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Abstract

The study of fluctuations is one of the central open problems in growths models. We focus on one
of the most popular growth models : first passage percolation, and we restrain to distributions of shape
(1 − p)F + pG with G dominates F in analogy to the Bernoulli distribution. In this context, the study
of fluctuations is deeply connected to the study of influences which in turn is a central concept in the
study of threshold phenomena for Boolean function. We give a first overview to Boolean theory and the
notions of influence and threshold. Finally, we show that this threshold phenomena also appears in the
context of first passage percolation for the functions p 7→ Pp (Tn ≥ θn).
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Notation
• G = (V,E) denotes a graph

• P is a measure of probability and E() is the expectation operator, Var () is the variance operator.

• γ denotes a path in a graph.

• π, πn denotes an optimal path and will often be called a geodesic.

• 1A is the indicator function of the event A.

• Ω = (Ω,F ,P) is a probabilistic space.

• ω is an element of Ω.

• T is the optimal time of passage.

• τ = (τe)e is a collection of random variables that indicate the time of passage through an edge.

• F,G are cumulative distribution function.

• ν is the distribution law. We will often mix up a distribution, and it’s cumulative function.

• X,Y are random variables.

• ∥.∥p are the p−norm operators defined in any measured R-vectorial space (E,µ) as (
∫
| . |pdµ)

1
p .

• ∥.∥∞ is the infinite norm defined on RI as supi∈I |xi|

• f = O(g) or f ≤ O(g) if there exists some C such that f ≤ Cg

• f = Ω(g) if g = O(f)

• f = Θ(g) if f = O(g) and f = Ω(g)

• f ∼ g if f = g + o(g)
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1 Introduction
First passage percolation was first introduced by Hammersley and Welsh [Hammersley and Welsh, 1965] in
1965 to model a fluid flowing through a random medium. The definition of the model it’s simple and beautiful
(we will focus on the definition over the lattice Zd, other variants will be introduced later) and goes as follows
: we connect each point of Zd to its nearest neighbors (for the ℓ1 metric); we place a random variable τe on
each of these connections (edges). The collection (τe)e is supposed to be non-negative, independent identically
distributed with common distribution F . The random variable τe is interpreted as the time needed to traverse
e. For any path γ, the time to cross this path is the sum of the τe. Given two points on x, y ∈ Zd we define

T (x, y) = inf
γ∈Γx,y

∑
e∈γ

τe

where the infimum is taken over all the finite paths from x to y. This defines a random metric over Zd.

One of the main results is known as the shape theorem that states that under mild conditions, there exist
a norm N such that T (x,y)

N(x,y)

P−→ 1 when ∥x− y∥ goes to +∞. Despite existing for almost 60 years, there
are still many unsolved questions concerning this model and growth models in general; one of them is the
estimation of fluctuations, i.e. the T (x, y)−N(x, y) residue. Several efforts have been made to have a better
understanding of the fluctuations around the time constant and the study of influences plays a central role
in current state of the art [Benjamini et al., 2011] where it was shown (for a Bernoulli distribution) that

Var (T (0, ne1)) = O

(
n

log n

)
thanks to Talagrand’s inequality that gives a bound on the variance that depends on the influences. Finally,
equation (12) from [Ahlberg et al., 2023] gives us a relationship between the variance and influence, showing
that the understanding of the behavior of the time passage under the perturbation of only one edges leads
the way to a global comprehension of fluctuations.

The study of influences is tightly connected to the study of sharp thresholds in boolean theory : that is,
for indicator functions defined over {0, 1}n, we see it as a random variable f(X1, . . . , Xn) where Xi are
independent Bernoulli variables of parameter p. Because f is an indicator function, also follows a Bernoulli
law, of parameter q(p). When q(p) is an increasing function that approaches a step function (flat except over
a very small interval where it is very steep) we say that the function presents a sharp threshold.

To try to leverage the theory of boolean functions (which are these functions defined over the hypercube
Ωn = {0, 1}) we will take interest on the case where the edges follow a distribution of type (1 − p)F + pG
in analogy to what happens in the Bernoulli setting. We will seek to study the time constant (and other
random variables) as a function of p. In this context, we show that the functions fn = 1T (0,ne1)>θn present
a sharp threshold. The proof is obtained using bounds on fluctuations and the fact that Ep[fn] is strictly
increasing as a function of p.

The main motivation for this work has been to investigate the connection between influence and variance.
We use known bound on the variance to derive the existence of a sharp threshold (which is indicator of small
influences). We would have liked to obtain and improvement on the bounds on the variance unfortunately
this seems quite hard.
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2 First Passage Percolation

2.1 Definition

Definition 2.1 (First passage percolation model (general)).
Let G = (V,E) be a (countable) graph. We consider a collection of non-negative independent, iden-
tically distributed random variables indexed by E : (τe)e∈E. We note ν their common law i.e.
∀e ∈ E, τe ∼ ν.
Consider Px,y to be the collection of finite paths from x to y.
For γ ∈ Px,y we define the time of passage through γ as

γ · τ =
∑
e∈γ

τe.

We can thus define the distance between two vertices of the graph as the best time of passage between
x and y.

Tω(x, y) = inf
γ∈Px,y

γ · τ. (1)

We note Tω this metric when we want to emphasize the fact that the metric is random (depends on
ω), but we will generally denote it simply T (x, y).

Because the time of passage through an edge is non-negative, we restrain ourselves without loss of generality
to paths without loops which allows us to represent paths by their indicator function

1γ : E → {0, 1}, e 7→ e ∈ γ.

By abuse of notation, we will often confuse a path, and it’s indicator function.

This justifies the scalar product notation for the time of passage through γ. Indeed, this corresponds to the
natural dot product in RE between the random function τ and the indicator function of γ.

2.2 First properties

Proposition.
If τ is almost surely positive, then, Tω is almost surely a distance.

Proof. Indeed, if P(τe = 0) = 0 for every e ∈ V , as V is a countable set, we have P
(⋃

e∈V (τe = 0)
)
= 0.

• (Symmetry) We have symmetry as Px,y ≃ Py,x via the path inversion.

• (Non-negative) For any path γ,
∑

e∈γ τe is almost surely well-defined and positive (as the sum of
almost surely positive random variables).

• (Triangular inequality) Let x, y, z ∈ G. Let ε > 0. By definition of the inf there exists a path
γy
x ∈ Px,y such that γy

x · τ ≤ T (x, y) + ε. We also have γz
y · τ ≤ T (y, z) + ε.

Then γz
x := γz

y + γy
x ∈ Px,z where + is the concatenation operation + : Py,z × Px,y → Px,z. We

thus have T (x, z) ≤ γz
x · τ = (γy

x + γz
y) · τ = γy

x · τ + γz
y · τ ≤ T (x, y) + T (y, z) + 2ε. We can then

make ε tend to 0 to obtain the desired result.

• (Defined) We have for every x T (x, x) = 0 (this comes from the convention of the existence of
the empty path ∅x ∈ Px,x). We also have for every x ̸= y, T (x, y) ≥ mine∈N (x) τe almost surely

greater than 0. G being countable, we have P
(⋃

x ̸=y(T (x, y) = 0)
)
= 0

■

In [Hammersley and Welsh, 1965], the model introduced was with V = Zd with E = {(x, y) ∈ Zd × Zd |
∥x− y∥1 = 1}, this has been the most common setting in the literature as well. We will as well take interest
mainly in this setting, but we will introduce other graphs settings on section 4.1.

When looking at the model over Zd, one can extend the distance Tω to Rd by adding a time of travel from
any real vector to its closest whole vector (this time is often taken as 0, which makes us lose the property of
separability).
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We note Bω(t) = {x ∈ Rd | Tω(0, x) ≤ t}. Let M ⊂ {ν : B([0,+∞)) → [0, 1]} be the set of non-negative,
Borel probability measures satisfying that min(t1, . . . , t2d) ∈ L1 where ti are independent and of law ν and
with ν({0}) < pc(d) where pc(d) is the threshold for bond percolation in Zd. The main result in this setting
is the Shape Theorem due to Cox and Durett [Cox and Durrett, 1981]

Theorem 2.2 (Shape Theorem).
For each ν ∈ M, there exist a deterministic, convex, compact set Bν in Rd such that for every
ε > 0,∃T > 0 such that :

P
(
(1− ε)Bν ⊂ 1

t
B(t) ⊂ (1 + ε)Bν for all t ≥ T

)
= 1

Furthermore Bν has non-empty interior and is symmetric with respect to the axis of Rd.

Because of the characterization of norms over Rd, this is equivalent to saying that there exist a norm N over
Rd such that

for all x, y ∈ Zd : T (x, y) = N(x− y) + o(N(x− y)).

2.3 Geodesics
In the case the infimum over all paths presented in 1 is reached, then there exists a path π such that
T (x, y) = π · τ . In such cases, π is called a geodesic. The existence and uniqueness of geodesics is an
important question. In later proof we will often fix a geodesic, without necessary verifying that such object
exists, this is done for the sake of simplicity, as carefully approximating the infimum would just add an
unnecessary layer of complexity. To reassure ourselves that this is legitimate, we can use the result (9.23)
from [Kesten et al., 1986] that states the existence of geodesics for the model over Zd when F (0) < pc.

3 Boolean functions
We will try to leverage the knowledge in boolean theory to study first passage percolation. As we will see,
boolean theory is very important in classical percolation and has already been used for the study of first
passage percolation, notably for the study of fluctuations [Benjamini et al., 2011].

If we restrict ourselves to the case where τe ∼ a+(b−a)B(p) where B(p) is the Bernoulli law of parameter p.
(We can also write τe ∼ (1− p)δa+ pδb) we can choose Ω = {0, 1}E or Ω = {−1, 1}E . In this setup, indicator
functions will be functions from {0, 1}E → {0, 1}. The functions from the hypercube Ωn = {0, 1}n to {0, 1}
are called boolean functions. It is a very rich theory that arises quite naturally in problems of combinatorics
and computer science.

This section has been extracted from [Garban and Steif, 2012] chapters I and III. Refer to it to go deeper on
the study of boolean functions.

3.1 Pivotal bit and influence
Some key concepts from the theory of boolean function are the notion of influence (and pivotal bit).

Define σi : Ωn −→ Ωn

ω 7−→ ωI
with ωI equal to ω except in the ith coordinate where the bit has been flipped.

We say a coordinate is pivotal for a function if changing its value changes the outcome of the function. More
in detail :
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Definition 3.1 (Pivotal bit and pivotal set [Garban and Steif, 2012] I.7-I.8 ).
Let f : Ωn → {0, 1} be a boolean function. Let ω ∈ Ωn.
We say i ∈ J1, nK is pivotal for f at ω if f(ω) ̸= f(σi(ω))

The set of bits that are pivotal (for a fixed ω) is called the pivotal set, we can then define a random
variable Πf with values in P(J1, nK) as follows:

Πf (ω) := {i ∈ J1, nK | i is pivotal for f for ω}

Note that the event f(ω) ̸= f(ωI) is independent with the projection along the ith coordinate ωi. If we identify
Ωn to (Z/2Z)n, σi is just the translation by ei = (0, . . . , 0, 1, 0, . . . , 0) where the only non-zero component is
the ith one; and if we identify it to Un

2 then it is the multiplication by χi = (1, . . . , 1,−1, 1, . . . , 1)

If we push this idea a little more, one can see some links with classical analysis:

The discrete directional derivative of f along the ith component can be written as

δif(ω) := f(ω + ei)− f(ω) = f(σiω)− f(ω).

We can establish the link between i is pivotal for f and ω and the derivative along the ith component of f
at ω is non-null.

It can be seen as the non-zero coordinates of the gradient of f at ω.

Definition 3.2 (Influence of a bit [Garban and Steif, 2012] I.9).
The influence of the ith bit Ii(f) is defined by :

Ii(f) = P (i is pivotal) = P (i ∈ Πf ) = E[|δif |]

We can introduce quite naturally the influence vector which is simply

Inf(f) = (Ii(f))i∈J1,nK

The study of influence originally arose in the study of political science to measure the power of different
voters to flip the election.1

Definition 3.3 (Total influence [Garban and Steif, 2012] I.10).
Finally, the sum of all the influences is called the total influence and defined as

I(f) =
∑
i

Ii(f) = ∥Inf(f)∥1 = E[|Πf |]

In the case the distribution is not uniform in Ωn, we will add p to the notation :

Definition 3.4 (Influence of a bit at level p [Garban and Steif, 2012] I.11).
The influence of the ith bit Ipi (f) is defined by :

Ipi (f) = Pp (i is pivotal) = Pp (i ∈ Πf )

The total influence at level p is defined as

Ip(f) =
∑
i

Ipi (f) = ∥Infp(f)∥1 = Ep[|Πf |]

3.2 The study of monotone functions
The monotone functions are an interesting object of study in boolean theory, on one hand because they have
nice properties, on the other hand because many of the functions of interest happen to be monotone functions.

1In CS this can be used to measure how robust is an algorithm to bit flipping and which are the bits that would be worth
copying
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For instance the existence of an infinite cluster is a non-decreasing function, we will see later that the time of
passage is also a non-decreasing function. On of the main results in the study of monotone functions is the
Margulis-Russo formula which allows us to deduce interesting results. Finally, the study of sharp threshold
makes essentially sense for monotone functions.

To talk of monotony, we need an ordering, we identify the hypercube Ωn to the natural lattice (P(J1, nK),⊂)
which gives us the following ordering in the hypercube : x ≤ y if ∀i ∈ J1, nKxi ≤ yi.

Definition 3.5.
A function f is monotone if x ≤ y implies f(x) ≤ f(y). An event is monotone if its indicator function
is monotone.

We can now present the Margulis-Russo formula (other proof can be found on the appendix B.3 and C.1).

Theorem 3.6 (Margulis-Russo Formula).
Let 1A : Ωn → {0, 1} be a monotone function.
Then

d

dp
Ep[1A] =

∑
i

Ipi (1A)

Proof. Suppose each variable xi has its own parameter pi. We can thus rewrite this expression as∑
i

∂

∂pi
Ep1,...,pn

[1A] =
∑
i

Pp1,...,pn
(i is pivotal for 1A)

It thus suffices to prove that

∀i
∂

∂pi
Ep1,...,pn

[1A] = Pp1,...,pn
(i is pivotal for 1A)

Let’s fix i ∈ J1, nK. We then have

Ep1,...,pn [1A] = Ep1,...,pn [1A(1i∈Π1A
+ 1i ̸∈Π1A

)]

= Ep1,...,pn
[1A1i∈Π1A

] + Ep1,...,pn
[1A1i ̸∈Π1A

]

We have 1A1i ̸∈Π1A
that does not depend on the value of pi because it is independent of the value of xi

and thus the partial derivative vanishes.

Likewise, we have ω ∈ A and i pivotal for ω and 1A if and only if xi = 1 (because we assume 1A to be
increasing) and i pivotal for ω and 1A.

Furthermore, we have 1A1i∈Π1A
= 1x1=11i∈Π1A

and by independence of 1x1=1 and 1i∈Π1A
we have

Ep1,...,pn
[1A1i∈Π1A

] = piEp1,...,pi−1,pi+1,...,pn
[1i∈Π1A

]

Thus,

∂

∂pi
Ep1,...,pn

[1A] = Ep1,...,pi−1,pi+1,...,pn
[1i∈Π1A

]

= Pp1,...,pn
(i is pivotal for 1A)

■

3.3 The sharp threshold phenomena
The notion of threshold functions appears already in [Erdős et al., 1960], the authors here look at random
graph where N edges are uniformly sampled to connect n different vertices (because law of large numbers,
this can be connected to independently adding each edge with probability p = N

(n2)
). They consider some
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properties of the graph (for instance, connexity, existence of cycles of certain size, ...). For each of these
properties, they show that there exist a threshold function A(n) such that if N(n) = o(A(n)) then the
probability of the graphs fulfilling this property goes to 0 and symmetrically if A(n) = o(N(n)) then the
probability of the graphs fulfilling this property goes to 1.

For example, for the probability of the graph being connected, we have

lim
n→+∞

P(G(n,N) is connected) = e−e−2y

where y = lim
n→∞

N(n)− 0.5n log n

n

Closer to the setting of first passage percolation is the "classical" percolation setting where one starts with
a graph, such as the square lattice (defined as (Z2, E(Z2)) where E(Z2) is the collection of closest neighbor
edges, that means the edges with the shape (x, x + ei), i = 1, 2, x ∈ Z2); and then erase each edge of the
graph with probability (1− p). One is then interested in the remaining subgraph and again in the properties
of this random subgraph: notably how these properties depend on p.

One property that’s very often studied is the existence of an infinite connected component. This event belongs
to the tail σ-algebra, thus, by the Kolmogorov zero-one law, for a fixed p, we will have that this event happens
either almost surely or is negligible. Because this event is increasing (we can not make the infinite cluster
disappear by adding edges), there exist pc ∈ [0, 1] such that for all p < pc, the probability of being an infinite
cluster is zero and for p > pc the probability is one. If we see the probability of this event as a function of
p, is simply the step function 1|pc,1]. pc acts as the threshold value, separating two kinds of regimes that
are the complete opposite. The good understanding of this type of discontinuity can be very important ; for
instance a good understanding of the critical point for social graphs helps define vaccination policies.

Figure 1: A real life example (from chemistry) of sharp threshold phenomena. The stronger the acid-base
couple, the sharper the threshold.

To obtain a better understanding of these thresholds [Russo, 1982] proposes to approximate this tail event by
a series of events that is adapted to the (some) filtration of finitely generated σ-algebra. In Russo’s paper, the
main idea is to argue that the influence of tail events is 0, thus, if the influence of a series of increasing events
goes to zero, one can expect that the probability of these events (as a function of p) converges pointwise to
a step function. As a consequence of this, we have an approximate zero-one law : the probability of these
events as a function of p can be separated into three regimes : one where the probability is very low, one
where the probability is very high and finally a transition window where the probability goes from close to
zero to close to one; the thinner the window, the sharpest the threshold.

To have a visualization of what these thresholds look like, we can use an example from real-life, in chemistry,
in an acid-base titration (see Figure 1), we can see a sharp threshold phenomena in the pH of the solution

12



as a function of the volume of titrant added. In case the function is derivable, the derivative can be seen as
an approximation of the Dirac delta function.

Definition 3.7 (Sharp threshold).
Let f : Ωn → {0, 1} be a boolean function. We say that f has an ε-sharp threshold if there exists
p0 ∈ (0, 1) such that for all p ≤ p0 − ε : Ep[f ] ≤ ε and for all p ≥ p0 + ε : Ep[f ] ≥ 1− ε.
A series of functions (fn)n is said to have sharp threshold if there exists a series (εn)n going to 0
such that for all n, fn has εn−sharp threshold. (Notice that p0 may depend on n).

We now have all the elements to prove sharp threshold in the case of evenly distributed influences.

Assume f : Ωn → {0, 1} is an increasing (non-constant) boolean function such that Ipi (f) = Ipj (f) for all i, j.
We thus have by 3.6 and the fact that all the influences are the same :

Ip(f) ≥ cVarp (f) log(n)

By writing Varp (f) = Pp (f = 1) (1− Pp (f = 1)) ≥ 1
2 min(Pp (f = 1) , (1− Pp (f = 1))) and using 3.6 we get

:

d

dp
Ep[f ] ≥

c

2
log(n)min(Pp (f = 1) , (1− Pp (f = 1)))

Because we assumed f to be non-constant, we have f(0n) = 0 and f(1n) = 1 thus P0(f = 1) = 0 and
P1(f = 1) = 1.

We also have p 7→ Pp (f = 1) is increasing and continuous and the derivative is strictly positive around
Pp (f = 1) = 0.5 thus there exist a unique p∗ such that Pp∗(f = 1) = 0.5.

Let p1 be such that Pp1(f = 1) ≥ ε. Then for p ∈ (p1, p
∗) we have d

dpPp (f = 1) ≥ c
2 log(n)Pp (f = 1). Thus,

d
dp log(Pp (f = 1)) ≥ c

2 log(n). Integrating this inequality between p1 and p∗ we get :

log(
1

2
)− log(ε) ≥ c

2
log(n)(p∗ − p1)

.

This shows that (p∗ − p1) ≤ 2
c log(n) log(

1
2ε ) which will go to 0 as n goes to ∞ (for fixed ε).

Let p2 be such that Pp2
(f = 1) ≤ 1 − ε. (This case is symmetric). We have for p ∈ (p∗, p2),

d
dpPp (f = 1) ≥

c
2 log(n)(1− Pp (f = 1)) which becomes − d

dp log(1− Pp (f = 1)) ≥ c
2 log(n). We integrate between p∗ and p2

which yields :

log(
1

2ε
) ≥ c

2
log(n)(p2 − p∗)

Finally, putting everything together, we get

p2 − p1 ≤ 4

c

log(1/2ε)

log(n)

This yields for any p1 and p2 such that Pp1
(f = 1) ≥ ε and Pp2

(f = 1) ≤ 1 − ε. We deduce that we pass
from a probability ε to a probability 1− ε in the span of c1

log(1/2ε)
log(n) which means we have sharp threshold!

Proposition.
If f : Ωn → {0, 1} is an increasing function for which the influence is equally distributed. Then f has
a sharp threshold. This threshold is at least of size O( 1

lnn ).

Finally, let’s present the theorem due to Russo that we outline on section 3.3. The proof that we present on
the annex A.1 is not the original proof from Russo as it uses the BBKL theorem that was not yet proved
when Russo published his theorem.
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Theorem 3.8 ([Russo, 1982]).
For all ε > 0, there exist δ > 0 such that if A is an increasing event satisfying Ipi (A) < δ for all p and
all i, then there exists p0 such that:

Pp (A) ≤ ε for all p ≤ p0 − ε

Pp (A) ≥ 1− ε for all p ≥ p0 + ε

3.4 Links between Variance and Influence
The reason we are interested in the concept of influence, is because it can be linked to the one of variance.
The proof of Russo theorem can be deduced quite swiftly from the BKKL theorem.

The theorem (due to Kahn Kalai Linial) gives us the best bound (up to a constant) of the variance by the
sum of the influences :

Theorem 3.9 (Theorem 3.1 [Kahn et al., 1989] ).
There exist a universal c > 0 such that for any boolean function f : Ωn → {0, 1}, then there exist
i ∈ J1, nK such that

cVar (f)
log(n)

n
≤ Ii(f)

The bound obtained in the theorem cannot be improved (without making further hypothesis about f), the
case of tribes being an example where the bound is sharp.

Example (Tribes).
Partition J1, nK into disjoints blocks of length log2(n)− log2(log2(n)): J1, nK = ⊔K

k=1Bk with |Bk| = ⌊log2(n)−
log2(log2(n))⌋ and |BK+1| ≤ ⌊log2(n)−log2(log2(n))⌋. Define fn to be max1≤k≤K mini∈Bk

xi. In other words,
fn is equal to 1 if at least one of the blocks if filled with ones.

We can easily approximate the probability of (fn = 0) because

(fn = 0) =

K⋂
k=1

(minBk = 0)

P (fn = 0) =

K∏
k=1

(1− 2−|Bk|)

≈ (1− log2(n)

n
)K

= e
− n

log2(n)

log2(n)
n +o(1)

→ e−1

This shows that the function is non degenerated, i.e. the probability of the function being equal to 1 will be
away from 0 or 1, thus the variance will stayed bounded away from 0.

Now, i ∈ Bk is pivotal only if all the other xj ∈ Bk in the same block are equal to 1 and the output from the
others blocks is equal to 0.
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So

Ii(fn) = P
(
max
l ̸=k

min
x∈Bl

x = 0 ∩ min
j∈Bk,j ̸=i

xj = 1

)
= P

(
max
l ̸=k

min
x∈Bl

x = 0

)
P
(

min
j∈Bk,j ̸=i

xj = 1

)
=
(
1− 2−|Bj |

)K−1

2−|Bk|+1

= P (fn = 0)
2−|Bk|+1

(1− 2−|Bj |)

= P (fn = 0)
2 log2(n)

n− log2(n)

We thus have in this case :
CVar (f)

log(n)

n
≥ Ii(f)

The theorem was extended to all p by Bourgain, Kahn, Kalai, Katznelson and Linial. We give here a second
form of the theorem.

Theorem 3.10 (Theorem I [Bourgain et al., 1992]).
There exist c > 0 such that if f is a boolean function f : Ωn → {0, 1} then for any p ∈ (0, 1):

∥Infp(f)∥1 ≥ cVarp (f) log
1

∥Infp(f)∥∞

4 Influences in first passage percolation
As we’ve seen in the previous chapter, boolean theory has been very useful to prove results in classical perco-
lation theory. We wish to leverage the boolean theory but instead for the study of first passage percolation.
We will thus restrict ourselves to the boolean setting and take a particular interest on the existence of sharp
thresholds and to a lesser extent on bounds on the variance and influences. For this, assume for the moment,
the time of passage (τe)e are issued from a distribution ν of the form (1− p)δa + pδb where 0 < a < b < +∞.

4.1 Graph settings
We will restrain ourselves to three different types of graphs :

• Torus

• Box

• Point to point

They will all be presented in the d-dimensional case, with each dimension having its own size ni. Yet we will
often restrain ourselves to the 2 dimensional case, with same size n in both dimensions.

4.1.1 The torus

Figure 2: Circumference of
a torus

The d-dimensional torus is defined by V =
∏d

i=1(Z/nZ) and edges being
E = {(x, x+ ei) | x ∈ V, 1 ≤ i ≤ d} where (ei) is the canonical base of V seen
as a Z−module. It is a very interesting setting, because the group of automor-
phism of this graph is very large (the group of automorphism is isomorphic to
V ).

In the torus the time variable of interested will be the circumference across the
first coordinate : i.e.

Tn = inf
γ∈Circ1

γ · τ

where Circ1 is the collection of paths whose projection onto the first dimension
is surjective and whose starting and ending vertices are equal. Because we are
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looking for the paths that minimizes the distance, this is equivalent to consider
only path that do one loop along the first coordinate.

4.1.2 The box

The d-dimensional box is defined as V =
∏d

i=1J1, nKd and the edges being E = {(x, x+ ei)|x ∈ V, 1 ≤ i ≤ d}
where (ei) is the canonical base of Zd seen as a Z−module.

The time variable of interested will be the time of crossing for the first coordinate : i.e.

Tn = inf
γ∈Cross1

γ · τ

where Croos1 is the collection of finite paths such that they start at x and finish at y with x1 = 0 and y1 = n.

4.1.3 Point to point

This is the most classical setting. We consider V = Zd and E = {(x, x + ei)|x ∈ V, 1 ≤ i ≤ d}. The value
of interest will be Tn = Tω(0, nx) as n grows large. We note the particular case where x = e1 where the
normalized limit is called the time constant.

4.2 Estimating Influences in the different settings
The proof of sharp threshold is often done by bounds on the influence. Let’s first see the case with more
symmetry the torus which should be easier.

4.2.1 Bounding influence on the Torus

We consider the torus (Z/nZ)2 and Tn the shortest circumference along the first coordinate.

We restrain ourselves to the study the Bernoulli setting in Z2. Set Ω = Ω2n2 and fix an enumeration of the
edges that is coherent with (Z/nZ)2 ⊂ (Z/mZ)2 for n ≤ m.

Finally, we study the indicator function

1Tn≥γn with γ ∈ (a, b).

What comes next follows the lines of Chapter VII [Garban and Steif, 2012]. There are two key elements : the
first is that, as the distribution is upper and lower bounded by b and a respectively, we obtain very quickly
a bound on the length of the geodesic : |πn| ≤ b

an.

We can notice that for a given configuration ω, we can first notice that P (∇eTn ̸= 0) = 2P (∇eTn < 0). An
edge has a negative gradient only if the edge belongs to the intersection of all geodesic when we set its value
to a.

We thus have P (∇eTn ̸= 0) ≤ 2P (e ∈ πn). Thus,∑
e

P (∇eTn ̸= 0) ≤ 2P (e ∈ πn) = 2E[|πn|] ≤
2bn

a
.

Because
(e is influencial for 1Tn≥γn) ⊂ (∇eTn ̸= 0)

we deduce that ∑
e

Ie(1Tn≥γn) ≤
2bn

a

By an argument of symmetry, all vertical edges and all horizontal edges have the same influence; the torus
is invariant by vertical and horizontal translation: the group of isometries being equal to (Z/nZ)2. As there
are O(n2) vertical and horizontal edges, we have that

Ie(1Tn≥γn) = O

(
1

n

)
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But to use A.1, one needs to bound the influences for all p. This method does not work, as we have
Pp (∇eTn ̸= 0) = 1

1−pP (∇eTn < 0). As p goes to 1, all the horizontal edges become very influential for Tn.

To control this, we need a finer bound :

(e is influencial for 1Tn≥γn) ⊂ (∇eTn ̸= 0) ∩ (Tn ∈ [γn− (b− a), γn+ (b− a)])

Because Tn

n is known to converge in L2 [Kesten, 1993] and thus, we deduce that σ(Tn) = o(n). By continuity
(in p) we expect for p large enough, the expectation of Tn to be close enough of bn so that Ep[Tn]−kσ(Tn) ≥
γn+(b−a). Making the probability of (Tn ∈ [γn− (b−a), γn+(b−a)]) very small by Tchebichev inequality.

In fact, this approach with the Tchebichev inequality is enough and allows us to prove the existence of sharp
threshold even in the case where we have more difficulties to estimate bounds on the influence.

4.2.2 Bounding the influence on the square and point to point

For the case of the square or point to point, we lose this natural symmetry making the bounding of the
influences harder (one expects the influence of edges close to the starting or ending point to be quite large),
to solve this problem, [Benjamini et al., 2011] use an averaging trick : they introduce a random variable that
introduces a random translation of the problem : we replace d(x, y) by d(x+z, y+z) where z is a bounded and
centered random variable in Zd, the influences for this new variable are Ie(d(x+z, y+z)) = Ez[Ie−z(d(x, y))],
this makes it easier to show that the influences are small, but adapting this technique to our case is not
straight forward.

In general, as we have seen previously for the case of the torus, bounding the influence for an edge is tightly
linked to the probability that the edge belong to a geodesic.

In the case of the square, we can still hope for this probability to be O( 1n ) as the most influential edges are
those closes to the left and right bounder of the square. For point to point, instead, we expect the influence
to be O(1) near the starting and end point. In [Benjamini et al., 2011] they raise the midpoint question
: what is the probability that 0 belong to a geodesic from (−ne1, ne1). In [Ahlberg and Hoffman, 2016]
they give a qualitative answer to this question, proving that this probability goes to 0 as n goes to ∞ and
[Dembin et al., 2022] give a more quantitative answer, as they show that under certain conditions over the
limit shape, this probability decays as a power of n, log3 n

n
1
16

to be exact. (This result should be enough to
make the dismissed proof of [Benjamini et al., 2011] work.)

5 Proving sharp threshold from bounds on the variance
As seen on the previous section, the study of influences is not straight forward in first passage percolation.
We contour this problem by instead deriving sharp threshold directly from the bounds on the variance. This
approach works for events of the shape (fn > γ).

We will use this approach in two different cases : the first, a generalization of tribes, where more precise
calculations are possible, making it easier to deduce the properties required to deduce sharp threshold; the
second is in the case of first passage percolation, where we consider the event (fn > γn). The verification of
the necessary conditions will be carried over sections 6 and 7.

5.1 A first example : Tribes
The first example will be for the case of tribes. Here Ωn = {0, 1}n and we equip it with Pp = ⊗n(pδ1 + (1− p)δ0).
We partition the set J1, nK into K blocks (Bj)1≤j≤K of the same size

⌊
n
K

⌋
(and we toss the Euclidean re-

mainder into a (K + 1)th block BK+1). We consider fn : Ωn → N defined as follows,

fn = max
B1,...,BK

∑
xi∈Bj

xi where we partition J1, nK =
⊔

1≤j≤K

Bj ⊔BK+1

We fix α ∈ (0, 1) and focus on the case where # |Bj | = nα and K = n1−α. This may not be an integer in
which case we take the closest integer (or the ceiling or the floor function). Because the error we make in
O(1) and to avoid burdening the notation, we can obviate this approximation.

We assert that
Ep[fn] = pnα +O(

√
nα lnn)
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Notice that the integer approximation in O(1) is absorbed by the O(
√
nα lnn) supporting our decision to not

worry too much about the integer problem. The proof of this assertion can be found on A.2

We thus have
fn
nα

L1

−−→ p

Because the function fn is self-bounding (cf page 60 [Boucheron et al., 2013])

Varp (fn) ≤ O(nα).

Proposition.
For every γ ∈ (0, 1), the indicator function 1{fn≥γnα} has a sharp threshold at pc(γ) = γ.

Proof. Let p∗ = γ.

We fix ε > 0.

Let p ≤ p∗ − ε and n large enough so that Ep∗−ε[
fn
nα ] ≤ γnα

Then we have :

Pp (fn ≥ γnα) = Pp (fn − Ep [fn] ≥ γnα − Ep [fn])

≤ Pp (|fn − Ep [fn] | ≥ γnα − Ep [fn])

≤ Varp (fn)

n2α(γ − Ep

[
fn
nα

]
)2

by Markov/Tchebyshev’s inequality

We need to control the term (γ − Ep

[
fn
nα

]
)2 showing it does not vanish with n.

We have

(γ − Ep

[
fn
nα

]
)2 ≥ (γ − Ep∗−ε

[
fn
nα

]
)2

=

(
p ∗ −(p∗ − ε) +O(

√
lnn

nα
)

)2

≥ ε2 − εO(

√
lnn

nα
)

For n larger than some N , we have this O(
√

lnn
nα ) ≤ ε

2 and thus

(
γ − Ep

[
fn
nα

])2

≥ ε2

2
.

Finally, we have for n ≥ N ,

Pp (fn ≥ γnα) ≤ 2Varp (fn)
n2αε2

We recall that Varp (fn) ≤ O(nα) there exists some N1 ≥ N such that for all n ≥ N1 and for all
p ≤ p∗ − ε:

Pp (fn ≥ γnα) ≤ ε

.

Symmetrically, we have for p ≥ p∗ + ε :
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Pp (fn < γnα) = Pp (Ep [fn]− fn > Ep [fn]− γnα)

≤ Pp (|fn − Ep [fn] | > Ep [fn]− γnα)

≤ Varp (fn)

n2α(Ep

[
fn
nα

]
− γ)2

by Tchebyshev inequality

And thus

Pp (fn ≥ γnα) = 1− Pp (fn < γnα)

≥ 1− Varp (fn)

n2α(Ep

[
fn
nα

]
− γ)2

We conclude the same way. ■

5.2 Existence of sharp threshold in first passage percolation
On section 4 we decided to take interest on edge weights that follow a Bernoulli distribution of type (1 −
p)δa + pδb. Here, we consider more general setting :

Definition 5.1 (Distributions along increasing line segments).
Let F and G be two distributions such that G stochastically dominates F , that means that
for all x, F (x) ≥ G(x). We consider the family of distributions

H(p) = (1− p)F + pG for p ∈ [0, 1]

and focus our on the case where the weights τe ∼ H(p).
We will keep using the notation Ep and Pp to highlight the dependence on the parameter p of any
σ((τe)e)-measurable function.

This generalizes our boolean setting that correspond to F = δa and G = δb.

Remark.
If we use first passage percolation to model for example the propagation of an epidemic, where vertices
are individuals and edges are their interactions : this extra variable λe can be interpreted as whether the
interaction was "safe" or "unsafe" and having different time of contagion distribution for each case. This
could help governments know which percentage of the population they need to follow safe interaction protocols
for the spread speed to stay below the current handling capabilities of the disease. The shape of the time
constant as a function of p can also be very interesting : we make the conjuncture that this function is
convex, meaning that the few individuals that do not follow safety protocols have a larger impact on the
spread of the disease that what a linear model would predict.

Let µ(p) = limn→∞
Ep[Tn]

n

We will assume some results

• µ(p) establish a bijection between (p1, 1) and (µF , µG).

• Ep[
Tn

n ]− µ(p) ≤ o(1)

• for all p: Varp (Tn) ≤ O(n)

Let γ ∈ (µF , µG). We would like to know if the function p 7→ Pp (Tn ≥ γn) has sharp threshold.
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Proposition.
If F,G ∈ L2 and F (0) < pc, F (infF ) < p⃗c the previous assumptions hold, and we have for all
γ ∈ (µF , µG), there exist a unique p∗ such that ∀ε > 0 there exist N1 ≥ 0 such that for all n ≥ N1,

for all p ≤ p∗ − ε, Pp (Tn ≥ nγ) ≤ ε

and for all p ≥ p∗ + ε, Pp (Tn ≥ nγ) ≥ 1− ε

Also p∗ is given by the formula p∗ = µ−1(γ)

Proof. Let p∗ = µ−1(γ) i.e. µ(p∗) = γ with p∗ ∈ (p1, 1).

We fix ε > 0.

By strict inequality of µ(p), there exist δ such that for p ≤ p∗ − ε : µ(p) ≤ µ(p∗)− 2δ.

For n large enough we have

Ep

[
Tn

n

]
≤ µ(p) + δ ≤ µ(p∗)− δ thus γ − Ep

[
Tn

n

]
≥ δ

We have :

Pp(Tn ≥ nγ) = Pp (Tn − Ep[Tn] ≥ nγ − E[Tn])

≤ Pp (|Tn − Ep[Tn]| ≥ nδ)

And Tchebychev inequality gives us

Pp(|Tn − Ep[Tn]| ≥ nδ) ≤ Varp (Tn)

n2δ2
≤ 1

δ2
O(

1

n
)

So by choosing n large enough so that 1
δ2O( 1n ) ≤ ε we obtain the desired result.

The case p ≥ p∗ + ε is symmetrical, except for the fact that because of the subadditive theorem, we
know that for all n, Ep

[
Tn

n

]
≥ µ(p), so it suffices to fix δ such that for all p ≥ p∗ + ε, µ(p) ≥ µ(p∗) + δ

which allows writing :
Pp(Tn ≤ nγ) ≤ Pp(|Tn − E[Tn]| ≥ δ).

We conclude the same way. ■

5.3 Some finer control : The study of N(ε) and the sharpness of the threshold.
All the previous demonstration, we argued that we could choose n large enough for the ε given. Now, one
could ask the reverse problem : given n, what is the best ε that one can choose, that means that for given
n, we would like to know how sharp of a threshold we have.

Proposition.
Under the assumptions of the previous theorem, the function p 7→ Pp (Tn ≥ γ) has a threshold of size

O(n−
1
3 ).

Let p(n) ∈ (0, 1) be such that Ep(n)

[
Tn

n

]
= γ. This can always be done in the Bernoulli setting as Ep(n)

[
Tn

n

]
≥

µ(p) and have they both are continuous functions with the same end points. In the general case, this may
be impossible for small values of n and γ very close to µF . Let’s skip this complication for the moment.

Because of Corollary 7.6 we have

|Ep(n)− d
3√n

[
Tn

n

]
− Ep(n)

[
Tn

n

]
≥ c

d
3
√
n
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By the same Tchebychev inequality as previously (for p = p(n)− d
3
√
n
) and δ = c d

3
√
n

we have

Pp(n)− d
3√n

(Tn ≥ γn) ≤ 1

c2d2 3
√
n
= O(

1
3
√
n
)

The other side is completely symmetrical. This shows that we go from a O( 1
3
√
n
) to 1−O( 1

3
√
n
) over a window

of size O( 1
3
√
n
).

Now back to the complication : we can on a first approximation, think of Ep

[
Tn

n

]
as a vertical shift of µ(p).

The size of this vertical shift will determine for which γ fixing p(n) as before may be impossible.

For this, we use the result from [Damron and Kubota, 2013] which states that

Ep

[
Tn

n

]
− µ(p) = O(

√
lnn

n
).

Because this bound is smaller than the size of the threshold we have deduced, this means that replacing p(n)
by p∗ in the proof will not have a significant effect.(If we use the conjecture that the bound on the variance

is O(n
2
3 ) the bound on the size of the threshold improves to O(n−

4
9 )).

Remark.
As we have seen, the proof for both tribes and first passage percolation is quite similar, and we could state a
more general result : We suppose the existence of a collection of measures Pp for p ∈ [0, 1].

Let (fn)n be a collection of random variables Pp−measurable.

Suppose the existence of κ ∈ R such that
fn
nκ

L2(Pp)−−−−→ µ(p)

and µ : [0, 1] → R is a strictly increasing function, then the event (fn ≥ γnκ) has a sharp threshold behavior.

6 Bound of the variance in FFP
On section 5.2 we made the assumption that Varp (Tn) ≤ O(nβ). Kesten proved in [Kesten, 1993] that the
variance was a big O(n), thus β = 1. The most accepted conjecture is that β = 2

3 in dimension 2. We will
present the proof of Kesten. This proof can be adapted for the different graph setting presented in 4.1. It
will be written for the case of Tn = T (0, ne1).

Proposition.
Assume the weight of the edges are sampled following a distribution F ∈ L2 then :

Var (Tn) ≤ C1n

We enumerate E = {e1, . . . , en, . . . }. For this proof, we will take Ω as follows :

Ω =

∞∏
s=1

R+ and τei(ω) = ωi

that we equip with the measure ν =
⊗∞

s=1 F

We will also note

Ωk =

∞∏
s=k

R+ and νk =

∞⊗
s=k

F

We build the following filtration :
Fk = σ(ω1, . . . , ωk) k ≥ 0.

We use the Martingale representation of Tn − E[Tn] :

Tn − E[Tn] =

∞∑
k=1

E[Tn|Fk]− E[Tn|Fk−1]
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This representation is valid because

Ml : =

l∑
k=1

E[Tn|Fk]− E[Tn|Fk−1]

= E[Tn|Fl]− E[Tn]

= E [Tn − E(Tn) | Fl]

is a (closed) (Fl)-martingale and converges almost surely and in L1 to Tn − E[Tn] by Doob’s convergence
theorem.

The increments of (Ml) are denoted by

∆k = E[Tn|Fk]− E[Tn|Fk−1]

We want to control

E
[
(Tn − E[Tn])

2
]
= E

( ∞∑
k=1

E[Tn|Fk]− E[Tn|Fk−1]

)2
 =

∞∑
k=1

E[∆2
k]

The last equality comes from the fact that the increments are orthogonal, we can thus write E[Ml] =∑l
k=1 E[∆2

k] for all l. The martingale converging in L1 thus in L2 the limit when l goes to infinity holds.

To control this decomposition, we will try to have a finer control over

E[∆2
k|Fk−1].

We define for ω, σ ∈ Ω their merge at level k as follows:

[ ω, σ ]k = [ ω, σ ]k = (ω1, . . . , ωk, σk+1, . . . )

We thus have
E[Tn|Fk](ω) =

∫
Ωk+1

f([ ω, σ ]k)νk+1(dσ)

Because [ ω, σ ]k depends on only in the first k coordinates of ω, we can add an extra layer of integration :

E[Tn|Fk](ω) =

∫
Ωk

f([ ω, σ ]k)νk(dσ)

Thus
∆k =

∫
Ωk

f([ ω, σ ]k)− f([ ω, σ ]k − 1)νk(dσ)

We thus want to bound |f([ ω, σ ]k − f([ ω, σ ]k − 1))|

This is the change in the value of Tn when τek goes from σk to ωk. We have a trivial bound that is
|f([ ω, σ ]k − f([ ω, σ ]k − 1))| ≤ |σk − ωk|

We can improve this bound by arguing that for this value to change, ek must be on a geodesic. So :

|f([ ω, σ ]k − f([ ω, σ ]k − 1))| ≤ |σk − ωk|1ek∈πn([ω,σ]k−1)∪πn([ω,σ]k)

We write Ik(ω, σ) := 1ek∈πn([ω,σ]k−1)∪πn([ω,σ]k) to lighten the notation. We thus have :

E[∆2
k|Fk−1] = E

[(∫
Ωk

f([ ω, σ ]k)− f([ ω, σ ]k − 1)νk(dσ)

)2
∣∣∣∣∣Fk−1

]

≤ E

[(∫
Ωk

|σk − ωk|Ik(ω, σ)νk(dσ)
)2
∣∣∣∣∣Fk−1

]

Jensen inequality ≤ E
[∫

Ωk

|σk − ωk|2Ik(ω, σ)νk(dσ)
∣∣∣∣Fk−1

]
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Inside the conditional expectation we have a function of (ω1, . . . , ωk). Thus, the conditional expectation is
just the integration with respect to ωk :

E
[∫

Ωk

|σk − ωk|2Ik(ω, σ)νk(dσ)
∣∣∣∣Fk−1

]
=

∫
R+

∫
Ωk

|σk − ωk|2Ik(ω, σ)νk(dσ)F (dωk)

using νk = F × νk+1 =

∫
R+

∫
R+

∫
Ωk+1

|σk − ωk|2Ik(ω, σ)νk+1(dσ)F (dσk)F (dωk)

=

∫
Ωk+1

∫
R+

∫
R+

|σk − ωk|2Ik(ω, σ)F (dσk)F (dωk)νk+1(dσ)

by noticing the symmetry of the integrand = 2

∫
Ωk+1

∫
R+

∫
R+

|σk − ωk|2Ik(ω, σ)1σk≤ωk
F (dσk)F (dωk)νk+1(dσ)

By exploiting the symmetry, we can focus on the case where the time passage for edge k lowers from ωk to
σk. So if the edge ek was already in a geodesic, it will remain in a geodesic. This allows to simplify

∀σk ≤ ωk Ik(ω, σ) = 1ek∈πn([ ω,σ ]k−1)

We can also bound (σk − ωk)
2 ≤ ω2

k (this is like bounding Var (ω) ≤ E[ω2], so we lose in the constant, I
think). We get :

E[∆2
k|Fk−1] ≤ 2

∫
Ωk+1

∫
R+

∫
R+

ω2
k1ek∈πn([ ω,σ ]k−1)1σk≤ωk

F (dσk)F (dωk)νk+1(dσ)

≤ 2

∫
Ωk

1ek∈πn([ ω,σ ]k−1)νk(dσ)

∫
R+

ω2
kF (dωk)

= P (ek ∈ πn|Fk−1)

∫
R+

x2F (dx)

Finally, by writing :

Var (Tn) = E

[
(

∞∑
k=1

∆k)
2

]
We have :

Var (Tn) = E

[
(

∞∑
k=1

∆k)
2

]

=

∞∑
k=1

E[∆2
k] by orthogonality of the increments and continuity of E

=

∞∑
k=1

E[E[∆2
k | Fk−1]

≤ E

[ ∞∑
k=1

P (ek ∈ πn|Fk−1)

]∫
R+

x2F (dx)

≤ CE[|πn|] = O(n)

Which concludes the proof.

This justifies our hypothesis that Var (Tn) = O(n).

7 Strict monotonicity of the time constant[van den Berg and Kesten, 1993]
Our second hypothesis was that µ was strictly increasing. This is a harder result to prove. This was first
proved by Kesten and Van den Berg in [van den Berg and Kesten, 1993].

The proof they use will be very similar to ours. They prove this monotonicity for a richer order in the set of
distribution that is second order stochastic domination (also known as being less variable). For our purpose,
first order stochastic domination will suffice.
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7.1 Definition of an order over the distributions

Definition 7.1.
We say G dominates F if for all x, F (x) ≥ G(x). This means that the distribution of G has its weight
closer to +∞ than F .

Proposition.
If G dominates F then there exists (X,Y ) with X ∼ F and Y ∼ G such that X ≤ Y a.s.

Proof. Let F−1 and G−1 be the inverse of the cumulative distribution. We have G−1 ≥ F−1 for all x.
Thus, if we take ξ ∼ U([0, 1]), we have G−1(ξ) ≥ F−1(ξ) a.s. and X := F−1(ξ) ∼ F , Y := G−1(ξ) ∼
G. ■

Definition 7.2.
We say a distribution F is more variable than a distribution G if for all increasing concave function
φ ∈ L1(F ) ∩ L1(F ) we have :

EF [φ(X)] ≤ EG[φ(X)]

Proposition.
We have a nice characterization for this in the case both distribution have finite mean : F is more
variable than G if and only if for all x∫ x

−∞
G(y)dy ≤

∫ x

−∞
F (y)dy

The proof can be found on the Appendix A.3.

The reason why second order domination is of interest in first passage percolation is because Tn is a concave
increasing function from E → R+. Moreover, we can approximate Tn by

TK
n := The distance of the shortest path from 0 to n inside a compact K

which is also a collection of concave increasing functions. Using both facts, it becomes immediate that if G
dominates (second order) F , then µ(G) ≥ µ(F ).

A harder result, is that if F ̸= G then this inequality becomes strict. This result is not that intuitive, for
instance if some distribution F is unbounded, one may think that larger weights will be avoided, and thus
the time passage for X and X ∧ M were M is some constant large enough will be of the same order of
magnitude. But this theorem states the opposite as µ(F ∧M) is more variable than µ(F ) implying that a
non-negligible fraction of edges of weight larger than M are used. In fact, the proof of this theorem relies on
a more powerful result :

Theorem 7.3.
We denote πn a geodesic for Tn. Let X ∼ F be the marginal distribution of the edges. Assume
F (0) < pc (and F (inf F ) < p⃗c). Let I ∈ F such that P (X ∈ I) > 0.
Then

lim inf
1

n
E

[∑
e

1e∈πn
1Xe∈I

]
> 0

We can also introduce the empirical distribution of weights along the optimal path :

Πn =
1

|πn|
∑
e∈πn

δXe

The limiting distribution (assuming it exists) will be absolutely continuous with respect to F.
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7.2 Proof of increasing time
This proof is inspired on [van den Berg and Kesten, 1993, Gorski, 2022].

Theorem 7.4.
Let F ,G be two non-negative distributions with G ∈ L1 and G(0) < pc and G(r) < p⃗c where
r = inf Supp(G) and pc, p⃗c denote the critical probability for percolation and oriented percolation
respectively.
If G strictly dominates F and G then

µ(F, x) < µ(G, x).

This theorem can be directly deduced from Theorem 7.3 (it is in fact a corollary of the previous theorem,
but because it is an important result, we will present it as a theorem).

Assume Theorem 7.3 is true for the moment. Assume we have two distributions such that G dominates F .
We can thus build X ∼ F and Y ∼ G such that X ≤ Y almost surely and P (X < Y ) > 0.

We note Tn the time passage from 0 to nx when the edges have weights issued from the distribution G and
T̃n when the weights are issued from F .

Corollary 7.5 (of Theorem 7.3).
Under the previous theorem hypothesis (and the assumption of the existence of geodesics), there exists
a constant c > 0 such that for n large enough :

E[Tn − T̃n] ≥ cn

Let I, δ denote a measurable set and a positive constant such that Y − X > δ for all ω ∈ I and such that
P (I) > 0. Such pairing I, δ must exist because

(Y > X) =
⋃
n

(Y ≥ X +
1

n
).

If for all n ∈ N the right set has null measure, then the left one is also of null measure. Thus, X = Y almost
surely, which is excluded.

We then have

E[Tn − T̃n] ≥ E[Y · πn −X · πn] where πnis a geodesic for Y.

= E[(Y −X) · πn]

= E[E[Y −X|Y ] · πn]

≥ E[δ1Xe∈I · πn]

= δE[# |{e ∈ E | e ∈ πn, Xe ∈ I}|]
≥ δεn by Theorem 7.3 for n large enough
≥ cn for some c > 0 that does not depend on n.

Which proves the corollary, and by dividing by n and making n tend to +∞ we obtain,

µ(G)− µ(F ) ≥ c > 0

which proves theorem 7.4.

□
Proof of Theorem 7.3.
We will prove the theorem in the case where Tn is the point to point passage time from 0 to nx. The
square and torus case can be handled with minors adjustments.

Let B(z, L) denote the L1 ball centered in z. We tile V (Zd) with balls of radius L ∈ N. (we consider an
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edge is inside the ball if both extremities are inside the ball). a This gives us a partition of

E =
⊔
q∈Q

E ∩B(zq, L) (2)

Let k ∈ 2N+ 1 be an integer that we will fix later. We choose k to be odd so that

B(zq, kL) =
⊔

∥z′
q−zq∥≤(k−1)L

B(z′q, L). (3)

Let AL(z) denote the event that any path from B(z, L) to ∂B(z, kL) picks up weight at least (k−1)L(r+ε)
where r = inf F .

Thanks to classical percolation theoryb, the distance from B(z, L) to ∂B(z, kL) ∼ C(k−1)L with C > r
when L goes to infinity. We have for ε > 0 such that r + ε < C

P (AL(z)) → 1 as L → ∞.

We will now prove that when this probability is close enough to 1, the amount of tiles where AL doesn’t
happen will become very small. More exactly :

Lemma (1).
For all fixed k ∈ N and for all L large enough, there exist θ(L) and η(L) such that

P (∃γ : x → y visiting at most θ ∥x− y∥1 distinct B(zq, L) such that AL(z) holds) ≤ e−η∥y−x∥1

Proof of Lemma 1
Let’s fix γ to be a path from x to y that visits M different tiles B(zq, L) and never visits a tile twice.
We denote i ∈ I ⊂ Q the index of the tiles that are visited by γ. We can fix a subindex J ⊂ I of at
least m = M

Ck2 elements such that the boxes B(zj , kL) are disjoint.c

P (there are at most θ ∥x− y∥1 i ∈ I such that AL(zi) holds)

≤P (there are at most θ ∥x− y∥1 j ∈ J such that AL(zj) holds)

=P (∃K ⊂ J of cardinal m− θ ∥x− y∥1 such that for all j ∈ K, AL(zj) doesn’t hold)

≤P

 ⋃
K⊂J of cardinal m−θ∥x−y∥1

for all j ∈ K, AL(zj) doesn’t hold


≤

∑
K⊂J of cardinal m−θ∥x−y∥1

P

⋂
j∈K

AL(zj)


=

∑
K⊂J of cardinal m−θ∥x−y∥1

∏
j∈K

P
(
AL(zj)

)
by independence

=

(
m

θ ∥x− y∥1

)
P
(
AL(z)

)m−θ∥x−y∥1

We say that a subindex I ⊂ Q is path compatible (from x to y) if there exists a path (from x to y)
γ that visits exactly B(zi, L), i ∈ I and never visits a tile twice. There are at most DM subindex of
cardinal M that are path compatible from x to y where D = 8 is the number of neighboring tiles a
tile B(z, L) has. Indeed, let γ be a path from x to y, let I be the subindex of the tiles that this path
visits. We sort I in the order that γ visit the tiles. There are D possible choices for the first second
element and at most D − 1 possible choices for the other elements. If we consider G/ ∼ where ∼ is the
equivalence relationship induced by the partition G =

⊔
B(zq, L), this corresponds to studying the path

from B(zx, L) to B(zy, L) with no loops.
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For any path γ, we have the induced path γ̄ of the tiles that he visits (each tile seen as a vertex). If γ̃
uses at most θ ∥x− y∥1 tiles B(zq, L) such that AL(zq) holds, then ˜̄γ that is the path obtained from γ̄
where loops have been removed will also satisfy the property. Thus,

∃γ : x → y visiting at most θ ∥x− y∥1 distinct B(zq, L) such that AL(zq) holds

=∃γ : x → y visiting at most once each B(zq, L) and visiting at most θ ∥x− y∥1 distinct B(zq, L)

such that AL(zq) holds

We also have that any path from x to y has to visit at least ∥x−y∥1

2L − 2 tiles B(zq, L). We omit the -2
as what’s important is that the number of tiles that are visited is an Ω(∥x− y∥1).

P (∃γ : x → y visiting at most θ ∥x− y∥1 distinct B(zq, L) where AL(zq) holds)

=P (∃γ : x → y visiting at most once each B(zq, L) and at most θ ∥x− y∥1 distinct B(zq, L) where AL(zq) holds)

≤P

 ⋃
M≥∥x−y∥/2L

∃γ visiting M different B(zq, L) each once, such that at most for θ ∥x− y∥1 AL(zq) holds


≤

∑
M≥∥x−y∥/2L

P (∃I ⊂ Q of cardinal M that is path compatible such that AL(zi) holds for at most ...)

≤
∑

M≥∥x−y∥/2L

P

 ⋃
I⊂Q of cardinal M that is path compatible

AL(zi) holds for at most θ ∥x− y∥1 i ∈ I


≤

∑
M≥∥x−y∥/2L

DM

(
m

θ ∥x− y∥1

)
P
(
AL(z)

)m−θ∥x−y∥1

≤P
(
AL(z)

)−θ∥x−y∥1
∑

M≥∥x−y∥/2L

((2P
(
AL(z)

)
)

1
Ck2 D)M

We fix L large enough such that P
(
AL(z)

)
is small enough for (2P

(
AL(z)

)
)

1
2Ck2 D < 1.

= P
(
AL(z)

)−θ∥x−y∥1

((2P
(
AL(z)

)
)

1
Ck2 D)∥x−y∥1/2L

1

1− (2P
(
AL(z)

)
)

1
Ck2 D

= P
(
AL(z)

)( 1
4CLk2 −θ)∥x−y∥1

(
2

1
Ck2 P

(
AL(z)

) 1
2Ck2

D

) 1
2L 1

1− (2P
(
AL(z)

)
)

1
Ck2 D

= CP
(
AL(z)

)( 1
4CLk2 −θ)∥x−y∥1

with C > 0

We now fix θ such that 1
4CLk2 − θ > 0 and because P

(
AL(z)

)
< 1 we have indeed

P (∃γ : x → y visiting at most θ ∥x− y∥1 distinct B(zi, L) such that AL(z) holds) ≤ e−η∥x−y∥1

□

Remark.
Because the decay is exponential, if instead of considering point to point percolation we consider another
model (like the square) were this event can be seen as the reunion over all the x on the left side and y
on the right side, which is a polynomial reunion the decay will still be exponential for other models.
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B(z, L)

B(z, kL)

L
z

Figure 3: Tile used to partition Zd

Let CL(z) be the event that ωe ∈ I for all e ∈ B(z, kL) with one vertex on the boundary ∂B(z, kL)
(thick purple edges on Figure3) and ωe < r + ε

2 for all others e ∈ B(z, kL) \B(z, L)

Note that if a geodesic visits B(z, L) and AL(z) occurs, then, if we resample only the weights inside
B(z, kL) \ B(z, L) such that CL(z) occurs, then the geodesic will pass through B(z, kL). (We say pass
by, means enter and exit). Indeed, consider the geodesic πω before resampling, the weight she picks up
crossing through B(z, kL) is at least 2d(B(z, L), ∂B(z, kL)) + π1B(z, L) · ω. After the resampling, this
same path cost 2(I+(r+ ε

2 )(k−1))L+π1B(z, L) ·ω. We thus fix k(ε) such that (k−1)(r+ε)L > 2max I
to ensure that πω · ω̃ ≤ πω · ω. Because the paths that don’t go through B(z, kL) have the same time
passage as before, we have

πω · ω̃ ≤ πω · ω ≤ γ · ω = γ · ω̃

for all γ not going through B(z, kL). This proves that the optimal path goes through B(z, kL).

□
aFor people who would want an explicit tilling : we consider in Z2 the following tilling zu,v = (uL, vL) for u, v ∈ Z2

such that u+ v ∈ 2Z
bHere is where the hypothesis of G(r) ≤ p⃗c is used.
cTo be exact m = M

(2k−1)2
but saying that we have m = O(M

kd ) is enough and easier to prove.

Resampling argument

Claim 1 : Let πn be a geodesic.

P (πn visits BL(z) and ωe ∈ I for some e ∈ πn ∩B(z, kL)) ≥ cP (πn visits B(z, L) and AL(z) occurs.)

Proof. Let ω⋆ be a configuration identical to ω outside B(z, kL) \ B(z, L) and independent of ω on
B(z, kL) \B(z, L). Due to the observation above,

{ω ∈ AL(z)} ∩ {πn(ω) visits BL(z)} ∩ {ω∗ ∈ CL(z)}
⊂ {πn(ω

∗) visits B(z, kL)} ∪ {∃e ∈ πn(ω
∗) ∩B(z, kL) : ω∗

e ∈ I}

Due to independence we obtain :

P (πn visits B(z, kL) and ωe ∈ I for some e ∈ πn ∩B(z, kL))

≥ P (ω ∈ AL(z) ∩ πn(ω) visits B(z, L))P (ω∗ ∈ CL(z))

:= cP (ω ∈ AL(z) ∩ πn(ω) visits B(z, L))

□

Claim 2:
E[# |{e ∈ πn : ωe ∈ I}|] ≥ cn
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Proof. We start by noticing that ∑
q

∑
e∈E∩B(zq,kL)

f(e) = k2
∑
e∈E

f(e).

This comes from the partitions 2 and 3. We have :

E[#{e ∈ πn : ωe ∈ I}] = E

[∑
e∈E

1e∈πn1ωe∈I

]

=
1

k2
E

∑
q

∑
e∈E∩B(z,kL)

1e∈πn
1ωe∈I


≥ 1

k2

∑
q

P (πn visits B(zq, kL) and ωe ∈ I for some e ∈ πn ∩B(zq, kL))

≥ c

k2

∑
q

P (ω ∈ AL(zq) ∩ πn(ω) visits B(zq, L)) by claim 1

=
c

k2
E [# |{q ∈ Q|πn(ω) visits B(zq, L) and AL(zq) holds}|]

≥ c

k2
E
[

min
γ:0→nx

# |{q ∈ Q|γ visits B(zq, L) and AL(zq) holds}|
]

≥ c

k2
θn(1− e−ηn∥x∥1) by the lemma 2 for x = 0 and y = nx

■

Remark.
This theorem makes some supplementary assumptions, some of them are necessary while others are just
convenient for the proof.

• F,G ∈ L1 is a commodity assumption : it was shown that the time constant can be defined when F ̸∈ L1

(insert ref here): the convergence is weaker, as it only occurs in probability and makes the study of the
time constant harder.

• G(0) < pc is mandatory as if G(0) ≥ pc we have µ(F ) = µ(G) = 0. (insert reference).

• G(r) < p⃗c is partially mandatory if infsupp(F ) = inf supp(G) inside the cone where directed perco-
lation happens one has µ(F, x) = µ(G, x) = r ∥x∥. Outside the cone, it was proved in dimension 2
by [Marchand, 2002] that the strict inequality still holds. In higher dimension, the problem is to my
knowledge still open, but we can conjecture that they are only two possible scenarios : either the geodesic
only uses edges with weight inf F or Theorem 7.3 holds.

7.3 Back to the limiting function

Corollary 7.6 (Theorem 7.3).
Let 0 < p < q < 1. Then

Eq[Tn]− Ep[Tn] ≥ nc(q − p)

As for the proof of Theorem 7.4, we use a coupling X ∼ F and Y ∼ G with X ≤ Y . We also consider
for each edge an independent random variable Ue ∼ U([0, 1]). For p ∈ [0, 1], we set λe(p) = 1(Ue≤p) and
τe(p) = λe(p)Ye + (1− λe(p))Xe ∼ pG+ (1− p)F .

We then have

Eq[Tn]− Ep[Tn] ≥ E[(λ(q)Y + (1− λ(q))X) · πn(q)− (λ(p)Y + (1− λ(p))X) · πn(q)]

= E[(λ(q)− λ(p))(Y −X) · πn(q)]

≥ δ
∑
e

E[1(p<Ue<q)1(e∈π(q))1(Xe∈I)] with the same notation as in 7.5

≥ (q − p)εδn
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In our proof, we used the fact that F (inf F ) < p⃗c, yet this will fail for y the Bernoulli setting. This is why
we choose γ in the open interval (µF , µG) as µ(p) may be flat around 0. The set of p ∈ [0, 1] for which
(1− p)F + pG cause the existence of percolation of some sort (that are exactly the p where µ is flat) is lower
closed, so it is of the shape [0, p1] in the case it is non-empty. Thus, in all the cases, µ establish a bijection
between (p1, 1) and (µF , µG).

8 Conclusion

Figure 4: Simulation of the function Ep(Tn/n)

We study the first passage percolation model when the edge’s distribution is of the sort (1− p)F + pG and
G stochastically dominates F . This gives raise to a series of functions Ep[Tn], dependent on this parameter
p that converge pointwise towards a limit function µ(p). This function (which are simply segments of the
function µ defined over the space of probability distributions) is a natural approach to try to have a better
understanding of the behavior of µ. It can also be on itself an interesting model, where p represents the
frequency of a slowing factor, thus understanding the behavior of µ(p) helps us understand the effectiveness
of this slowing factor.

The function µ(p) is also of interest as it is quite rich in structure. [Cerf and Dembin, 2022] proved that this
function is Lipschitz continuous in the case where G = δ∞ and F = δ1. In the general case we know that
this function is continuous, increasing, very often strictly increasing. We can wonder if the functions Ep[Tn]
converge uniformly in p. We can also ask if this function is derivable and finally :

Question 1 - Is the function µ(p) defined previously, a convex function?

A first element to answer is the following simulation Figure4.

A collection of open questions can be found in [Auffinger et al., 2017]. Here are some of the questions I’ve
been asking myself :

Question 2 - Find a distribution such that 1
µ(e1)

B ̸⊂ B∥.∥2
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A Proofs

A.1 Russo theorem

Proposition ([Russo, 1982]).
For all ε > 0, there exist δ > 0 such that if A is an increasing event satisfying Ipi (A) < δ for all p and
all i, then there exists p0 such that:

Pp (A) ≤ ε for all p ≤ p0 − ε

Pp (A) ≥ 1− ε for all p ≥ p0 + ε

Proof. Let’s fix ε > 0. Let δ > 0 be a variable that we will adjust on a later stage.*

Assume Ipi (A) < δ. Then by theorem 3.10 we have∑
i

Ipi (1A) ≥ cVarp (1A) log(
1

δ
)

Which becomes by theorem 3.6
d

dp
Ep[1A] ≥ cVarp (1A) log(

1

δ
)

This inequality is almost the same we obtained for the equally distributed influences case. So we do
exactly the same steps:

It now yields

p2 − p1 ≤ 4

c

log(1/2ε)

log(1/δ)
.

We now choose δ small enough such that this inequality becomes

p2 − p1 ≤ 2ε

and p0 = p1+p2

2 will yield the desired result. ■

A.2 Limiting behavior of tribes

Proposition.
Let fn be the tribes function defined in 5.1 then

Ep[fn] = pnα +O(
√
nα lnn)

Proof.
Recall that nα denotes in reality some integer approximation of nα, let’s say the floor of nα. We will
add the floor brackets when applying the logarithm to avoid a rushed exponent simplification.
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The idea to prove this is that
∑

xi∈Bj
xi ∼ B(nα, p) thus by the Central Limit Theorem,∑
xi∈Bj

xi − pnα

nα/2

L−→ N (0, pq)

and we have E[maxi∈J1,nK Ni] ≤ C
√
log n when Ni ∼ N (0, 1) thus

Ep[fn] = pnα +
nα

n
α
2

max
B1,...,BK

∑
i∈Bj

xi − pnα

n
α
2

= pnα +O(n
α
2

√
lnn)

Let’s denote

Xj =
∑

xi∈Bj
xi ∼ B(nα, p),

Yj = Xj − pnα and

Z = maxj Yj

By Jensen inequality, we have

etE[Z] ≤ E[etZ ] = E[max
j

etYj ]

≤
∑
j

E[etYj ]

=
∑
j

e−tpnα

EetXj

=
n

⌊nα⌋
e−tpnα

(q + pet)n
α

= n1−α nα

⌊nα⌋
e−tpnα

(q + pet)n
α

Thus,

E[Z] ≤ 1

t
((1− α) lnn+ ln(1 +

{nα}
⌊nα⌋

)− tpnα + nα ln(1 + p(et − 1)))

=
(1− α) lnn

t
+

nα

t
(−tp+ ln(1 + p(et − 1))) +

1

t
O(

1

nα
)

By doing a series expansion in t at order 2 (around 0) we have

−tp+ ln(1 + p(et − 1)) = −tp+ ln(1 + p(t+
t2

2
+ o(t2)))

= −tp+ tp+
t2

2
pq + o(t2)

Which shows that the right term goes to 0 when t goes to 0. On the other hand, the left term goes to
infinity.

We have
E[Z] ≤ (1− α) lnn

t
+ nα t

2
pq + o(t) +

1

t
O(

1

nα
).

If we ignore the o(t) and the O( 1
nα ) in this expression, the minimum is obtained for t =

√
2 (1−α) lnn

pqnα at
which the value is

E[Z] ≤ n
α
2

√
2(1− α)pq ln(n) + o(

lnn

nα
) +O(

√
nα

lnn
)
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On the other hand we have

E[Z] ≥ E[Yj ] = 0

By writing fn = Z + pnα we get
Ep[fn] = pnα +O(

√
nα lnn)

■

A.3 Characterization of second order stochastic domination

Proposition.
We have a nice characterization for this in the case both distribution have finite mean : F is more
variable than G if and only if for all x∫ x

−∞
G(y)dy ≤

∫ x

−∞
F (y)dy

Proof. Assume

∀x
∫ x

−∞
G(y)dy ≤

∫ x

−∞
F (y)dy.

Then for φx(t) = (t− x)1(−∞,x](t) the statement holds. Indeed,∫ x

−∞
F (y)dy =

∫ ∫
dF (t)dy1(−∞,x](y)1(−∞,y](t) Fubini-Tonelli

=

∫
dF (t)

∫ x

t

dy

=

∫
(x− t)dF (t)1(−∞,x)(t)

= −EF [φx(X)]

This expectations are finite if F have finite mean.

Let’s write V the set of increasing concave functions for which the inequality holds. We have shown that
φx ∈ V . We also have 1 ∈ V . We can also show that is a closed convex cone of (L1(F ) ∩ L1(G), ∥.∥L1(F ) + ∥.∥L1(G)).

So it is just left to shown that we can approximate (in L1) any integrable increasing concave function
by a positive linear combination of φx and 1.

We fix ε > 0. Because φ ∈ L1, we can fix A > 0 such that∫
(−∞,−A)∪(A,+∞)

|φ(x)|d(F +G)(x) ≤ ε

We can furthermore assume that φ is not constant, and because it is non-decreasing and concave, the limit
at −∞ is −∞, we can thus increase A to ensure that φ ≤ 0 on (−∞,−A]. Finally, we will enlarge A so
that |φ(A)|

∫∞
A

d(F+G)(x) ≤ ε. (To show this is possible, we consider two cases : if the limit of φ at +∞
is +∞, we will enlarge A so that φ(A) ≥ 0 and thus

∫ +∞
A

|φ(A)|d(F +G) ≤
∫ +∞
A

|φ(x)|d(F +G)(x) ≤ ε

else, φ(x) stays bounded and
∫ +∞
A

d(F +G) = 2− (F +G)(A) goes to 0 as A goes to +∞).

The idea is to use the trapezoid rule to approximate the integral in the segment [−A,A]. The affine by
parts function that results from this approximation can be written as a linear combination of φx and 1.

Explicitly : Let −A = x0 < x1 < · · · < xn−1 < xn = A be a subdivision of [−A,A], we approximate φ
by the function

fn(x) = φ(xi+1)
x− xi

xi+1 − xi
+ φ(xi)

xi+1 − x

xi+1 − xi
for x ∈ [xi, xi+1)
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We define Sk for k ∈ J1, n+ 1K as

Sk =
φ(xk)− φ(xk−1)

xk − xk−1
and Sn+1 = 0

which are the slopes of f in the interval (xk−1, xk)

We set

gn := φ(xn) +

n∑
k=1

(Sk − Sk+1)φxk

We assert that for all x ∈ [−A,A], f(x) = g(x). This can be proved using the fact that φ′
xk

= 1(−∞,xk]

to show that f ′
n = g′n so fn = gn + C by and then evaluate in xn to show that C = 0.

Using the fact that xk = (1− t)xk−1 + txk+1 with t = xk−xk−1

xk+1−xk−1
and that φ is concave we get φ(xk) ≥

(1− t)φ(xk−1) + tφ(xk+1), thus

Sk − Sk+1 =
φ(xk)− φ(xk−1)

xk − xk−1
+

φ(xk)− φ(xk+1)

xk+1 − xk

≥ (1− t)φ(xk−1) + tφ(xk+1)− φ(xk−1)

xk − xk−1
+

(1− t)φ(xk−1) + tφ(xk+1)− φ(xk+1)

xk+1 − xk

=
φ(xk+1)− φ(xk−1)

xk+1 − xk−1
+

φ(xk−1)− φ(xk+1)

xk+1 − xk−1
= 0.

We proved that for k ∈ J1, n−1K Sk−Sk+1 ≥ 0. Lastly Sn−Sn+1 = Sn ≥ 0 because φ is non-decreasing.

Finally, we show that for x ≤ x0, φ(x) ≤ gn(x) ≤ 0. Indeed, let x−1 < x0, we can define S0 =
φ(x0)−φ(x−1)

x0−x−1
and hn = gn + (S0 − S1)φx0

. By the same argument as before, hn verifies : hn(x−1) =

φ(x−1). Because (S0 − S1) ≥ 0 and φx0 ≤ 0 we deduce φ(x−1) ≤ gn(x−1). On the other hand, we have
gn(x) ≤ gn(x0) = gn(−A) ≤ 0 by our choice of A. We deduce form this that

|φ| ≥ |gn| in the interval (−∞,−A].

Because φ is absolutely continuous on [−A,A], we can fix a partition of [−A,A] fine enough so that

sup
x∈[−A,A]

|φ(x)− fn(x)| ≤
ε

2A

. We thus have∫
|φ(x)− gn(x)|d(F +G)(x) ≤

∫ −A

−∞
|φ(x)− gn(x)|d(F +G)(x) +

∫ A

−A

|φ(x)− gn(x)|d(F +G)(x)

+

∫ +∞

A

|φ(x)− gn(x)|d(F +G)(x)

≤ 2

∫ −A

−∞
|φ(x)|d(F +G)(x) +

∫ A

−A

ε

2A
d(F +G)(x) +

∫ +∞

A

|φ(x)|+ |gn(x)|d(F +G)(x)

≤ 2ε+ ε+ ε+

∫ +∞

A

|φ(A)|d(F +G)(x) using the fact that gn(x) = φ(A) for x ≥ A

≤ 5ε

■

B Fourier Theory
Most of what will follow is a retake of [Garban and Steif, 2012]. Most of the results presented in this section
come from the more general theory of Fourier analysis on finite groups. Here we will restrain ourselves to the
group Ωn

∼= (P(J1, nK),∆) ∼= (Z/2Z,+)n ∼= (U2,×)n. We will prefer this last representation as the characters
are more natural. So unless otherwise specified, for all this section we set Ωn = {−1, 1}.
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We consider the space L2(Ωn) of complex valued functions endowed with the inner product :

⟨f |g⟩ =
∑

x1,...,xn

f(x1, . . . , xn)g(x1, . . . , xn)2
−n

= E[fg]

where E denotes the expectation with respect to the uniform measure P on Ωn.

For any subset S ⊂ J1, nK, let χS be the function on Ωn defined by :

χS(x) :=
∏
i∈S

xi

We have L2(Ω) is a C-vectorial space of dimension |Ωn| = 2n. The (χS)S⊂J1,nK form an orthonormal basis.

Proof. • E[χ2
S ] = E[1] = 1

• E[χSχP ] = E[χS∆P ] It suffices then to show that for every S ̸= ∅ we have E[χS ] = 0. Suppose S
is not empty, then we can fix i ∈ S and by conditioning on the value of the i component we get

E[χS ] = E[χS |xi = 1]P (xi = 1) + E[χS |xi = −1]P (xi = −1)

= E[χS |xi = 1]
1

2
− E[χS |xi = 1]

1

2
= 0

■

Thus, we have for any f ∈ L2(Ωn) :
f =

∑
S⊂J1,nK

⟨f |χS⟩χS

We denote f̂(S) := ⟨f |χS⟩ = E[fχS ] that are called the Fourier-Walsh coefficients of f .

By identifying Ωn ≈ P(J1, nK) we get an isometry from L2(Ωn) to L2(P(J1, nK))

⟨f |g⟩ =
∑

S⊂J1,nK

f̂(S)ĝ(S) =
〈
f̂
∣∣∣ĝ〉

Definition B.1 (Energy Spectrum).
The energy spectrum Ef of a function f ∈ L2(Ωn) is defined by

Ef (m) :=
∑

S∈Pm(J1,nK)

f̂(S)2, m ∈ J1, nK.

Of course, we have
∑n

m=1 Ef (m) = ∥f∥22. So this corresponds to the L2 norm of
∑

#|S|=m f̂(S)χS .

Definition B.2 (Convolution operator).
We define

∗ : L2(Ωn)× L2(Ωn) −→ L2(Ωn)
f, g 7−→ f ∗ g

by

f ∗ g(u) : =
∑
ω∈Ωn

f(ω)g(ωu)P (ω)

= E[f(g ◦ τu)]

Where τu : Ωn −→ Ωn

ω 7−→ ωs := (ω1u1, . . . , ωnun)
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Theorem B.3 (Convolution theorem).
This result is more general (see Fourier analysis in finite groups) but we only prove it for this case.

f̂ ∗ g = f̂ ĝ

Proof.

⟨f ∗ g|χS⟩ =
∑
u∈Ωn

f ∗ g(u)χS(u)P (u)

=
∑
u∈Ωn

∑
ω∈Ωn

f(ω)g(uω)P (ω)χS(u)P (u)

=
∑
ω∈Ωn

f(ω)P (ω)
∑
u∈Ωn

g(uω)χS(u)P (u)

=
∑
ω∈Ωn

f(ω)P (ω)
∑
u∈Ωn

g(u)χS(uω)P (uω) τω is a bijection

=
∑
ω∈Ωn

f(ω)χS(ω)P (ω)
∑
u∈Ωn

g(u)χS(u)P (u) because χS(uω) = χS(u)χ(ω)

= f̂(S)ĝ(S)

■

As any Fourier transformation, this one yields very interesting results. We will focus on the one’s closer to
our area of study:

Proposition.
If f : Ωn → {0, 1} then for any k ∈ J1, nK we have :

Ik(f) = 4
∑

S⊂J1,nK

f̂(S)21k∈S

and
I(f) = 4

∑
S⊂J1,nK

|S|f̂(S)2

Proof. We introduce the discrete derivative operator (along the kth coordinate):

∇kf : Ωn −→ C
ω 7−→ f(ω)− f(σk(ω))

Where σk maps Ωn to itself by flipping the kth bit.

By writing f(ω) =
∑

S⊂J1,nK f̂(S)χS(ω) we get

∇kf(ω) =
∑

S⊂J1,nK

f̂(S)(χS(ω)− χS(σk(ω))) = 2
∑

S⊂J1,nK

f̂(S)χS(ω)1k∈S

By uniqueness of the decomposition, it follows:

∇̂kf(S) = 21k∈S f̂(S)

Because f : Ωn → {0, 1} we have Ik(f) = ∥∇kf∥22. Applying Parseval’s formula

Ik(f) =
∑

S⊂J1,nK

4f̂(S)21k∈S

Finally, by summing over k and switching both sums, we get the second result. ■

Remark.
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If f maps into {−1, 1} then f+1
2 maps into {0, 1} and Ik(f) = Ik( f+1

2 ) and f̂+1
2 = 1

2 f̂ + 1
21∅ thus

Ik(f) =
∑

S⊂J1,nK

f̂(S)21k∈S

B.1 Monotone functions and their spectra
Monotone functions enjoy alternative useful spectra description

Proposition.
If f : Ωn → {0, 1} is monotone, then for all k

Ik(f) = 2f̂({k})

Proof.

f̂({k}) = E[fχ{k}]

= E[fχ{k}1k∈Π] + E[fχ{k}1k ̸∈Π]

The term E[fχ{k}1k ̸∈Π] = 0 is null. Indeed,

E[fχ{k}1k ̸∈Π] = E[fχ{k}1k ̸∈Π|xk = 1]P (xk = 1) + E[fχ{k}1k ̸∈Π|xk = −1]P (xk = −1)

= E[f1k ̸∈Π|xk = 1]P (xk = 1)− E[f1k ̸∈Π|xk = 1]P (xk = −1)

= E[f1k ̸∈Π]P (xk = 1)− E[f1k ̸∈Π]P (xk = −1) because f1k ̸∈Π is independent of xk

= 0

The second term is equal to Ik(f)/2. Indeed,

E[fχ{k}1k∈Π] = E[fχ{k}1k∈Π|xk = 1]P (xk = 1) + E[fχ{k}1k∈Π|xk = −1]P (xk = −1)

= E[1k∈Π]P (xk = 1)

= Ik(f)/2

By noticing that fχk1k∈Π1xk=1 ≡ 1k∈Π1xk=1 and fχk1k∈Π1xk=−1 ≡ 0. This is where the hypothesis
of f being increasing is important. ■

In fact, we can extend this proof to functions f : Ωn → R which gives us:

f̂({k}) = 1

2
E[|∇if |]

B.2 Non-uniform probability
If we replace P by Pp we loose the orthogonality of our basis. We will thus consider this change as the
multiplication by a weight function

Wp(ω) =
Pp (ω)

P (ω)
.

We can thus expect the behavior of changing p to some sort of convolution in the Fourier space.

How do we define this convolution?

We start from writing that f =
∑

S f̂(S)χS and g =
∑

S ĝ(S)χS and by noticing that χSχT = χS∆T so

fg =
∑
S,T

f̂(S)ĝ(T )χSχT

=
∑
U

∑
S∆T=U

f̂(S)ĝ(T )χU

=
∑
U

f̂ ∗ ĝ(U)χU
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Where we defined

f̂ ∗ ĝ(S) :=
∑

S1∆S2=S

f̂(S1)ĝ(S2)

=
∑
T

f̂(T )ĝ(S∆T )

Proposition.

Ŵp(S) = (2p− 1)#|S|

and
EWp

(m) =

(
n

m

)
(2p− 1)2m

Proof.

⟨Wp|χS⟩ = E[WpχS ]

= Ep[χS ]

= Ep[
∏
k∈S

xk]

=
∏
k∈S

Ep[xk] by independence of the xk

= (2p− 1)#|S|

■

We can generalize this proof to the case we take n different probabilities for each coordinate, we get

Ŵp1,...,pn
(S) =

∏
k∈S

(2pk − 1)

We can deduce the energy by just computing the definition. We can notice the fact that we have a symmetry
with respect the axis p = 1

2 .

We remark we have the same phenomenon as in other Fourier transform : when p is close to 1
2 , Wp is very

flat, close to uniform and in the Fourier space, we will get a very sharp function that decreases very fast as
# |S| grows bigger. In the opposite case, when p goes to either 0 or 1, Wp is very sharp, with all the weight
being concentrated close to either 0n or 1n and in the Fourier space, the function becomes more flat. It would
be interesting to see if there is also an uncertainty principle in this setting.

B.3 Another proof of the Margulis-Russo
Now we will try to prove some results from the previous part:

Margulis-Russo :

We can rewrite the Margulis-Russo formula as follows :

d

dp
⟨f |Wp⟩ = ⟨|∇f ||Wp⟩
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∂i ⟨f |Wp1,...,pn
⟩ = ∂i

〈∑
S

f̂(S)χS

∣∣∣∣∣∑
S

Ŵ (S)χS

〉

=

〈∑
S

f̂(S)χS

∣∣∣∣∣∑
S

∂iŴ (S)χS

〉

=

〈∑
S

f̂(S)χS

∣∣∣∣∣∑
S

1i∈S2Ŵ (S \ {i})χS

〉

=

〈∑
S

1i∈S2f̂(S)χS

∣∣∣∣∣∑
i∈S

Ŵ (S \ {i})χS

〉

Because f is increasing, we have

|∇if | = χi∇if

Thus

|̂∇if |(S) = δi ∗ ∇̂if(S)

= ∇̂if(S∆{i})

= 1i̸∈S2f̂(S ⊔ {i})

Let’s continue :

∂i ⟨f |Wp1,...,pn
⟩ =

〈∑
i ̸∈S

2f̂(S ⊔ {i})χSχi

∣∣∣∣∣∣
∑
i∈S

Ŵ (S \ {i})χS

〉

=

〈∑
i ̸∈S

2f̂(S ⊔ {i})χSχi

∣∣∣∣∣∣
∑
i ̸∈S

Ŵ (S)χSχi

〉

=

〈∑
i ̸∈S

|̂∇if |(S)χSχi

∣∣∣∣∣∣
∑
i ̸∈S

Ŵ (S)χSχi

〉

=
∑
S

|̂∇if |(S)Ŵ (S)

= ⟨|∇if ||Wp1,...,pn
⟩

We get the more general result for any kind of boolean function:

d

dp
Ep[f ] =

n∑
i=1

Ep[χi∇if ]

C The Margulis-Russo Formula

C.1 What regularity do we have for µ(p)?
Here is another proof.

Theorem C.1 (Generalized Margulis-Russo Formula).
Let T : Ωn → R+ be a non-decreasing (bounded) random variable. Then we have :

d

dp
Ep[T ] =

n∑
i=1

Ep[|∇iT |]
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Proof.

d

dp
Ep[T ] =

d

dp

∫ ∞

0

Pp (T > γ) dγ

=
d

dp

∫ ∞

0

Ep [1T>γ ] dγ

=

∫ ∞

0

d

dp
Ep [1T>γ ] dγ

Because T is non-decreasing, then 1T>γ is non-decreasing for all γ. We thus have by the Margulis-Russo
formula:

d

dp
Ep [1T>γ ] =

n∑
i=1

Ipi (1T>γ)

that we can bound by n for γ ≤ supT and 0 for γ > supT which justifies the derivation/integration
inversion.

d

dp
Ep[T ] =

n∑
i=1

∫ ∞

0

Ipi (1T>γ)dγ

=

n∑
i=1

∫ ∞

0

∑
ω∈Ωn

|1T>γ(ω)− 1T>γ(σiω)|Pp (ω) dγ

=

n∑
i=1

∑
ω∈Ωn

∫ ∞

0

|1T>γ(ω)− 1T>γ(σiω)|dγPp (ω)

=

n∑
i=1

∑
ω∈Ωn

∣∣∣∣∫ ∞

0

1T>γ(ω)− 1T>γ(σiω)dγ

∣∣∣∣Pp (ω)

=

n∑
i=1

∑
ω∈Ωn

|T (ω)− T (σiω)|Pp (ω)

=

n∑
i=1

Ep [|∇iT |]

■

Let F and G be two distributions, then the joint measure for Pp is ν = ⊗E((1− p)F + pG).

We then have
Ep[T ] =

∫
T (ω)ν(ω)

We can derive the measure :

d

dp

E⊗
((1− p)F + pG) =

∑
e∈E

<e⊗
((1− p)G+ pF )⊗ (G− F )⊗

>e⊗
((1− p)G+ pF )

Assuming the switch between the derivation and integral operator is legit.

d

dp
Ep[T ] =

∑
e∈E

Ep[T |λe = 1]− Ep[T |λe = 0]

We set
θe = T |τe = ∞− T |τe = 0.

This random variable tells us how important is the edge for the percolation. We can thus decompose

T = (ωe + T |τe = 0)1ωe<θe + 1τi≥T |τe = ∞
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We recall the existence of a time constant

µ(F )
a.s.
= lim

n→∞

Tn

n

Theorem C.2 (Continuity of the time constant).

If Fk
w−→ F then µ(Fk) → µ(F )

under the assumption of a dominating function.

Theorem C.3 (Continuity of the time constant).

If Fk
w−→ F then µ(Fk) → µ(F )

Lemma.
Assume Fk → F . Then lim supµ(Fk) ≤ µ(F ).

Lemma.
Define FB(x) = 1x<BU(x) + 1x≥B. Then µ(FB) → µ(F ).

Proof. Let’s assume both lemmas for the moment. Because of the first lemma, it suffices to show that
lim infk µ(Fk) ≥ µ(F ). Then, let B a continuity point of F . We have Fk ≤ FB

k thus lim inf µ(FB
k ) ≤

µ(Fk) and FB
k

w−−→
k∞

FB . ■

Proof. We start by noticing that µ is a monotone operator, in the sense that if G ≤ F (G dominates F)
then µ(F ) ≤ µ(G).

Because of this, by setting F̃k = min(Fk, F ) and Fk = max(Fk, F ) we have F̃k ≤ Fk ≤ Fk thus
µ(F̃k) ≥ µ(Fk) ≥ µ(Fk) and because F̃k → F and Fk → F it shows that proving the result for Fk ≥ F
and Fk ≤ F is enough. Of course if Fk ≥ F then ∀k, µ(Fk) ≤ µ(F ) and thus lim supµ(Fk) ≤ µ(F ).

So we only consider the case where Fk ≤ F . We define U−1(x) = inft{t|U(t) > x} the inverse cumulative
distribution. We thus have F−1

k (x) → F−1(x).

We can then fix (ξi)i ∼ U and the pushfoward distribution through F−1
n and F−1 verifies F−1(ξi) ∼ F

and F−1(ξi) ≤ F−1
n (ξi)

We define Xi = F−1(ξi) and X
(k)
i = F−1

k (ξi)

Let’s fix ε > 0. We can fix a path γ such that TF
n ≥ γ ·X + ε. (Actually the existence of a minimizing

path is assured by various theorems, but I will try to avoid them for the moment).

We then have T
(k)
n ≤ γ ·X(k) ≤ γ ·X(k) + γ · (X(k) −X) ≤ Tn + ε+ γ · (X(K) −X). We can then fix K

such that γ · (X(k) −X) ≤ ε for all k ≥ K.

This proves that lim supk T
(k)
n ≤ Tn almost surely. And because T

(k)
n ≥ Tn a.s. we get

lim
k

T (k)
n = Tn a.s.

To get the L1 convergence, we need an argument of domination (for the moment). We thus make the
assumption that there exist some G such that G ≤ Fk and that G admits a finite expectation. (We can
then apply either reverse Fatou Lemma or Lebesgue dominated convergence) we get :

lim
k

EFk
[Tn] ≤ EF [Tn]
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Now, we fix N such that

EF

[
TN

N

]
− µ(F ) ≤ ε.

We now fix K such for all k ≥ K,

EFk

[
TN

N

]
− EF

[
TN

N

]
≤ ε

We thus get

µ(Fk) ≤ EFk

[
TN

N

]
≤ EF

[
TN

N

]
+ ε

≤ µ(F ) + 2ε

The more general proof can be found in [Cox and Kesten, 1981]. The idea is to reuse the proof of the
existence of the time constant in the not integrable case [Cox and Durrett, 1981] which is to use circuits.

Let G(x) ≤ Fk(x) for all k, x. Such a distribution exists (we can take the inf and verify that the obtained
distribution does not put weight on infinity...).

Then, we fix x0 such that G(x0) >
1
4 . We can then go from FPP to classical percolation by saying an

edge is open if Xe < x0. As a result from classical percolation, because P (Xe < x0) > pc = 1
2 we have

a unique infinite cluster. For each point x we consider ∂x be the smallest circuit (one loop) of open
edges (in a way, if we augment each closed vertex by (−1, 1)2 this will correspond to the frontier of the
adherence) and x̊ be the interior of this circuit. The idea is to study

d̃(x, y) = d(∂x, ∂y)

which happens to have the good properties. ■
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