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Introduction
This thesis is the culmination of an study of the paper[3] titled “Formes modu-

laires et representations de GL(2)” (in English: modular forms and representations
of GL(2) ) authored by P. Deligne, which aims to complement Robert’s report[10]
on Jacquet-Langlands’ [5]. Given the advanced nature of the original works and the
author’s limitations, this thesis will primarily concentrate on comprehending the
foundational aspects of the subject matter.

The initial step involves introducing the concept of adelic numbers. Adelic is
a fundamental concept in the study of automorphic forms. In the context of Adelic
numbers, an essential component is the consideration of p-adic numbers denoted as
Qp. These p-adic numbers are completions of the rational numbers Q with respect
to the p-adic valuation. The real number R can also be regarded as a special case of
p-adic numbers, when we take p = ∞. Ostrowski’s theorem states that p-adic is the
only non-trivial absolute value on Q when regarding the real absolute value as | · |∞,
And the ring of adelic numbers provide us the theory to study all the valuation at
the same time.

From the classical point of view, modular forms are a class of complex analytic
functions that possess specific symmetries and growth conditions. Later on, E. Hecke
made a significant advancement by associating L-functions with modular forms.
He demonstrated[4] that if a modular form satisfies certain conditions and is an
eigenfunction of a specific operator, then its associated L-function possesses an Euler
product expansion. This motivation prompts a study of modular forms from the
point of representation theory and within the framework of adeles[9]. Jacquet and
Langlands [5] introduced the significant notion of an admissible representation.

Outline
The first section provides essential background information that serves as a

foundation for the subsequent parts. At the beginning, we introduce the concept of
topological groups and illustrate it by using GLn(F ) as a prominent example. More-
over, some important subgroups, including discrete subgroups, totally disconnected
groups are studied. In addition, we present some pertinent propositions, accom-
panied by either proofs or direct statements. These propositions serve as valuable
tools for subsequent analysis or aid in enhancing understanding of the topic. The
subsequent three sections primarily focus on modular forms. In particular, the uti-
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lization of linear fractional transformations enables us to examine modular forms
from two distinct perspectives: the upper half-plane and homogeneous coordinates.
The classification of these transformations subsequently leads us to the definition
and exploration of cusps. Then we define the cusps and show an example in section
1.3. Next, we define the fundamental domain, which serves as a fundamental con-
cept for modular forms. Concluding this section, we discuss Haar measure, which
is proven to exist on locally compact groups. Haar measure enables us to define
integrals and measure sets on such groups.

In the second section, we study p-adic numbers. We will depart from Deligne’s
approach to define p-adic numbers, which employs the language of projective limits.
Instead, we start with the concept of valuation and consider Qp as the completion
of Q with respect to the p-adic absolute value. Then we introduce the concept of
the restricted product, which preserves the locally compact nature of the individual
components within the product. This ultimately leads us to the establishment of the
ring of adelic numbers. Alongside the definitions, we also present several topological
properties associated with these structures.

In the Last two sections, we define continous representations and study a certein
class of it, which is called admissible representations. Furthermore, we introduce
modular forms defnined on different groups and discuss admmissible representations
on it.
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1 Topological Groups

1.1 Definitions and Results

Let (G, T ) be a Hausdorff topological space, we call it a topological group if the
group operations i.e. the multiplication G × G → G : (x, y) $→ xy and the inverse
map G → G : g $→ g−1 are continuous.

Let X be a Hausdorff topological space and G acts on X. The action is transitive
if there is only one orbit. Denote the action by a : G × X → X, it is said to be
continuous if a is a continuous map viewed as a map between topological spaces.
Under a continuous action, we define the quotient space G\X to be the collection of
all the orbits, with the quotient map π : X → G\X. The subset U ⊂ G\X is open
iff π−1(U) ⊂ X is open.

Example 1.1. If F is a field such that (F, +) and (F ×, ·) are topological groups.
Consider GLn(F ) ⊂ Mn(F ) ∼= F nn . Since the determinant map, regarded as a
polynomial of entries, is continuous, the inverse map A $→ A−1 = adjA/ det A, A ∈
GLn(F ) is thus continuous. The continuity of multiplication map follows from our
assumption of F and by subgroup topology. Therefore GLn(F ) is a topological group.

Subgroups.

Proposition 1.2. Let H ⊂ G be a subgroup, then

1. the quotient map π : G → G/H is open;

2. if G is locally compact, then G/H is locally compact; and

3. H is closed iff G/H is Hausdorff.

Proposition 1.3. Let G be a locally compact group admits a countable basis and
acts transitively and continuously on locally compact space X, then the orbit map

orbx : G/StabG(x) → X

g $→ gx

is a homeomorphism.
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Discrete subgroups. Now we discuss a special kind of closed subgroups of G.
Let G be a topological group and its subgroup Γ a discrete subset of G, then Γ is
called a discrete subgroup of G. By subset topology it can be easily checked that

Lemma 1.4. Subgroup Γ ⊂ G is discrete iff there is an open subset U ⊂ G such
that U ∩ γ = {1}.

It is essential to familiarize ourselves with the next proposition.

Proposition 1.5. Any discrete subgroup Γ of topological group G is closed.

Proof. Pick open U ⊂ G such that 1 ∈ U and U ∩ Γ = {1}. For any fixed g /∈ Γ,
by continuity of multiplication, there exists open neighborhood V ) g such that
V V −1 ⊂ U . For x, y ∈ V , xy−1 ∈ Γ iff. x = y. This shows that |V ∩ Γ| = 0 or 1.
The first case is trivial. Otherwise, take open W such that g ∈ W and x /∈ W . Such
W exists by Hausdorff. Then W ∩ V ) g is an open neighborhood of g which does
not intersect with Γ.

Definition 1.6 (lattice). A lattice in C is a subgroup Λ of (C, +) such that

Λ = Za ⊕ Zb,

where a, b ∈ C are R-linearly independent.

Take the canonical basis {e1, e2} of Z2. Define the set

L :=
{
g ∈ Hom(Z2,C) : g(Z2) ⊂ C is a lattice

}
.

For g ∈ Hom(Z2,C), it can be extends to R2 and by viewing R2 = Z2 ⊗Z R. This
induces a map

Hom(Z2,C) → Hom(R2,C)
g $→ gR.

In addition, we can identity L ⊂ Hom(Z2,C) as IsomR(R2,C).

Proof. For g ∈ L, the image g(z2) is a lattice if and only if g(Z2) contains a basis
of C over R. On the other hand, by our construction of gR, We thus have that
{g(e1), g(e2)} is a basis of C over R, which is equivalent to say that g1 := g(e1) and
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g2 := g(e2) are linearly independent. it is surjective, and the fact that dimR R2 =
dimR C = 2 implies that gR ∈ Isom(R2,C).

Therefore we have a map

Φ : L → IsomR(R2,C)
g $→ gR.

For h1,R, h2,R ∈ Isom(R2,C), if h1,R = h2,R, then for all a, b ∈ R, the equation
h1(ae1+be2) = h2(ae2+be2) holds. But since Z ⊂ R, this implies that h1(ae1+be2) =
h2(ae2+be2) also holds for all a, b ∈ Z. Therefore h1 = h2. This shows the injectivity.
Now we check the surjectivity. For T ∈ Isom(R2,C), it is uniquely determined by
T (e1) and T (e2) and we have T (ae1 + be2) = aT (e1) + bT (e2) for any a, b ∈ R.
Define gT (ei) = T (ei) for i ∈ {1, 2}. Then Φ(gT ) = gT

R = T . It remains to check
that gT ∈ T , this is true if and only if gT (Z2) is a lattice, which is ensured by the
choice of T .

The above isomorphism is one of the four interpretations of the set L, showed in
1.1.1 of [3]. Furthermore, we can identify G to GL2(R) by GL2(R) ) h $→ (i, 1)h ∈ L.
We are now able to define lattice functions based on set L.

Proper actions

Definition 1.7 (proper actions). Let X is a locally compact Hausdorff space and a
discrete group Γ acts on X continuously. If for any compact subsets K, K ′ ⊂ X the
set

{γ ∈ Γ : γK ∩ K ′ ,= ∅}

is finite, then the action is called proper.

Proper actions has a nice property:

Proposition 1.8. If a group Γ acts properly on a Hausdorff space X, then the
quotient Γ\X is also a Hausdorff space.

Proof. For x, y ∈ X such that their image under the quotient map [x] ,= [y]. Since
we assume that X is locally compact, there is A ) x and B ) y such that their
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closure Ā and B̄ are compact. Assume |{γ : γĀ ∩ B̄ ,= ∅}| = n, define open sets

x ∈ U = A ∩
n⋂

i=1
γ−1

i Ui,

y ∈ V = B ∩
n⋂

i=1
Vi.

Then [x] and [y] are seperated by open U and V such that U ∩ V = ∅.

Totally disconnected groups.

Definition 1.9 (totally disconnected groups and groups of td-type). A Hausdorff
topological group G is totally disconnected if every neighborhood of its unit element
1 contains a compact open subgroup.

A locally compact totally disconnected group is also called a group of td-type
or a t.d. group.

Example 1.10. Let F be a local field and n ! 1 be an integer, then GLn(F ) is a
group of td-type.

The next proposition from 1.2 of [2] provides us some tools to construct new
t.d. groups from old ones.

Proposition 1.11. 1. Every open subgroup or closed subgroup of a group of td-
type is again of td-type.

2. Finite direct product of groups of td-type if a t.d. group.

3. Let (Gi)i∈I be an infinite family of t.d. groups, and Ki ⊂ Gi be a compact open
subgroup. Then the restricted product of Gi w.r.t Ki is a group of td-type.

1.2 Linear Fractional Transformations
Let Ĉ = C - {∞}. The group GL2(C) acts on Ĉ by

GL2(C) × Ĉ → Ĉ

(α, τ) $→ aτ + b

cτ + d

where α =


a b

c d



. In this case, when τ = ∞ the result of the right hand side

becomes a
c ; when cτ + d = 0, the result of the right hand side becomes ∞.
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On the other hand, we can view Ĉ as projective space P1(C) via

P1(C) → Ĉ

[x : y] $→ x

y

then the action is


a b

c d



 .(x : y) = (ax + by : cx + dy) =






(
ax+by
cx+dy , 1

)
, cx + dy ,= 0;

∞, cx + dy = 0.

For every τ ∈ C, 

τ τ − 1
1 1



 .∞ = τ, (1)

therefore GL2(C) acts transitively on Ĉ. Note that

det






∗ ∗ − 1
1 1







 = 1,

the equation (1) shows that SL2(C) also acts transitively on Ĉ.
Now we restrict the the action to the subgroup GL2(R), by directly computation

we conclude

Lemma 1.12. For α ∈ GL2(R) and z ∈ Ĉ we have

Im(αz) = |cz + d|−2 det(α)Im(z)

where
α =



a b

c d



 .

Observe that
GL+

2 (R) = R×
>0 · SL2(R) (2)

and R×
>0 acts trivially on H. This inspires us to study the subgroup SL2(R). By

definition of SL2(R), all its element have determinant 1. Then the previous lemma
indicates that H, −H and R̂ = R - {∞} are invariant under the action of SL2(R).
In particular, they are three orbits. The equation (1) also applies to R̂.
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Now pick z = x + iy ∈ H, define the matrix

α =



√

y x√
y

1√
y



 .

Then z = α.i implies that SL2(R) acts transitively on H. The proof for −H is
similar.

Furthermore, according to 1.3

Theorem 1.13. We can identify

SL2(R)/SO2(R) ∼= H

via the orbit homeomorphism orbi.

We denote by Aut(H) the group of all holomorphic automorphisms of H. The
next theorem tells us that holomorphic automorphisms of H can be determined by
GL2(R) or SL2(R).

Theorem 1.14. We have the following identities:

GL+
2 (R)/R× ∼= SL2(R)/{±1} ∼= Aut(H).

Proof. The first isomorphism can be deduced from equation (2).
The second isomorphism can be given by

GL+
2 (R) → Aut(H)

g $→ (z $→ g.z)

Now we classify the non-scalar elements of GL+
2 (R).

Following §1.3 of [8], we define.

Definition 1.15 (elliptic, parabolic and hyperbolic element). Let α ∈ GL+
2 (R) be a

non-scalar element. Then α is

• elliptic if tr(α)2 < 4 det(α) ;

• parabolic if tr(α)2 = 4 det(α) ;
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• hyperbolic if tr(α)2 > 4 det(α).

The geometric interpretation of this definition related to the fixed points of the
elements of GL+

2 (R). Therefore we have

Proposition 1.16. Let α ∈ GL+
2 (R) be a non-scalar element. Then α is

• elliptic iff α has the fixed points z0 and z̄0 with z ∈ H;

• parabolic iff α has a unique fixed point on R̂;

• hyperbolic iff α has two distinct fixed points on R̂.

1.3 Congruence Subgroups
Definition 1.17 (modular group and its congruence subgroups). The group Γ0 :=
SL2(Z) is called the modular group. For a positive integer N ∈ Z>0, we define the
principal congruence subgroup Γ(N) of Γ0 to be

Γ(N) :=



γ ∈ SL2(Z) : γ ≡


1
1



 (mod N)



 .

A subgroup Γ ⊂ SL2(Z) is said to be a congruence subgroup if it contains a principal
congruence subgroup. In particular, Γ(1) = Γ0.

By subgroup topology, it is obvious that congruence subgroups are discrete
subgroups of SL2(R). Note that for a fixed N ∈ Z>0, the map Z " Z/NZ is
surjective.

A discrete subgroup of SL2(R) is called a Fuchsian group.

Definition 1.18 (cusps). Let Γ ⊂ SL2(R) be a Fuchsian group. Consider the set

PΓ =
{
t ∈ R̂ : Γt contains parabolic element

}
.

We call elements of Γ\PΓ the cusps of Γ.

Example 1.19. Consider the modular group Γ0 = SL2(Z). It has one cusp ∞. By

computation we have Γ0 =


1 Z
1



, thus ∞ ∈ PΓ0 . For the similar argument as the

equation (1), we can show Γ0.∞ = Q̂ ⊂ PΓ0 . Note that entries of elements in SL2(Z)
are integers, the discriminant of the eigenequation must have integral coefficients,
we conclude that Q̂ ⊃ PΓ0 . Therefore Q̂ = PΓ0 .
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1.4 Fundamental Domain
Definition 1.20 (fundamental domain). Let X be a locally compact Hausdorff
space and Γ be a discrete group. Assume Γ acts properly on X, a fundamental
domain of X is a subset F ⊂ X such that

1. F is the closure of its interior F◦;

2. For different γ, γ′ ∈ Γ, (γF)◦ ∩ (γ′F)◦ = ∅; and

3. X = ⋃
γ∈Γ γF , and this covering is locally finite i.e. for any x ∈ X, there exists

open U ) x such that for all but finitely many γ ∈ Γ, U ∩ γF = ∅.

1.5 Haar Measure
In the following section, we will assume that G is a fixed locally compact group

with topology T (i.e. G is a locally compact Hausdorff topological group). Then T
generates a σ-algebra B which is called the Borel algebra.

Definition 1.21 (Radon measure). A measure µ defined on B is called a Radon
measure if it has the following properties:

1. µ is finite on compact subsets;

2. For all A ∈ B, µ(A) = sup{µ(K) : A ⊃ K, K ⊂ G compact}; and

3. For all A ∈ B, µ(A) = inf{µ(K) : A ⊂ U, U ⊂ G open}.

An example of a Radon measure is the Lebesgue measure on the real line R.
The subsequent theorem demonstrates the existence and uniqueness, up to scaling,
of a specific type of Radon measure. We refer to chapter D of [12] for the proof of
this theorem.

Theorem 1.22 (Haar). If G is a locally compact group, then there exists a non-zero
Radon measure µ on the Borel algebra such that µ(xA) = µ(A) for every x ∈ G and
every measurable set A ⊂ G. This property is called left-invariant. Furthermore, µ

is unique up to scaling by positive numbers.

Definition 1.23 (Haar measure). The Borel measure stated in the theorem 1.22 is
called a Haar measure of G.
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Starting from this point within this section, we consider G as a locally compact
group with a Haar measure µ. Now we can discuss the integration.

Definition 1.24 (convolution). The convolution of two functions f, g ∈ L1(G) is
defined as

f ∗ g(x) =
∫

G
f(y)g(y−1x)dy.

Proposition 1.25. Convolution exists and the space L1(G) becomes an algebra over
C. Moreover L2(G) is a Hilbert space.
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2 p-adic numbers and Adeles
The field R of real numbers is complete. More specifically, R is the completion

of Q with respect to the standard absolute value, denoted as | · |∞. According to
Ostrowski’s theorem, any absolute value on Q is equivalent to either the standard
absolute value | · |∞, or the p-adic absolute value, represented as | · |p, where p is a
prime number. The field Qp of p-adic numbers is the completion of Q with respect
to | · |p.

Recall that R is locally compact, we will later that Qp is also locally compact.
However, the direct product ∏p Qp is not locally compact. To study all the comple-
tion of Q at the same time, we take the restricted product of all Qp, which preserves
the local compactness. This forms the ring Af of finite adeles. The ring A of adeles
is the direct product R × Af .

2.1 Construction of p-adic numbers
All along this section, k denotes a field and p is a prime integer.

Definition 2.1 (valuation). A valuation on k is a map

v : k → R ∪ {∞}

satisfying:

1. v(0) = ∞,

2. v(xy) = v(x) + v(y) for x, y ∈ k, and

3. v(x + y) ! min{v(x), v(y)}.

An example of a valuation is the p-adic valuation, where p is a fixed prime.
First of all, consider the map

vp : Z → R ∪ {∞}

0 $→ ∞

0 ,= a $→ sup{n ∈ Z : a ∈ pnZ}

defined on the ring of integers. We can extend it to the field of rational numbers Q
by letting vp(x) = vp(a) − vp(b) for x = a/b ∈ Q.
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Proposition 2.2. p-adic valuation is a valuation.

Proof. First we check that the value of vp does not depend on the representative of
the rational number as a quotient of two integers. If x ∈ Q such that x = a/b = c/d

for a, b, c, d ∈ Z, then ad = bc. By unique prime factorization, we can write a =
pnaa′ and d = pndd′ for some a′, d′ ∈ Z such that p does not divide a′ or d′, thus
ad = pna+nda′d′. By definition of vp, we have

vp(ad) = vp(a) + vp(d). (3)

Similarly
vp(bc) = vp(b) + vp(c).

Therefore
vp(a) + vp(d) = vp(ad) = vp(bc) = vp(b) + vp(c)

implies that
vp(a/b) = vp(a) − vp(b) = vp(c) − vp(d) = vp(c/d).

Note that equation (3) also verifies condition 2 for integers. Without loss of
generality, assume na # nd, then

a + d = pna(a′ + pnb−nab′)

shows that condition 3 also holds for integers.

Now let y = r/s, then

vp(xy) = vp(ar/bs)
= vp(ar) − vp(bs)
= vp(a) + vp(r) − vp(b) − vp(s)
= vp(a) − vp(b) + vp(r) − vp(s)
= vp(x) + vp(y).
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And

vp(x + y) = vp

(
as + rb

bs

)

= vp(as + rb) − vp(bs)
! min{vp(as), vp(rb)} − vp(bs)
= min{vp(as) − vp(bs), vp(rb) − vp(bs)}
= min{vp(x), vp(y)}.

The above equations prove the rational cases for condition 2 and 3 respectively.

Definition 2.3 (absolute value). An absolute value on k is a function

| · | : k → R!0

such that

1. |x| = 0 iff x = 0 ;

2. |xy| = |x||y| for all x, y ∈ k; and

3. |x + y| # |x| + |y| for all x, y ∈ k.

An absolute value is called non-archimedean if for all x, y ∈ k it also satisfies

|x + y| # max{|x|, |y|}; (4)

otherwise it is archimedean.

The next lemma reveals a useful property of non-archimedean absolute values.

Lemma 2.4. Let | · | be a non-archimedean absolute value on k and x, y ∈ k, if
|x| ,= |y| then |x + y| = max{|x|, |y|}.

Proof. Assume |x| > |y|, then (4) implies that

|x + y| # |x| (5)

and
|x| = |x + y − y| # max{|x + y|, |y|}.
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If |y| from the right hand side is larger than |x+y| i.e. |x| # |y|, then this inequality
contradicts to out assumption, therefore |x| # |x+y|. Together with (5), the lemma
is proved.

The p-adic valuation induces an absolute value | · |p called p-adic absolute value.
For x ∈ Q, we set |x|p := p−vp(x) and |0|p = p−∞ =: 0.

Conditions 1 and 2 simply follows from the construction of | · |p, and (4) holds
for | cot |p since vp is a valuation. Observe that (4) implies 3. We conclude

Proposition 2.5. The absolute value | · |p is a non-archimedean absolute value.

We employ the concepts about completeness from real analysis. Let | · | be an
absolute value on k, a Cauchy sequence is a sequence of elements xn ∈ k if for every
ε > 0 there is a bound M such that |xn − xm| < ε whenever m, n ! M . If every
Cauchy sequence of elements of k has a limit in k, the field k is called complete.
A subset S ⊂ k is dense if every open ball around every element of k contains an
element of S.

The next proposition is derived from Proposition 2.1 in Chapter XII of Serge
Lang’s Algebra[7]. We will present it here without providing general proofs. How-
ever, the upcoming construction of p-adic numbers demonstrates the proof for this
special case.

Proposition-Definition 2.6 (completion). Up to isomorphism, there exists a unique
pair (k̂, ι) consisting of a field k̂, complete under an absolute value | · |k̂, and an em-
bedding ι : k → k̂ such that the absolute value on k is induced by that of k̂, and such
that ι(k) ⊂ k̂ is dense in k̂.

The pair (k̂, ι) or k̂ is called the completion of k.

Let R be the set of all Cauchy sequence of elements of Q with respect to | · |p.
For sequences {xn}, {yn} ∈ R we define addition and multiplication as follows:

{xn} + {yn} = {xn + yn}

and
{xn} · {yn} = {xnyn}.

We denote by x̃ the constant sequence associated to x ∈ Q, that is

x̃ := x, x, x, . . .

18



From analysis the right hand side of equations are Cauchy and thus R is a commu-
tative ring with unity 1̃ and zero 0̃.

Let m ⊂ R be the set of all Cauchy sequences that converge to 0. We claim
that

Lemma 2.7. Set m is a maximal ideal of R.

Proof. For {xn} ∈ R and {yn} ∈ m, their product xnyn → 0 since yn → 0 and {xn}
as a Cauchy sequence is bounded. This shows that m is indeed an ideal.

Pick {an} ∈ R−m =: {r ∈ R : r /∈ m}, since it is Cauchy and does not converge
to 0, there exists sufficiently large N such that an stays away from 0 for n > N .
Define

a′
n =






0, n < N ;
1/an, n ! N.

This new sequence is again Cauchy i.e. {a′
n} ∈ R.

The product
1̃N := ana′

n = 0, . . . , 0
︸ ︷︷ ︸

N

, 1, . . .

belongs to the ideal generated by {an}. Observe that 1̃ − 1̃N ∈ m, we conclude that
the unit element 1̃ belongs to the ideal generated by m and {an}. In other words,
any ideal which strictly contains m equals to R. Thus m is maximal.

Taking the quotient of R by its maximal ideal m we get the field of p-adic
numbers

Qp := R/m.

In addition, we define injection

ι : Q ↪→ R

x $→ x̃.

For different rational numbers x ,= y, ι(x) − ι(y) /∈ m, hence the induced map

ι : Q ↪→ Qp

x $→ [x̃]

is also injective. Since ι : Q ↪→ Qp is an inclusion, we can view Q as a subset of Qp

instead of writing ι(Q) ⊂ Qp.
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Now we define an absolute value on Qp, for a ∈ Qp with representative {an},
set

|a|Qp
:= lim

n→∞
|an|p,

we claim that this is a well-defined non-archimedean absolute value, which extends
| · |p.

Lemma 2.8. For x := {xn} ∈ R − m, there exists an integer N such that for
m, n ! N , |xn|p = |xm|p.

Proof. Since x is Cauchy and does not tent to zero, there exists sufficiently large N

such that |xn|p ! c > 0 for some positive c whenever n > N . Since we are choosing
sufficiently large N , for n, m ! N , we also have

|xn − xm|p < c # min{|xn|p, |xm|p}, (6)

which implies that |xn − xm|p ,= |xm|p. Now we apply lemma 2.4 and get

|xn|p = |xn − xm + xm|p = max{|xn − xm|p, |xm|p} (6)= |xm|p.

This lemma shows that the limit exits. To show that the absolute value is
well-defined, we have to check that it does not depend on the representatives. If two
sequences {xn} and {yn} converge to the same limit, then their difference {xn − yn}
tends to zero and thus an element of m. That | · |Qp is non-archimedean and extends
| · |p on Q is immediate by its definition. Beginning at this point, the notation | · |p
represents both for | · |p and | · |Qp .

Proposition 2.9. The field Q is dense in Qp.

Proof. Pick x ∈ Qp represented by {xn}, consider the open ball B(x, r) where r > 0
is the radius. There exists N > 0 such that for n, m ! N , |xn − xm|p < r

2 . The
constant sequence x̃N ∈ ι(Q) then belongs to the open ball B(x, r).

Proposition 2.10. The field Qp is complete with respect to | · |p.

Proof. Let {cn} be a Cauchy sequence in Qp. By the dense property we can find an
element xn ∈ Q such that |cn − x̃n|p < 1/n for each n. We can verify that {xn} is
Cauchy. Let c ∈ Qp be the limit of {xn}, it remains to show that {cn} converges to
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c. For ε > 0, there exists N such that |xm − xn|p < ε
2 whenever m, n ! N . Fix n

and we get
|c − x̃n|p = lim

m→∞
|xm − xn|p # ε

2 < ε.

This means that (c − {x̃n}) converges to 0 ∈ Qp i.e. {x̃n} converges to c. On the
other hand, by our choice of {xn}, we know that |cn − x̃n|p converges to 0. Apply
the triangle inequality of absolute value, we deduce that {cn} converges to c.

If there is a pair (k̂, ι′) which is another completion of Q. Take any α ∈ Qp,
by density of Q, we can find a Cauchy sequence {an} of Q whose limit is α. Then
{ι′(an)} converges to a limit α′ ∈ k̂. This algorithm defines a map ϕ from Qp to k̂.
It is easy to see that ϕ is an isomorphism that preserves absolute value. This shows
the uniqueness of the completion.

By combining the construction and the propositions, we now have

Proposition 2.11. The pair (Qp, ι) is the completion of Q with respect to the p-adic
absolute value.

2.2 Properties of p-adic numbers
Absolute values induce metrics, it follows that we can define a topology. For

more on metric spaces, we refer to [11]. Since field operations are continuous func-
tions under the metric induced by absolute values, the field of p-adic numbers Qp is
a topological field.

Next we introduce the ring of p-adic integers.

Proposition-Definition 2.12 (ring of p-adic integers). The set

Zp = {x ∈ Qp : |x|p # 1}

is a ring called ring of p-adic integers.

Proof. It is obvious that 0, ±1 ∈ Zp. For any x, y ∈ Zp, by non-archimedean in-
equality (4), |x + y|p # 1, and by 2 of definition 2.3, |xy|p = |x|p|y|p # 1 and
| − 1 · x|p = | − 1|p|x|p # 1. These show that Zp is closed under addition, multipli-
cation and change of sign, thus it is a ring.

By applying the same argument as to why Qp is a topological field, we can
conclude that Zp is a topological ring.
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2.3 Adeles
Definition 2.13 (restricted product). Let I be an index set and (Gi)i∈I be a family
of locally compact group, if Ki ⊂ Gi is an open compact subgroup for each i ∈ I,
then we define the restricted product as

G =
∏̂

i∈I

KiGi =
{

x ∈
∏

i∈I

Gi : xi ∈ Ki for almost all i ∈ I

}

.

The basis of open sets are those of the form

∏

i∈E

Ui ×
∏

i/∈E

Ki,

where E ⊂ I is a finite subset and Ui ⊂ Gi is an open set.

Adhere to the notation specified in the definition 2.13, pick x ∈ G there is a
finite subset E ⊂ I such that xi ∈ Ki whenever i /∈ E. For xi such that i ∈ E, we
choose its compact neighborhood Ui. Then the product of Ui and Ki is a compact
neighborhood of x. This shows that the restricted product G is locally compact.

Recall that Zp is open in Qp, we define the set finite adeles as

Af =
∏̂

p prime

ZpQp

and the set of adeles
A = Af × R.

Proposition 2.14. Both Af and A are topological rings.

Proposition 2.15. The field Q is a discrete subset of A and A/Q is compact.

Proposition 2.16. The field Q is dense in Af .

2.4 Haar measure
Let G be a locally compact group with topology T (i.e. G is a locally compact

Hausdorff topological group). Then T generates a σ-algebra which is called the
Borel algebra.

Definition 2.17 (Radon measure). A measure µ defined on the Borel algebra B is
called a Radon measure if it has the following properties:
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1. µ is finite on compact subsets.

2. For all A ∈ B, µ(A) = sup{µ(K) : A ⊃ K, K ⊂ G compact}

3. For all A ∈ B, µ(A) = inf{µ(K) : A ⊂ U, U ⊂ G open}

An example of a Radon measure is the Lebesgue measure on the real line.
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3 Representations

3.1 Continuous Representations
Definition 3.1 (continuous representations). Let G be a locally compact group and
let V be a Banach space. A continuous representation of G (on the left) is a pair
(π, V ) where π : G → GL(V ) is a group homomorphism such that

G × V → V

(g, v) $→ π(g)v

is continuous.

Following Catier’s definition[2], we introduce smooth representations and ad-
missible representations.

Definition 3.2 (smooth representations). A representation (π, G) of a group of
td-type G is smooth iff the stabilizer of every vector in V is open. Equivalently, if
V = ⋃

K V K where K runs over the compact open subgroups of G and V K is the
space of vectors v ∈ V such that π(k) · v = v for any k ∈ K.

Definition 3.3 (admissible representations). Following the notations in definition
3.2, a representation (π, V ) of G is said to be admissible of it is smooth and the
space V K of vectors invariant under K is finite-dimensional for every compact open
subgroup K ⊂ G.

Fix the basis {1, i} of C. Consider GL2(R) ∼= GLR(C) where the GLR(C) =
GL(ResC/RC), the notation ResC/R(C) means restricting scalars [13] from C to R.
For a+ bi = λ ∈ C× such that a, b ∈ R, a ,= 0 or b ,= 0. The map z $→ λz (for z ∈ C)

gives a matrix


a −b

b a



 representing λ. Therefore we have

C× ∼=







a −b

b a



 : a, b ∈ R, a ,= 0 or b ,= 0



 .

Note that the unitary group

U1 =







a −b

b a



 : a, b ∈ R, a2 + b2 = 1




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is contained in C×.

Let s be the complex conjugate map i.e. in the basis {1, i}, it maps 1 to 1 and i

to −i. Then s is R-linear and the corresponding matrix is


1 0
0 −1



. By computation

we have
sU1 =








 a −b

−b −a



 : a, b ∈ R, a2 + b2 = 1



 .

Furthermore, for g ∈ U1 or sU1, the product gtg = I. This shows that

U1 ∪ sU1 ⊂ O(2) :=
{
A ∈ GL2(R) : AtA = I

}

On the other hand, pick A =


a b

c d



 ∈ GL2(R), by definition of O(2) we have



a b

c d







a c

b d



 =


a2 + b2 ac + bd

ac + bd c2 + d2



 = I,

solve this equation and we conclude that U1 ∪ sU1 ∼= O(2). Similarly, one can verify
that

U(1) ∼= SU(1) := {A ∈ O(2) : det A = 1} .

The group O(2) is not connected. More specifically, it has two connected com-
ponents O(2) = SO(2) - sSO(2).

Now consider the group

GO(2) :=
{
A ∈ GL2(R) : there exists λ ∈ R× s.t. AtA = λI

}

and the multiplier map

λ : GO(2,R) → R×

A $→ λ : AtA = λI.

We have AtA = λ(A)I. Take determinant of both sides one gets det2 A = λ(A)2.
Hence the 2 connected components are

C× = {det A = λ(A)}
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and
sC× = {det A = −λ(A)} .

Furthermore, (C× ∪ sC×)/R× is a compact, maximal component in GL2(R)/R×.
Let K = U1 ∪ sU1, we combine the previous argument with 0.2.2 of [3], a

complex admissible representation π of GLR(C) is a linear representation such that
π | K : K → GLC(V ), which is the direct sum of irreducible representings of K, each
occurring finitely many times.
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4 Modular forms

4.1 Modular forms for SL2

For γ =


a b

c d



 ∈ GL2(C), define its automorphy factor to be

j(γ, τ) := cτ + d, τ ∈ H.

We can verify that it satisfies

j(γγ′, τ) = j(γ, γ′τ)j(γ′, τ)

where γ, γ′ ∈ GL+
2 (R).

Now fix k ∈ Z, γ ∈ GL+
2 (R), for any function f : H → C, we define

f |k γ : τ $→ (det γ) k
2 j(γ, τ)−kf(γτ), τ ∈ H.

This gives us a right action of GL+
2 (R) on the space of functions H → C by

f |k (γγ′) = (f |k γ) |k γ′.

Consider the map
qN(τ) := e2πiτ/N

where N ∈ Z>0. This defines a surjective holomorphic map from H to D∗ = {z ∈
C : 0 < |z| < 1}. Since qN(τ) = qN(τ ′) ⇐⇒ (τ − τ ′) ∈ NZ, if a holomorphic
function f : H → C is periodic of period N i.e. f(τ + N) = f(τ) then it has a
Laurent expansion:

f(τ) =
∞∑

n=−∞
anqn

N , an ∈ C. (7)

Remark 4.1. Let τ = x + iy such that y > 0 and x ∈ R, we can view equation (7)
as the Fourier expansion of a real function x $→ f(x + iy) of period N . Thus an is
also called the Fourier coefficient of f .

Definition 4.2. Following the above notations, the function f is said to be holo-
morphic at ∞ if an = 0 for every n < 0; f vanishes at ∞ if an = 0 for every
n # 0.
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Now we can define modular forms.

Definition 4.3 (modular forms for congruence subgroups). Let Γ be a congruence
subgroup and k ∈ Z 0. We say that a function f : H → C is a modular form of
weight k (w.r.t. Γ )if

1. f is holomorphic on H ;

2. For all


a b

c d



,

f

(
az + b

cz + d

)

= (cz + d)kf(z);

and

3. f is holomorphic also at the cusps of H w.r.t. Γ.

A cusp form is a modular form which in addition vanishes at ∞.
We denote by Mk(Γ) the C-vector space of all modular forms of weight k and

Sk(Γ) the subspace of cusp forms of weight k.

This is the classical definition of a modular form for SL2.

4.2 Modular forms for GL2

In this section we adopt Deligne’s[3] approach to define modular forms on GL2.
For a function g on GL2(R), we define

‖g‖ = tr(tgg + (tgg)−1)
= (a2 + b2 + c2 + d2)(1 + det(g)−2).

Definition 4.4 (moderate growth). A function f on GL2(R) is said to be C∞ to
moderate growth if there exist A > 0 and N > 0 such that

f(g) # A‖g‖N ,

and all its derivatives of f satisfie analogous conditions.

Next we define modular forms of group GL2(Z).
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Definition 4.5 (modular forms). Let

L :=
{
g ∈ Hom(Z2,C) : g(Z2) ⊂ C is a lattice

}
.

A holomorphic modular form of weight k of group GL2(Z) is a function on L, such
that

1. f is holomorphic;

2. f(λg) = λ−kf(g) where g ∈ L, λ ∈ C× ;

3. f(gγ) = f(g) where g ∈ L, γ ∈ GL2(Z) ; and

4. f is in moderate growth.

If we identify f as a lattice function from L/GL2(Z) to C, then the condition 3
requiring the right action to be invariant can be omitted, and the condition 2 can
be modified to

2’ f(λR) = λ−kf(R) where R is an lattice and λ ∈ C×.

The other two conditions stay unchanged.

Remark 4.6. Comparing the two definitions of modular forms in definition 4.3 and
definition 4.5. The condition of requiring f to be holomorphic at cusps and in
moderate growth are highly related. We refer to section [1] and 1.3 of [3], for further
details.

4.3 Representations of GL2(R) and Holomorphic Modular
Forms

Fix k ! 1, let Dk−1 be the irreducible admissible representation of GLR(C)
satisfying:

1. Dk−1 has a base en indexed by the integers n ≡ k (mod 2) such that |n| ! k.

2. The action of glR(C) and of (C× ∪ sC×) ⊂ GLR(C) such that

(a) λ ∗ en = λk(λλ̄−1)n−k
2 en where λ ∈ C×;

(b) s ∗ en = e−n;

(c) H ∗ en = n.en ;
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(d) X ∗ en = k+n
2 en+2 ; and

(e) Y ∗ en = k−n
2 en−2,

where we have

H =


1 0
0 −1



 , X = 1
2



0 1
0 0



 , Y = 1
2



0 0
1 0



 .

Note that {H, X, Y } is a standard choice of basis for Lie algebra

sl2(C) = {A ∈ M2(C) : trA = 0}.

Now we discuss this representation with (g, K)-module, following the symbols
from [6].

Definition 4.7. Let k be a field, G be an algebraic group and K be a compact
subgroup of G(k), a (g, K)-module is a vector space V equipped with an action of
gC := g ⊗R C and K such that the V as a K-module is an (infinite) direct sum of
finite-dimensional representations of K, and V is also a Lie algebra representation
of g.

Take g = glR(C) and K = C× ∪ sC× ∼= O(2). Note that K is not connected,
we define K ′ = SO(2), and consider the (g, K ′)-module V . First we have

V =
⊕

n∈Z
Vn

where
Vn = {v ∈ V : zv̇ = zn, for all z ∈ K ′}.

The following map diagonalizes the group K ′ :







a −b

b a



 : a, b ∈ R, a2 + b2 = 1




∼=







a + bi 0
0 a − bi



 : a, b ∈ R, a2 + b2 = 1





A $→ γ−1Aγ,

where
γ =



1 1
i −i



 .
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By definition of (g, K ′)-module, we have that K ′ acts on g by conjugation. Finally,
by derivation of, we have that H acts as multiplication by n on Vn. This corresponds
to 2c.
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