
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

The Structure of Primitive Edge-Colored Graphs:
A Galled Tree Perspective

av

Anna Lindeberg

2023 - M7

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

The Structure of Primitive Edge-Colored Graphs:
A Galled Tree Perspective

Anna Lindeberg

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Marc Hellmuth

2023

Sammanfattning

Ett gallat träd är en rotad, riktad och acyklisk graf där inga tv̊a ‘orik-
tade’ cykler har en gemensam kant. En komplett kantfärgad graf Σ
förklaras av ett gallat träd (N, t) om varje nod i Σ har ett motsvaran-
de löv i N , och funktionen t förser varje nod i N med en färg-etikett
p̊a s̊a sätt att den minsta gemensamma förfädern av varje par av löv x
och y antar samma färg som kanten {x, y} i Σ. Vi karakteriserar först
vilka kompletta kantfärgade grafer av en viss typ (s̊a kallade primitiva
kantfärgade grafer) som kan förklaras av ett gallat träd. Efter detta
undersöker vi när det finns ett unikt gallat träd som förklarar en viss
primitiv kantfärgad graf.

Abstract

A galled tree is a rooted, directed, and acyclic graph such that no two
‘undirected’ cycles in it share an edge. A complete edge-colored graph
Σ is explained by a labeled galled tree (N, t) if the vertices of Σ are
the leaves of N , and t assigns a label to each vertex of N in such a
way that the label of the least common ancestor of any two leaves x
and y equals the edge-color of the edge {x, y} in Σ. In this thesis we
characterize which complete edge-colored graphs of a particular type
(so-called primitive edge-colored graphs) can be explained by a galled
tree. Furthermore, we investigate when such a galled tree is uniquely
determined.

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Graphs . 5
2.2 Complete edge-colored graphs 8

2.2.1 Related concepts . 10
2.3 Galled trees . 13
2.4 Modules and modular decomposition 24

3 Galled trees and primitive edge-colored graphs 32
3.1 Definition, examples and main statement 32
3.2 Proof of Theorem 3.2 and related results 35

4 Uniqueness 45
4.1 Structure implied from being caterpillar-explainable 45
4.2 Sufficient conditions for uniqueness 47
4.3 Non-uniqueness . 56

5 Future research 69

References 71

1 Introduction

Over the years, mathematicians and computer scientists have both searched
for and found a wide variety of graph classes united by the property that
some generally ‘hard’ problems are possible to solve efficiently on members
of those classes. One example of such a class of graphs are the so-called
cographs. A graph is a cograph if and only if there exists a rooted tree,
eloquently known as a cotree, whose set of leaves coincides with the vertices
of its cograph. Additionally, the cotree’s inner vertices are labeled with
0:s and 1:s such that the least common ancestor of two leaves x and y
is labeled 1 if and only if {x, y} is an edge of the cograph. We give an
example of a cograph and its cotree in Figure 1. In fact, the existence of
the cotree is what makes cographs interesting from an algorithmic point of
view; the cotree captures exactly the same information as its corresponding
cograph, so one may run algorithms on the cotree to get solutions for the
corresponding cograph. Examples of NP-hard problems that are polynomial
time-solvable on cographs include finding the size of a maximum clique and
deciding Hamiltonicity. Furthermore, whether two cographs are isomorphic
or not can be decided in polynomial time [4].

The closest object resembling a cotree which is uniquely determined for
every possible graph is something called the modular decomposition tree
(MDT) of a graph [15]. Like cotrees, the MDT of a graph G is a rooted
tree whose leaves coincides with the vertices of G, and the vertices of the
MDT are labeled. However, for non-cographs the labels 0 and 1 does not
suffice, and instead a third label Prime is introduced. The MDT of a graph
G often captures some structure of G, in the sense that if the label of the
least common ancestor of two leaves x and y equals 1 (respectively 0), then
{x, y} is (respectively is not) an edge of G. However, if the least common
ancestor of x and y is labeled Prime then nothing can be derived about
the (non-)edge {x, y} in G. The existence of Prime-labeled vertices can
thus be thought of as a roadblock in efficiently running algorithms on the
MDT of a graph. For cographs, the cotree coincides with the MDT which is
thus devoid of Prime-labels. We say that the MDT of a graph G without
Prime-labels (that is, G is a cograph) explains G.

When it comes to how much of a graph G can be recovered from its MDT
the other, so to speak, ‘extreme’ than cographs are the primitive graphs. A
graph is primitive if it has only one or two vertices, or if its MDT consists of
a Prime-labeled root that has only children that are leafs. Hence virtually
no information about the underlying graph can be retrieved from the MDT
of a primitive graph. The smallest non-trivial example of a primitive graph
is a path graph P4 with four vertices, depicted in Figure 2.

Although the long history of study of modular decomposition, the sur-
prisingly simple idea of replacing Prime-labeled vertices by some other well-
understood type of graph appeared only recently [3]. Perhaps the most ‘tree-

1

Figure 1: A cograph (left) with its cotree (right). By way of example, note
that the least common ancestor of a and d is labeled 1, and the edge {a, d}
indeed appear in the graph.

like’ object that is not a tree is what is known as a galled tree. We introduce
these objects formally in the next section, but intuitively speaking a galled
tree is a rooted tree where cycles (also known as galls) are allowed, as long
as no two cycles share an edge.

In the recent work [19] Hellmuth and Scholz generalized cographs to
what they call GaTEx graphs. A GaTEx (Galled Tree Explainable) graph
is a graph that can be explained by a labeled galled tree, analogously to how
cographs can be explained by labeled trees. For example, the non-cograph
P4 is a GaTEx graph, as it is explained by the galled tree in Figure 2. The
work in [19] is extensive; to only mention a few results it first characterizes
graphs that are both primitive and GaTEx, and then use a carefully defined
type of quotient graphs to extend this characterization to allGaTEx graphs.
In fact, the same approach as the Prime-vertex replacement introduced in
[3] is used for the latter. These major results are then complemented with
results of uniqueness-type, i.e. which GaTEx graphs are explained by a
unique (up to isomorphism) galled tree. Moreover, algorithms that both
recognize GaTEx graphs and construct a labeled galled tree that explain a
particular GaTEx graph are given, and these algorithms are implementable
in linear (i.e. polynomial) time.

The work in [21] complements [19] by providing a characterization of
GaTEx graphs in terms of so-called forbidden subgraphs, and uses this to
establish connections between GaTEx graphs and many other well-known
graph classes (e.g. perfect graphs and comparability graphs). In the third
recent paper [20] of Hellmuth and Scholz, the authors further motivates their
previous work by providing linear-time algorithms which solves problems
that in general are NP-hard, as long as the input is restricted to a GaTEx
graph. The common approach they use for computing the size of a maximum
clique, the size of a maximum independent set respectively the number of
colors in an optimal vertex-coloring of a given GaTEx graph G is that the

2

Figure 2: The path graph P4 on four vertices (left) is primitive, as its MDT
(middle) has a Prime-labeled root and four leaves only. It is, however,
explained by the galled tree (N, t) (right) and is thus a GaTEx graph.

algorithm in question is run on a labeled galled tree that explains G, rather
than on G itself. In other words it is, so to say, easy to solve hard problems
on GaTEx graphs for much the same reasons as it is easy to solve hard
problems on cographs.

In this contribution, we wish to generalize parts of the results of [19] to
another combinatorial object than undirected graphs, namely, to complete
edge-colored graphs. These are, as the name indicates, complete graphs
where each edge is assigned an edge-color. Thus the binary property of
{x, y} either being an edge of a graph G, or not, is exchanged to the more
general situation where each edge has one of many possible edge-colors. In
this context, a complete edge-colored graph G is explained by a labeled
galled tree (N, t), where N is the galled tree and t its labeling, if the label
t(lca(x, y)) equals the edge-color of the edge {x, y}, for each edge {x, y} of
G. That is, instead of t only assigning 0/1-labels to the vertices of N , it
assigns colors to the vertices of N . The concept of modular decomposition
trees also generalizes to complete edge-colored graphs, in a similar fashion.
In particular, no primitive complete edge-colored graph on at least three
vertices can be recovered from its MDT.

We do not pretend to fully generalize every result in [19], but we will
provide the first stepping-stones towards such a possibility. To be more
precise, we will first investigate complete edge-colored graphs that are ex-
plained by a particularly ‘simple’ type of galled tree (called elementary)
that, roughly speaking, has a single cycle as a ‘backbone’ with separated
leaves – see Figure 3 for an example. As it turns out, complete edge-colored
graphs can be explained by an elementary galled tree (with some additional
conditions of technical nature) if and only if it is primitive yet explained
by some galled tree. To facilitate the proof of this characterization, we will
introduce the class of so-called polar-cats. We state the formal definition of
polar-cats in Section 3, but the rough idea is that a complete edge-colored
graph is a polar-cat if it can be split into two subgraphs that intersect only

3

Figure 3: We give an elementary labeled galled tree (N ′, t′) (left) that ex-
plains the complete edge-colored graph Σ (right). For example, the least
common ancestor of the leaves c and d is labeled , and the edge {c, d} is
indeed dashed green in Σ.

in one vertex, and each of those subgraphs have a very particular structure.
This structure will allow us to prove that polar-cats are both explained by
particular galled trees and primitive, thus acting as a sort of middle ground
for the main theorem of Section 3.

Just like cographs are the class of undirected graphs that can be ex-
plained by a tree, the so-called uniformly non-primitive (unp) complete
edge-colored graphs can be explained by a labeled tree. Equivalently, a
complete edge-colored graph is unp if and only if its MDT has no Prime-
labeled vertices. Modular decomposition trees and unp edge-colored graphs
have previously been studied extensively, although in the yet even more
general context of complete edge-colored directed graphs (also known as 2-
structures). Important previous work can be found in [7, 8, 9, 11, 22]. In
particular, [22] connects the previously theoretical study of 2-structures to
the field of computational biology, as relationships between different genes
can be modeled with edge-colored directed graphs.

As previously mentioned, we state and prove a characterization of prim-
itive complete edge-colored graphs that are explained by labeled galled trees
in Section 3. After that, we devote Section 4 to a characterization of which
primitive complete edge-colored graphs are explained by a unique galled
tree. Section 2 provides the relevant background on graphs, complete edge-
colored graphs, galled trees and modular decomposition trees. The reader
familiar with the works in [19] may safely read only Section 2.2 for the for-
mal definitions involving complete edge-colored graphs, and refer back to
the remainders of Section 2 when necessary. We conclude this thesis with
an outlook in Section 5.

4

2 Preliminaries

In this section we formally introduce a substantial collection of definitions
and earlier results needed later on. We begin by summarizing basic facts and
notation related to directed and undirected graphs, followed by a discussion
about so-called 2-structures and their connection to edge-colored graphs.
We then formalize the important galled trees discussed in the introduction
and establish a rather extensive set of definitions related to this type of
directed network. Lastly, we provide an overview on the topic of modular
decomposition and its connection to galled trees.

Before anything else, let us establish some basics about sets. All sets
considered in this thesis are assumed to be finite. For a nonempty set V ,(
V
2

)
denotes the family of two-element subsets of V . A partition of a set X

is a family of nonempty sets {X1, . . . , Xk} such that X = ∪ki=1Xi and such
that Xi ∩Xj = ∅ for each i ̸= j.

2.1 Graphs

The concepts in this section are well-known, but notation varies largely. For
a more in-depth discussion about the topics discussed, refer to any textbook
in graph theory, for example [6]. A graph G = (V,E) is an ordered pair
consisting of a nonempty set V (G) := V of vertices and a set E(G) := E
of edges. G = (V,E) is an undirected graph if E ⊆

(
V
2

)
. If, instead, E ⊆

(V × V) \ {(v, v) | v ∈ V }, then G is said to be a directed graph. We thus
distinguish between graphs with undirected edges {x, y} and graphs with
directed edges (x, y), for distinct x, y ∈ V . In particular, the given definition
ensures that all graphs we consider have no loops (i.e. edges such as {x, x}
or (x, x)) nor any multi-edges (i.e. multiple occurrences of the same edge).

The vertices x and y are called endpoints of the edge e, when e = {x, y}
or e = (x, y), while x and y are incident to the edge e. If x and y are vertices
connected by an (undirected or directed) edge, then x and y are said to be
adjacent or neighbors. We will consider both undirected and directed graphs,
but the latter only in the context of galled trees, see Section 2.3. Thus, when
we refer to a graph only, we implicitly mean an undirected graph.

Example 2.1. An example of an (undirected) graph G = (V,E) is given
in (the left of) Figure 4. As customary, vertices are drawn as black circles
and often labeled, while (undirected) edges are indicated with lines. In G, a
and b are adjacent vertices, whereas a and e are not, since {a, b} ∈ E while
{a, e} /∈ E.

Given two graphs G = (VG, EG) and H = (VH , EH) (either both directed
or both undirected), an isomorphism of G and H is a bijective map φ : VG →
VH such that {u, v} ∈ EG (resp. (u, v) ∈ EG) if and only if {φ(u), φ(v)} ∈
EH (resp. (φ(u), φ(v)) ∈ EH). If such a map exist, then G and H are
isomorphic, in symbols stated as G ≃ H.

5

Figure 4: Example of a graph G (left), an induced subgraph G[{a, b, c, d}]
(left middle), the graph G − d (right middle) and a graph H. Note that
G[{a, b, c, d}] is isomorphic to the (complete) graph H on four vertices.

A subgraph of a (directed or undirected) graph G = (V,E) is a graph
G′ = (V ′, E′) such that V ′ ⊆ V , E′ ⊆ E and such that for every e ∈ E′,
both endpoints of e are elements of V ′. Given a nonempty subset of vertices
X ⊆ V of the (undirected or directed) graph G = (V,E), the subgraph
induced by X is the (sub-)graph with vertex set X and edge set

E′ = {e ∈ E | both endpoints of e lies in X.}

This graph is denoted by G[X]. In particular, we put G − v := G[V \ {v}]
whenever V \{v} ≠ ∅. A graph H is an induced subgraph of G if there exists
some set X such that H ≃ G[X]. In that case, we also say that G contains
H.

Example 2.2. Continuing Example 2.1, the two induced subgraphs G′ :=
G[{a, b, c, d}] and G− d are given alongside G in Figure 4. Moreover, G′ is
isomorphic to the graph H depicted in (the right of) Figure 4. In fact, it is
easy to verify that any injective map from V (G′) into V (H) indeed defines
an explicit isomorphism of these two graphs.

A graph G = (V,E) is complete if E =
(
V
2

)
. For example, the graph H

of Figure 4 is a complete graph on four vertices. For each positive integer n,
an undirected path Pn is the undirected graph with vertices {v1, v2, . . . , vn}
and edges {vk, vk+1} for each k = 1, 2, . . . , k − 1. Similarly, a directed path
−→
P n is the directed graph with vertices {v1, v2, . . . , vn} and edges (vk, vk+1)
for each k = 1, 2, . . . , k − 1. Whether a path is directed or undirected is
often understood from context, and they are at times denoted with its inner

vertices, so that Pn = v1v2 . . . vn. The paths Pn and
−→
P n are said to have

length n − 1, the vertices v1 and vn are called the end vertices of the path
while the vertices vk for k /∈ {1, n} are called inner vertices. In particular,
n = 1 means that the path in question consists of a single (end) vertex, so
that it has length zero.

6

Figure 5: Example of a directed graph
−→
G (left), its induced subgraph

−→
G [{b, c, d, g}] (middle) and a highlighted ag-path in

−→
G (right). Note that

−→
G [{b, c, d, g}] is both biconnected and acyclic, two properties not satisfied

by
−→
G .

Example 2.3. Once again considering the graph G in Figure 4, we see that
the vertices b, d, e and f induce a path graph on four vertices, so G contains
a P4. In G[{b, d, e, f}], e and f are end vertices, while b and d are inner
vertices.

Given a directed or undirected graph G and two of its vertices x and
y, there is a path in G (from x to y) or an xy-path for short, if there exist
a subgraph (not necessarily induced) of G isomorphic to Pn (respectively
−→
P n, if G is directed) for some n so that x and y are its end vertices. We
may also consider undirected paths in directed graphs as follows. For any

directed graph
−→
G = (V,E), define the undirected graph

−→
Gu := (V,Eu)

where Eu := {{x, y} | (x, y) ∈ E}. An undirected xy-path in
−→
G is any xy-

path in
−→
Gu.

Example 2.4. Consider the directed graph
−→
G = (V,E) as given in Figure 5.

The direction of the edges are indicated with arrows. As highlighted in red,

there is, for example, a directed path of length four in
−→
G from a to g, via the

vertices d, b and c (in that order). On the other hand, there is no directed

path from f in
−→
G , since there is no x ∈ V such that (f, x) ∈ E. However,

there is an undirected fx-path for each x ∈ V .

A (directed or undirected) graph G is connected if there exist an (undi-
rected) xy-path between any pair of vertices x and y. If G has only one
vertex, or if G − v is connected for each vertex v of G, then G is said to
be biconnected. A biconnected component C = (V ′, E′) of G = (V,E) is a
maximal biconnected subgraph. That is, C is biconnected while, for any
x ∈ V \ V ′, the subgraph G[V ′ ∪ {x}] is not biconnected. A biconnected
component is non-trivial if it has at least three vertices, otherwise it is triv-
ial.

7

Example 2.5. The graph
−→
G in Figure 5 has several biconnected compo-

nents: two examples are
−→
G [{d, f}] and

−→
G − f . The latter is non-trivial,

while the former is trivial. The subgraph
−→
G [{b, c, d, g}] also depicted in Fig-

ure 5 is biconnected, but not a biconnected component, since for example−→
G [{b, c, d, g} ∪ {a}] is biconnected as well.

The degree of a vertex v of an undirected graph is the number of neighbors
of v. Let G = (V,E) be a directed graph. For each v ∈ V we define

indeg(v) := |{u : (u, v) ∈ E}| and outdeg(v) := |{u : (v, u) ∈ E}|

as the in-degree respectively out-degree of v. Moreover, G is said to be
acyclic if there exist no sequence of k ≥ 2 distinct vertices v1, v2, . . . , vk ∈ V
such that

(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) ∈ E.

Example 2.6. In our reoccurring example
−→
G = (V,E) in Figure 5, we have

indeg(a) = 2 and outdeg(a) = 1 while indeg(f) = 1 and outdeg(f) = 0.
−→
G is not acyclic, since (among others) the sequence a, d and b satisfies

(a, d), (d, b), (b, a) ∈ E. The subgraph
−→
G [{b, c, d, g}] is, on the other hand,

indeed acyclic.

If G = (V,E) and H = (V ′, E′) are graphs such that V ∩ V ′ = ∅, then
the disjoint union of G and H is the graph G∪H := (V ∪ V ′, E ∪E′). The
complement G of the undirected graph G = (V,E) is the graph with vertex
set V (G) := V and edge set E(G) :=

(
V
2

)
\ E. In other words, the edges of

G are precisely the non-edges of G.

2.2 Complete edge-colored graphs

One way to think about undirected graphs is that they represent a type of
binary relationship between its vertices: two vertices are somehow related
(depending on the context the graph is used in) if they share an edge, and
not related if they do not share an edge. A natural generalization of this
is to allow more than one type of edge and one type of non-edge; we can
think of it as assigning a label or color to each pair of vertices. The formal
definition is the following. We define a (complete) edge-colored graph as an
ordered pair Σ = (V, σ), where V is a (nonempty) set of vertices and σ is
a map from

(
V
2

)
. Elements of

(
V
2

)
are, unsurprisingly, called edges. If the

codomain of σ needs to be referred to specifically, it is called the edge-colors
of Σ. To avoid redundancy, we assume that σ is surjective. That means that
when we state e.g. that Σ is an edge-colored graph with three edge-colors,
then we assume that σ is a surjection into a codomain of cardinality three.
For brevity, we often write σ(xy) rather than σ({x, y}).

8

Figure 6: Examples of two edge-colored graphs Σ and Σ′.

To avoid being repetitive, we write only ‘edge-colored graph’ instead of
‘complete edge-colored’ graph. Edge-colored graphs can be visualized much
like graphs, as long as the edges between vertices are depicted with distinct
colors. Examples of two edge-colored graphs Σ and Σ′ are given in Figure 6.
Σ has two edge-colors, whereas Σ′′ has three.

We now introduce a handful of definitions for edge-colored graphs. Given
an edge-colored graph Σ = (V, σ) and a nonempty set X ⊆ V , we define the
induced subgraph Σ[X] of Σ to be the edge-colored graph (X,σ|X), where
σ|X is the restriction of σ to the domain

(
X
2

)
. All subgraphs of edge-colored

graphs are assumed to be induced subgraphs, deviating from the case of
graphs without edge-colors. As for graphs, Σ − v denotes the subgraph
Σ[V \ {v}].

We extend the definition of isomorphy of edge-colored graphs by adapt-
ing the terminology of [8]. We say that two edge-colored graphs Σ = (V, σ)
and Σ′ = (V ′, σ′) are isomorphic, i.e. Σ ≃ Σ′, if there exist a bijective map

φ :
(
V
2

)
→

(
V ′

2

)
such that

σ(e) = σ(f) ⇐⇒ σ′(φ(e)) = σ′(φ(f))

for all e, f ∈
(
V
2

)
.

Given two vertex disjoint edge-colored graphs Σ = (V, σ) and Σ′ =
(V ′, σ′) we can form a new edge-colored graph Σ⊗k Σ

′ called the k-colored
join of Σ and Σ′. It is the edge-colored graph with vertex set V ∪ V ′, and
its coloring map σΣ⊗kΣ′ is defined by putting

σΣ⊗kΣ′(xy) := σΣ⊗kΣ′({x, y}) :=


σ(xy) if x, y ∈ V

σ′(xy) if x, y ∈ V ′

k otherwise.

for each pair of distinct elements x, y ∈ V ∪ V ′.

9

Figure 7: The graph Σ (left) is the -colored join of its subgraphs Σ[{a, b, c}]
and Σ[{d, e, f}] (middle), respectively. Similarly, Σ′ (right) is the -colored
join of Σ′[{a, b, c}] = Σ[{a, b, c}] and Σ′[{d, e, f}] = Σ[{d, e, f}].

Example 2.7. An edge-colored graph Σ and its two subgraphs Σ[{a, b, c}]
respectively Σ[{d, e, f}] are given in Figure 7. It is easy to verify that

Σ = Σ[{a, b, c}]⊗ Σ[{d, e, f}]
= Σ[{a, b, c, d}]⊗ Σ[{e, f}]
= (Σ− d)⊗ Σ[{d}],

where is the color of the solid red edges in the figure. Figure 7 also depicts
Σ′, which satisfies

Σ′ = Σ′[{a, b, c}]⊗ Σ′[{d, e, f}].

It is sometimes of interest to consider only the edges of a single color of
an edge-colored graph Σ = (V, σ). For any edge-color k of Σ, the k-colored
monochromatic subgraph of Σ, denoted Σ|k, is the graph (V,E) where

E =

{
e ∈

(
V

2

) ∣∣∣∣σ(e) = k

}
.

Example 2.8. Continuing with the edge-colored graph Σ from Example 2.7
and Figure 7, its three monochromatic subgraphs are given in Figure 8. Note
that Σ| , Σ| and Σ| are graphs without edge-colors, all with the same
vertex set as Σ.

2.2.1 Related concepts

We now introduce the even more generalized notion of 2-structures, and
connect edge-colored graphs to (undirected) graphs. The reader should be
aware that the definitions in this section will only occasionally appear in
the remainder of this thesis. They are nevertheless important to discuss, as
they connect the edge-colored graphs to other combinatorial structures and
thus a wider set of related results.

10

Figure 8: The three possible monochromatic subgraphs of the edge-colored
graph Σ of Figure 7.

The theory of so-called 2-structures was introduced in [8, 9] as a combi-
natorial object that can both be seen as a generalization of (directed) graphs
and a restriction of, for example, posets. Given a nonempty set V , we let
V 2
irr = (V × V)\{(v, v) | v ∈ V }. In the context of 2-structures, the elements

of V 2
irr are called arcs. A 2-structure is an ordered pair g = (V,∼), where

V is a nonempty set consisting of the vertices of g, and ∼ is an equivalence
relation on V 2

irr. Since equivalence relations induce a partition of its under-
lying set (see e.g. [16, p.28]), an equivalent definition is that a 2-structure is
a set of vertices V together with a partition P of V 2

irr, written as g = (V,P).
A third (in essence) equivalent notion of 2-structures uses the notion of a la-
beling function φ : V 2

irr → Υ, which assigns a label φ((x, y)) ∈ Υ to each arc
(x, y) ∈ V 2

irr. This implicitly partitions V 2
irr in classes of arcs all labeled with

the same element of Υ, so that the 2-structure g = (V,P) can be identified
with the triple g = (V,Υ, φ), as has been done in for example [22]. In [8, 9],
these objects are distinguished with the name labeled 2-structure. The three
notions all have their respective advantages, and their usefulness depends on
the context. In particular, 2-structures are not dependent on the elements
of the label set Υ; the importance lies in establishing the (non-)relationship
between its arcs.

A 2-structure g = (V,∼) is said to be symmetric if (x, y) ∼ (y, x) for all
arcs (x, y) in V 2

irr. Intuitively speaking, this makes sure that the ”directed”
arcs (x, y) and (y, x) are always grouped together into an ”undirected” edge
{x, y}. In particular, any labeled symmetric 2-structure g = (V,Υ, φ) can
be reinterpreted without loss of information as the complete edge-colored
graph Σ = (V ′, σ), where V ′ = V and σ({x, y}) = φ((x, y)) = φ((y, x)) for
all distinct vertices x and y, and vice versa. Although it is not true to state
that the definition of symmetric 2-structures is equivalent to the definition
of complete edge-colored graphs, it is at least evident that there is a one-
to-one correspondence between these two families of objects. In particular,
any result on (symmetric) 2-structures is also true for complete edge-colored
graphs.

11

The study of (vertex or edge) colored graphs is a prominent field within
graph theory. One often studies undirected graphs G = (V,E) equipped with
an edge-coloring σ : E → Υ, where Υ is a set of colors. The notion of
complete edge-colored graphs we use can clearly be seen as a special case of
this; a complete edge-colored graph Σ = (V, σ) is the same as considering the
complete graph G = (V,

(
V
2

)
) equipped with the edge-coloring σ. Perhaps

more surprisingly, the converse is also true, in the following sense. If G =
(V,E) is a graph (not necessarily complete) equipped with an edge-coloring
σ, then we may construct a complete edge-colored graph ΣG = (V ′, σ′) that
‘encodes’ the same information as (G, σ) by putting V ′ := V and

σ′(e) :=

{
σ(e) if e ∈ E

◦ otherwise

for each e ∈
(
V
2

)
. Here ◦ is assumed to be any symbol not already in the

codomain of σ. The difference between complete edge-colored graphs and
graphs equipped with an edge-coloring is thus smaller than one might believe
at a first glance; in graphs equipped with an edge-coloring we, so to say, keep
track of edge-colors and non-edges, while in complete edge-colored graphs
we equate being a non-edge with having some particular color not appearing
elsewhere.

Another important point is that the results we will develop in this thesis
may be transferred to the case of undirected graphs. The easiest way to see
this is to note that we may always equip a graph G = (V,E) with a constant
edge-coloring σ, i.e. one that satisfies σ(e) = σ(f) for all e, f ∈ E. With
that edge-coloring, the discussion in the previous paragraph directly applies,
yet σ does not distinguish between edges any more than G itself does.

Example 2.9. The graph G = (V,E) in Figure 9 can be identified with the
edge-colored graph Σ = (V, σ) of Figure 6 by constructing σ such that

σ(e) =

{
if e ∈ E

otherwise

for each e ∈
(
V
2

)
. Visually, this means edges of G correspond to solid red

edges of Σ, while non-edges of G correspond to dotted blue edges of Σ.
If G is equipped with an edge-coloring map such as σ′′, depicted in

Figure 9 with solid red respectively dashed green edges, we can reinterpret
the pair (G, σ′′) as the edge-colored graph Σ′ = (V, σ′) of Figure 6. In that
case, σ satisfies

σ(e) =

{
σ′′(e) if e ∈ E

otherwise

for each e ∈
(
V
2

)
.

12

Figure 9: Examples of a graph G with no edge-colors (left) that can be
identified with the edge-colored graph Σ of Figure 6. If G is equipped with
an edge-coloring map σ′′ (right) then its reinterpretation as an edge-colored
graph is Σ′ of Figure 6. See text and, in particular, Example 2.9 for details.

It is worth reiterating that the definition of edge-colored graphs used in
this thesis thus includes both general (undirected) graphs and non-complete
graphs equipped with an edge-coloring. The definition is also essentially the
same as that of symmetric (labeled) 2-structures, and thus less general than
arbitrary 2-structures. The choice of the terminology is motivated by the
close connections to the work in [19, 21], where graphs (without edge-colors)
that can be explained by galled trees are characterized.

2.3 Galled trees

Many different types of phylogenetic trees and networks have been consid-
ered, adapting the definitions to the context of the research in question. See
[24] for an overview. We will follow the definitions of [19] quite closely, but
adapt some of the terminology to that of [21]. Given a nonempty set X, a
galled tree N (on X) is a directed acyclic graph (V,E) such that either

(N0) V = X = {x} and, therefore, E = ∅

or such that N satisfies the following properties:

(N1) N has a unique root denoted ρN such that indeg(ρN) = 0 and
outdeg(ρN) ≥ 2, and

(N2) x ∈ X if and only if indeg(x) = 1 and outdeg(x) = 0, and

(N3) every v ∈ V \X with v ̸= ρN is a

(a) tree vertex i.e. satisfies indeg(v) = 1 and outdeg(v) ≥ 2, or a

(b) hybrid vertex i.e. satisfies indeg(v) = 2 and outdeg(v) ≥ 1

and, lastly,

(N4) each biconnected component C of N has at most one hybrid vertex η
such that x ∈ V (C) for some vertex x with (x, η) ∈ E.

13

Figure 10: An example of a galled tree N (left) and a phylogenetic network
N ′ (right) that is not a galled tree, since it fails condition (N4).

Members of the set X are called the leaves of N , sometimes also denoted
L(N). The set V 0(N) := V \X contains the inner vertices of N . As noted in
[19] condition (N4) implies that the vertices of each non-trivial biconnected
component C of a galled tree can be divided into two directed paths P 1 and
P 2 which intersect only at their endpoints. Such a biconnected component
is called a cycle. The paths P 1 and P 2 are called the sides of the cycle C.
By definition, a cycle C will have a unique vertex ρC with in-degree zero
called its root, and a unique vertex ηC with out-degree zero called its hybrid
vertex. Cycles in galled trees are also known under the names galls [13] and
blocks [14]. Note also that (N4) is a property known as N being level-1 [19].

Example 2.10. We give an example of a galled tree N to the left in Fig-
ure 10. To avoid cluttering, the direction of the edges are not indicated with
arrows, instead the direction of each edge is always assumed to be from top
to bottom. Inner vertices are indicated with black dots, while leaves appear
at the end of edges without black dots. In particular, N has twelve leafs, 14
inner vertices and three cycles.

To the right in Figure 10 an acyclic directed graph N ′ = (V,E) is given.
N ′ has five leafs, namely L(N) = {a, b, c, d, e} and its inner vertices V 0 =
{ρ, x1, x2, x3, x4, u, v} consists of the root ρ, four tree vertices {x1, x2, x3, x4}
and two hybrid vertices. However, N ′ is not a galled tree since the subgraph
N ′[V 0] is a biconnected component that is not a cycle. In other words, N ′

is a directed acyclic graph that satisfies condition (N1), (N2) and (N3) with
respect to the set L(N), but fails condition (N4).

Let N = (V,E) be a galled tree. As usual in rooted directed acyclic
graphs, we say that v is a child of u while u is a parent of v, for each pair
of vertices u and v such that (u, v) ∈ E. A leaf x has, by definition, a
unique parent denoted parentN (x). If (u, v) ∈ E and v is a leaf, then v is
a leaf-child of u. If there is a directed path from u to v (possibly of length
zero) in N , then u is an ancestor of v while v is a descendent of u. We also

14

Figure 11: Galled tree that exemplify the notions of ancestors, descendants,
least common ancestors and related. See Example 2.11 for details.

denote this relationship by u ⪰N v. If u ⪰N v but u ̸= v, we write u ≻N v.
In particular, ⪰N is a partial order on V . We thus say that x, y ∈ V are
comparable if u ⪰N v or v ⪰N u, and incomparable otherwise. The latter is
occasionally denoted u ∥N v. We let ancestN (v) denote the set of ancestors
of a vertex v in N , that is,

ancestN (v) = {u ∈ V |u ⪰N v}.

For each subset of vertices W ⊆ V in a galled tree N = (V,E), there
is a unique vertex that is an ancestor of all vertices in W , and is minimal
with respect to ≻N among all vertices with that property [18, Lem. 7.9].
This vertex is called the least common ancestor of W , and it is denoted by
lcaN (W). For simplicity, we write lcaN (x, y) for lcaN ({x, y}). By definition,

lcaN (x, y) = min
⪰N

(ancestN (x) ∩ ancestN (y)) .

Note that least common ancestors are symmetric, i.e. lca(x, y) = lca(y, x).
If N is understood from context the subscripts are dropped and we write
only lca(x, y), ⪰, ≻, ∥, parent(v) and ancest(v).

Example 2.11. Consider the galled tree N = (V,E) on X = {a, b, c, d, e, f}
in Figure 11. In N , v is a child of u while u is a parent a and v. In particular,
a is a leaf-child of u. We also have that u is an ancestor of, among others,
a and b. In terms of the order ⪰N we, for example, have u ⪰N v ⪰N b.
Examples of least common ancestors include lca(a, e) = ρN , lca(b, c) = v
and lca(a, b) = lca(c, a) = u.

Given a vertex v in N , the subnetwork rooted at v, denoted N(v), is
obtained from the directed graph N [{x | v ⪰N x}] by suppressing any of its
vertices w such that indeg(w) = outdeg(w) = 1 and, if its new root v has
outdegree one, by deleting the vertex v and its incident edge, so that the
new root of N(v) is the child of v. Hence, for any v ∈ V , N(v) will be a
galled tree.

15

Figure 12: Examples of subnetworks of a given galled tree N (left). The
network N(v) is obtained from N [{x | v ⪰N x}] by suppression of the vertex
η (see top row), since η has both in- and outdegree one in N [{u | v ⪰N u}].
The network N(η) is obtained from N{x | η ⪰N x} by deletion of η (see
bottom row), since the root of N{x | η ⪰N x} has outdegree one.

Example 2.12. Consider the galled tree N in Figure 12, where the two
subnetworks N(u) and N(η) are depicted as well. To obtain N(v) from
N [{u | v ⪰N u}] one suppresses the vertex η, since both the in- and outdegree
of η in N [{u | v ⪰N u}] is one. Similarly, η is suppressed to obtain N(η)
from N [{u | η ⪰N u}], since η has outdegree one in the latter network. In
other words, N(η) = N(u), where η = parent(u).

A galled tree that has no hybrid vertices is a tree. An example of a tree
is a caterpillar tree, whose inner vertices consist of a single (directed) path
P 1 = v1v2 . . . vk (possibly k = 1) such that vi has a single leaf-child for
each i = 1, 2, . . . , k − 1 and such that vk has precisely two children, both
which are leafs. Additionally, a caterpillar tree will by definition be rooted
at the vertex v1. Any graph isomorphic to the subgraph of a caterpillar tree
induced by vk and its two children x and y is called a cherry. In that case,
the leaves x and y are said to be part of a cherry.

Example 2.13. A caterpillar tree T is given in Figure 13. In T , the sub-
network N(v5) is its cherry, while u5 and u6 are the leaves that are part of
a cherry. Another example of a caterpillar tree is the subnetwork N(η) of
Figure 12.

16

Figure 13: A caterpillar tree T . The leaves u5 and u6 are parts of its cherry
T (v5).

A cycle C with sides P 1 and P 2 is weak if either (i) P 1 or P 2 has no inner
vertex, or if (ii) P 1 and P 2 has precisely one inner vertex each. Weak cycles
satisfying (ii) are called balanced, those satisfying (i) are called unbalanced.
The edge from the root to the hybrid in an unbalanced weak cycle is called
a shortcut. Cycles that are not weak are called strong. A galled tree N is
strong (weak) if all its cycles are strong (weak). Note that trees vacuously
are both weak and strong galled trees.

We say that a galled tree N is elementary if (i) all its inner vertices
are contained in a single cycle C of N , (ii) no child of ρN is a leaf and if
(iii) each inner vertex v ̸= ρN has precisely one leaf-child. Note that an
elementary galled tree will have a unique hybrid vertex, namely, the unique
hybrid vertex of its underlying cycle. Moreover, by condition (i), ρC = ρN .
In an elementary galled tree with sides P 1 and P 2, a leaf x whose parent
lies on, say, P 1 is said to belong to P 1.

Example 2.14. We give three examples of elementary galled trees N , N ′

and N ′′ in Figure 14. The underlying cycle of N is unbalanced and weak,
while N ′ has a single balanced, weak cycle. The galled tree N ′′ is, on the
other hand, strong since its underlying cycle is so.

Figure 14 also depicts three galled trees G, G′ and G′′ that are not
elementary. G is not elementary since it is a tree – its inner vertices does
not induce a cycle. G′ is not elementary since one of its inner vertices has
more than one leaf-child, and G′′ is not elementary since its root has a leaf-
child. Note that G and G′ are weak galled trees, and that both G and G′′

are strong galled trees.
The galled tree N of Figure 12 constitutes an example of a galled tree

which is neither weak nor strong; it has both a (balanced) weak cycle and a
strong cycle.

A considerable part of section 3 will study elementary galled trees. We
now provide the following simple result for later reference.

17

Figure 14: Examples of elementary galled trees (top row) and galled trees
that are not elementary (bottom row).

Lemma 2.1. Let N be an elementary galled tree where v is the child of
its hybrid vertex. The following holds for each pair of distinct leaves x, y ∈
L(N):

• If parent(x) and parent(y) are comparable in N , then lca(x, y) =
max⪰N {parent(x), parent(y)}. In particular, lca(v, x) = parent(x) for
each leaf x ̸= v.

• If parent(x) and parent(y) are incomparable in N , then lca(x, y) = ρN .

Proof. Let N = (V,E) be an elementary galled tree whose underlying cycle
C has sides P 1 and P 2. Let η denote the unique hybrid vertex of N , so that
P 1 and P 2 are disjoint except for the root ρ and η. The unique leaf-child
of η is denoted with v. Denote the leaves that belong to P 1 by x1, x2, ...,
and xk and those that belong to P 2 by y1, y2, ..., and yl, where k and l are
nonnegative integers. Without loss of generality, assume

ρ ≻N parent(x1) ≻N parent(x2) ≻N . . . ≻N parent(xk) = η

ρ ≻N parent(y1) ≻N parent(y2) ≻N . . . ≻N parent(yl) = η.
(1)

By definition of v we thus have that v = xk = yl. A direct consequence of
the elementary structure of N and (1) is that for any two leaves x and y,
their respective parents are comparable (with respect to ⪰N) if and only if
x and y belong to the same side of C.

A second implication of (1) and the elementary nature of N is that the
set of ancestors of any leaf is easily described; we have

ancest(xi) = {parent(xi), parent(xi−1), . . . ,parent(x1), ρ} (2)

18

for each i ∈ {1, . . . , k − 1}, and furthermore

ancest(yi) = {parent(yi), parent(yi−1), . . . ,parent(y1), ρ} (3)

for each i ∈ {1, . . . , l − 1}. For v, we have

ancest(v) = V 0(N). (4)

To prove the first statement, suppose x and y are leaves such that their
respective parents are comparable in N . As discussed earlier, this happens
only if x and y belong to the same side of C. By symmetry, we may without
loss of generality assume that x = xi for some i = 1, . . . , k − 1 and y = xj
for some j = i+ 1, . . . , k. By (2) and possibly (4) (the latter if j = k), the
set of common ancestors of xi and xj equals

ancest(xi) ∩ ancest(xj) = ancest(xi).

Taken together with (1), lca(xi, xj) = parent(xi) follows. In particular,
lca(xi, v) = parent(xi) holds for each i ∈ {1, . . . , k − 1}, since v = xk.

For the second statement, assume x and y are leaves such that parent(x)
and parent(y) are incomparable in N . Thus x and y belong to different sides
of C, in particular v /∈ {x, y}, since v belong to both P 1 and P 2. Hence (2)
and (3) implies the set of common ancestors of x and y equals

ancest(x) ∩ ancest(y) = {ρ},

from which lca(x, y) = ρ follows immediately.

We will consider labeled galled trees, that is, a galled tree N = (V,E) on
X equipped with a (vertex-)labeling t : V → Υ. The label set Υ is assumed
to contain the element ⊙, and we assume t(x) = ⊙ if and only if x ∈ X.
This is, however, only a subtle technicality meant to deal with the case when
|V | = 1, and will not be of any importance in non-trivial cases. When we
state that (N, t) is a galled tree, we implicitly assume t to be a labeling of
N . Since the least common ancestor of two leaves is uniquely determined,
we may define G(N, t) to be the edge-colored graph with vertex set X such
that its coloring map σ satisfies σ(xy) = t(lca(x, y)) for each pair of distinct
vertices x, y ∈ X. An edge-colored graph Σ is said to be explained by (N, t)
if Σ ≃ G(N, t). As a special case, Σ is caterpillar-explainable if Σ ≃ G(N, t)
for a caterpillar tree N .

Example 2.15. We provide a first example of a labeled galled tree (N, t)
in Figure 15, alongside the edge-colored graph (V, σ) := G(N, t). For exam-
ple, the edge between vertices a and e in Σ is colored (dotted) blue, since
t(lcaN (a, e)) = t(ρ) = . Similarly, t(lcaN (c, f)) = t(parent(f)) = implies
that the edge {c, f} is mapped to the (dashed) green edge-color by σ.

19

Figure 15: A labeled galled tree (N, t) and the graph G(N, t) it explains.
The legend indicates which labels of N corresponds to what edge colors of
G(N, t).

Remark 2.1. All figures that depict labeled galled trees are drawn “top
down”, i.e. the edges’ direction are from the top-most vertex to the lower
vertex. Furthermore, the ⊙-labels of its leaves are omitted. Most often,
three or four distinct labels suffices in examples, and these are indicated
with the labels , , and . In connection to edge-colors, these labels
corresponds to solid red edges, blue dotted edges, dashed green edges and
dash-dotted yellow edges, respectively (as shown in the legend in Figure 15).
Lastly, the label of hybrid vertices is often not of importance and is thus
omitted in some figures; a statement that will be made more precise in
Observation 2.1.

A galled tree (N, t) is discriminating if, for all adjacent inner vertices u
and v, we have t(u) ̸= t(v). If t(u) ̸= t(v) for all adjacent tree vertices u and
v of N , then (N, t) is quasi-discriminating. Tree vertices are inner vertices,
hence all discriminating galled trees are quasi-discriminating, but not vice
versa. However, since trees have no hybrid vertices any quasi-discriminating
tree (T, t) is, in fact, discriminating.

Example 2.16. Three galled trees (N, t), (N ′, t′), and (N ′′, t′′) are given in
Figure 16, together with the respective edge-colored graph they explain:
G(N, t), G(N ′, t′), and G(N ′′, t′′). One easily verifies that (N, t) is not
quasi-discriminating (and thus not discriminating), while (N ′, t′) is quasi-
discriminating. The galled tree (N ′′, t′′) is discriminating.

Although tedious, one may verify that G(N, t) = G(N ′, t′). On the other
hand, G(N ′′, t′′) ̸= G(N, t), as seen by comparing the color of the edge {e, f}.
Although slightly more complicated to verify formally, it is in fact true that
G(N ′′, t′′) ̸≃ G(N, t). This hints at the importance of specifying wether
a galled tree is (quasi-)discriminating or not; loosely speaking, (N ′′, t′′) is

20

Figure 16: Three galled trees (top row) and the edge-colored graphs they
explain (bottom row). See Example 2.16 for details.

obtained from (N, t) by contracting edges whose endpoints are labeled iden-
tically, creating a discriminating ‘version’ of (N, t). But after that process,
the two galled trees do not explain the same graph. In contrast, (N ′, t) can
be thought of as being constructed from (N, t) by contracting edges with
equal labels on their endpoints, as long as none of the endpoints are hybrid
vertices. This only ensures a quasi-discriminating galled tree, but on the
other hand, the galled tree that is obtained still explain the same graph.

On a related note, one may observe that there is no vertex x ∈ L(N)
such that lcaN (g, x) = parent(g), nor any x ∈ L(N) such that lcaN (b, x) =
parent(b). Hence the labels of parent(g) and parent(b) –– the hybrid vertices
ofN –– are, so to speak, superfluous information whilst constructing G(N, t).
This is the reason why we in some places, such as Figure 15, omit the labels
of hybrid vertices. Again, we will formalize this further in Observation 2.1.

For a more in-depth discussion about the vaguely introduced concept of
edge-contractions in labeled galled trees appearing in Example 2.16, see [19,
Sec. 8]. Results in that direction for edge-colored graphs is, unfortunately,
out of the scope of this paper but nevertheless worth mentioning.

21

In Section 4 we will consider when there is a “unique” galled tree that
explain a primitive edge-colored graph. We now want to make the concept of
uniqueness more precise, since isomorphims as directed graphs is insufficient.
Adapting from [22], we say that two (labeled) galled trees (N, t) and (N ′, t′)
are isomorphic if L(N) = L(N ′) and there exist an isomorphism φ of N and
N ′ (as directed graphs) such that φ(v) = v for every v ∈ L(N). Furthermore,
φ must satisfy

t(v) = t(u) ⇐⇒ t′(φ(v)) = t′(φ(u))

for all v, u ∈ V 0
lca(N). Here V 0

lca(N) denotes the set of all vertices v ∈ V (N)
for which there exist leaves x, y ∈ L(N) such that v = lcaN (x, y). As leaves
are never the least common ancestor of any two leafs, we will have V 0

lca(N) ⊆
V 0(N) for all galled trees N . It is also noteworthy that any isomorphism
φ of N and N ′ will satisfy φ(ρN) = ρN ′ , since ρN and ρN ′ are the only
respective vertex with in-degree zero. In symbols we write (N, t) ≃ (N ′, t′)
for isomorphic galled trees (N, t) and (N ′, t′). Furthermore, if (N, t) is stated
to be unique with respect to satisfying some property P, then we mean that
a galled tree (N ′, t′) satisfies P if and only if (N, t) ≃ (N ′, t′). The definition
of isomorphism of labeled galled trees is motivated by the following lemma.

Lemma 2.2. If (N, t) and (N ′, t′) are labeled galled trees such that (N, t) ≃
(N ′, t′), then the identity map is an isomorphism of G(N, t) and G(N ′, t′).

Proof. Let φ be an isomorphism of the galled trees (N, t) and (N ′, t′). Since
V := V (G(N, t)) = L(N) = L(N ′) = V (G(N ′, t′)), the identity map on(
V
2

)
is indeed a bijective function that maps each edge of G(N, t) to an

edge of G(N ′, t′). Denote the edge-coloring of G(N, t) and G(N ′, t′) by σ
respectively σ′, so that G(N, t) = (V, σ) and G(N ′, t′) = (V, σ′). Note
that σ({x, y}) = σ({u, v}) for edges {x, y}, {u, v} ∈

(
V
2

)
if and only if

t(lcaN (x, y)) = t(lcaN (u, v)), by definition of G(N, t). Furthermore, by
definition of the isomorphism φ we have t(lcaN (x, y)) = t(lcaN (u, v)) if
and only if t′(φ(lcaN (x, y))) = t′(φ(lcaN (u, v))). Since φ is an isomor-
phism of N and N ′ as directed graphs and φ fixates all leaves we have
t′(φ(lcaN (x, y))) = t′(φ(lcaN (u, v))) if and only if

t′(lcaN ′(x, y)) = t′(lcaN ′(φ(x), φ(y)))

= t′(lcaN ′(φ(u), φ(v))) = t′(lcaN ′(u, v)).

Lastly, by definition of G(N ′, t′) we have t′(lcaN ′(x, y)) = t′(lcaN ′(u, v)) if
and only if σ′({x, y}) = σ′({u, v}). We have thus shown that

σ({x, y}) = σ({u, v}) ⇐⇒ σ′({x, y}) = σ′({u, v})

for all {x, y}, {u, v} ∈
(
V
2

)
. That is, G(N, t) and G(N ′, t′) are isomorphic via

the identity map.

22

Figure 17: Example where G(N, t) ≃ G(N ′, t′), although (N, t) ̸≃ (N ′, t′).

Although (N, t) ≃ (N ′, t′) implies G(N, t) ≃ G(N ′, t′), the reverse impli-
cation need not hold. An example is in place.

Example 2.17. Consider the two galled trees (N, t), (N ′, t′) and the re-
spective edge-colored graph they explain in Figure 17. It is not complicated
to see that G(N, t) and G(N ′, t′) are isomorphic; in fact, the identity map
on

(
V
2

)
for V = {x, v, y1, y2} is an explicit isomorphism. However, although

there is an isomorphism φ : N → N ′ of N and N ′ as directed graphs, such
a map must necessarily satisfy φ(v) = y2. Hence no isomorphism of N and
N ′ may be extended to an isomorphism of (N, t) and (N ′, t′).

We have already mentioned that the label of certain hybrid vertices is,
at times, redundant. A more precise statement is the following.

Observation 2.1. As a direct consequence of Lemma 2.1 we have that if
(N, t) is an elementary galled tree with hybrid vertex η, then V 0

lca(N) =
V 0(N) \ {η}.

Now that we have introduced labeled galled trees, we can also motivate
why weak cycles are called weak, in the following lemma. A stronger, but
highly related statement is given in [19, Lemma 5.4].

Lemma 2.3. Let (N, t) be an elementary galled tree with underlying cycle
C. If one of the following two conditions is satisfied

• C is an unbalanced weak cycle, or

• C is a balanced weak cycle and G(N, t) has at most two edge-colors

then there is a tree (T ′, t′) such that G(T ′, t′) = G(N, t).

Proof. First assume C is an unbalanced weak cycle of the elementary galled
tree (N, t). That is, C contains the shortcut (ρ, η), where ρ is the root
of C (and indeed of N) and η is its unique hybrid vertex. By definition
of elementary, ρ has two children. One of them is η, and we denote the
other with v. Neither child is a leaf, since N is elementary. Consider the
subnetwork (N ′, t′) := N(v), which clearly is a tree. Since ρ is the only

23

vertex of N that either precedes v or is incomparable to v with respect to
⪰N , we have L(N(v)) = L(N). Moreover, there are only two vertices that
appear in N but not in N ′: ρ and η, the former since ρ ≻N v and the latter
since η is suppressed in N(v). By Lemma 2.1 there are no two leaves x and
y of N such that lcaN (x, y) ∈ {ρ, η}. Thus lcaN (x, y) = lcaN ′(x, y) for all
leaves x and y, from which G(N ′, t′) = G(N, t) follows.

Secondly, assume C is a balanced weak cycle such that G(N, t) has at
most two edge-colors. Then N has four inner vertices denoted ρ, x′, y′ and
η. The cycle C has four edges: (ρ, x′), (ρ, y′), (x′, η) and (y′, η). Moreover,
N has three leafs: x as a child of x′, z as a child of η and y as a child of y′.
We now enumerate all possible labelings t of N where G(N, t) has at most
two edge-colors. Note that since there are no two leaves u and v such that
lca(u, v) = η, the label of η is irrelevant. We may, for argument’s sake, fix
the label of ρ, say t(ρ) = . We only have three possibilities for the labels
t(x′) and t(y′), corresponding to four galled trees:

(i) Both x′ and y′ have the same label as ρ i.e. t(x′) = t(y′) = .

(ii) Neither x′ nor y′ have the same label as ρ i.e. t(x′) = t(y′) = ̸= .

Precisely one of x′ and y′ has the same label as ρ i.e.

(iii) t(x′) = ̸= = t(y′) or

(iv) t(x′) = ̸= = t(y′).

We depict the four possible labeled galled trees (N, t(i)), (N, t(ii)), (N, t(iii)),
and (N, t(iv)) in Figure 18, alongside the respective edge-colored graph they
explain. Figure 18 also depicts a tree (T(ℓ), t

′
(ℓ)) for each ℓ ∈ {i, ii, iii, iv}

such that G(T(ℓ), t
′
(ℓ)) = G(N, t(ℓ)). In other words, if C is a balanced weak

cycle and G(N, t) has two edge-colors, then there exist a tree (T ′, t′) such
that G(T ′, t′) = G(N, t).

2.4 Modules and modular decomposition

The central definition of this section is that of a module of an edge-colored
graph Σ = (V, σ): it is a subset M ⊆ V such that for all x, y ∈ M and
all z /∈ M we have σ(xz) = σ(yz). In other words, for each z /∈ M there
is a single color k such that for every x ∈ M we have σ(xz) = k. Note,
however, that we might still have σ(zx) ̸= σ(z′x) for some x ∈ M and
distinct z, z′ /∈M .

Example 2.18. Consider the edge-colored graph Σ = (V, σ) in Figure 19.
Clearly,

Σ = Σ[{a, b, c}]⊗ Σ[{d, e, f, g}],

24

Figure 18: The top row depicts all possible elementary galled trees (N, t)
such that its underlying weak cycle is balanced and G(N, t) has at most
two edge-colors. The middle row depicts the respective edge-colored graph
the galled tree above explains. The bottom row depicts trees that explain
the edge-colored graph above it. In other words, for each galled tree (N, t)
in the top row, there exists a tree (T, t′) such that G(N, t) = G(T, t′), see
Lemma 2.3.

so we have σ(xy) = σ(x′y′) for every set of vertices such that x, x′ ∈ {a, b, c}
and y, y′ ∈ {d, e, f, g}. Hence both {a, b, c} and {d, e, f, g} are modules of
Σ. The sets {a, b}, {d, e} and {d, e, f} may also be verified to be modules.
The set {e, f} is not a module, since σ(d, e) = ̸= = σ(d, f).

Modules in 2-structures where introduced under the name clans in [8].
We use the word module to emphasize the underlying connection to the
more graph theoretic notion of a module, as in e.g. [22]. Modules are also
known as clumps [2], autonomous sets [27], and stable sets [28], to only
mention a few. Note that in any edge-colored graph Σ = (V, σ), the empty
set, all of V and the singleton sets {v} for v ∈ V always are modules.
These modules are called trivial, and all other modules nontrivial. To avoid
technicalities, we assume all modules in this contribution are nonempty,
unless otherwise stated. We let M(Σ) denote the set of all modules of Σ. If
M(Σ) consists of trivial modules only, then Σ is a primitive (edge-colored)
graph. In particular all edge-colored graphs on one or two vertices are
primitive.

Two modules M and M ′ are said to overlap if they have a nonempty
intersection and one is not contained in the other, that is, if M ∩ M ′ /∈
{∅,M,M ′}. A module M is strong if M does not overlap with any other
module. We let Mstr(Σ) ⊆ M(Σ) denote the set of strong modules of an
edge-colored graph Σ. Since the trivial modules of Σ are strong, we have
Mstr(Σ) ̸= ∅.

25

Figure 19: An edge-colored graph Σ (left) with its modular decomposition
tree (TΣ, τΣ) (right).

Example 2.19. For the edge-colored graph Σ = (V, σ) of Figure 19, one
may verify that Mstr(Σ) contains precisely the trivial modules of Σ, together
with the modules {a, b, c}, {d, e, f, g} and {d, e}. Σ has many other modules,
for example the module {d, e, f} is not strong, since it overlaps with the
module {f, g}; we have {d, e, f} ∩ {f, g} = {f}.

A strong module M of an edge-colored graph Σ is called k-series if
there exist a partition {M ′,M ′′} of M such that Σ[M] = Σ[M ′]⊗k Σ[M

′′].
Although the partition {M ′,M ′′} is not necessarily unique, the color k is.

Lemma 2.4. If M is a k-series module and a k′-series module, then k = k′.

Proof. Let Σ = (V, σ) be an edge-colored graph and suppose M is a module
of Σ that is simultaneously k-series and k′-series. Let {X,X ′} and {Y, Y ′}
be partitions of M such that

Σ[M] = Σ[X]⊗k Σ[X
′] (5)

= Σ[Y]⊗k′ Σ[Y
′]. (6)

First consider the case where X ∩ Y = ∅. Then we must have X ⊆ Y ′ and
Y ⊆ X ′, since M = X∪X ′ = Y ∪Y ′. For any x ∈ X and any y ∈ Y we thus
have σ(xy) = k by (5) and σ(xy) = k′ by (6). Symmetric arguments can be
made for the case when X ′ ∩ Y ′ = ∅. We may thus assume the existence of
x ∈ X ∩ Y and y ∈ X ′ ∩ Y ′. But then, again, (5) ensures that σ(xy) = k
and (6) that σ(xy) = k′. Therefore, k = k′.

Clearly, there may not be any color k such that a given strong module is
k-series (consider, for example, singleton modules). If so, then the module
in question is called prime.

In what follows, let Σ = (V, σ) be an arbitrary edge-colored graph with
edge-colors Υ. The set Mstr(Σ) of strong modules may be represented

26

uniquely by a tree TΣ, known as the modular decomposition tree (MDT)
of Σ, constructed as follows [22]. TΣ is the tree with vertex set Mstr(Σ)
and edges (M,M ′) for each M,M ′ ∈ Mstr(Σ) such that M ′ ⊊ M and such
that there is no X ∈ Mstr(Σ) with M ′ ⊊ X ⊊ M . The root of TΣ is, by
definition, the vertex V . By construction, we will in particular have that
L(TΣ) consists of the singleton subsets of V , and we can thus identify the
leaves of TΣ with the vertices of Σ.

The tree TΣ encodes the structure of the strong modules of Σ with respect
to (non-)inclusion. Even more can be said when equipping TΣ with the
following labeling τΣ : Mstr(Σ)→ Υ ∪ {Prime,⊙}, defined by

τΣ(M) =


k if M is k-series

Prime if |M | > 1 and M is prime

⊙ otherwise i.e. if |M | = 1.

Note that τΣ is well-defined by Lemma 2.4. The pair (TΣ, τΣ) at least par-
tially explains the underlying graph Σ, in the sense that if τΣ(lcaTΣ(x, y)) =
k ̸= Prime for two distinct x, y ∈ V then we have σ(x, y) = k. If, on the
other hand, τΣ(lcaTΣ(x, y)) = Prime, then TΣ reveal no information about
the color of the edge {x, y}. In other words, the pair (TΣ, τΣ) is a labeled
tree in the sense of Section 2.3 if and only if there is no internal node v
of TΣ such that τΣ(v) = Prime. In that case, G(TΣ, τΣ) = Σ. If, on the
other hand, there is some v such that τΣ(v) = Prime, then τΣ is not a valid
labeling of TΣ, so that G(TΣ, τΣ) is undefined.

The modular decomposition tree and its canonical labeling is rarely
straightforward to compute by hand, but it can be computed in O(n2) time
for an edge-colored graph with n vertices [10]. For graphs without edge-
colors (that is, edge-colored with two colors), computation of the MDT is
even faster, namely with a time complexity of O(n +m) for graphs with n
vertices and m edges. Several such algorithms exist: see e.g. [5, 26, 29]. For
an overview on the topic of computing modular decomposition, see [15].

Example 2.20. Consider Figure 20, in which an edge-colored graph Σ =
(V, σ) is given. Its MDT T := TΣ with labeling τ := τΣ is depicted much like
the galled trees, except Prime-labels are indicated with a circled P. Note
that for each strong module M in

Mstr(Σ) = {{a}, {b}, . . . , {h}, {a, b, c}, {e, f, g, h}, {d, e, f, g, h}, V } ,

there exist a corresponding vertex v of T such that M consists of the leaves
which are a descendent of (or equal to) the vertex v. As seen by inspect-
ing the subgraphs Σ[M] for each M ∈ Mstr, Σ contains both non-trivial
prime modules ({a, b, c} and {e, f, g, h}) and k-series modules. More pre-
cisely, {d, e, f, g, h} is a -series module while V is a -series module. An-
other point worth noting is that (T , τ) contains no -labels even though e.g.

27

Figure 20: An edge-colored graph Σ (left) alongside its MDT (right). In
contrast to the edge-colored graph in Figure 19, Σ contains both non-trivial
prime modules as well as two k-series modules.

σ(bc) = . It is thus evident that Σ cannot be reconstructed solely from the
information in (T , τ).

For an example of an edge-colored graphs whose MDT contains no
Prime-labeled vertices, see Figure 19.

At this point it is worth recalling that this thesis aims at providing crucial
results needed to characterize which edge-colored graphs can be explained by
galled trees. Since trees are galled trees, partial results are already available.
To be more precise, it is obvious that if (TΣ, τΣ) contains no Prime-labeled
inner vertices (a condition equivalent to Σ having no non-trivial prime mod-
ules), then there is a tree that explains Σ –– namely (TΣ, τΣ) itself. In the
context of MDTs with no Prime-labeled vertices, a class of particularly in-
teresting graphs are the uniformly non-primitive (unp) edge-colored graphs,
that is, edge-colored graphs that has no (induced) primitive subgraph with
three or more vertices.

Another important line of research in connection to this thesis is the
study of cographs, a class of graphs (with no edge-colors) that can be char-
acterized in many ways (see e.g. [22, Thm. 2.3]); for us it suffices to know
that a cograph is a graph (without edge-colors) that contain no induced P4

[4]. They are of some importance for us, since they are the only graphs
without edge-colors that can be explained by a tree1.

Before summarizing existing results on edge-colored graphs that can be
explained by trees, we also need to introduce a small yet significant edge-
colored graph: the rainbow triangle. It is an edge-colored graph on three
vertices where its three edges are distinctly colored. With that, we formulate
the following theorem.

1Technically speaking, we have not introduced the concept of trees that explain graphs
without edge-colors, although it is done completely analogous to Section 2.3. To be formal,
we can instead state that the cographs are the only graphs whose reinterpretation as an
edge-colored graph with two colors can be explained by a tree.

28

Theorem 2.5. Let Σ be an edge-colored graph. The following statements
are equivalent.

(1) Σ is explained by a tree.

(2) Mstr(Σ) contains no non-trivial prime modules.

(3) (TΣ, τΣ) contains no Prime-labeled inner vertices and thus explains Σ.

(4) Σ is unp.

(5) Σ has no primitive (induced) subgraph with three or four vertices.

(6) Σ satisfies both

(a) For each edge-color k, the monochromatic subgraph Σ|k is a co-
graph, and

(b) Σ contains no rainbow triangle.

Proof. For (1) =⇒ (2), let (T, t) be a tree and consider the edge-colored
graph (V, σ) := G(T, t). Suppose it contains a nontrivial strong module M ,
that is, a module such that 1 < |M | < |V |. Let v be the least common
ancestor of the vertices of M . If v has a leaf-child x that is contained in
M , then put M ′ = {x}. Otherwise, let M ′ = L(N(u)) ∩M for some child
u of v such that L(N(u)) ∩M ̸= ∅. Lastly, put M ′′ = M \M ′. Note that
M ′,M ′′ ̸= ∅ and that, by construction

σ(xy) = t(lcaT (x, y)) = t(v) = t(lcaT (x
′, y′)) = σ(x′y′)

for all x, x′ ∈M ′ and all y, y′ ∈M ′′. In other words, M is a k-series module,
where k = t(v). Hence M is not a prime module, and since M was chosen
arbitrarily, condition (2) holds. Clearly, (2) =⇒ (3) =⇒ (1) follows
directly from the respective definitions. The equivalences of statements (3)
through (5) is provided in [11, Thm. 3.6], where the equivalences are proved
for general 2-structures (for which edge-colored graphs are a special case).
Similarly, the equivalence (5) ⇐⇒ (6) is provided for 2-structures in [22,
Thm. 3].

With Theorem 2.5 in mind, we can thus conclude that the edge-colored
graph in Figure 19 is unp, since it is explained by its MDT. On the other
hand, the edge-colored graph Σ in Figure 20 is not unp, since its MDT
contains Prime-labeled inner vertices.

For later reference, we now consider edge-colored graphs on three ver-
tices. There are, up to isomorphism, precisely three possibilities: rainbow
triangles, graphs with the three edges in the same color and, lastly, graphs
with two edges in one color and the third edge in a second color. We wish to
investigate these three (isomorphism classes) of edge-colored graphs closer.

29

First, let Σ = (V, σ) be a rainbow triangle. Since each of its vertices is
incident to two distinctly colored edges it has no non-trivial modules and is
thus a primitive graph. By Theorem 2.5 this means that there is no tree that
explains Σ. Moreover, since V is a prime module, the MDT of Σ consists of a
root labeled Prime with three leaf-children. However, as seen in Figure 21,
there exist a (elementary) galled trees that explains Σ.

Secondly, if Σ′ = (V, σ′) is an edge-colored graph on three vertices that
satisfies σ′(xy) = k for each distinct x, y ∈ V and some fixed color k, then
any subset of V is a module, which implies that only the trivial modules are
strong. Hence TΣ′ consists of a root with three leaf-children, just like the
MDT of a rainbow triangle. However, V is a k-series module, so τΣ′ labels
the root of TΣ′ with the color k. That is, (TΣ′ , τΣ′) explains Σ′.

Lastly, let Σ′′ = (V, σ′′) be an edge-colored graph on three vertices a, b
and c that satisfies σ′′(ab) = σ′′(ac) = k and σ(bc) = l ̸= k for two colors k
and l. One may verify that (TΣ′′ , τΣ′′) (1) has a root labeled k, (2) the root
has two children: the leaf a and an internal vertex labeled l, and (3) that
internal vertex has two leaf-children, namely b and c. The tree (TΣ′′ , τΣ′′)
explains Σ′′. See Figure 21 for the respective MDTs of Σ′ and Σ′′.

Since edge-colored graphs with only one or two vertices easily are verified
to be explained by their respective MDT, one conclusion here is that a
rainbow triangle is the smallest edge-colored graph that is not explained
by a tree. It is also the smallest non-trivial primitive edge-colored graph.
We collect the discussion about small edge-colored graphs in the following
observation.

Figure 21: The three possible edge-colored graphs on three vertices are given
in the top row. The bottom row depicts three (galled) trees that explain
the corresponding edge-colored graph above it. Note in particular that the
middle and rightmost edge-colored graphs are explained by their respective
MDT, which coincides with the given trees.

30

Observation 2.2. The smallest edge-colored graph that is not explained
by a tree but by a galled tree is the rainbow triangle. In other words, every
other edge-colored graph with at most three vertices is explained by a tree.
Moreover, rainbow triangles are primitive edge-colored graphs, and there
are no other edge-colored graphs with three vertices that are primitive.

To reconnect to the main topic of this section there are, so to speak,
two ’extremes’ when it comes to how much information of the underlying
edge-colored graph that can be reestablished from its MDT. On one hand,
unp edge-colored graphs are explained by their MDT. On the other hand, we
have primitive graphs. The trivial primitive graphs on one and two vertices
are admittedly explained by their MDT, but for primitive graphs with at
least three edge colors the MDT will, by definition, consist of a root with leaf-
children only. Moreover, its root will always be Prime-labeled since if not,
then every edge of the graph would have the same color, which contradicts
the primitivity. Hence for these graphs, one can not reestablish any edge’s
color by inspecting the MDT. Not all edge-colored graphs are covered by
these two cases, of course; see for example the edge-colored graph Figure 20,
which is neither primitive nor unp. Since each edge-colored graph that is not
unp contains some primitive subgraph with at least three vertices, we are
motivated to study which primitive edge-colored graphs can be explained
by a galled tree.

31

3 Galled trees and primitive edge-colored graphs

Recall that an edge-colored graph is primitive if it has only one or two ver-
tices, or if its MDT has a Prime-labeled root with leaf-children only. Since
primitive graphs in general are not explained by their MDT –– in fact by
no tree –– it would be helpful to instead explain them with the more gen-
eralized notion of galled trees. Hence the goal of this section is to establish
a characterization of primitive edge-colored graphs that can be explained
by galled trees. In the first subsection, we introduce so-called polar-cats,
state the main theorem and aim at giving an intuitive understanding of its
proof. We then provide a plethora of structural results and combine these
to a proof of the characterization.

3.1 Definition, examples and main statement

We begin by considering labeled, elementary and quasi-discriminating galled
trees. What type of edge-colored graph do they explain? How can we
characterize these graphs? Although not trees, elementary galled trees have
a lot of ‘local’ structure that resembles caterpillar trees. As we will see,
this means that the edge-colored graphs they explain can, so to say, be
split into two parts that have a very particular structure. Additionally,
these edge-colored graphs are, vaguely speaking, primitive yet almost unp; a
single vertex makes the difference. To be precise, we introduce the following
definition.

Definition 3.1. We say that an edge-colored graph Σ = (V, σ) is a polar-cat
if there exists a vertex v ∈ V and two induced subgraphs Ω1 = (W1, ω1) and
Ω2 = (W2, ω2) of Σ such that

(i) |W1| ≥ 2, |W2| ≥ 2, W1 ∪W2 = V and W1 ∩W2 = {v}

(ii) Σ− v = (Ω1 − v)⊗k (Ω2 − v) for some color k.

(iii) For i ∈ {1, 2}, Ωi can be explained by a labeled discriminating cater-
pillar tree (Ti, ti) such that

(a) v is part of its cherry, and such that

(b) ti(ρTi) ̸= k.

In that case, we also say that Σ is a (v,Ω1,Ω2)-polar-cat. The color k is
called its join-color.

The concept of polar-cats was introduced in [19] in the context of graphs
(without edge-colors) explained by galled trees, and the definition above is
a direct generalization to edge-colored graphs. The name polar-cat stems
from the subgraphs being polarizing, i.e. the requirement of ti(ρTi) ̸= k,
and caterpillar-explainable.

32

Example 3.1. Consider the edge-colored graph Σ = (V, σ) in Figure 22.
We will verify that Σ is a (c,Ω1,Ω2)-polar-cat for Ω1 := Σ[{a, b, c}] and
Ω2 := Σ[{c, d, e, f}]. By definition, it holds that |V (Ω1)| = 3 ≥ 2, |V (Ω2)| =
4 ≥ 2, V = V (Ω1)∪V (Ω2) and V (Ω1)∩V (Ω2) = {c}, so condition (i) holds.

For condition (ii), it is easy to verify that

Σ− c = (Ω1 − c)⊗ (Ω2 − c),

see Figure 22. That is, the join-color of Σ is . The figure also provides two
caterpillar trees (T1, t1) and (T2, t2) –– it is left to the reader to verify that
they explain Ω1 and Ω2, respectively. Note that c is part of the cherry of
both T1 and T2, so (iii)(a) is satisfied. Moreover,

t1(ρT1) = ̸= and t2(ρT2) = ̸= ,

which verifies (iii)(b). Altogether, conditions (i)-(iii) are satisfies, so Σ is
indeed a polar-cat.

For later reference we note the following.

Observation 3.1. By condition (i) of Definition 3.1 a polar-cat must have at
least three vertices. Considering the same three possible edge-colored graphs
on three vertices as in Observation 2.2, one notes that a rainbow triangle Σ =
(V, σ) with V = {a, b, c} is, for example, an (a,Σ[{a, b}],Σ[{a, c}])-polar-cat.
Moreover, neither of the other two (isomorphism classes of) edge-colored
graphs are polar-cats, since any choice of the vertex v and the subgraphs Ω1

and Ω2 will fail condition (iii)(b).

We now state the main result of this section, although we leave the proof
for later.

Theorem 3.2. Let Σ be an edge-colored graph. The following statements
are equivalent.

(a) Σ is either a rainbow triangle or is explained by a strong elementary
and quasi-discriminating galled tree.

(b) Σ is a polar-cat.

(c) Σ is primitive, has at least three vertices and is explained by a galled
tree.

For the reader’s convenience, we recall that an elementary galled tree
has precisely one underlying cycle, where each internal node excluding the
root has precisely one leaf-child. It is strong whenever that cycle is strong
i.e. both sides have at least one inner vertex and at most one side has only
one inner vertices. A galled tree is quasi-discriminating if adjacent internal
vertices, except possibly hybrid vertices, are labeled distinctly.

33

Figure 22: We provide an edge-colored graph Σ which is a (c,Ω1,Ω2)-polar-
cat, where Ω1 = Σ[{a, b, c}] and Ω2 = Σ[{c, d, e, f}]. The subgraphs Ω1, Ω2

and Σ−c are also depicted. Moreover the trees (T1, t1) and (T2, t2) are given
alongside the respective subgraph they explain.

34

It is worth emphasizing that Theorem 3.2 is best thought of as a char-
acterization of primitive graphs that can be explained by a galled tree; the
structure of polar-cats is most important in connection to the theorem’s
first statement. In fact, it is not too hard to get an intuitive understanding
of why the first two statements are equivalent: we outline the ideas in the
following example.

Example 3.2. Again consider the polar-cat Σ in Figure 22 and Example 3.1.
In Figure 23 we show how the trees (T1, t1) and (T2, t2) can be turned into
an elementary galled tree. First the two trees are joined under a common
root, which is labeled with the join-color of Σ. Secondly the two different
occurrences of the leaf c, which appear in the cherry of the respective tree,
are merged and brought under a common hybrid vertex. The resulting
elementary galled tree (N, t) will explain Σ, since (N, t), loosely speaking,
inherits a lot of ’local’ structure from (T1, t1) and (T2, t2). More precisely,
we for example have that lcaT (x, y) = lcaTi(x, y) for each pair of distinct
x, y ∈ V (Ωi) \ {c} (for both i = 1 and i = 2). The other technical aspects
of the definition of polar-cats can also be motivated, for example (N, t) is
quasi-discriminating since both (T1, t1) and (T2, t2) are discriminating and,
additionally, the roots of these trees are labeled differently from the root of
(N, t) (ensured by condition (iii)(b)).

Conversely, say an elementary galled tree (N, t) such as the one in Fig-
ure 23 is given. It explains some edge-colored graph Σ (namely, Σ in Fig-
ure 22) that can be shown to be a polar-cat. The subgraphs Ω1 and Ω2 are
defined as the subgraphs of Σ induced by the leaf-children of the left and
right sides of the underlying cycle of N , respectively. The caterpillar trees
that explain Ω1 and Ω2 can then be constructed by the reverse procedure
of the previous paragraph, and the join-color will be the label of the root of
N .

The ideas presented above will be formalized in Lemma 3.3, Defini-
tion 3.4 and Lemma 3.5. To prove that an edge-colored graph is a polar-cat
if and only if it is primitive and explained by a galled tree, we will need to
focus on how modules are and are not exhibited in galled trees. This is done
in Lemma 3.6 and Lemma 3.7.

3.2 Proof of Theorem 3.2 and related results

In this section we introduce and prove a handful of lemmas, culminating in
the proof of Theorem 3.2. We begin with the following.

Lemma 3.3. If (N, t) is a strong elementary and quasi-discriminating galled
tree, then G(N, t) is a polar-cat. In particular, G(N, t) is a (v,Ω1,Ω2)-polar-
cat, where v is the child of the hybrid vertex of N , and the subgraphs Ω1 and
Ω2 are the the induced subgraphs on the leaves belonging to the two respective
sides of the underlying cycle of N .

35

Figure 23: A visualization of the principal idea for how the structure of polar-
cats imply they may be explained by an elementary, quasi-discriminating
tree and vice versa. See Example 3.2 for details.

Proof. Let (N, t) be a strong, elementary and quasi-discriminating galled
tree and let Σ = (V, σ) denote the edge-colored graph it explains, i.e. Σ =
G(N, t). Since N is strong and elementary, its inner vertices are contained
in two directed paths P 1 and P 2 that meet only in the root ρ and the hybrid
vertex η. Let Wi consist of the leaf-children of the vertices of P i and put
Ωi = Σ[Wi], for i ∈ {1, 2}. Furthermore, let v be the child of η. Lastly, let
be the color t(ρ). Note that by construction and N being strong, Ω1 and

Ω2 immediately satisfies condition (i) of Definition 3.1.
Now, Lemma 2.1 ensures that t(lca(x, y)) = t(ρ) = for each x ∈

W1 \ {v} and y ∈W2 \ {v}, since inner vertices of P 1 are incomparable with
inner vertices of P 2. Since σ(xy) = t(lca(x, y)) for all distinct x, y ∈ V we
thus have Σ− v = (Ω1 − v)⊗ (Ω2 − v). Thus condition (ii) is satisfied.

We now construct a caterpillar tree that explains Ω1; analogous argu-
ments can be made for Ω2. Suppose u is the child of ρ that lies on P 1, and let
(T1, t1) be the subnetwork N(u). Clearly, T1 is a caterpillar tree, and only
ηN is suppressed while constructing N(u). Moreover, if we let u′ denote the
lowest (w.r.t. ⪰N) inner vertex of P 1, then the leaf v must, by construction,
be a child of u′ in T1 and hence part of its cherry. By construction, the
leaf set of T1 is precisely W1, the vertices of Ω1. We now show that (T1, t1)
explains Ω1. Consider any distinct x, x′ ∈ W1. Since T1 is a caterpillar, we
have

lcaT1(x, x
′) = max

⪰T1

{parentT1
(x), parentT1

(x′)}.

On the other hand, we similarly have that

lcaN (x, x′) = max
⪰N

{parentN (x),parentN (x′)},

so lcaN (x, x′) = lcaT1(x, x
′), for all x and x′. Since t1 is the restriction of t,

36

this means that (T1, t1) indeed explains Ω1.
Now, (T1, t1) is discriminating since (N, t) is quasi-discriminating, and

the suppressed vertex was a hybrid vertex in N . The quasi-discriminating
nature of N in particular implies that t1(ρT1) ̸= . This concludes that Σ
is a polar-cat.

Given a galled tree (N, t), the operation of constructing the edge-colored
graph G(N, t) has no inherent difficulties – instead the proof of Lemma 3.3
involved showing certain properties of G(N, t) (rather than proving its ex-
istence) for a particular type of galled tree. Proving the existence of a
galled tree that explains a given edge-colored graph is, in general, a trickier
endeavor. However, the restricted structure of polar-cats makes it possi-
ble to explicitly construct a galled tree which explains it. The main idea
is to connect the caterpillars that explain the subgraphs Ω1 and Ω2 of a
(v,Ω1,Ω2)-polar-cat with an additional root-vertex and by merging their
respective occurrences of the leaf v under a common hybrid vertex. This
procedure is formalized as follows (c.f. [19, Def. 4.14]).

Definition 3.4. Let Σ be a (v,Ω1,Ω2)-polar-cat with join-color k. Let
(T1, t1) and (T2, t2) be the discriminating caterpillar tree that explains Ω1

respectively Ω2. The directed graph N := N (v,Ω1,Ω2) is constructed as
follows.

1. We may, without loss of generality, assume T1 and T2 are vertex-
disjoint except for the leaf v. To distinguish the occurrences of v
in the two trees, exchange v in Ti with vi for i ∈ {1, 2}. Then begin
constructing N by taking the disjoint union of (the modification of)
T1 and T2.

2. Add a new root vertex ρN to N
’
along with the edges (ρN , ρT1) and

(ρN , ρT2).

3. Identify the leaves v1 and v2 of N into a new hybrid vertex denoted
ηN , add a new occurrence of the leaf v and the edge (ηN , v).

A labeling t := t(v,Ω1,Ω2) of N (v,Ω1,Ω2) is defined by

t(u) :=


t1(u) if u ∈ V (T1)

t2(u) if u ∈ V (T2)

k if u ∈ {ρN , ηN}

for each u ∈ V (N (v,Ω1,Ω2)). The value t(ηN) may be arbitrarily defined:
for definiteness we may choose t(ηN) = k, as done above.

For a visualization of the definition, refer back to Figure 23. Since the
trees T1 and T2 used in the construction ofN = N (v,Ω1,Ω2) are caterpillars,

37

it is easily verified that N is a galled tree consisting of a single cycle rooted
at ρN and terminating at ηN . Note that ηN has a single child, namely, the
leaf v, ρN has no leaf-children and all other inner vertices have precisely
one leaf-child. In other words, N is an elementary galled tree. The labeling
t = t(v,Ω1,Ω2) is well-defined since v is the only vertex shared by T1 and
T2, and since v is a leaf in both trees we have t1(v) = t2(v).

Moreover, the labeled galled tree (N, t) is quasi-discriminating since both
T1 and T2 are discriminating, since polar-cats are polarizing (i.e. the root of
N is distinctly labeled from its children) and since the only newly introduced
inner vertex except the root is the hybrid vertex ηN .

Next, recall that both Ω1 and Ω2 have at least two vertices each ––
corresponding to at least two leaves of T1 and T2 –– so the cycle of N
cannot be an unbalanced weak cycle. If, additionally, the polar-cat has at
least four vertices then we can conclude that at least one of Ω1 and Ω2 has
at least three vertices, implying that T1 and T2 has three or more leafs, so
that N by construction is not a balanced weak cycle.

Lastly, note that per construction we have (T1, t2) = N(u) and (T2, t2) =
N(v), where u and v are the two children of ρN . We collect these observa-
tions about Definition 3.4 in the following.

Observation 3.2. If Σ is a (v,Ω1,Ω2)-polar-cat, then the directed graph
N (v,Ω1,Ω2) is a galled tree, and t(v,Ω1,Ω2) is a well-defined labeling of
N (v,Ω1,Ω2). In particular, (N (v,Ω1,Ω2), t(v,Ω1,Ω2)) is elementary and
quasi-discriminating. If, additionally, Σ has at least four vertices, then
(N (v,Ω1,Ω2), t(v,Ω1,Ω2)) is strong. The subgraphs Ω1 and Ω2 are ex-
plained by the caterpillar trees N(u) and N(v), where u and v are the
children of the root of N (v,Ω1,Ω2).

More importantly, we have the following result.

Lemma 3.5. Every (v,Ω1,Ω2)-polar-cat is explained by the galled tree
(N (v,Ω1,Ω2), t(v,Ω1,Ω2)).

Proof. Let Σ = (V, σ) be a (v,Ω1,Ω2)-polar-cat and let (N, t) denote the
elementary and quasi-discriminating galled tree (N (v,Ω1,Ω2), t(v,Ω1,Ω2)).
Let u1 and u2 be the two children of ρN , so that N(u1) and N(u2) explain
Ω1 and Ω2, respectively (see Observation 3.2). Let W1 and W2 denote the
vertices of Ω1 respective Ω2.

Throughout this proof, we say that N explains the edge {x, y} if σ(xy) =
t(lcaN (x, y)) for the distinct vertices x, y ∈ V . To show that (N, t) explains
Σ we need to show that N explains every edge of Σ. Consider any two leaves
x and x′ of N . By Lemma 2.1 we have t(lcaN (x, x′)) = t(ρN) if the parents
of x and x′ are incomparable in N . This happens if and only if, say, x is a
leaf of N(u1), x

′ is a leaf of N(u2) and v /∈ {x, x′}. But then x ∈ W1 \ {v}
and x′ ∈ W2 \ {v}, which implies σ(xx′) equals the join-color k of Σ. By

38

construction of t, we indeed have t(ρN) = k, so that N correctly explains
the edge {x, x′}.

If, on the other hand, the parents of x and x′ are comparable in N , then
x and x′ are both leaves of N(ui), for i ∈ {1, 2}. We may without loss
of generality assume that parentN (x) ⪰N parentN (x′), so that Lemma 2.1
implies t(lcaN (x, x′)) = t(parentN (x)). Since on the inner vertices of N(ui)
the labeling t restricts to ti we thus have

t(lcaN (x, x′)) = ti(parentN(ui)(x)) = σ(xx′).

That is, N correctly explains the edge {x, x′} in this case as well.

We now investigate the structures of modules in polar-cats, and prove
the following.

Lemma 3.6. If Σ is a polar-cat, then Σ is primitive.

Proof. Suppose Σ = (V, σ) is a polar-cat. As seen in Observation 3.1, Σ
must be a rainbow triangle if it has three or less vertices, and rainbow
triangles are primitive edge-colored graph (c.f. Observation 2.2). We may
thus assume |V | ≥ 4. The combination of Observation 3.2 and Lemma 3.5
ensures the existence of a strong elementary quasi-discriminating galled tree
(N, t) that explains Σ. We let C denote the unique underlying cycle of N
and let ρ and η denote its root and unique hybrid vertex, respectively. In
what follows, we let xC , yC , uC etc. denote the unique parent on C of the
leaves x, y, and u etc.

Let M ⊆ V be a set of vertices such that 2 ≤ |M | < |V |. We will show
that M is not a module by finding distinct x, y ∈M and some u /∈M such
that σ(xu) ̸= σ(uy). We will use Lemma 2.1 repeatedly, without explicit
reference.

Note that since ≻N is a partial order and each leaf has a distinct parent,
we always have that yC ≻N xC , xC ≻N yC or xC ∥N yC for any two distinct
x, y ∈ V . Moreover, no leaf has ρ as a parent. These facts will make
it possible to distinguish three possible cases; we show the first, and then
motivate and prove the remaining two.

Case 1: There exist some x, y ∈ M and some u /∈ M such that xC ≻N

uC ≻N yC

We may, without loss of generality, assume that x, y ∈ M are taken so
that there is no z ∈ M with xC ≻N zC ≻N yC . In particular the case
assumption then implies that the (unique) non-leaf child uC of xC is parent
to a leaf u such that u /∈M . The quasi-discriminating nature of N ensures
t(xC) ̸= t(uC). We thus have

σ(xu) = t(xC) ̸= t(uC) = σ(uy),

and M is not a module.

39

With Case 1 in mind, we may in the remaining cases assume that for
each pair of vertices x, y ∈M , it holds that u ∈M for any leaf u such that
xC ⪰N uC ⪰N yC . Since there cannot be vertices x, y ∈ M and u ∈ M
with xC ≻N uC ≻N yC we may distinguish between the following two cases.
Either we have that uC ≻N xC for every x ∈ M and u /∈ M such that xC

and uC are comparable, or we have that xC ≻N uC for every x ∈ M and
u /∈M such that xC and uC are comparable. We now prove these two cases
(recall that u ∥N v denotes u and v being incomparable w.r.t. ≻N). For the
reader’s convenience, we provide a visual overview of the cases in Figure 24
and Figure 25.

Case 2: uC ≻N xC or uC ∥N xC for each x ∈M and each u /∈M .
In particular we must have that the unique child of η, here denoted z, is
an element of M , since v ⪰N η for every internal vertex v of N . Moreover,
since |M | ≥ 2 we also know there is some y ∈ M such that yC is a parent
of η. If there is some u /∈ M with uC ∥N yC , then there in particular must
exist some v /∈ M where vC ∥N yC and vC is a child of ρ. By N being
quasi-discriminating we, in this case, have that

σ(yv) = t(ρ) ̸= t(vC) = σ(vz).

If, on the other hand, each u /∈ M has a parent such that uC ≻N yC , then
there is a vertex v /∈M which has a parent vC that is a child of ρ. Moreover,
since C is a strong cycle there is some w ∈M with wC ∥N vC , and we have

σ(wv) = t(ρ) ̸= t(vC) = σ(vy),

again using that N is quasi-discriminating. Either way, M cannot be a
module.

Case 3: xC ≻N uC or xC ∥N uC for each x ∈M and each u /∈M .
First assume that there exist x, y ∈ M such that t(xC) ̸= t(yC). Since, in
particular, the child u of η does not lie in M (if so, then the case assumption
would imply M = V), we have

σ(xu) = t(xC) ̸= t(yC) = σ(uy).

If, on the other hand, t(xC) = t(yC) for each x, y ∈ M then the case
assumption and N being quasi-discriminating together implies both that
M = {x, y} and that xC and yC are the two distinct children of ρ. In
particular t(yC) ̸= t(ρ). Since C is a strong cycle, this further means that
there exist some v /∈ M where vC ̸= η. We may, without loss of generality,
suppose yC ≻N vC , so that

σ(xv) = t(ρ) ̸= t(yC) = σ(vy).

Again, it is not possible that M is a module.
We have thus shown that no M ⊆ V such that 2 ≤ |M | < |V | is a

module. Hence M(Σ) consists of trivial modules only, i.e. Σ is primitive.

40

Figure 24: A visual aid for Case 2 in the proof of Lemma 3.6. The first
subcase is depicted on the left, and the second subcase on the right. The
labels and are distinct, while the labels • are unknown.

Figure 25: A visual aid for Case 3 in the proof of Lemma 3.6. Only the
second subcase is depicted, since the first involve less notation. The labels

and are distinct, while the labels • are unknown.

41

Before we continue the investigation of edge-colored graphs that are ex-
plained by galled trees we make a note about modules in galled trees.

Observation 3.3. Let (N, t) be a galled tree, and assume C is a cycle of N
with root ρ. The leaves of the subnetwork N(ρ) is a module of G(N, t), since
for every x ∈ L(N(ρC)) and every y /∈ L(N(ρC)), we have that lcaN (x, y) =
lcaN (ρC , y).

For primitive edge-colored graphs we also have the following result.

Lemma 3.7. Let Σ be a primitive edge-colored graph with at least four
vertices. If Σ is explained by a galled tree (N, t), then (N, t) is strong,
elementary and quasi-discriminating.

Proof. Suppose (N, t) is a galled tree that explains the primitive edge-colored
graph Σ = (V, σ), and assume that |V | ≥ 4. The primitivity of Σ in par-
ticular means that Σ is not unp, hence Theorem 2.5 ensures that N has at
least one cycle C. Suppose that the root ρC of C is not the same as the root
ρN . Then the set L(N(ρC)), which has at least two vertices, is a proper
subset of V . By Observation 3.3 it is thus a nontrivial module of Σ, which
is a contradiction to the primitivity of Σ. Since C was arbitrarily chosen,
we thus conclude that N has a single cycle C such that ρC = ρN .

Let V 0(C) denote the (inner) vertices of the cycle C. For each v ∈ V 0(C)
we introduce the set

LC(v) :=
{
x ∈ L(N(v)) | ∀u ∈ V 0(C) s.t. v ⪰N u we have x ⪯̸N u

}
.

In other words, LC(v) consists of the leaves whose ancestors on C consist
of v and ancestors of v. To show that N is elementary, it suffices to show
that LC(ρN) = ∅ and that |LC(v)| = 1 for each v ∈ V 0(C) \ {ρN}. First
note that for any v ∈ V 0(C), any x, x′ ∈ LC(v) and any y ∈ L(N) \ LC(v)
we have lcaN (x, y) = lcaN (x′, y). This means that LC(v) is either empty or
a module of Σ. For v ∈ V 0(C) distinct from ρN , v must have at least some
descendent not on C (otherwise it has both in- and outdegree one), thus
LC(v) is not empty. Clearly, LC(v) is a proper subset of V , so the triviality
of the modules of Σ implies |LC(v)| = 1. On the other hand, if LC(ρN) ̸= ∅
then for each x ∈ LC(ρN) and all distinct leaves y, y′ not in LC(ρN), we
have lca(x, y) = ρN = lca(x, y′), making L(N) \ LC(ρN) into a non-trivial
module. This contradicts primitivity of Σ, and we may conclude that N is
an elementary galled tree.

We now show that N is a strong galled tree, i.e. that C is a strong cycle.
Since N is elementary and has at least four leafs, C cannot be a balanced
weak cycle; the latter has three leaves only. If C was an unbalanced weak
cycle, then Lemma 2.3 would imply the existence of a tree (T ′, t′) such that
G(T ′, t′) = Σ. But if Σ is explained by a tree, then it is unp by Theorem 2.5.
That contradicts Σ being primitive, hence X is not an unbalanced weak
cycle either.

42

Lastly, suppose for contradiction that (N, t) is not quasi-discriminating
and let v, v′ ∈ V 0(C) be adjacent tree vertices of C such that t(v) = t(v′).
In particular ηC /∈ {v, v′} since ηC , by definition, is a hybrid vertex and
thus not a tree vertex. Let u denote the unique leaf-child of ηC . Without
loss of generality, we may suppose ρN ⪰N v ≻ v′ ≻ ηC . Denote the unique
leaf-child of v′ with x′. First assume ρN = v, so that v has no leaf-children.
Moreover, this assumption enforces that there is no leaf y ∈ V \ {x′} such
that parentN (y) ≻N v′. Hence v′ ≻N parentN (y) or v′ ∥N parentN (y) for all
y ∈ V \ {x′}, from which Lemma 2.1 implies that lcaN (x′, y) ∈ {ρN , v′} =
{v, v′} for all y ∈ V \ {x′}. Hence t(v′) = t(v) implies that V \ {x′} is a
(necessarily non-trivial) module of Σ, which contradicts the primitivity of
Σ.

Now assume that ρN ̸= v, so that v also has a unique leaf-child x. Since
v and v′ are adjacent, the following holds

parentN (y) ≻N v ⇐⇒ parentN (y) ≻N v′

v ≻N parentN (y) ⇐⇒ v′ ≻N parentN (y)

parentN (y) ∥N v ⇐⇒ parentN (y) ∥N v′
(7)

for all y ∈ V \{x, x′}. Combining (7) with lemma 2.1 implies that lcaN (xy) =
parentN (y) = lcaN (x′y) for all y ∈ V \ {x, x′} such that parentN (y) ≻N

v, while lcaN (xy) = ρN = lcaN (x′y) for all y ∈ V \ {x, x′} such that
parentN (y) ∥N v. Lastly, lcaN (xy) = v respectively lcaN (x′y) = v′ for all
y ∈ V \ {x, x′} such that v ≻N parentN (y). In all three cases we have
t(lcaN (xy)) = t(lcaN (x′y)) for all y ∈ V \ {x, x′}. Hence {x, x′} is a non-
trivial module of Σ, again contradicting its primitivity. This concludes that
(N, t) is a strong, elementary and quasi-discriminating galled tree.

We are now ready to return to the main result of this section: Theo-
rem 3.2.

Proof of Theorem 3.2. By Observation 3.1, a rainbow triangle is the only
polar-cat with three vertices (and there are no polar-cats with fewer ver-
tices). Moreover, by Observation 2.2 it is the only primitive edge-colored
graph on three vertices, and it is explained by a (quasi-discriminating el-
ementary) galled tree. Thus the three statements are equivalent for edge-
colored graphs with three vertices.

From here on we may thus consider graphs on at least four vertices.
That every edge-colored graph explained by a strong, elementary and quasi-
discriminating galled tree is a polar cat (the implication (a) =⇒ (b)) fol-
lows from Lemma 3.3. That polar-cats are explained by galled trees and
are primitive (the implication (b) =⇒ (c)) follows from Lemma 3.5 respec-
tively Lemma 3.6. Lastly, that primitive edge-colored graphs explained by a
galled trees are, in particular, explained by a strong, elementary and quasi-
discriminating galled tree (the implication (c) =⇒ (a)) holds by Lemma 3.7.

43

We end this section by returning to one of the first statements we made
about edge-colored graphs that are explained by quasi-discriminating galled
trees: that they are primitive, yet almost unp. The precise statement is the
following.

Proposition 3.8. If Σ is a (v,Ω1,Ω2)-polar-cat, then Σ− v is unp.

Proof. Let Σ be a (v,Ω1,Ω2)-polar-cat. By definition, Ω1 and Ω2 are ex-
plained by caterpillar trees (T1, t1) and (T2, t2), respectively. Construct a
tree (T ′

1, t
′
1) from (T1, t1) by (1) removing the leaf v (which, by definition, is

part of its cherry), (2) suppressing the vertex parent(v) and (3) putting t′1 as
the restriction of t1 to the remaining vertices. Then (T ′

1, t
′
1) has only a single

vertex, or is a caterpillar tree. Moreover, it is easily verified to explain Ω1−v,
as the only suppressed vertex parent(v) satisfies parent(v) = lcaT1(x, y) only
if v ∈ {x, y}. The tree (T ′

2, t
′
2) may then be constructed analogously from

(T2, t2), so that G(T ′
2, t

′
2) = Ω2 − v.

Now, since Σ − v = (Ω1 − v) ⊗k (Ω2 − v) for some color k, the trees
(T ′

1, t
′
1) and (T ′

2, t
′
2) may be combined into a tree (T, t) that explains Σ as

follows. Take the disjoint union of T ′
1 and T ′

2, then add a new root ρT and
the edges (ρT , ρT ′

1
) and (ρT , ρT ′

2
). Define the labeling t as

t(v) :=


t′1(v) if v ∈ V (T ′

1)

t′2(v) if v ∈ V (T ′
2)

k otherwise i.e. if v = ρT .

for each v ∈ V (T). Since (T, t) is a tree that explains Σ − v, Theorem 2.5
implies Σ− v is unp.

The converse statement of Proposition 3.8 is not true, however. Con-
sider, for example, the edge-colored graph in Figure 26. Clearly, Σ − v
is unp, as Σ − v has only one edge-color. At the same time, Σ is not a
(v,Ω1,Ω2)-polar-cat since however we choose Ω1 and Ω2 one of them will
be a rainbow triangle –– for preciseness, the only possible subgraphs satis-
fying condition (i) of Definition 3.1 are {Ω1,Ω2} = {Σ[{v, x}],Σ[{v, y, z}]},
{Ω1,Ω2} = {Σ[{v, y}],Σ[{v, x, z}]} or {Ω1,Ω2} = {Σ[{v, z}],Σ[{v, x, y}]}.
In fact, there is no other vertex u ̸= v such that Σ is a (u,Ω1,Ω2)-polar-cat.
To see this, simply note that Σ−u is a rainbow triangle for each u ∈ {x, y, z},
which is not a primitive graph. The contrapositive of Proposition 3.8 thus
implies that Σ is not a (u,Ω1,Ω2)-polar-cat.

44

Figure 26: An edge-colored graph Σ for which Σ − v is unp, but Σ is no
polar-cat. Σ thus shows that the converse of Proposition 3.8 is, in general,
not true.

4 Uniqueness

We now wish to understand when a primitive edge-colored graph is ex-
plained by a distinct galled tree. To prove any statement about this type
of uniqueness, we will need to investigate polar-cats closer. Since much of
the structure of a (v,Ω1,Ω2)-polar-cats is related to Ω1 and Ω2 being ex-
plained by caterpillar trees, it is not too surprising that we need to devote
some space for results on caterpillar-explainable edge-colored graphs. This
is done in Section 4.1. Recall that we say that a polar-cat Σ is explained by
a unique galled tree (N, t) if every galled tree (N ′, t′) such that G(N ′, t′) = Σ
satisfies (N, t) ≃ (N ′, t′). As we will see, every polar-cat has what we call a
fixpoint if and only if it is explained by a unique galled tree. We will then
find three sufficient conditions for a primitive edge-colored graph being ex-
plained by a unique galled tree. In the last subsection, we investigate what
happens when these three sufficient conditions all fail at the same time.

4.1 Structure implied from being caterpillar-explainable

We now state and prove three lemmas in rapid succession.

Lemma 4.1. Suppose Σ is an edge-colored graph explained by the caterpillar
tree (N, t). If Σ = Σ[X]⊗ Σ[Y] for some disjoint, nonempty subsets X,Y ⊆
V (Σ), then t(ρN) = .

Proof. Let (N, t) denote the caterpillar tree that explains the edge-colored
graph Σ = (V, σ). Assume X,Y ⊆ V are nonempty sets of vertices such
that X ∩ Y = ∅ and

Σ = Σ[X]⊗ Σ[Y] (8)

for some color . By definition we must then have that X ∪ Y = V , so any
vertex of V is an element of either X or Y .

45

Since N is a caterpillar ρN has a leaf-child v. Clearly, lca(x, v) = ρN for
each x ∈ V \{v}, so σ(vx) = σ(vx′) for all x, x′ ∈ V \{v}. Now, since v ∈ X
or v ∈ Y , (8) implies σ(vx) = at least for some x ∈ V \ {v}, from which
t(ρN) = follows.

Lemma 4.2. If Σ is an edge-colored graph that has at least three vertices
and is caterpillar-explainable, then Σ− v is caterpillar-explainable.

Proof. Let (N, t) denote a caterpillar tree that explains the edge-colored
graph Σ = (V, σ). Take any v ∈ V . If v is the leaf-child of ρN and u denotes
the child of ρN such that u ̸= v, then it is obvious that the subnetwork N(u),
which is a caterpillar, explains Σ − v. On the other hand, if parentN (v) ̸=
ρN , then the tree (N ′, t′) constructed from (N, t) by (1) deleting v and its
incident edge, (2) suppressing the vertex parentN (v), and (3) defining t′ as
the restriction of t to N(T) \ {v,parentN (v)} is a caterpillar tree as well. In
particular it explains Σ − v, since lcaN (x, y) = lcaN ′(x, y) for each pair of
distinct x, y ∈ V \ {v} follows directly from construction.

Lemma 4.3. Let Σ = (V, σ) be an edge-colored graph with n vertices. Sup-
pose Σ is explained by a discriminating caterpillar tree, and let x ∈ V be
part of its cherry. If u1, u2, . . . , uk are vertices such that

σ(xu1) = σ(xu2) = . . . = σ(xuk),

then k ≤ ⌊n/2⌋. Additionally, for each edge-color of Σ there exists some
vertex x ̸= y ∈ V such that σ(xy) = .

Proof. Let (N, t) be the discriminating caterpillar tree that explains the
edge-colored graph Σ = (V, σ). Note that N has precisely n − 1 inner
vertices, where n := |V |. The result is immediately clear when n ∈ {1, 2},
so suppose n ≥ 3. We may denote the inner vertices of N by v1, v2, ..., vn−1

where
v1 ≻N v2 ≻N . . . ≻N vn−1.

Furthermore, let ui be the unique leaf-child of vi for each i = 1, 2, . . . , n− 2,
and let x denote one of the leaf-children of un−1, so that x is part of the
cherry of N . Since t(vi) ̸= t(vi+1) for each i = 1, . . . , n − 2 at most ⌊n/2⌋
inner vertices may have the same label in (N, t). Now, we have

σ(xui) = t(lca(x, ui)) = t(vi)

for each i = 1, . . . , n− 2, so that means at most ⌊n/2⌋ vertices have an edge
to x colored with the same color.

For the second statement, simply note that for each vi with i = 1, . . . , n−
1 there some leaf u, namely u = ui, such that vi = lca(ux). For each edge-
color of Σ, there is some i = 1, . . . , k such that t(vi) = , from which the
statement follows.

46

4.2 Sufficient conditions for uniqueness

Before properly investigating uniqueness-results, we study rainbow triangles
in the following proposition. It should not be surprising that rainbow trian-
gles are of particular interest –– for one thing it appears in the statement of
Theorem 3.2. Moreover, by Theorem 2.5, the existence of a rainbow triangle
in an edge-colored graph Σ implies that Σ is not unp. One can thus think
of rainbow triangles as a road block removing the possibility of edge-colored
graphs being explained by trees. At the same time, rainbow triangles can
be explained by galled trees (see Observation 2.2).

Proposition 4.4. Let Σ be a polar-cat. If Σ has at least three edge-colors,
then Σ contains a rainbow triangle. Moreover, if x, y and z are three ver-
tices such that Σ[{x, y, z}] is a rainbow triangle then Σ is, in particular, a
(v,Ω1,Ω2)-polar-cat, for at least some v ∈ {x, y, z}, while u ∈ V (Ω1) and
w ∈ V (Ω2) for {u,w} = {x, y, z} \ {v}.

Proof. Let Σ = (V, σ) be a polar-cat with at least three edge-colors. If Σ
itself is not a rainbow triangle, Theorem 3.2 ensures the existence of a strong,
elementary, quasi-discriminating galled tree (N, t) that explains Σ. Let xC

and yC be the children of ρN , and denote their respective leaf-children by x
and y. Moreover, let v be the unique leaf-child of the hybrid ηN . Since N
is strong, we know that ηN /∈ {xC , yC}. Also recall that the color t(ρN) is
distinct from t(xC) and t(yC).

Consider first the case when t(xC) ̸= t(yC). Since Lemma 2.1 ensures
that lca(x, y) = ρ, lca(x, v) = xC and lca(y, v) = yC we have

|{σ(xy), σ(xv), σ(vy)}| = |{t(ρ), t(xC), t(yC)}| = 3,

i.e. the three vertices x, y and v induce a rainbow triangle in Σ.
If, on the other hand, t(xC) = t(yC), then there must exist a leaf z /∈

{x, y, v} ofN such that its parent zC is labeled with some color different from
t(ρ) and t(xC) (i.e. different from t(yC)) –– otherwise Σ has only two edge-
colors. We may, without loss of generality, assume zC ≺N yC . Lemma 2.1
again ensures that lca(x, z) = ρ, lca(x, v) = xC and lca(z, v) = zC , so that
x, z and v induce a rainbow triangle in Σ.

For the second statement, suppose Σ is a (v,Ω1,Ω2)-polar-cat and that
x, y, and z are vertices which induce a rainbow triangle in Σ. Note that if
x, y, z ∈ V (Ωi) for either i = 1 or i = 2, then Ωi contains a rainbow triangle
and is, by Theorem 2.5 not unp and thus, in particular, not caterpillar-
explainable. But Σ is a (v,Ω1,Ω2)-polar-cat, so this is impossible. Thus
assume that x, y ∈ V (Ωi) and z /∈ V (Ωi) for i = 1 or i = 2. In particular
this means z ̸= v. For contradiction we assume v /∈ {x, y}. But then
σ(xz) = = σ(yz) since Σ − v = (Ω1 − v) ⊗ (Ω2 − v) for some color
. This contradicts Σ[{x, y, z}] being a rainbow triangle. Hence v ∈ {x, y}

must hold, and the result follows.

47

We are now ready to prove the first type of uniqueness of polar-cats: if
we allow ourself to fix the vertex v, then a polar-cat can only be a (v,Ω1,Ω2)-
polar-cat for particular Ω1 and Ω2. The precise statement is as follows.

Proposition 4.5. If Σ is both a (v,Ω1,Ω2)-polar-cat and a (v,Π1,Π2)-polar-
cat for some fixed vertex v, then {Ω1,Ω2} = {Π1,Π2}.

Proof. Let Σ = (V, σ) be a (v,Ω1,Ω2)-polar-cat that is simultaneously a
(v,Π1,Π2)-polar-cat. By definition of polar-cats, we know that

Σ− v = (Ω1 − v)⊗ (Ω2 − v) = (Π1 − v)⊗ (Π2 − v), (9)

for some colors and . By applying Lemma 2.4 on Σ − v we can con-
clude that = , since one way of re-phrasing (9) is that the trivial module
V (Σ − v) is both a -series and a -series module of Σ − v. Also recall
that by definition, there exists a discriminating caterpillar-tree (TX , tX)
that explains X for each X ∈ {Ω1,Ω2,Π1,Π2}. We will show that if
{Ω1,Ω2} ̸= {Π1,Π2}, then tX(ρTX

) = for some X ∈ {Ω1,Ω2,Π1,Π2},
which contradicts condition (ii)(b) of the definition of a polar-cat (Defini-
tion 3.1).

For contradiction, assume {Ω1,Ω2} ̸= {Π1,Π2}. Note that v ∈ X for
each X ∈ {Ω1,Ω2,Π1,Π2}, so no two of the four subgraphs have an empty
intersection. Moreover, since V (Ω1)∪ V (Ω2) = V (Π1)∪ V (Π2) = V at least
one of Ω1 and Ω2 will contain vertices x, y such that v /∈ {x, y}, x ∈ V (Π1)
and y ∈ V (Π2). We may thus assume, without loss of generality, that neither
V (Ω1) \ V (Π1) nor V (Ω1) \ V (Π2) are empty.

Now, since (9) in particular implies σ(xy) = for each x ∈ V (Π1) \ {v}
and y ∈ V (Π2) \ {v} we have

Ω1 − v = Ω1[V (Ω1) \ V (Π1)]⊗ Ω1[V (Ω1) \ V (Π2)]. (10)

By assumption Ω1 has to, in addition to the vertex v, contain at least one
element of V (Π1) \V (Π2) and at least one element of V (Π2) \V (Π1), hence
|V (Ω1)| ≥ 3. Thus Lemma 4.2 implies Ω1−v is caterpillar-explainable, from
which (10) and Lemma 4.1 implies that tΩ1(ρTΩ1

) = . As explained, this
contradicts (9). Thus {Ω1,Ω2} = {Π1,Π2} follows.

In light of Proposition 4.5, the pursuit of understanding when Σ is a
(v,Ω1,Ω2)-polar-cat but not a (w,Π1,Π2)-polar-cat for w ̸= v reduces to
understanding when the choice of the vertex v is unique. Formally, we say
that a polar-cat Σ has a fixpoint if there is a unique vertex v such that Σ
is a (v,Ω1,Ω2)-polar-cat. Although not explicitly stated, we have in fact
already come across a polar-cat without a fixpoint: rainbow triangles.

48

Figure 27: Three galled trees (N, t), (N ′, t′) and (N ′′, t′′), depicted above
the respective polar-cat they explain. In particular (N, t) ≃ (N ′, t′) while
(N, t) ̸≃ (N ′′, t′′). However, G(N, t) ̸= G(N ′, t′) while G(N, t) = G(N ′′, t′′).

Example 4.1. Rainbow triangles do not have a fixpoint, as the rainbow
triangle Σ := G(N, t) of Figure 27 is both a (c,Σ[{c, a}],Σ[{c, a}])-polar-cat
and a (b,Σ[{b, c}],Σ[{b, a}])-polar-cat. On a related note, we may consider
the three galled trees in Figure 27. It is easy to verify that (N, t) ≃ (N ′, t′),
while (N, t) ̸≃ (N ′′, t′′): c.f. Observation 2.1. Note also that G(N, t) ̸=
G(N ′, t′) (although, G(N, t) ≃ G(N ′, t′), as they are both rainbow triangles).
Moreover, G(N, t) = G(N ′′, t′′) although the two galled trees (N, t) and
(N ′′, t′′) are not isomorphic. In particular this means that there are distinct
galled trees that explain a rainbow triangle.

As we will now see, it is no coincident that rainbow triangles are ex-
plained by multiple, distinct galled trees and have no fixed point.

Theorem 4.6. Suppose Σ is a polar-cat. Σ has a fixpoint if and only if
there is a unique galled tree (N, t) that explains Σ. Additionally, if Σ has a
fixpoint, then the labeling map t of (N, t) is uniquely determined, up to the
label of the hybrid vertex of N .

Proof. First assume that Σ has no fixpoint, i.e. assume that it is both a
(v,Ω1,Ω2)-polar-cat and a (w,Π1,Π2)-polar-cat for vertices v ̸= w. Then
the galled trees

(N, t) := (N (v,Ω1,Ω2), t(v,Ω1,Ω2)) and

(N ′, t′) := (N (w,Π1,Π2), t(w,Π1,Π2))

will, by Lemma 3.5, explain Σ. By Observation 3.2, the leaf-child of the
respective hybrid-vertex in N and N ′ is v and w, respectively, so no iso-
morphism of N and N ′ as directed graph restricts to the identity map on
the leaves. Hence (N, t) ̸≃ (N ′, t′), so that Σ is explained by (at least) two
distinct galled trees.

49

It remains to show the “only if”-direction. To this end, suppose that
the polar-cat Σ = (V, σ) has a fixpoint. In particular, Σ is not a rainbow
triangle, as rainbow triangles has no fixpoint (see Ex. 4.1). Suppose that
(N, t) and (N ′, t′) are galled trees that explain Σ. We will show that (N, t)
and (N ′, t′) are isomorphic. By Theorem 3.2 and Lemma 3.7 both (N, t) and
(N ′, t′) are necessarily strong, elementary and quasi-discriminating galled
trees. Let v denote the unique leaf-child of the hybrid of N , and put Ω1

respectively Ω2 as the induced subgraphs of the leaves that belong to the
respective sides of the underlying cycle of N . Introduce v′, Ω′

1 and Ω′
2 from

N ′ analogously. Now Lemma 3.3 implies that Σ is a (v,Ω1,Ω2)-polar-cat
and a (v′,Ω′

1,Ω
′
2)-polar-cat. Thus v = v′ follows, since Σ has a fixpoint.

Moreover, {Ω1,Ω2} = {Ω′
1,Ω

′
2} follows from Proposition 4.5. Without loss

of generality, suppose Ω1 = Ω′
1 and Ω2 = Ω′

2.
We have thus shown that (N, t) and (N ′, t′) are elementary galled trees

whose respective sides have the same respective leafs. It remains, loosely
speaking, to show that the position of the leaves are the same on the respec-
tive side of N and N ′. To formalize this, we first need to introduce some
notation.

Consider the side P = u0u1u2 . . . uk of the underlying cycle of N such
that the leaves that belong to P are precisely those vertices that are con-
tained in Ω1. In particular, u0 = ρN and uk = ηN = parentN (v). Denote
the (unique) leaf-child of ui by xi for each 1 ≤ i ≤ k so that, in partic-
ular, xk = v and V (Ω1) = {x1, . . . , xk}. Similarly, let P ′ = u′0u

′
1 . . . u

′
k

be the side of of the underlying cycle of N ′ such that the leaves that be-
long to P ′ are precisely {x1, . . . , xk}. Again, we necessarily have u′0 = ρN ′

and u′k = ηN = parentN ′(v). By definition we have parentN (xi) = ui for
each 1 ≤ i ≤ k, and it suffices to show that parentN ′(xi) = u′i for each
1 ≤ i ≤ k − 1, as parentN ′(xk) = parentN ′(v) = u′k is known. Additionally,
we will show that t(ui) = t′(u′i) for all 1 ≤ i < k. We proceed by induction.

First consider the vertex x1. By Lemma 2.1 we have lcaN (x1xi) = u1
for all 1 < i ≤ k. Hence

σ(x1xi) = t(u1) =: (11)

follows for all 1 < i ≤ k. For contradiction, assume parentN ′(x1) = u′i for
i ̸= 1. Since Σ is a polar-cat we know |V (Ω1)| = k ≥ 2. Hence there is at
least one leaf, namely xk = v such that u′i ≻N ′ parentN ′(xk). By (11) and
Lemma 2.1 it thus follows that t′(u′i) = t′(lcaN ′(x1xk)) = . Since i ̸= 1
and N ′ is quasi-discriminating there must exist some u′j such that u′j ≻N ′ u′i
and such that t′(u′j) ̸= . Let xm be the leaf-child of u′j . By Lemma 2.1 we
thus have σ(x1xm) = t′(lcaN ′(x1xm)) = t′(u′j) ̸= , which contradicts (11).
We conclude that parentN ′(x1) = u′1 and that t′(u′1) = t(u1).

Now assume that there is some index 2 ≤ j < k such that parentN ′(xi) =
u′i and t(ui) = t′(u′i) for all 1 ≤ i < j. Consider the vertex xj . By Lemma 2.1

50

we have lcaN (xjxi) = uj for all xi such that j < i ≤ k. Hence

σ(xjxi) = t(uj) =: (12)

follows for all j < i ≤ k. For contradiction, assume parentN ′(xj) = u′m ̸= u′j .
By assumption, m > j. However m < k, since xj ̸= v, and the only leaf-
child of u′k is v. Moreover, u′m ≻N ′ parentN ′(xk). By (12) and Lemma 2.1
we thus have t′(u′m) = t′(lcaN ′(xjxk)) = . Now consider the vertex u′m−1,
i.e. the parent of u′m (in N ′). Since N ′ is quasi-discriminating, we must
have that t′(u′m−1) ̸= . Denote the unique leaf-child of u′m−1 by xl. By
the induction hypothesis, we must have that l > j. However, Lemma 2.1
and u′m−1 ≻N ′ u′m implies that lcaN ′(xjxl) = parentN ′(xl) = u′m−1, so that
σ(xjxl) = t′(u′m−1) ̸= . This contradicts (12), so that we may conclude
that parentN ′(xj) = u′j . Additionally, we already established that t′(u′j) =
t(uj). By the principle of induction we thus have that parentN ′(xi) = u′i
and t(ui) = t′(u′i) for all 1 ≤ i < k.

The same argument may be applied to the other side of N and N ′.
More precisely, if Q = w1w2 . . . wl ̸= P is the other side of the underlying
cycle of N and Q′ = w′

1w
′
2 . . . w

′
l ̸= P ′ is the other side of the underlying

cycle of N ′, then the vertices of Ω2 may be ordered as y1, y2, ..., yl so that
parentN (yi) = wi and parentN ′(yi) = w′

i for all 1 ≤ i ≤ l. Additionally,
t(wi) = t′(w′

i) holds for all 1 ≤ i < l. We may thus define a bijective map
φ : V (N)→ V (N ′) by

φ(x) :=


x if x ∈ L(N)

u′i if x = ui for some 1 ≤ i ≤ k

w′
i if x = wi for some 1 ≤ i ≤ l

ρN ′ if v = ρN .

Clearly, φ is an isomorphism of N and N ′ as directed graphs. In particular
L(N) = L(N ′) and φ(x) = x for all x ∈ L(N). Additionally, since t(ui) =
t′(u′i) for all 1 ≤ i < k, t(wi) = t′(w′

i) for all 1 ≤ i < l and the roots of
N and N ′ must be labeled with the join-color of Σ by t and t′ respectively,
we have that t(u) = t′(φ(u)) for all vertices u except, possibly, u = ηN . By
Observation 2.1 we thus have t(u) = t(u′) if and only if t′(φ(u)) = t′(φ(u′))
for all u, u′ ∈ V 0

lca(N). In other words, φ is an isomorphism of (N, t) and
(N ′, t′), and there is thus a unique galled tree that explains Σ. As t and t′

agree on all inner vertices except possibly ηN , the labeling t is unique up to
the label of the hybrid vertex of N .

Although Theorem 4.6 gives us a valuable connection between having
a fixpoint and uniqueness of the galled tree that explains a polar-cat, the
property of having a fixpoint is yet not a very helpful concept. The rest of
this section is thus concerned with finding sufficient conditions for when a
polar-cat has a fixpoint.

51

Figure 28: The depicted (v,Σ[{v, x}],Σ[{v, y1, y2}])-polar-cat Σ is no
(w,Ω1,Ω2)-polar-cat for w ̸= v, although it satisfies neither condition (C1)
nor (C2). In other words, it has a fixpoint.

For the case of two colors, the property of a polar-cat having a fixpoint
was characterized with a condition called being well-behaved which, very
roughly, ensures the polar-cat in question is “large enough” [19, Def. 6.11,
Lem. 6.12]. Formally, an edge-colored (v,Ω1,Ω2)-polar-cat with two edge-
colors is well-behaved if one of the following conditions is satisfied

(C1) |V (Ω1)| ≥ 3 and |V (Ω2)| ≥ 3, or

(C2) |V (Ωi)| = 2 and |V (Ωj)| ≥ 5 for distinct i, j ∈ {1, 2}.

We will soon see that for more than two edge-colors, these two conditions
are indeed sufficient for having a fixpoint, but it is no longer a necessity.

To see the latter, consider the edge-colored graph Σ depicted in Fig-
ure 28. One easily verifies that Σ is a (v,Ω1,Ω2)-polar-cat for Ω1 = Σ[{v, x}]
and Ω2 = Σ[{v, y1, y2}], for example by verifying that the elementary, quasi-
discriminating and strong galled tree (N, t) in Figure 28 explains Σ. It
cannot be a (yi,Π1,Π2)-polar-cat for i = 1 or i = 2 since neither Σ− y1 nor
Σ−y2 is unp (cf. Prop. 3.8). Moreover, it is not a (x,Π1,Π2)-polar-cat since

Σ− x = Σ[{y1}]⊗ Σ[{v, y2}]

would enforce Πi = Σ[{x, v, y2}] for either i = 1 or i = 2, and Σ[{x, v, y2}]
is certainly not caterpillar-explainable (it is a rainbow triangle!). That is, Σ
has a fixpoint, although neither condition (C1) nor (C2) is satisfied.

Proposition 4.7. If a polar-cat Σ satisfies condition (C1) or (C2), then it
has a fixpoint. In particular, there is a unique galled tree that explains Σ.

Proof. Let Σ = (V, σ) be a (v,Ω1,Ω2)-polar-cat satisfying condition (C1) or
(C2). Since the case of two colors was proved in [19, Lem. 6.12], we may
assume Σ has at least three edge-colors. By Proposition 4.4 there are vertices
x, y ∈ V such that Σ[{x, y, v}] is a rainbow triangle, where x ∈ V (Ω1) and
y ∈ V (Ω2). Let = σ(xy) and = σ(vy) be two of the (necessarily distinct)
edge-colors of Σ[{x, y, v}].

52

For contradiction, assume Σ additionally is a (w,Π1,Π2)-polar-cat for
some w ̸= v. With Proposition 4.4 in mind, w must be a vertex of the
rainbow triangle Σ[{x, y, v}], while the two vertices in {x, y, v} \ {w} belong
to Π1 and Π2, respectively. We thus assume, without loss of generality, that
w = x and that v ∈ V (Π1) while y ∈ V (Π2).

By definition of polar-cats, it is easily verified that

Σ− v = (Ω1 − v)⊗ (Ω2 − v) , and (13)

Σ− x = (Π1 − x)⊗ (Π2 − x) , (14)

for the (earlier defined) colors and . The most important direct conse-
quence of (13) and (14) are the following two implications, which we will
make use of multiple times. For any two vertices a, b ∈ V \{v} we have that

σ(a, b) ̸= =⇒ a, b ∈ V (Ωi) for i = 1 or i = 2, (15)

while for any two vertices a, b ∈ V \ {x} we have that

σ(a, b) ̸= =⇒ a, b ∈ V (Πi) for i = 1 or i = 2. (16)

We first assume that condition (C1) is satisfied, that is, assume that
|V (Ω1)| ≥ 3 and |V (Ω2)| ≥ 3. Hence there exists some x′ ∈ V (Ω1) \ {x, v}
and some y′ ∈ V (Ω2) \ {y, v}. In fact, since Ω2 is explained by a dis-
criminating caterpillar we may choose y′ such that σ(vy′) ̸= σ(vy), that is,
such that σ(vy′) ̸= . Thus (16) and v ∈ V (Π1) implies that y′ ∈ V (Π1).
Now, since x′ ∈ V (Ω1) \ {v} and y′ ∈ V (Ω2) \ {v} we have, by (13), that
σ(x′y′) = ̸= . Hence y′ ∈ V (Π1) and (16) implies x′ ∈ V (Π1). To
summarize, we have shown that x′ ∈ V (Π1) \ {x}, and know by assumption
respectively (13) that y ∈ V (Π2) \ {x} and σ(x′y) = . This is a contradic-
tion to (16). We thus conclude that if Σ satisfies condition (C1) the it has
a fixpoint.

Condition (C2) can be satisfied in two ways, depending on wether it is
Ω1 or Ω2 that contains two vertices. We need to consider both cases. First
assume that |V (Ω1)| = 2 i.e. V (Ω1) = {x, v} and that |V (Ω2)| ≥ 5. Hence
there are k ≥ 3 vertices z1, z2, ..., zk such that V (Ω2) = {y, z1, . . . , zk, v}.
By (13), we must have

σ(xzi) = for i = 1, . . . , k. (17)

Let I ⊆ {1, . . . , k} be the subset of indices such that zi ∈ V (Π2) if and
only if i ∈ I. Since x, y ∈ V (Π2) but v /∈ V (Π2), we thus have that
|V (Π2)| = |I| + 2. Note that by definition of polar-cats, x is part of the
cherry of the discriminating caterpillar tree that explains Π1, so we may
apply Lemma 4.3. By (17), σ(xzi) = σ(xzj) = σ(xy) for all i, j ∈ I,
from which the lemma enforces that |I| + 1 ≤ ⌊(|I| + 2)/2⌋. As the reader

53

may verify easily, this is true only if |I| = 0, that is, only if V (Π1) =
{x, v, z1, . . . , zk}, so that |V (Π1)| = k + 2. Since x is also part of the cherry
of the discriminating caterpillar tree that explains Π1 and, again by (17),
we have σ(xzi) = σ(xzj) for all k indices i, j ∈ {1, . . . , k} and Lemma 4.3
thus implies that k ≤ ⌊(k + 2)/2⌋. This inequality may again be verified
with standardized methods to imply k ≤ 2, which contradicts |V (Ω2)| ≥ 5.

Lastly, we instead assume that V (Ω1) = {x, z1, . . . , zk, v} for k ≥ 3
vertices z1,...,zk, so that |V (Ω1)| ≥ 5. Additionally assume V (Ω2) = {v, y}
so that condition (C2) is satisfied. On one hand, (13) implies that σ(yzi) =
for i = 1, 2, . . . , k from which (16) and y ∈ V (Π2) implies zi ∈ V (Π2) \ {x}
for i = 1, 2, . . . , k. The latter taken together with v ∈ V (Π1) \ {x} and
(14) implies σ(vzi) = for i = 1, 2, . . . , k. Now note that v is part of the
cherry of the discriminating caterpillar tree that explains Ω1, so we may
apply Lemma 4.3 once again. There are k edges {v, zi} in the same color
and |V (Ω1)| = k + 2, hence k ≤ ⌊(k + 2)/2⌋ is implied by the lemma. Once
again we get the contradiction of k ≤ 2. Hence we conclude that if Σ satisfies
condition (C2) then it has a fixpoint. By Theorem 4.6, there is thus a unique
galled tree that explains Σ.

It turns out that another sufficient condition for a polar-cat having a
fixpoint instead depend on the number of edge-colors, rather than the num-
ber of vertices in the two subgraphs. More precisely, we have the following
proposition.

Proposition 4.8. If a polar-cat Σ has at least four edge-colors, then it has
a fixpoint. In particular, there is a unique galled tree that explains Σ.

Proof. We begin by repeating the first argument of the proof of Proposi-
tion 4.7. If Σ = (V, σ) is a (v,Ω1,Ω2)-polar-cat with at least four edge-
colors, then there exists (by Proposition 4.4) vertices x and y such that
Σ[{v, x, y}] is a rainbow triangle. Additionally, x ∈ V (Ω1) and y ∈ V (Ω2).
We may introduce the (necessarily distinct) colors := σ(xy), := σ(vy)
and := σ(xv).

Since there are at least four edge-colors in Σ, there are at least four
vertices in Σ. Note that v is part of the cherry of the respective caterpillar
tree that explains Ω1 and Ω2, so by Lemma 4.3 there in particular exist
some z /∈ {v, x, y} such that σ(vz) = /∈ { , , }. We may, without loss
of generality, assume that z ∈ V (Ω2). Since Σ − v = (Ω1 − v) ⊗ (Ω2 − v)
follows from definition, and x ∈ V (Ω1) it thus follows that σ(xz) = . We
have thus established the edge-color of all edges except {y, z} of the subgraph
Σ[{v, x, y, z}]: see Figure 29 for a visual reminder.

First note that Σ[{v, x, z}] is a rainbow triangle and a subgraph of Σ−y.
Similarly, Σ[{v, x, y}] is a rainbow triangle and a subgraph of Σ− u for any
u ∈ V \{v, x, y}. By Observation 2.2 rainbow triangles are primitive, so that
Theorem 2.5 implies that neither Σ−y nor Σ−u (for any u ∈ V \{v, x, y}) is

54

Figure 29: The subgraph Σ[{v, x, y, z}] always appear in a (v,Ω1,Ω2)-polar-
cat with at least four edge-colors, where , , and are distinct colors.
Only the edge-color of the edge {y, z} may vary. For further details, see
proof of Proposition 4.8.

unp. Hence Proposition 3.8 ensures that Σ cannot be a (u,Π1,Π2)-polar-cat
for u = y or for any u ∈ V \ {v, x, y}, however the subgraphs Π1 and Π2 are
chosen.

It remains to show that Σ cannot be a (x,Π1,Π2)-polar-cat. The ar-
gument depends on the color of {y, z}, and we have three possible cases:
σ(yz) = , σ(yz) = or σ(yz) /∈ { , }. If the latter holds, then
Σ[{v, y, z}] is a rainbow triangle and a subgraph of Σ − x, implying that
Σ−x is not unp. Hence, by Proposition 3.8, Σ is not a (x,Π1,Π2)-polar-cat.

Secondly, assume σ(yz) = . If Σ where a (x,Π1,Π2)-polar-cat for some
subgraphs Π1 and Π2, then there must be some color k such that

Σ− x = (Π1 − x)⊗k (Π2 − x). (18)

In particular Σ−x contains the subgraph Σ[{v, y, z}], for which Σ[{v, y, z}] =
Σ[{v, z}]⊗ Σ[{y}] holds. For this to be true at the same time as (18), we
must have that v, z ∈ V (Πi) for either i = 1 or i = 2, while y ∈ V (Πj) for j ∈
{1, 2} \ {i}. Since x ∈ V (Πi) as well, Πi contains the subgraph Σ[{x, v, z}],
which is a rainbow triangle. Thus Πi cannot possibly be explained by a
caterpillar tree, and Σ is not a (x,Π1,Π2)-polar-cat.

The case when σ(yz) = is almost identical to when σ(yz) = –– the
subgraph Πi will contain the rainbow triangle Σ[{x, v, y}] for either i = 1
or i = 2 –– so we omit the details. We have thus shown that if a polar-cat
has at least four edge-colors, then it has a fixpoint. By Theorem 4.6, there
is thus a unique galled tree that explains Σ.

We conclude this section by stating the following result for later refer-
ence, which is an immediate consequence of Theorem 4.6, Proposition 4.7
and Proposition 4.8.

55

Proposition 4.9. Let Σ be a polar-cat. If Σ has at least four edge-colors or
satisfies condition (C1) or (C2), then there is a unique galled tree (N, t) that
explains Σ. Additionally, the labeling map t of (N, t) is uniquely determined,
up to the label of the hybrid vertex of N .

We have thus given three sufficient conditions for a polar-cat being ex-
plained by a unique galled tree. We now consider the reverse question: when
are there at least two distinct galled trees that explain a polar-cat?

4.3 Non-uniqueness

Due to Proposition 4.9 a polar-cat Σ may only be explained by two or
more distinct galled trees if it has at most three edge-colors and fails both
condition (C1) and condition (C2). For ease of discussion, we note that a
(v,Ω1,Ω2)-polar-cat fails all these three conditions if and only if it

(C3) has two or three edge-colors and |V (Ωi)| = 2 while 2 ≤ |V (Ωj)| ≤ 4
for distinct i, j ∈ {1, 2},

as |V (Ω1)| ≥ 2 and |V (Ω2)| ≥ 2 are ensured by definition (and there are no
polar-cats with only one edge-color, as polar-cats are primitive). Still, as
we will show in this section, there are polar-cats satisfying condition (C3)
that are still explained by a unique galled tree. That is, the converse of
Proposition 4.9 is not true. We have not been able to formulate a succinct
condition that ensures a polar-cat may be explained by multiple galled trees.
Instead we revert to a full enumeration of all polar-cats that that satisfies
condition (C3), possible since condition (C3) in particular implies that the
polar-cat in question has at most five vertices.

We first limit the scope of our search in two ways. As we have noted
earlier (Observation 3.1) the only polar-cat on three vertices is a rainbow
triangle. In Example 4.1 we gave two distinct galled trees that explained
(the same) rainbow triangle. We may thus consider the case of three vertices
to be resolved: there is only one such polar-cat, and it is not explained by
a unique galled tree.

Secondly we note that the converse of Proposition 4.9 was proved for
the case of polar-cats with two edge-colors in [19, Prop. 6.13]. That is, if a
polar-cat Σ satisfies condition (C3) and has precisely two edge-colors, then
there are necessarily distinct galled trees that explain Σ. In fact, there’s
only two possible such polar-cats: one with four vertices, and one with five.
For completeness’ sake we depict these two edge-colored graphs in Figure 30,
together with distinct galled trees that explain them. See [19] for further
details.

56

Figure 30: The two polar cats Σ4 and Σ5 on four and five vertices respec-
tively, that satisfies condition (C3) and have only two edge-colors. Ad-
ditionally we give four distinct galled trees (N4, t4), (N

′
4, t

′
4), (N5, t5) and

(N ′
5, t

′
5). The reader may verify that G(N4, t4) = Σ4 = G(N ′

4, t
′
4) and

G(N5, t5) = Σ5 = G(N ′
5, t

′
5).

We can thus restrict ourself further, by only considering (v,Ω1,Ω2)-polar-
cats that

(C3’) has three edge-colors and |V (Ωi)| = 2 while |V (Ωj)| ∈ {3, 4} for dis-
tinct i, j ∈ {1, 2}.

By Theorem 3.2 there exist an elementary, quasi-discriminating and strong
galled tree (N, t) that explains a given (v,Ω1,Ω2)-polar-cat Σ satisfying
condition (C3’). Without loss of generality, assume V (Ω1) = {v, x} while
V (Ω2) = {v, y1, . . . , yk}, where k = 2 or k = 3. Additionally, Lemma 3.3
ensures that the vertices of Ω1 belong to one of the sides of the underlying
cycle of N , while the vertices of Ω2 belong to the other side. That is, by
condition (C3’), v and x belong to one of the sides of the underlying cycle
of N , while v, y1, ..., and yk belong the other side. Per construction, v is
the child of the unique hybrid η of N . Again without loss of generality, we
may further assume that parent(y2) ≻N parent(y1) and, in case k = 3, that
parent(y3) ≻N parent(y2). We have thus constructed two galled trees N(4)

and N(5) depicted in Figure 31 and proved the following.

Observation 4.1. If Σ is a polar-cat that satisfies condition (C3′) and thus,
has n ∈ {4, 5} vertices, then there is a quasi-discriminating labeling t of N(n)

such that G(N(n), t) ≃ Σ.

In fact, even the following stronger statement is true.

57

Figure 31: The two galled trees N(4) and N(5).

Proposition 4.10. If Σ is a polar-cat that satisfies condition (C3’) and
thus, has n ∈ {4, 5} vertices, then there is a quasi-discriminating labeling t
of N := N(n) such that t(parent(x)) = , t(ρN) = , t(u) = for some
vertex u of N , and G(N(n), t) ≃ Σ.

Proof. Let Σ be a polar-cat that satisfies condition (C3’). Suppose Σ has n
vertices and put N := N(n). By Observation 4.1 there is a labeling t of N
such that G(N, t) ≃ Σ. We construct another labeling t′ of N by putting

t′(u) :=


if t(u) = t(parent(x))

if t(u) = t(ρN)

if t(u) /∈ {t(parent(x)), t(ρN)} and u /∈ L(N)

⊙ if u ∈ L(N)

for each vertex u of N . Note that by condition (C3’) respectively construc-
tion it follows that G(N, t) and G(N, t′) (respectively) has precisely three
edge-colors. Thus the definition of t′ ensures that for vertices u, u′ ∈ V (N)
we have

t(u) = t(u′) if and only if t′(u) = t′(u′). (19)

The definition of t′ ensures that t′(parent(x)) = and t′(ρN) = .
Furthermore, since G(N, t) has three edge-colors, there must be some in-
ternal vertex u of N with t(u) /∈ {t(parent(x)), t(ρN)}, hence there exists
some vertex u such that t′(u) = . It thus remains only to show that
G(N, t) ≃ G(N, t′).

For brevity, introduce V := L(N) and the edge-coloring maps σ and σ′

of G(N, t) and G(N, t′), respectively, so that G(N, t) = (V, σ) and G(N, t′) =
(V, σ′). To conclude that G(N, t) ≃ G(N, t′) we show that

σ(uw) = σ(u′w′) ⇐⇒ σ′(uw) = σ′(u′w′)

for all u,w, u′, w′ ∈ V such that u ̸= w and u′ ̸= w′, i.e. we show
that the identity map on

(
V
2

)
is an isomorphism of G(N, t) and G(N, t′).

58

Note that for any distinct u,w ∈ V we have t(lca(u,w)) = σ(uw) and
t′(lca(u,w)) = σ′(uw). That is, σ(uw) = σ(u′w′) is satisfied if and only if
t(lca(u,w)) = t(lca(u′, w′)). By (19), t(lca(u,w)) = t(lca(u′, w′)) holds if
and only if t′(lca(u,w)) = t′(lca(u′, w′)), which is equivalent to σ′(uw) =
σ(u′w′). We thus conclude that G(N, t) ≃ G(N, t′), from which the state-
ment follows.

As a result of Proposition 4.10 we may first enumerate all possible quasi-
discriminating labelings ti of N(n) for n = 4 and n = 5 where ti(parent(x)) =

and ti(ρN(n)
) = . For ease of discussion, we call such a labeling of N(n) a

(,)-fixed labeling. We then consider the edge-colored graphs G(N(n), ti).
The resulting polar-cats with three edge-colors are the only polar-cats (up to
isomorphism) that satisfy condition (C3’). To generate quasi-discriminating
labelings of N(4) and N(5) we note that the labels of parent(y1), parent(y2)
and, possibly, parent(y3) are the only three labels that are to be determined
for each (,)-fixed labeling ti. To this end, consider an ordered tuple
(c1, c2, . . . , ck) of colors where k ∈ {4, 5}, c1 = , c2 = and ci ̸= ci+1 for
i = 1, . . . , k − 1. We call such a tuple a labeling array or, if k needs to be
emphasized, a k-labeling array. Clearly, a (,)-fixed quasi-discriminating
labeling t of N(k), for k ∈ {4, 5}, can be constructed from a k-labeling array
(c1, c2, . . . , ck) by defining

t(u) :=


if u = parent(x)

if u = ρN(k)

ci if u = parent(yi)

⊙ if u is a leaf

for each vertex u of N(k). For the hybrid vertex η of N(k) the label may
be arbitrarily defined. Conversely, given a (,)-fixed quasi-discriminating
labeling t of N(n), there is a corresponding n-labeling array (c1, . . . , cn) de-
fined by putting c1 = , c2 = and ci := t(parent(yi)) for i = 1, . . . , n− 2.
Intuitively speaking, a labeling array encodes the labels of the vertices of
the underlying cycle of N(n) starting at parent(x) and proceeding clock-wise.
Stated more succinctly, we have the following.

Observation 4.2. There is a 1-to-1 correspondence between 4-labeling ar-
rays and (,)-fixed quasi-discriminating labelings si of N(4). Similarly,
there is a 1-to-1 correspondence between 5-labeling arrays and (,)-fixed
quasi-discriminating labelings ti of N(5).

To give an example, the 5-labeling array (, , , ,) corresponds to
the labeling t5 of N(5) depicted in Figure 30 (note N5 = N(5)).

The algorithm genLA provides a way of generating distinct k-labeling
arrays; we are interested only in the case of k = 4 and k = 5. The pro-
cedure is rather simple: at each step we extend a set of i-labeling arrays

59

Algorithm 1: The algorithm genLA, used for generating labeling
arrays.

Input: Integer k ≥ 3, array N of new colors.
Output: A set of all possible labeling arrays of length k.

1 begin
2 currentLAs ← array with the single labeling array (,)
3 for 1, 2, . . . , k − 2 do
4 longerLAs ← empty array
5 for LA in currentLAs do
6 Extend LA with next color of N not in LA and add to

longerLAs

7 for each used color c except the last element of LA do
8 Extend LA with c and add to longerLAs

9 Replace currentLAs with longerLAs

10 return currentLAs

to a larger set of (i + 1)-labeling arrays by, for each i-labeling array L, (1)
extending L by introducing a color not yet appearing in L, and (2) extend-
ing L by repeating any one color appearing in L, as long as it is not same
color as the last color of L. Step (1) is performed on row 7, while step (2)
is performed on rows 8–9. It is clear that after each iteration i, the array
currentLAs will contain only (i + 2)-labeling arrays, thus the output will
be an array containing k-labeling arrays, where k is given as output. As
a smaller technicality, we assume that new colors are introduced in the or-
der , and i.e. that the genLA is called with the array N = [, ,].
This is required to align our output with Proposition 4.10. We visualize
the procedure for 4- and 5-labeling arrays in Figure 32 and Figure 33, re-
spectively. Moreover, we provide an implementation of genLA (in Python)
hosted at (https://github.com/AnnaLindeberg/kLabelingArrays [25]),
although the two figures should suffice for most readers. We collect the
above discussion in a lemma, for later reference.

Lemma 4.11. genLA(k, [, ,]) correctly outputs the set of all k-labeling
arrays, where k ∈ {4, 5}. In particular, the output will include every k-
labeling array whose elements are all members of the set { , , }.

A call to genLA(4, [, ,]) yields five 4-labeling arrays, namely:

L
(4)
1 = (, , ,), L

(4)
2 = (, , ,), L

(4)
3 = (, , ,),

L
(4)
4 = (, , ,), and L

(4)
5 = (, , ,),

60

https://github.com/AnnaLindeberg/kLabelingArrays

Figure 32: Enumeration of all (,)-fixed quasi-discriminating labelings
si of N(4). The lighter the bounding box, the fewer vertices are yet to
be labeled. In the end, there are five distinct si, out of which three have
precisely three distinct labels. For readability, the leaves are not labeled but
the underlying tree is still N(4) of Figure 31.

while a call to genLA(5, [, ,]) yields the following fifteen 5-labeling arrays:

L
(5)
1 = (, , , ,), L

(5)
2 = (, , , ,), L

(5)
3 = (, , , ,),

L
(5)
4 = (, , , ,), L

(5)
5 = (, , , ,), L

(5)
6 = (, , , ,),

L
(5)
7 = (, , , ,), L

(5)
8 = (, , , ,), L

(5)
9 = (, , , ,),

L
(5)
10 = (, , , ,), L

(5)
11 = (, , , ,), L

(5)
12 = (, , , ,),

L
(5)
13 = (, , , ,), L

(5)
14 = (, , , ,), andL

(5)
15 = (, , , ,)

Note that Figure 32 and Figure 33 presents these five respectively fifteen
labeling arrays by their counterpart as a (,)-fixed quasi-discriminating
labeling of N(n) –– as allowed by Observation 4.2. Formally speaking, we
put si as the (,)-fixed quasi-discriminating labeling of N(4) that cor-

responds to L
(4)
i for each i = 1, . . . , 5. Similarly, ti is the (,)-fixed

quasi-discriminating labeling of N(5) that corresponds to L
(5)
i for each i =

1, . . . , 15. See also Table 1 and Table 2.
Now considering the polar-cats G(N(4), si) respectively G(N(5), ti) and

taking the number of edge-colors into account there are, as easily veri-
fied by the reader, three respectively seven polar-cats that satisfy condition
(C3’). On four vertices, these are G(N(4), s2), G(N(4), s3) and G(N(4), s4).
Those with five vertices are G(N(5), t2), G(N(5), t3), G(N(5), t4), G(N(5), t6),
G(N(5), t7), G(N(5), t9) and G(N(5), t10). All other si and ti yield edge-
colored graphs either with two edge-colors only, or with more than three

61

Figure 33: Enumeration of all (,)-fixed quasi-discriminating labelings
ti of N(5). The lighter the bounding box, the fewer vertices are yet to
be labeled. In the end, there are 15 distinct ti, out of which seven have
precisely three distinct labels. For readability, the leaves are not labeled but
the underlying tree is still N(5) of Figure 31.

62

L
(4)
i (N(4), si) G(N(4), si) (N ′

i , s
′
i)

L
(4)
2 = (, , ,)

L
(4)
3 = (, , ,)

L
(4)
4 = (, , ,)

Table 1: Every 4-labeling array L
(4)
i with three distinct elements, presented

with their corresponding (,)-fixed labeling si, the edge-colored graph
G(N(4), si) and an additional galled tree (N i′

(4), s
′
i) such that G(N i′

(4), s
′
i) =

G(N(4), si).

edge-colors, which contradicts condition (C3’). These three and seven edge-
colored graphs are presented in Table 1 and Table 2, respectively, alongside
their labeling of N(n). For later, we note the following, whose proof can be
informally verified by the reader by inspecting Figure 34.

Lemma 4.12. The edge-colored graphs G(N(4), s2) and G(N(4), s4) are iso-
morphic, and the edge-colored graphs G(N(5), t4) and G(N(5), t9) are isomor-
phic.

Proof. This is a trivial exercise in constructing explicit isomorphisms. Let
V4 = {x, v, y1, y2} and V5 = {x, v, y1, y2, y3}. For G(N(4), s2) ≃ G(N(4), s4)

we define φ :
(
V4

2

)
→

(
V4

2

)
by the following mappings:

{x, v} 7→ {y2, x} {x, y1} 7→ {y2, v} {x, y2} 7→ {y2, y1}
{v, y1} 7→ {x, v} {v, y2} 7→ {x, y1} {y1, y2} 7→ {v, y1}

For G(N(5), t4) ≃ G(N(5), t9) we define φ′ :
(
V5

2

)
→

(
V5

2

)
by:

{x, v} 7→ {y3, x} {x, y1} 7→ {y3, y1} {x, y2} 7→ {y3, v}
{x, y3} 7→ {y3, y2} {v, y1} 7→ {x, y1} {v, y2} 7→ {x, v}
{v, y3} 7→ {x, y2} {y1, y2} 7→ {y1, v} {y1, y3} 7→ {y1, y2}
{y2, y3} 7→ {v, y2}

The trivial but tedious verification that φ and φ′ are indeed isomorphims of
the edge-colored graphs in question is left to the reader.

63

L
(5)
i ti G(N(5), ti) (N i′

(5), s
′
i)

L
(5)
2 = (, , , ,)

L
(5)
3 = (, , , ,)

L
(5)
4 = (, , , ,)

L
(5)
6 = (, , , ,)

L
(5)
7 = (, , , ,)

L
(5)
9 = (, , , ,)

L
(5)
10 = (, , , ,)

Table 2: Every 5-labeling array L
(5)
i with three distinct elements only,

presented with their respective corresponding (,)-fixed labeling ti, the
edge-colored graph G(N(5), ti) and, where possible, an additional galled tree

(N i′

(4), s
′
i) such that G(N i′

(4), s
′
i) = G(N(4), si). For proof that none of the gray

cells may be filled correctly, see Theorem 4.14

64

Figure 34: Informal verification that G(N(4), s2) ≃ G(N(4), s4) respectively
G(N(5), t4) ≃ G(N(5), t9) indeed holds. Note that the two rightmost graphs
are redrawn in comparison to their respective appearance in Table 1 and
Table 2.

To characterize polar-cats that are explained by different galled trees we
need the following

Definition 4.13. Let Σ denote a rainbow triangle and put

F :=
{
Σ ,G(N(4), s1),G(N(4), s2),G(N(4), s3),G(N(5), t1),G(N(5), t4)

}
.

Note that G(N(4), s1) = Σ4 and G(N(5), t1) = Σ5 can be found in Figure 30,
G(N(4), s2) and G(N(4), s3) in Table 1 and G(N(5), t4) in Table 2.

Theorem 4.14. Let Σ be a polar-cat. There are at least two non-isomorphic
galled trees that explain Σ if and only if Σ is isomorphic to one of the edge-
colored graphs in F .

Proof. For the “if”-direction it suffices to give two distinct galled trees that
explain each of the six polar-cats in F . These are depicted in Figure 27
(rainbow triangle), in Figure 30 (G(N(4), s1) and G(N(5), t1)), in Table 1
(G(N(4), s2) and G(N(4), s3)) and, lastly, in Table 2 (G(N(5), t4)).

For the “only if”-direction, assume that Σ is a polar-cat that is explained
by (at least) two distinct galled trees. By Proposition 4.9 this happens only
if Σ satisfies condition (C3). If Σ has three vertices only, then it must by
Observation 3.1 be (isomorphic to) a rainbow triangle. If it has only two

65

edge-colors then it is isomorphic to G(N(4), s1) or G(N(5), t1). If Σ has at
least four vertices and at least three edge-colors in addition to satisfying
condition (C3) it, in fact, satisfies condition (C3’). From here on assume so.
In particular, Σ contains four or five vertices.

Now, Proposition 4.10, Observation 4.2 and Lemma 4.11 we have Σ ≃
G(N(4), si) for i ∈ {2, 3, 4} if Σ has four vertices, and Σ ≃ G(N(5), tj) for
j ∈ {2, 3, 4, 6, 7, 9, 10} if Σ has five vertices. Since Lemma 4.12 ensures
G(N(4), s2) ≃ G(N(4), s4) we have established the result for polar-cats with
four vertices. For five-vertex polar-cats we note that Lemma 4.12 also states
that G(N(5), t4) ≃ G(N(5), t9), so it remains only to show that G(N(5), ti) is
explained by a unique galled tree for each i ∈ {2, 3, 6, 7, 10}.

By Theorem 4.6 it suffices to show that G(N(5), ti) has a fixpoint for
each i ∈ {2, 3, 6, 7, 10}. To this end we need to establish that, for any fixed
i ∈ {2, 3, 6, 7, 10}, the graph Σi := G(N(5), ti) is not a (a,Ω1,Ω2)-polar-
cat for a ∈ {x, y1, y2, y3}. For each yj ∈ {y1, y2, y3} Proposition 3.8 and
Theorem 2.5 implies that it suffices to show that Σi − yj is not unp by
either showing that Σi − yj contains a rainbow triangle, or by showing that
some monochromatic subgraph of Σi − yj is not a cograph i.e. that some
monochromatic subgraph of Σi − yj contains a P4. In Table 3, we provide
such a rainbow triangle or P4 in Σi− yj for each i ∈ {2, 3, 6, 7, 10} and each
j ∈ {1, 2, 3}.

As it turns out, Σi − x is unp for each i ∈ {2, 3, 6, 7, 10}, so here we
instead prove that Σi − x cannot be a (x,Ω1,Ω2)-polar-cat by showing that
one of Ω1 and Ω2 cannot be unp and thus not explained by a caterpillar
tree. Note that for each i ∈ {2, 3, 6, 7, 10}, we have Σi − x = Σi[{y3}] ⊗k

Σi[{v, y1, y2}] for some color k. Hence Σi may only be a (x,Ω1,Ω2)-polar
cat if {Ω1,Ω2} = {Σi[{x, y3}],Σi[{x, v, y1, y2}]}. Table 3 provides a rain-
bow triangle in Σi[{x, v, y1, y2}] or points out that some monochromatic
subgraph of Σi[{x, v, y1, y2}] contains a P4, for each i ∈ {2, 3, 6, 7, 10}. By
Proposition 3.8, this means that either Ω1 or Ω2 is not unp, and Σi is not
a (x,Ω1,Ω2)-polar-cat. We have thus established that Σi has a fixpoint for
each i ∈ {2, 3, 6, 7, 10}, which concludes the proof.

Theorem 4.6 and Theorem 4.14 can also be combined to directly obtain
the following.

Theorem 4.15. Let Σ be a polar-cat. The following statements are equiv-
alent.

1. There is a unique galled tree (N, t) that explains Σ.

2. Σ has a fixpoint.

3. Σ is not isomorphic to any edge-colored graph in the set F .

66

Σ
(5)
i = G(N(5), ti) Violation

Σ
(5)
2 :

x (x, v, y1) in Ωi|
y1 P4 in

(
Σ
(5)
2 − y1

)∣∣∣
y2 (x, v, y1) in Σ

(5)
2 − y2

y3 (x, v, y1) in Σ
(5)
2 − y3

Σ
(5)
3 :

x (x, v, y2) in Ωi|
y1 (x, v, y2) in Σ

(5)
3 − y1

y2 P4 in
(
Σ
(5)
3 − y2

)∣∣∣
y3 (x, v, y2) in Σ

(5)
3 − y3

Σ
(5)
6 :

x P4 in Ωi|
y1 (x, v, y3) in Σ

(5)
6 − y1

y2 (x, v, y3) in Σ
(5)
6 − y2

y3 P4 in
(
Σ
(5)
6 − y3

)∣∣∣
Σ
(5)
7 :

x (x, v, y1) in Ωi|
y1 (x, v, y3) in Σ

(5)
7 − y1

y2 (x, v, y1) in Σ
(5)
7 − y2

y3 (x, v, y1) in Σ
(5)
7 − y3

Σ
(5)
10 :

x (x, v, y1) in Ωi

y1 (x, v, y3) in Σ
(5)
10 − y1

y2 (x, v, y3) in Σ
(5)
10 − y2

y3 (x, v, y1) in Σ
(5)
10 − y3

Table 3: Collection of, so to speak, ‘certificates’ on why G(N(5), ti) is not a
(a,Ω1,Ω2)-polar-cat for a ∈ {x, y1, y2, y3}. The notation (a, b, c) indicates
that the vertices a, b and c induce a rainbow triangle. See the proof of
Theorem 4.14 for details.

67

Recall, by definition, (N, t) ≃ (N ′, t′) implies G(N, t) ≃ G(N ′, t′). As
seen in Example 2.17, the converse is, in general, not satisfied. Nevertheless,
Theorem 4.15 provides conditions under which G(N, t) ≃ G(N ′, t′) implies
(N, t) ≃ (N ′, t′) for polar-cats G(N, t) and G(N ′, t′).

Corollary 4.15.1. Suppose Σ and Σ′ are polar-cats such that there is no
Σ′′ ∈ F which satisfies Σ′′ ≃ Σ or Σ′′ ≃ Σ′. Let (N, t) and (N ′, t′) be
galled trees that explains Σ and Σ′, respectively. Then Σ ≃ Σ′ if and only if
(N, t) ≃ (N ′, t′).

With this, we consider the question of when a polar-cat is explained by a
unique galled tree to be resolved.

68

5 Future research

In this thesis we have provided two main characterizations: which primitive
edge-colored graphs are explained by at least one galled tree (Theorem 3.2)
and which primitive edge-colored graphs are explained by, up to isomor-
phism, precisely one galled tree (Theorem 4.15). These characterizations
are direct generalizations of Theorem 6.9 (see also [21, Thm. 3.7]) respec-
tively Proposition 6.13 of [19], although the wording of the statements and
the proof strategies have differed at times. It is natural to believe that fur-
ther results of [19] are possible to generalize. In particular, it is reasonable
that the following conjecture would hold true.

Conjecture 5.1. An edge-colored graph Σ is explained by a galled tree if
and only if Σ[M]/Mmax(Σ[M]) is a polar-cat for every prime module M of
Σ. Moreover, it can be verified in polynomial time whether a given edge-
colored graph is explained by some galled tree and if so, then a such a galled
tree can be constructed in polynomial time.

To understand the statement above, some terminology needs to be intro-
duced; let Σ = (V, σ) denote some edge-colored graph. The set Mmax(Σ)
contains the proper, strong and inclusion-maximal modules of Σ. By defi-
nition Mmax(Σ) is a partition of V . Note also that if M and M ′ are disjoint
modules Σ, then σ(xy) = σ(x′y′) for all edges x, x′ ∈ M and all y, y′ ∈ M ′

[8, Lem. 4.11]. We may thus define the quotient graph Σ/Mmax(Σ) as the
edge-colored graph with vertex set V ′ := Mmax(Σ) and edge-coloring σ′ de-
fined by putting σ′(M,M ′) := σ(x, y) for all M,M ′ ∈ V ′, where x ∈ M
and y ∈M ′ are chosen arbitrarily. If (the first statement of) Conjecture 5.1
where to be proved with the same proof-strategy as Theorem 7.5 of [19] the
concept of prime vertex replacement from [3] would need a counterpart for
edge-colored graphs. In other words, even though it is not far-fetched to
believe Conjecture 5.1 holds, there will for certain be an extensive workload
to prove so.

In extension to (and partly relying on) Conjecture 5.1 it would be of
interest to further study the algorithmic aspects of galled trees that explain
edge-colored graphs, as has been done for graphs without edge-colors in
[20]. There exist a multitude of NP-complete and NP-hard problems for
edge-colored graphs that could, potentially, be polynomial time-solvable on
graphs G(N, t) by making use of the labeled galled tree (N, t). One exam-
ple of this type of difficult problems include finding so-called colored cuts
i.e. a partition of the vertex set of an edge-colored graph into two sets A
and B such that the number of edge-colors of edges between A and B are
either minimized or maximized. In practice, colored cuts are useful in, for
example, image segmentation: see e.g. [12]. Other interesting NP-complete
(respectively NP-hard) problems with varying level of applicability can be
found in e.g. [1, 17, 23].

69

On the more theoretical side of things, there is a previously unmentioned
characterization of unp edge-colored graphs in [22], which might be possible
to generalize to the case of galled trees. The characterization in question
states that an edge-colored graph Σ is unp if and only if the monochromatic
subgraph Σ|k is a cograph for each edge-color k and the so-called set of
1-clusters C1(Σ) of Σ forms a hierarchy (i.e. the ⊆-relation on elements
of C1(Σ) is a reflexive and transitive). See also Theorem 2.5. We do not
wish to formally define the set C1(Σ), as it would be a rather technical
detour, but note that the condition in essence states that the respective
modular decomposition of the monochromatic subgraphs is, so to speak,
compatible with the modular decomposition of an edge-colored graph that
is explained by a tree. Since the set of 1-clusters of a galled tree was recently
characterized rather neatly [18, Thm. 8.9] we see a potential opening in this
line of study.

Lastly, we point out that there are two possibilities for even further gen-
eralizations than we have managed here: one could work with more general
objects than edge-colored graphs or with more general objects than galled
trees. Exchanging edge-colored graphs for 2-structures would, for example,
be a natural progression of the topic of this thesis. If one would explore how
other networks than galled trees can explain edge-colored graphs (or graphs
without edge-colors, or 2-structures) there are two important aspects to keep
in mind; first and foremost, the network in question must have a unique least
common ancestor defined for each pair of leaves (known as lca-networks in
[18]). Secondly, if the end-goal of algorithmic applicability is to be retained,
then we would expect that the network may not be ‘too’ complicated. At
the very least, one should consider the possibility of utilizing the networks
in algorithms in tandem with the work towards characterizations of graphs
explained by such networks.

70

References

[1] A. Abouelaoualim et al. “Paths and trails in edge-colored graphs”. In:
Theoretical Computer Science 409.3 (2008), pp. 497–510. issn: 0304-
3975. doi: 10.1016/j.tcs.2008.09.021.

[2] A. Blass. “Graphs with unique maximal clumpings”. In: Journal of
Graph Theory 2.1 (1978), pp. 19–24. doi: 10.1002/jgt.3190020104.

[3] C. Bruckmann, P. Stadler, and M. Hellmuth. “From modular decom-
position trees to rooted median graphs”. In: Discrete Applied Mathe-
matics 310 (2022), pp. 1–9. issn: 0166-218X. doi: 10.1016/j.dam.
2021.12.017.

[4] D. Corneil, H. Lerchs, and L. Stewart Burlingham. “Complement re-
ducible graphs”. In: Discrete Applied Mathematics 3.3 (1981), pp. 163–
174.

[5] A. Cournier and M. Habib. “A new linear algorithm for modular de-
composition”. In: Trees in Algebra and Programming—CAAP’94: 19th
International Colloquium Edinburgh, UK, April 11–13, 1994 Proceed-
ings 19. Springer. 1994, pp. 68–84.

[6] R. Diestel. Graph Theory. 5th Ed. Graduate Texts in Mathematics.
Springer-Verlag Berlin Heidelberg, 2017.

[7] A. Ehrenfeucht and G. Rozenberg. “Primitivity is hereditary for 2-
structures”. In: Theoretical Computer Science 70.3 (1990), pp. 343–
358. issn: 0304-3975. doi: 10.1016/0304-3975(90)90131-Z.

[8] A. Ehrenfeucht and G. Rozenberg. “Theory of 2-structures, part I:
Clans, basic subclasses, and morphisms”. In: Theoretical Computer
Science 70.3 (1990), pp. 277–303. issn: 0304-3975. doi: 10.1016/
0304-3975(90)90129-6.

[9] A. Ehrenfeucht and G. Rozenberg. “Theory of 2-structures, part II:
Representation through labeled tree families”. In: Theoretical Com-
puter Science 70.3 (1990), pp. 305–342. issn: 0304-3975. doi: 10 .
1016/0304-3975(90)90130-A.

[10] A. Ehrenfeucht et al. “An O(n2) Divide-and-Conquer Algorithm
for the Prime Tree Decomposition of Two-Structures and Modular
Decomposition of Graphs”. In: Journal of Algorithms 16.2 (1994),
pp. 283–294. issn: 0196-6774. doi: 10.1006/jagm.1994.1013.

[11] J. Engelfriet et al. “Characterization and complexity of uniformly
nonprimitive labeled 2-structures”. In: Theoretical Computer Science
154.2 (1996), pp. 247–282. issn: 0304-3975. doi: 10 . 1016 / 0304 -

3975(94)00272-X.

71

https://doi.org/10.1016/j.tcs.2008.09.021
https://doi.org/10.1002/jgt.3190020104
https://doi.org/10.1016/j.dam.2021.12.017
https://doi.org/10.1016/j.dam.2021.12.017
https://doi.org/10.1016/0304-3975(90)90131-Z
https://doi.org/10.1016/0304-3975(90)90129-6
https://doi.org/10.1016/0304-3975(90)90129-6
https://doi.org/10.1016/0304-3975(90)90130-A
https://doi.org/10.1016/0304-3975(90)90130-A
https://doi.org/10.1006/jagm.1994.1013
https://doi.org/10.1016/0304-3975(94)00272-X
https://doi.org/10.1016/0304-3975(94)00272-X

[12] L. Faria et al. “On Colored Edge Cuts in Graphs”. In: Anais do I
Encontro de Teoria da Computação. Porto Alegre: SBC, 2016, pp. 780–
783. doi: 10.5753/etc.2016.9764.

[13] P. Gambette, V. Berry, and C. Paul. “Quartets and unrooted phylo-
genetic networks”. In: Journal of Bioinformatics and Computational
Biology 10.04 (2012). doi: 10.1142/S0219720012500047.

[14] P. Gambette, K.T. Huber, and S. Kelk. “On the challenge of recon-
structing level-1 phylogenetic networks from triplets and clusters”. In:
J. Math. Biol. 74 (2017), pp. 1729–1751. doi: 10.1007/s00285-016-
1068-3.

[15] M. Habib and C. Paul. “A survey of the algorithmic aspects of modular
decomposition”. In: Computer Science Review 4.1 (2010), pp. 41–59.
issn: 1574-0137. doi: 10.1016/j.cosrev.2010.01.001.

[16] P. Halmos. Naive Set Theory. 1st Ed. Undergraduate Texts in Mathe-
matics. Springer New York, 1998. doi: 10.1007/978-1-4757-1645-0.

[17] P. Hell, Y. Manoussakis, and Z. Tuza. “Packing problems in edge-
colored graphs”. In: Discrete Applied Mathematics 52.3 (1994),
pp. 295–306. issn: 0166-218X. doi: 10.1016/0166-218X(94)90148-1.

[18] M. Hellmuth, D. Schaller, and P. Stadler. Clustering Systems of Phy-
logenetic Networks. 2022. arXiv: 2204.13466 [q-bio.PE].

[19] M. Hellmuth and GE. Scholz. “From modular decomposition trees to
level-1 networks: Pseudo-cographs, polar-cats and prime polar-cats”.
In: Discrete Applied Mathematics 321 (2022), pp. 179–219. issn: 0166-
218X. doi: 10.1016/j.dam.2022.06.042.

[20] M. Hellmuth and GE. Scholz. Linear Time Algorithms for NP-hard
Problems restricted to GaTEx Graphs. 2023. arXiv: 2306 . 04367

[cs.DM].

[21] M. Hellmuth and GE. Scholz. Resolving Prime Modules: The Structure
of Pseudo-cographs and Galled-Tree Explainable Graphs. 2022. arXiv:
2211.16854 [math.CO].

[22] M. Hellmuth, P. Stadler, and N. Wieseke. “The mathematics of
xenology: di-cographs, symbolic ultrametrics, 2-structures and tree-
representable systems of binary relations.” In: Journal of mathematical
biology 1.75 (2017), pp. 199–237. doi: 10.1007/s00285-016-1084-3.

[23] Z. Huang and X. Li. “Hardness results for three kinds of colored con-
nections of graphs”. In: Theoretical Computer Science 841 (2020),
pp. 27–38. issn: 0304-3975. doi: 10.1016/j.tcs.2020.06.030.

[24] D. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Con-
cepts, Algorithms and Applications. Cambridge University Press, 2010.
doi: 10.1017/CBO9780511974076.

72

https://doi.org/10.5753/etc.2016.9764
https://doi.org/10.1142/S0219720012500047
https://doi.org/10.1007/s00285-016-1068-3
https://doi.org/10.1007/s00285-016-1068-3
https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/10.1007/978-1-4757-1645-0
https://doi.org/10.1016/0166-218X(94)90148-1
https://arxiv.org/abs/2204.13466
https://doi.org/10.1016/j.dam.2022.06.042
https://arxiv.org/abs/2306.04367
https://arxiv.org/abs/2306.04367
https://arxiv.org/abs/2211.16854
https://doi.org/10.1007/s00285-016-1084-3
https://doi.org/10.1016/j.tcs.2020.06.030
https://doi.org/10.1017/CBO9780511974076

[25] A. Lindeberg. Generate k-labeling arrays. https : / / github . com /
AnnaLindeberg/kLabelingArrays. July 19, 2023.

[26] R. McConnell and J. Spinrad. “Modular decomposition and transi-
tive orientation”. In: Discrete Mathematics 201.1 (1999), pp. 189–241.
issn: 0012-365X. doi: 10.1016/S0012-365X(98)00319-7.

[27] R. Möhring. “Algorithmic Aspects of Comparability Graphs and Inter-
val Graphs”. In: Graphs and Order: The Role of Graphs in the Theory
of Ordered Sets and Its Applications. Ed. by I. Rival. Springer Nether-
lands, 1985, pp. 41–101. isbn: 978-94-009-5315-4. doi: 10.1007/978-
94-009-5315-4_2.

[28] L. N. Shevrin and N. D. Filippov. “Partially ordered sets and their
comparability graphs”. In: Siberian Mathematical Journal 11 (1970),
pp. 497–509. doi: 10.1007/BF00967091.

[29] M. Tedder et al. “Simpler Linear-Time Modular Decomposition Via
Recursive Factorizing Permutations”. In: Automata, Languages and
Programming. Ed. by L. Aceto et al. Springer Berlin Heidelberg, 2008,
pp. 634–645. isbn: 978-3-540-70575-8.

73

https://github.com/AnnaLindeberg/kLabelingArrays
https://github.com/AnnaLindeberg/kLabelingArrays
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1007/978-94-009-5315-4_2
https://doi.org/10.1007/978-94-009-5315-4_2
https://doi.org/10.1007/BF00967091

List of corrections

In Section 2.3

On page 14, the sentence “As noted in [19] condition (N4) implies that ...”
should instead say “As noted in [19] condition (N3) and (N4) implies that
...”.

In proof of Lemma 3.7

The last sentence (“Since C was arbitrarily chosen, we thus conclude that
N has a single cycle C such that ρC = ρN .”) in the first paragraph of the
proof on page 42 is a faulty conclusion. It may, correctly, be replaced with
the following two sentences:

“Since C was arbitrarily chosen, we thus conclude that any cycle C of N
satisfies ρC = ρN . Moreover, by condition (N4) in the definition of a galled
tree, any two cycles of N are edge-disjoint.”

In the paragraph that follows, C is defined to be “the cycle” (of N),
which then must be replaced with “a cycle” (of N). The remainder of the
proof and in particular the argument that LC(ρN) = ∅ is nevertheless still
valid. In particular, LC(ρN) = ∅ and |LC(v)| = 1 for each v ∈ V 0(C)\{ρN}
implies that there is no cycle in N other than C.

In proof of Proposition 4.8

On page 55, the following sentence appears after equation (18):
“For this to be true at the same time as (18), we must have that v, z ∈

V (Πi) for either i = 1 or i = 2, while y ∈ V (Πj) for j ∈ {1, 2} \ {i}.”
However, the second part of the sentence is not necessarily true; possibly

y ∈ V (Πi). Nevertheless, whether y ∈ V (Π1) or y ∈ V (Π2), we still have
that v, z, x ∈ V (Πi) for i = 1 or i = 2, hence Πi contains the rainbow
triangle Σ[{x, v, z}], and the rest of the proof is correct as-is.

	Introduction
	Preliminaries
	Graphs
	Complete edge-colored graphs
	Related concepts

	Galled trees
	Modules and modular decomposition

	Galled trees and primitive edge-colored graphs
	Definition, examples and main statement
	Proof of Theorem 3.2 and related results

	Uniqueness
	Structure implied from being caterpillar-explainable
	Sufficient conditions for uniqueness
	Non-uniqueness

	Future research
	References

