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Abstract

To each inner function on the unit disc, one can associate a corresponding family of Clark
measures, which in turn can be linked to a family of unitary operators. Hence Clark measures
form a link between inner functions, singular measures and operator theory. While Clark
theory in one variable has been thoroughly studied and well-developed following D. N. Clark’s
1972 paper, it is only recently that progress has been made in extending this theory to the
multivariate setting. Our goal is to provide an overview of recent research as well as investigate
Clark measures for some new examples of bivariate inner functions on the unit bidisc. In
particular, we characterize the Clark measures for certain kinds of multiplicative embeddings
in inner functions as well as products of inner functions.
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1 Introduction

Clark theory has been of great interest since the original paper [9] by D. N. Clark from 1972.
He initiated his study by introducing a family of unitary operators with a corresponding family
of singular measures on the unit disc, which we now call Clark measures. Furthermore, to each
analytic function on the unit disc with modulus one almost everywhere on the boundary (a so
called inner function), one can associate a family of Clark measures. In this way, Clark measures
form an unexpected link between analytic functions, singular measures and operator theory, three
significant areas of mathematical analysis. We will mainly focus on the first two topics in this work.

In one variable, there are clear characterizations of Clark measures and their behavior, and the
theory is well-developed enough to be explored in introductory textbooks such as [15]. Recently,
progress has been made in extending this theory to Clark measures of inner functions in several
variables. There are two natural settings for multivariate Clark theory; one could either study Clark
measures on the unit polydisc Dd or the unit d-ball. Since these spaces are not biholomorphically
equivalent for d ≥ 2, the Clark theory will vary based on what space one chooses to work in. Clark
theory on the unit d-ball has been explored in detail in e.g. [2]. We restrict ourselves to Dd in this
work, and mainly dimension d = 2.

The case of rational inner functions in higher dimensions has been systematically studied in
e.g. [3], but less is known about other classes of inner functions. In this work, we aim to provide
an overview of recent research as well as investigate Clark measures for some new examples of
bivariate inner functions. For instance, we will study constructions of non-rational inner functions
from inner functions with more or less known structure. In particular, we investigate the relationship
between Clark measures and multiplication; first by introducing compositions of inner functions and
multiplicative embeddings, and then by multiplying inner functions with each other. The idea is to
study how these operations affect the corresponding Clark measures.

2 Preliminaries

We begin by introducing some central concepts of multivariate complex analysis. Let

Dd := {(z1, z2, . . . , zd) ∈ Cd : |zj | < 1, j = 1, 2, . . . , d}

denote the unit polydisc in d variables, and

Td := {(ζ1, ζ2, . . . , ζd) ∈ Cd : |ζj | = 1, j = 1, 2, . . . , d}

its so called distinguished boundary. Note that this is only a subset of the boundary ∂Dd. For d = 2,
the set T2 defines a two-dimensional torus.

Much of our discussion will be centered around holomorphic and harmonic functions in several
(but mainly two) variables. Let U ⊂ Cd be an open set. The function f : U → C is said to be
holomorphic or analytic if it is locally bounded (i.e., for every p ∈ U , there is a neighborhood N of
p such that f |N is bounded) and complex-differentiable in each variable separately; so the limit

lim
C∋ξ→0

f(z1, . . . , zj−1, zj + ξ, zj+1, . . . , zd)− f(z)

ξ

exists for all z ∈ U and all j = 1, 2, . . . , d.
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Just as in one variable, we may characterize holomorphic functions using power series expansions.
Let ρ = (ρ1, . . . , ρd) ∈ Rd

+ and a = (a1, . . . , ad) ∈ Cd be the polyradius and center of a polydisc

∆ := {z ∈ Cd : |zj − aj | < ρj , j = 1, . . . , d}.

Let f : ∆ → C be a continuous function, holomorphic in ∆. Then, on ∆, f is given by a power
series that converges uniformly absolutely on compact subsets of ∆:

f(z) =
∑
α∈Nd

cα(z − a)α.

Here we have used multinomial notation, where zα = zα1
1 · · · zαd

d for αj ∈ N. Conversely, if we
define f : ∆ → C by a power series as above (converging uniformly absolutely on compact subsets
of ∆), then f is holomorphic on the same polydisc.

We say that a function f : U → C is pluriharmonic if it is harmonic along each complex line.
Formally, for every a, b ∈ Cd, we require ξ 7→ f(a + bξ) to be harmonic for each ξ ∈ C such that
a+ bξ ∈ U . Note that the pluriharmonic functions define a subclass of the harmonic functions on
Cd. Moreover, f : U → C is pluriharmonic if and only if it is locally the real or imaginary part of a
holomorphic function (see pp. 68-69 in [19]). For an extensive introduction to multivariate complex
analysis, see [19].

Let us recall some properties of Blaschke products, which we define as

B(z) := eiazK
∏
k≥1

|zk|
zk

zk − z

1− zkz
,

where a ∈ R,K ∈ N and {zk}∞k=1 ⊂ D is a sequence satisfying the Blaschke condition∑
k≥1

(1− |zk|) <∞.

This condition ensures that B(z) converges uniformly on compact subsets of D, and is thus analytic
on D. For any Blaschke product B(z), the radial limit limr→1−B(rζ) exists and has modulus one
for Lebesgue-almost every ζ ∈ T. A finite Blaschke product is defined as

B(z) := eiazK
n∏

k=1

|zk|
zk

zk − z

1− zkz
(1)

for zk ∈ D and k = 1, 2, . . . , n. As opposed to their infinite counterparts, the radial limits of finite
Blaschke products exist everywhere on T, and they are analytic on an open set containing the closed
unit disc.

Finite Blaschke products have many notable properties — for one, they map the unit disc D to
itself, and the unit circle T to itself. For K = 0, the function (1) will be a finite Blaschke product of
degree n, and B(z) = 0 will have exactly n solutions in D. Moreover, for any w ∈ T, the equation
B(z) = w will have n distinct solutions on T. Another useful property is that the derivative of a
finite Blaschke product is non-zero on the unit circle. Finally, recall that by Fatou’s theorem, if a
function f is analytic on D with |f(z)| → 1 as z → 1, then f is a finite Blaschke product. For more
on finite Blaschke products, see [14].
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Next, we review some basic measure-theoretic concepts. Throughout this text, we will let m
and md denote the normalized Lebesgue measure on T and Td respectively. Whenever we use the
words “measurable” or ”almost everywhere” without specifying a measure, we will be referring to
the Lebesgue measure. For a given µ on some measure space X, we define its support supp(µ) as
the closure of the set of points x ∈ X such that every open neighborhood N of x satisfies µ(N) > 0.
Moreover, we say that two measures µ and σ on X are singular if there exist measurable sets A
and B with X = A ∪B and A ∩B = Ø, such that µ(A) = σ(B) = 0.

To be able to define Clark measures in particular, we must first introduce the Poisson kernel
on the unit polydisc. For z ∈ Dd and ζ ∈ Td, we define the Poisson kernel on Dd as a product of
one-variable Poisson kernels:

Pz(ζ) = P (z, ζ) :=

d∏
j=1

Pzj (ζj) where Pzj (ζj) :=
1− |zj |2

|ζj − zj |2
.

Given a complex Borel measure µ on Td, we define its Poisson integral as

P [dµ](z) :=

∫
Td

P (z, ζ)dµ(ζ).

The Poisson integral will be of great importance to this work — in fact, by the multivariate version
of Herglotz’ theorem (see e.g. Theorem 2.1.3 in [21]), each positive pluriharmonic function on Dd

can be written as the Poisson integral of some unique Borel measure. We will use this to define
Clark measures in what comes next.

Furthermore, note that P [dmd](z) = 1 for all z ∈ Dd. As in the one-variable case, we may
express the Poisson integral as a series: for zj = rje

iθj ,

P [dµ](z) =
∑
k∈Zd

µ̂(k)r|k|eik•θ, (2)

where we have used multinomial notation again, so r|k| = r
|k1|
1 · · · r|kd|

d and k•θ = k1θ1+ . . .+kdθd.
We call

µ̂(k) :=

∫
Td

ζ
k
dµ(ζ)

the Fourier coefficients of µ, where ζ
k
= ζ1

k1 · · · ζd
kd
. The series (2) converges uniformly for points

z ∈ Dd.
Let α ∈ T; we say that α is a unimodular constant. If ϕ : Dd → D is a bounded holomorphic

function, then

ℜ
(
α+ ϕ(z)

α− ϕ(z)

)
=

1− |ϕ(z)|2

|α− ϕ(z)|2

is positive and pluriharmonic on Dd, as (α+ ϕ(z))/(α− ϕ(z)) is holomorphic on the unit polydisc.
Hence, by Herglotz’ theorem, there exists a unique positive Borel measure σα on Td such that

1− |ϕ(z)|2

|α− ϕ(z)|2
= P [dσα](z) =

∫
Td

P (z, ζ)dσα(ζ).
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We call these measures {σα}α∈T the Aleksandrov-Clark measures associated to ϕ. As∫
Td

dσα =

∫
Td

P (0, ζ)dσα =
1− |ϕ(0)|2

|α− ϕ(0)|2
<∞,

we see that σα is a finite measure for each α ∈ T.
Recall that for a function f : D → C and some point ζ ∈ T, we say that f(z) approaches L ∈ C

non-tangentially, denoted
L := ∠ lim

z→ζ
f(z),

if f(z) → L whenever z → ζ in every fixed Stolz domain

Γα(ζ) := {z ∈ D : |z − ζ| < α(1− |z|)}, α > 1.

This notion extends to multivariate functions: let f : Dd → C and ζ ∈ Td. We say that f has a
non-tangential limit L at ζ if f(z) → L as z → ζ, where each zj → ζj non-tangentially in the one-
variable sense. For any bounded holomorphic function ϕ : Dd → C, Fatou’s theorem for polydiscs
(see Chapter XVII, Theorem 4.8 in [23]) ensures that the non-tangential limits

ϕ∗(ζ) = ∠ lim
Dd∋z→ζ

ϕ(z)

exist for md-almost every ζ ∈ Td. Moreover, in one variable, we know that ϕ(rζ) converges to ϕ∗(ζ)
as r → 1− in Lp(T) (Theorem 11.16, [22]).

We say that ϕ : Dd → D is an inner function if it is bounded, holomorphic and |ϕ∗(ζ)| = 1 for
md-almost every ζ ∈ Td. For example, any finite Blaschke product is an inner function in D. If ϕ
is inner, we call {σα}α∈T the Clark measures of ϕ.

Note that ϕ being inner implies that

P [dσα](z) =
1− |ϕ(z)|2

|α− ϕ(z)|2
= 0 md-almost everywhere on Td.

Clearly, the numerator goes to zero md-almost everywhere. As ϕ − α is bounded, it lies in the
Hardy space H2(Td) defined as the space of functions f analytic on Dd which satisfy

sup
0≤r<1

(∫
Td

|f(rζ)|2dmd(ζ)

)1/2

<∞.

This is a subspace of the so called Nevanlinna space N(Td); hence, Theorem 3.3.5 in [21] states that
log(ϕ∗−α) lies in L1(Td). This in turn implies that ϕ∗−α must be non-zero md-almost everywhere
on Td. Hence, P [dσα](z) = 0 md-almost everywhere on Td, as asserted.

A notable consequence of this result is that if ϕ is an inner function, then its Clark measures
{σα}α∈T must be singular with respect to the Lebesgue measure. To see this, we decompose σα
into an absolutely continuous measure τ1α and a md-singular measure τ2α (see Theorem 6.10, [22]).
Then Theorem 2.3.1 in [21] states that the function

u(z) := P [dσα](z) = P [dτ1α + dτ2α](z)

satisfies u∗(ζ) = τ1α(ζ) for md-almost every ζ ∈ Td. However, we saw already that P [dσα] = 0
md-almost everywhere on Td; hence τ1α = 0 md-almost everywhere on Td. We can thus conclude
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that σα is a md-singular measure for each α ∈ T. Moreover, as asserted in [11], two Clark measures
σα and σβ associated to an inner function ϕ are mutually singular whenever α ̸= β.

For an inner function ϕ and a constant α ∈ T, we define the so called unimodular level set

Cα(ϕ) := Clos
{
ζ ∈ Td : lim

r→1−
ϕ(rζ) = α

}
,

where the closure is taken with respect to Td. The following proposition is a generalization of
Lemma 2.1 in [3], and is likely known to experts.

Proposition 2.1. Let ϕ : Dd → C be an inner function, and let α be a unimodular constant. Then
supp(σα) ⊂ Cα(ϕ).

With the exception of some tweaks, the proof uses the same arguments as in [3]. We include
the details for the interested reader.

Proof. Let B ⊂ Td be an open ball such that limr→1− ϕ(rζ) ̸= α for all ζ ∈ B. Our goal is to
show that σα(B) = 0. Recall that the Poisson kernel is positive (easily checked from its definition);
hence, ∫

B

P (rζ, η)dσα(η) ≤
∫
Td

P (rζ, η)dσα(η) =
1− |ϕ(rζ)|2

|α− ϕ(rζ)|2

for all ζ ∈ B and every 0 ≤ r < 1. We make two observations now: first of all, we note that since
ϕ is inner, the right-hand side tends to zero for md-almost every ζ ∈ B as r → 1−. So

lim
r→1−

∫
B

P (rζ, η)dσα(η) = 0 md-almost everywhere in B.

Secondly, since ϕ is bounded on the unit polydisc and ϕ(rζ) ̸→ α on B, we have that

lim sup
r→1−

∫
B

P (rζ, η)dσα(η) ≤ lim sup
r→1−

1− |ϕ(rζ)|2

|α− ϕ(rζ)|2
<∞ (3)

for all ζ ∈ B. Here, we take the limit superior instead of the limit, as the limit of the right-hand
side need not exist for every point in B.

Now define

Dr(ζ) := {η : |rζj − ηj | ≤ 2(1− r) : j = 1, . . . , d }.

For every η in this set, we have |rζj − ηj |2 ≤ 4(1− r)2, which implies

1− r2

4(1− r)2
=

1 + r

4(1− r)
≤ 1− r2

|rζj − ηj |2
.

By the definition of the Poisson kernel, we find that(
1 + r

4(1− r)

)d

≤ P (rζ, η).
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Then (
1 + r

4(1− r)

)d

σα(B ∩Dr(ζ)) ≤
∫
B∩Dr(ζ)

P (rζ, η)dσα(η) ≤
∫
B

P (rζ, η)dσα(η),

which in turn implies that

lim
r→1−

σα(B ∩Dr(ζ))

(1− r)d
= 0 md-almost everywhere in B (4)

and, moreover, that the limit superior of this quotient is finite for all ζ ∈ B by (3).
Since ζj , ηj ∈ T, we can express

|rζj − ηj | = |r − ηjζj | < 2(1− r)

in polar coordinates as

2(1− r) > |r − eiθj |
⇐⇒ 4(1− 2r + r2) > 1 + r2 − 2r cos(θj)

⇐⇒ 3r2 − 6r + 3 = 3(1− r)2 > 2r − 2r cos(θj)

⇐⇒ cos(θj) > 1− 3(1− r)2

2r
.

This means that we can express Dr(ζ) as

Dr(ζ) =

{
ζeiθ : |θj | < cos−1

(
1− 3(1− r)2

2r

)
, j = 1, . . . , d

}
.

We observe that this is, as a subset of Td, a product of d copies of the same interval. Hence, as
r → 1−, we may estimate the Lebesgue measure of this set as

|Dr(ζ)| = 2d cos−1

(
1− 3(1− r)2

2r

)d

≥ c(d)

√
3(1− r)2

2r

d

≥ c′(d)(1− r)d

for constants c(d), c′(d) dependent on d. Together with (4), this shows that

lim
r→1−

σα(B ∩Dr(ζ))

|Dr(ζ)|
= 0 md-almost everywhere in B,

and that the limit superior must be finite for all ζ ∈ B.
Note that per definition, Dr(ζ) is a d-dimensional cube with volume tending to zero as r → 1−

for every ζ ∈ B. We now claim that

lim sup
r→1−

σα(B ∩Dr(ζ))

|Dr(ζ)|
= 0 for every ζ ∈ B. (5)

To prove this, suppose there exists some z ∈ B such that the limit superior in (5) is nonzero.
Since σα is a finite measure, we have that σα(B ∩ Dr(z)) < ∞. Together with the fact that the
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denominator tends to zero, this would imply that the limit, and hence limit superior, is infinite for
z ∈ B, which is a contradiction by our previous arguments. Hence (5) holds.

Since |Dr(ζ)| → 0 as r → 1−, the limit in (5) implies that the n-dimensional upper density
of the restriction measure (σα)|B , defined as (σα)|B(A) := σα(B ∩ A), is zero for every point in

Td (see e.g. Proposition 2.2.2 in [18]). Thus, (σα)|B is equal to zero, which in turn implies that
σα(B) = 0.

Example 2.2. Let ϕ(z1, z2) := z1. This is clearly an inner function, and for each given unimodular
constant α, its Clark measure σα satisfies

1− |z1|2

|α− z1|2
=

∫
T2

P (z, ζ)dσα(ζ) =

∫
T2

Pz1(ζ1)Pz2(ζ2)dσα(ζ).

We may see this as

1− |z1|2

|α− z1|2
· 1 =

∫
T2

Pz1(ζ1)Pz2(ζ2)dσα(ζ).

In the variable z1, the measure will be supported on a single point z1 = α. In the variable z2, it
can be seen as the measure µ for which the Poisson integral evaluates to one. But this implies that
µ is just the usual normalized Lebesgue measure. Hence, we may conclude that

σα(z) = δα(z1)⊗m(z2).

This measure is supported on the line {(α, ζ2) : ζ2 ∈ T} in T2. By Theorem 4 in [4], measures of
this kind cannot be supported on sets of Hausdorff dimension less than one, and cannot possess
any point masses. Hence, this is essentially the simplest support we can find for Clark measures in
two variables, in the sense that it is very easy to characterize.

Next, we establish a result which will be used in several proofs down the line:

Lemma 2.3. The linear span of Poisson kernels M := span{Pz : z ∈ D2} is dense in C(T2).

The following is a generalization of the proof of Proposition 1.17 in [15] and uses some Hilbert
space theory we hope the reader will find familiar:

Proof. It is a well-known fact that the dual space of C(T2) is the spaceM(T2) of all so called Radon
measures on T2. As T2 is compact, M(T2) is just the space of complex, finite Borel measures on
T2 (see Theorem 7.8 in [13]).

By Riesz’ representation theorem (Theorem 6.19, [22]), if ℓ is a bounded linear functional on
C(T2), then there is a unique µ ∈M(T2) such that

ℓ(f) =

∫
T2

fdµ.

As a consequence, M is dense in C(T2) if the only measure µ ∈M(T2) such that

P [dµ](z) =

∫
T2

Pz(ζ)dµ(ζ) = 0 for every z ∈ D2
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is the zero measure (see e.g. Theorem 1.27 in [15]). In this case, we say that the only annihilator
of M is the zero measure. Using the series expansion of the Poisson integral, we see that if µ is an
annihilator, then for all n ∈ Z2,

0 =

∫
T2

ζ
n
P [dµ](rζ)dm2(ζ) =

∫
T2

ζ
n
( ∑

k∈Z2

µ̂(k)r|k|ζk
)
dm2(ζ) =

∫
T2

( ∑
k∈Z2

µ̂(k)r|k|ζk−n

)
dm2(ζ),

(6)

where 0 < r < 1 and ζ ∈ T2. Under these conditions, the last sum converges uniformly, so we may
interchange summation and integration.

Note now that for (eiθ1 , eiθ2) ∈ T2 and (k1, k2) ∈ Z2,∫
T2

eiθ1k1+iθ2k2dm2(θ) =

∫
T
eiθ1k1dm(θ1)

∫
T
eiθ2k2dm(θ2) =

{
1 if (k1, k2) = (0, 0),

0 otherwise.

By the above, (6) reduces to

0 = µ̂(n)r|n| +
∑
k ̸=n
k∈Z2

µ̂(k)r|k|
∫
T2

ζk−ndm2(ζ) = µ̂(n)r|n|.

Thus all the Fourier coefficients of µ are zero, which implies that µ is the zero measure — see e.g.
Proposition 1.16 in [15] (all the arguments can be directly generalized to several variables).

3 Clark measures in one variable

Before getting into Clark measures of inner functions in two variables, we give a brief overview of
Clark theory in one variable. In this section, we summarize the results we will need when extending
our scope to the bivariate case.

To formulate our main result, we must first introduce the concept of angular derivatives.

Theorem 3.1. For an analytic function f on D and ζ0 ∈ T, the following are equivalent:

(i) The non-tangential limits

f(ζ0) = ∠ lim
z→ζ0

f(z) and ∠ lim
z→ζ0

f(z)− f(ζ0)

z − ζ0

exist;

(ii) The derivative function f ′ has a non-tangential limit at ζ0.

Under the equivalent conditions above,

∠ lim
z→ζ0

f(z)− f(ζ0)

z − ζ0
= ∠ lim

z→ζ0
f ′(z).

Proof. See Theorem 2.19 in [15].
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Definition 3.2. Assuming the conditions of the theorem, we call

f ′(ζ0) := ∠ lim
z→ζ0

f(z)− f(ζ0)

z − ζ0
= ∠ lim

z→ζ0
f ′(z)

the angular derivative of f at ζ0. Furthermore, if f maps D to itself, we say that f has an angular
derivative in the sense of Carathéodory at ζ0 ∈ T if f has an angular derivative at ζ0 and f(ζ0) ∈ T.

We now have the machinery needed to state the following proposition, which will be extremely
useful to us in later sections:

Proposition 3.3. Let ϕ be an inner function in one variable and α ∈ T. Then the associated Clark
measure σα has a point mass at ζ ∈ T if and only if

ϕ∗(ζ) = lim
r→1−

ϕ(rζ) = α

and ϕ has a finite angular derivative in the sense of Carathéodory at ζ. In this case,

σα({ζ}) =
1

|ϕ′(ζ)|
<∞ and ϕ′(ζ) =

αζ

σα({ζ})
.

Proof. See Proposition 11.2 in [15].

This result is a powerful tool for Clark theory in one variable, and establishes a natural connec-
tion between derivatives of inner functions and their associated Clark measures. We will see that
while Clark measures in two variables do not possess point masses (see [4]), the proposition will
still be useful in determining the weights of these measures along curves in the unimodular level
sets.

Example 3.4. The function

ϕ(z) := exp

(
−1 + z

1− z

)
, z ∈ D,

is inner, and ϕ∗(ζ) exists everywhere on T; this because∣∣∣∣ exp(−1 + z

1− z

)∣∣∣∣ = exp

(
ℜ
(
−1 + z

1− z

))
= exp

(
−1− |z|2

|1− z|2

)
,

from which we can see that ϕ∗(1) = 0. Observe that every point ζ ̸= 1 on the unit circle solves the
equation ϕ∗ = α for some α ∈ T, so ϕ∗(T \ {1}) = T. Moreover, these points accumulate in the
limit point ζ = 1 for every α-value. Since the unimodular level sets are closed per definition, this
implies that 1 ∈ Cα(ϕ) for all α ∈ T.

Now let α = 1. As seen in Example 11.3(ii) in [15], the solutions to ϕ∗(ζ) = 1 are given by

ηk =
2πk − i

2πk + i
, k ∈ Z,
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and

1

|ϕ′(ηk)|
=

8

1 + 4π2k2
.

By Proposition 3.3, the Clark measure of ϕ associated to α = 1 may thus be expressed as

σ1 =
∑
k∈Z

8

1 + 4π2k2
δηk

.

We will revisit variations of this example in later sections.

4 Clark measures of monomials

We begin our study of bivariate inner functions and their Clark measures with a very simple class
of functions: monomials. The general technique applied here to calculate the supports and density
of their Clark measures will prove useful even for more complicated inner functions, and we will
revisit some of these ideas further down the line.

Let
ϕ(z1, z2) = zN1 z

M
2

for non-negative integersM,N . Clearly, ϕ is continuous and analytic everywhere on the closed unit
bidisc, so we need not worry about non-tangential limits at all. In this case, the unimodular level
sets are simply given by

Cα(ϕ) = {ζ ∈ T2 : ϕ(ζ) = α}.

We note that ϕ(z1, z2) = α can be expressed as zM2 = α/zN1 . As z ∈ T, this has precisely M
solutions; let z1 = eiθ and α = eiν . Then zM2 = ei(ν−Nθ) has solutions

ηk := exp

(
i

(
(ν −Nθ)

M
+

2πk

M

))
, k = 0, 1, . . . ,M − 1.

We see that ηk depends on θ and thus on z1, so this defines a parameterization of Cα(ϕ) by graphs

{(ζ, ηk(ζ)) : ζ ∈ T, k = 0, . . . ,M − 1}.

In other words, for each k, we get a curve of the form{(
eiθ, exp

(
i
( (ν −Nθ)

M
+

2πk

M

)))
: 0 ≤ θ ≤ 2π

}
.

Note that the second coordinate can be rewritten as exp
(
i
(

(ν−Nθ)
M + 2πk

M

))
= (eiνe2πki)1/M (e−iθ)N/M ,

where e−iθ is the conjugate of eiθ. This implies that ηk(ζ) is of the form ckζ
N/M

for a unimodular
constant ck. Then {(ζ, ηk(ζ)) : ζ ∈ T} defines an antidiagonal in T2, and Cα(ϕ) consists of M − 1
such antidiagonals. To summarize, for α = eiν , the associated Clark measure of ϕ is supported on

Cα(ϕ) =
M−1⋃
k=0

{(
ζ, ckζ

N/M)
: ζ ∈ T, ck = ei(ν+2πk)/M

}
.
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Figure 1 shows the level curves for the inner function ϕ = z31z
2
2 and α = 1. More precisely, we have

plotted the argument of the curves ηk(e
iθ) for −π ≤ θ ≤ π and α = 1, M = 2 and N = 3.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 1: Level curves ηk for k = 0 (red) and k = 1 (black) when α = 1, M = 2 and N = 3.

A natural next step is to investigate whether the Clark measures have densities along these
lines. To this end, fix ζ ∈ T and define Φζ(z2) := ϕ(ζ, z2). Given α = eiν ∈ T, the solutions to

Φζ(z2) = α on the unit circle are ηk = ηk(ζ) = ckζ
N/M

as defined above for k = 0, 1, . . . ,M − 1.
Then, by Proposition 3.3, the Clark measure of Φζ is given by

M−1∑
k=0

1

|Φ′
ζ(ηk)|

δηk
=

M−1∑
k=0

1

|MηM−1
k ζN |

δηk
=

M−1∑
k=0

1

M
δηk

,

where we have used that ηk(ζ)
M−1ζN is unimodular for each ζ ∈ T. Hence, per definition of this

Clark measure,

1− |Φζ(z2)|2

|α− Φζ(z2)|2
=

1− |ϕ(ζ, z2)|2

|α− ϕ(ζ, z2)|2
=

M−1∑
k=0

1

M

∫
T
Pz2(ζ)δηk

(ζ)

=

M−1∑
k=0

1

M
Pz2(ηk). (7)

Let σα be the associated Clark measure of ϕ for α = eiν . Now fix z2 ∈ D and define

uz2(z1) :=
1− |ϕ(z1, z2)|2

|α− ϕ(z1, z2)|2
=

∫
T2

Pz1(ξ1)Pz2(ξ2)dσα(ξ), z1 ∈ D. (8)

Since ϕ is continuous on the closed unit bidisc and |zN1 zM2 | < 1 for all z1 ∈ D, the denominator of
uz2 is always non-zero. Hence, uz2 is continuous on D, and harmonic on D as the middle expression
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is pluriharmonic per definition. Thus, we may apply the Poisson integral formula, which states that

uz2(z1) =

∫
T

1− |ϕ(ζ, z2)|2

|α− ϕ(ζ, z2)|2
Pz1(ζ)dm(ζ).

Combining (7) and (8) with the above equation yields∫
T2

Pz1(ξ1)Pz2(ξ2)dσα(ξ) =

∫
T

1− |ϕ(ζ, z2)|2

|α− ϕ(ζ, z2)|2
Pz1(ζ)dm(ζ)

=

M−1∑
k=0

1

M

∫
T
Pz1(ζ)Pz2(ηk(ζ))dm(ζ).

This shows that ∫
T2

f(ξ)dσα(ξ) =

M−1∑
k=0

1

M

∫
T
f(ζ, ηk(ζ))dm(ζ)

for f = Pz1Pz2 . We can now use the fact that linear combinations of Poisson kernels are dense in
C(T2) by Lemma 2.3 — this proves the following result:

Theorem 4.1. Let ϕ(z1, z2) = zN1 z
M
2 for positive integers M,N and α = eiν ∈ T. Then the

associated Clark measure σα of ϕ satisfies∫
T2

f(ξ)dσα(ξ) =

M−1∑
k=0

1

M

∫
T
f(ζ, ckζ

N/M
)dm(ζ)

for all f ∈ C(T2), where ck = ei(ν+2πk)/M .

Intuitively, this shows that the Clark measures of monomials are very simple; they live on lines
in T2 with negative slope, and the density takes the same constant value along each line. In what
comes next, we will study more general classes of functions and investigate whether their Clark
measures behave as nicely.

Remark 4.2. One could of course choose to parameterize z1 as a function of z2 instead; the same
argument as above then yields the formula∫

T2

f(ξ)dσα(ξ) =

N−1∑
k=0

1

N

∫
T
f(dkζ

M/N
, ζ)dm(ζ)

for f ∈ C(T2) and dk = ei(ν+2πk)/N . Let us explicitly show that this is indeed the same integral as
the one obtained in Theorem 4.1 for a simple toy example. Define ϕ(z) = z21z2 and fix α = eiν ; by
Theorem 4.1, the associated Clark measure satisfies∫

T2

f(ξ)dσα(ξ) =

∫
T
f(ζ, c0ζ

2
)dm(ζ) =

1

2π

∫ π

−π

f(eit, e−2iteiν)dm(t). (9)
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Applying Theorem 4.1 with parameterization in z2 instead yields formula∫
T2

f(ξ)dσα(ξ) =
1

2

∫
T
f(d0ζ

1/2
, ζ)dm(ζ) +

1

2

∫
T
f(d1ζ

1/2
, ζ)dm(ζ)

=
1

4π

(∫ π

−π

f(e−iθ/2eiν/2, eiθ)dm(θ) +

∫ π

−π

f(e−iθ/2ei(ν/2+π), eiθ)dm(θ)

)
.

We can now change integration variable via θ = −2η, obtaining

1

2π

(∫ π/2

−π/2

f(eiηeiν/2, e−2iη)dm(η) +

∫ π/2

−π/2

f(eiηei(ν/2+π), e−2iη)dm(η)

)
.

Now we switch variable to η + π in the second integral, which yields

1

2π

(∫ π/2

−π/2

f(eiηeiν/2, e−2iη)dm(η) +

∫ 3π/2

π/2

f(eiηeiν/2, e−2i(η−π))dm(η)

)
=

1

2π

∫ 3π/2

−π/2

f(eiηeiν/2, e−2iη)dm(η).

Finally, let t = η + ν/2. Then

1

2π

∫ 3π/2

−π/2

f(eiηeiν/2, e−2iη)dm(η) =
1

2π

∫ 3π/2+ν/2

−π/2+ν/2

f(eit, e−2i(t−ν/2))dm(η)

=
1

2π

∫ π

−π

f(eit, e−2iteiν)dm(t),

where the periodicity of the integrand allows us to change integration limits in the last step. Hence
we arrive at the same formula as (9). A generalization of this argument can be used to show that
we can switch variables in Theorem 4.1 without any trouble.

5 Rational inner functions

We now move on to a more general — and more complicated — class of functions. In this section,
we review some recent results concerning the Clark measures of rational inner functions in two
variables. This situation will require extra care, as we now have to deal with potential singularities
of these functions. However, we will see that the support of any associated Clark measure is actually
a finite union of graphs, and that we can explicitly write out its weights along these — much like
in the previous section. We will mainly present results and proofs from [3], potentially with some
added detail.

We will first need some terminology specific to rational inner functions. We say that a polynomial
p ∈ C[z1, . . . , zd] is stable if it has no zeros in Dd, and that it has polydegree (n1, . . . , nd) ∈ Nd if
p has degree nj when viewed as a polynomial in zj . By Theorem 5.2.5 in [21], any rational inner
function (abbreviated RIF) in Dd can be written as

ϕ(z) = eia
d∏

j=1

z
kj

j

p̃(z)

p(z)



5 RATIONAL INNER FUNCTIONS 17

where a ∈ R, k1, . . . , kd ∈ N, p is a stable polynomial of polydegree (n1, . . . , nd), and

p̃(z) := zn1
1 · · · znd

d p

(
1

z1
, . . . ,

1

z2

)
is its reflection. Note that any zero of p will be a zero of p̃ and vice versa, and that p and p̃ have the
same polydegree. For simplicity, we will always assume that ϕ(z) = p̃

p , where p and p̃ are so called

atoral — a concept explored in e.g. [1]. In the context of this project, atoral simply means that
p and p̃ share no common factors, and that in two dimensions in particular, p and p̃ have finitely
many common zeros on T2. Hence, a rational inner function ϕ in two variables will have finitely
many singularities on T2.

Moreover, we define the polydegree of a rational function ϕ = q/p as (n1, . . . , nd), where p
and q have no common factors, and nj is the maximum of the degrees of p and q when viewed
as polynomials in variable zj . Thus, the polydegree of ϕ = p̃/p as defined above agrees with the
polydegrees of both its numerator and denominator.

It is known that for any rational inner function ϕ, the non-tangential limit ϕ∗(ζ) exists and
is unimodular for every ζ ∈ Td (see Theorem C, [16]). Moreover, note that for any index j,
given some fixed values ζ1, . . . , ζj−1, ζj+1, . . . , ζd ∈ T, the function zj 7→ ϕ(ζ1, . . . , zj , . . . , ζd) is a
univariate rational function in D. Then, by [16], this function has unimodular non-tangential limits
at every point on T. By Fatou’s lemma, this implies that it must be a finite Blaschke product of
degree at most nj . The following lemma refines this result:

Lemma 5.1. Let ϕ = p̃/p be a RIF in Dd of polydegree (n1, . . . , nd). Given any ζ = (ζ1, . . . , ζd−1, ζd) ∈
Td, set ζ ′ := (ζ1, . . . , ζd−1) ∈ Td−1. For a fixed ζ ′, we define

ϕζ′(zd) := ϕ(ζ1, . . . , ζd−1, zd).

If ϕ has no singularities at any points of the form (ζ ′, w) ∈ Td where w ∈ T, then ϕζ′ is Blaschke
product of precisely degree nd.

The proof uses elementary properties of Blaschke products and the structure of RIFs, and is
omitted here (see Lemma 2.3 in [3]).

As a first step in our analysis, we would like to characterize the supports of the associated Clark
measures of RIFs. By Proposition 2.1, we may do this via the unimodular level sets. The following
result gives us a straight-forward expression for the level sets of RIFs specifically.

Theorem 5.2. For fixed α ∈ T, let

Lα(ϕ) := {ζ ∈ Td : p̃(ζ)− αp(ζ) = 0}.

Then Cα(ϕ) = Lα(ϕ).

Proof. See Theorem 2.6 in [8].

Note that for any zero of p, the equation p̃ − αp = 0 is trivially satisfied. This implies that all
singularities of ϕ on Td are contained in Cα(ϕ). Moreover, recall that Cα(ϕ) is defined as the closure
of {ζ ∈ Td : limr→1− ϕ(rζ) → α}. This is in general not a closed set, since ϕ is not necessarily

continuous on Dd
. However, by the theorem above, we may characterize Cα(ϕ) as the zeros of a

polynomial when ϕ is a RIF.
When we restrict ourselves to d = 2, we have an even nicer characterization of the unimodular

level sets:
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Lemma 5.3. Let ϕ = p̃
p be a RIF of bidegree (m,n), and fix α ∈ T. For any choice of τ0 ∈ T,

there exists a finite number of functions gα1 , . . . , g
α
n defined on T and analytic on T \ {τ0} such that

Cα(ϕ) can be written as a union of curves

{(ζ, gαj (ζ)) : ζ ∈ T}, j = 1, . . . , n,

potentially together with a finite number of vertical lines ζ1 = τ1, . . . , ζ1 = τk, where each τj ∈ T.

Now for a word of warning: the curves gαj might intersect at singularities of ϕ, in which case

analyticity is not obvious. Consider for example the equation z31 − z22 = 0; the graphs of the
solutions are not analytic at their point of intersection (the origin). We must ensure that the points
of intersection in Cα(ϕ) are not of this type, and that we can in some sense ”pull apart” any crossed
curves and prove that they are each analytic when viewed separately. However, it is shown in [7]
that near each singularity of ϕ, the level sets actually consist of smooth curves. Hence, intersections
at the singularities in Cα(ϕ) pose no threat. We will use this result in proving Lemma 5.3.

Proof. First, we fix τ ∈ T and seek a parameterization of Cα(ϕ)∩ (Iτ ×T), where Iτ ⊂ T is a small
interval containing τ . The proof is divided into two main steps, depending on whether τ is the
z1-coordinate of a singularity of ϕ or not. Recall that ϕ has finitely many singularities given our
assumptions on p and p̃.

Step 1. Suppose first that τ is not the z1-coordinate of a singularity of ϕ. By Lemma 5.1,
ϕτ (z2) := ϕ(τ, z2) is a non-constant finite Blaschke product of degree n. This implies that ϕτ maps
T to itself precisely n times, and so ϕτ (z2) = α has precisely n distinct solutions η1, . . . , ηn ∈ T.
Since ϕτ is a non-constant finite Blaschke product, its derivative ϕ′τ is non-zero on T, and thus

∂ϕ

∂z2
(τ, ηj) = ϕ′τ (ηj) ̸= 0, j = 1, . . . , n.

By our choice of τ , the function ϕ is analytic in a neighborhood of each (τ, ηj). The holomorphic
implicit function theorem (Theorem 1.4.11 in [17]) then states that we can parameterize Cα(ϕ) =
Lα(ϕ) with locally analytic functions in some neighborhood of each such point. Formally, there
exist locally analytic functions gα1,τ , . . . , g

α
n,τ and an open interval Iτ containing τ such that Cα(ϕ)

is parameterized by

ζ2 = gα1,τ (ζ1), . . . , ζ2 = gαn,τ (ζ1) (10)

on Iτ × U , where U is a union of open arcs containing η1, . . . , ηn.
We observe that ϕ(ζ1, ζ2) = α has n distinct solutions for each ζ1 close to τ . By shrinking Iτ

if necessary, we can ensure that there is no singularity lying in its closure; then (10) parameterizes
all pieces of Cα(ϕ) contained in the strip Iτ × T.

Step 2. Now suppose τ is the z1-coordinate of a singularity of ϕ. There are two possibilities
here: either,

(a) p̃(τ, ζ) = αp(τ, ζ) for any ζ ∈ T, so the line {ζ ∈ T2 : ζ1 = τ} is contained in Cα(ϕ), or

(b) the intersection {ζ ∈ T2 : ζ1 = τ} ∩ Cα(ϕ) consists of points (τ, z2) where ϕ has a singularity,
as well as points (τ, η) for which ϕ(τ, η) = ϕτ (η) = α.
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Suppose we are in case (a). Let (τ, γ) ∈ T2 be the limit of a sequence {(τm, γm)}∞m=1 ⊂ Cα(ϕ)
where τm ̸= τ . Our goal is to show that the point of intersection with the line ζ1 = τ must be a
singularity of ϕ. To this end, define ϕm(z1) := ϕ(z1, γmτmz1) for each m. Since {ζ ∈ T2 : ζ1 =
τ} ⊂ Cα(ϕ), we must have that ϕm(τ) = ϕ(τ, γm) = α. By assumption, ϕm(τm) = ϕ(τm, γm) = α
as well. Note now that ϕm is a non-constant finite Blaschke product, so it maps the entire unit
circle to itself. This implies that ϕm will attain every value on T on each of the arcs between τ and
τm. Hence, for any given λ ̸= α in T, we can find a sequence {ρm}∞m=1 ⊂ T where each ρm lies on
the smaller of the two arcs of T between τ and τm, with the property that ϕm(ρm) = λ.

Since τm → τ , then ρm → τ as well, and so (ρm, γmτmρm) → (τ, γ) as m → ∞. This implies
that ϕ is discontinuous at (τ, γ), and thus has a singularity at this point. We can now apply
Theorem 2.9 in [7] at (τ, γ), which says that Cα(ϕ) can be parameterized by analytic functions near
each singularity of ϕ. This takes care of case (a).

In case (b), we can again apply Theorem 2.9 in [7] at the singularities, and invoke the implicit
function theorem at the other points.

To summarize, for both cases (a) and (b), we get a finite number of analytic functions which
— possibly together with a line {ζ ∈ T2 : ζ1 = τ} — parameterize Cα on a strip Iτ × T for some
sufficiently small interval Iτ . Moreover, for any τ that is not one of the singularities from case
(b) (of which there are finitely many), there are precisely n distinct points η1, . . . , ηn ∈ T such
that ϕ(τ, ηj) = α. This means that in each case, we must get exactly n parameterizing functions,
potentially together with a finite number of vertical lines.

It remains to extend this parameterization to T2. We can form a cover of T2 from strips Iτ ×T,
where Iτ is as in step 1 or step 2. Since T2 is compact, we can refine this cover to a finite number of
strips such that each of ϕ:s (finitely many) singularities belongs to one of the strips. We have shown
that Cα(ϕ) can be analytically parameterized on each such strip, and the parameterizations agree
on the overlaps. An issue that may arise is that as we go around the unit circle, one branch might
end at the point where another branch began. This implies that we cannot always be sure that
gαj (e

iθ) = gαj (e
iθ+2πi) for each j, but instead we might find that gαj (e

iθ) = gαk (e
iθ+2πi) for j ̸= k.

Hence, we introduce a point τ0 ∈ T where we allow the branches to jump. This yields functions
gα1 , . . . , g

α
n globally defined on T and analytic except at a single point, which, potentially together

with a finite number of vertical lines, parameterize Cα(ϕ) as desired.

The analysis of Clark measures of RIFs must now be divided into two cases; when the unimodular
constant α is generic versus exceptional as defined below.

Definition 5.4. We say that α ∈ T is an exceptional value if ϕ(τ, ζ2) ≡ α or ϕ(ζ1, τ) ≡ α for some
τ ∈ T. If α is not exceptional, we say that it is generic.

The different cases arise from the characterization of Cα(ϕ) in Lemma 5.3; if α is an exceptional
value, by the definition above, the level sets will contain lines of the form {ζ1 = τ} or {ζ2 = τ}. If
α is generic, Cα(ϕ) can be fully described by the graphs of the functions gα1 , . . . , g

α
n . We will study

these situations separately in what follows.

Generic values

For generic values of α, the situation becomes relatively simple. Given a RIF ϕ, we are able to
characterize the density of the Clark measures along the curves in Cα(ϕ) from Lemma 5.3.
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Theorem 5.5. Let ϕ = p̃
p be a RIF of bidegree (m,n) and α ∈ T a generic value for ϕ. Then the

associated Clark measure σα satisfies∫
T2

f(ξ)dσα(ξ) =

n∑
j=1

∫
T
f(ζ, gαj (ζ))

dm(ζ)

| ∂ϕ∂z2
(ζ, gαj (ζ))|

for all f ∈ C(T2), where gα1 , . . . , g
α
n are the parameterizing functions from Lemma 5.3.

Proof. We first prove this in the case when f is the product of one-variable Poisson kernels. Suppose
α ∈ T is a generic value for ϕ. Then, by Lemma 5.3,

Cα(ϕ) =
n⋃

j=1

{(ζ, gαj (ζ)) : ζ ∈ T}

where the functions gαj are analytic on T except at a single point.
For fixed z2 ∈ D, define the one-variable function

uz2(z1) :=
1− |ϕ(z1, z2)|2

|α− ϕ(z1, z2)|2
=

∫
T2

Pz1(ξ1)Pz2(ξ2)dσα(ξ), z1 ∈ D, (11)

where σα is the Clark measure of ϕ. By Lemma 10.1 in [16], bivariate RIFs cannot have singularities
on T × D, and so ϕ(·, z2) is continuous on D. We also claim that the denominator is non-zero for
all z1 ∈ D. Recall that for each ζ ∈ T, the function Φζ(z2) := ϕ(ζ, z2) is a finite Blaschke product.
By basic properties of Blaschke products, this implies that unless Φζ is constant, it must satisfy
|Φζ(z2)| < 1 for all z2 ∈ D. Thus, if Φζ(z2) = α for some ζ ∈ T, it must be a constant function,
which in turn implies that α is an exceptional value — a contradiction. Hence, ϕ(·, z2) cannot
attain the value α on D. This proves that uz2 is continuous on D.

Moreover, since the middle expression of (11) is pluriharmonic, uz2 is harmonic in D. Hence,
we may apply the Poisson integral formula:

uz2(z1) =

∫
T

1− |ϕ(ζ, z2)|2

|α− ϕ(ζ, z2)|2
Pz1(ζ)dm(ζ). (12)

We saw in Lemma 5.1 that given ζ ∈ T, the function Φζ(z2) := ϕ(ζ, z2) is a finite Blaschke product
of degree n. Let {η1, . . . , ηn} ⊂ T be the solutions to Φζ(z2) = α. Then, by Proposition 3.3, the
Clark measure of Φζ(z2) will be given by

n∑
j=1

1

|Φ′
ζ(ηj)|

δηj =

n∑
j=1

1

| ∂ϕ∂z2
(ζ, ηj)|

δηj ,

where the weights | ∂ϕ∂z2
(ζ, ηj)|−1 are finite.

Using the definition of Clark measures and the parameterization of Cα(ϕ), this implies

1− |ϕ(ζ, z2)|2

|α− ϕ(ζ, z2)|2
=

n∑
j=1

1

| ∂ϕ∂z2
(ζ, ηj)|

∫
T
Pz2(ξ)dδηj

(ξ)

=

n∑
j=1

1

| ∂ϕ∂z2
(ζ, ηj)|

Pz2(ηj)

=

n∑
j=1

1

| ∂ϕ∂z2
(ζ, gαj (ζ))|

Pz2(g
α
j (ζ)).
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We may now insert the above in (12) and use (11) to obtain∫
T2

Pz1(ξ1)Pz2(ξ2)dσα(ξ) =

n∑
j=1

∫
T
Pz1(ζ)Pz2(g

α
j (ζ))

dm(ζ)

| ∂ϕ∂z2
(ζ, gαj (ζ))|

.

This proves the theorem for f = Pz1Pz2 . Using that linear combinations of Poisson kernels are
dense in C(T2) by Lemma 2.3, we obtain the desired result.

Exceptional values

When α is an exceptional value, the situation becomes more intricate, as we must now take vertical
lines in Cα(ϕ) into account. By looking at Theorem 5.5, one might fear that the weights along the
lines {ζ ∈ T : ζ1 = τ} would grow uncontrollably large, as ϕ has a vanishing partial derivative
there. However, it is shown in [3] that this is not the case; the weights along the vertical lines are
actually constants. We omit the proof here as it is quite technical, and refer the interested reader
to Theorem 3.8 in [3].

Theorem 5.6. Let ϕ = p̃
p be a RIF of bidegree (m,n) and α ∈ T an exceptional value for ϕ. Then,

for f ∈ C(T2), the associated Clark measure σα satisfies∫
T2

f(ξ)dσα(ξ) =

n∑
j=1

∫
T
f(ζ, gαj (ζ))

dm(ζ)

| ∂ϕ∂z2
(ζ, gαj (ζ))|

+

ℓ∑
k=1

cαk

∫
T
f(τk, ζ)dm(ζ),

where gα1 , . . . , g
α
n are the parameterizing functions and ζ1 = τ1, . . . , ζ1 = τℓ the vertical lines in

Cα(ϕ) from Lemma 5.3, and cαk := 1/| ∂ϕ∂z1
(τk, z2)| > 0 are constants.

The case of rational inner functions of bidegree (n, 1) specifically has been studied in great detail
in [5]. For these RIFs, we obtain a more explicit version of Theorem 5.6. If ϕ = p̃/p has bidegree
(n, 1), we may write

p(z) = p1(z1) + z2p2(z1) and p̃(z) = z2p̃1(z1) + p̃2(z1)

for reflections p̃i = zn1 pi(1/zi). In this case, solving ϕ∗ = α for z2 yields z2 = 1
Bα(z1)

, where

Bα(z) :=
p̃1(z)− αp2(z)

αp1(z)− p̃2(z)
.

Moreover, define

Wα(ζ) :=
|p1(ζ)|2 − |p2(ζ)|2

|p̃1(ζ)− αp2(ζ)|2
.

Then, by Theorem 1.2 in [5], we have∫
T2

f(ξ)dσα(ξ) =

∫
T
f(ζ,Bα(ζ))Wα(ζ)dm(ζ) +

ℓ∑
k=1

cαk

∫
T
f(τk, ζ)dm(ζ)

with cαk = 1/| ∂ϕ∂z1
(τk, z2)| is non-zero if and only if α is an exceptional value. It is worth noting that

for any RIF ϕ of bidegree (n, 1), a value α ∈ T is exceptional if and only if it is the non-tangential
value of ϕ at some singularity (see Section 3 of [5]).
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Example 5.7. For an explicit example, we use Example 5.2 from [5]: let ϕ = p̃
p for

p(z) = 4− z2 − 3z1 − z1z2 + z21 and p̃(z) = 4z21z2 − z21 − 3z1z2 − z1 + z2.

From here we see that ϕ has only one singularity, which occurs at (1, 1). Moreover, for each α ∈ T,
the formulas above yield

Bα(z) =
4z21 − 3z1 + 1 + α+ αz1

4α− 3z1α+ z21α+ z21 + z1

and

Wα(ζ) =
4|ζ − 1|4

|4ζ2 − 3ζ + 1 + α+ αζ|2
.

We see that α = −1 is an exceptional value, as ϕ = −1 is solved by (1, z2) as well as
(
z1,

1
B−1(z1)

)
=

(z1, 1/z1). Since ϕ only has one singularity, this point gives rise to the only exceptional value and
ϕ∗(1, 1) = −1. Hence, for α ̸= −1, we have∫

T2

f(ξ)dσα(ξ) =

∫
T
f(ζ,Bα(ζ))

4|ζ − 1|4

|4ζ2 − 3ζ + 1 + α+ αζ|2
dm(ζ).

Moreover, we see that W−1(ζ) =
1
4 |ζ − 1|2 and ∂ϕ

∂z1
(1, z2) = −2, which yields∫

T2

f(ξ)dσ−1(ξ) =
1

4

∫
T
f(ζ, ζ)|ζ − 1|2dm(ζ) +

1

2

∫
T
f(1, ζ)dm(ζ)

for α = −1.

6 Multiplicative embeddings

The case of Clark measures for inner functions in one variable has been studied extensively with
some strong results, e.g. Proposition 3.3 from earlier sections. In this section, we study a certain
class of bivariate inner functions constructed from one-variable inner functions, and investigate to
what extent the univariate analysis can be applied. We then compare these functions to the rational
inner functions from the previous section.

Given an inner function ϕ in one complex variable, we define the multiplicative embedding

ψ(z) = ψ(z1, z2) := ϕ(z1z2), z ∈ D2.

The function defined by (z1, z2) 7→ z1z2 maps D2 to D, and so ϕ being an inner function implies
that ψ is inner as well. In the following proposition, we characterize the support set of ψ with the
help of the original function ϕ. Recall that we define the unimodular level sets of ψ as

Cα(ψ) = Clos
{
ζ ∈ T2 : lim

r→1−
ψ(rζ) = α

}
.

Proposition 6.1. Let ϕ(z) be an inner function in one variable, and α ∈ T. Define ψ(z1, z2) :=
ϕ(z1z2). Then

Cα(ψ) =
⋃

ζ∈Cα(ϕ)

{(z, ζz) : z ∈ T}.
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Proof. First, for ease of notation, define

C′
α(f) :=

{
ζ ∈ Td : lim

r→1−
f(rζ) = α

}
for any inner function f , so that Cα(f) = Clos(C′

α(f)).
Let ζ ∈ C′

α(ϕ). Then we know that

lim
r→1−

ϕ(rζ) = α.

For every z ∈ T,

lim
r→1−

ψ(r(z, ζz)) = lim
r→1−

ϕ(r2ζzz) = lim
r→1−

ϕ(rζ) = α,

implying that (z, ζz) ∈ Cα(ψ). Thus⋃
ζ∈C′

α(ϕ)

{(z, ζz) : z ∈ T} ⊂ Cα(ψ).

To extend this to a union over Cα(ϕ), let ζ ∈ Cα(ϕ). Then there exists some sequence (ζn)n≥1 in
C′
α(ϕ) that converges to ζ as n tends to infinity. This also implies that for any z ∈ T, (z, ζnz) →

(z, ζz) ∈ Cα(ψ) as n→ ∞. Hence,⋃
ζ∈Cα(ϕ)

{(z, ζz) : z ∈ T} ⊂ Cα(ψ).

Conversely, let (z1, z2) ∈ C′
α(ψ), so

lim
r→1−

ψ(r(z1, z2)) = lim
r→1−

ϕ(r2z1z2) = α.

Then ζ := z1z2 ∈ Cα(ϕ). Since z1, z2 ∈ T, we may write

z2 =
ζ

z1
= ζz1,

so (z1, z2) = (z1, ζz1) ∈ {(z, ζz) : z ∈ T}. Hence,

C′
α(ψ) ⊂

⋃
ζ∈Cα(ϕ)

{(z, ζz) : z ∈ T}.

Now let (z1, z2) ∈ Cα(ψ). Then there is some sequence of (z1,n, z2,n) in C′
α(ψ) converging to (z1, z2)

as n → ∞. But this implies that z1,nz2,n → z1z2 ∈ Cα(ϕ), and the same argument as above then
yields

Cα(ψ) ⊂
⋃

ζ∈Cα(ϕ)

{(z, ζz) : z ∈ T}.
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Intuitively speaking, this result says that if the Clark measure σα of ϕ has point masses at some
ζj ∈ T, the corresponding measure τα of ψ will have its support ”smeared” across antidiagonals
dependent on the points ζj . As in the RIF case, the unimodular level sets of this class of functions
may be expressed as unions of curves. However, as opposed to in Lemma 5.3, the unions need not
be finite — or even countable — here.

Remark 6.2. A skeptic might now point out that so far, we have not seen any Clark measures
supported on uncountable sets, except finite unions of curves. To convince ourselves that more
complicated examples exist, observe that by Lemma 2.2 in [3], any positive, pluriharmonic, md-
singular probability measure defines the Clark measure of some inner function. Hence, any such
measure with sufficiently intricate support will do as an example.

A natural next step is to investigate whether we can characterize the density of a given Clark
measure τα on the antidiagonals in Cα(ψ). To do this, we will first need a formula for integrating
C(T2)-functions with respect to τα.

Proposition 6.3. Let ϕ(z) be an inner function in one variable, with Clark measure σα for some
unimodular constant α. Let τα be the corresponding Clark measure of ψ(z1, z2) := ϕ(z1z2). Then,
for any function f ∈ C(T2),∫

T2

f(ξ)dτα(ξ) =

∫
T

(∫
T
f(ζ, xζ)dσα(x)

)
dm(ζ).

Proof. We first prove this in the case when f is the product of one-variable Poisson kernels. Fixing
z2 ∈ D, let

uz2(z1) :=
1− |ϕ(z1z2)|2

|α− ϕ(z1z2)|2
=

∫
T2

Pz1(ξ1)Pz2(ξ2)dτα(ξ), z1 ∈ D.

As the middle expression is pluriharmonic, uz2 must be harmonic on D. Since z1z2 ∈ D for any
z1 ∈ D, and ϕ is analytic (and hence continuous) on D, we see that ψ(z1, z2) = ϕ(z1z2) as a function
of z1 is continuous on D. Moreover, by the maximum principle, |ϕ| < 1 on the unit disc, which
implies that the denominator will always be non-zero. We conclude that uz2 is continuous D, and
we may thus apply the Poisson integral formula:

uz2(z1) =

∫
T

1− |ϕ(ζz2)|2

|α− ϕ(ζz2)|2
Pz1(ζ)dm(ζ). (13)
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Moreover, for ζ ∈ T, we see that∫
T
Pz(ζ, xζ)dσα(x) =

∫
T
Pz1(ζ)Pz2(xζ)dσα(x)

= Pz1(ζ)

∫
T

1− |z2|2

|xζ − z2|2
dσα(x)

= Pz1(ζ)

∫
T

1− |z2|2

|xζ − z2|2
|ζ|2

|ζ|2
dσα(x)

= Pz1(ζ)

∫
T

1− |ζz2|2

|x− ζz2|2
dσα(x)

= Pz1(ζ)

∫
T
Pζz2(x)dσα(x)

= Pz1(ζ)
1− |ϕ(ζz2)|2

|α− ϕ(ζz2)|2
,

where we used the definition of the Clark measure σα in the last step. By integrating the above
and applying (13), we get∫

T

(∫
T
Pz(ζ, xζ)dσα(x)

)
dm(ζ) =

∫
T

1− |z1|2

|ζ − z1|2
1− |ϕ(ζz2)|2

|α− ϕ(ζz2)|2
dm(ζ)

=
1− |ϕ(z1z2)|2

|α− ϕ(z1z2)|2

=

∫
T2

Pz1(ξ1)Pz2(ξ2)dτα(ξ).

Lemma 2.3 now yields the desired result.

Remark 6.4. It is a priori not obvious that f(ζ, xζ) is integrable with respect to σα. Integrability
is ensured by the fact that f(ζ, xζ) is continuous on T, as it is composed by two functions f and
gx(z) := (z, xz) which are continuous there. Since σα is a finite, positive Borel measure on a
compact space, all continuous functions on said space are integrable with respect to σα.

We now have the machinery we need to prove the following result:

Theorem 6.5. Let ϕ(z) be an inner function in one variable, with Clark measure σα for some
unimodular constant α. Let τα be the corresponding Clark measure of ψ(z1, z2) := ϕ(z1z2). If σα is
supported on a countable collection of points {ηk}k≥1 ⊂ Cα(ϕ), then∫

T2

f(ξ)dτα(ξ) =
∑
k≥1

∫
T
f(ζ, ηkζ)

dm(ζ)

|ϕ′(ηk)|

for all f ∈ C(T2).

Proof. By Proposition 3.3, σα having a point mass at some ηk implies that σα({ηk}) = 1/|ϕ′(ηk)|.
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Then, following the steps in the proof of Proposition 6.3,∫
T
Pz(ζ, xζ)dσα(x) =

∫
T
Pz1(ζ)Pz2(xζ)dσα(x)

= Pz1(ζ)

∫
T
Pζz2(x)dσα(x)

= Pz1(ζ)

∫
T

(∑
k≥1

1

|ϕ′(ηk)|
Pζz2(x)

)
dδηk

(x).

This then reduces to

Pz1(ζ)
∑
k≥1

1

|ϕ′(ηk)|
Pζz2(ηk) =

∑
k≥1

1

|ϕ′(ηk)|
Pz1(ζ)Pz2(ηkζ)

using the same trick as before to go from Pζz2(ηk) to Pz2(ηkζ). Hence,∫
T
Pz(ζ, xζ)dσα(x) =

∑
k≥1

1

|ϕ′(ηk)|
Pz(ζ, ηkζ).

Integrating over this and applying Proposition 6.3 then shows that∫
T2

Pz(ξ)dτα(ξ) =

∫
T

(∑
k≥1

1

|ϕ′(ηk)|
Pz(ζ, ηkζ)

)
dm(ζ),

Since Poisson kernels are positive by definition, the summands in the right-hand side are positive.
Hence, by Tonelli’s theorem, we may interchange summation and integration:∫

T2

Pz(ξ)dτα(ξ) =
∑
k≥1

∫
T
Pz(ζ, ηkζ)

dm(ζ)

|ϕ′(ηk)|
.

Lemma 2.3 now yields the desired result.

It is interesting to compare the above result to the corresponding theorems, Theorem 5.5 and
Theorem 5.6, for rational inner functions. In the RIF case, we saw that the weights of Clark
measures along the curves in the unimodular level sets were one-variable functions. Theorem 6.5
shows that for the multiplicative embeddings, the weights are simpler than their RIF counterparts
— they are constant along each curve in the level sets. This is perhaps unexpected; it implies that
given any univariate inner function ϕ, regardless of its complexity, the associated Clark measures
of ϕ(z1z2) will still be very ”well-behaved”, in the sense that they are supported on straight lines
and have constant density along each such line.

Example 6.6. In Example 4.2 in [11], the author uses technical properties of Poisson kernels to
show that ∫

T2

f(ξ)dτα(ξ) =

∫
T
f(ζ, αζ)dm(ζ)

for f ∈ C(T2), where τα is the Clark measure associated to ψ(z1, z2) := z1z2 and α ∈ T. By setting
ϕ(z) := z, we can instead apply Theorem 6.5. Note that ϕ∗ exists and is equal to ϕ everywhere on
T, and ϕ(ζ) = α has only one solution ζ = α. Hence, direct application of the theorem yields the
equality above.
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Example 6.7. Recall the function

ϕ(z) := exp

(
−1 + z

1− z

)
, z ∈ D,

from Example 3.4. We saw there that the solutions to ϕ∗(ζ) = 1 are given by

ηk =
2πk − i

2πk + i
, k ∈ Z,

and

1

|ϕ′(ηk)|
=

8

1 + 4π2k2
.

Applying Theorem 6.5 for the Clark measure τ1 of ψ(z1, z2) := ϕ(z1z2) then results in∫
T2

f(ξ)dτ1(ξ) =
∑
k∈Z

8

1 + 4π2k2

∫
T
f(ζ, ηkζ)dm(ζ)

for f ∈ C(T2). This marks our first example of a non-rational bivariate function, for which we can
explicitly characterize the Clark measures! Moreover, this is our first example of an inner function
whose unimodular level sets consist of infinitely many curves, as opposed to the RIF case. The
function ψ is also studied in Example 13.1 in [6].

7 Product functions

After the analysis of multiplicative embeddings from the last section, one might wonder about
product functions of the form

Φ(z1, z2) := ϕ(z1)ψ(z2)

for one-variable inner functions ϕ and ψ. Note that we have already studied one such class of
functions, the monomials from the first section. However, at first sight, general product functions
may look elusive. Recall that a key argument in the proofs of Theorem 4.1, Theorem 5.5 and
Theorem 6.5 is the Poisson integral formula. To use this for Φ(z1, z2), we require that for fixed
z2 ∈ D, the function

uz2(z1) :=
1− |ϕ(z1)ψ(z2)|2

|α− ϕ(z1)ψ(z2)|2

is continuous on the closed unit disc. However, for a general inner function ϕ, its non-tangential
limits need only exist m-almost everywhere on T. Even if they do exist on the entire unit circle,
ϕ∗ need not be continuous. For this reason, we introduce the function Φr(z) := ϕ(rz1)ψ(z2) for
0 < r < 1. This is not an inner function, as |ϕ(rz1)| < 1 on the unit circle. However, since Φr → Φ
as r → 1−, we can go via Φr to investigate the Clark measures of Φ.

Unfortunately, this does not solve all issues for general inner functions ϕ and ψ; we will have to
introduce some assumptions on at least one of the functions.

Theorem 7.1. Let Φ(z1, z2) := ϕ(z1)ψ(z2) for one-variable inner functions ϕ and ψ, such that
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A. ψ∗ is continuous on T except at a finite set of points,

B. the solutions to ψ∗ = β for β ∈ T can be parameterized by functions {gk(β)}k≥1 which are also
continuous on T except at a finite set of points,

C. for every β ∈ T, there are no solutions to ψ∗ = β with infinite multiplicity, and

D. the Clark measures of ψ are all discrete.

Then the Clark measures of Φ satisfy∫
T2

f(ξ)dσα(ξ) =
∑
k≥1

∫
T
f(ζ, gk(αϕ∗(ζ)))

dm(ζ)

|ψ′(gk(αϕ∗(ζ)))|

for ∈ C(T2).

Remark 7.2. In all our examples so far, if a one-variable inner function ψ had a discrete Clark
measure for some α-value, it would hold true for every α ∈ T. However, there are examples of
inner functions where its Clark measure σα is discrete for one specific α-value but σβ is singular
continuous for β ∈ T \ {α}, and vice versa. See Example 1 and 2 in [10].

Before getting into the details of the proof, let us try to locate the difficulties and motivate our
assumptions. A potential issue is that the right-hand side may not be integrable; this is remedied
by our assumptions A and B on {gk}k≥1 and ψ∗. This is explored in more detail in the proof.

A more concerning threat is that the sum in the right-hand side might run off to infinity.
Per definition, ζ = gk(β) solves the equation ψ∗(ζ) = β for every k ≥ 1. By Proposition 3.3
and assumption D, for every fixed ζ ∈ T such that ϕ∗(ζ) is unimodular, the Clark measure of ψ
associated to parameter value αϕ∗(ζ) is thus given by∑

k≥1

1

|ψ′(gk(αϕ∗(ζ)))|
δ
gk(αϕ∗(ζ))

.

As all Clark measures are finite, the sum of weights
∑

k≥1 |ψ′(gk(αϕ∗(ζ)))|−1 converges for this

fixed ζ, and so the above sum converges as well. However, the equation ψ∗ = αϕ∗(ζ) need not
have the same number of solutions for each ζ; we might then have points of intersection of the
gk-functions. Since the Clark measures of ψ are mutually singular and in this case discrete, two
measures associated to different parameters must be supported on disjoint sets. Hence gk(αϕ∗(ζ)) ̸=
gj(αϕ∗(ζ ′)) for any ζ ̸= ζ ′ where ϕ∗(ζ) ̸= ϕ∗(ζ ′). Nevertheless, a situation could arise where the

curves have the same limit points; i.e. if limk→∞ gk(αϕ∗(ζ)) = limj→∞ gj(αϕ∗(ζ ′)). In this case,
infinitely many gk-functions intersect at these points.

Let us illustrate why this poses a problem. Suppose that there is a point ζ ∈ T such that
an infinite subset of {gk}k≥1 intersect at αϕ∗(ζ) ∈ T. Call the set of indices for the intersecting

functions E. If furthermore |ψ′(gk(αϕ∗(ζ)))| = c is finite for this ζ, then the sum∑
k∈E

1

|ψ′(gk(αϕ∗(ζ)))|
=
∑
k∈E

1

c

diverges. This in turn implies that the integral in Theorem 7.1 is divergent.
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A trivial example would be if all gk intersect at this point. If there is a point ζ ∈ T such that
gk(αϕ∗(ζ)) = η ∈ T for every k ≥ 1, then this is the only solution to ψ∗ = αϕ∗(ζ). As all Clark
measures of ψ are assumed to be discrete, the measure associated to this parameter will just be δη.

This in turn implies that the weights |ψ′(gk(αϕ∗(ζ)))|−1 = |ψ′(η)|−1 = 1 for every k ≥ 1. Hence,
the sum

∑
k≥1 |ψ′(gk(αϕ∗(ζ)))|−1 diverges for this specific ζ ∈ T, and so the integral in Theorem

7.1 diverges as well.
To avoid this situation altogether, by assumption C, we do not allow for solutions of ψ∗ = β

with infinite multiplicity, as any such solution would be a point of intersection for an infinite subset
of {gk}k≥1. Note that this includes discontinuities of ψ∗; even there we do not allow for infinite
multiplicity. Furthermore, we have already established that there cannot exist points where finitely
many gk-curves intersect. This implies that all {gk}k≥1 are distinct, except in potential limit points.

One might then ask if infinite intersections in limit points cause the same problem as above.
The answer is no: per definition, a limit point of gk(αϕ∗(ζ)) does not in fact solve the equation
ψ∗ = αϕ∗(ζ). By Proposition 3.3, the Clark measure of ψ associated to αϕ∗(ζ) has a point mass
at this point if and only if it solves ψ∗ = αϕ∗(ζ). Hence the weight of the Clark measure at the
limit point must be zero, meaning that we avoid the situation where the integral picks up infinitely
many positive weights. We will give a detailed example of this situation later on.

Clearly, Theorem 7.1 is not applicable for a general class of product functions; we have a number
of restrictions on at least one of the factors. Nevertheless, we will see some interesting examples
of product functions which satisfy our assumptions and do not fall under any previous category of
bivariate inner functions.

Proof. Define Φr(z1, z2) := ϕ(rz1)ψ(z2) for 0 < r < 1, and note that

1− |Φr(z1, z2)|2

|α− Φr(z1, z2)|2
→ 1− |Φ(z1, z2)|2

|α− Φ(z1, z2)|2
=

∫
T2

Pz(ξ)dσα(ξ)

as r → 1−. Define, for fixed z2 ∈ D and fixed 0 < r < 1,

urz2(z1) :=
1− |ψ(z2)ϕ(rz1)|2

|α− ψ(z2)ϕ(rz1)|2
, z1 ∈ D.

As ϕ(rz1) is continuous and satisfies |ϕ(rz1)| < 1 on the unit circle, urz2 is continuous on D.
Moreover, even if Φr is not an inner function, it holds that

1− |Φr|2

|α− Φr|2
= ℜ

(
α+Φr

α− Φr

)
where (α+Φr)/(α−Φr) is analytic on D2. Hence, the left-hand side is pluriharmonic in D2, which
in turn implies that urz2 is harmonic in D. By the Poisson integral formula,

1− |ψ(z2)ϕ(z1)|2

|α− ψ(z2)ϕ(z1)|2
= lim

r→1−
urz2(z1) = lim

r→1−

∫
T
urz2(ζ)Pz1(ζ)dm(ζ).

Observe that ℜ((α + Φr(z))/(α − Φr(z))) is bounded for every z ∈ D and every 0 < r < 1. The
dominated convergence theorem then states that we can move the limit into the integral:

1− |ψ(z2)ϕ(z1)|2

|α− ψ(z2)ϕ(z1)|2
=

∫
T

lim
r→1−

urz2(ζ)Pz1(ζ)dm(ζ). (14)
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Moreover,

lim
r→1−

urz2(ζ) = lim
r→1−

1− |ψ(z2)ϕ(rζ)|2

|α− ψ(z2)ϕ(rζ)|2
=

1− |ψ(z2)ϕ∗(ζ)|2

|α− ψ(z2)ϕ∗(ζ)|2

for m-almost every ζ ∈ T. Let E denote the set of points ζ such that |ϕ∗(ζ)| = 1.
By our assumptions, the solutions to ψ∗ = β can be parameterized by functions gk(β) continuous

on T except on a finite collection of points. Since we have also assumed that the Clark measures
of ψ consist of point masses, by Proposition 3.3, the measure associated to any β ∈ T is given
by
∑

k≥1 |ψ′(gk(β))|−1δgk(β) where |ψ′(gk(β))| > 0 for each k. For fixed ζ ∈ E, this holds for

β = αϕ∗(ζ).
Hence, for ζ ∈ E, we have that

1− |ψ(z2)ϕ∗(ζ)|2

|α− ψ(z2)ϕ∗(ζ)|2
=
∑
k≥1

1

|ψ′(gk(αϕ∗(ζ)))|
Pz2(gk(αϕ

∗(ζ))).

Since the above holds for m-almost every ζ ∈ T, the integrals of the left- and right-hand side will
coincide. By combining this with (14), we see that

1− |ψ(z2)ϕ(z1)|2

|α− ψ(z2)ϕ(z1)|2
=

∫
T

1− |ψ(z2)ϕ∗(ζ)|2

|α− ψ(z2)ϕ∗(ζ)|2
Pz1(ζ)dm(ζ)

=

∫
T

∑
k≥1

1

|ψ′(gk(αϕ∗(ζ)))|
Pz1(ζ)Pz2(gk(αϕ

∗(ζ)))dm(ζ).

As the summands are all positive, we may apply Tonelli’s theorem to interchange summation and
integration. Thus,

1− |Φ(z1, z2)|2

|α− Φ(z1, z2)|2
=
∑
k≥1

∫
T
Pz1(ζ)Pz2(gk(αϕ

∗(ζ)))
dm(ζ)

|ψ′(gk(αϕ∗(ζ)))|
,

i.e. ∫
T2

Pz(ξ)dσα(ξ) =
∑
k≥1

∫
T
Pz1(ζ)Pz2(gk(αϕ

∗(ζ)))
dm(ζ)

|ψ′(gk(αϕ∗(ζ)))|
.

Lemma 2.3 now yields∫
T2

f(ξ)dσα(ξ) =
∑
k≥1

∫
T
f(ζ, gk(αϕ∗(ζ)))

dm(ζ)

|ψ′(gk(αϕ∗(ζ)))|

for all f ∈ C(T2).
It remains to convince ourselves that the right-hand side is indeed integrable and finite. Recall

that by Fatou’s theorem, ϕ(rζ) converges to ϕ∗(ζ) as r → 1− m-almost everywhere on T and in
L1(T). Moreover, the curves {gk}k≥1 are assumed to be continuous on the unit circle except on

finitely many points. Hence, the composition f(ζ, gk(αϕ∗(ζ))) must be measurable for f ∈ C(T2).
Similarly, we see that the weights |ψ′(gk(αϕ∗(ζ)))| are measurable, as ψ∗ being differentiable almost
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everywhere on T implies that its derivative is measurable on T. Since we are integrating over a
compact space, this is enough to ensure integrability.

For fixed ζ ∈ E, the sum
∑

k≥1 |ψ′(gk(αϕ∗(ζ)))|−1 must be finite, since the Clark measure of ψ

associated to the parameter value αϕ∗(ζ) exists by assumption. By our previous discussion, as we
have excluded the situation where infinitely many of the curves intersect, there is no issue of the
weights summing up to infinity — except at limit points, where the weights are zero anyway.

Roughly speaking, the above result says that as long as we have one sufficiently well-behaved
inner function with discrete Clark measures, we may multiply it with any other inner function and
obtain a characterization of the Clark measures of the resulting product. Note that the weights of
these measures strongly resemble their RIF counterparts from Theorem 5.5 — quite surprisingly, as
product functions need not be rational in any variable. Moreover, as in the case of the multiplicative
embeddings, Theorem 7.1 allows for infinite collections of parameterizing functions.

Before moving on, let us convince ourselves that there actually exist inner functions ψ that
meet the requirements of Theorem 7.1. For example, finite Blaschke products define one such
class. Let ψ be a non-constant finite Blaschke product of order n. Then ψ is analytic on T, and
ψ∗(ζ) = β has precisely n distinct solutions for each β ∈ T. Moreover, from properties of finite
Blaschke products, its derivative is non-zero on T. By the implicit function theorem, we may thus
parameterize the solutions with functions {gk(β)}nk=1 analytic on the unit circle. Additionally, it
follows from Proposition 3.3 that the Clark measures of ψ are discrete for every β ∈ T, with point
masses at the distinct solutions to ψ∗ = β. Hence, Theorem 7.1 works for any product function
Φ(z) = ϕ(z1)ψ(z2) where ψ is a non-constant finite Blaschke product and ϕ is an arbitrary inner
function.

In what comes next, we let gαk (ζ) := gk(αϕ∗(ζ)) for ease of notation.

Remark 7.3. In the case where both ϕ and ψ are finite Blaschke products, the theorem reproduces
what we know about RIFs. Suppose ϕ is of orderm and ψ of order n, and let Φ(z1, z2) = ϕ(z1)ψ(z2).
Note that Φ is a RIF of bidegree (m,n), and since finite Blaschke products are analytic on T, it
has no singularities on the torus. Moreover,

ψ∗(ζ2) = α/ϕ∗(ζ1) = αϕ∗(ζ1)

has precisely n distinct solutions for each ζ1 ∈ T, which may be parameterized by n analytic
functions gαk . Then

Cα(Φ) =
n⋃

k=1

{(ζ, gαk (ζ)) : ζ ∈ T}.

By Theorem 7.1,∫
T2

f(ξ)dσα(ξ) =

n∑
k=1

∫
T
f(ζ, gαk (ζ))

dm(ζ)

|ψ′(gαk (ζ))|
=

n∑
k=1

∫
T
f(ζ, gαk (ζ))

dm(ζ)

| ∂Φ∂z2
(ζ, gαk (ζ))|

for f ∈ C(T2), where we have used that |ϕ| = 1 everywhere on T to conclude that | ∂Φ∂z2
(ζ, gαk (ζ))| =

|ψ′(gαk (ζ))|. Observe that the equality above is precisely the formulation of Theorem 5.5 for RIFs.

Next, we illustrate our results for some examples of non-rational product functions.
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Example 7.4. Let

Φ(z1, z2) := z2ϕ(z1) = z2 exp

(
−1 + z1
1− z1

)
,

where ϕ is as in Example 3.4. Note that the first factor is continuous everywhere, and satisfies
the required properties in Theorem 7.1. Since ϕ∗ exists everywhere on T, it follows that Φ∗(ζ) =
ζ2ϕ

∗(ζ1). On the line {(1, ζ2) : ζ2 ∈ T} in T2, we have that Φ∗ = 0. Elsewhere on the torus, Φ∗ is
given by the obvious interpretation. Hence, for α ∈ T, the solutions to Φ∗ = α are given by

ζ2 = gα(ζ1) := α exp

(
1 + ζ1
1− ζ1

)
.

Note that gα is discontinuous for ζ1 = 1, and that this point does not solve Φ∗ = α. However, since
Cα(Φ) is a closed set, it must include these singular points. Hence, Cα(Φ) can be parameterized by
the graph {(ζ, gα(ζ)) : ζ ∈ T}. In Figure 2, we have plotted the argument of gα(eiθ) for −π ≤ θ ≤ π.
We see that the discontinuity at ζ1 = 1 creates oscillatory behavior in the level curve.
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Figure 2: Level curve gα for α = 1 (black) and α = i (orange).

This marks our first example of a two-variable inner function whose associated Clark measures
are supported on discontinuous sets. By Theorem 7.1, the Clark measures of Φ satisfy∫

T2

f(ξ)dσα(ξ) =

∫
T
f(ζ, gα(ζ))dm(ζ)

for f ∈ C(T2).

Example 7.5. Let

Φ(z1, z2) := zM2 ϕ(z1) = zM2 exp

(
−1 + z1
1− z1

)
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for a positive integer M . We see again that Φ∗(ζ1) = 0 for ζ1 = 1. The equation Φ∗ = α can be
rewritten as

ζM2 = α exp

(
1 + ζ1
1− ζ1

)
.

For ζ1 ∈ T, the argument of the exponential function on the right-hand side is precisely the imagi-
nary part

θ := ℑ
(
1 + ζ1
1− ζ1

)
.

Then, for α = eiν ,

ζ2 = gαk (ζ1) := ei
(

θ+ν
M + 2πk

M

)
, k = 0, 1, . . . ,M − 1.

This defines M functions, all of which are discontinuous for ζ1 = 1. We illustrate these functions
in Figure 3. As it is hard to differentiate between the graphs of gαk for different k, we have also

included a plot of solutions to ζM2 = α exp
(
1+0.9ζ1
1−0.9ζ1

)
, where it is clear how the components are

connected.
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(a) Level curves g1k for M = 3.
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(b) Solutions to ζ32 = exp
( 1+0.9ζ1
1−0.9ζ1

)
, to clearly

illustrate the different components.

Figure 3: Level curves gαk for M = 3 and α = 1.

Again, as the unimodular level sets Cα(Φ) are closed, they must include the line ζ1 = 1. Hence,
the associated Clark measures of Φ are supported on discontinuous graphs for everyM . By Theorem
7.1, the Clark measures of Φ satisfy∫

T2

f(ξ)dσα(ξ) =

M−1∑
k=0

1

M

∫
T
f(ζ, gαk (ζ))dm(ζ)

for f ∈ C(T2).
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Example 7.6. Let

Φ(z1, z2) := ψ(z2)ϕ(z1) = z2
λ− z2

1− λz2
exp

(
−1 + z1
1− z1

)
for some non-zero constant λ ∈ D. Note that ψ(z2) = z2

λ−z2
1−λz2

is a Blaschke product of order two,

which is then continuous on T. As we saw in previous examples, Φ∗ = 0 for ζ1 = 1. The equation
Φ∗ = α for α ∈ T can be rewritten as

ζ2
λ− ζ2

1− λζ2
= α exp

(
1 + ζ1
1− ζ1

)
.

For α = eiν , the solutions to this are given by ζ2 = gαk (ζ1), k = 1, 2, where

gα1 (ζ1) :=
1

2

(
λ+ exp

(
iν +

1 + ζ1
1− ζ1

)
λ+

√
−4 exp

(
iν +

1 + ζ1
1− ζ1

)
+

(
−λ− exp

(
iν +

1 + ζ1
1− ζ1

)
λ

)2)
,

gα2 (ζ1) :=
1

2

(
λ+ exp

(
iν +

1 + ζ1
1− ζ1

)
λ−

√
−4 exp

(
iν +

1 + ζ1
1− ζ1

)
+

(
−λ− exp

(
iν +

1 + ζ1
1− ζ1

)
λ

)2)
.
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Figure 4: Level curves gα1 and gα2 for α = eiπ/4 and λ = i/2.

Let us calculate the weights of the Clark measures. Observe that

ψ′(z2) =
λ− 2z2 + z22λ

(1− λz2)2
.

Hence, by Theorem 7.1,∫
T2

f(ξ)dσα(ξ) =

2∑
k=1

∫
T
f(ζ, gαk (ζ))

|1− λgαk (ζ)|2

|λ− 2gαk (ζ) + gαk (ζ)
2λ|

dm(ζ)
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for all f ∈ C(T2).
We see in Figure 4 that the graphs are similar to the ones from Figure 3. However, in this case,

the weights of the Clark measures are quite complicated one-variable functions, as opposed to the
constant weights in the previous example. In the next figure, we have plotted the weights

Wk(ζ) :=
|1− λgαk (ζ)|2

|λ− 2gαk (ζ) + gαk (ζ)
2λ|

for certain parameter values.
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Figure 5: Weight curves Wk for α = eiπ/4 and λ = i/2.

It is worth noting that in all the examples in this section so far, ψ has been defined as a rational
function. In fact, any inner function that is continuous on T must be a finite Blaschke product,
by Corollary 4.2 in [14]. This implies that to cover a wider class of functions, we must allow some
discontinuities of ψ∗. Recall that we define the Hardy space Hp(T) as the space of functions f
analytic on D which satisfy

sup
0≤r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

<∞.

It turns out that if ψ′ is in H1(T), then ψ is continuous on T (Theorem 3.11, [12]) and thus a
finite Blaschke product. Hence, to be able to construct varied examples, we need ψ to be a bit
more complicated; either through discontinuities or irregularity in the derivative on T. With this
in mind, we move on to our final — and perhaps most interesting — example.

A very non-rational example

As we mentioned above, all the examples so far in this section have been rational in (at least) one
of two variables. Let us therefore take a look at a function that is not rational in any variable.
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Define

Φ(z1, z2) := ϕ(z1)ϕ(z2) = exp

(
−1 + z1
1− z1

)
exp

(
−1 + z2
1− z2

)
,

where ϕ again is as in Example 3.4. As ϕ∗ exists everywhere on T, we have Φ∗(ζ) = ϕ∗(ζ1)ϕ
∗(ζ2).

On the lines {(1, ζ2) : ζ2 ∈ T} and {(ζ1, 1) : ζ1 ∈ T} in T2, we see that Φ∗ = 0. Otherwise, |Φ∗| = 1.
We begin with the following deconstruction of the unimodular level sets of Φ.

Proposition 7.7. Let ϕ(z) = exp
(
− 1+z

1−z

)
and α ∈ T. Define Φ(z1, z2) := ϕ(z1)ϕ(z2). Then

Cα(Φ) =
⋃
x∈T

{Cx(ϕ)× Cα/x(ϕ)}.

Proof. As in the proof of Proposition 6.1, we write

C′
α(f) :=

{
ζ ∈ Td : lim

r→1−
f(rζ) = α

}
,

so that Cα(f) = Clos(C′
α(f)).

Fix x ∈ T. If ζ1 ∈ C′
x(ϕ) and ζ2 ∈ C′

α/x(ϕ), then Φ∗(ζ1, ζ2) = ϕ∗(ζ1)ϕ
∗(ζ2) = α and (ζ1, ζ2) ∈

C′
α(Φ) ⊂ Cα(Φ). Hence, ⋃

x∈T
{C′

x(ϕ)× C′
α/x(ϕ)} ⊂ Cα(Φ).

Now let (ζ1, ζ2) ∈ Cx(ϕ)× Cα/x(ϕ). Then there exist sequences (ζ1,n)n≥1 ⊂ C′
x(ϕ) and (ζ2,n)n≥1 ⊂

C′
α/x(ϕ) such that ζ1,n → ζ1 and ζ2,n → ζ2 respectively as n→ ∞. But this implies that (ζ1,n, ζ2,n)

defines a sequence in C′
x(ϕ)× C′

α/x(ϕ) ⊂ C′
α(Φ) converging to (ζ1, ζ2). Thus, (ζ1, ζ2) is a limit point

of C′
α(Φ), and must therefore lie in its closure. This proves that⋃

x∈T
{Cx(ϕ)× Cα/x(ϕ)} ⊂ Cα(Φ).

Conversely, let (ζ1, ζ2) ∈ C′
α(Φ). Then, as ϕ∗ exists everywhere on T, we see that Φ∗(ζ1, ζ2) =

ϕ∗(ζ1)ϕ
∗(ζ2) = α. Set x := ϕ∗(ζ1). Note that by properties of ϕ, the value x must be unimodular;

the only other option is that x = 0, but in this case, α /∈ T, a contradiction. Clearly ζ1 ∈ Cx(ϕ)
and ζ2 ∈ Cα/x(ϕ), and so

C′
α(Φ) ⊂

⋃
x∈T

{Cx(ϕ)× Cα/x(ϕ)}.

Now let (ζ1, ζ2) ∈ Cα(Φ). Then there must exist a sequence of points (ζ1,n, ζ2,n) ∈ C′
α(Φ) such

that (ζ1,n, ζ2,n) → (ζ1, ζ2) as n → ∞. Then ϕ∗(ζ1,n)ϕ
∗(ζ2,n) = α for each n, and so ζ1,n ∈ C′

x(ϕ)
and ζ2,n ∈ C′

α/x(ϕ) for some x ∈ T. We see that ζ1 and ζ2 are limit points of C′
x(ϕ) and C′

α/x(ϕ)

respectively, so (ζ1, ζ2) ∈ Cx(ϕ)× Cα/x(ϕ). This proves that

Cα(Φ) ⊂
⋃
x∈T

{Cx(ϕ)× Cα/x(ϕ)},

and we are done.
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We saw in Example 3.4 that for α = 1, the unimodular level set Cα(ϕ) consists of a countable
collection of points. By the above proposition, the level sets of Φ are uncountable unions over
cartesian products of countably infinite sets — so it seems that the associated Clark measures of
Φ are supported on quite complicated sets. To see if this is true, let us explicitly calculate the
solutions to Φ∗ = α for α = eiν .

Since Φ∗ is well-defined and unimodular on T2 except on the lines {ζ1 = 1} ∪ {ζ2 = 1} where
Φ∗ = 0, we need to solve the equation Φ = α. We may see this as

exp

(
−1 + ζ1
1− ζ1

− 1 + ζ2
1− ζ2

)
= ei(ν+2πk), k ∈ Z,

i.e.

−1 + ζ1
1− ζ1

− 1 + ζ2
1− ζ2

= i(ν + 2πk), k ∈ Z.

Solving for ζ2 yields

ζ2 = gαk (ζ1) :=
ν(ζ1 − 1) + 2πk(ζ1 − 1) + 2i

ν(ζ1 − 1) + 2πk(ζ1 − 1) + 2iζ1
, k ∈ Z.

Note that functions gαk are continuous on the unit circle; their only singularities occur at points
ζ1 = 2πk+ν

ν+2πk+2i , which do not have modulus one.

Moreover, all gαk pass through the point (1, 1) ∈ T2, which does not solve Φ∗ = α as Φ∗(1, 1) = 0.
However, since Cα(Φ) is closed, the point (1, 1) nevertheless lies in the unimodular level set. Hence,

Cα(Φ) =
⋃
k∈Z

{(ζ, gαk (ζ)) : ζ ∈ T}

where gαk is analytic on T for every k. This proves that the Clark measures of Φ are supported on
smooth curves — quite surprisingly, given our previous discussion.
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Figure 6: Level curves g1k for k = −1 (red), k = 0 (orange), k = 3 (gray) and k = 5 (black).
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It is interesting to compare these graphs to the ones in Figure 2, Figure 3 and Figure 4. We see
that despite them all having singularities along one axis (both axes in the case of Figure 6), the
curves behave very differently close to this line. Recall that by Lemma 5.3, the unimodular level
sets of RIFs can be parameterized by graphs that are analytic on T2 except possibly at a single
point. One might then expect that the Clark measures of a product function which is rational in
at least one variable would be supported on smoother curves than this Φ. However, we see that
in this case, the unimodular level sets are actually parameterized by much more ”well-behaved”
curves than our previous examples.

At first sight, this function does not seem to meet the requirements of Theorem 7.1; there is a
point on T2 where all gk intersect, as gk(1) = 1 for all k ∈ Z. However, as noted above, this value
does not in fact solve the equation Φ∗ = α since ϕ∗(1) = 0. This point would cause a problem if
the Clark measure of ϕ had positive weight there. Fortunately, we are saved by Proposition 3.3;
the measure associated to α has a point mass at 1 if and only if ϕ∗(1) = α, and so |ϕ′(1)|−1 = 0.

Let us now calculate the weights of the Clark measures associated to Φ. First note that

ϕ′(z2) = −
2 exp

(
− 1+z2

1−z2

)
(1− z2)2

= − 2ϕ(z2)

(1− z2)2
.

Then

ϕ′(gαk (ζ1)) = − 2α

ϕ(ζ1)(1− gαk (ζ1))
2
=

2α

ϕ(ζ1)

(ν(ζ1 − 1) + 2πk(ζ1 − 1) + 2iζ1)
2

4(ζ1 − 1)2

for ζ1 ∈ T \ {1}. When taking moduli, we find

|ϕ′(gαk (ζ1))| =
∣∣∣∣ν(ζ1 − 1) + 2πk(ζ1 − 1) + 2iζ1

2(ζ1 − 1)

∣∣∣∣2
for ζ1 ∈ T \ {1}. Hence, Theorem 7.1 yields∫

T2

f(ξ)dσα(ξ) =
∑
k∈Z

∫
T
f(ζ, gαk (ζ))

∣∣∣∣ 2(ζ − 1)

ν(ζ − 1) + 2πk(ζ − 1) + 2iζ

∣∣∣∣2dm(ζ) (15)

for all f ∈ C(T2), where α = eiν . Note that the weights reduce to zero for ζ = 1, as expected.
Let us explicitly check that the above integral does indeed converge. Fix ζ ∈ T. The sum of

weights can be expressed as

∑
k∈Z

∣∣∣∣ 2(ζ − 1)

ν(ζ − 1) + 2πk(ζ − 1) + 2iζ

∣∣∣∣2 =
∑
k∈Z

1

k2

∣∣∣∣ 2(ζ − 1)

ν(ζ − 1)/k + 2π(ζ − 1) + 2iζ/k

∣∣∣∣2. (16)

Note that ∣∣∣∣ 2(ζ − 1)

ν(ζ − 1)/k + 2π(ζ − 1) + 2iζ/k

∣∣∣∣2
is bounded for every k, and since the series

∑
k∈Z 1/k

2 converges, the sum in (16) converges as well.
As this holds for every ζ ∈ T, we conclude that the integral in (15) is convergent.
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Remark 7.8. Throughout this text, we have managed to gain some insight into the Clark measures
of certain specific types of bivariate inner functions. However, Clark measures of general inner
functions in two variables still remain a mystery. In one variable, any singular probability measure
on T defines the Clark measure of some inner function (pp. 234-235, [15]). In several variables, we
need added requirements on a measure for it to be a Clark measure — as discussed in Remark 6.2,
any positive, pluriharmonic, singular probability measure defines the Clark measure of some inner
function. The distinction arises from the fact that in several variables, it is not as easy to ensure
that a given harmonic function is the real part of an analytic function. By Theorem 2.4.1 in [21],
the Poisson integral of a real measure µ on Td is given by the real part of an analytic function if
and only if the Fourier coefficients

µ̂(k) =

∫
Td

ζ
k
dµ(ζ) =

∫
Td

ζ1
k1 · · · ζd

kd
dµ(ζ)

are zero for every k outside the set −Zd
+ ∪ Zd

+. Here −Zd
+ denotes the set of points (k1, . . . , kd)

where every kj ≤ 0. We call the measures that satisfy this condition RP-measures. Note that Clark
measures are included in this class per definition.

Furthermore, we still do not know much about the supports of Clark measures in several vari-
ables. The kind of smooth curve-parameterizations that were obtained for the classes of inner
functions in this text are certainly not applicable in general. What we do know is that RP-
measures cannot be supported on sets of Hausdorff dimension less than one (Theorem 4, [4]). In
two dimensions, we have seen examples of Clark measures supported on curves, sets which have
Hausdorff dimension exactly one. We did not see any examples of Clark measures whose supports
have Hausdorff dimension greater than one here, but in [20], the author constructs an RP-measure
whose support has Hausdorff dimension two. For an in-depth discussion about the supports of
RP-measures, see [4].
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