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Abstract

This bachelor thesis explores the use of Field Extensions on Straightedge and Com-
pass Constructions in order to refute the Three Classical Problems: (1) Doubling
the Cube, (2) Trisecting the Angle, (3) Squaring the Circle. By applying the theory
of Field Extensions, we demonstrate that these age-old conjectures are inherently
unsolvable within the framework of constructible numbers.

Abstrakt

Detta kandidatarbete undersöker användningen av kroppsutvidningar vid linjal- och
passarkonstruktioner för att motbevisa de tre klassiska problemen: (1) Fördubbling
av kuben, (2) Tredelning av vinkeln, (3) Kvadratur av cirkeln. Genom att tillämpa
teorin om kroppsutvidningar visar vi att dessa uråldriga hypoteser är fundamentalt
olösbara inom ramen för konstruktibla tal.
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1 Introduction

Straightedge and compass constructions have been a subject of fascination for math-
ematicians throughout history, dating back to ancient Greece. In pursuit of geomet-
ric perfection, mathematicians sought to explore the limitations and possibilities of
constructing shapes using only a straightedge (an unmarked ruler) and compass.

The origins of straightedge and compass constructions can be traced back to the
work of ancient Greek mathematicians such as Euclid, who laid the foundations of
geometry in his seminal work Elements. Here, Euclid introduced the fundamental
principles of geometry and provided a systematic approach to constructing geometric
figures using straightedge and compass.

Among the many legacies of ancient Greek mathematics are three classical con-
struction problems, known for their intriguing impossibility:

• Doubling the Cube: Given a cube, construct a cube with twice the volume.

• Trisecting the Angle: Given an angle, divide it into three equal segments.

• Squaring the Circle: Given a circle, construct a square with the same area.

The pursuit of solutions to these problems has led mathematicians to explore the
limits of straightedge and compass constructions. Despite numerous attempts over
the centuries, these problems have remained unsolved.

These problems have challenged mathematicians for centuries, leading to signif-
icant advancements in understanding the limitations of straightedge and compass
constructions. Despite numerous attempts, these have been proven impossible to
solve using these tools only.

In this thesis, we explore the limitations of straightedge and compass construc-
tions, focusing primarily on disproving the three classical problems. Our approach
involves employing the tools of field theory and algebraic extensions to demonstrate
that these problems are inherently unsolvable within the realm of constructible num-
bers.
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2 Straightedge and Compass Constructions

In this section we introduce the fundamental notions of geometric constructions.
We will delve into straightedge and compass constructions, illustrating the tools
and methods used to construct geometric figures. We will also show that the set of
constructible numbers form a field.

2.1 Tools for Constructions

A straightedge, sometimes referred to as a Euclidean ruler, is used to draw straight
lines through two points or to extend existing line. It has no markings, rendering it
unusable for measurement. A compass is used to draw circles or arcs given a center
and set radius.

2.2 Constructions

We will now explore some of the elementary constructions using straightedge and
compass.

First, we will demonstrate how to construct a parallel line through a point p off
of a given line l. Begin by drawing a circle passing through p and with its center
somewhere on l. Then at one of the intersection points of l and the circle, draw a
circle intersecting with p. Next, draw a circle with the same radius from the other
intersection point of l and the circle. This circle will intersect the first circle at
a point p0 on the same side of the line as p. By drawing a line between p and
p0, we have successfully constructed a line parallel to l. Refer to Figure (1a) for
visualization.

p1
p

(a) Parallel line

p1
p2

(b) Perpendicular line

Figure 1
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We will also demonstrate the construction of a perpendicular bisector. Pick two
points p1 and p2 on a line. With these points as centers, draw two circles with the
same radius such that the two circles intersect at two points on each side of the line.
Connect them, and we are done. Refer to Figure (1b) for visualization.

Given two lengths α and β and a unit distance 1, it is possible to construct
the lengths α ± β, αβ, α/β (when β ≠ 0), and

√
α. These operations are hereby

presented:
First, let’s show the construction for α+β and α−β. See Figure 2. If α, β > 0 are

two given lengths, we can extend α, using the straightedge, from its endpoint to a
point at length β from the endpoint. This is the construction for α+β. Additionally,
we can if α > β, we can find the point on α that is at length β from its endpoint,
constructing α − β.

α
β

α + β β

α

α − β

Figure 2: Addition and subtraction

Next, let’s show the construction for αβ in Figure 3. First, construct a segment
of length α, and from one endpoint, mark the unit distance 1 on the same segment.
From the same endpoint construct a segment of length β while also extending the
line. Connect the endpoint of β to the endpoint of 1. Label this line L. From the
other endpoint of the α segment, construct a line parallel to L until the intersection
of the extended segment. The length from the first endpoint to this intersection has
the length αβ. To construct α/β, interchange the length from the first endpoint to
the intersection with β.

θθ

αβ

β

1 α

θθ

β
α
β

1 α

Figure 3: Multiplication and division
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To prove the construction of αβ, notice that since the triangles are similar, the
length αβ is proportional to α as β is proportional to 1, i.e., αβ/α = β/1. From this
we are able to derive αβ. To construct α/β, just change αβ, in the first figure, to β.

Lastly, let’s show the construction of
√

α as shown in Figure 4.

√
α

1 α

Figure 4: Square root

Given a segment of length α + 1, find its midpoint and draw a semicircle using
the midpoint as the center and the segment as the diameter. On the segment, find
the point between α and 1. From this point, construct a perpendicular to the arc of
the semicircle. This perpendicular segment has length

√
α.

Thus, we have demonstrated the constructions of α ± β, αβ, α/β (when β ≠ 0),
and
√

α using straightedge and compass.

Now, lets formalize exactly what is meant by constructing points with a straight-
edge and compass. Initially, we assume that we are given two points in the plane,
with the distance between them defined as the unit length. We introduce a coor-
dinate system on the plane, such that the two points have coordinates (0, 0) and
(1, 0). Using only straightedge and compass, the points we can construct must fall
into one of the following categories:

1. the intersection point of two lines,

2. the intersection point(s) of a line and a circle,

3. the intersection point(s) of two circles.

Definition 2.1. A point is constructible by straightedge and compass if it is either
(1) the intersection of two lines that both pass through two already constructible
points, (2) the intersection of a line and a circle of which the line passes through an
already constructible points and the circle passes through an already constructible
point with a constructible points as a center, or (3) the intersection of two circles
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that both pass through some already constructible points with constructible points
as their centers. The initial constructible points are (0, 0), (1, 0).

Definition 2.2. A length x is constructible if the point (x, 0) is constructible. The
term constructible number is used interchangeably.

Definition 2.3. A sequence of constructible points is a set of points {p1, p2, ..., pn}

with n ≥ 2, wherein the last point has been constructed using the earlier points.

Here are some examples of sequences of constructible points:

{(0, 0), (1, 0)} are the trivial constructions,

{(0, 0), (1, 0), (2, 0), (2, 2)},

{(0, 0), (1, 0), (2, 0), (3, 0), (−3, 0)},

{(0, 0), (1, 0), (1/2, 0), (1/4, 0), (1/8, 0)},

{(0, 0), (1, 0), (2, 0), (3, 0), (1,
√

2)}.

Note that in order to construct, say, the point (1,
√

2), we must first construct (2, 0),
and then (3, 0) and only then can we construct (1,

√
2).

We will now also consider the construction of angles.

Definition 2.4. An angle θ is constructible if there exists points A, B, C, such that
∠ABC = θ.

Proposition 2.5. The following are equivalent:

1. The angle θ is constructible.

2. The length cos θ is constructible.

3. The length sin θ is constructible.

Proof. If an angle is constructible, there exists three constructible point A, B, C such
that ∠ABC = θ. Then, we can draw a line perpendicular from A to the line BC,
and let P be the point of intersection. Then sin θ = AP /AB, and cos θ = BP /AB.

Conversely, suppose sin θ is constructible. From one endpoint of a segment of
length sin θ, draw a perpendicular line. From the other endpoint, draw an arc
with radius 1 to intersect the perpendicular. Connecting this endpoint and the
intersection point forms the angle θ.

An similiar method can be used to show that if cos θ is constructible, then the
angle θ is also constructible.

14



2.3 Field of Straightedge and Compass Constructions

Geometric constructions can be reformulated in field-theoretic terms. A field is a
set of numbers equipped with the operations of addition, subtraction, multiplica-
tion, and division, satisfying certain axioms. We conclude that the set of numbers
obtainable by straightedge and compass constructions forms a field.

Theorem 2.6. The set F of all lengths constructible by straightedge and compass,
and a unit distance 1, together with their negatives, form a subfield of R.

Proof. Let F be the set of constructible numbers. Since F contains the unit distance,
it is non-empty, i.e., 1 ∈ F . As we have seen, for two lengths α, β > 0, we can construct
α ± β, αβ, and α/β (when β ≠ 0), using a straightedge and compass. Therefore, F

is closed under the field operations.

Remark 2.7. Additionally, the field F has the property that if α > 0 is an element of
F , then

√
α is also an element of F .

Notice that F is a subfield of R. We will later see that it is a proper subfield.
Also, notice that Q is a proper subfield of F , since we can construct numbers

√
α

which are not in Q.

2.4 Moving forward

In this section, we have explored some basic geometric constructions, including those
corresponding to arithmetic operations. While these examples provide a founda-
tional understanding, geometric constructions extend far beyond these operations.
Additional constructions include angle bisections, constructing parallelograms, and
constructing some regular polygons like pentagons and hexagons. However, we will
now shift our focus to field theory, developing the tools necessary for algebraically
analyzing straightedge and compass constructions.

Moving forward, we will assume the reader is familiar with fundamental concepts
of ring theory, specifically, the definitions of rings and fields. Additionally, the reader
should have a basic understanding of linear algebra, particularly the concept of a
basis.
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3 Field Extensions

3.1 Basic definitions

We begin by recalling the definition of a field extensions, and of a subfield generated
by a set of elements.

Definition 3.1. A field K containing a subfield F is said to be an extension of the
base field F , denoted as K/F . Let α, β, ... be elements of K. The field F (α, β, ...)

is defined to be the intersection of all subfields of K containing F and α, β, ... etc.
This is the smallest subfield of K containing both F and the elements α, β, ... from
K. This field is said to be generated by α, β, ... over F .

Example 3.2. It is well-known that
√

2 is not rational, so we can extend Q by it.
We obtain the extension Q(

√
2) generated by

√
2 over Q. This field consists of all

numbers of the form a + b
√

2, where a, b ∈ Q. In other words, it is the set obtained
by combining rational numbers with multiples of

√
2. For instance, 1

3 − 2
√

2 or
√

2
7

are both elements of Q(
√

2).
Lets check that this in fact is a field. It has an additive identity 0 + 0

√
2, and

a multiplicative identity 1 + 0
√

2. It is closed under addition and subtraction since,
for a, b, c, d ∈ Q,

(a + b
√

2) + (c + d
√

2) = (a + c) + (b + d)
√

2.

It is closed under multiplication since

(a + b
√

2) ⋅ (c + d
√

2) = (ac + 2bd) + (bc + ad)
√

2.

For every a + b
√

2, there exists an additive inverse −a − b
√

2. If a + b
√

2 ≠ 0, there
exists a multiplicative inverse 1/(a+b

√
2). We can see that this is indeed an element

of Q(
√

2) by multiplying with the conjugate:

1
a + b
√

2
⋅
a − b
√

2
a − b
√

2
=

a − b
√

2
a2 − 2b2 = (

a

a2 − 2b2) + (
−b

a2 − 2b2)
√

2.

Example 3.3. The extension Q( 3
√

2) generated by 3
√

2 over Q. It is obvious that
Q( 3
√

2) contains all numbers of the form a+ b 3
√

2+ c 3
√

22, where a, b, c ∈ Q. One sees
that this set forms a field, and in fact this field is Q( 3

√
2).

Lets again check that this is a field. It has the additive identity (0+0 3
√

2+0 3
√

22
),

and the multiplicative identity (1+ 0 3
√

2+ 0 3
√

22
). We can see that it is closed under
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addition since, for a, b, c, d, e, f ∈ Q,

(a + b
3√2 + c

3√2
2
) + (d + e

3√2 + f
3√2

2
) = (a + d) + (b + e)

3√2 + (c + f)
3√2

2
.

It is closed under multiplication since

(a + b
3√2 + c

3√2
2
) ⋅ (d + e

3√2 + f
3√2

2
) =

(ad + 2bf + 2ce) + (ae + bd + 2cf)
3√2 + (af + be + cd)

3√2
2
.

For every (a + b 3
√

2 + c 3
√

22
) there exists an additive inverse (−a − b 3

√
2 − c 3

√
22
).

There also exists a multiplicative inverse 1/(a + b 3
√

2 + c 3
√

22
) for every non-zero

(a + b 3
√

2 + c 3
√

22
). While the proof of this property is more difficult to show and

outside the scope of this discussion, it can in fact be shown that

1
(a + b 3

√
2 + c 3
√

22
)
=
(a2 − 2bc) + (2c2 − ab) 3

√
2 + (b2 − ac) 3

√
22

a3 + 2b3 + 4c3 − 6abc
.

These examples show how we can extend the rational field Q by adding cer-
tain irrational numbers to it, allowing us to form new fields with richer algebraic
structures.

3.2 Degree of Field Extensions

We can view a field extension as a vector space by considering the extension field
as a vector space over the base field. Let K be an extension field of a base field F .
Then, since K contains F , we can consider the elements of K as vectors, and the
elements of F as scalars. The vector space structure will be defined as:

1. For any α, β in K, α + β is also in K,

2. For any α in K and c in F , c ⋅ α is also in K.

With this observation, with can apply concepts from linear algebra to field-theory.
This leads us to the following definition:

Definition 3.4. The degree of an extension K/F , denoted as [K ∶ F ], is the dimen-
sion of K over F as a vector space.

The degree of a field extension therefore quantifies the "size" of an extension in
terms of how many elements are added to the base field.

18



Example 3.5. The degree of the extension Q(
√

2) over Q is 2. This means that any
element in the field can be expressed by two rationals a and b, and the base {1,

√
2}

spans a two-dimensional vector space over Q.

Example 3.6. For the extension Q( 3
√

2) over Q, any element can be expressed as
a + b 3

√
2 + c 3

√
22, where a, b, c ∈ Q. To demonstrate that {1, 3

√
2, 3
√

22
} is linearly

independent, we will show that there are no non-trivial rational coefficients a, b, c

such that a + b 3
√

2 + c 3
√

22
= 0.

First, observe that 3
√

2 is irrational, and clearly 1 and 3
√

2 are linearly indepen-
dent. Suppose for contradiction that {1, 3

√
2, 3
√

22
} is linearly dependent. This would

imply that there exists a, b ∈ Q such that a + b 3
√

2 = 3
√

22. Cubing both sides, we get

a3 + 2b3 + 3a2b
3√2 + 3ab2 3√4 = 4.

For this equation to hold, the rational and irrational parts on both sides must be
equal. Thus, we have the two equations

a3 + 2b3 = 4,

3a2b
3√2 + 3ab2 3√4 = 0.

For the irrational part to hold, either a = 0 or b = 0. Substituting a = 0 in the rational
part, we get b3 = 2. But since b is rational, this is a contradiction. If b = 0 in the
rational part, then a3 = 4. A contradiction for the same reason.

Therefore, no non-trivial solutions exists, and {1, 3
√

2, 3
√

22
} is indeed linearly

independent over Q. Consequently, the basis spans a three-dimensional vector space
over Q, and the degree of the extension [Q( 3

√
2) ∶ Q] is 3.

Example 3.7. Consider the extension Q(
√

2,
√

3), where any element can be ex-
pressed as a + b

√
2 + c
√

3 + d
√

6, where a, b, c, d ∈ Q.
To show that {1,

√
2,
√

3,
√

6} is linearly independent over Q, we start by assum-
ing a linear combination of these elements are equal to zero:

a + b
√

2 + c
√

3 + d
√

6 = 0.

By factoring
√

2 we get

(a + b
√

2) + (c + d
√

2)
√

3 = 0.
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This is then equivalent to showing that
√

3 is not in Q(
√

2). Suppose by contradic-
tion that there exists rationals a and b ≠ 0 such that a + b

√
2 =
√

3. Squaring both
sides gives and

a2 + 2ab
√

2 + 2b2 = 3

Separating the rational and irrational parts, we get

a2 + 2b2 = 3

2ab
√

2 = 0.

For the irrational part to hold, a = 0 since, by assumption b ≠ 0. Substituting a = 0
in the rational part, we get b2 = 3/2, which contradicts the assumption that b is
rational. Therefore,

√
3 is not in Q(

√
2).

Thus, {1,
√

2,
√

3,
√

6} spans a four-dimensional vector space over Q, and the
degree of the extension [Q(

√
2,
√

3 ∶ Q] is 4.

As we adjoin more algebraic elements to a base field, the degree of the resulting
field extension will increase. We state this as a theorem shortly.

A quadratic extension arises when we add the square root of an element to a
given field. Specifically, for a field F and an element α in F such that

√
α /∈ F , the

extension F (
√

α) is a quadratic extension. Such a field will be of the form

{a + b
√

α ∣ a, b ∈ F},

which is spanned by its basis {1,
√

α}. If, however,
√

α ∈ F , the extension does not
add any new element that was not already in F , i.e., F (

√
α) = F . This proves the

next proposition:

Proposition 3.8. Any quadratic extension F (
√

α) where α is an element of F , but
√

α /∈ F , has degree 2 over F , i.e., [F (α) ∶ F ] = 2.

Proposition 3.9. Suppose E is a subfield of the real numbers, and we have the
quadratic equation

ax2 + bx + c = 0,

where a, b, c are elements of E. Then the solutions to this equation are either in E

or in a quadratic extension of E.
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Proof. By the quadratic formula, the solutions to the equation is given by

x =
−b ±
√

b2 − 4ac

2a
.

It is trivially clear that b2−4ac is in E. Now, if
√

b2 − 4ac is in E, then the solutions
are in E. If not,

√
b2 − 4ac is in a quadratic extension of E, and the solutions will

be in the same quadratic extension.

Another important result:

Theorem 3.10. Extension degrees are multiplicative, i.e., if F ⊆ K ⊆ L, then [L ∶
F ] = [L ∶K][K ∶ F ].

Proof. Let [K ∶ F ] = n and let K have a basis u1, u2, ..., un over F . Then for any
element k ∈K, we can express it as a linear combination

k = f1u1 + f2u2 + ... + fnun,

where f1, f2, ..., fn are elements of F . Also let [L ∶ K] = m and let L have a basis
v1, v2, ..., vm over K. Then for any element l ∈ L:

l = k1v1 + k2v2 + ... + kmvm,

where k1, k2, ..., km are elements in K. We can then express any element ki as

fi1u1 + fi2u2 + ... + finun,

and thereby, any element in L can be expressed as a linear combination

φ = (f11u1 + ... + f1nun)v1 + (f21u1 + ... + f2nun)v2 + ...

... + (fm1u1 + ... + fmnun)vm

= ∑
i=1,2,...,m
j=1,2,...,n

fijujvi,

where each element fij is in F . It follows that the elements uivj span L as the vector
space over F . We still have to show that they are linearly independent.

Now, suppose that
∑

i=1,2,...,m
j=1,2,...,n

fijujvi = 0.
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This is equivalent to the following

(f11u1 + ... + f1nun)v1 + ... + (fm1u1 + ... + fmnun)vm = 0.

Since v1, v2, ..., vm is a basis for L over K, it follows that the coefficients vi must be
0. Then, really

fi1u1 + fi2u2 + ... + finun = 0,

for i = 1, 2, ..., m in K. Now, since uj, j = 1, 2, ..., n forms a basis for K over F , it
must be fij = 0, for all i, j. Thereby, the elements ujvi in L are linearly independent
over F , and form a basis. Therefore [L ∶ F ] = nm, which is the degrees of [L ∶ K]
multiplied with [K ∶ F ].

Recall Example 3.7, where we established that the degree [Q(
√

2,
√

3) ∶ Q] is 4.
We can further understand this result using the multiplicativity of extension degrees:

[Q(
√

2,
√

3) ∶ Q] = [Q(
√

2,
√

3) ∶ Q(
√

2)] ⋅ [Q(
√

2) ∶ Q].

First extend Q by
√

2, yielding Q(
√

2), Then, we extend Q(
√

2) by
√

3, yield-
ing Q(

√
2,
√

3). We know that [Q(
√

2) ∶ Q] = 2. Next, we want to determine
[Q(
√

2,
√

3) ∶ Q(
√

2)]. Since
√

3 is not in Q(
√

2), the extension has degree 2. This
follows from the fact that any element in Q(

√
2,
√

3) can be written as a + b
√

3,
where a, b ∈ Q(

√
2). Thus, we confirm that

[Q(
√

2,
√

3) ∶ Q] = 2 ⋅ 2 = 4.

As we have seen, algebraic field extensions have finite dimensions. However,
when extending the rational field by non-algebraic numbers, the situation becomes
more complicated.

Definition 3.11. An element α ∈ K is algebraic over F if it is the root of some
monic polynomial f(x) ∈ F [x]. If this is not the case, i.e., if the degree is infinite, α

is transcendental over F .

Theorem 3.12. The number π is transcendental.1

1This was proved by Ferdinard Lindemann in 1882. We will not go into the proof since it is
quite long. It is not too difficult to find.
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4 Impossible Constructions

Continuing, we will use the results above on field extensions, especially the mul-
tiplicativity of extension degrees, to algebraize the straightedge and compass con-
structions and find some interesting results about the impossible constructions men-
tioned in Section (1). Lets first prepare some lemmas about the characteristics of
constructible points.

Lemma 4.1. Suppose a line passes through two constructible points (x1, y1) and
(x2, y2). Then the equation for the line can be written in the form

ax + by + c = 0,

where a, b, c are constructible numbers.

Proof. It is well known that the equation for the line can be expressed as

y − y1

x − x1
=

y2 − y1

x2 − x1
,

which, in turn, can be simplified as

(y2 − y1)x + (x1 − x2)y + (x1y2) + (x2y1) = 0.

Letting a = (y2 − y1), b = (x1 − x2), and c = (x1y2) + (x2y1), it follows that the line is
constructible.

Lemma 4.2. Suppose a circle has its center at a constructible point and passes
through another constructible point. Then its equation can be written in the form

ax2 + bxy + cy2 + dx + ey + f = 0,

where a, b, c, d, e, f are constructible numbers.

Proof. The equation for a circle with center (p, q) passing through a point (s, t) can
be described by

(x − p)2 + (y − q)2 = (s − p)2 + (t − q)2.



Expanding, we get

x2 − 2px + p2 + y2 − 2qy + q2 = s2 − 2ps + p2 + t2 − 2qt + q2

x2 + y2 + (−2p)x + (−2q)y + (s(2p − s) + t(2q − t)) = 0,

which is of the desired form.

These two lemmas provide essential tools for algebraically describing lines and
circles, enabling us to precisely characterize geometric constructions using straight-
edge and compass.

Now, let’s delve into the properties of intersection points:

Lemma 4.3. Suppose we are given two lines described by the equations

a1x + b1y + c1 =0,

a2x + b2y + c2 =0,

where a1, b1, c1, a2, b2, c2 belong to a field E. Assuming the lines are not parallel, they
intersect at a single point (x1, y1), where x1 and y1 are also in E.

Proof. We determine the intersection point using Cramer’s rule:

(x1, y1) = (
c2b1 − c1b2

a1b2 − a2b1
,
a2c1 − a1c2

a1b2 − a2b1
) .

It is then evident that the coordinates for the point (x1, y1) are in E.

From the above lemma, we infer that if we are given points on a plane, whose
coordinates are in a field E, constructions solely using straightedge will not yield
points with coordinates outside E. It becomes more intriguing when circles are
introduced:

Lemma 4.4. Suppose we have a line and a circle by the equations

y = kx +m,

ax2 + bxy + cy2 + dx + ey + f = 0,

where k, m, a, b, c, d, e, f are all in the field E. If the line and the circle intersect at
a point (x1, y1), then x1 and y1 belong to either E or a quadratic extension of E.
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Proof. By substituting kx +m for y in the second equation, we obtain a quadratic
equation

(a + bk + k2)x2 + (d + bm + 2km + ek)x + (f +m2 + em) = 0,

whose coefficients all belong to E. By Proposition 3.9, the solutions to this equation
are either in E or in a quadratic extension of E.

Lemma 4.5. Suppose we have two circles with the equations

(x − h1)
2 + (y − k1)

2 = r2
1,

(x − h2)
2 + (y − k2)

2 = r2
2,

where h1, k1, r1, h2, k2, r2 are in the field E. If the circles intersect at a point (x1, y1),
then x1 and y1 belong either to E or a quadratic extension of E.

Proof. By subtracting the second equation from the first, we obtain the equation of
a line:

2(h2 − h1)x + 2(k2 − k1)y + r2
2 − h2

2 − k2
2 − r2

1 + h2
1 + k2

1 = 0.

This, then, amounts to identifying the point(s) of intersection between a line and a
circle, reducing the proof to Lemma 4.4.

Proposition 4.6. Let (x, y) be a constructible point. Then there exists a field ex-
tension F of Q such that x and y are in F , and [F ∶ Q] = 2n, for some n ≥ 0.

Proof. According to the Definition 2.1, a constructible point (x, y) can be obtained
by a sequence of points:

{p1 = (0, 0), p2 = (1, 0), p3, p4, ..., pk = (x, y)},

where each pi is obtained by finding the intersection point of either two lines, a line
and a circle, or two circles.

For each i = 1, 2, ..., k, let Ei be the field generated over Q by the coordinates
p1, p2, ..., pi. It follows from the previous lemmas that for each i, either Ei+1 = Ei or
[Ei+1 ∶ Ei] = 2.

It now follows from induction and Theorem (3.10) that [Ek ∶ Q] = 2n, for some
n ≥ 0.

This leads us to the next theorem:
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Theorem 4.7. Suppose α is a constructible number. Then [Q(α) ∶ Q] is a power
of 2.

Proof. A constructible number is the coordinate of a constructible point. It follows
from the previous proposition that α is in some field E with [E ∶ Q] = 2k, for some
k ≥ 0. But then [E ∶ Q] = [E ∶ Q(α)][Q(α) ∶ Q], and therefore, [Q(α) ∶ Q] is also a
power of 2.

We can now use this result to examine the three following constructions:

4.1 Doubling the Cube

Doubling the cube seeks to construct a cube with twice the volume of a given cube.
Let the volume of the cube be 1. We then want to construct a cube with volume

2, requiring us to find the side length 3
√

2. However, as demonstrated in Example
(3.6), the degree [Q( 3

√
2) ∶ Q] = 3, which is not a power of 2. Thus, doubling the

cube is not achievable.

4.2 Trisecting the Angle

Trisecting an angle seeks to divide an angle into three equal parts.
Recall that an angle α is constructible if and only if cos α is constructible. While

it is possible to trisect certain angles, such as the right angle 90○, where we can
construct sin 30○ = 1

2 and cos 60○ = 1
2 , this construction is not universally applicable.

We will demonstrate this by proving the impossibility of trisecting a 60○ angle.
Let θ = 20○. We know that cos 3θ is constructible. By the triple angle formula,

cos 3θ = 4 cos3 θ − 3 cos θ.

Let x = cos θ, and we can rewrite the equation as

1
2 = 4x3 − 3x

8x3 − 6x − 1 = 0.
(1)

If this polynomial is irreducible, then it is the minimal polynomial of cos θ. In such
a case, we conclude that [Q(cos θ) ∶ Q] = 3, and by Theorem (4.7), cos θ is not
constructible.
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We now show that 8x3 − 6x − 1 = 0 is irreducible over Q. Suppose p
q is a root of

this polynomial with (p, q) = 1. Then

8p3

q3 − 6p

q
− 1 = 0

8p3 − 6pq2 − q3 = 0.

We find that 2∣(8p3 − 6pq2) implying 2∣q. Let q = 2k, and (p, k) = 1. Then

8p3 − 24pk2 − 8k3 = 0

p3 − 3pk2 − k3 = 0,

which implies p∣k3 and k∣p3, forcing p and k to be ±1, which is not a solution. Hence,
there can be no rational roots for 8x3 − 6x − 1 = 0 , proving it irreducible over Q.

Therefore, we have shown that it is impossible to trisect a constructible 60○ angle
using only a straightedge and compass.

4.3 Squaring the Circle

Squaring the circle seeks to construct a square with the same area as a given circle.
The area for a circle is given by πr2. If we consider a square with the same area,

its side length would be
√

πr2. Therefore, the construction of
√

π is necessary.
According to Theorem 3.12, π is transcendental. This implies that the field ex-

tension Q(π) over Q has infinite degree, meaning π is non-constructible by Theorem
(4.7). However, we aim to determine whether

√
π is constructible.

Suppose
√

π is algebraic over Q. Then [Q(
√

π) ∶ Q] = n for some finite n. But
we can write

n = [Q(
√

π) ∶ Q] = [Q(
√

π) ∶ Q(π)] ⋅ [Q(π) ∶ Q],

which implies that n is divisible by [Q(π) ∶ Q]. Since π is transcendental, [Q(π) ∶
Q] is infinite. Consequently, [Q(

√
π) ∶ Q] must also be infinite, contradicting the

assumption that n is finite.
Thus, by Theorem (4.7), we conclude that

√
π is impossible to construct. There-

fore, squaring the circle is impossible.
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5 Constructions using Ruler and Compass

As we have seen, constructions using a straightedge and compass are limited in their
applications. However, by introducing alternative tools, we can solve at least some of
these classical problems. In this section, without developing the algebraic framework,
we will explore constructions using a marked ruler and compass to address the
problems of trisecting the angle and doubling the cube.

While the classical straightedge is unmarked, a marked ruler, also known as
a neusis ruler, allows for more versatile constructions. The neusis construction,
also refereed to as verging, provides additional flexibility that can solve problems
otherwise impossible with a straightedge and compass.

5.1 Neusis Construction

The neusis construction involves the following steps: Given two intersecting lines n

and m, and a point p, position the ruler at p, pivoting around p until the distance
between the lines is a desired distance d (e.g., the unit distance 1). For reference,
see Figure 5.

m
n

p

d

Figure 5: Neusis construction

With this additional flexibility in the construction process, we can solve the
problems of angle trisection and cube duplication. Let’s delve into each of these
problems.
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5.2 Trisecting the Angle using Neusis

Using the neusis construction, we can achieve angle trisection as follows:

Theorem 5.1 (Trisecting the Angle using Neusis). Given an acute angle ∠AOB

with AO = d, draw a line AC perpendicular to BO through A, and draw a line AE

through A parallel to BO. Then, use the neusis construction to draw a line OS such
that IS is twice the length of d. The line OS trisects ∠AOB.

Proof. Let ∠SOB = t. Thus, ∠ASO = t as well. Since ∠CAS is a right angle, A lies
on a circle centered at M with radius d. Therefore, △AMO and △AMS are both
isosceles triangles. By the Exterior Angle Theorem, since ∠MAS = t, it follows that
∠OMA = 2t and ∠AOM = 2t. Consequently, OM trisects ∠AOB. See figure 6 for
reference.

d
d

d

O

A

BC

ES

I

M

Figure 6: Construction for trisecting the angle, due to Pappus

5.3 Doubling the Cube using Neusis

Another classical problem is doubling the volume of a cube. Using the neusis con-
struction, we can find a solution:

Theorem 5.2 (Doubling the Cube using Neusis). Let the isosceles triangle △ABC

have sides 1, 1, k/4 such that AB = k/4. Extend AD from AC by the same length.
Extend AB to AE and DB to DF , and use the neusis construction to draw a line
CI intersecting DF at P such that PI = 1. Then BI = k1/3.

Proof. Let the parallel to AE through C intersect DB at O. The triangles △ADB

and △CDO are similar. Since CD = 2AD, we have CO = 2AB = k/2. Additionally,
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k/4

11

1

x

1

A
B

C

D

O

I

F

M
E

Figure 7: Construction for Cube root, due to Nicomedes

the triangles △CIO and △FIB are similar, leading to

CO

CI
=

BF

IF
⇐⇒

k/2
CI
=

x

1 ⇐⇒ CI =
k

2x
.

Let M be the midpoint of AB, and CM =
√

12 − (k/2)2. By the Pythagorean
Theorem,

(CI + IF )2 = (CM)2 + (MF )2

(k/2x + 1)2 = (12 − (k/8)2) + (k/8 + x)2,

which simplifies to the polynomial 4x4 − kx3 + 4kx + k2 = 0. Factoring this yields
(4x + k)(x3 − k) = 0. Since 4x + k > 0, we must have (x3 − k) = 0, giving us x =

3
√

k.
See Figure 7 for reference.
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