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Abstract

In 1978 the American mathematician Daniel Quillen was studying the topological
properties of a certain poset associated to a group. He provided necessary and su�cient
conditions for a solvable group to contain a normal p-subgroup and conjectured that it
will also hold for any finite group. In this paper we will develop some of the techniques
one will need to understand, restate and perhaps attack the conjecture. We will start by
developing some of the theory of finite topological spaces, simplicial complexes and study
their homotopy types. Then we turn our attention to groups, in particular we will look
at the equivariant properties of the poset Sp(G). We finish with a theorem that allows
one to attack Quillen’s conjecture from a lot of di↵erent angles and a neat result by

Brown on the Euler characteristic of Sp(G).

Abstrakt

År 1978 studerade den amerikanske matematikern Daniel Quillen de topologiska
egenskaperna hos en viss poset associerad med en grupp. Han gav nödvändiga och
tillräckliga villkor för att en lösbar grupp skulle inneh̊alla en normal p-delgrupp och

förmodade att den ocks̊a skulle gälla för vilken ändlig grupp som helst. I denna artikel
kommer vi att utveckla n̊agra av de tekniker man behöver för att först̊a, omformulera
och kanske attackera förmodan. Vi kommer att börja med att utveckla en del av teorin
om ändliga topologiska rum, simpliciska komplex och studera deras homotopityper.

Sedan riktar vi v̊ar uppmärksamhet mot grupper, i synnerhet kommer vi att titta p̊a de
ekvivarianta egenskaperna hos poset:en Sp(G). Vi avslutar med ett sats som l̊ater en

attackera Quillens förmodan fr̊an många olika vinklar och ett snyggt resultat av Brown
p̊a Euler-karaktäristiken av Sp(G).
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Introduction

Quillen’s conjecture is the converse of a theorem proved by Quillen. Together with the
theorem, Quillen’s conjecture gives a necessary and su�cient condition for a group to
contain a nontrivial normal subgroup. The conjecture says that given a prime p, a group
G has a nontrivial normal p-subgroup if the geometric realization of a poset associated to
the group is contractible.

There are a lot of di↵erent approaches to attack Quillen’s conjecture. The goal of
this paper is to build up the preliminaries for studying Quillen’s conjecture from the
perspective of homotopy theory and finite topology. In Chapter 1 we will develop the
connection between posets and finite topological spaces and then focus on finite spaces
and their topological and combinatorial properties. Then in Chapter 2 we will move on
to simplicial complexes, where we describe how one can associate a simplicial complex
to a finite topological space and also associate a finite topological space to a simplicial
complex. In Chapter 3, the homotopy theory of finite spaces and simplicial complexes is
developed. In particular we will look at the weak, simple and strong homotopy types of
finite spaces and how that relates to the associated complex defined in Chapter 2. Finally,
in Chapter 4 we apply what we have developed in the previous chapters in the setting
of G-spaces (topological spaces on which a group G acts on) where we restrict ourselves
to finite groups. Here we develop the equivariant homotopy theory of finite spaces and
their associated simplicies complex. Once the necessary results and definitions are given,
we apply them to Sp(G), the poset of all nontrivial and proper p-subgroups of G under
inclusion, and state Quillen’s conjecture. We finish this chapter with a theorem by Brown
on the Euler characteristic of Sp(G) and the main theorem of this paper which gives 8
di↵erent statements that are all equivalent to Quillen’s conjecture.
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1 Preorders and Finite Topological Spaces

1.1 Preorders and Posets

Definition 1.1.1. Let X and Y be arbitrary sets and R ✓ X⇥Y be a relation. R is called
a preorder if it is reflexive and transitive. If R is a preorder and it is also antisymmetric
then it is called a partial order. A preordered X is a set with a relation R ✓ X ⇥X

that is a preorder and a partially ordered set (a.k.a a poset) is a preordered set X with
a relation that is a partial order.

Given any set X and a relation R on X, we write xRy if x is related to y under R, that
is if (x, y) 2 R. If R happens to be a preorder we usually write x  y, with  replacing
R, however sometimes x < y is written to indicate that x and y are distinct.

If X is a poset, an element x 2 X is called maximal if x  y implies y = x and it is
called a maximum if y  x for all y 2 X. Similarly, we define the notion of a minimal

and minimum element. Note that a finite poset has a maximum (minimum) if and only
if there is a unique maximal (minimal) element.

Let X be a preordered set and x, y 2 X. We say that y covers x if x < y and there
exists no z 2 X such that x < z < y. In this case we also say x is covered by y. We
write x � y if y covers x.

A point x 2 X is called an up beat point if x is covered by exactly one point of
X and it is called a down beat point if it covers exactly one point of X. A point is
a beat point if it is either an up beat point or a down beat point. Stong was the first
mathematician to define and study beat points. He called up beat points linear points

and down beat points colinear points, see [9]. The term beat point was introduced in
[5] by J.P. May. We will, for the most part, stick with May’s terminology.

Given a subset A of a preorder X, it is called a down-set if for any x 2 A and y 2 X,
y  x implies y 2 A and it is called an up-set if for any x 2 A and y 2 X, x  y implies
y 2 A.

A fence in a preordered set X is a sequence of points x1, . . . , xn such that any two
consecutive points are comparable. We say that a finite preordered set X is order-

connected if for any two points x, y 2 X, there exists a fence starting at x and ending at
y.

There is a neat and compact way to fully describe a given finite poset. The Hasse

diagram of a finite poset X is a diagram with the elements of X as points and a line is
drawn upward from x to y if y covers x. We illustrate this with an example.
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Example 1.1.2. The Hasse diagram

• z

• y • w

• x

(1)

describes the poset S = {x, y, z, w} with x � y, y � z, w � z and x  z. As one can
see the level we are placing the elements matters, z is placed at the top level because it is
a maximal element (it also happens to be a maximum here).

Just because there is a ”path” from x to w in Example 1.1.2, doesn’t mean they are
comparable. They are however comparable when the path is ”monotone” in the sense that
it is only going up (or down). This corresponds to the transitivity of the poset. Note that
if we think of the Hasse diagram as a directed graph then the existence of a maximum
(minimum) is characterized by having a sink (source) in the Hasse diagram. That is, there
is an element where all the lines terminate at (initiate from). Maximal (minimal) elements
are those at the top (bottom) level of the diagram. Hasse diagrams will be our main way
of providing an example or counter-example for the upcoming results.

1.2 Finite Topological Spaces

The idea of a finite topological space might sound unpromising at first, because the only
Hausdor↵ topology on a finite set is the discrete topology. However, it turns out that the
homotopy theory of non-Hausdor↵ finite spaces is very intriguing.

When studying finite spaces, we lose a lot of the geometric intuition that motivated
topology in the first place. But we will see below that by restricting our attention to finite
topological spaces, we will gain a new type of intuition, one of a more combinatorial nature.

We start with a given finite preordered set X. For each element x 2 X, define the
down-set Ux = {y 2 X | y  x}. The collection {Ux}x2X forms a basis for a topology
on X; it clearly covers X and if Ux \ Uy is non empty, then by the transitive property,
Uz ✓ Ux \Uy for any z 2 Ux \Uy. On the other hand, if we start with a finite topological
space X and define, for each point x 2 X, the minimal open set Ux to be the intersection
of all the open sets that contain x, we get a preorder on X by x  y if x 2 Ux\Uy. Indeed
x  x because x 2 Ux and if x  y and y  z then x 2 Uy and y 2 Uz but Uy is the
minimal open subset containing y so x 2 Uy ✓ Uz implying x  z.

If x belongs to two finite spaces X and Y simultaneously, we denote the minimal sets
of x in X and Y as UX

x
and U

Y

x
respectively.

This shows that if X is a finite set, there is a one-to-one correspondence between the
topologies and the preorders on X. The open sets are generated by the minimal sets which
are precisely the down-sets. We also define, for each x 2 X, the closure of the set {x} to
be the maximal sets Fx = {y 2 X | x  y}.

Recall that if X is a finite topological space, opposite of X, denoted X
op is the space

whose underlying set is X and whose open sets are the closed sets of X. The order on
X

op is the inverse order of X. If x 2 X then U
X

op

x
= F

X

x
.
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Finally, for any x 2 X, we define the punctured minimal set Ûx = Ux \ {x} and
similarly, we define the punctured maximal set F̂x = Fx \ {x}.

Remark 1.2.1. Note that x is an up beat point if and only if F̂x has a minimum and it
is a down beat point if and only if Ûx has a maximum.

Example 1.2.2. Consider the poset S described in the Hasse diagram (1). The minimal
basis is

{{x}, {w}, {x, y}, {x, y, w, z}},

so the open sets are

{x}, {w}, {x, y}, {x,w}, {x, y, w}, {x, y, w, z}.

Note that since the underlying set is finite, an arbitrary intersection of open sets is
open, this means that the minimal open set Ux of a point x 2 X is indeed open. However
the property that an arbitrary intersection of open sets is open is not limited to finite
spaces. A topological space is called an Alexandor↵ space

1 if arbitrary intersections
of open sets are open. It follows that the correspondence between the topologies and
the preorders on a finite set extends to a correspondence between Alexandor↵ spaces and
preordered sets. Note that any set is an Alexandor↵ space with the discrete topology, so
there are Alexandor↵ spaces that are not finite. From now on we may think of a finite
topological space X as a preordered set and a preordered set X as a topological space
as described above. It turns out that continuity of maps between finite spaces has an
interesting but rather expected characterization.

Proposition 1.2.3. A function between finite topological spaces is continuous if and only
if it is order preserving, that is, x  y implies f(x)  f(y).

Proof. Suppose f : X ! Y is continuous and x  y for some x, y 2 X. It follows
that f

�1(Uf(y)) is open, and since y 2 f
�1(Uf(y)), by minimality Uy ✓ f

�1(Uf(y)). By
assumption x 2 Uy so x 2 f

�1(Uf(y)) implying f(x) 2 Uf(y) which means f(x)  f(y).
Conversely, if f is order preserving, we will show that for any y 2 X, f�1(Uy) is open

by showing it is a down-set. This is enough because recall that the set {Ux}x2X defines a
basis of X. Let y 2 Y be arbitrary. Now take any x 2 f

�1(Uy) and let x
0 be such that

x
0  x. Now the fact that x 2 f

�1(Uy) means precisely that f(x) 2 Uy, which implies
f(x)  y. Since f is order preserving, f(x0)  f(x)  y, but then x

0 2 f
�1(Uy) proving

that f�1(Uy) is a down-set and hence open.

Note that if X if a finite space and f : X ! X is a continuous and injective, then f is
a homeomorphism.

Lemma 1.2.4. Let X be a finite space and x, y 2 X be two comparable points. Then there
exists a path from x to y in X.

Proof. Assume without loss of generality that x  y and define the path ↵ : I ! X by
↵(t) = x if 0  t < 1 and ↵(1) = y. If U is a neighborhood of y, then ↵�1(U) = I. On
the other hand if U is a neighborhood of x and y /2 U , then ↵�1(U) = [0, 1), and if x /2 U

then ↵�1 = ;. In any case, ↵�1(U) is open.
1Alexandor↵ was the first mathematician to study finite topological spaces in the 1930s.
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Proposition 1.2.5. Let X be a finite topological space. The following are equivalent:

(1) X is order-connected as a preorder.

(2) X is path-connected.

(3) X is connected.

Proof. If X is order-connected, by the lemma above, it is path connected. If it is path-
connected then of course it is connected. If it is connected then let x 2 X be arbitrary
and let A = {y 2 X | there is a fence from y to x}. If y 2 A and z  y then z 2 A

and similarly if y 2 A and z � y then z 2 A. So A is both a down-set and an up-set.
It is therefore open and closed. Note that A is nonempty by reflexivity. Therefore by
connectedness, A = X.

By a subbasis B for a topological space (X, T ) we mean a subcollection of T such that
any open subset of X can be written as a union of finite intersections of elements of B. If
X and Y are topological spaces, we denote by Y

X the set of continuous maps f : X ! Y .
Let T be the topology on Y

X whose subbasis is given by the sets S(K,W ) = {f 2
Y

X | f(K) ✓ W} where K ✓ X is compact and W 2 Y is open. This is called the
compact-open topology on Y

X . When X and Y are finite, Y X is also finite and we
endow Y

X with the pointwise order: f  g if f(x)  g(x) for all x 2 X.

Proposition 1.2.6. The pointwise order on Y
X induces the compact-open topology.

Proof. Let K ✓ X be compact and W ✓ Y be open, then the set S(K,W ) = {f 2
Y

X | f(K) ✓ W} is in the subbase of the compact-open topology. Let f 2 S(K,W ) and
suppose g  f , this means in particular that g(x)  f(x) 2 W for every x 2 K and so
g 2 S(K,W ) showing that S(K,W ) is a down set and hence an open set. On the other
hand if f 2 Y

X , then {g 2 Y
X | g  f} =

T
x2X

S({x}, Uf(x)).

Given a finite space X and a space Y (not necessarily finite) there is a natural cor-
respondence between the class of homotopies {H : X ⇥ I ! Y } and the class of paths
{↵ : I ! Y

X}. This follows from the exponential law for sets, which says that given three
setsX, Y and Z, there is a natural bijection � between the class of functions Z ! F (X,Y ),
where F (X,Y ) denotes the class of all functions from X to Y , and the class of functions
f : X ⇥ Z ! Y given by �(f)(z)(x) = f(x, z). This unfortunately doesn’t apply if X,Y

and Z are any topological spaces with Y
X endowed with the compact-open topology. One

can find a discontinuous function f such that �(f) is continuous. However, the corre-
spondence holds if for every point x 2 X and every neighborhood U of x, there exists a
compact neighborhood of x contained in U . But this condition is trivially satisfied when
X is finite because U itself will be compact (see [7] Theorem 46.11).

When two maps f, g : X ! Y are homotopic we will write f ' g. If they are homotopic
relative to a subset A ✓ X we write f 'A g or f ' g rel A when the expression for the
set A is too large to fit as a subscript.

Coming up next is a corollary that will lay the foundation for a lot of the proofs in the
later sections.

Corollary 1.2.7. Let f, g : X ! Y . Then f ' g i↵ there is a fence f = f0  f1 � f2 
. . . fn = g. Moreover, if A ✓ X then f 'A g i↵ there is a fence f = f0  f1 � f2 
. . . fn = g such that fi|A = f |A for all 0  i  n.

4



Proof. By the correspondence of homotopies X ⇥ I ! Y and paths I ! Y
X , there is a

homotopy H : f 'A g if and only if there is a path ↵ : I ! Y
X from f to g such that

↵(t)|A = f |A for all t 2 I. This is equivalent to saying that there is a path ↵ : I ! M

from f to g where M is the subspace of Y X of maps which coincide with f in A. By
Proposition 1.2.5, there is a fence from f to g in M . But since the order of M is induced
by the order of Y X , the proof is complete.

The following corollary will be used extensively.

Corollary 1.2.8. If X is a poset with either a maximum or a minimum then it is con-
tractible as a topological space.

Proof. Suppose we have a maximum M 2 X. Let m : X ! X be the constant map
m(x) = M . It follows that the identity is homotopic to m since idX  m. The proof for
a minimum is similar.

1.3 F -spaces

Recall that a topological space X is said to be a T0-space if for any distinct pair x, y 2 X

we can find an open subset containing either x or y but not the other and it is a T1-space

if for any two distinct pair x, y 2 X can find two open sets U and V such that x 2 U and
y 2 V but x /2 V and y /2 U . Being a T1-space is equivalent to saying that the singletons
are closed. For this reason, T1-spaces (let alone Hausdor↵ spaces) are of no interest to us
if we are considering finite spaces. This is because the closeness of the singletons makes
every subset closed and we end up with the discrete topology. T0-spaces on the other hand
are of special interest to us due to the following proposition.

Proposition 1.3.1. A finite topological space X is a T0-space if and only if the corre-
sponding preorder is a partial order.

Proof. Suppose X is T0. Let x, y 2 X such that x  y and y  x. We will show that
x = y. We argue by contradiction. Suppose that x 6= y, then since X is T0, we may assume
that there exists an open set U such that x 2 U and y /2 U . Now x 2 U implies that
Ux ✓ U by the minimality of Ux. But since y  x, y 2 Ux and so y 2 U , a contradiction.

Conversely, suppose x  y and y  x imply x = y for all x, y 2 X. Let x, y 2 X be
distinct points. If x and y are not comparable, then the open set Ux separates x and y

and we are done. Suppose therefore that they are. By the hypothesis, either x < y or
y < x, exclusively. Suppose that x < y, then y /2 Ux but of course x 2 Ux. The proof is
identical if y < x.

We will follow [5] and use the abbreviation F -space for finite T0-spaces and A-spaces

for Alexandor↵ T0-spaces. From this point on we shall only focus on the former, but a lot
of the proofs apply to general finite spaces and Alexandor↵ spaces. Of course arguments
done by repeating a process until it terminates are among those that do not hold for
general Alexandor↵ spaces.

The following proposition ensures that we will not miss out on any thing, at least as
far as homotopy is concerned, if we restrict ourselves to F -spaces.

Proposition 1.3.2. Let X be a finite space and define an equivalence relation ⇠ by x ⇠ y

if x  y and y  x. Then X/ ⇠ is T0 and the quotient map q : X ! X/ ⇠ is a homotopy
equivalence. In particular, every finite space is homotopy equivalent to a an F -space.

5



Proof. Being a quotient map, q is obviously surjective and so a section (a right inverse)
exists as a map of sets. Let i : X/ ⇠! X be any section. The map i will take a class
[a] and map it to any representative. It is well-defined because of the definition of ⇠.
It follows that i is continuous since if [a]  [b], i([a]) = a  b = i([b]). Moreover, the
composition i � q is order preserving and since iq  1X , i is a homotopy inverse for q.

To show that the quotient is T0, we show that the preorder on the quotient set is
antisymmetric. Since q is surjective, let x, y 2 X such that q(x)  q(y). It follows that
x  (i � q)(x)  (i � q)(y)  y. Suppose also that q(y)  q(x) and y  x, then by the
definition of q, q(x) = q(y) and hence the preorder is antisymmetric.

So any finite space is homotopy equivalent to an F -space.

Proposition 1.3.3. Let X be a finite space and let x 2 X be a beat point, then X \ {x}
is a strong deformation retract of X.

Proof. Let x be a down beat point (the proof for an up beat point is analogous), and denote
by y the maximum of Ûx which exists by Remark 1.2.1. Define the map r : X ! X \ {x}
by declaring it to be the identity on X\{x} and r(x) = y. Now r is clearly order preserving
and so it is continuous. Let i : X \ {x} ,! X be the inclusion. Then I � r  1X . By
Corollary 1.2.7, i � r ' 1X relative to X \ {x}.

In particular, removing a beat point from our space doesn’t e↵ect its homotopy type.
A finite space that has no beat points is called minimal. A core of a finite space X is a
minimal strong deformation retract of X.

Theorem 1.3.4. Let X be a minimal finite space. A map f : X ! X is homotopic to
the identity if and only if f = 1X .

Proof. Suppose f is homotopic to the identity. By Corollary 1.2.7, we may assume that
f  1X or f � 1X . Suppose that f  1X . The case of f � 1X is treated similarly. We
proceed by induction of the elements of X. Suppose that f |

Ûx
= 1

Ûx
. If f(x) 6= x, then

f(x) 2 Ûx and if y < x, we have that y 2 Ûx and so y = f(y)  f(x) implying that f(x)
is the maximum of Ûx. But this means that x is a beat point which is a contradiction, so
indeed f(x) = x.

The converse is trivial.

Proposition 1.3.5. Let X be an F -space, x 2 X a point and f : X ! X be an automor-
phism. If x and f(x) are comparable, then x = f(x).

Proof. Suppose that x  f(x). Since f is an automorphism, it is in particular continuous
and so order preserving, therefore f(x)  f

2(x) where f
2(x) means f(f(x)). We induc-

tively get fn(x)  f
n+1(x) for any positive integer n. But X is finite, which implies that

f
m(x) = f

m+1(x) for some positive integer m. Suppose we found such an m, then since
f is a homeomorphism, f�1 exists and so f

�m also exists. But then applying f
�m to

f
m(x) = f

m+1(x) we get x = f(x). The proof where f(x)  x is similar.

The following corollary is immediate.

Corollary 1.3.6. Let X be an F -space and let f1, f2 : X ! X be two automorphisms and
x 2 X. If f1(x) and f2(x) are comparable, then f1(x) = f2(x).

6



Proof. Apply the proposition to the automorphism f
�1
2 f1.

Given two F -spaces X and Y , define the ordinal sum X ~Y to be the disjoint union
X t Y with the same ordering within X and Y but we let x  y for every x 2 X and
y 2 Y . The proof of the following proposition can be found in [1] page 30.

Proposition 1.3.7. Let X and Y be F -spaces. Then X ~ Y is contractible if and only if
either X is contractible or Y is contractible.

We now introduce the first notion of a collapse. Collapses will be studied in di↵erent
settings through out the upcoming sections.

Definition 1.3.8. Let X be an F -space. If x 2 X is a beat point, we say that there is
an elementary strong collapse from X to X \ {x} and write X &&e

X \ {x}. If Y
is a subspace, we say that there is a strong collapse X && Y (or a strong expansion
Y %% X) if there is a sequence of elementary strong collapses starting at X and ending
at Y .

Definition 1.3.9. A pair (X,A) of F -spaces is called a minimal pair if all the beat
points of X are in A.

Proposition 1.3.10. Let (X,A) be a minimal pair and let f : X ! X be continuous such
that f 'A 1X . Then f = 1X .

Proof. Suppose that f 'A 1X , meaning in particular f |A = 1X |A = 1A. Consider the case
f  1X . Let x 2 X. If x is minimal, then f(x) = x, for otherwise if f(x) = y 6= x then
y = f(x)  1X(x) = x, but then y = x by the minimality of x. Suppose we have showed
that f |

Ûx
= 1

Ûx
. It follows that f(x) = x. On the other hand, if x /2 A, then since (X,A)

is a minimal pair, x is not a beat and in particular it is not a down beat point of X. Now
since f |

Ûx
= 1

Ûx
, if y < x, then y = f(y)  f(x)  x and so we must have f(x) = x. The

case f � 1X is treated similarly and the general case follows from Corollary 1.2.7.

From this we get the following corollaries.

Corollary 1.3.11. Let (X,A) and (Y,B) be minimal pairs and let f : X ! Y and
g : Y ! X be continuous maps such that g � f 'A 1X and f � g 'B 1Y . Then f and g are
homeomorphisms.

Proof. Apply the proposition to the maps g � f and f � g.

Corollary 1.3.12. Let X be an F -space and let A ✓ X. Then X && A if and only if A
is a strong deformation retract of X.

Proof. Suppose that A ✓ X is a strong deformation retract. We can preform arbitrary
elementary strong collapses by removing beat points in which are not in A to obtain a
strong collapse X && Y . Now A ✓ Y and every beat point of Y is in A by construction of
Y . It follows that (Y,A) is a minimal pair and since both Y and A are strong deformation
retracts of X, we apply Corollary 1.3.11 to (A,A) and (Y,A) and get that Y ⇡ A and so
X && Y = X && A. The converse follows directly from Proposition 1.3.3.

7



Now that we have covered some of the theory of F -spaces we will move on to simplicial
complexes and define the necessary notions we will need to arrive at a beautiful theory
that connects F -spaces with finite simplicial complexes.

We finish this section by defining the Euler characteristic of an F -space. We will need
this when we state and prove Brown’s theorem from [3].

Unlike general topological spaces, the Euler characteristic of a finite space can be
found without knowing the homology groups2 or without having to look for a polygonal
presentation. We simply only need to know how the set of nonempty chains looks like.

Definition 1.3.13. Let X be an F -space, the Euler characteristic of X is the number

�(X) =
X

C2C(X)

(�1)#C+1
,

where C(X) is the set of nonempty chains of X and #C is the cardinality of C.
If Y is a subspace, we define the relative Euler characteristic as

�(X,Y ) =
X

C2C(X\Y )

(�1)#C+1
.

Remark 1.3.14. If X is an F -space and Y is any subspace, then using the definitions
above one can easily see that

�(X) = �(X,Y ) + �(Y ).

The following theorem will also be needed. However, the proof requires familiarity
with homology, which is beyond the scope of this paper. We will however give a sketch of
the proof for the readers who are familiar with some homology theory.

Theorem 1.3.15. If X and Y are two topological spaces with the same homotopy type,
then �(X) = �(Y ).

Sketch of proof. By Theorem 2.44 in [4], the Euler characteristic is only dependent on
the homology groups. However, by Corollary 2.11 in [4], homotopy equivalent spaces
have isomorphic homology groups. It follows that the Euler characteristics of homotopy
equivalent spaces coincide.

2If the homology groups with coe�cients in Z of a space X are finitely generated then the Euler
characteristic is given by �(X) =

P
n�0(�1)nrank(Hn(X))
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2 Simplicial Complexes

In this section we cover the basics of the theory for simplicial complexes. We will start
with some basic definitions and later see how we can associate a simplicial complex to a
finite poset (or equivalently an F -space). We will also look at the homotopy and weak
homotopy types of the geometric realization of the associated complex and compare it
with that of the poset (viewed as a topological space).

2.1 Abstract Simplicial Complexes

As usual, we start with some definitions.

Definition 2.1.1. An abstract simplicial complex K consists of a set VK called the
set of vertices and a set SK of finite subsets of VK called the set of simplicies satisfying
that any subset of SK of cardinality one is in VK and any subset of a set in SK is in SK .
It is customary to write v 2 K if v 2 VK and � 2 K if � 2 SK . We identify a simplicial
complex with its set of simplices.

Note that the word abstract is there to remind us that we are dealing with an abstract
construction here. A geometric simplicial complex is obtained by taking a collection
geometric simplices that satisfy the abstract simplicial complex axioms. A geometric

simplex � is a subset of Rn, for some positive integer n, such that all the points in �

are a�nely independent. Note that this implies in particular that the number of points
in � is  n. From this point on whenever we speak of a simplicial complex K we always
mean an abstract simplicial complex, but for the convince of the reader we will show the
geometric simplicial complex in figures that will provide some intuition for the notion in
question because it is more intuitive to do so.

If � and ⌧ are simplices such that ⌧ ✓ �, we say that ⌧ is a face of �, and a proper

face if ⌧ ( �.
Given a simplex � 2 SK , we say � is an n-simplex, or has dimension n, if it contains

n+ 1 vertices. Note that this makes each vertex a 0-simplex. As a convention, the empty
simplex has dimension �1. We also define the dimension of the simplicial complex K to
be the least upper bound of the dimension of all its simplices. Note that the least upper
bound can be infinite if K contains simplices of arbitrary dimension, in which case, we say
that K is infinite dimensional. If K is finite dimensional and � 2 SK is a simplex that is
maximal (meaning it is not a face of any other simplex but itself) then we call � a facet.
We say that a finite dimensional simplicial complex K is homogeneous if all facets have
the same dimension. A face is called a free face if it is the face of only one facet in the
simplex. If � is a free face of the facet ⌧ we will sometimes abbreviate this by saying that
the pair � ( ⌧ is a collapsible pair.

As with most mathematical objects we define the notion of a subcomplex of a simplicial
complex. A subcomplex L of a simplicial complex K is a simplicial complex such that
VL ✓ VK and SL ✓ SK . The subcomplex L is full if for any simplex � in K such that
its vertices are in L, it is also in a simplex in L. If this is the case we say that L is the
subcomplex of K spanned by the vertices in VL. Furthermore, if we have two simplicial
complexes K and L, we define the simplicial join (or just the join) of K and L, denoted
K ⇤ L to be the simplicial complex whose vertex set is the disjoint union of VK and VL

and whose simplices are the simplices of K and L and all disjoint unions of simplices in
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K and simplices in L.

Simplicial complexes have a rather combinatorial nature, however one can add some
topological flavor by introduction the geometric realization |K| of a simplicial complex
K to be the set of formal convex combinations

P
v2K

↵vv such that the set {v | ↵v > 0}
is a simplex of K. Given an n-simplex � = {v0, v1, . . . , vn}, we define the closed simplex

� to be the set of formal convex combination
P

n

i=0 ↵ivi where each ↵i is a nonnegative
real number and

P
i
↵i = 1. We can make � into a metric space by defining the metric

d(
nX

i=0

↵ivi,

nX

i=0

�ivi) =

vuut
nX

i=0

(↵i � �i)2.

Note that if K a finite simplicial complex, that is VK is a finite set, the topology of
|K| coincides with the metric topology on the unions of the closed simplices.

We can now make |K| into a topological space by declaring a subset U ✓ |K| to be
open if U \ � is open in the metric space � for every � 2 K.

Given a point p =
P

v2K
↵vv 2 |K|, we define the support of p to be the set

support(p) = {vj | ↵j > 0}. If � 2 K is a simplex, we define the open simplex
�
�

to be the subset of � such that the support of any point in
�
� is �. Note that the open

simplices are disjoint and need not be open subsets despite what the name suggests.
Given two simplicial complexes K and L, a simplicial map ' : K ! L is a map from

VK into VL that maps simplices of K into simplices of L. If ' : K ! L is a simplicial
map it induces a well-defined continuous map |'| : |K| ! |L| defined by |'|(

P
v2K

↵vv) =P
v2K

↵v'(v).

Definition 2.1.2. Two simplicial maps ', : K ! L are contiguous if for every simplex
� 2 K, �(�) [  (�) is a simplex of L. Two simplicial maps lie in the same contiguity
class if there is a sequence of pairwise contiguous maps ' = '0,'1, . . . ,'n =  . We
denote this by ' ⇠  .

It is not hard to see that if '1,'2 : K ! L and  1, 2 : L ! M are simplicial maps
with '1 ⇠ '2 and  1 ⇠  2, then  1'1 ⇠  2'2.

Lemma 2.1.3. Let K be a simplicial complex and F ✓ |K| be compact. There exists a
finite subcomplex L of K such that F ✓ L.

Proof. Let F ✓ |K| be compact. For each simplex � 2 K such that F \ �
� 6= ;, choose

a point x� 2 F \ �
� and let D be the set of all these x�. Note that each point x�0 2 D,

support(x�0) = �
0 by the definition of the open simplex. Let A ✓ D. We claim that

the intersection of A with any other closed simplex is finite. To see why, suppose � =
{�1 . . . ,�n} is a simplex in K. Now A \ � = {x� 2 |K| | x� =

P
n

i=1 ↵i�i,↵i > 0}. By
construction, for each simplex ⌧ , D contains at most one point with support equal to ⌧ .
It follows that the cardinality of D\� is at most the cardinality of the power set of ⌧ and
since A \ � ✓ D \ �, we conclude that A \ � is finite and thus closed. It follows that A

is closed in |K|, but since A was an arbitrary subset, this implies that D is discrete and
closed (since its a subset of a compact set) and thus finite. It follows that F intersects only
finitely many open simplices. Now let L be the complex generated by the simplices � for

which the intersection F \ �
� is nonempty. It follows that L has the desired property.
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Remark 2.1.4. If L ✓ K is a subcomplex, then |L| is a closed subspace of |K|. The proof
of this is somewhat similar to the result in analysis which states that a finite dimensional
subspace of a normed space is closed.

Proposition 2.1.5. Let K and L be two simplicial complexes and f, g : |K| ! |L| be
two continuous maps such that for every x 2 |K| there exists a simplex � 2 L such that
f(x), g(x) 2 �. Then f and g are homotopic.

Proof. Let H : |K| ⇥ I ! |L| be the straight line homotopy, that is, H(x, t) = tg(x) +
(1 � t)f(x). Since f and g map each x to the same closed simplex it follows that H is
well-defined. Moreover, to show continuity, it su�ces to show that H is continuous on
� ⇥ I for every simplex � 2 K. Let � 2 K. It follows that � is compact and since f and
g are continuous, f(�) and g(�) are also compact. By the lemma above, f(�) ✓ |L1| and
g(�) ✓ |L2| where L1 and L2 are finite subcomplexes of L. If we denote by M the full
subcomplex of L generated by the vertices of L1 and L2, we get that H(�⇥I) is contained
in |M |. And since � and |M | have the same metric topology, we get

d(H(x, t), H(y, s)) = d(tg(x) + (1� t)f(x), sg(y) + (1� s)f(y))

 d(tg(x) + (1� t)f(x), sg(x) + (1� s)f(x))

+d(sg(x) + (1� s)f(x), sg(y) + (1� s)f(y))

 2|t� s|+ d(f(x), f(y)) + d(g(x), g(y)).

But f and g are continuous so the proof is complete.

In the case of contiguous maps we get the following useful corollary.

Corollary 2.1.6. If ' and  are contiguous maps then the induced maps |'| and | | are
homotopic.

Proof. This is immediate because if � 2 K, then for every x 2 � we have |'|(x), | |(x) 2
'(�) [  (�).

A simplicial complex K is called a simplicial cone with apex v if v is a vertex in K

such that for any simplex � 2 K, �[{v} is also a simplex. If K is any simplicial complex,
we can define the cone aK to be the join of K and the complex with just one vertex {a}
(note that a /2 K by the definition of the join).

Corollary 2.1.7. If K is a simplicial cone, then |K| is contractible.

Proof. Suppose v is an apex of K. Note that the constant vertex map w 7! v is contiguous
to the identity by the definition of a simplicial cone. By the previous corollary, the identity
of |K| is homotopic to a constant map and hence |K| is contractible.

A chain of simplices of a simplicial complex K is a set {�0,�1, . . . ,�m} of simplices
of K such that �0 ( �1 ( · · · ( �m.

Definition 2.1.8. Given a simplicial complex K, we define the barycentric subdivision
of K, denoted by K

0, to be the simplicial complex whose vertices are the simplices of K and
simplices are chains of K. The barycenter of a simplex � 2 K is the point in |K| given
by b(�) =

P
v2�

1
#�

v where #� denotes the cardinality of �. The map sK : |K 0| ! |K|
given by sK(�) = b(�) is a homeomorphism and it is called the linear map.
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2.2 The Order Complex of a Poset and the Face Poset of a Com-
plex

In this section we will associate a simplicial complex to a given finite poset P called the
order complex of P and we will define for a finite simplicial complex K a poset (or
equivalently a T0-space) called the face poset of K. We will then study the connection
between these two notions and in the next chapter we will look closely at their homotopy
types and how they relate to each other. We start with the definitions.

Definition 2.2.1. Given a poset X or equivalently, an F -space, we assign to it a simplicial
complex K(X) called the order complex whose vertex set is X and a simplex in K is a
totally ordered subset of X. In other words, K(X) = {U ✓ X | U is a total order} where
we consider the singletons as total orders.

Example 2.2.2. The order complex of the poset S from Example 1.1.2 has the following
form

The order complex will allow us to study Quillen’s conjecture, we will associate a
poset to a given finite group and then look at the order complex (or rather, its geometric
realization) and see what (topological) properties it has and how they relate to those of
the group. In many sources when one is referring to the topology of a poset they usually
mean the topology of the geometric realization of the order complex assigned to the poset
as above. However we will not follow this convention here, instead when we refer to a
poset as a topological space we will mean the topology induced by the partial order. If we
wish to refer to the topology of the order complex we will explicitly say that.

Note that if f : X ! Y is a map between F -spaces, then there is an induced simplicial
map K(f) : K(X) ! K(Y ) given by K(f)(x) = f(x). We say that K(f) is the associated
simplicial map of f . By the continuity of f we can deduce that the vertex map K(f) :
K(X) ! K(Y ) is simplicial because f is order-preserving and maps chains to chains.

Definition 2.2.3. Let K be a finite simplicial complex. The face poset of K is the F -
space X (K) of simplices of K ordered by inclusion. If ' : K ! L is a simplicial map and
K and L are finite simplicial complexes, there is a continuous map X (') : X (K) ! X (L)
given by '(�) = X (')(�) for every simplex � 2 K.

Example 2.2.4. Let K be the 2-simplex, then X (K) is the following space

12



•

• • •

• • •

The maximum is K itself, the points on the level below are the 1-simplices of K and
the ones below them are the vertices.

Proposition 2.2.5. Let K = aL be a finite simplicial cone. Then X (K) is contractible.

Proof. The map f : X (K) ! X (K) given by f(�) = � [ {a} is clearly order preserving
and hence continuous. Define g : X (K) ! X (K) to be the constant map g(�) = {a}
for all � 2 X (K). But then we get a fence 1X (K)  f � g showing that the identity is
homotopic to a constant map.

We can also define the Euler characteristic in the setting of finite simplicial complexes
as follows. If K is an n-simplicial complex, denote by rk number of k-simplices of K, then
the Euler characteristic of K is given by

�(|K|) =
nX

i=0

(�1)irj .

Note that the Euler characteristic of K is actually the Euler characteristic of |K|.

Remark 2.2.6. By comparing the formulas for the Euler characteristic of a simplicial
complex and an F -space and recalling that simplicies in the order complex are chains of
the underlying poset, it is fairly easy to see that if X is an F -space then �(X) = �(|K(X)|).

2.3 Homotopy and Contiguity

Lemma 2.3.1. If f, g : X ! Y are two homotopic maps between F -spaces, then there
exists a sequence f = f0, f1, . . . , fn = g such that for every 0  i < n, there is a point
xi 2 X such that:

(1) fi(x) = fi+1(x) for all x 2 X \ {xi}.

(2) fi(xi) � fi+1(xi) or fi+1(xi) � fi(xi).

Proof. Suppose that f ' g. By Corollary 1.2.7, we may assume without loss of generality
that f  g. Let A = {x 2 X | f(x) 6= g(x)}. If A is empty, there is nothing to prove, so
suppose A is nonempty. We will construct functions fi with the desired properties. Let
f0 = f and let x0 2 A be a maximal point of A. Let y 2 Y such that f(x0) � y  g(x0).
Define f1 : X ! Y by f1|X\{x} = f |X\{x} and f1 = y. If x0 < x

0 then x
0
/2 A and

f1(x
0) = f(x0) = g(x0) � g(x0) � y = f(x0),

so f1 is order preserving and hence continuous. We iterate this construct to obtains
f2, f3, . . . , fn. We know the process must end because X and Y are finite spaces.
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We can prove the following. (cf. Corollary 2.1.6)

Proposition 2.3.2. If f, g : X ! Y are two homotopic maps between F -spaces. Then the
associated simplicial maps K(f),K(g) : K(X) ! K(Y ) lie in the same contiguity class.

Proof. By the lemma above we can assume that there is an x 2 X such that f(y) = g(y)
for all y 6= x and f(x) � g(x). If follows that if C is a chain in X, then f(C) [ g(C)
is a chain in Y . Since simplexes in K(X) and K(Y ) are nothing but chains in X and Y

respectively, it follows that if � 2 K(X) is a simplex, then f(�) [ g(�) is in K(Y ).

The next proposition shows that for two simplicial maps, the induced maps under X (·)
are homotopic if the maps are in the same contiguity class.

Proposition 2.3.3. Let ', : K ! L be two simplicial maps in the same contiguity class.
Then X (') ' X ( )

Proof. The map f : X (K) ! X (L) given by f(�) = '(�) [  (�) is continuous. It is also
well-defined by the contiguity of ' and  . Note that X (')  f � X ( ) and therefore
X (') ' X ( ).
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3 Homotopy Types

In this section we study the weak, simple and strong homotopy types of simplicial com-
plexes and F -spaces and find a connection between the three notions.

3.1 Weak Homotopy Types

Definition 3.1.1. Let X and Y be topological spaces. A continuous map f : X ! Y is
a weak homotopy equivalence if the induced maps f⇤ : ⇡n(X,x0) ! ⇡n(Y, f(x0)) are
isomorphisms for all n � 1 and x0 2 X and f⇤ : ⇡0(X,x0) ! ⇡0(Y, f(x0)) is a bijection.
Two spaces are weakly homotopy equivalent or have the same weak homotopy type if
there is a sequence of spaces X = X0, X1, . . . , Xn = Y such that there are weak homotopy

equivalences Xi ! Xi+1 or Xi+1 ! Xi for every 0  i < n. In this case, we write X
we' Y .

A topological space is said to be weakly contractible if it is weak homotopy equivalent to
a point.

Note that homotopy equivalences are weak homotopy equivalences. It is obvious enough
to see that being weak homotopy equivalent is an equivalence relation. Weak homotopy
equivalences satisfy the so-called 2-out-of-3: If f and g are composable maps and two out
of the three maps f , g, g � f are weak homotopy equivalences, then so is the third map.

The Whitehead theorem, Theorem 4.5 in [4], says that a weak homotopy equivalence
between CW-complexes is a homotopy equivalence. Since simplices complexes are CW-
complexes, we get the following equivalence.

Proposition 3.1.2. If K and L are simplicial complexes, then f : |K| ! |L| is a weak
homotopy equivalence if and only if f is a homotopy equivalence.

Definition 3.1.3. Let X be a topological space. An open cover U of X is called a basis
like cover if U is a basis for some topology of X.

Note that the topology that is generated by U may be di↵erent from the given topology
on X. The reason for this somewhat strange definition is the following theorem, known as
McCords theorem. We shall use this theorem in the coming sections to prove that a map
is a weak homotopy equivalence. See [6] Theorem 6 for the proof.

Theorem 3.1.4 (McCord). Let X and Y be topological spaces and f : X ! Y be a
continuous map. Suppose that U is a basis like open cover of Y and for every U 2 U ,
the restriction f |f�1(U) : f

�1(U) ! U is a weak homotopy equivalence. Then f is a weak
homotopy equivalence.

Luckily for us, the minimal basis is a basis like cover so we will not need to look for a
basis like cover every time we want to apply McCord’s theorem.

Example 3.1.5. To illustrate the theorem, consider the following two spaces

a1 • a2 • b • a • b •

a2 • c • d • c • d •
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and suppose we had a continuous (order preserving) map f given by f(ai) = a for
i = 1, 2, 3, f(b) = b, f(c) = c and f(d) = d. The preimage of each minimal open set
Ux is contractible and since Ux is contractible, it follows that f |Ux : f�1(Ux) ! Ux is a
weak homotopy equivalence. It follows by McCord’s theorem that f is a weak homotopy
equivalence. On the other hand, since the spaces are minimal and not homeomorphic, f
cannot be a homotopy equivalence.

In some sense, McCords theorem says that if a continuous map is locally a weak
homotopy equivalence, then it is globally a weak homotopy equivalence. This theorem, as
one might guess, plays an important role in the homotopy theory of finite spaces.

We will now study the order complex K(X) of an F -space X through the lens of weak
homotopy equivalences. We start with a definition.

Definition 3.1.6. Let X be an F -space. Define the K-McCord map µX : |K(X)| ! X

to be the map µX(↵) = min(support(↵)).

With this we may state the following theorem.

Theorem 3.1.7. The K-McCord map µX : |K(X)| ! X is a weak homotopy equivalence
for any F -space.

Proof. We will show that µ
�1
X

(Ux) is open and contractible for all x 2 X. This will
imply that µX is continuous and a weak homotopy equivalence. The latter follows from
McCord’s theorem because if µ�1

X
(Ux) is contractible, then µX |(Ux) : µ

�1
X

(Ux) ! Ux is a

weak homotopy equivalence because both µ
�1
X

(Ux) and Ux are contractible. Let us start
with continuity.

Pick an arbitrary point x 2 X and define L = K(X \Ux), the full subcomplex of K(X)
that is spanned by the vertices which are not in Ux. Since |L| is closed, it su�ces to show
that

µ
�1
X

(Ux) = |K(X)| \ |L|.

If ↵ 2 |K(X)| \ |L| then ↵ /2 |L|. But then there exists a y 2 support(↵) such that
y 2 Ux. But by definition of the K-McCord map, µX(↵) = min(support(↵))  y  x, so
µX(↵) 2 Ux. Conversely, if ↵ 2 µ

�1
X

(Ux), then min(support(↵)) 2 Ux so by definition of
|L|, we have that ↵ /2 |L| so ↵ 2 |K(X)| \ |L|. Therefore µ

�1
X

(Ux) = |K(X)| \ |L|.
Now we show that µ�1

X
(Ux) is contractible. Note that every element of Ux is related to

x, which means that K(Ux) is a simplicial cone with apex x. By Corollary 2.1.7, |K(Ux)|
is contractible. The proof is finished if we show that |K(Ux)| is homotopy equivalent
to |K(X)| \ |L| = µ

�1
X

(Ux). We show that |K(Ux)| is a strong deformation retract of
|K(X)| \ |L|. Let i : |K(Ux)| ,! |K(X)| \ |L| be the inclusion. If ↵ 2 |K(X)| \ |L|, we can
find two (unique) points � 2 |K(Ux)| and � 2 |L| such that ↵ = t� + (1 � t)� for some
0 < t  1. Define r : |K(X)|\|L| ! |K(Ux)| by r(↵) = �. Since every complex is finite, the
topology on every simplicial complex mentioned here is the metric topology. It follows that
r is continuous and the straight line homotopy H : (|K(X)| \ |L|)⇥ I ! |K(X)| \ |L| from
1|K(X)|\|L| to r�i is well defined and continuous. It follows that µX(Ux) is contractible.

Note that if f : X ! Y is a continuous map between finite T0-spaces then for ↵ 2
|K(X)|, we have

(f � µX)(↵) = f(min(support(↵))) = min(f(support(↵)))
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= min(support(|K|(↵))) = (µY � |K(f)|)(↵).

In other words, the following diagram commutes:

|K(X)| |K(Y )|

X Y.

µX

|K(f)|

µY

f

(2)

We are actually interested in the following corollary of the theorem.

Corollary 3.1.8. Let f : X ! Y be a map between finite T0-spaces. Then f is a weak
homotopy equivalence if and only if |K(f)| : |K(X)| ! |K(Y )| is a homotopy equivalence.

Proof. By Proposition 3.1.2, |K(f)| is a homotopy equivalence if and only if it is a weak
homotopy equivalence. Since the McCord map µY is a weak homotopy equivalence, by
the 2-out-of-3 property, |K(f)| is a weak homotopy equivalence if and only if µY � |K(f)| =
f � µX is a weak homotopy equivalence. But we know that µX is a weak homotopy
equivalence and so this is equivalent to saying that f is a weak homotopy equivalence.

Corollary 3.1.9. If X and Y are weak homotopic F -spaces, then �(X) = �(Y ).

Proof. By Remark 2.2.6, it su�ces to show that �(|K(X)|) = �(|K(Y )|). Since X
we' Y ,

by Corollary 3.1.8, |K(X)| ' |K(Y )| and the result follows from Theorem 1.3.15.

If K is a finite simplicial complex, it is not too di�cult to show that K(X (K)) is the
barycentric subdivision of K. Recall that for each K, there is a canonical homeomorphism
sK : |K 0| ! |K| called the linear map, which is given by sK(�) = b(�), where b(�) is the
barycenter of �.

Consider the K-McCord map µX (K) : |K(X (K))| = K
0 ! X (K) for X (K). We define

the X -McCord map µK = µX (K)s
�1
K

: |K| ! X (K). Since s
0
K

is a homeomorphism and
µX (K) is a weak homotopy equivalence, it follows that µK is a weak homotopy equivalence.

Theorem 3.1.10. For every finite simplicial complex K, the X -McCord map µK is a
weak homotopy equivalence.

If ' : K ! L is a simplicial map, we denote by '0 the induced map K(X (')) : K 0 ! L
0.

Proposition 3.1.11. If K and L are finite simplicial complexes and ' : K ! L is a
simplicial map, then the following diagram commutes up to homotopy:

|K| |L|

X (K) X (L).

µK

|'|

µL

X (')

Proof. Note that there is a composition of squares
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|K| |L|

|K(X (K))| |K(X (L))|

X (K) X (L).

|'|

s
�1
K s

�1
L

µX(K)

|'0|

µX(L)

X (')

We claim that |'|sK ' sL|'0|. Let � = {�1,�2, . . . ,�n} be a simplex of K
0, the

barycentric subdivision of K. Note that �1 ( �2 ( · · · ( �n by the definition of K 0. Let
↵ 2 �. Then sK(↵) 2 �n and so |'|sK(↵) 2 '(�n) ✓ |L|. But on the other hand we
have |'0|(↵) 2 {'(�1),'(�2), . . . ,'(�n)} and so sL|'0|(↵) 2 '(�n). It follows that the
straight line homotopy H : |K 0|⇥ I ! |L| from |'|sK(↵) to sL|'0|(↵) is well defined and
continuous, so indeed, |'|sK ' sL|'0|. Now the rest follows from diagram (2), since then

µL|'| = µX (L)s
�1
L

|'| ' µX (L)|'0|s�1
K

= X (')µX (K)s
�1
K

= X (')µK .

A map homotopic to a weak homotopy equivalence is also a weak homotopy equivalence
because they will induce the same maps on the homotopy groups. With this in mind and
the 2-out-of-3 property we deduce the following corollary.

Corollary 3.1.12. Let K and L be finite simplicial complexes and ' : K ! L a simplicial
map. Then |'| : |K| ! |L| is a homotopy equivalence if and only if X (') : X (K) ! X (L)
is a weak homotopy equivalence.

Corollary 3.1.13.

(1) Let X and Y be finite T0-spaces. Then X
we' Y if and only if |K(X)| ' |K(Y )|.

(2) Let K and L be finite simplicial complexes. Then, |K| ' |L| if and only if X (K)
we'

X (L).

3.2 Simple Homotopy Types

We start by generalizing the notion of a beat point which will then generalize the idea of
a collapse.

Definition 3.2.1. A point x in an F -space X is called a down weak point if Ûx is
contractible and it is called an up weak point if F̂x is contractible. In both cases, we say
that x is a weak point.

Definition 3.2.2. Let X be an F -space and x 2 X be a point. The star of x is the set
Cx = {y 2 X | x  y or y  x}. Define also the link of x to be the set Ĉx = Cx \ {x}.

Note that Cx = Ux [ Fx and that Ĉx = ÛX ~ F̂x.

Remark 3.2.3. Note that by Proposition 1.3.7, x 2 X is a weak point if and only if Ĉx

is contractible.
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Proposition 3.2.4. Let x be a weak point of an F -space. Then the inclusion i : X\{x} ,!
X is a weak homotopy equivalence.

Proof. Suppose that x is a down weak point. The other case is similar where one considers
X

op instead of X and notes that K(Xop) = K(X). We will show that i�1(Uy) = Uy \{x} is
contractible for all y 2 X and then the result will follow from McCord’s theorem because
the minimal basis is always a basis like cover. If y = x then it is contractible by the
definition of a down weak point. So suppose y 6= x. But then Uy \ {x} has a maximum,
so i|i�1(Uy) : i

�1(Uy) ! Uy is a weak homotopy equivalence. By McCord’s theorem, i is a
weak homotopy equivalence.

Definition 3.2.5. Let X be an F -space and Y ( X be a proper subspace. We say that
X collapses to Y by an elementary collapse (or that Y expands to X by an
elementary expansion) if Y is obtained from X by removing a weak point. In this case
we write X &e

Y or Y %e
X. If there exists a sequence X = X0, X1, . . . , Xn = Y of

F -spaces such that Xi &e
Xi+1 for every 1  i < n, we say that X collapses to Y (or

that Y expands to X) and write X & Y or Y % X. Two F -spaces X and Y are simple
homotopy equivalent if there is a sequence X = X0, X1, . . . , Xn = Y of F -spaces such
that Xi & Xi+1 or Xi % Xi+1 for every 1  i < n. We denote this by X�& Y . We say
that an F -space is collapsible if it collapses to a point.

We can also study simple homotopy types in the setting of finite simplicial complexes.
If K is a simplicial complex and � 2 K is a simplex, we define the boundary of �,

denoted by �̇, to be the union of all proper maximal faces of � and we denote by �c the
complement of � which is the subcomplex of K of simplices that do not contain �.

Definition 3.2.6. Let K be a finite simplicial complex and L be a subcomplex. We say
that there is an elementary simplicial collapse from K to L if there is a simplex �
of K and a vertex v of K that is not in � such that K = L [ v� and L \ v� = v�̇. In
this case, we write K &e

L. Furthermore, we say that K (simplicially) collapses to
L if there is a sequence K = K1,K2, . . . ,Kn = L of finite simplicial complexes such that
Ki &e

Ki+1 for all i. We denote this by K & L. In a similar way we define expansions
and write L % K respectively. A simplicial complex is collapsible if it collapses to one
of its vertices.

In the following diagram, a complex is collapsing to a 2-simplex

Two simplicial complexes K and L are simple homotopy equivalent or have the
same simple homotopy type if there is a sequence K = K1,K2, . . . ,Kn = L such that
Ki & Ki+1 or Ki % Ki+1 for all 1  i < n. We denote this also by K�& L.

The proofs of the following two lemmas can be found in [1] section 4.1.
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Lemma 3.2.7. Let aK be a simplicial cone of a finite simplicial complex K. Then K is
collapsible if and only if aK & K.

The implication, if K is collapsible then aK & K, follows from a more general result
due to Whitehead, theorem 4 in [11], namely that if K & L, then �K & �L, where � is
any stellar subdivision of K.

Lemma 3.2.8. Let K be a finite simplicial complex and L be a subcomplex of K such that
K collapses to L. If M is another finite simplicial complex then K ⇤M & L ⇤M .

The converse of Lemma 3.2.8 is an open problem.

Proposition 3.2.9. If K and L are subcomplexes of a finite simplicial complex then
K [ L & K if and only if L & K \ L.

Proof. Suppose there is an elementary collapse from K [ L to a subcomplex W that
contains K. Let L0 = W \ L. Then L

0 ✓ L and since W ◆ K, we also have L
0 ◆ K \ L.

This shows that an elementary collapse of K [ L to a subcomplex containing K, has
the form of an elementary collapse to a complex K [ L

0 where L
0 is a subcomplex of L

containing K \ L. Now we show that such an elementary collapse is equivalent to (in the
sense that it determines and is determined by) an elementary collapse of L to L

0.
Now K [ L &e

K [ L
0 is, by definition, equivalent to choosing a simplex � 2 (K [

L) \ (K [ L
0) and a vertex v /2 � such that K [ L = K [ L

0 [ v� and (K [ L
0) \ v� = v�̇.

Therefore v� * K which means v� ✓ L. It follows that v, �̇ 2 L and so v, �̇ 2 K [ L
0.

But since L \ (K [ L
0) = L

0, we have v, �̇ 2 L
0.

This shows that an elementary collapse from K [L to K [L
0 with L

0 ◆ K \L, is the
same thing as an elementary collapse from L to L

0. This extends to collapses, so we have
showed that K [ L & K if and only if L & K \ L.

If v is a vertex in a simplicial complex K, then the star of v in K, denoted st(v), is
the subcomplex of all simplicies of K such that � [ {v} is a simplex of K. The link of a
vertex v, denoted lk(v), is the subcomplex of st(v) such that v /2 � for all � 2 st(v). More
generally, we define the star of a simplex � 2 K, denoted st(�), to be the subcomplex of
K whose simplicies are the simplicies ⌧ 2 K such that � [ ⌧ 2 K, and we define the link

of a simplex �, denoted lk(�), as the subcomplex of st(�) whose simplicies are disjoint
from �. With this we may state the following definition.

Lemma 3.2.10. Let K be a finite simplicial complex and let v be a vertex of K. Then
the link lk(v) is collapsible if and only if K & K \ {v}.

Proof. Note that st(v) = vlk(v) and lk(v) = st(v) \ (K \ {v}). By Lemma 3.2.7, lk(v) is
collapsible if and only if vlk(v) = st(v) & lk(v) = st(v)\ (K \ {v}). By Proposition 3.2.9,
This is equivalent to saying that st(v) [ (K \ {v}) = K & K \ {v}.

We now arrive at the main theorem for this section. We will prove the first part as it
is more relevant to our work. The complete proof can be found in [1] Theorem 4.2.11.

Theorem 3.2.11.

(1) Let X and Y be F -spaces. Then X and Y are simple homotopy equivalent if and
only if K(X) and K(Y ) have the same simple homotopy type. Moreover, if X & Y

then K(X) & K(Y ).
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(2) Let K and L be finite simplicial complexes. Then K and L are simple homotopy
equivalent if and only if X (K) and L(L) have the same simple homotopy type. More-
over, if K & L then X (K) & X (L).

Proof. Let x 2 X be a beat point. Then there exists x0 2 X and two subspaces Y and Z

of X such that Ĉx = Y ~ {x0}~Z. Note that lk(x) = x
0K(Y ~Z) is a cone, in particular,

it is contractible by Lemma 3.2.7 (since clearly x
0K(Y ~Z) & K(Y ~Z). Now by Lemma

3.2.10, K(X) & K(X \ {x}), since points in X are precisely the vertices of the order
complex. Therefore if X is contractible, K(X) is collapsible since it is homotopy invariant.

Now let x 2 X be a weak point. Then Ĉx is contractible by Remark 3.2.3. Therefore
lk(x) = K(Ĉx) is collapsible. By Lemma 3.2.10, K(X) & K(X \ {x}). So X & Y implies
K(X) & K(Y ). In particular X�& Y implies that K(X)�& K(Y ).

3.3 Strong Homotopy Types

In this section we study another type of collapse.
If K is a simplicial complex and v 2 K is a vertex, the deletion of v, denoted K \ v

is the full subcomplex of K spanned by the vertices di↵erent from v.

Definition 3.3.1. Let K be a finite simplicial complex and v 2 K be a vertex. We say that
there is an elementary strong collapse from K to K \ v if the link lk(v) is a simplicial
cone. If w is an apex of lk(v), we say that v is dominated by w (or just dominated)
and write K &&e

K \ v. If there exists a sequence of elementary strong collapses starting
at K and ending at a subcomplex L we say that there is a strong collapse from K to
L. In this case, we write K && L. We define a strong expansion as the inverse of
a strong collapse. We say that two finite simplicial complexes K and L have the same
strong homotopy type if there is a sequence of strong collapses and strong expansions
that starts at K and ends at L.

Definition 3.3.2. A simplicial map ' : K ! L is a strong equivalence if there exists
a map  : L ! K such that  ' ⇠ 1K and ' ⇠ 1L. If ' : K ! L is a strong equivalence,
we write K ⇠ L.

It is easy to verify that ⇠ is an equivalence relation.

Definition 3.3.3. If K is a finite simplicial complex and it has no vertices that are
dominated, we say that K is a minimal complex.

Proposition 3.3.4. Let K be a minimal complex and ' : K ! K be a simplicial map in
the same contiguity class as the identity 1K . Then ' = 1K .

Proof. If ' is in the same contiguity class as 1K then there is a sequence of simplicial maps
' = '0,'1, . . . ,'n = 1K that are pairwise contiguous. For this reason we my assume that
' and 1K are contiguous because the general case follows inductively.

Let v 2 K and let � 2 K be a maximal simplex with v 2 �. Since ' ⇠ 1K , '(�) [ �
is a simplex. But since � is maximal, it follows that '(v) 2 '(�) [ � = �. It follows that
every maximal simplex that contains v also contains '(v). Since K is minimal, '(v) = v.
Since v is arbitrary, we conclude that ' = 1K .

An isomorphism between two simplicial complexes K and L is a bijective simplicial
map  : K ! L such that the inverse  �1 is also a simplicial map.

The following corollary is immediate.
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Corollary 3.3.5. Any strong equivalence between minimal complexes is an isomorphism.

Proposition 3.3.6. Let K be a finite simplicial complex and v 2 K a dominated vertex.
Then the inclusion i : K \ v ,! K is a strong equivalence. In particular, if K and L have
the same strong homotopy type, then K ⇠ L.

Proof. Let w be the point that dominates v. Define the vertex map r : K ! K \ v by
declaring it to be the identity on K \ v and r(v) = w. Let � 2 K be a simplex such
that v 2 � and let ⌧ be a maximal simplex such that � ( ⌧ . It follows that w 2 ⌧ and
r(�) = (� [ {w}) \ {v} ✓ ⌧ is a simplex of K \ v. This show that r is a simplicial map.
On the other hand ir(�) [ � = � [ {w} ✓ ⌧ shows that ir(�) [ � is a simplex of K and
hence ir ⇠ 1K . Therefore i is a strong equivalence.

Definition 3.3.7. Let K be a finite simplicial complex. A core of K is a minimal sub-
complex K0 ⇢ K such that K && K0.

Theorem 3.3.8. Let K be a simplicial complex. Then K has a core and it is unique
up to isomorphism. Furthermore, two finite simplicial complexes have the same strong
homotopy type if and only if their cores are isomorphic.

Proof. Note that a core of K is obtained by removing dominated points one at a time.
This proves existence. If K1 and K2 are both cores of K, they have the same strong
homotopy type. By Proposition 3.3.6, K1 ⇠ K2. But cores are always minimal so it
follows by Corollary 3.3.5 that K1 and K2 are isomorphic. Therefore a core is unique up
to isomorphism.

To prove the second part, let K and L be finite simplicial complexes. Suppose that K
and L have the same strong homotopy type. Then so do their cores and by the reasoning
above, their cores are isomorphic.

Conversely, if K0 and L0 are isomorphic cores of K and L respectively, then they
have the same strong homotopy type because isomorphic complexes have the same strong
homotopy type. But then so do K and L.

Corollary 3.3.9. Two finite simplicial complexes K and L have the same strong homotopy
type if and only if K ⇠ L.

Proof. If K ⇠ L and K0 and L0 denote their cores then K0 and L0 are isomorphic.

Proposition 3.3.10. A strong equivalence is also a simple homotopy equivalence.

Proof. Let ' : K ! L be a strong equivalence and let K0 be a core of K and L0 be a core
of L. It follows that the inclusions iK : K0 ,! K and iL : L0 ,! L are strong equivalences.
Let r : L ! L0 be a homotopy inverse of iL. Since cores are minimal complexes, it follows
that the map r'iK : K0 ! L0 is an isomorphism. But then the maps |iK |, |r| and |r'iK |
are simple homotopy equivalences and therefore |'| is a simple homotopy equivalence.

Definition 3.3.11. A complex is strong collapsible if it strong collapses to a point.

The proof of the following proposition can be found in [1] page 77.

Proposition 3.3.12. If K and L are two finite simplicial complexes, then the join K ⇤L
is strong collapsible if and only if K or L is strong collapsible. (cf. Proposition 1.3.7)
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The analogous result of Proposition 3.3.12 for collapsibility (rather than strong col-
lapsibility) does not hold. It is not known whether K ⇤ L is collapsible only if K or L is
collapsible.

Finally, the following is the main result of this section. (cf. Theorem 3.2.11)

Theorem 3.3.13.

(1) If two F -spaces are homotopy equivalent, then their order complexes have the same
strong homotopy type.

(2) If two finite simplicial complexes have the same strong homotopy type, then their
face posets are homotopy equivalent.

Proof. Let f : X ! Y be a homotopy equivalence between two F -spaces and let g.Y !
X denote its homotopy inverse. Since gf ⇠ 1X and fg ' 1Y , by Proposition 2.3.2,
K(g)K(f) ⇠ 1K(X) and K(f)K(g) ⇠ 1K(Y ). Therefore, K(X) ⇠ K(Y ).

To prove the second part, letK and L be two complexes with the same strong homotopy
type. There exist simplicial maps ' : K ! L and  : L ! K such that  ' ⇠ 1K and
' ⇠ 1L. But then, by Proposition 2.3.3, X (') : X (K) ! X (Y ) is a homotopy equivalence
with X ( ) as its inverse.

The last result that we will need before we go other to the equivariant homotopy theory
in the setting of F -spaces and simplicial complexes is the following theorem. The proof
can be found in [1] page 79.

Theorem 3.3.14. Let K be a finite simplicial complex. Then K is strong collapsible if
and only if the barycentric subdivision K

0 is strong collapsible.

What we really need is the following corollary.

Corollary 3.3.15. An F -space X is contractible if and only if K(X) is strong collapsible.

3.4 Summary

We finish this section with a summary of the important results we have obtained. The
following two diagrams illustrate the relations we have found. The first diagram is for
F -spaces and their order complexes and the second diagram is for simplicial complexes
and their face posets.

X ' Y X�& Y X
we' Y

K(X) ⇠ K(Y ) K(X)�& K(Y ) |K(X)| we' |K(Y )| |K(X)| ' |K(Y )|

X (K) ' X (L) X (K)�& X (L) X (K)
we' X (Y )

K�& L |K| we' |L| |K| ' |L|
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We now exhibit some examples to show that some of the implications in the diagrams
are strict.

Example 3.4.1. The simplicial complex below is a homogeneous 2-simplex (meaning 2 is
the common dimension of its facets) is collapsible. But is is also minimal, which means
in particular that it cannot have the strong homotopy type of a point, so it is not strong
collapsible.

Example 3.4.2. The following space is collapsible but not contractible.

• • •

• • •

• • •

It is collapsible because Ûx or F̂x is contractible for any x but except for possibly one point,
but since the space is minimal (it has no beat points), it is not contractible.

The analogous example of Example 3.4.2 for simplicial complexes is the-house-with-
two-rooms found by Bing in [2] page 170. It is contractible but not collapsible.
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4 Equivariant Homotopies of F -spaces

When we let a finite group act on an F -space, we can not only uncover some properties
of the underlying space but also some properties of the group. In this section we will let
a finite group G act on an F -space.

4.1 G-F -spaces and Their Properties

Let G be a group. A topological space X is said to be a G-space if G acts on X and the
map mg : X ! X given by x 7! gx is continuous for every g 2 G. Given a subspace A of
a G-space, we say that A is G-invariant if gx 2 A for all x 2 A and all g 2 G. A map
f : X ! Y between G-spacesX and Y is said to be a G-map if f(gx) = gf(x) for all g 2 G

and x 2 X. A G-homotopy is a homotopy H : X⇥ I ! X such that H(gx, t) = gH(x, t)
for all g 2 G, x 2 X and t 2 I = [0, 1]. A G-invariant subspace A ✓ X is an equivariant

strong deformation retract if there is a retraction r : X ! A that is a G-map such
that the homotopy H : i � r ' 1X is a G-homotopy which is stationary on A. We shall
denote by Gx the orbit of a point x and by X

G the set of points in X fixed by the action.
A core that is G-invariant is called a G-core. An F -space that is also a G-space will be
called a G-F -space. The following lemma by Stong shows that every finite T0-G-space has
a G-core.

Lemma 4.1.1. Let G be a group and X be a G-F -space. Then there exists a G-core of
X which is an equivariant strong deformation retract of X.

Proof. IfX is minimal the statement is trivially satisfied, so suppose thatX is not minimal.
Then there exists a beat point x. Suppose that it is a down beat point (the proof for an up
beat point is analogous), this means that it covers a unique point y 2 X. We note that the
orbits Gx and Gy are disjoint. Indeed, if gx = hy for some g, h 2 G, then gx = hy < hx

so gx < hx, but this contradicts Corollary 1.3.6 above because the maps mg,mh : X ! X

are comparable automorphism. It follows that the retraction r : X ! X \ Gx given by
r(gx) = gy is a well defined continuous G-map. Let ↵ : I ! X

X be the path defined by
↵(t) = i � r, where i : X \ Gx ,! X is the inclusion, if 0  t < 1 and ↵(1) = 1X . The
homotopy X ⇥ I ! X corresponding to ↵ is a G-homotopy between i � r and 1X relative
to X \ Gx. It follows that X \ Gx is an equivariant strong deformation retract. Now we
pick the next beat point and do the same process until we arrive at a core.

Proposition 4.1.2. If X is a contractible G-F -space then X
G is nonempty.

Proof. By Lemma 4.1.1, there exists a G-invariant core. By Theorem 3.3.13, the order
complex K(X) has the same strong homotopy type as a point. But if K(X) has the same
strong homotopy type as a point, by Theorem 3.3.8, its core is unique and isomorphic to
a point. But then the G-core of X in question will be homotopy equivalent to the core of
|K(X)|, that is, it is nonempty.

To illustrate the utility of the proposition, we give an alternative proof of a result from
group theory.

Example 4.1.3. Let G be a finite group and let H be a proper subgroup such that if S is
a nontrivial subgroup then S \H is also nontrivial. Then G is not simple.
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Consider the poset S(G) of nontrivial proper subgroups of G. Note that S(G) is a
G-space as G acts on S(G) by conjugation. Let cH : S(G) ! S(G) be the constant map
H and define f : S(G) ! S(G) by S(S) = S \ H. By hypothesis, f is well defined.
Furthermore it is clearly order preserving and hence continuous. Now note that we have
a fence 1S(G) � f  cH which means S(G) is contractible. By Proposition 4.1.2, S(G)
has a point fixed by the action of G. But since G acted on S(G) conjugation, it follows
that S(G) contains a proper and nontrivial normal subgroup of G and hence G cannot be
simple.

We now extend the notion of a strong collapse to G-spaces. If X is a G-F -space and
x 2 X is a beat point, we say that there is an elementary strong G-collapse from X

to X \ Gx. Note that if x is a beat (weak) point, then gx is a beat (weak) point for all
g 2 G. It is easily seen that elementary strong G-collapses are strong collapses. A strong

G-collapse is a sequence of elementary strong G-collapses. If X strong G-collapses to Y

we write X &&G
Y . The notion of a strong G-expansion is defined dually.

Proposition 4.1.4. Let X be a G-F -space and let Y be a G-invariant subspace. The
following are equivalent:

(1) X &&G
Y .

(2) Y is an equivariant strong deformation retract of X.

(3) Y is a strong deformation retract of X.

Proof. Suppose we have a strong G-collapse from X to Y . By following the steps in the
proof of Lemma 4.1.1 we get that Y is an equivariant strong deformation retract of X.

If Y is an equivariant strong deformation retract, then it is also a strong deformation
retract.

Suppose now that Y is a strong deformation retract and let x 2 X \Y be a beat point.
It follows that X && X \Gx, so X \Gx is a strong deformation retract of X. Therefore
the result follows inductively.

Now we generalize collapses to G-collapses.

Definition 4.1.5. Let X be a G-F -space. If x 2 X is weak point, we say that there is an
elementary G-collapse from X to X \Gx and write X &Ge

X \Gx. A G-collapse is a
sequence of G collapses. X is G-collapsible if it G-collapses to a point. G-expansions
are defined dually.

We say that two G-F -spaces X and Y have the same equivariant simple homotopy

type if there exists a sequence X = X1, X2, . . . , Xn = Y such that Xi &G
Xi+1 or

Xi %G
Xi+1 for 1  i < n. In this case, we write X�&G

Y .
Unpacking the definition, it is easy to see that strong G-collapses are G-collapses and

G-collapses are collapses.

4.2 Group Actions on Simplicial Complexes

A simplicial G-complex (or just a G-complex) is a simplicial complex with an action of
G on the set of vertices VK such that if {v1, v2, . . . , vn} is a simplex, then {gv1, gv2, . . . , gvn}
is also a simplex. In other words, the map G⇥K ! K induced by the action is simplicial.
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As we will see below, the notion of G-collapses extends to simplicial complexes. Let
K be a finite G-complex and � 2 K a free face of ⌧ 2 K. Then g� is a free face of g⌧
for every g 2 G. Note that the isotropy group3 of �, denoted G� is included in G⌧ , the
isotropy group of ⌧ . To see why, suppose g 2 G�, that is g� = �. Then g� = � ( g⌧ . But
since � is a free face, it follows that g⌧ = ⌧ meaning g 2 G⌧ . The other inclusion does
not hold in general (see [1] Example 8.3.4 on page 113), which motivates the following
definition.

Definition 4.2.1. Let K be a finite simplicial G-complex and let � 2 K be a free face of
⌧ 2 K. Let L = K \

S
g2G

{g�, g⌧}. Note that L is G-invariant. We say that there is an

elementary G-collapse K &Ge
L from K to L or that � ( ⌧ is a G-collapsible pair

if G� = G⌧ (or equivalently, if G⌧ ✓ G�). If there is a sequence of elementary G-collapses
initiating at K and terminating at L we say that there is a G-collapse from K to L and
write K &G

L. As usual, a G-expansion is defined dually. A simplicial G-complex is
G-collapsible if it G-collapses to a vertex.

We can also define equivariant simple homotopy types in the setting of simplicial com-
plexes. If there is a sequence K = K1,K2, . . . ,Kn = L such that Ki &G

Ki+1 or
Ki %G

Ki+1 then we say that K and L have the same equivariant simple homotopy

type. We denote this also by K�&G
L

We now state the following proposition.

Proposition 4.2.2. Let K be a finite simplicial G-complex and let � ( ⌧ be a collapsible
pair. Then the following are equivalent:

(1) � ( ⌧ is a G-collapsible pair.

(2) K & L, where L = K \
S

g2G
{g�, g⌧}.

Proof. Suppose that � ( ⌧ is a collapsible pair. Then for each g, the pair g� ( g⌧ can
be collapsed too. By iterating on all elements of g, we get that K & L, where L is as in
the hypothesis. On the other hand, if K & L and � is an n-simplex, then the number of
n-simplices of the set [g2G{g�, g⌧} is equal to the number of (n + 1)-simplices. In other
words, the sets G ·� = {g�}g2G and G · ⌧ = {g⌧}g2G have the same cardinality. It follows
that the cardinalities of the isotropy groups G� and G⌧ are equal since

#G� = #G/#G · � = #G/#G · ⌧ = #G⌧ ,

by the orbit-stabilizer theorem. But we know that G� ✓ G⌧ , and thus G� = G⌧ .

Lemma 4.2.3. Let G be a group acting on a finite simplicial cone aK such that the action
fixes the vertex a. Then aK &G

a.

Proof. Let � 2 K be a maximal simplex. Then � ( a� is a G-collapsible pair. By the
preceding proposition, aK &G

aK \
S

g2G
{g�, ga�} = a(K \

S
g2G

{g�}). By induction
on the maximal simplices, we arrive at our result.

3Strictly speaking, we defined the action on the set of vertices but it is easily extended to an action on
the simplices by ”linearity”, that is, acting on a simplex can be seen as acting on all the vertices which
the simplex contains.
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If X is a G-F -space, there is a natural induced action of G on K(X). There is a natural
isomorphism K(G⇥X) = G⇥K(X) if G is considered as a discrete topological group on
the left and as a discrete simplicial complex on the right. If ✓ : G⇥X ! X is the action
of G on X, then we have an induced action K(✓) : G⇥ K(X) = K(G⇥X) ! K(X). We
will always assume that the action on K(X) is the induced one unless we state otherwise.

The proof of the following lemma can be found in [1] page 115.

Lemma 4.2.4. Let X be a G-F -space and x 2 X. The stabilizer of x, Gx, acts on
Ĉx = Cx \{x} and then on K(Ĉx). If K(Ĉx) is Gx-collapsible, then K(X) &G K(X \Gx).

Now we state an important theorem.

Theorem 4.2.5.

(1) Let X be a G-F -space and Y ✓ X a G-invariant subspace. If X &G
Y , then

K(X) &G K(Y ).

(2) Let K be a finite G-complex and L ✓ K a G-invariant subcomplex. If K &G
L,

then X (K) &G X (L).

Proof. Suppose x 2 X is a down beat point (what follows will also apply for an up beat
point). Then there exists a unique y 2 X such that x covers y. If z 2 Cx, then either
z 2 Ux or z 2 Fx. If z 2 Ux then z  x and since x covers y, z  y and in particular,
z 2 Cy. If z 2 Fx, then by transitivity z 2 Fy. So Cx ✓ Cy. Now suppose that g 2 Gx,

then gx = x and so gy  gx = x, by Lemma 1.3.5, gy = y. Since Ĉx is a union of a
down-set and an up-set, it follows that we may write K(Ĉx) = yK(Ĉx \ {y}). Note that
the stabilizer Gx of x acts on Ĉx which induces an action on K(Ĉx). But Gx ✓ Gy so Gx

fixes y. By Lemma 4.2.3, K(Ĉx) = yK(Ĉx \{y}) &Gx y. But this means that K(Ĉx) is Gx

collapsible so by Lemma 4.2.4 K(X) &G K(X \Gx). It follows that if X is contractible,
then K(X) is G-collapsible.

Now suppose that x 2 X is a weak point. It follows that the star Cx is contractible
and so K(Cx) is G-collapsible. By Lemma 4.2.4 we obtain that K(X) &G K(X \Gx).

For the second part, suppose that K elementary G-collapses to L. Let � ( ⌧ be
the G-collapsible pair such that L = K \ {g�, g⌧}g2G. Then � 2 X (K) is an up beat
point covered by ⌧ and therefore X (K) &Ge X (K) \ {g�}g2G. Note that ⌧ 2 X (K) \
{g�}g2G is a down weak point since ⌧ \{�, ⌧} is a simplicial cone and then by Proposition

2.2.5, Û
X (K)\{g�}g2G
⌧ = Û

X (K)\{�}
⌧ = X (K)({⌧ \ {�, ⌧}}) is contractible. Thus X (K) \

{g�}g2G &Ge X (K) \ {g�, g⌧}g2G = L and X (K) &G X (L), which completes the proof.

Corollary 4.2.6. Let X and Y be G-F -spaces. X and Y have the same equivariant simple
homotopy type if and only if K(X) and K(Y ) have the same equivariant simple homotopy
types.

Given a map f : X ! Y between F -spaces, define the non-Hausdor↵ mapping

cylinder B(f) to be the F -space whose underlying set is X t Y and is topologized by
keeping the same ordering within X and Y and setting x  y in B(f) if f(x)  y in Y .
We denote by i : X ,! B(f) and j : Y ,! B(f) the canonical inclusions of X and Y into
B(f).
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Lemma 4.2.7. Let f : X ! Y be a map between F -spaces. Then Y is a strong deforma-
tion retract of B(f).

Proof. Let r : B(f) ! Y be the map given by r(x) = f(x) for all x 2 X and restrict to the
identity on Y . It is order preserving and hence continuous. Moreover, 1B(f)  jr which
means jr 'Y 1B(f).

A map f : X ! Y between F -spaces is called distinguished if f
�1(Uy) ✓ X is

contractible for every y 2 Y .

Lemma 4.2.8. Let f : X ! Y be a distinguished G-map between G-F -spaces. Then
B(f) &G

X.

Proof. If x  y for some x 2 X and y 2 Y , then f(x)  y and thus f(gx) = gf(x)  gy

for every g 2 G. It follows that gx  gy and thus the map X t Y 3 z 7! gz is order
preserving and hence continuous. Therefore B(f) is a G-space with the action induced by
X and Y .

Let Y1, . . . , Yk be the orbits of Y under the action of G. We define a partial order  on
the set of orbits by declaring Yi  Yj if there are elements yi 2 Yi and yj 2 Yj such that
yi  yj . Reflexivity and transitivity are clear to see. To show that this is antisymmetric,
suppose we have two orbits Y and Y

0 such that Y  Y
0 and Y

0  Y . We will show that
Y = Y

0. Since Y  Y
0, there exist a y1 2 Y and z1 2 Y

0 such that y1  z1 and similarly
since Y

0  Y , there exist elements y2,2 Y and z2 2 Y
0 such that z2  y2. Sine y1 and y2

are in the same orbit, there exists a g 2 G such that gy1 = y2. Similarly, there exists an
h 2 G such that hz1 = z2. It follows that we have inequalities y1  z1 and hz1  gy1 and
so z1  h

�1
gy1. Let g0 = h

�1
g. Then y1  z1  g

0
y1. But since the map y 7! gy is order

preserving, we get that z1 = y1 and hence Y = Y
0.

Now consider an arrangement of the orbits Y1, Y2, . . . , Yk such that Ym  Yn implies
m  n. Define Xr = X [ Yr+1 [ Yr+2 [ · · · [ Yk ✓ B(f) for all 0  r  k. Then if yr is a
representative of Yr, the minimal set

Û
Xr�1
yr

= {x 2 Xr�1 | x  yr} = {x 2 Xr�1 | f(x)  yr}

is homeomorphic to f
�1(UY

yr
) and the latter is contractible by the hypothesis. It follows

that yr is a weak point of Xr�1 and thus Xr�1 &Ge
Xr for all 1  r  k. Since B(f) = X0

and X = Xk, it follows that B(f) &G
X.

Proposition 4.2.9. Let X and Y be G-F -spaces and f : X ! Y be a distinguished
G-map. Then X and Y have the same equivariant simple homotopy type.

Proof. By the proof of the preceding lemma, B(f) is a G-space with the action induced
by X and Y . If y 2 Y ✓ B(f) (we identity Y with its image under i), then gy 2 Y

for otherwise gy 2 X and f(gy) = gf(y) but f is not defined on y. It follows that Y

is G-invariant and so by Proposition 4.1.4 B(f) &&G
Y . But by the preceding lemma,

B(f) &G
X so X and Y have the same equivariant simple homotopy type.

Recall that if X is a G-space we can define an equivalence relation ⇠ on X by x ⇠ y

if gx = y for some g 2 G. The quotient space corresponding to this relation is called the
orbit space and is denoted by X/G. If X is a finite G-space, then the order on X/G
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is given by x  y if there exists a g such that gx  y. From topology we know that a
quotient q map is open if and only if q�1(q(U)) is open for any open subset U . We claim
that q

�1(q(Ux)) =
S

g2G
Ugx. If y 2 q

�1(q(Ux)) then q(y) 2 q(Ux) and so y 2 Ux, in
particular, y 2

S
g2G

Ugx. On the other hand, if y 2 Ugx for some g 2 G, then y  gx

and so y 2 {z 2 X | q(z) 2 q(Ux)} = q
�1(q(Ux)). Therefore q

�1(q(Ux)) =
S

g2G
Ugx. In

particular, q�1(q(Ux)) is open for all x. It follows that q is an open map and hence we can
deduce that q(Ux) = Ux for all x 2 X. Indeed, Ux ✓ q(Ux) by minimality of the minimal
basis (since q(Ux) is open) and the other inclusion follows from the continuity of q.

Finally, it follows that if X is T0, then so is X/G. To see why, suppose that x  y and
y  x. Then there exist g, h 2 G such that y  gx and x  hy. Therefore, y  gx  ghy.
By Proposition 1.3.5, y = gx = ghy. But then y = x.

Proposition 4.2.10. Let X be a G-F -space that strongly G-collapses to a G-invariant
subspace Y . Then X/G strongly collapses to Y/G and X

G strongly collapses to Y
G.

Proof. Suppose that there is an elementary strong G-collapse from X to Y . The general
case follows inductively. It follows that Y = X \Gx for some beat point x 2 X. Suppose
x is a down beat point and let y 2 X be the point such that y � x. Then y < x in
X/G. Our goal is to show that x is a beat point in X/G by showing it covers y and only
y because then X/G strongly collapses to X/G \ {x} = Y/G. Suppose that z < x. Then
there exists a g 2 G such that gz < x. Since y is the unique element covered by x, gz  y,
but then z  y, proving that x is indeed a beat point of X/G.

To prove the next part, note that if x is not fixed by G then Y
G = X

G and there is
nothing to prove. Suppose therefore that x 2 X

G. Then if g 2 G, we have gy < gx = x

and therefore gy  y. It follows that gy = y and so y 2 X
Y . It follows that x is a beat

point of XG. This implies that XG && Y
G.

In particular, if X is contractible then so are X/G and X
G. Indeed, if X is contractible

then X strongly G-collapses to a G-core which is a point, and then both X/G and X
G are

contractible.

Proposition 4.2.11. Let X be a G-F -space which G collapses to Y . Then X
G collapses

to Y
G. In particular, if X is G-collapsible, then X

G is collapsible.

Proof. Again, we suppose that X &Ge
Y and the fact that X &G

Y follows inductively.
Suppose X &Ge

Y = X \Gx. As in the proof of the preceding proposition, if x /2 X
G then

Y
G = X

G. Suppose x 2 X
G, then Ĉ

X

x
is G-invariant and contractible. By the preceding

proposition, ĈX
G

x
= (ĈX

x
)G is contractible and so x is a weak point of XG. This means

that XG & Y
G.

Corollary 4.2.12. Let X and Y be equivariant simple homotopy equivalent G-F -spaces.
Then X

G and Y
G have the same simple homotopy type.

If K is a G-simplicial complex, we denote by K
G the full subcomplex of K spanned

by the vertices fixed by the acts.
We can prove an analogous result of Proposition 4.2.11 for simplicial complexes.

Proposition 4.2.13. Let K be a finite G-simplicial complex that G-collapses to a sub-
complex L. Then K

G collapses to L
G. In particular, if K is G-collapsible, then K

G is
collapsible.
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Proof. The proof is very similar to the preceding proposition. Suppose that K &Ge
L =

K\
S

g2G
{g�, g⌧}, where � ( ⌧ is a G-collapsible pair. The general case follows inductively.

If � /2 K
G, then L

G = K
G. So suppose � 2 K

G. Since � is a free face of ⌧ , it follows that
⌧ 2 K

G. Then L = K \ {�, ⌧} and L
G = K

G \ {�, ⌧}. Since � ( ⌧ is a collapsible pair in
K

G, it follows that KG & L
G.

Corollary 4.2.14. Suppose K and L are finite G-simplicial complexes with the same
equivariant simple homotopy type. Then K

G and L
G have the same simple homotopy

type. In particular, K has a vertex which is fixed by the action of G if and only if L has
a vertex fixed by G.

4.3 Quillen’s Conjecture

In this section we state and prove Quillen’s theorem and introduce Quillen’s conjecture.
Let G be a group and p be a prime. Let Sp(G) denote the poset of nontrivial p-

subgroups of G under inclusion. Denote by Ap(G) the subspace of Sp(G) consisting of
nontrivial elementary abelian p-subgroups. Recall that an abelian group is elementary if
all the nontrivial elements have the same order. Note that the maximal elements of Sp(G)
are precisely the Sylow p-subgroups and the minimal elements are the subgroups of order
p.

Theorem 4.3.1 (Quillen). If G has a normal p-subgroup, then the space Sp(G) is con-
tractible.

Proof. Suppose N is a nontrivial normal p-subgroup of G. Since N is normal, then NH is
a subgroup of G for any p-subgroup H of G, and since both N and H are p-subgroups and
|NH| = |N ||H|/|N \H|, it follows that the map f : Sp(G) ! Sp(G) given by H 7! NH

is well defined. Now clearly f(H) � H so f � 1Sp(G). Furthermore, if cN denotes the
constant map N , we get a fence cN  f � 1SP (G). By Corollary 1.2.7, it follows that the
identity is null-homotopic and so Sp(G) is indeed contractible.

Let K(Sp(G)) be the order complex of Sp and denote by |K(Sp(G))| its geometric
realization. With this notation, the following corollary is immediate by a combination of
Proposition 3.1.2 and Corollary 3.1.13.

Corollary 4.3.2. If G has a nontrivial normal p-subgroup then |K(Sp(G))| is contractible.

The converse of this corollary is Quillen’s conjecture.

Conjecture 4.3.3 (Quillen). If |K(Sp(G))| is contractible, then G has a nontrivial normal
p-subgroup.

The conjecture is known to hold for solvable groups as Quillen showed in [8]. Stong was
the first mathematician to apply the theory of finite topological spaces to Quillen’s work.
Brown and Quillen studied the topological properties of Sp(G) through the geometric
realization of its order complex.

In [10], Stong showed that Ap(G) and Sp(G) are not homotopy equivalent as finite
spaces in general, but they are weakly homotopy equivalent.

Proposition 4.3.4. The inclusion Ap(G) ,! Sp(G) is a weak homotopy equivalence.
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Proof. Since UH is contractible for all H 2 Sp(G), it su�ces to show that i
�1(UH) is

contractible, by the same reasoning as in the proof of Theorem 3.1.7. SinceH is a nontrivial
p-subgroup, by the class equation, its center Z is not trivial. Note that i�1(UH) = Ap(H).
Let N ✓ Z be the subgroup whose nontrivial elements have order p. Recall that if S, T are
subgroups of G, the set ST = {st | s 2 S, t 2 T} is a group with with operation inherited
from G if either S or T is normal. Let K 2 Ap(H) = i

�1(UH). From the formula

|ST | = |S||T |
|S \ T | ,

it follows that TN 2 Ap(H). But T  TN � N . So Ap(H) = i
�1(UH) is contractible.

With this in mind, we apply McCords theorem to the inclusion map while considering
the minimal basis for Sp(G) to be the basis like cover.

Proposition 4.3.5. Ap(G) and Sp(G) have the same equivariant simple homotopy type.

Proof. From the proof of Proposition 4.3.4, we deduce that the inclusion Ap(G) ,! Sp(G)
is a distinguished map. The result follows from Proposition 4.2.9.

Corollary 4.3.6. If G has a nontrivial normal p-subgroup, then it has a nontrivial normal
elementary abelian p-subgroup.

Proof. Since Sp(G) and Ap(G) have the same equivariant simple homotopy type, by Corol-
lary 4.2.12, Sp(G)G and Ap(G)G have the same equivariant simple homotopy type. There-
fore, if Sp(G)G is nonempty, so is Ap(G)G.

4.4 The Euler Characteristic of Sp(G): Brown’s Theorem

Before we finish with a theorem that allows us to attack Quillen’s conjecture from di↵erent
sides, we would like to provide an alternative proof of Browns result in [3] on the Euler
characteristic of Sp(G).

Theorem 4.4.1 (Brown). Let G be a finite group and P be a Sylow p-subgroup. Then
�(Sp(G)) ⇠= 1 mod(#P ).

Before we start with the proof we will need some preliminary result.
If H is a subgroup of G, then H acts on Sp(G) by conjugation. We will denote by

Sp(G)H the fixed points of this action.

Proposition 4.4.2. Let H be a nontrivial p-subgroup of G. Then Sp(G)H is contractible.

Proof. Let T 2 Sp(G)H . Then H ✓ NG(T ), where NG(T ) denotes the normalizer of T in
G. Then TH is a subgroup. It is in fact a p-subgroup since

|TH| = |T ||H|
|T \H| .

It follows that TH 2 Sp(G)H . Note that T  TH � H. Since T was arbitrary, it
follows that the constant map cH : Sp(G)H ! Sp(G)H is homotopic to the identity, that
is Sp(G)H is contractible.
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If X is an F -space, then the barycentric subdivision of X is the F -space X
0 :=

X (K(X)). If X is a G-F -space, then the barycentric subdivision X
0 is also a G-space with

the action given by g · {x1, x2, . . . xn} = {gx1, gx2, . . . , gxn}.
Let P be a Sylow p-subgroup of G. Since P acts on Sp(G) by conjugation, we get an

induced action of P on Sp(G)0. If c 2 Sp(G)0, we let Pc = {g 2 P | gc = c} denote the
stabilizer of c and we define Y := {c 2 Sp(G)0 | Pc 6= 0}.

Lemma 4.4.3. �(Sp(G)0, Y ) ⌘ 0 mod(#P ).

Proof. Let C = {c0 < c1 < · · · < cn} be a chain of Sp(G)0 \ Y . It follows that cj /2 Y for
some 0  j  n. This means that Pcj = 0, or that the cardinality of the orbit of cj under
the action of P is equal to #P . Now note that C is an element of Sp(G)00, the barycentric
subdivision of Sp(G)0 (the second barycentric subdivision of Sp(G)), and since P acts on
Sp(G)0, we get an induced action of P on Sp(G). For this reason, it follows that the orbit
of C also has #P elements. This implies that #P divides �(Sp(G)0, Y ) =

P
i�0(�1)i↵i,

where ↵i is the number of chains of length (i+ 1) of Sp(G)0 that are not chains of Y .

Lemma 4.4.4. �(Y ) ⌘ 1 mod(#P ).

Proof. We will show that Y is weakly contractible, since then the result follows from
Corollary 3.1.9. Let f : Y ! Sp(P )op be defined by f(c) = Pc. Note that Pc is nontrivial
by the definition of Y , therefore f is well defined. Also, if c0  c1, then Pc0 ◆ Pc1 ,
showing that f is order preserving and thus continuous. Let H ✓ P be nonempty, then
f
�1(UH) = {c 2 Y | H ✓ Pc} = (Sp(G)H)0. By Proposition 4.4.2, f�1(UH) is contractible.

By McCord’s theorem (Theorem 3.1.4), f is a weak homotopy equivalence. But Sp(P )op

has a minimum, in particular, it is contractible and thus it follows that Y is weakly
contractible.

Armed with these results, we can now prove Theorem 4.4.1.

Proof of Theorem 4.4.1. Since Sp(G) and Sp(G)0 are homeomorphic, they have the same
homotopy type, and so by Theorem 1.3.15, �(Sp(G)) = �(Sp(G)0). By Remark 1.3.14 and
Lemma 4.4.4,

�(Sp(G)0) = �(Y ) + �(Sp(G)0, Y ) ⌘ 1 mod(#P ).

4.5 The Main Theorem

We are finally ready to state and prove the main theorem of this paper.

Theorem 4.5.1. For any finite group G and prime p, the following are equivalent:

(1) G has a nontrivial normal p-subgroup.

(2) Sp(G) is a contractible space.

(3) Sp(G) is G-collapsible.

(4) Sp(G) has the equivariant simple homotopy of a point.

(5) K(Sp(G)) is G-collapsible.
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(6) K(Sp(G)) has the equivariant simple homotopy type of a point.

(7) K(Sp(G)) is strong collapsible.

(8) Ap(G) has the equivariant simple homotopy type of a point.

(9) K(Ap(G)) has the equivariant simple homotopy type of a point.

Proof. If G has a nontrivial normal p-subgroup then Sp(G) is contractible by Quillen’s
theorem. If Sp(G) is contractible, its G-core is a point, combining Lemma 4.1.1 with
Proposition 4.1.4 we see that there is a strong G-collapse from a G-F -space to its G-core,
so it G-collapses to a point and therefore it is G-collapsible. If Sp(G) is G-collapsible then
by Theorem 4.2.5, K(Sp(G)) is also G-collapsible.

We have shown that (1) =) (2) =) (3) =) (5). We will show that (5) =)
(6) =) (4) =) (8) =) (9) =) (1) and complete the proof by showing that (7) is
equivalent to (2) (which we showed is equivalent to all others).

If K(Sp(G)) is G-collapsible, then it trivially have the same equivariant simple homo-
topy type of a point. By Corollary 4.2.6, Sp(G) has the equivariant simple homotopy type
of a point. By Proposition 4.3.5, Ap(G) also has the equivariant simple homotopy type
of a point, and by Theorem 4.2.5, K(Ap(G)) has the equivariant simple homotopy type of
a point. Now we show that if K(Ap(G)) has the equivariant simple homotopy type of a
point, then G has a nontrivial normal p-subgroup, but this follows from Corollary 4.2.14,
since this implies that K(Ap(G)) has a vertex that is fixed by the action of G. But since
the action of G is conjugation then this fixed vertex corresponds to a nontrivial normal
p-subgroup of G. Finally, the equivalence of (7) with (2) (and thereby with all the others)
follows from Corollary 3.3.15.
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