 𝜑 (𝑎) = 〈𝜋 (𝑎)𝜉, 𝜉〉.
Arguably, the most useful property of this construction is to show that every
𝐶∗-algebra can be considered as a 𝐶∗-subalgebra of bounded operators on
some Hilbert space.

We �rst state the necessary de�nitions:
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De�nition 2.20. Let A be a 𝐶∗-algebra. A ∗-representation of A is a pair
(H , 𝜑) whereH is a Hilbert space and𝜑 : A → B(H) is a ∗-homomorphism.
If 𝜑 is injective, (H , 𝜑) is said to be faithful.

De�nition 2.21. If (H , 𝜑) is a ∗-representation of a 𝐶∗-algebra A, a vector
𝜉 ∈ H is said to be cyclic for (H , 𝜑) if 𝜑 (A)𝜉 is dense inH . If (H , 𝜑) admits
a cyclic vector, we say that it is a cyclic representation.

We will here omit the details of the proof of the GNS construction but only
present its steps. The interested reader can consult [14,17] for proofs and
further details.

Let A be a 𝐶∗-algebra, and 𝜑 a state on A. Then, the set 𝑁 = {𝑎 ∈ A |
𝜑 (𝑎∗𝑎) = 0} is a closed subspace of A, so A/𝑁 is a vector space on which
we can de�ne an inner product

〈𝑎 + 𝑁,𝑏 + 𝑁 〉 = 𝜑 (𝑏∗𝑎).

The completion of A/𝑁 is a Hilbert space, denoted by H𝜑 . On B(H𝜑 ) we
can de�ne an operator 𝜋𝜑 (𝑎) by

𝜋𝜑 (𝑎) (𝑏 + 𝑁 ) = 𝑎𝑏 + 𝑁,

which extends to a cyclic ∗-representation of A on H𝜑 , 𝑎 ↦→ 𝜋𝜑 (𝑎) with
cyclic vector 𝜉𝜑 satisfying 〈

𝜋𝜑 (𝑎)𝜉𝜑 , 𝜉𝜑
〉
= 𝜑 (𝑎) (2.3.1)

for all 𝑎 ∈ A.

Given a state 𝜑 , the three elements H𝜑 , 𝜋𝜑 , and 𝜉𝜑 are used to denote the
three components of the GNS construction, and we refer to them as the GNS
representation of 𝜑 . Notably, the GNS representation is uniquely determined
by the identity (2.3.1):

Proposition 2.22. Let 𝜑 be a state of a 𝐶∗-algebra A, 𝜋 a ∗-representation
of A on a Hilbert space H with a unit cyclic vector 𝜉 satisfying (2.3.1) with
𝜑, 𝜋 , and 𝜉 . Then if H𝜑 , 𝜋𝜑 , 𝜉𝜑 are given by the GNS construction, there is an
isomorphism 𝑢 : H𝜑 → H such that

𝜋 (𝑎) = 𝑢𝜋𝜑 (𝑎)𝑢∗,

for all 𝑎 ∈ A, and 𝜉 = 𝑢𝜉𝜑 .

So �nally, if we for a𝐶∗-algebra have a cyclic representation 𝜋 and a vector 𝜉
satisfying (2.3.1), then 𝜋 is equivalent to the GNS representation of 𝜑 .

Note that the GNS construction yields a way to describe a quantum state
given by a state 𝜑 ∈ S(A) in the traditional way as a unit vector 𝜉 in a Hilbert
space 𝐻 by �nding 𝜉 , 𝐻 and 𝜋 satisfying (2.3.1) for all 𝑎 ∈ A.
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§ 2.4. Universal 𝐶∗-algebras. As we have seen when discussing matrix
algebras and their matrix units, it is useful to describe a 𝐶∗-algebra in terms
of a set of generators. The idea of constructing a 𝐶∗-algebra from a set
of generators and relations between them by �nding a suitable norm and
completing it results in the theory of universal 𝐶∗-algebras, as we will see.

As an initial bit of notation, given a set of elements 𝑆 = {𝑥𝑖 | 𝑖 ∈ 𝐼 }, we let
C[𝑆 ∪ 𝑆∗] denote the ∗-algebra freely generated by 𝑆 and its formal adjoint
𝑆∗ = {𝑥∗𝑖 | 𝑖 ∈ 𝐼 }. Note that any 𝑝 ∈ C[𝑆 ∪ 𝑆∗] can be represented as a
polynomial in variables 𝑆 and 𝑆∗, and if 𝑝 = 0 it can be interpreted as an
algebraic relation of elements in 𝑆 and 𝑆∗.

De�nition 2.23. Let A be a 𝐶∗-algebra. A seminorm 𝑝 : A → [0,∞) is
called a 𝐶∗-seminorm if it holds that

• 𝑝 (𝑥∗𝑥) = 𝑝 (𝑥)2 for all 𝑥 ∈ A, and
• 𝑝 (𝑥𝑦) ≤ 𝑝 (𝑥)𝑝 (𝑦) for all 𝑥,𝑦 ∈ A.

De�nition 2.24. Let 𝑆 be a set of generators subject to relations𝑅 ⊆ C[𝑆∪𝑆∗]
such that for every 𝑠 ∈ 𝑆 there is 𝑐𝑠 ≥ 0 such that for every ∗-representation
𝜋 : C[𝑆 ∪ 𝑆∗] → B(H) with 𝜋 (𝑅) ⊆ {0}, we have that | |𝜋 (𝑠) | | ≤ 𝑐𝑠 . Then,
the universal 𝐶∗-algebra with generators 𝑆 and relations 𝑅 is denoted by
𝐶∗(𝑆 | 𝑅) and is de�ned as the separation-completion of C[𝑆 ∪ 𝑆∗] with
respect to the 𝐶∗-seminorm

| |𝑥 | | = sup {| |𝜋 (𝑥) | | | 𝜋 : C[𝑆 ∪ 𝑆∗] → B(H), 𝜋 (𝑅) ⊆ {0}} .

Note that the kernel of this seminorm contains the ideal (𝑅) generated by
the relations 𝑅, by de�nition. In this way, the universal 𝐶∗-algebra is the
completion of the quotient of C[𝑆 ∪ 𝑆∗] by an ideal containing (𝑅). The
universal 𝐶∗-algebra satis�es the following universal property:

Proposition 2.25. LetA be a𝐶∗-algebra, and denote by𝐶∗(𝑆 | 𝑅) the universal
𝐶∗-algebra associated with generators 𝑆 and relations𝑅. Given amap 𝑓 : 𝑆 → A
such that the images of elements in 𝑆 satisfy the relations 𝑅, there exists a unique
∗-homomorphism 𝜋 : 𝐶∗(𝑆 | 𝑅) → A sending every 𝑠 ∈ 𝑆 to its image in A
under 𝑓 .

Proof. Let 𝜋0 : C[𝑆 ∪ 𝑆∗] → B be the ∗-homomorphism sending each gener-
ator 𝑠 ∈ 𝑆 to its image 𝑓 (𝑠) ∈ B under 𝑓 . Indeed, such 𝜋0 exists since by the
property ofC[𝑆 ∪𝑆∗] being a polynomial ring, the evaluation polynomial is a
homomorphism. Note that (𝑅) ⊆ ker(𝜋0) since the relations in 𝑅 are satis�ed
in A by assumption, so that | |𝜋0(𝑥) | | ≤ | |𝑥 | | for all 𝑥 ∈ C[𝑆 ∪ 𝑆∗]. Thus,
the map is contractive and hence extends uniquely to a ∗-homomorphism
𝜋 : 𝐶∗(𝑆 | 𝑅) → A on the completion of the quotient.
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Example 2.26. We return for a moment to our initial motivation for the
de�nition of the universal 𝐶∗-algebra, i.e. matrix algebras and their matrix
units, and show that, as expected, the universal𝐶∗-algebra generated by such
matrix units, with the proper relations, is isomorphic to the matrix algebra.

Let 𝑒𝑖 𝑗 denote the matrix units that we have seen in Section 2.2, and consider
the 𝐶∗-algebra

𝐶∗(𝑥𝑖 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛 | 𝑥𝑖 𝑗𝑥𝑘𝑙 = 𝛿 𝑗𝑘𝑥𝑖𝑙 , 𝑥∗𝑖 𝑗 = 𝑥 𝑗𝑖, 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑛).

Since
(𝑥∗𝑖 𝑗𝑥𝑖 𝑗 )2 = 𝑥∗𝑖 𝑗𝑥𝑖 𝑗𝑥 𝑗 𝑗 = 𝑥∗𝑖 𝑗𝑥𝑖 𝑗 ,

it follows that 𝑥∗𝑖 𝑗𝑥𝑖 𝑗 is a projection, so 1 = | |𝑥∗𝑖 𝑗𝑥𝑖 𝑗 | | = | |𝑥𝑖 𝑗 | |, or | |𝑥𝑖 𝑗 | | =
0. Thus, this universal 𝐶∗-algebra exists. Then, by the universal property,
there exists a ∗-homomorphism 𝜋 from this 𝐶∗-algebra to𝑀𝑛 (C), such that
𝜋 (𝑥𝑖 𝑗 ) = 𝑒𝑖 𝑗 . By the relations on the 𝑥𝑖 𝑗 , the ∗-algebra generated by these
elements is at most 𝑛2-dimensional since the {𝑥𝑖 𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑛} is a spanning
set. Thus, the universal 𝐶∗-algebra also has dimension at most 𝑛2, and since
𝜋 maps it onto𝑀𝑛 (C), it follows that 𝜋 is an isomorphism. In particular, this
also shows that the universal 𝐶∗-algebra is non-trivial. Since both spaces are
𝑛2-dimensional, it follows that they are isomorphic.

§ 2.5. Group theoretical constructions. An instrumental group theoretic
construction for our purposes is the so-called Higman-Neumann-Neumann
(HNN) extension, which allows embedding a given group𝐻 into a larger group
𝐺 such that two isomorphic subgroups of 𝐻 end up being conjugate in 𝐺 .
The extension works as follows:

De�nition 2.27. Let 𝐻 be a �nitely presented group 𝐻 = 〈𝑆 | 𝑅〉 and 𝛼 :
𝐾0 → 𝐾1 an isomorphism between subgroups 𝐾0 and 𝐾1 of𝐻 . Then, the HNN
extension of 𝐻 is the group with presentation

𝐺 =
〈
𝑆 ∪ {𝑡} | 𝑅 ∪ {𝑡𝑘𝑡−1 = 𝛼 (𝑘), for all 𝑘 ∈ 𝐾𝑜}

〉
,

where 𝑡 is a symbol not in 𝑆 .

It can be shown that 𝐻 is embedded in 𝐺 [16], Theorem 2.1.

For our discussions, the HNN extension of a speci�c group will be of interest:
we de�ne Higman’s group

𝐻 =
〈
𝑎, 𝑏, 𝑐, 𝑑 | 𝑎𝑏𝑎−1 = 𝑏2, 𝑏𝑐𝑏−1 = 𝑐2, 𝑐𝑑𝑐−1 = 𝑑2, 𝑑𝑎𝑑−1 = 𝑎2

〉
. (2.5.1)

Two properties of this group stand out – its generators have in�nite or-
der, i.e., it has no non-trivial �nite quotient and thus no non-trivial linear
representations. Following [12] and [9] we now prove this.



2.5. Group theoretical constructions 15

De�nition 2.28. A group 𝐺 is said to be residually �nite if for every non-
identity element 𝑔 ∈ 𝐺 , there is a homomorphism 𝜙 : 𝐺 → 𝐻 such that 𝐻 is
�nite and 𝜙 (𝑔) ≠ 1. Equivalently, the intersection of all its normal subgroups
of �nite index is trivial.

The property of a group being residually �nite will be crucial in the proof
of the main result of this text, given in Section 4.2. For this purpose, we
note that a group without non-trivial �nite quotients also does not have any
non-trivial linear representations.

Lemma 2.29. If 𝑛 is an integer greater than 1, the least prime factor of 𝑛 is
smaller than the least prime factor of 2𝑛 − 1.

Proof. Let 𝑝 be a prime factor of 2𝑛 − 1, and 𝑟 the least positive integer such
that 𝑝 divides 2𝑟 − 1 and has a prime factor 𝑞. In particular, 2 has order
𝑟 in (Z/𝑝Z)∗, and since the order of any element necessarily must divide
| (Z/𝑝Z)∗ | = 𝑝 − 1, it follows that 𝑟 divides 𝑝 − 1. Since 2𝑛 ≡ 1 (mod 𝑝) the
order 𝑟 of 2 in (Z/𝑝Z)∗ divides 𝑛. Furthermore, since 𝑞 < 𝑝 it follows that 𝑞
is a prime factor of 𝑛. Thus, the statement follows.

Proposition 2.30. All elements 𝑎, 𝑏, 𝑐 , and 𝑑 in a group satisfying the relations
of Higman’s group are either trivial or have in�nite order.

Proof. Suppose 𝑎, 𝑏, 𝑐, 𝑑 are elements of a �nite group that are not all equal
to 1 and which satisfy the relations of Higman’s group. Let 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑 be
the order of 𝑎, 𝑏, 𝑐, 𝑑 , respectively. Then, 𝑎𝑛𝑏𝑎−𝑛 = 𝑏2

𝑛 so that 𝑛𝑏 divides
2𝑛𝑎 − 1, and similarly 𝑛𝑐 | 2𝑛𝑏 − 1, 𝑛𝑑 | 2𝑛𝑐 − 1, and 𝑛𝑎 | 2𝑛𝑑 − 1. Thus, either
𝑛𝑎 = 𝑛𝑏 = 𝑛𝑐 = 𝑛𝑑 = 1 or all orders are greater than 1. So we conclude that if
the order of one of the generators is �nite, then all have �nite order.

By assumption, 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑 > 1. By symmetry of the relations, assume
without loss of generality that the smallest prime factor of 𝑛𝑎𝑛𝑏𝑛𝑐𝑛𝑑 divides
𝑛𝑏 . However, since 𝑛𝑏 was shown to divide 2𝑛𝑎 − 1, by Lemma 2.29, there
exists a smaller integer dividing 𝑛𝑎 . This is a contradiction, so it follows that
all generators have in�nite order.

Proposition 2.31. Higman’s group does not have any non-trivial linear repre-
sentations. In other words, Higman’s group is non-residually �nite.

Proof. By Proposition 2.30, Higman’s group has no non-trivial �nite quotients.
By Mal’cev’s theorem, any �nitely generated linear group is residually �nite;
see for example [22]. In particular, any �nitely generated linear group has a
non-trivial �nite quotient. Thus, the statement follows.
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3. Non-local games and qantum correlations

We present the fundamental de�nitions and theory of non-local games and the
correlation sets arising from di�erent strategies for such games. Notably, non-
local games can be used as a theoretical tool to demonstrate the computational
advantage of quantum entanglement as opposed to classical computational
resources. In what follows, some familiarity with the basic notions of quantum
information theory presented in Appendix A is needed.

§ 3.1. Non-local games. We will here consider only non-local games with
two players understood as being physically separated at a great distance, thus
making communication during the game unfeasible. In this section, we follow
the notation in [18].

In what follows, let [𝑛] denote the set of integers from 1 to 𝑛, i.e. [𝑛] =

{1, . . . , 𝑛}.

De�nition 3.1. A two-player non-local game G(𝑉 , 𝜋) with distinguished
entities 𝐴 and 𝐵 consists of the following data:

• Question sets [𝑛𝐴] and [𝑛𝐵],
• Answer sets [𝑚𝐴] and [𝑚𝐵],
• A probability distribution 𝜋 on [𝑛𝐴] × [𝑛𝐵],
• A function 𝑉 : [𝑚𝐴] × [𝑚𝐵] × [𝑛𝐴] × [𝑛𝐵] → {0, 1}.

As a matter of convention, we write 𝑉 (𝑎, 𝑏 | 𝑥,𝑦) in place of 𝑉 (𝑎, 𝑏, 𝑥,𝑦),
where (𝑎, 𝑏) ∈ [𝑚𝐴] × [𝑚𝐵] and (𝑥,𝑦) ∈ [𝑛𝐴] × [𝑛𝐵].

More intuitively, a non-local game takes place between two players, frequently
referred to as Alice and Bob, and a referee. The referee chooses the function𝑉 ,
which determines the required conditions for Alice and Bob to win the game.
Furthermore, the referee distributes a pair of questions (𝑥,𝑦) ∈ [𝑛𝐴] × [𝑛𝐵],
chosen according to the probability distribution 𝜋 , to the players, sending 𝑥
to Alice and 𝑦 to Bob.

At this point, the players cannot communicate and should return suitably
chosen answers 𝑎 ∈ [𝑚𝐴] and 𝑏 ∈ [𝑚𝐵], respectively, to the referee. If, upon
evaluation, the referee �nds that 𝑉 (𝑎, 𝑏 | 𝑥,𝑦) = 1, the players win the game.

Presented with a non-local game, in order to optimize the probability of
winning, Alice and Bob may decide to use a common strategy, which they
can decide on beforehand. In particular, we will make a distinction between
classical and quantum strategies.

The most straightforward classical strategy is for the players to each choose
a function 𝑓𝐴 : [𝑛𝐴] → [𝑚𝐴] and 𝑓𝐵 : [𝑛𝐵] → [𝑚𝐵] which determines their
respective output given any input pair. We refer to this as a deterministic
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Figure 1: Model of a two-player non-local game with a shared quantum state.

strategy. Alternatively, the players could use randomization to select their
answers, which can be understood as selecting a probability distribution over
deterministic strategies. Such a strategy is called probabilistic.

Conversely, the players commit to using quantum entanglement as a shared
computational resource in a quantum strategy. In particular, Alice and Bob
now share an entangled quantum state. The output is given by applying
projection-valued measures (PVMs) corresponding to the received question.
Here, we will distinguish between two types of quantum strategies.

De�nition 3.2. In the tensor-product model of a non-local game, separate
Hilbert spaces H𝐴 and H𝐵 are associated with Alice and Bob, respectively.
The shared quantum state |𝜓 〉 belongs to the space H = H𝐴 ⊗ H𝐵 . For each
𝑥 ∈ [𝑛𝐴] is de�ned a PVM (𝑃𝑥𝑎 )

𝑚𝐴

𝑎=1 on H𝐴, and for each 𝑦 ∈ [𝑛𝐵] a PVM
(𝑄𝑦

𝑏
)𝑚𝐵

𝑏=1 on H𝐵 .

Then, a joint measurement is given by (𝑃𝑥𝑎 ⊗ 𝑄𝑦
𝑏
)(𝑎,𝑏)∈[𝑚𝐴]×[𝑚𝐵] , which can

be seen to be a PVM on H . The probability of observing (𝑎, 𝑏) given the
measurement corresponding to the input (𝑥,𝑦) is equal to 〈𝜓 | 𝑃𝑥𝑎 ⊗ 𝑄𝑦

𝑏
|𝜓 〉,

and we de�ne the function

𝑝 (𝑎, 𝑏 | 𝑥,𝑦) = 〈𝜓 | 𝑃𝑥𝑎 ⊗ 𝑄𝑦
𝑏
|𝜓 〉 , (3.1.1)

for every (𝑎, 𝑏, 𝑥,𝑦) ∈ [𝑚𝐴] × [𝑚𝐵] × [𝑛𝐴] × [𝑛𝐵].

De�nition 3.3. In the commuting-operator model of a non-local game, the
shared quantum state |𝜓 〉 and PVMs (𝑃𝑥𝑎 )

𝑚𝐴

𝑎=1 and (𝑄𝑦
𝑏
)𝑚𝐵

𝑏=1 given (𝑥,𝑦), all
belong to a shared Hilbert space H , on which the operators 𝑃𝑥𝑎 and 𝑄𝑦

𝑏
are

taken to be commuting for all (𝑎, 𝑏) ∈ [𝑛𝐴] × [𝑛𝐵]. Then, a simple proof
shows that the joint measurement (𝑃𝑥𝑎𝑄

𝑦

𝑏
)(𝑎,𝑏)∈[𝑚𝐴]×[𝑚𝐵] is also a PVM, and,

as before, the probability of observing the response (𝑎, 𝑏) on input (𝑥,𝑦) is
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given by the function

𝑝 (𝑎, 𝑏 | 𝑥,𝑦) = 〈𝜓 | 𝑃𝑥𝑎𝑄
𝑦

𝑏
|𝜓 〉 . (3.1.2)

Example 3.4 (The CHSH game). One of the more famous examples of non-
local games is the so-called CHSH game, named after physicists John Clauser,
Michael Horne, Abner Shimony, and Richard Holt. The CHSH game provided
a model to study quantum entanglement and was used to show that it is
impossible to simulate this phenomenon using classical randomness. The
interested reader may consult [4] for a further discussion of this signi�cant
result.

In this setting, [𝑛𝐴] = [𝑛𝐵] = [𝑚𝐴] = [𝑚𝐵] = {0, 1} a set, 𝜋 is the uniform
probability distribution on [𝑛𝐴] × [𝑛𝐵], and

𝑉 (𝑎, 𝑏 | 𝑥,𝑦) =
{
1 if 𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦
0 otherwise.

As 𝑥 ∧𝑦 = 1 if and only if 𝑥 = 𝑦 = 1 and 𝑎⊕𝑏 = 1 if and only if 𝑎 ≠ 𝑏, a simple
deterministic strategy could be for Alice and Bob to both always return either
0 or 1. A strategy in which they instead return distinct answers only results
in a win if 𝑥 = 𝑦 = 1. Since 𝜋 is uniform, the former strategy leads to the
players winning the CHSH game in 3

4 of cases. By enumeration, it can be
shown that no better deterministic strategy exists.

Now let |𝜓 〉 = 1√
2 |00〉 + |11〉 ∈ H𝐴 ⊗H𝐵 = C2 ⊗C2 be the Bell pair discussed

in Example A.7, and de�ne projection-valued measures:

𝑃00 =

[
1 0
0 0

]
, 𝑃01 =

[
0 0
0 1

]
if 𝑥 = 0, and

𝑃10 =
1
2

[
1 1
1 1

]
, 𝑃11 =

1
2

[
1 −1
−1 1

]
if 𝑥 = 1.

Likewise if 𝑦 = 0 we de�ne

𝑄0
0 =

[
cos2 𝜋8 cos 𝜋8 sin

𝜋
8

cos 𝜋8 sin
𝜋
8 sin2 𝜋8

]
, 𝑄0

1 =

[
cos2 5𝜋

8 cos 5𝜋
8 sin 5𝜋

8
cos 5𝜋

8 sin 5𝜋
8 sin2 5𝜋

8

]
and if 𝑦 = 1 the PVM

𝑄1
0 =

[
cos2 −𝜋

8 cos −𝜋
8 sin −𝜋

8
cos −𝜋

8 sin −𝜋
8 sin2 −𝜋

8

]
, 𝑄1

1 =

[
cos2 3𝜋

8 cos 3𝜋
8 sin 3𝜋

8
cos 3𝜋

8 sin 3𝜋
8 sin2 3𝜋

8

]
.

In this case, if for instance 𝑥 = 𝑦 = 0, the probability that Alice and Bob win
the game is equal to 〈𝜓 | 𝑃00 ⊗ 𝑄0

0 |𝜓 〉 + 〈𝜓 | 𝑃01 ⊗ 𝑄0
1 |𝜓 〉 = cos2 𝜋8 .
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§ 3.2. Correlation sets. Given a non-local game, we want to compare dif-
ferent strategies and their winning probabilities. For this reason, we now
consider in greater detail the functions (3.1.1) and (3.1.2), called correlations.
We make the following de�nition:

De�nition 3.5. A function 𝑝 ∈ R[𝑚𝐴]×[𝑚𝐵]×[𝑛𝐴]×[𝑛𝐵] is called a correlation of
a particular strategy if for every (𝑎, 𝑏, 𝑥,𝑦) ∈ [𝑚𝐴] × [𝑚𝐵] × [𝑛𝐴] × [𝑛𝐵], the
number 𝑝 (𝑎, 𝑏 | 𝑥,𝑦) is the probability that the referee of the corresponding
non-local game sees output (𝑎, 𝑏) on input (𝑥,𝑦). We call the collection
(𝑝 (𝑎, 𝑏 | 𝑥,𝑦)) ⊂ R[𝑚𝐴]×[𝑚𝐵]×[𝑛𝐴]×[𝑛𝐵] a correlation matrix.

In particular, based on what we have seen in (3.1.1) and (3.1.2) we de�ne
correlations corresponding to the di�erent quantum strategies as follows:

De�nition 3.6. A function 𝑝 ∈ R[𝑚𝐴]×[𝑚𝐵]×[𝑛𝐴]×[𝑛𝐵] is called a tensor-product
correlation if there exists Hilbert spaces H𝐴 and H𝐵 , a unit vector |𝜓 〉 ∈
H𝐴 ⊗ H𝐵 , and PVMs (𝑃𝑥𝑎 )

𝑚𝐴

𝑎=1 on H𝐴 and (𝑄𝑦
𝑏
)𝑚𝐵

𝑏=1 on H𝐵 for every 𝑥 ∈ [𝑛𝐴]
and 𝑦 ∈ [𝑛𝐵], respectively, such that

𝑝 (𝑎, 𝑏 | 𝑥,𝑦) = 〈𝜓 | 𝑃𝑥𝑎 ⊗ 𝑄𝑦
𝑏
|𝜓 〉

for all (𝑎, 𝑏, 𝑥,𝑦) ∈ [𝑚𝐴] × [𝑚𝐵] × [𝑛𝐴] × [𝑛𝐵].

De�nition 3.7. A function 𝑝 ∈ R[𝑚𝐴]×[𝑚𝐵]×[𝑛𝐴]×[𝑛𝐵] is called a commuting
operator correlation if there exists a Hilbert spaceH with a unit vector𝜓 ∈ H ,
and PVMs (𝑃𝑥𝑎 )

𝑚𝐴

𝑎=1 and (𝑄𝑦
𝑏
)𝑚𝐵

𝑏=1 for every 𝑥 ∈ [𝑛𝐴] and 𝑦 ∈ [𝑛𝐵], respectively,
such that [𝑃𝑥𝑎 , 𝑄

𝑦

𝑏
] = 0 and

𝑝 (𝑎, 𝑏 | 𝑥,𝑦) = 〈𝜓 | 𝑃𝑥𝑎𝑄
𝑦

𝑏
|𝜓 〉

for all (𝑎, 𝑏, 𝑥,𝑦) ∈ [𝑚𝐴] × [𝑚𝐵] × [𝑛𝐴] × [𝑛𝐵].

Given a non-local game, a natural question to ask is what the optimal proba-
bility of winning the game is, and which strategy Alice and Bob should use
to obtain it. This motivates the following de�nition:

De�nition 3.8. The winning probability of a correlation 𝑝 for a non-local
game G(𝑉 , 𝜋), is given by

𝑛𝐴∑︁
𝑥=1

𝑛𝐵∑︁
𝑦=1

𝜋 (𝑥,𝑦)
𝑚𝐴∑︁
𝑎=1

𝑚𝐵∑︁
𝑏=1

𝑉 (𝑎, 𝑏 | 𝑥,𝑦)𝑝 (𝑎, 𝑏 | 𝑥,𝑦).

The value of G(𝑉 , 𝜋) with a given strategy, is de�ned as the supremum of
the winning probability taken over all correlations. A strategy is said to be
perfect if it has winning probability 1.
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Example 3.9. We continue our discussion of the CHSH game, presented
in Example 3.4. Note �rst that every deterministic strategy corresponds to
choosing a pair of functions 𝑓𝐴 : [𝑛𝐴] → [𝑚𝐴] and 𝑓𝐵 : [𝑛𝐵] → [𝑚𝐵]. Given
input 𝑥 ∈ [𝑛𝐴], the function 𝑓𝐴 can take on four di�erent values:

𝑥 ↦→ 0, 𝑥 ↦→ 1, 𝑥 ↦→ 𝑥, or 𝑥 ↦→ ¬𝑥,

and similarly for 𝑓𝐵 . This results in 16 di�erent strategies with corresponding
correlation matrices. For instance, if 𝑓𝐴 = 𝑓𝐵 ≡ 0 we have the correlation

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


for which we may compute the winning probability 3/4, as expected. Simple
case analysis now shows that the classical value of the CHSH game is 3/4.

We now consider the tensor-product strategy described in Example 3.4. For
this strategy, we have the following correlation matrix:

1
2


cos2 𝜋8 cos2 𝜋8

1
2 + cos 𝜋8 sin

𝜋
8

1
2 − cos 𝜋8 sin

𝜋
8

sin2 𝜋8 sin2 𝜋8
1
2 − cos 𝜋8 sin

𝜋
8

1
2 + cos 𝜋8 sin

𝜋
8

sin2 𝜋8 sin2 𝜋8
1
2 − cos 𝜋8 sin

𝜋
8

1
2 + cos 𝜋8 sin

𝜋
8

cos2 𝜋8 cos2 𝜋8
1
2 + cos 𝜋8 sin

𝜋
8

1
2 − cos 𝜋8 sin

𝜋
8

 .
Then, it follows that the tensor-product value of the CHSH game is at least

1
2 + 1

2
√
2
= cos2 𝜋8 ≈ 0.85,

so the winning probability of this quantum strategy is indeed higher than for
any classical strategy in this case. That this value is indeed also the quantum
value of the CHSH game is a result known as Tsirelson’s bound, the proof of
which is found in [3].

§ 3.3. Hierarchy of correlation sets – known results. We are particularly
interested in comparing the correlation sets arising from tensor-product
and commuting-operator strategies. Given (𝑛𝐴, 𝑛𝐵,𝑚𝐴,𝑚𝐵), the set of
tensor-product correlations on �nite-dimensional Hilbert spaces is de-
noted by 𝐶𝑞 (𝑛𝐴, 𝑛𝐵,𝑚𝐴,𝑚𝐵). If the Hilbert spaces are not necessarily
�nite-dimensional, this set is denoted by 𝐶𝑞𝑠 (𝑛𝐴, 𝑛𝐵,𝑚𝐴,𝑚𝐵). Furthermore,
we denote the closure of 𝐶𝑞𝑠 by 𝐶𝑞𝑎 (𝑛𝐴, 𝑛𝐵,𝑚𝐴,𝑚𝐵). Lastly, the set of
commuting-operator correlations is denoted by 𝐶𝑞𝑐 (𝑛𝐴, 𝑛𝐵,𝑚𝐴,𝑚𝐵). Often,
when the tuple (𝑛𝐴, 𝑛𝐵,𝑚𝐴,𝑚𝐵) is clear, we will drop it from the notation.
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As we have seen in Example 3.9, a question of particular interest is whether or
not we have equality between di�erent correlation sets. In the same example,
we saw that the set of classical correlations is not necessarily equal to the set
of quantum tensor-product correlations. Boris Tsirelson �rst considered the
extended question of comparing correlations of di�erent quantum strategies
in [3], in which Tsirelson claimed the equality of quantum correlation sets
corresponding to di�erent quantum strategies. Upon realizing that the claim
needed a complete proof, Tsirelson posted the open question online [20].

Since the publication of the question, the following hierarchy of correlation
sets have been the subject of intense study:

𝐶𝑞 ⊆ 𝐶𝑞𝑠 ⊆ 𝐶𝑞𝑎 ⊆ 𝐶𝑞𝑐 .

For any two correlation sets in the above hierarchy, we can ask whether or
not there is equality – this is known as a Tsirelson problem.

Considering the particular �nite-dimensional tensor-product strategy de-
scribed in Example 3.4, we might ask if there exists a commuting-operator
strategy which yields a greater value. It is clear that any tensor-product
strategy with projections (𝑃𝑥𝑎 )

𝑚𝐴

𝑎=1 and (𝑄𝑦
𝑏
)𝑚𝐵

𝑏=1 in �nite-dimensional Hilbert
spacesH𝐴 andH𝐵 , respectively, can be extended to a commuting-operator
strategy by considering (𝑃𝑥𝑎 ⊗ 1)𝑚𝐴

𝑎=1 and (1 ⊗ 𝑄𝑦
𝑏
)𝑚𝐵

𝑏=1, both easily seen to be
PVMs in the �nite-dimensional Hilbert spaceH = H𝐴 ⊗H𝐵 , such that 𝑃𝑥𝑎 ⊗1
and 1 ⊗ 𝑄𝑦

𝑏
commutes for all (𝑎, 𝑏) ∈ [𝑛𝐴] × [𝑛𝐵]. This shows that 𝐶𝑞 ⊆ 𝐶𝑞𝑐 ,

so there at least exists a commuting-operator strategy with the same value as
the strategy seen in Example 3.4.

The reverse inclusion does not hold in general: Slofstra showed in [18]
that 𝐶𝑞𝑠 ≠ 𝐶𝑞𝑐 and hence also that 𝐶𝑞 ≠ 𝐶𝑞𝑐 . It is this Tsirelson problem
we consider in this text. However, concerning ourselves only with �nite-
dimensional Hilbert spaces for a moment, Tsirelson sketched a proof in [21]
that equality holds in this case. We here present a more detailed version of
the proof, culminating in Corollary 3.13. In what follows, we use the word
state in the context of 𝐶∗-algebras, as given in Section 2.1.

Lemma 3.10. Let 𝜑 : 𝑀𝑛 (C) → C be a state. Then there is a positive de�nite
matrix 𝑑 ∈ 𝑀𝑛 (C) such that 𝜑 (𝑎) = 𝑇𝑟 (𝑎𝑑) for all 𝑎 ∈ 𝑀𝑛 (C).

Proof. De�ne 𝑑 as the matrix with entries 𝑑𝑖 𝑗 := 𝜑 (𝑒 𝑗𝑖). For any 1 ≤ 𝑘, 𝑙 ≤ 𝑛,
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we �nd that

𝑇𝑟 (𝑒𝑘𝑙𝑑) =
∑︁
𝑖, 𝑗

𝑑𝑖 𝑗𝑇𝑟 (𝑒𝑘𝑙𝑒𝑖 𝑗 )

=

𝑛∑︁
𝑗=1
𝑑𝑙 𝑗𝑇𝑟 (𝑒𝑘 𝑗 )

= 𝑑𝑙𝑘 = 𝜑 (𝑒𝑘𝑙 ),

by (2.2.1). Furthermore, 𝑑 is Hermitian since 𝑑𝑖 𝑗 = 𝜑 (𝑒 𝑗𝑖) = 𝜑 (𝑒∗𝑗𝑖) = 𝜑 (𝑒𝑖 𝑗 ) =
𝑑 𝑗𝑖 . Let 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ C𝑛 , then

𝑥∗𝑑𝑥 =
∑︁
𝑖, 𝑗

𝑥𝑖𝑥 𝑗𝑑𝑖 𝑗

=
∑︁
𝑖, 𝑗

𝜑 (𝑥𝑖𝑥 𝑗𝑒 𝑗𝑖)

= 𝜑

((
𝑛∑︁
𝑖

𝑥𝑖𝑒1𝑖

)∗ (
𝑛∑︁
𝑖

𝑥𝑖𝑒1𝑖

))
≥ 0,

since 𝜑 is a state. Thus, 𝑑 is positive de�nite.

Lemma 3.11. Every pure state on 𝑀𝑛 (C) is unitarily conjugate to the state
𝜏 (𝑎) = 𝑇𝑟 (𝑎𝑒11), whose GNS construction is the standard representation𝑀𝑛 (C)
on C𝑛 with cyclic vector 𝑒1.

Proof. By the spectral theorem for positive operators and Lemma 3.10 it
follows that for every pure state 𝜑 , there exist a unitary𝑢 such that 𝜑 (𝑢∗𝑎𝑢) =
𝑇𝑟 (𝑎𝑒11).

Under the standard representation of𝑀𝑛 (C) onC𝑛 we see that 〈𝑎𝑒1, 𝑒1〉 = 𝑎11
for all 𝑎 ∈ 𝑀𝑛 (C) so the cyclic vector 𝑒1 satis�es property (2.3.1). We deduce
that the GNS construction of 𝜏 is indeed as claimed.

The following proposition is the main result needed in the proof of the �nite-
dimensional Tsirelson problem:

Proposition 3.12. Let A be a 𝐶∗-algebra generated by two mutually com-
muting 𝐶∗-subalgebras 𝐴, 𝐵 ⊆ A. Let 𝜑 ∈ S(A) be a pure state such that the
associated GNS representation 𝜋 : A → B(H) is �nite-dimensional. Then
there exists a decomposition H = H𝐴 ⊗ H𝐵 such that 𝜋 |𝐴 = 𝜋𝐴 ⊗ idH𝐵

and
𝜋 |𝐵 = idH𝐴

⊗ 𝜋𝐵 , where 𝜋𝐴 : 𝐴 → B(H𝐴) and 𝜋𝐵 : 𝐵 → B(H𝐵).

Proof. Since 𝜑 is pure, it follows by Theorem 5.1.6 of [17] that 𝜋 is irreducible,
and since it is �nite-dimensional it is also surjective. Thus, without loss of



3.3. Hierarchy of correlation sets – known results 23

generality we may identify A with its image under 𝜋 , i.e., 𝜋 (A) = 𝑀𝑛 (C)
for some 𝑛 ∈ N.

Then, the images of 𝐴 and 𝐵 are also mutually commuting and generate
𝑀𝑛 (C), so by Proposition 2.19 there are 𝑛𝐴, 𝑛𝐵 ∈ N such that we can make
the identi�cations 𝜋 (𝐴) = 𝑀𝑛𝐴 (C) ⊗ 1𝑀𝑛𝐵

(C) and 𝜋 (𝐵) = 1𝑀𝑛𝐴
(C) ⊗𝑀𝑛𝐵 (C)

as subalgebras of𝑀𝑛𝐴 (C) ⊗ 𝑀𝑛𝐵 (C).

Thus, by Lemma 3.11 there exists a unitary 𝑢 : H → C
𝑛 so that we obtain

the desired decomposition of H with H𝐴 = C𝑛𝐴 and H𝐵 = C𝑛𝐵 and cyclic
vector 𝑒1 ⊗ 𝑒1 ∈ C𝑛𝐴 ⊗ C𝑛𝐵 .

Corollary 3.13. Let 〈𝜓 | 𝑃𝑥𝑎𝑄
𝑦

𝑏
|𝜓 〉 be a correlation in𝐶𝑞𝑐 with �nite-dimensional

Hilbert space H . Then there exists Hilbert spaces H𝐴 and H𝐵 and a tensor-
product correlation 〈𝜑 | 𝑅𝑥𝑎 ⊗ 𝑆

𝑦

𝑏
|𝜑〉 with the same value, such that (𝑅𝑥𝑎 )𝑎 ∈ H𝐴,

(𝑆𝑦
𝑏
)𝑏 ∈ H𝐵 and |𝜑〉 ∈ H𝐴 ⊗ H𝐵 .

Proof. Let A denote the 𝐶∗-algebra generated by (𝑃𝑥𝑎 )𝑎 and (𝑄𝑦
𝑏
)𝑏 . Then A′

is a �nite-dimensional 𝐶∗-algebra so by Lemma 2.16, there exists a family of
minimal projections 𝑝1, . . . , 𝑝𝑛 , such that

∑𝑛
𝑖1 𝑝𝑖 = 1.

Let 𝜋 : A → B(H) be a �nite-dimensional ∗-representation. Then, since
(𝜋 |𝑝𝑖H (A))′ = 𝑝𝑖 (A′)𝑝𝑖 = C𝑝𝑖 , we �nd that 𝜋 |𝑝𝑖H is irreducible and we
consider the decompositionH =

⊕𝑛

𝑖=1 𝑝𝑖H .

Recall that we have decompositions of A and A′ into direct sums of simple
𝐶∗-algebras A =

⊕
𝑖 A𝑖 and A′ =

⊕
𝑖 A′

𝑖 , and by Proposition 3.12 for each
𝑖 we can identify A𝑖 and A′

𝑖 with 𝑀𝑘𝑖 (C) ⊗ 1𝑀𝑙𝑖
(C) and 1𝑀𝑘𝑖

(C) ⊗ 𝑀𝑙𝑖 (C),
respectively, acting on 𝑝𝑖H = C𝑘𝑖 ⊗ C𝑙𝑖 . We make the following simplifying
notation: H𝐴,𝑖 = C

𝑘𝑖 and H𝐵,𝑖 = C
𝑙𝑖 .

So we can embed
H ⊆

⊕
𝑖

H𝐴,𝑖 ⊗
⊕
𝑖

H𝐵,𝑖,

�nding corresponding PVMs (𝜋𝐴 (𝑃𝑥𝑎 ))𝑎 and (𝜋𝐵 (𝑄𝑦𝑏 ))𝑏 in
⊕

𝑖 H𝐴,𝑖 and⊕
𝑖 H𝐵,𝑖 , respectively.

Finally, for all 𝑖 , consider |𝜓𝑖〉 = 𝑝𝑖 |𝜓 〉 and assume without loss of generality
that |𝜓𝑖〉 ≠ 0 for all 𝑖 . Then,

∑𝑛
𝑖=1 |𝜓𝑖〉 ∈

⊕
𝑖 H𝐴,𝑖 ⊗ H𝐵,𝑖 is the sought-after

quantum state.

In particular, Corollary 3.13 shows that 𝐶𝑞 is independent of the chosen
quantum model and can be considered as the sets of correlations arising from
any quantum strategy on �nite-dimensional Hilbert spaces.
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Today, we can consider each Tsirelson problem to have been resolved in the
negative. After the initial results by William Slofstra in [18], where it was
shown that 𝐶𝑞𝑠 ≠ 𝐶𝑞𝑐 and 𝐶𝑞 ≠ 𝐶𝑞𝑐 , Slofstra proceeded to show in [19] that
𝐶𝑞𝑠 is not a closed set, and therefore 𝐶𝑞𝑠 ≠ 𝐶𝑞𝑎 . In [7], Coladangelo and Stark
showed 𝐶𝑞 ≠ 𝐶𝑞𝑠 . Finally, a recent preprint by Ji, Natarajan, Vidick, Wright,
and Yuen [13] resolved the last standing Tsirelson problem by showing that
𝐶𝑞𝑎 ≠ 𝐶𝑞𝑐 .

We might ask ourselves whether there is also a Tsirelson problem asking if
𝐶𝑞𝑐 = 𝐶𝑞𝑐 . However, it is possible to show that 𝐶𝑞𝑐 is closed. We here give a
proof of this statement and additionally also show that 𝐶𝑞𝑐 is convex.

Proposition 3.14. The set 𝐶𝑞𝑐 of commuting-operator correlations is closed.

Proof. Let (𝑃𝑥𝑎 )𝑎 and (𝑄𝑦
𝑏
)𝑏 be the projective valued measures of Alice and

Bob, on the Hilbert space H , and such that [𝑃𝑥𝑎 , 𝑄
𝑦

𝑏
] = 0 for all 𝑎, 𝑏. Then

there is a ∗-homomorphism from a universal 𝐶∗-algebra to a 𝐶∗-algebra A
such that (𝑃𝑥𝑎 )𝑎 and (𝑄𝑦

𝑏
)𝑏 are images of elements in this universal𝐶∗-algebra.

Now let (𝑝𝑖) be a sequence of correlations in𝐶𝑞𝑐 converging to some 𝑝 , where
𝑝𝑖 = 〈𝜓𝑖 | 𝑃𝑥𝑎𝑄

𝑦

𝑏
|𝜓𝑖〉 and unit vectors𝜓𝑖 ∈ H𝑖 in Hilbert spacesH𝑖 . Universality

of A implies existence of ∗-representations 𝜋𝑖 on H𝑖 for all 𝑖 . For such 𝜋𝑖 ,
consider the states

𝜑𝑖 : A → C

𝑇 ↦→ 〈𝜋𝑖 (𝑇 )𝜓𝑖,𝜓𝑖〉 .

Since the state space of a unital𝐶∗-algebra is weak-∗ compact by Proposition
2.9, there is some cluster point 𝜑 of the sequence (𝜑𝑖). The GNS construction
now yields a ∗-representation 𝜋 of A on a Hilbert space H and a vector
𝜓 ∈ H such that 𝜑 (𝑇 ) = 〈𝜋 (𝑇 )𝜓,𝜓 〉 for all 𝑇 ∈ A. In particular, since 𝜋 is
unital and both (𝑃𝑥𝑎 )𝑎 and (𝑄𝑦

𝑏
)𝑏 are PVMs in A, it follows that (𝜋 (𝑃𝑥𝑎 ))𝑎 and

(𝜋 (𝑄𝑦
𝑏
))𝑏 also are PVMs, and we �nd that 𝑝 = 〈𝜓 | 𝜋 (𝑃𝑥𝑎 )𝜋 (𝑄

𝑦

𝑏
) |𝜓 〉 ∈ 𝐶𝑞𝑐 .

Proposition 3.15. The set 𝐶𝑞𝑐 of correlations is convex.

Proof. Let 𝑝1 = 〈𝜓1 | 𝑃𝑥𝑎𝑄
𝑦

𝑏
|𝜓1〉 and 𝑝2 = 〈𝜓2 | 𝑅𝑥𝑎𝑆

𝑦

𝑏
|𝜓2〉 be correlations with

commuting PVMs 𝑃𝑥𝑎 , 𝑄
𝑦

𝑏
∈ B(H) and 𝑅𝑥𝑎 , 𝑆

𝑦

𝑏
∈ B(K), and unit vectors 𝜓1

and𝜓2 in the respective Hilbert spaces. We want to show that for 0 ≤ 𝑡 ≤ 1
it holds that 𝑡𝑝1 + (1 − 𝑡)𝑝2 ∈ 𝐶𝑞𝑐 . To this end, consider

𝑃𝑥𝑎 ⊕ 𝑅𝑥𝑎 and 𝑄
𝑦

𝑏
⊕ 𝑆𝑦

𝑏
,

both commuting PVMs in the Hilbert space H ⊕ K . Take also the unit
vector 𝜓 =

√
𝑡𝜓1 ⊕

√
1 − 𝑡𝜓2 ∈ H ⊕ K . This yields the desired correlation

𝑡𝑝1 + (1 − 𝑡)𝑝2 in 𝐶𝑞𝑐 , and the result follows.
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In the remainder of this text, we will concern ourselves with the details of
the proof that 𝐶𝑞𝑠 ≠ 𝐶𝑞𝑐 , as presented originally in [18]. This is the Tsirelson
problem which is the closest to the original problem as posed by Tsirelson.

4. Linear games

The focus of our endeavors will be to examine a speci�c class of non-local
games, called linear system games. These games have been studied in [6]
and [5]. Notably, these games are related to binary constraint systems, i.e.,
linear systems of binary variables in which the constraints are binary-valued
functions on a subset of the variables. However, this text will not explore
this connection to the theory further. Instead, we will associate linear sys-
tem games with binary linear systems in the traditional sense, where this
interpretation is helpful.

In this section, we will present the main result of the text – the embedding
theorem, which ultimately yields a separation of 𝐶𝑞𝑠 and 𝐶𝑞𝑐 .

§ 4.1. Linear system games. We start by introducing the notion of a binary
linear system:

De�nition 4.1. A binary linear system is a tuple (𝐴,𝑏) where 𝐴 ∈ Z𝑚×𝑛
2 and

𝑏 ∈ Z𝑚2 .

Although we choose to de�ne a binary linear system as a tuple, the reader
easily recognizes that such a system corresponds to a usual system of linear
equations in𝑚 binary variables with coe�cients in Z2.

Binary linear systems give rise to a class of non-local games. For such a
non-local game, the existence of a perfect quantum strategy is completely
determined by structural properties of the corresponding solution group, as
we will see in Theorem 4.5.

De�nition 4.2. Given a binary linear system (𝐴, 𝑣) with 𝐴 ∈ Z𝑚×𝑛
2 , we can

de�ne a linear system non-local game with parameters

• [𝑛𝐴] = [𝑚], [𝑛𝐵] = [𝑛],
• [𝑚𝐴] = 𝑠𝑝𝑎𝑛{𝑒1, . . . , 𝑒𝑛} = Z𝑛2 , [𝑚𝐵] = Z2,
• 𝜋 a uniform probability distribution on [𝑛𝐴] × [𝑛𝐵], and
• 𝑉 : [𝑚𝐴] × [𝑚𝐵] × [𝑛𝐴] × [𝑛𝐵] → Z2 de�ned by

𝑉 (𝑎, 𝑏 | 𝑥,𝑦) =
{
1 if 𝐴𝑥𝑖 = 𝑎𝑖 for all 𝑖, 𝑎𝑦 = 𝑏, and

∑𝑛
𝑖=1 𝑎𝑖 = 𝑣𝑥 ,

0 otherwise.

In other words, the game takes place as follows:
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1. The referee uniformly at random selects the index of a row, 𝑥 , and a
column, 𝑦, of 𝐴. The row index is distributed to Alice, and the column
index to Bob.

2. Alice returns an assignment of values to the variables in the row 𝑥 .
3. Bob returns an assignment of the variable in column 𝑦.

The players win if the assignments are consistent and if Alice’s assignment
of variables satis�es the 𝑥th equation.

De�nition 4.3. To a binary linear system (𝐴,𝑏) with 𝐴 ∈ Z𝑚×𝑛
2 we associate

a solution group Γ(𝐴,𝑏) with generators {𝑥1, . . . , 𝑥𝑛, 𝐽 } satisfying the relations:

1. 𝑥2𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑛 and 𝐽 2 = 1,
2. [𝑥𝑖, 𝐽 ] = 1 for all 1 ≤ 𝑖 ≤ 𝑛,
3. [𝑥𝑖, 𝑥 𝑗 ] = 1 for all pairs 𝑖, 𝑗 such that 𝐴𝑘𝑖 · 𝐴𝑘 𝑗 = 1 for some 1 ≤ 𝑘 ≤ 𝑚,
4.

∏𝑛
𝑖=1 𝑥

𝐴𝑘𝑖

𝑖
= 𝐽𝑏𝑘 for all 1 ≤ 𝑘 ≤ 𝑚.

In the context of viewing (𝐴,𝑏) as a linear system, 𝐴𝑥 = 𝑏, we can identify
the vector 𝑥 with the generators 𝑥1, . . . , 𝑥𝑛 of Γ.

Note that the solution group is a �nitely-presented group generated by invo-
lutions with a distinguished central element 𝐽 of order two. Furthermore, a
pair of generators are commuting if the corresponding variables occur in the
same equation in the binary linear system.

Example 4.4. We now again return to the CHSH game seen in Example 3.4
and 3.9. We can realize the CHSH game as a linear system non-local game in
the following way:

𝑥1 ⊕ 𝑥2 = 0 𝑥1 ⊕ 𝑥2 = 1.

Say Alice is assigned the 𝑖th equation and Bob the 𝑗th variable. This game
is indeed equivalent to the CHSH game in the sense that it produces the
same non-zero correlations: For the proposed linear system non-local game,
the output set is {0, 1}2 × {0, 1}. However, we can reasonably assume that
Alice always selects a satisfying assignment of variables in her equation so
that her response is completely determined by her assignment of a single
variable, otherwise the players can by de�nition of𝑉 not win the game. Thus,
the output set is equal to the input set, which is {0, 1}2, rendering the game
equivalent to the CHSH game presented in the previous section.

The solution group is

Γ = 〈𝑥1, 𝑥2, 𝐽 |𝑥21 = 𝑥22 = 𝐽 2 = 1,
[𝑥1, 𝐽 ] = [𝑥2, 𝐽 ] = [𝑥1, 𝑥2] = 1,
𝑥1𝑥2 = 1, 𝑥1𝑥2 = 𝐽 〉,
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which is seen to be Z2 since the two �nal relations yield that 𝐽 = 1 and
furthermore that 𝑥1 = 𝑥−12 = 𝑥2.

We now state the main result of this section, which gives a relation between
the solution group of a linear system non-local game and the existence of
perfect quantum strategies. The proof can be found in [6] and [5].

Theorem 4.5. Let (𝐴,𝑏) be a binary linear system over Z2, let G be the
associated linear system non-local game, and let Γ be its solution group. Then

• G has a perfect quantum commuting-operator strategy if and only if
𝐽 ≠ 1 in Γ.

• G has a perfect quantum tensor-product strategy if and only if G has a
perfect �nite-dimensional quantum strategy, and this happens if and only
if Γ has a �nite-dimensional representation 𝜋 with 𝜋 (𝐽 ) ≠ 1.

By the theorem and the result of Example 4.4 we can conclude that the CHSH
game indeed lacks a perfect quantum strategy since 𝐽 = 1.

§ 4.2. The embedding theorem & main results. In light of Theorem 4.5
to show that 𝐶𝑞𝑠 ≠ 𝐶𝑞𝑐 it su�ces to construct a linear system non-local
game such that the distinguished central element of the associated solution
group is non-trivial yet has a trivial image under every �nite-dimensional
representation of the group.

The existence of such a game will follow as a consequence of the so-called
embedding theorem, which we now state.

Theorem 4.6 (Embedding Theorem [18]). Let 𝐺 be a �nitely presented group
with central element 𝐽 ′ ∈ 𝐺 such that (𝐽 ′)2 = 1. Furthermore, let 𝑔1, . . . , 𝑔𝑛 be
a sequence of elements in 𝐺 such that 𝑔2𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑛. Then there is a
binary linear system (𝐴,𝑏) and a homomorphism 𝜙 : 𝐺 → Γ(𝐴,𝑏) such that 𝜙
is an embedding satisfying 𝜙 (𝐽 ′) = 𝐽 and 𝜙 (𝑔𝑖) = 𝑥𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

In other words, for a �nitely presented group 𝐺 of this kind, there is an
embedding of 𝐺 into a solution group, and given a sequence of involutions
in 𝐺 this embedding maps them to the generators. As we will see later,
given 𝐺 , it is possible to construct the binary linear system (𝐴,𝑏) and map 𝜙
embedding 𝐺 into Γ(𝐴,𝑏).

For now, we will postpone the proof of Theorem 4.6 until Section 4.3, where
we will break it down into three major steps. We now present the two main
consequences of this theorem, along with their proofs. The reader may
consult Section 2.5 for the necessary group-theoretical results.

Corollary 4.7 ([18]). There is a linear system non-local game which has a
perfect commuting-operator strategy, but which does not have a perfect tensor-
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product strategy.

Proof. Suppose 𝐺 is a �nitely presented group with a non-trivial central
element 𝐽 ′ of order 2, such that 𝜋 (𝐽 ′) = 1 for every �nite-dimensional repre-
sentation 𝜋 of 𝐺 . We will see shortly that examples of such groups exist. By
the embedding theorem, there exists an embedding of 𝐺 in a solution group
Γ identifying 𝐽 ′ with 𝐽 .

It follows that 𝐽 ≠ 1 so by Theorem 4.5 the associated binary linear game
has a perfect quantum commuting-operator strategy. Furthermore, if 𝜋 is a
�nite-dimensional representation of Γ, then 𝜋 (𝐽 ) = 𝜋 |𝐺 (𝐽 ′) = 1 so the same
game has no perfect quantum tensor-product strategy by Theorem 4.5.

We now show that such a group indeed exists. To this end, consider Higman’s
group 𝐻0 as de�ned in (2.5.1). Let 𝐻 = 𝐻0 × Z2 and let 𝐽 be the generator
of Z2 in the direct product. Recall by Proposition 2.30 that the generators
of Higman’s group have in�nite order. Consider one such generator 𝑎 of
𝐻0 and let 𝐺 be the HNN extension of 𝐻 relative to the automorphism of
〈𝑎, 𝐽 〉 � Z ×Z2 where 𝐽 ↦→ 𝐽 and 𝑎 ↦→ 𝑎𝐽 . Then, 𝐻 is a subgroup of𝐺 , and 𝐽
is non-trivial in 𝐺 .

Finally, if 𝜋 is a �nite-dimensional representation of 𝐺 , then 𝜋 |𝐻0 is trivial by
Proposition 2.31, so 𝜋 (𝑎) = 1. Thus, 𝜋 (𝐽 ) = 𝜋 ( [𝑥, 𝑎]) = 1.

From the proof of Corollary 4.7 we conclude that any �nitely-generated group
of in�nite order with no non-trivial �nite quotients can be used to give a
separation of 𝐶𝑞𝑠 and 𝐶𝑞𝑐 .

The remainder of the text will now be concerned with the proof of the em-
bedding theorem.

§ 4.3. Construction of the embedding. In order to prove the embedding
theorem, we are seeking to understand better �nitely presented groups that
have a central element of order two and which further have a sequence of
generators of order two. We will here study such groups and break down the
proof of Theorem 4.6 in three steps, culminating in Proposition 4.19 which
we will ultimately prove in Section 6.

De�nition 4.8. A group 𝐺 with distinguished central element 𝐽𝐺 of order at
most two is called a group over Z2. Given 𝐺1 and 𝐺2, two groups over Z2, a
homomorphism 𝐺1 → 𝐺2 such that 𝐽𝐺1 ↦→ 𝐽𝐺2 is called a morphism over Z2.
An injective morphism over Z2 is called an embedding over Z2.

Based on this de�nition, we recognize that solution groups are groups over
Z2. In fact, they have slightly more structure, which we will see from the
following de�nition:
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De�nition 4.9. Let 𝑆 be a set and de�ne F2(𝑆) =
〈
𝑆 | 𝑠2 = 1, 𝑠 ∈ 𝑆

〉
. A

presentation by involutions over Z2 of a group 𝐺 is a set of generators 𝑆 and
relations 𝑅 ⊂ F2(𝑆) × Z2 such that 𝐺 � F2(𝑆) × Z2/(𝑅), where (𝑅) is the
normal subgroup generated by 𝑅. Such presentations will be denoted by
Inv 〈𝑆 | 𝑅〉.

Note that a group 𝐺 presented by involutions over Z2 can be regarded as
a group over Z2 with distinguished central element 𝐽𝐺 , the image of the
generator of the Z2-factor in F2(𝑆) ×Z2. We consider a few examples of such
groups:

Example 4.10. We note that any group of the form𝐺 ×Z2 is a group over Z2.
One simple example is Z × Z2. However, this group is not a group presented
by involutions over Z2 since not all its generators are involutions.

Example 4.11. One class of groups that will easily lend itself to examples
of groups presented by involutions is the class of Coxeter groups. These are
groups of the form 𝐺 =

〈
𝑠1, . . . , 𝑠𝑛 | (𝑠𝑖𝑠 𝑗 )𝑚𝑖 𝑗 = 1

〉
, where𝑚𝑖𝑖 = 1 and𝑚𝑖 𝑗 ≥ 2

for 𝑖 ≠ 𝑗 . If 𝑚𝑖 𝑗 = ∞ it is taken to mean that there is no relation of the
form (𝑠𝑖𝑠 𝑗 )𝑚𝑖 𝑗 . Some familiar examples of Coxeter groups include symmetric
groups and dihedral groups.

Consider the Coxeter group
𝐺 =

〈
𝑥1, 𝑥2, 𝑥3, 𝑥4 | 𝑥2𝑖 = 1 for 1 ≤ 𝑖 ≤ 4, (𝑥1𝑥2)2 = (𝑥2𝑥3)2 = (𝑥3𝑥4)2 = 1

〉
.

This is a group presented by involutions over Z2 with 𝐽 = 1.

Given a set 𝑆 , recall that F (𝑆) consists of all words with symbols in {𝑠, 𝑠−1 |
𝑠 ∈ 𝑆}, in other words, an element 𝑟 ∈ F (𝑆) is of the form 𝑠

𝑎1
1 . . . 𝑠

𝑎𝑛
𝑛 where

𝑎𝑖 ∈ {±1} for all 1 ≤ 𝑖 ≤ 𝑛. If it holds that 𝑎𝑖 = 𝑎𝑖+1 whenever 𝑠𝑖 = 𝑠𝑖+1, then
the word is said to be reduced. Furthermore, a reduced word in which 𝑎𝑛 = 𝑎1
whenever 𝑠𝑛 ≠ 𝑠1 is said to be cyclically reduced.

We analogously de�ne reduced and cyclically reduced words in F2(𝑆). A set of
relations 𝑅 is said to be cyclically reduced if every 𝑟 ∈ 𝑅 is cyclically reduced.

Now, to restate the embedding theorem in terms of this new terminology,
we wish to prove that every �nitely presented group over Z2 embeds in a
solution group. As mentioned previously, the proof will be done in three
steps; (1) every �nitely presented group over Z2 embeds in a group presented
by involutions over Z2, (2) every �nitely presented group over Z2 generated
by involutions naturally embeds in a presentation of involutions over Z2 of a
speci�c kind (which we will de�ne shortly), and �nally (3) every group with
a presentation of this kind embeds in a solution group.

Proposition 4.12 ([18]). Let 𝐺 be a group over Z2 with �nite presentation
〈𝑆 | 𝑅〉, where 𝑆 = {𝑠1, . . . , 𝑠𝑛}, and with representative 𝑊𝐺 ∈ F (𝑆) of 𝐽𝐺 .
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Further, let 𝑇 be a set of indeterminates obtained by doubling all 𝑠𝑖 , i.e., 𝑇 =

{𝑧𝑖1, 𝑧𝑖2 | 1 ≤ 𝑖 ≤ 𝑛}, and choose integers 𝑘𝑖 ≥ 1 for all 1 ≤ 𝑖 ≤ 𝑛. Finally, let
𝜙 : F (𝑆) → F2(𝑆) × Z2 be the morphism de�ned by 𝑠𝑖 ↦→ (𝑧𝑖1𝑧𝑖2)𝑘𝑖 . Then, the
induced morphism

𝜙 : 𝐺 → 𝐾 := Inv 〈𝑇 | 𝑅′〉 where 𝑅′ = {𝜙 (𝑟 ) | 𝑟 ∈ 𝑅} ∪ {𝐽𝐾𝜙 (𝑊𝐺 )}

is an embedding over Z2. Furthermore, if 𝑅 ∪ {𝑊𝐺 } is cyclically reduced, then
so is 𝑅′.

Proof. Let𝑚1, . . . ,𝑚𝑛 be the orders of 𝑠1, . . . , 𝑠𝑛 in 𝐺 , respectively. For each
0 ≤ 𝑟 ≤ 𝑛 de�ne the group

𝐾𝑟 = 〈𝑆 ∪ {𝑧11, 𝑧12, . . . , 𝑧𝑟1, 𝑧𝑟2, 𝐽𝐺 } | 𝑅 ∪ {𝑧2𝑖 𝑗 = [𝑧𝑖 𝑗 , 𝐽𝐺 ] = 1 | 1 ≤ 𝑖 ≤ 𝑟, 𝑗 = 1, 2}
∪ {𝑠𝑖 = (𝑧𝑖1𝑧𝑖2)𝑘𝑖 }
∪ {𝐽𝐺 =𝑊𝐺 }〉.

We see that 𝐾𝑛 � 𝐾 since there is an equivalence of the presentations, by
making the identi�cations 𝑠𝑖 ↦→ 𝜙 (𝑠𝑖), 𝑧𝑖 𝑗 ↦→ 𝑧𝑖 𝑗 , and 𝐽𝐺 ↦→ 𝐽𝐾 .

We now argue by induction that there is an inclusion𝐺 → 𝐾𝑛 � 𝐾 . First note
that 𝐺 � 𝐾0. Suppose that the natural map 𝐺 → 𝐾𝑖−1 is an inclusion and let

𝐷𝑖 :=
〈
𝑧𝑖1, 𝑧𝑖2 | 𝑧2𝑖1 = 𝑧2𝑖2 = (𝑧𝑖1𝑧𝑖2)𝑘𝑖𝑚𝑖 = 1

〉
,

be the dihedral group of order 2𝑘𝑖𝑚𝑖 , which might be in�nite if𝑚𝑖 is in�nite.
If 𝐽𝐺 ∉ 〈𝑠𝑖〉, then 〈𝑠𝑖, 𝐽𝐺〉 � Z𝑚𝑖

×Z2, and we recognize 𝐾𝑖 as the amalgamated
product of 𝐾𝑖−1 with 𝐷𝑖 × Z2 over 〈𝑠𝑖, 𝐽𝐺〉, where 𝑠𝑖 ∈ 𝐺 ⊆ 𝐾𝑖−1 is identi�ed
with (𝑧𝑖1𝑧𝑖2)𝑘𝑖 and 𝐽𝐺 with the generator of Z2 in 𝐷𝑖 × Z2.

On the other hand, if 𝐽𝐺 ∈ 〈𝑠𝑖〉, then 𝐽𝐺 = 𝑠𝑎𝑖 where 𝑎 = 0 or 𝑎 =𝑚𝑖/2, since
𝐽𝐺 is itself of order 2. In this case, 𝑠𝑖 is again identi�ed with (𝑧𝑖1𝑧𝑖2)𝑘𝑖 and
we also note that 𝐽𝐺 = 𝑠𝑎𝑖 ↦→ (𝑧𝑖1𝑧𝑖2)𝑘𝑖𝑎 is central in 𝐷𝑖 both if 𝑎 = 0 and if
𝑎 = 𝑚𝑖/2. So we recognize 𝐾𝑖 as the amalgamated product of 𝐾𝑖−1 with 𝐷𝑖
over 〈𝑠𝑖〉. Thus, the natural map 𝐺 → 𝐾𝑖 is an inclusion, and it follows that
𝐺 → 𝐾𝑛 is indeed an inclusion.

Finally, since 𝜙 is a morphism, it follows that if 𝑅∪{𝑊𝐺 } is cyclically reduced,
then so is 𝑅′, as claimed.

Example 4.13. In Example 4.10 we noticed that 𝐺 = Z × Z2 =〈
𝑎, 𝐽 | 𝐽 2 = 1, [𝑎, 𝐽 ] = 1

〉
is not a group presented by involutions. By the

preceding proposition, it is possible to embed 𝐺 over Z2 into a group
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presented by involutions, namely, it we have an embedding of 𝐺 into the
group

Inv
〈
𝑧𝑎1, 𝑧𝑎2, 𝑧 𝐽1, 𝑧 𝐽2 | (𝑧 𝐽1𝑧 𝐽2)4 = [(𝑧𝑎1𝑧𝑎2)2, (𝑧 𝐽1𝑧 𝐽2)2] = 𝐽𝐾 (𝑧 𝐽1𝑧 𝐽2)2 = 1

〉
,

by taking 𝑘𝑎 = 𝑘 𝐽 = 2 in the construction of Proposition 4.12. Since 𝐺
contains 𝐽 explicitly as a generator in the presentation of 𝐺 , the resulting
construction is slightly more complicated than necessary. Although it is
possible to remediate this in the above proof, there is little use for this as we
will exclusively focus on groups for which this is not the case.

Before continuing with the second step towards the proof of the embedding
theorem, we introduce the notion of a collegial presentation by involutions.

De�nition 4.14. Let 𝑟 ∈ F2(𝑆) × Z2 be an element written as the reduced
word 𝐽𝑎𝑠1 . . . 𝑠𝑛 . The multiplicity of 𝑠 ∈ 𝑆 in 𝑟 is

mult(𝑠; 𝑟 ) = |{1 ≤ 𝑖 ≤ 𝑛 | 𝑠𝑖 = 𝑠}| .

Two symbols 𝑠 ≠ 𝑡 ∈ 𝑆 are said to be adjacent in 𝑟 if {𝑠, 𝑡} = {𝑠𝑖, 𝑠𝑖+1} or
{𝑠, 𝑡} = {𝑠1, 𝑠𝑛}.

De�nition 4.15. A presentation Inv 〈𝑆 | 𝑅〉 by involutions over Z2 is said to
be collegial if

1. the presentation is �nite and cyclically reduced,
2. 𝑅 ∩ {1, 𝐽 } = 𝑅 ∩ 𝐽 × 𝑆 = ∅, and
3. if mult(𝑠 ; 𝑟0) is odd for some 𝑟0 ∈ 𝑅 and 𝑡 is adjacent to 𝑠 in some 𝑟1 ∈ 𝑅,

then mult(𝑡 ; 𝑟 ′) is even for all 𝑟 ′ ∈ 𝑅.

Of the groups presented by involutions we have seen so far, we note that the
Coxeter groups studied in Example 4.11 are collegial as the multiplicities of
all generators in every relation are even.

Example 4.16. For any 𝑛 ∈ N, consider the dihedral group 𝐷2𝑛 =〈
𝑠, 𝑡 | 𝑠2 = 𝑡2 = (𝑠𝑡)2𝑛 = 1

〉
, which is a group over Z2 with distinguished

central element (𝑠𝑡)𝑛 . The group can thus be presented by involutions as
Inv

〈
𝑠, 𝑡 | (𝑠𝑡)2𝑛 = 1

〉
. This presentation is collegial for all 𝑛, and we will

return to this example in future sections.

Lemma 4.17. In a collegial presentation of involutions over Z2, every relation
has length at least four.

Proof. Let 𝑟 = 𝐽𝑎𝑠1 . . . 𝑠𝑛 be a relation of a collegial presentation of involutions
over Z2. By property (2), the length of 𝑟 must be at least two. Furthermore, by
property (1), relations of the form 𝐽𝑎𝑠21𝑠2 and 𝐽𝑎𝑠1𝑠22 are excluded since they
are not cyclically reduced. Lastly, relations of the form 𝐽𝑎𝑠1𝑠2 and 𝐽𝑎𝑠1𝑠2𝑠3 are
excluded by property (3). Thus, it must be that 𝑛 ≥ 4.
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This discussion leads us to the second step toward proving the embedding
theorem, in which we show that �nitely presented groups over Z2 with a
sequence of involutions can be embedded into a collegial presentation by
involutions as follows:

Proposition 4.18 ([18]). Let 𝐺 be a �nitely presented group over Z2, with a
sequence of elements𝑔1, . . . , 𝑔𝑛 ∈ 𝐺 such that𝑔2𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑛. Then there
is a collegial presentation Inv 〈𝑆 | 𝑅〉 and an embedding 𝜙 : 𝐺 → Inv 〈𝑆 | 𝑅〉
over Z2 such that 𝜙 (𝑔𝑖) ∈ 𝑆 ⊂ Inv 〈𝑆 | 𝑅〉 for all 1 ≤ 𝑖 ≤ 𝑛.

Proof. We construct a presentation 〈𝑆0 | 𝑅0〉 of𝐺 such that Proposition 4.12
applies in the following way: Let 𝐽𝐺 be a generator, 1 ∉ 𝑅0 and for every 𝑖
take a representative 𝑔′𝑖 ∈ F (𝑆0) \ {1} of 𝑔𝑖 , such 𝑔′𝑖 can be constructed if
necessary by adding a generator 𝑧 and relation 𝑧 = 1, a representative of the
identity. Then, 〈𝑆0 | 𝑅0〉 is a cyclically reduced presentation for𝐺 , where 𝐽𝐺
is represented by a cyclically reduced non-identity element of F (𝑆0).

Now applying Proposition 4.12 and taking all 𝑘𝑠 to be equal to the same even
number 𝐾 , yields an embedding 𝜙 : 𝐺 → Inv 〈𝑇 | 𝑅′〉, where 𝑅′ is cyclically
reduced. Furthermore, since 𝐾 is even, the multiplicity of every generator is
even in every relation in F (𝑆0). Since every relation in 𝑅′ has length at least
four, all the degenerate cases discussed in Lemma 4.17 are excluded, and we
conclude that Inv 〈𝑇 | 𝑅′〉 is indeed collegial.

Now let 𝑔1, . . . , 𝑔𝑛 be new indeterminates and de�ne 𝑆 = 𝑇 ∪ {𝑔1, . . . , 𝑔𝑛} and
𝑅 = 𝑅′∪{𝑔𝑖𝜙 (𝑔′𝑖) | 1 ≤ 𝑖 ≤ 𝑛}, where𝜙 : F (𝑆0) → F2(𝑇 )×Z2 is themorphism
de�ned in Proposition 4.12. Then, 𝑅 is cyclically reduced since the 𝑔𝑖 are
new indeterminates and as such, do not appear in 𝜙 (𝑔′𝑖) for any 𝑖 . Further,
none of the 𝑔𝑖 are adjacent, and mult(𝑠; 𝑟 ) is even for all 𝑠 ∈ 𝑇 and 𝑟 ∈ 𝑅. By
de�nition, no generators are trivial, so it follows that Inv 〈𝑆 | 𝑅〉 is collegial.
Since Inv 〈𝑆 | 𝑅〉 is equivalent to Inv 〈𝑇 | 𝑅′〉, the statement follows.

By Proposition 4.18, the proof of the embedding theorem reduces to the
following statement:

Proposition 4.19 ([18]). Let 𝐺 be a group with a collegial presentation I =

Inv 〈𝑆 | 𝑅〉. Then, there is a binary linear system (𝐴I, 𝑏I) in variables 𝑋I such
that 𝑆 ⊆ 𝑋I and the map

F (𝑆) × Z2 → Γ(𝐴I, 𝑏I)
𝑠 ↦→ 𝑥𝑠

descends to an embedding 𝐺 ↩→ Γ(𝐴I, 𝑏I) over Z2.
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With this, we are �nally ready to prove the embedding theorem. In order
to prove Proposition 4.19, a reformulation of the problem in terms of hyper-
graphs will be immensely helpful, and we will present the necessary theory
in the upcoming sections before giving the �nal proof in Section 6.

Proof of Theorem 4.6. Let𝐺 be a group over Z2 with a sequence of elements
𝑔1, . . . 𝑔𝑛 such that 𝑔2𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑛. By Proposition 4.18 there is a
collegial presentation I = Inv 〈𝑆 | 𝑅〉 and an embedding 𝜙1 : 𝐺 → I over Z2
such that 𝜙1(𝑔𝑖) ∈ 𝑆 for 1 ≤ 𝑖 ≤ 𝑛.

Furthermore, by Proposition 4.19, there is an embedding 𝜙2 : I → Γ(𝐴I, 𝑏I)
over Z2 such that 𝜙2(𝑠) = 𝑥𝑠 for all 𝑠 ∈ 𝑆 . By the stated properties of 𝜙1 and
𝜙2, the homomorphism 𝜙2 ◦ 𝜙1 satis�es the conditions of Theorem 4.6.

5. Hypergraphs, pictures, and constellations

As mentioned in the previous section, proving Proposition 4.19 will require
additional machinery – in this case, this includes several graphical concepts
such as hypergraphs, pictures, and a particular construction called constella-
tions. In this section, we present the necessary concepts to understand the
proof, which is later given in Section 6.

We will begin this section by giving the fundamental de�nitions of hyper-
graphs before translating the main results we have seen so far in terms of
binary linear system games in this new terminology.

§ 5.1. De�nitions. Hypergraphs are generalizations of traditional graphs;
in a hypergraph, an edge is allowed to connect more than two vertices. This
section introduces the concept of hypergraphs needed to draw the connection
to linear system games. We start by making the following de�nition:

De�nition 5.1. A hypergraph is a tuple 𝐻 = (𝑉 , 𝐸), where 𝑉 is a set of
vertices, and 𝐸 is a multiset of edges connecting vertices. A vertex 𝑣 and an
edge 𝑒 are considered incident if 𝑣 ∈ 𝑒 . The degree of a vertex is the number
of edges incident to it. Finally, the order of an edge 𝑒 ∈ 𝐸 is given by |𝑒 |.

Notice that a hypergraph in which |𝑒 | = 2 for every 𝑒 ∈ 𝐸 is a graph in the
traditional sense. As usual, we say that a hypergraph is simple if it has no
loops or repeated edges, i.e., no edges connecting only a single vertex or
edges given by the same sets of vertices. Sometimes, our presentation will
bene�t from listing the edges separately, not as a multiset of elements from
𝑉 , and then describe the incidences between vertices and edges. Note that
it is possible to pass between these presentations as follows: Given a vertex
set 𝑉 and a multiset 𝐸 of size 𝑛 containing subsets of vertices, each edge
is described by a unique element in 𝐸 so we can enumerate the edges and
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construct {𝑒1, . . . , 𝑒𝑛}. Then, 𝑉 and {𝑒1, . . . , 𝑒𝑛} correspond to the vertex- and
edge set in the new formalism, with the incidence relation for each 𝑒𝑖 given
by its corresponding element in 𝐸

The notion of an incidence matrix will be helpful to describe compactly the
structure of a hypergraph:

De�nition 5.2. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph with enumerations 𝑉 =

{𝑣1, . . . , 𝑣𝑚} and 𝐸 = {𝑒1, . . . , 𝑒𝑛}. The incidence matrix of 𝐻 is the matrix
𝐴 ∈ Z𝑚×𝑛 in which 𝑎𝑖 𝑗 is given by the degree of incidence between 𝑣𝑖 and 𝑒 𝑗 .

Given the incidence matrix A of a hypergraph, the degree of a vertex 𝑣𝑖 can
be calculated as |𝑣𝑖 | =

∑𝑛
𝑗=1 𝑎𝑖 𝑗 . Likewise, we �nd that the order of an edge

𝑒 𝑗 can be calculated as |𝑒 𝑗 | =
∑𝑚
𝑖=1 𝑎𝑖 𝑗 . We now de�ne the correspondence

between hypergraphs and binary linear systems by the de�nition of vertex
labelings:

De�nition 5.3. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph. A function 𝑏 : 𝑉 → Z2 is
called a Z2-vertex labeling of 𝐻 .

Thus, given a binary linear system (𝐴,𝑏), we get a Z2-vertex labeling of
a hypergraph 𝐻 with incidence matrix 𝐴, whose edges correspond to the
variables of the binary linear system, and whose vertices correspond to the
constraints.

Example 5.4. Naturally, our �rst example of a hypergraph and the correspon-
dence to binary linear systems, and by extension also to linear system games,
is to consider the CHSH game, which is familiar from previous sections.

Recall that the CHSH game is given as a linear system non-local game associ-
ated with

𝑥1 ⊕ 𝑥2 = 0 𝑥1 ⊕ 𝑥2 = 1.

This yields a non-simple hypergraph 𝐻 = (𝑉 , 𝐸) with 𝑉 = {𝑣1, 𝑣2}, and
𝐸 = {{𝑣1, 𝑣2}, {𝑣1, 𝑣2}}. Graphically, we may represent this as in Figure 2.

Figure 2: Hypergraph corresponding to the CHSH game.
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Thus, the notion of a solution group, as seen in De�nition 4.3, can also be
de�ned for a hypergraph 𝐻 = (𝑉 , 𝐸) with a Z2-vertex labeling 𝑏, through the
correspondence of hypergraphs and linear system non-local games. We then
denote the solution group by Γ(𝐻,𝑏).

In our �gures of hypergraphs, we adopt the presentation of [18] and draw
edges of order two as lines, similar to traditional graphs, while edges of order
not equal to two are drawn as shaded regions.

Example 5.5. A more interesting hypergraph is given in Figure 3. The
corresponding incidence matrix is given by

𝐴 =

[
2 1 0
0 1 1

]
.

Given a vertex labeling such that 𝑏 (𝑣1) = 1 and 𝑏 (𝑣2) = 0 we obtain the
solution group

Γ(𝐴,𝑏) = 〈𝑥1, 𝑥2, 𝑥3, 𝐽 | 𝐽 2 = 𝑥2𝑖 = [𝑥𝑖, 𝐽 ] = 1 for all 1 ≤ 𝑖 ≤ 3,
[𝑥1, 𝑥2] = [𝑥2, 𝑥3] = 1,
𝑥21𝑥2 = 𝐽 , 𝑥2𝑥3 = 1〉.

The relation 𝑥21𝑥2 = 𝐽 shows that 𝑥2 = 𝐽 , and since 𝑥2𝑥3 = 1 it follows that
the group is isomorphic to Z2 × Z2.

Figure 3: Hypergraph on two vertices from Example 5.5.

§ 5.2. Translation of results. We are now ready to restate the major results
we have seen so far, this time in terms of hypergraphs, starting with the
embedding theorem (Theorem 4.6).

Theorem 5.6 (Embedding Theorem). Let𝐺 be a �nitely presented group with
central element 𝐽 ′ ∈ 𝐺 such that (𝐽 ′)2 = 1. Furthermore, let 𝑔1, . . . , 𝑔𝑛 be a
sequence of elements in 𝐺 such that 𝑔2𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑛. Then there
is a hypergraph 𝐻 = (𝑉 , 𝐸), a vertex labeling 𝑏 : 𝑉 → Z2, a sequence of
edges 𝑒1, . . . , 𝑒𝑛 ∈ 𝐸, and a homomorphism 𝜙 : 𝐺 → Γ(𝐻,𝑏) such that 𝜙 is an
embedding, 𝜙 (𝐽 ′) = 𝐽 , and 𝜙 (𝑔𝑖) = 𝑥𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.
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Also the �nal step of the proof of the embedding theorem, Proposition 4.19
can be restated in terms of hypergraphs:

Proposition 5.7. Let 𝐺 be a group with collegial presentation I = Inv 〈𝑆 | 𝑅〉.
Then, there is a hypergraph𝑊 :=𝑊 (I) and a vertex labeling 𝑏 := 𝑏 (I) such
that 𝑆 ⊂ 𝐸 (𝑊 ), and the map

F (𝑆) × Z2 → Γ(𝑊,𝑏)
𝑠 ↦→ 𝑥𝑠

descends to an embedding 𝐺 ↩→ Γ(𝑊,𝑏) over Z2.

From this, the proof of Theorem 5.6 follows analogously as the proof of
Theorem 4.6.

The hypergraph𝑊 is the �rst construction toward the proof of Proposi-
tion 4.19, or its equivalent reformulation in Proposition 5.7, and is worth
investigating in detail. To this end, we make the following de�nition:

De�nition 5.8. Let I = Inv 〈𝑆 | 𝑅〉 be a presentation by involutions over Z2,
where 𝑅 = {𝑟1, . . . , 𝑟𝑚} and 𝑟𝑖 = 𝐽 𝑝𝑖𝑠𝑖1 . . . 𝑠𝑖𝑛𝑖 has length 𝑛𝑖 , and 𝑝𝑖 ∈ Z2. The
wagon wheel hypergraph,𝑊 (I), is the simple hypergraph with vertex set

𝑉 = {(𝑖, 𝑗, 𝑘) | 1 ≤ 𝑖 ≤ 𝑚, 𝑗 ∈ Z𝑛𝑖 , 1 ≤ 𝑘 ≤ 3},

and edge set

𝐸 = 𝑆 ∪ {𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , 𝑐𝑖 𝑗 , 𝑑𝑖 𝑗 | 1 ≤ 𝑖 ≤ 𝑚, 𝑗 ∈ Z𝑛𝑖 },

satisfying the following incidence relations:

• 𝑠 ∈ 𝑆 is incident with (𝑖, 𝑗, 1) if and only if 𝑠𝑖 𝑗 = 𝑠 ,
• 𝑎𝑖 𝑗 is incident with (𝑖, 𝑗 − 1, 2) and (𝑖, 𝑗, 1),
• 𝑏𝑖 𝑗 is incident with (𝑖, 𝑗, 1) and (𝑖, 𝑗, 2),
• 𝑐𝑖 𝑗 is incident with (𝑖, 𝑗, 2) and (𝑖, 𝑗, 3), and
• 𝑑𝑖 𝑗 is incident with (𝑖, 𝑗 − 1, 3) and (𝑖, 𝑗, 3).

Often, we omit I from the notation when the context is clear.

Note that for this hypergraph,𝑊 , we �nd that |𝑉 | = 3𝑀 and |𝐸 | = |𝑆 | + 4𝑀 ,
where𝑀 =

∑𝑚
𝑖=1 𝑛𝑖 . For all 1 ≤ 𝑖 ≤ 𝑚 we also de�ne the sets

𝑉𝑖 = {(𝑖, 𝑗, 𝑘) | 𝑗 ∈ Z𝑛𝑖 , 1 ≤ 𝑘 ≤ 3} and 𝐸𝑖 = {𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , 𝑐𝑖 𝑗 , 𝑑𝑖 𝑗 : 𝑗 ∈ Z𝑛𝑖 },

so that the sets 𝑉𝑖 partition 𝑉 , and the sets 𝐸𝑖 together with 𝑆 partition 𝐸.

The name of the graph re�ects the shape given by its incidence relations.
For each relation in I, we get a “wheel” in the graphical representation of
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𝑊 (I). Edges corresponding to the generators contained in the relations
connect the wheels together. Furthermore, an edge 𝑠 ∈ 𝑆 is incident to exactly∑𝑚
𝑖=1mult(𝑠 ; 𝑟𝑖) vertices in𝑊 . The edges 𝑑𝑖 𝑗 form the inner cycle of the wheel

corresponding to 𝑟𝑖 , while the 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 together form the outer cycle. The
𝑐𝑖 𝑗 , on the other hand, form the “spokes” connecting the inner and outer cycle.
We will now see our �rst example of such a graph.

Figure 4: Wagon wheel hypergraph of Example 5.9

Example 5.9. Recall the Coxeter group from Example 4.11. Noting that
𝐽 = 1 for this group, we can construct its wagon wheel hypergraph, which is
pictured in Figure 4.

Interestingly, we �nd a more general relationship between the diagrams
of right-angled Coxeter groups, such as 𝐺 above, and their corresponding
wagon wheel hypergraphs. Recall that to a given right-angled Coxeter group
with generators 𝑆 , there corresponds a graph with vertex set 𝑆 and such that
(𝑥,𝑦) is an edge if and only if (𝑥𝑦)2 = 1 is a relation in the group. We can
easily convert this graph into the corresponding wagon wheel hypergraph
by making the following identi�cations:

Let 𝐺 be a right-angled Coxeter group. Then

• edges in its graph correspond to wheels in𝑊 (𝐺), and
• vertices in its graph correspond to hyperedges in𝑊 (𝐺) connecting the
wheels.

Since the commuting relations are all of length four, the wheel in𝑊 (𝐺) will
have an inner cycle of four vertices. Furthermore, the order of an hyperedge
𝑒 ∈𝑊 (𝐺) corresponding to the vertex 𝑣 in the graph representing 𝐺 is equal
to 2 · deg(𝑣).

A few examples of this correspondence can be seen in Figure 5 for right-angled
Coxeter groups with two and three generators.

The particular vertex labeling of Theorem 5.6 for𝑊 can be de�ned as follows:
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De�nition 5.10. Let𝑊 (I) be a wagon wheel hypergraph. An I-labeling of
𝑊 is a Z2-vertex labeling 𝑏 : 𝑉 → Z2 such that

|𝑏−1(1) ∩𝑉𝑖 | ≡ 𝑝𝑖 (mod 2)

for all 1 ≤ 𝑖 ≤ 𝑚.

In fact, any I-labeling can be chosen in the construction by Proposition 5.7:

Proposition 5.11. Let 𝑏 and 𝑏′ be two I-labelings of𝑊 . Then there is an
isomorphism Γ(𝑊,𝑏) → Γ(𝑊,𝑏′).

Proof. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph with incidence matrix 𝐴 and vertex
labeling 𝑏. Given 𝑒 ∈ 𝐸, let 𝑏′ be the vertex labeling 𝑏′(𝑣) = 𝑏 (𝑣) +𝐴𝑣𝑒 . Then
there is an isomorphism

Γ(𝐻,𝑏) → Γ(𝐻,𝑏′)

𝑥 𝑓 ↦→
{
𝑥 𝑓 if 𝑓 ≠ 𝑒,

𝐽𝑥𝑒 otherwise.

Note that for a wagon wheel hypergraph𝑊 , between any two vertices of
𝑊𝑖 ⊂𝑊 there exists a path of edges of order two. So, given two I-labelings
𝑏 and 𝑏′ of𝑊 it is possible to transform 𝑏 |𝑉𝑖 to 𝑏′|𝑉𝑖 through a sequence of
steps, �xing an edge 𝑒 ∈ 𝐸 (𝑊𝑖) along this path, as shown above. Because
|𝑏−1(1) ∩𝑉𝑖 | ≡ |(𝑏′)−1(1) ∩𝑉𝑖 | mod 2 there is no need to �ip the labels along
a path between distinct wheels𝑊𝑖 and𝑊𝑗 .

Figure 5: Diagrams and the corresponding wagon wheel hypergraphs for
right angled Coxeter groups.
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§ 5.3. Pictures. We now turn to consider another graphical concept – this
time so-called pictures. As we will see, given a group presented by involu-
tions, a corresponding picture can be created (De�nition 5.16). Thus solution
groups, and by extension, also hypergraphs can be represented in this way
(De�nition 5.19). This is the primary technical construct needed for the proof
of Proposition 4.19. The main result of this section is the so-called Van Kam-
pen lemma, which describes a necessary and su�cient criterion for when a
word in a group presented by involutions is trivial based on the properties of
a picture constructed from the group in question. This thus solves a special
case of the word problem for groups.

Recall that an in�nitely di�erentiable function 𝑓 : 𝐴 → R is said to be
real analytic if for every 𝑥 ∈ 𝐴 there is a Taylor series converging to 𝑓 in a
neighborhood of 𝑥 . Let 𝑎 < 𝑏 and consider the interval [𝑎, 𝑏]. We will refer
to the image of a real analytic function 𝛾 on [𝑎, 𝑏] to either the plane or the
sphere as a curve. If 𝛾 (𝑠) ≠ 𝛾 (𝑡) for all 𝑎 ≤ 𝑠 < 𝑡 ≤ 𝑏, except possibly when
𝑠 = 𝑎 and 𝑡 = 𝑏, we say that 𝛾 is simple. If 𝛾 (𝑎) = 𝛾 (𝑏), then 𝛾 is said to be
closed.

De�nition 5.12. A picture is a collection P = (𝑉 , 𝐸,D), where

• D is a closed simple region, i.e., a connected region in the plane whose
boundary is a simple closed curve,

– 𝑉 is a �nite collection of points, called vertices in D,
– 𝐸 is a �nite collection of simple curves, called edges, in D, and

• for all edges 𝑒 ∈ 𝐸 and points 𝑝 of 𝑒 ,
– if 𝑒 is not closed and 𝑝 is an endpoint of 𝑒 , then either 𝑝 ∈ 𝑉 , or
𝑝 belongs to the boundary of D and is not the endpoint of any
other edge,

– if 𝑒 is closed and 𝑝 is an endpoint of 𝑒 , then 𝑝 does not belong to
the boundary of D,

– if 𝑝 is not an endpoint of 𝑒 , then 𝑝 ∉ 𝑉 , and 𝑝 does not belong to
any other edge or the boundary of D.

If the edge 𝑒 contains the vertex 𝑣 , we say that 𝑒 and 𝑣 are incident. If 𝑒
contains a point of the boundary of D, then 𝑒 is said to be incident with the
boundary. A picture is said to be closed if no edges are incident with the
boundary of D.

The region D can be pictured as a disk or square into which 𝐸 and 𝑉 are em-
bedded. Alternatively, the boundary of D can be drawn as a vertex at in�nity
if we imagine the picture as drawn on a sphere, see Figure 6. Furthermore,
for a closed picture we can leave out drawing D entirely and instead imagine
the picture as embedded in the sphere.
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Figure 6: The same open picture presented drawn embedded in a disk and
with the boundary as a point at in�nity.

We also note that under isotopy, we are allowed to move the boundary of D
and the endpoints of the edges incident with the boundary. We consider two
pictures to be equal if they di�er up to isotopy.

De�nition 5.13. Let P be a picture. A simple cycle in P is a collection of
edges whose union is a simple closed curve.

De�nition 5.14. Let P be a picture in D. An open, connected region D′

of D not containing any points of P and such that the boundary of D′ is a
union of points of P and points in the boundary of D is called a face of P. A
simple cycle is said to be facial if it is the boundary of a face.

Example 5.15. In the right picture seen in Figure 6, the simple cycle consist-
ing of the three edges forming the inner triangle is facial, while neither one
of the outer regions is facial cycles, as they all contain points of the boundary
of the disk.

After having seen the general de�nition of pictures and their faces, we are
ready to put them to use as a tool to graphically encode group relations, as
we will see in Proposition 5.18. In particular, we will de�ne the notion of
pictures for groups generated by involutions, and thus by extension, also for
hypergraphs.

Consider the group Inv 〈𝑆 | 𝑅〉. We denote by 𝑅sym the set of relations

𝑅sym = {𝐽𝑎𝑠𝑖𝑠𝑖+1 . . . 𝑠𝑛𝑠1 . . . 𝑠𝑖−1, 𝐽𝑎𝑠𝑖𝑠𝑖−1 . . . 𝑠1𝑠𝑛 . . . 𝑠𝑖+1 |
1 ≤ 𝑖 ≤ 𝑛 for 𝐽𝑎𝑠1 . . . 𝑠𝑛 ∈ 𝑅},

the set of cyclic permutations of the 𝑠1, . . . , 𝑠𝑛 and their inverses in every
relation 𝑟 = 𝐽𝑎𝑠1 . . . 𝑠𝑛 in 𝑅. Note that for the element corresponding to
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𝑖 = 1, we have that {𝑟 }sym = {𝑟, 𝐽𝑎𝑠𝑛 . . . 𝑠1}. Likewise, for 𝑖 = 𝑛, we obtain
{𝑟 }sym = {𝑟, 𝐽𝑎𝑠𝑛 . . . 𝑠1}.

Further, a relation 𝑟 = 𝐽𝑎𝑠1 . . . 𝑠𝑛 is said to be odd or even, depending on
whether 𝑎 is odd or even, respectively. We denote by 𝑟+ the so-called even
part of 𝑟 , i.e. 𝑟+ = 𝑠1 . . . 𝑠𝑛 . We can consider the even presentation of Inv 〈𝑆 | 𝑅〉
over Z2 as Inv 〈𝑆 | 𝑅+〉, where 𝑅+ = {𝑟+ | 𝑟 ∈ 𝑅}.

This new terminology will simplify our notation going forward, starting with
the following de�nition:

De�nition 5.16. Let 𝐺 = Inv 〈𝑆 | 𝑅〉. A 𝐺-picture is a picture, P, in which
each vertex 𝑣 is labeled by a relation 𝑟 (𝑣) ∈ 𝑅, and every edge 𝑒 is labeled by a
generator 𝑠 (𝑒) ∈ 𝑆 , such that if 𝑒1, . . . , 𝑒𝑛 is the sequence of edges incident to
𝑣 , read in counterclockwise order with multiplicity from some starting point,
then 𝑠 (𝑒1)𝑠 (𝑒2) . . . 𝑠 (𝑒𝑛) ∈ {𝑟 (𝑣)+}sym.

The boundary of P is the cyclic word bd(P) = 𝑠 (𝑒1) . . . 𝑠 (𝑒𝑛) over 𝑆 , where
𝑒1, . . . , 𝑒𝑛 is the list of edges incident with the boundary, read in counterclock-
wise order around the boundary of the disk with multiplicity. If P is closed
we say that bd(P) = 1, the empty word.

The sign of P is given by

sign(P) = |{𝑣 ∈ 𝑉 (P) | 𝑟 (𝑣) is odd}| (mod 2).

Example 5.17. We consider again the familiar class of right-angled Coxeter
groups, see Figure 7. We see that these pictures have boundary 𝑥𝑦𝑥𝑦, 𝑥𝑦𝑥𝑧𝑦𝑧,
and 𝑥𝑧𝑦𝑥𝑧𝑦, respectively.

Figure 7: 𝐺-pictures corresponding to the right-angled Coxeter groups of
Example 5.9.

We are now ready to state the Van Kampen lemma. The lemma originates
from [15], where it is given in a slightly di�erent form. Here, we consider a
modi�ed version that applies to groups presented by involutions, which then
also applies to solution groups.
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Proposition 5.18 (Van Kampen lemma). Let 𝐺 = Inv 〈𝑆 | 𝑅〉, 𝑟 ∈ 𝑅, and
𝑎 ∈ Z2. Then, 𝑟 = 𝐽𝑎 in 𝐺 if and only if there is a 𝐺-picture P with bd(P) = 𝑟
and sign(P) = 𝑎.

Proof. First assume that 𝑟 = 𝐽𝑎 . We construct a𝐺-picture with boundary and
sign as stated above. In what follows, if𝑤 = 𝑠1 . . . 𝑠𝑛 is a word over 𝑆 , we let
𝑤 = 𝑠𝑛 . . . 𝑠1 denote the reverse word over 𝑆 .

It is true that 𝑟 = 𝐽𝑎 in 𝐺 if and only if there is a sequence 𝑟0, . . . , 𝑟𝑛, with
𝑟0 = 𝑟 and 𝑟𝑛 = 1, of words over 𝑆 in which 𝑟𝑖 is constructed from 𝑟𝑖−1 by
either replacing a subword𝑤0 with𝑤1, where𝑤0𝑤1 = 𝑤

+ for some𝑤 ∈ 𝑅sym,
or by inserting or deleting 𝑠2 for some 𝑠 ∈ 𝑆 . In this construction, 𝑎 is the
parity of the number of replacements of a subword𝑤0 with𝑤1 as described
above in which the corresponding𝑤 ∈ 𝑅sym is odd. This is because each such
replacement introduces a 𝐽 into the word.

From such a sequence of words, we can construct a 𝐺-picture P embedded
in a rectangle with boundary equal to 𝑟 and sign equal to 𝑎 by constructing
a sequence of 𝐺-pictures P1, . . . ,P𝑛 such that bd(P𝑖) = 𝑟𝑖−1𝑟𝑖 , and the edges
labeled by 𝑟𝑖−1 adjacent to the boundary are connected to the top of the
rectangle, and the edges labeled by 𝑟𝑖 adjacent to the boundary are connected
to the bottom of the rectangle. This process can be summarized as follows:

• If 𝑟𝑖 was obtained from 𝑟𝑖−1 by making a replacement of a word𝑤0 with
𝑤1, as described above, so that 𝑟𝑖−1 = 𝑥𝑤0𝑦 and 𝑟𝑖 = 𝑥𝑤1𝑦 where 𝑥 and
𝑦 are words over 𝑆 , then P𝑖 consists of a single vertex labeled by 𝑤 ,
incident to edges labeled from left to right by𝑤0 connected to the top
of the rectangle and to edges labeled by 𝑤1 connected to the bottom
of the rectangle. To the left of the vertex, there are edges labeled by 𝑥 ,
and to the right are edges labeled by 𝑦, all connecting the top and the
bottom of the rectangle.

• If 𝑟𝑖 was obtained from 𝑟𝑖−1 by inserting 𝑠2 for some 𝑠 ∈ 𝑆 , so that
𝑟𝑖−1 = 𝑥𝑦 and 𝑟𝑖 = 𝑥𝑠2𝑦 where 𝑥 and 𝑦 are words over 𝑆 , then P𝑖
consists of edges labeled by 𝑥 and 𝑦 connecting the top and the bottom
of the rectangle, and an edge labeled by 𝑠 with both endpoints connected
to the bottom of the rectangle, in between the 𝑥 and 𝑦 edges.

• If 𝑟𝑖 was obtained from 𝑟𝑖−1 by deleting 𝑠2 for some 𝑠 ∈ 𝑆 , so that
𝑟𝑖−1 = 𝑥𝑠2𝑦 and 𝑟𝑖 = 𝑥𝑦 where 𝑥 and 𝑦 are words over 𝑆 , then P𝑖
consists of edges labeled by 𝑥 and 𝑦 connecting the top and the bottom
of the rectangle, and an edge labeled by 𝑠 with both endpoints connected
to the top of the rectangle, in between the 𝑥 and 𝑦 edges.

Since 𝑟0 = 𝑟 and 𝑟𝑛 = 1, we note that P𝑛 has no edges incident to the bottom
of the rectangle, while P1 has edges incident to the top labeled by 𝑟 . Thus, by
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stacking the pictures P1, . . . ,P𝑛 on top of each other we obtain a 𝐺-picture
in which we have e�ectively “tied together” the loose ends coming from 𝑟 at
the top so that bd(P) = 𝑟 and sign(P) = 𝑎 as desired.

Conversely, let P be a 𝐺-picture with bd(P) = 𝑟 and sign(P) = 𝑎. After
isotopy, we assume without loss of generality that P is embedded into a
rectangle in which every horizontal line intersects every edge in a �nite
number of points and every edge intersects �nitely many horizontal lines
non-transversely. A point in the interior of the picture is said to be a critical
point if it is a vertex of P or a point on an edge that intersects a horizontal
line non-transversely. Moving the critical points up or down, can modify the
picture so that each horizontal line hits at most one critical point. Thus, P
can be cut horizontally into a sequence of pictures P1, . . . ,P𝑛 , each of which
contains a single critical point. This sequence corresponds to a sequence of
words 𝑟0, . . . , 𝑟𝑛 in 𝐺 , as above.

A graphical overview of this step-by-step construction for the group 𝐺 =

Inv
〈
𝑥,𝑦, 𝑧 | (𝑥𝑦)2 = (𝑦𝑧)2 = 1

〉
is shown in Figure 8.

Figure 8: Construction of a 𝐺-picture corresponding to the sequence
𝑦𝑥𝑧𝑦𝑧𝑥 = 𝑦𝑥𝑦2𝑧𝑦𝑧𝑥 = 𝑦𝑥𝑦𝑧2𝑥 = 𝑦𝑥𝑦𝑥 = 𝑥2 = 1.

Finally, we consider pictures corresponding to hypergraphs. Recall that given
a hypergraph 𝐻 and vertex labeling 𝑏, we can construct its corresponding
solution group Γ(𝐻,𝑏), which is a group presented by involutions over Z2.
Thus, by picking a presentation of Γ(𝐻,𝑏) we should be able to state the Van
Kampen lemma for hypergraphs as well, as we will see in Proposition 5.22.

De�nition 5.19. Let 𝐻 be a hypergraph with incidence matrix 𝐴. An 𝐻 -
picture is a triple (P, ℎ𝑉 , ℎ𝐸), where P is a picture, and ℎ𝑉 and ℎ𝐸 are labeling
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functions 𝑉 (P) → 𝑉 (𝐻 ) and 𝐸 (P) → 𝐸 (𝐻 ), respectively, such that for all
𝑣 ∈ 𝑉 (P) and 𝑒′ ∈ 𝐸 (𝐻 ), if we list the edges 𝑒1, . . . , 𝑒𝑛 of P incident to 𝑣 with
multiplicity, then 𝐴ℎ𝑉 (𝑣)𝑒 ′ = |{1 ≤ 𝑖 ≤ 𝑛 | ℎ𝐸 (𝑒𝑖) = 𝑒′}|.

The boundary of P is the cyclic word bd(P) = ℎ(𝑒1) . . . ℎ(𝑒𝑛) over 𝐸 (𝐻 ),
where 𝑒1, . . . , 𝑒𝑛 is the list of edges incident with the boundary, read in coun-
terclockwise order around the boundary with multiplicity. The character of
P is the vector ch(P) ∈ Z𝑉 (𝐻 )

2 with ch(P)𝑣 = |ℎ−1
𝑉
(𝑣) | (mod 2).

Often, we simply write P in place of (P, ℎ𝑉 , ℎ𝐸), and ℎ in place of ℎ𝑉 and ℎ𝐸 .

Example 5.20. Consider the dihedral group 𝐷4 = Inv
〈
𝑠, 𝑡 | (𝑠𝑡)4 = 1

〉
that

we saw in Example 4.16 to be a group presented by involutions for general 𝑛.
Its wagon wheel hypergraph together with a corresponding 𝐻 -picture, P, is
shown in Figure 9. We note that bd(P) = (𝑠𝑡)4.

Figure 9: Wagon wheel hypergraph for 𝐷4 = Inv
〈
𝑠, 𝑡 | (𝑠𝑡)4 = 1

〉
(left) and

the corresponding 𝐻 -picture (right).

De�nition 5.21. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph with vertex labeling func-
tion 𝑏 : 𝑉 → Z2. Two 𝐻 -pictures P1 and P2 are said to be 𝑏- equivalent if
bd(P1) = bd(P2) and ch(P1) · 𝑏 = ch(P1) · 𝑏.

Finally, we now state the Van Kampen lemma as it stands for 𝐻 -pictures. The
proof is the same as for Proposition 5.18.

Proposition 5.22 (Van Kampen lemma). Let Γ(𝐻,𝑏) be a solution group.
Then 𝐽𝑎 = 𝑥𝑒1 . . . 𝑥𝑒𝑛 in Γ(𝐻,𝑏) if and only if there is an 𝐻 -picture P with
bd(P) = 𝑒1 . . . 𝑒𝑛 and ch(P) · 𝑏 = 𝑎.

§ 5.4. Constellations. Last in our section of de�nitions leading up to the
proof of Proposition 4.19, and by extension also the embedding theorem, is
the concept of stellar cycles and constellations. Essentially, constellations are
collections of cycles in a hypergraph. It is a technical construction used for
the proof of Proposition 4.19, and its equivalent statement Proposition 5.7.
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At the moment, it is not clear how to formulate a conceptual justi�cation for
this particular construction.

Recall that the structure of the wagon wheel hypergraph is consisting of
several “wheels” on vertices denoted by 𝑉𝑖 and edges 𝐸𝑖 . Throughout this
section, we let𝑊𝑖 denote the closed subhypergraph on vertices 𝑉𝑖 and edges
𝐸𝑖 .

Before introducing constellations, we need to state a few more de�nitions
(with examples where appropriate), in particular those of subhypergraphs
and cycles.

De�nition 5.23. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph with incidence matrix 𝐴. A
subhypergraph of 𝐻 is a hypergraph 𝐻 ′ = (𝑉 ′, 𝐸′) with 𝑉 ′ ⊂ 𝑉 , 𝐸′ ⊂ 𝐸, and
incidence matrix 𝐴′ such that 𝐴′

𝑣𝑒 = 𝐴𝑣𝑒 for all 𝑣 ∈ 𝑉 ′ and 𝑒 ∈ 𝐸′. We write
𝐻 ′ ⊂ 𝐻 .

We recall that given a picture P, a collection of edges whose union form a
simple closed curve is called a simple cycle.

De�nition 5.24. Let 𝐻 be a hypergraph. A simple connected 2-regular
subhypergraph 𝐶 of 𝐻 is called a cycle if for all 𝑣 ∈ 𝑉 (𝐻 ), it holds that
𝑣 ∈ 𝑉 (𝐶) whenever 𝑣 is incident to 𝑒 ∈ 𝐸 (𝐶), i.e., it is closed. A 𝐶-cycle in an
𝐻 -picture is a simple cycle C such that every edge of C is labeled by an edge
of 𝐶 .

De�nition 5.25. A 𝐶-cycle C is called a copy of 𝐶 if the labeling function
ℎ : C → 𝐶 is a graph isomorphism, or equivalently if |ℎ−1(𝑣) | = 1 for all
𝑣 ∈ 𝑉 (𝐶).

Example 5.26. We can easily recognize cycles in the hypergraphs we have
seen so far. Consider, for example, the (hyper)graph in Figure 2 representing
the CHSH game, in which the edges 𝑒1 and 𝑒2 form a cycle.

Also, considering a wagon wheel hypergraph with incidence relations as
stated in De�nition 5.8, we �nd that the edges 𝐵𝑖 = {𝑑𝑖 𝑗 | 𝑗 ∈ Z𝑛𝑖 } and
𝐶𝑖 𝑗 = {𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , 𝑐𝑖 𝑗 , 𝑑𝑖 𝑗 , 𝑐𝑖, 𝑗−1} for all 𝑗 ∈ Z𝑛𝑖 , form cycles for all 1 ≤ 𝑖 ≤ 𝑚.
Furthermore, for𝑊 we can easily construct a corresponding𝑊 -picture, as
the one seen in Figure 9, in which the cycles 𝐵𝑖 and 𝐶𝑖 𝑗 have corresponding
𝐵𝑖-cycles and 𝐶𝑖 𝑗 -cycles. We also note that these cycles are copies of the
corresponding cycles in𝑊 .

Before we are ready to de�ne constellations and 𝑏-stellar cycles, we de-
scribe and de�ne the notion of retracts of hypergraphs through generalized
morphism. These yield a systematic procedure of “collapsing” an existing
hypergraph by removing or identifying edges and removing some vertices.
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De�nition 5.27. Let 𝐻 ′ ⊂ 𝐻 . The neighborhood 𝑁 (𝐻 ′) of 𝐻 ′ is the subhy-
pergraph with vertex set 𝑉 (𝑁 (𝐻 ′)) = 𝑉 (𝐻 ′) and edge set

𝐸 (𝑁 (𝐻 ′)) = 𝐸 (𝐻 ′) ∪ {𝑒 ∈ 𝐸 (𝐻 ) | there exists 𝑣 ∈ 𝑉 (𝐻 ′) such that 𝑣 ∈ 𝑒},

i.e., edges outside of 𝐻 ′ are only included in the neighborhood if they are
incident to any vertex in 𝐻 ′.

As we have seen, a subhypergraph 𝐻 ′ ⊂ 𝐻 is said to be closed if for all
𝑣 ∈ 𝑉 (𝐻 ) it holds that if 𝑣 is incident to an edge 𝑒 ∈ 𝐸 (𝐻 ′) then 𝑣 is also part
of the subhypergraph, i.e., 𝑣 ∈ 𝑉 (𝐻 ′). Furthermore, 𝐻 ′ is said to be open if
𝐻 ′ = 𝑁 (𝐻 ′).

Example 5.28. Consider the hypergraph 𝐻 pictured in Figure 10 with inci-
dence matrix

𝐴(𝐻 ) =
[
1 1
0 1

]
,

and let 𝐻 ′ be the closed subhypergraph highlighted in this �gure. The neigh-
borhood of𝐻 ′ also includes the edge 𝑒2 so𝐻 ′ is not open. Note that in general,
a subhypergraph or neighborhood need not contain the all vertices of the
included edges, thus potentially resulting in self-loops.

Figure 10: A subhypergraph and its neighborhood.

De�nition 5.29. Let 𝐻1 = (𝑉1, 𝐸1) and 𝐻2 = (𝑉2, 𝐸2) be hypergraphs. A
generalized morphism 𝜙 : 𝐻1 → 𝐻2 consists of a pair of functions

𝜙𝑉 : 𝑉1 → 𝑉2 ∪ {𝜀} and 𝜙𝐸 : 𝐸1 → 𝐸2 ∪ {𝜀},

where 𝜀 ∉ 𝑉𝑖 ∪ 𝐸𝑖 for 𝑖 = 1, 2, such that for all 𝑣 ∈ 𝑉1,

1. if 𝜙𝑉 (𝑣) ≠ 𝜀, then ∑︁
𝑒∈𝜙−1

𝐸
(𝑒 ′)
𝐴(𝐻1)𝑣𝑒 = 𝐴(𝐻2)𝜙𝑉 (𝑣)𝑒 ′

for all 𝑒′ ∈ 𝐸2, and
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2. if 𝜙𝑉 (𝑣) = 𝜀, then ∑︁
𝑒∈𝐸1\𝜙−1𝐸 (𝜀)

𝐴(𝐻1)𝑣𝑒 ≡ 0 (mod 2),

and 𝜙𝐸 (𝑒1) = 𝜙𝐸 (𝑒2) for all edges 𝑒1, 𝑒2 ∈ 𝐸1 \ 𝜙−1
𝐸
(𝜀) incident to 𝑣 .

Intuitively, from these rules, we can deduce that we are allowed to make the
following modi�cations:

• freely remove and identify edges, preserving the incidences according
to condition (1)

• remove isolated vertices,
• remove vertices incident to an even number of edges, collapsing the
incident edges, and more generally

• remove any vertex 𝑣 , and identify a number of edges incident to 𝑣 so
that condition (2) above is satis�ed.

Given a hypergraph containing repeated structure in the form of a subhyper-
graph, a nice useful example of generalized morphisms is that of successively
removing edges until only several copies of said subhypergraph remains, and
then identify those copies. Figures 12 and 13 show such a process.

Example 5.30. Consider the hypergraph 𝐻 , pictured to the left in Figure 11.
It is given by the incidence matrix

𝐴(𝐻 ) =


1 1 0
0 1 0
1 1 0
0 1 1

 .
A generalized morphism removing the vertex 𝑣1 must, in order to preserve
identity (2) of the de�nition also identify 𝑒1 and 𝑒2, thus resulting in the
incidence matrix

𝐴(𝐻 ′) =

2 0
2 0
2 1

 .
Figure 11 shows this generalized morphism. If we instead let 𝑒1 ↦→ 𝜀 and
𝑒2 ↦→ 𝑒′2, where 𝑒′2 = {𝑣′2, 𝑣′3, 𝑣′4}, obtaining the hypergraph 𝐻 ′, then

𝐴(𝐻 )𝑣2𝑒2 +𝐴(𝐻 )𝑣2𝑒3 = 1 + 0 . 0 (mod 2)

and 𝐴(𝐻1)𝑣3𝑒2 = 0 ≠ 𝐴(𝐻 ′)𝑣 ′3𝑒 ′2 , so both property (1) and (2) would be violated.

In our later constructions, we will not directly use the concept of generalized
morphism, but rather focus on so-called retracts:
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Figure 11: Generalized morphism between two hypergraphs, removing the
vertex 𝑣1 and making the identi�cations 𝑒1, 𝑒2 ↦→ 𝑒′.

De�nition 5.31. Let 𝐻 ′ ⊂ 𝐻 . If there is a generalized morphism 𝑟 : 𝐻 → 𝐻 ′

such that 𝑟 |𝐻 ′ is the identity then 𝐻 ′ is said to be a retract of 𝐻 .

In particular, we note that every closed subhypergraph is a retract.

Based on our understanding of generalized morphisms above, we �nd that a
subhypergraph 𝐻 ′ ⊂ 𝐻 is a retract if it can be obtained from 𝐻 through any
sequence of the following modi�cations:

• removal and identi�cation of edges outside of 𝐻 ′, and
• removal of vertices outside of 𝑉 (𝐻 ′) that are not incident to any edges
in 𝐸 (𝐻 ′), along with the necessary identi�cations to satisfy property
(2) in De�nition 5.29.

Example 5.32. Consider the cube hypergraph pictured in Figure 12, and
consider the generalized morphism removing the highlighted edges, and
then identifying the vertices of the top square with the bottom square. Then,
we see that the subhypergraph given by the vertices {1, 2, 3, 4} and edges
{{1, 2}, {2, 3}, {3, 4}, {1, 4}}, i.e. the bottom square, is a retract.

Figure 12: The square is a retract of the cube hypergraph.

Example 5.33. Let 𝑊 be a wagon wheel hypergraph with “wheels”
𝑊1, . . . ,𝑊𝑚 . Recall the cycles 𝐶𝑖 𝑗 and 𝐵𝑖 seen in Example 5.26.

To see that there is a retract of 𝑁 (𝑊𝑖) onto 𝑁 (𝐵𝑖), we can simply remove all
vertices (𝑖, 𝑗, 1) for 𝑗 ∈ Z𝑛𝑖 , along with their incident edges. The resulting
graph then consists of an outer cycle with the same number of vertices as the
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inner cycle 𝐵𝑖 , as well as the neighborhood 𝑁 (𝐵𝑖). Much like the squares in
the previous example, the outer cycle can then be identi�ed with the inner
cycle, and we obtain the suggested retract, see Figure 13.

It is possible to show that there is a retract of 𝑁 (𝑊𝑖) onto 𝑁 (𝐶𝑖 𝑗 ) if
mult(𝑠𝑖 𝑗 ; 𝑟𝑖 ′) is even for all 1 ≤ 𝑖′ ≤ 𝑚. The description of this retract is a bit
more involved than that of 𝑁 (𝐵𝑖), so we refer the interested reader to [18],
Lemma 12.3.

Figure 13: Retract of 𝑁 (𝑊𝑖) to the cycle 𝑁 (𝐵𝑖) for 𝑛𝑖 = 4.

Finally, we consider another family of hypergraphs that will be helpful for
our later constructions:

De�nition 5.34. The sun of size 𝑛 is the hypergraph with vertex set 𝑉 =

{1, . . . , 𝑛}, edge set 𝐸 = {𝑒𝑖, 𝑓𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, such that the vertex 𝑖 is incident
with 𝑓 𝑗 if 𝑖 = 𝑗 , and 𝑒 𝑗 if 𝑖 ≡ 𝑗 (mod 𝑛) or 𝑖 ≡ 𝑗 + 1 (mod 𝑛).

Figure 14: The sun of size 8.

Example 5.35. In fact, we have already seen several examples of suns without
realizing. In particular, the neighborhoods of the cycles𝐶𝑖 𝑗 and 𝐵𝑖 for 1 ≤ 𝑖 ≤
𝑚 and 𝑗 ∈ Z𝑛𝑖 can easily be seen to be suns. The inner cycle 𝑁 (𝐵𝑖) is a sun
of size 𝑛𝑖 , while the cycles 𝑁 (𝐶𝑖 𝑗 ) are suns of size 5.
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We are now ready to state our �nal de�nitions for this section, before pursuing
the proof of the embedding theorem.

De�nition 5.36. Let 𝐻 be a hypergraph with vertex labeling function 𝑏 :
𝑉 (𝐻 ) → Z2. A cycle 𝐶 in 𝐻 is 𝑏-stellar if

1. 𝑁 (𝐶) is isomorphic to a sun,
2. 𝑁 (𝐶) is a retract of 𝐻 , and
3. 𝑏 (𝑣) = 0 for all 𝑣 ∈ 𝑉 (𝐶).

De�nition 5.37. Let 𝐻 be a hypergraph with vertex labeling 𝑏 : 𝑉 (𝐻 ) → Z2.
A collectionΦ of cycles of𝐻 is called a𝑏-constellation if it satis�es to following
properties:

1. If 𝐶 ∈ Φ, then the neighborhood 𝑁 (𝐶) is isomorphic to a sun and is
either 𝑏-stellar or a sequence of edges 𝑒1𝑒2 . . . 𝑒𝑛, 𝑛 ≥ 3, such that 𝑒𝑘
belongs to a 𝑏-stellar cycle 𝐶′ ∈ Φ for all 3 ≤ 𝑘 ≤ 𝑛.

2. For every 𝐶 ∈ Φ, either:
• there is an edge 𝑒 ∈ 𝐸 (𝐶) which does not belong to any cycle in
Φ \ {𝐶}, or

• there is another cycle 𝐶′ ∈ Φ such that 𝐸 (𝐶) ∩ 𝐸 (𝐶′) ≠ ∅, and 𝐶′

contains an edge 𝑒 which does not belong to any cycle in Φ \ {𝐶′}.
3. For distinct cycles 𝐶0,𝐶1 ∈ Φ, it holds that |𝐸 (𝐶0) ∩ 𝐸 (𝐶1) | ≤ 1, and if

neither 𝐶0 nor 𝐶1 is 𝑏-stellar, then 𝐸 (𝐶0) ∩ 𝐸 (𝐶1) = ∅.

Example 5.38. Consider the hypergraph pictured in Figure 15 and take 𝑏 to
be the 0-labeling, and let Φ contain the cycles𝐶1 = {𝑣1, 𝑣3, 𝑣4},𝐶2 = {𝑣2, 𝑣3, 𝑣4},
and 𝐶3 = {𝑣1, 𝑣2, 𝑣4}. It is clear that each cycle of Φ is 𝑏-stellar. Furthermore,
for the cycle 𝐶1, the edge {𝑣1, 𝑣3} is not included in any other cycle in Φ,
similarly, the edges {𝑣2, 𝑣3} and {𝑣1, 𝑣2} in 𝐶2 and 𝐶3, respectively are not
included in any other cycles of Φ. Lastly, each pair of cycles in Φmeet in only
a single edge. Thus, Φ is a 𝑏-constellation.

Note that under this labeling, we cannot include the cycle {𝑣1, 𝑣2, 𝑣3} in Φ
since, despite it being 𝑏-stellar, neither cycle would then contain an edge not
included in any other cycle of Φ, thus violating property (2) of the de�nition.

Figure 15: The hypergraph described in Example 5.38.
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6. Proof of Proposition 4.19

This section �nally gives the conclusion to our endeavors of proving the
embedding theorem, and in particular, the last remaining step to show –
Proposition 4.19.

First, we will work out the proof through an example using the now familiar
presentation of the dihedral group before giving the general proof of the
proposition as stated in [18].

To simplify our notation, we �rst make the following de�nition:

De�nition 6.1. Let𝑊 (I) be the wagon wheel hypergraph corresponding
to I = Inv 〈𝑆 | 𝑅〉. Denote by 𝐵𝑖 the cycle containing the edges 𝑑𝑖 𝑗 for all
1 ≤ 𝑖 ≤ 𝑚 and 𝑗 ∈ Z𝑛𝑖 , and by 𝐶𝑖 𝑗 the cycle of edges 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , 𝑐𝑖 𝑗 , 𝑑𝑖 𝑗 and 𝑐𝑖, 𝑗−1
for all 1 ≤ 𝑖 ≤ 𝑚 and 𝑗 ∈ Z𝑛𝑖 . Finally, let ΦI denote the collection of all cycles
𝐵𝑖 and 𝐶𝑖 𝑗 .

§ 6.1. Illustration of the proof. We present a general overview of the proof
of Proposition 4.19 by working through an example based on the presentation
of the dihedral group 𝐷2𝑛 , as given in Example 4.16. Recall that we have
the presentation 𝐷2𝑛 =

〈
𝑠, 𝑡 | 𝑠2 = 𝑡2 = (𝑠𝑡)2𝑛 = 1

〉
so that 𝐷2𝑛 is a group pre-

sented by involutions over Z2 with 𝐽 = (𝑠𝑡)𝑛 , i.e. 𝐷2𝑛 = Inv
〈
𝑠, 𝑡 | (𝑠𝑡)2𝑛 = 1

〉
.

We aim to show that there is an embedding over Z2 of 𝐷2𝑛 into a solution
group Γ(𝐴,𝑏) corresponding to a binary linear system in variables 𝑋 such
that {𝑠, 𝑡} ⊂ 𝑋 .

We have seen several examples of thewagonwheel hypergraph corresponding
to this group. In the top-left of Figure 5 is the wagon wheel corresponding to
𝐷2, and in Figure 9, we �nd the wheel of the group 𝐷8. For any 𝑛, we see that
the 0-labeling is a 𝐷2𝑛-labeling of𝑊 . Let Φ𝐷2𝑛 be as in De�nition 6.1, and for
simplicity we write 𝐶 𝑗 := 𝐶1 𝑗 for 0 ≤ 𝑗 ≤ 3, and 𝐵 := 𝐵1. We �nd that Φ𝐷2𝑛 is
a 0-constellation:

As mentioned in Example 5.35, 𝑁 (𝐵) is a sun of size 4, and by Example 5.33
it is also a retract of𝑊 . Thus, it follows that 𝐵 is 0-stellar. Likewise, for
0 ≤ 𝑗 ≤ 3, the cycle 𝐶 𝑗 can also be seen to be 0-stellar. Thus, condition (1) of
De�nition 5.37 is satis�ed.

Since 𝐶 𝑗 is the only cycle in Φ containing the edges 𝑎1 𝑗 and 𝑏1 𝑗 , and 𝐸 (𝐵) ∩
𝐸 (𝐶 𝑗 ) = {𝑑 𝑗 } we also �nd that condition (2) is satis�ed. Lastly, for all
𝐶0,𝐶1 ∈ Φ we have that |𝐸 (𝐶0) ∩ 𝐸 (𝐶1) | = 1, so we conclude that Φ𝐷2𝑛
is a 0-constellation indeed.

We now consider the morphism 𝜙 : 𝐷2𝑛 → Γ(𝑊, 0) such that 𝑠 ↦→ 𝑥𝑠 and
𝑡 ↦→ 𝑥𝑡 . Note that the word𝑤 = (𝑠𝑡)2𝑛 is mapped to the identity by 𝜙 . Thus,
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by Proposition 5.22 there is a𝑊 -picture P such that bd(P) = (𝑠𝑡)2𝑛. An
example of such a picture is seen to the right in Figure 9, and this example
can easily be extended to a𝑊 -picture for any 𝑛.

For our later discussions, it is now helpful to note that for such a picture, all
Φ𝐷2𝑛 -cycles in P are facial copies. Now, by collapsing the Φ𝐷2𝑛 -cycles of P to
a single vertex, we obtain a𝐷2𝑛-picture P′, resembling a star graph embedded
in a square, in which the single vertex is labeled by (𝑠𝑡)2𝑛 , see Figure 16. In
particular, bd(P) = bd(P′).

Figure 16: By collapsing the Φ𝐷2-cycles of the picture P to a single vertex,
we obtain the picture P′.

So indeed𝑤 = 1 in 𝐷2𝑛 and since 𝜙 (𝐽𝑎𝑤) = 1 for 𝑎 ∈ Z2 if and only if 𝑎 = 0
and 𝜙 (𝑤) = 1 it follows that 𝜙 is injective. Thus, 𝐷2𝑛 can be embedded into
the solution group Γ(𝑊, 0) in the desired way, for all 𝑛.

§ 6.2. Presenting the proof. After the hopefully illuminating example of
the previous section, we now proceed to give the general steps of the proof,
referencing the relevant results from [18] where needed. For the purpose of
this text, we will not delve further into the details of this proof beyond this
overview and instead urge the reader to pursue a deeper understanding of
the matter by consulting [18].

The primary results from this article, which are here taken as facts, are the
following statements:

Fact 1 ([18], Lemma 12.4). Let I = Inv 〈𝑆 | 𝑅〉 be a collegial representation
by involutions over Z2, and let𝑊 =𝑊 (I) be its wagon wheel hypergraph.
Let 𝑏 be an I- labeling 𝑏 of𝑊 (I) such that

• |𝑏−1(1) ∩𝑉 (𝑊𝑖) | ≤ 1 for all 1 ≤ 𝑖 ≤ 𝑚,
• 𝑏 ((𝑖, 𝑗, 2)) = 𝑏 ((𝑖, 𝑗, 3)) = 0 for all 1 ≤ 𝑖 ≤ 𝑚 and 𝑗 ∈ Z𝑛𝑖 , and
• if 𝑏 ((𝑖, 𝑗, 1)) = 1, then either mult(𝑠𝑖 𝑗 , 𝑟𝑖 ′) is odd for some 1 ≤ 𝑖′ ≤ 𝑚,
or mult(𝑠𝑖 𝑗 ′, 𝑟𝑖 ′) is even for all 𝑗 ∈ Z𝑛𝑖 and 1 ≤ 𝑖′ ≤ 𝑚.

Then, ΦI is a 𝑏-constellation.
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Fact 2 ([18], Theorem 11.4). Let 𝐻 be a hypergraph with vertex labeling 𝑏,
and let Φ be a 𝑏-constellation. Let P be an 𝐻 -picture such that

1. bd(P) does not contain any edges from any cycle 𝐶 ∈ Φ, and
2. either 𝑏 = 0 or P is closed.

Then P is 𝑏-equivalent to a picture P′ such that all Φ-cycles in P′ are facial
copies.

Fact 3 ([18], Lemma 12.5). Let I = Inv 〈𝑆 | 𝑅〉 with I- labeling 𝑏, and let P be
a𝑊 (I)-picture in which allΦI-cycles are facial copies, and such that all edges
in bd(P) belong to 𝑆 . Then there is a𝐺-picture P′ with bd(P′) = bd(P) and
sign(P′) = ch(P) · 𝑏.

Recall that Inv 〈𝑆 | 𝑅+〉 denotes the even presentation of Inv 〈𝑆 | 𝑅〉. Likewise,
for any group 𝐺 over Z2 we de�ne the even quotient 𝐺+ = 𝐺/(𝐽𝐺 ) × Z2, a
group over Z2 with 𝐽𝐺+ as the generator of the Z2-factor. In particular, if
𝐺 = Inv 〈𝑆 | 𝑅〉, then 𝐺+ = Inv 〈𝑆 | 𝑅+〉.

We now present the �nal proof of the embedding theorem, following the
presentation in [18].

Proof of Proposition 4.19. Let𝐺 be a group with a presentation by involutions
over Z2, I = Inv 〈𝑆 | 𝑅〉, and suppose that this presentation is collegial. By
Fact 1 there is an I-labeling 𝑏 of𝑊 :=𝑊 (I) such that ΦI is a 𝑏-constellation.
Since every 𝑏-stellar cycle is also 0-stellar by (3) of De�nition 5.36, it follows
that ΦI is also a 0-constellation.

Note that there is an 𝑁 (𝑊𝑖)-picture P such that bd(P) = 𝑠𝑖1, . . . , 𝑠𝑖𝑛𝑖 and
ch(P) · 𝑏 =

∑
𝑣∈𝑉𝑖 𝑏𝑣 = 𝑝𝑖 . Thus, by Proposition 5.22 the relation 𝑟𝑖 holds

also in Γ(𝑊,𝑏). Hence, there is a well-de�ned morphism 𝜙 : 𝐺 → Γ(𝑊,𝑏)
over Z2 such that 𝑠 ↦→ 𝑥𝑠 for all 𝑠 ∈ 𝑆 . Likewise, there is a morphism
𝜙+ : 𝐺+ → Γ(𝑊, 0), also sending 𝑠 ↦→ 𝑥𝑠 for all 𝑠 ∈ 𝑆 .

We �rst show that 𝜙+ is injective. We again rely on the Van Kampen lemma
(Proposition 5.22) to say that if 𝜙+(𝑤) = 1 for some word 𝑤 ∈ F2(𝑆), then
there is a𝑊 -picture P with bd(P) = 𝑤 . Now by Fact 2 we can choose P so
that all Φ-cycles in P are facial copies. Then, by Fact 3, there is a 𝐺+-picture
P′ such that bd(P′) = bd(P), so it follows that 𝜙+(𝑤) = 1 in 𝐺+. Since
𝜙+(𝐽𝑎𝑤) = 1 for 𝑎 ∈ Z2 and𝑤 ∈ F2(𝑆) if and only if 𝑎 = 0 and 𝜙2(𝑤) = 1, it
follows that 𝜙+ is injective.

Consider the quotient maps 𝑞1 : 𝐺 → 𝐺+ and 𝑞2 : Γ(𝑊,𝑏) → Γ(𝑊, 0) by 𝐽𝐺
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and 𝐽Γ(𝑊,𝑏) , respectively, and the commutative diagram:

𝐺 Γ(𝑊,𝑏)

𝐺+ Γ(𝑊, 0)

𝜙

𝑞1

𝜙+

𝑞2

Now, since 𝐽𝐺 is central of order at most 2, either ker(𝑞1) = 1 or ker(𝑞1) = 𝐽𝐺 .
Since 𝜙+ is injective, if 𝜙 (𝑤) = 1 then 𝑞1(𝑤) = 1, so 𝑤 ∈ {1, 𝐽𝐺 }. We show
that 𝜙 (𝐽𝐺 ) = 1 if and only if 𝐽𝐺 = 1 in 𝐺 .

By de�nition, 𝜙 (𝐽𝐺 ) = 𝐽Γ , and if 𝐽Γ = 1, then by Proposition 5.22 there is a
closed𝑊 -picture P with ch(P) · 𝑏 = 1. Since P is closed, we can choose P
so that all Φ-cycles in P are facial copies, by Fact 2. Finally, Fact 3 implies
that there is a closed 𝐺-picture P′ such that sign(P′) = 1, and it follows that
𝐽𝐺 = 1 in 𝐺 . Thus, 𝜙 is injective.

§ 6.3. Concluding remarks. The proof in the preceding section concludes
our proof of the embedding theorem. By showing in Propositions 4.12 and
4.18 it is possible to embed any �nitely presented group over Z2 into a group
presented by involutions, and more speci�cally that every �nitely presented
group over Z2 with a sequence of distinguished involutions can be embedded
into a collegial presentation by involutions, we paved the way to Proposition
4.19 stating that any group with a collegial presentation by involutions can
be embedded into the solution group corresponding to some binary linear
system and hence to some linear system non-local game.

By these three steps, we conclude with the embedding theorem (Theorem
4.6) that any �nitely presented group generated by involutions and with a
distinguished central element of order two can be embedded into a solution
group corresponding to a linear system non-local game. Through purely
group theoretic results and using Theorem 4.5 we thus �nd that there are
non-local games with perfect commuting-operator strategies, but lacking
perfect tensor-product strategies.

Although this construction yields quite unwieldy games that are di�cult to
describe in a truly meaningful way, this result nonetheless resolves a long-
standing Tsirelson problem of whether 𝐶𝑞𝑠 = 𝐶𝑞𝑐 , the answer to which we
can now conclude to be negative.

For example, corresponding to the tiny group 𝐷2, we get a wagon wheel with
12 vertices and 18 edges, which correspond to a solution group for a linear
system non-local game with 𝐴 ∈ Z12×19

2 . Even worse, working through the
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construction with a group over Z2 in which 𝐽𝐺 ≠ 1 yet such that 𝜋 (𝐽𝐺 ) = 1
for all �nite-dimensional representations of 𝐺 , such as the one used in the
proof of Corollary 4.7, we obtain a system with several hundred variables
and relations, as seen in [18].

However, wemight see improvements in this regard with future simpli�cation
of this construction.Furthermore, it is of interest to determine the smallest
linear system non-local game which results in a separation of 𝐶𝑞𝑠 and 𝐶𝑞𝑐 .
The author hopes that this overview of the main result and its underlying
constructions can be helpful in this regard.



Appendices

A. �antum computing

Here, we introduce the basic notions of quantum computing, including qubits
and their states and how operations are performed through gates and mea-
surements. Finally, we introduce the reader to what can be considered the
hidden power of quantum computing – the concept of entanglement.

§ A.1. Qubits and their states. As we are familiar with from the classical
theory of computation, the simplest and primary unit of information is that
of a bit. Analogously, in the theory of quantum computation, we deal with
quantum bits, or qubits:

De�nition A.1. A qubit is a unit vector in C2, denoted by |𝜓 〉, and we
distinguish the so-called basic states

|0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
.

More generally, a quantum state is a unit vector in a Hilbert space and a
multi-qubit state, or a register, of 𝑛 qubits is a unit vector in the Hilbert space
(C2)⊗𝑛

This notation of vectors is called Dirac or ket notation and is a common
notation for quantum state vectors, i.e, |𝜓 〉 = 𝛼0 |0〉 + 𝛼1 |1〉. We also let 〈𝜓 |
denote the conjugate transpose of |𝜓 〉 in the conjugate Hilbert space. This
conveniently lets us write the inner product of |𝜓1〉 and |𝜓2〉 as 〈𝜓1 |𝜓2〉.

The notion of basic states extends more generally to states on 𝑛 qubits as we
can simply consider the basic states |0〉⊗𝑛 and |1〉⊗𝑛 .

A quantum state like |𝜓 〉 = 𝛼0 |0〉 + 𝛼1 |1〉 in which 𝛼0, 𝛼1 ≠ 0 is said to
be in superposition of the two basic states. Interestingly, this distinguishes
quantum states from classical states in that they can simultaneously hold
more information that, theoretically, could be retrieved through a procedure
called a measurement.

56
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In particular, in contrast to states of bits in the usual sense, the value of a
quantum state cannot be directly observed but is instead measured, which
leads to some interesting consequences, as we will see in Section A.3.

§ A.2. Operations on qubits. In further analogy with the theory of classical
computation, we consider operations of qubits called gates.

De�nition A.2. A unitary transformation on (C2)⊗𝑛 is called a gate.

This de�nition is motivated by the fact that unitary transformations preserve
the property of being a unit vector, so a gate indeed transforms one quantum
state into another. Some notable examples of quantum gates include the
following transformations on qubits:

Example A.3. Two of the most simple gates are the following:

Identity:
[
1 0
0 1

]
NOT-gate:

[
0 1
1 0

]
,

which are both analogous to the identity and NOT gate of classical computa-
tion in that the identity leaves a qubit unchanged, while a NOT-gate “�ips” a
|0〉 to a |1〉 and vice versa.

Another useful gate is the CNOT-gate, or controlled-not gate, which, when
applied to a two-qubit register, �ips the second qubit if and only if the �rst
qubit – called the control bit – is 1. It is given by the matrix

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
It is a simple matter to check that each of these transformations is indeed
unitary.

Finally, we de�ne the perhaps most crucial gate in quantum computing:

De�nition A.4. On a single-qubit system, the transformation de�ned by

1
√
2

[
1 1
1 −1

]
,

is called the Hadamard transform.

Notably, the Hadamard transform transforms a state in the basis {|0〉 , |1〉} to

the orthogonal basis
{

1√
2

[
1
1

]
, 1√

2

[
1
−1

]}
, and vice versa.
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§ A.3. Measurements on qubits. As suggested previously, the concept of
measurements is highly central in quantum computing as it is the process
through which the value of a quantum state can be obtained.

According to the Born rule, a fundamental postulate of quantum mechanics, a
measurement of the state |𝜓 〉 = 𝛼0 |0〉 + 𝛼1 |1〉 will result in an observation
of either |0〉 or |1〉 with probability |𝛼0 |2 or |𝛼1 |2, respectively. This can be
generalized to multi-qubit states.

Notably, this means that after measurement, the state e�ectively collapses
to either of the states |0〉 or |1〉 according to some probability distribution.
Furthermore, the measurement here is made with respect to the standard
basis {|0〉 , |1〉}, but could just as easily have been made according to some
other orthonormal basis, such as the Hadamard basis of the previous section
after a change of basis.

We make the following formal de�nition:

De�nition A.5. Let H be a Hilbert space and [𝑛] = {1, . . . , 𝑛} a set of
outcomes. A projective valued measurement (PVM) is a collection of self-
adjoint projections {𝑃𝑖}𝑖∈[𝑛] such that

∑𝑛
𝑖=1 𝑃𝑖 = 1. Given a state |𝜓 〉, the

probability of observing the outcome 𝑖 is given by

| |𝑃𝑖 |𝜓 〉 | |2 = 〈𝜓 | 𝑃∗𝑖 𝑃𝑖 |𝜓 〉 = 〈𝜓 | 𝑃𝑖 |𝜓 〉 ,

and after measurement, the state collapses to

𝑃𝑖 |𝜓 〉√︁
〈𝜓 | 𝑃𝑖 |𝜓 〉

.

Example A.6. Given a Hilbert space H with orthonormal basis
𝐵 = {|𝑣1〉 , . . . , |𝑣𝑛〉}, the collection of self-adjoint projections

𝑃𝑖 = |𝑣𝑖〉 〈𝑣𝑖 |

yields a PVM with outcome set corresponding to the basis 𝐵.

§ A.4. Entanglement. Finally, we introduce the concept of entanglement
– the primary property of quantum mechanics, which distinguishes it from
classical mechanics when we consider physically separated systems.

Given two qubits |𝜓1〉 ∈ H1 and |𝜓2〉 ∈ H2, we can consider them as forming
a multi-qubit system in H1 ⊗ H2, according to our de�nition of quantum
registers. However, not all states in this space can be written as a product
of states coming from H1 and H2. Such inseparable states are said to be
entangled.
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Example A.7. Consider the qubits |0〉 and |0〉 forming the two-qubit register
|00〉. To this state, we apply �rst the Hadamard transform to the �rst qubit
and then the CNOT gate, thus obtaining the state

(𝐶𝑁𝑂𝑇 ) (𝐻 ⊗ 1)


1
0
0
0

 = 𝐶𝑁𝑂𝑇
1
√
2


1
0
1
0

 =
1
√
2


1
0
0
1

 =
|00〉 + |11〉

√
2

,

which is entangled. This state is called a Bell-pair.

What makes entanglement an interesting phenomenon to study is the be-
havior of such states when measured. Consider, for instance, the Bell-pair in
the preceding example: if we were to measure the �rst qubit using the PVM
discussed in Example A.6, and observe |0〉 with probability 1

2 , then the state in
its entirety would collapse to |00〉. Thus, the second qubit can immediately be
determined to be |0〉! In fact, no matter the outcome, entanglement ensures
that the resulting observations are not independent anymore.

This property is sometimes described as the non-locality of quantum me-
chanics in that the entangled qubits themselves do not a priori need to be
physically close to each other at the time of measurement so that the collapse
of the system seems to imply that a distant action immediately results in an
altered physical property in a local system.
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