
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

The Brown Representability Theorem and
Representing Reduced Cohomology Theories

av

Victor Groth

2024 - K15

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





The Brown Representability Theorem and
Representing Reduced Cohomology Theories

Victor Groth

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Gregory Arone

2024





Abstract

The goal of this paper is to state and prove the Brown representability
theorem, named after Edgar Brown, which gives sufficient conditions for when
a functor from the homotopy category of connected based CW complexes to
the category of pointed sets is representable. The theorem will then be used to
prove a bijective correspondence between reduced cohomology theories on CW
complexes and Ω-spectra.

The proof presented is based on the proof by Macerato and Slaoui in their
article ”The Brown Representability theorem, old and new“ [6] with general
lemmas that can be generalized to the ∞-categorical version of the theorem
which we will not touch on. However, we correct an oversight in the paper
of Macerato and Slaoui as they neglect to mention the crucial assumption of
restricting to connected CW complexes.

Finding the correspondence between reduced cohomology theories and Ω-
spectra is what Edgar Brown himself did in his paper ”Cohomology theories“
[1] with the first proof of his theorem.



Sammanfattning

Målet med denna artikel är att formulera och bevisa Browns representer-
barhetssats, först bevisad av Edgar Brown. Teoremet ger tilräckliga krav för
att en funktor fr̊an homotopi kategorin av sammanhängande baserade CW-
komplex till kategorin av baserade mängder ska vara representerbar. Denna
sats kommer sedan ge oss en bijektiv korrespondens mellan reducerade koho-
mologi teorier p̊a CW-komplex och Ω-spektra.

Beviset av satsen är baserad p̊a beviset av Macerato och Slaoui i deras
artikel ”The Brown Representability theorem, old and new“ [6] som inneh̊aller
generella lemman som kan generaliseras till den ∞-kategoriska versionen av
satsen som vi inte kommer ge oss in p̊a. Dock s̊a tar vi upp varför hypotesen
om att begränsa till de sammanhängande komplexen behövs och var i beviset
detta används vilket saknas i deras artikel.

Korrespondensen mellan kohomologi teorier och Ω-spektra var det Edgar
Brown själv tog upp som följdsats i hans artikel ”Cohomology theories“ [1]
med det första beviset av satsen.
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1 Introduction and Preliminaries

We start by considering the categories which shall be of interest

Definition 1.1. The category of pointed sets Set∗ is the category whose objects are
sets with a distinguished element, also called basepoints, and whose morphisms are
functions that preserves the distinguished element.

We will usually denote sets with capital letters such as A,B and the corresponding
basepoint as a0, b0. It is also common to write it as a pair (A, a0) so that the morphism
f : (A, a0)→ (B, b0) means a function from A to B so that f(a0) = b0.

Every category with objects that can be given the structure of sets with a special
element and morphisms preserving those elements has a forgetful functor to Set∗.
For example the category of groups Grp where we view the identity element of each
group as the distinguished element. Since group homomorphisms map identities to
identities, Grp has a forgetful functor to Set∗. Similarly the category of pointed
topological spaces Top∗ has a forgetful functor to Set∗ where the basepoint of the
space is seen as the distinguished element of the underlying set.

Definition 1.2. The homotopy category of pointed CW complexes, denoted by
hCW∗ is the category whose objects consists of pointed CW complexes and whose
morphisms are based homotopy classes of based continuous maps which we denote
by [X, Y ]∗ := homhCW∗(X, Y ). The subcategory of connected CW complexes will be
denoted hCWc

∗.

The category hCW∗ is locally small so we may consider the covariant functors
homhCW∗(X,−) = [X,−]∗ and contravariant [−, X]∗ from hCW∗ to Set∗ for any
pointed CW complex X. The distinguished element in [X, Y ]∗ being the homotopy
class of the constant map c(x) = y0 where y0 is the basepoint of Y . The functors are
defined on morphisms as follows. If f : Y → Z is in some homotopy class of maps [f ]
then f∗ is the image of the morphism under [X,−]∗ defined by f∗[α] = [f ◦ α] where
[α] ∈ [X, Y ]∗ so that f ◦ α : X → Z. Similarly f ∗ is the notation of the image of f
under [−, X]∗ and defined by f ∗[α] = [α ◦ f ]. This is well defined as homotopic maps
stay homotopic under composition. The functors [X,−]∗ are sometimes denoted πX
and the pointed set [X, Y ]∗ is thus πX(Y ). While [−, X]∗ is sometimes denoted by
πX . A special case is the notation for the homotopy groups, which is most commonly
written πn(Y ) := πSn(Y ) = [Sn, Y ]∗.

A map between CW complexes is called cellular if the image of each n-skeleton
lies in the codomain’s n-skeleton. A famous result we will use is the “cellular approx-
imation theorem” which states that every map between CW complexes is homotopic
to a cellular map. Furthermore, if the map is cellular for some subcomplex we may
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take the homotopy to be stationary on the subcomplex. For a proof of this theorem,
see Hatcher page 349 [4]. One important consequence of this theorem is that for
every homotopy class of maps of based maps [f ] ∈ [X, Y ]∗ we may represent it with
a cellular map, using that the basepoint is a subcomplex.

We also remark that if A is a subcomplex of a CW complex X then the pair
(X,A) has the so called homotopy extension property with respect to every space Y .
Alternatively one says that the inclusion i : A ↪→ X is a cofibration. This means that
if two maps f, g : A → Y are homotopic via some homotopy H : A × I → Y and
F : X → Y satisfies F ◦ i = F|A = f then H extends to a homotopy H ′ : X × I → Y
such that H ′(a, t) = H(a, t) for all a ∈ A. If we identify H ′(x, 1) : X × {1} → Y
with a map G : X → Y we see that we get G ≃ F and G|A = g. In other words we
have extended the homotopy to all of X. For a proof of this fact see theorem 7.2 in
Lundell & Weingram [5].

Lastly we consider the general definition of a representable functor, in our case
we shall be working with contravariant ones.

Definition 1.3. A contravariant functor h : C → Set, where C is locally small, is
said to be representable if there is a natural isomorphism between h and a functor of
the form homC(−, y) for some y ∈ ob(C).

If the set homC(x, y) has some naturally distinguished element then we get a similar
definition of representable contravariant functors into Set∗. The exact condition is
that for every x, y ∈ ob(C) there exists a morphism cx,y ∈ homC(x, y) such that for
any f : w → x and g : y → z we have cx,yf = cw,y and gcy,x = cy,z. So that cx,y acts
like a distinguished element in homC(x, y).

We consider some standard constructions on topological spaces. These construc-
tions are used a lot in the proof of the theorem and may not be familiar to the reader.
We state all of them in their reduced form since these are most natural when working
with based spaces.

Definition 1.4. Given two based maps f : X → Y and g : X → Z, the reduced
double mapping cylinder M(f, g) is defined as

X × I ⊔ Y ⊔ Z/ ∼

with the identification (x0, t) ∼ (x0, s) for all t, s ∈ I, (x, 0) ∼ f(x) and (x, 1) ∼ g(x),
since the maps are based the identification makes sense.

When X, Y, Z are CW complexes and f, g are cellular the reduced double mapping
cylinder can be given CW structure, this fact follows from theorem 5.11 in Lundell &
Weingram [5]. In addition, if Y and Z are connected (X need not be) then M(f, g)
will be a connected space.

Here are some commonly used special cases worthy of their own notation.
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Definition 1.5. Let X, Y be based space with basepoints x0 and y0 and let ⋆ be the
one point space. Let f : X → Y be any based map, c : X → ⋆ be the unique constant
map.

1. The reduced cone on X, denoted CX, is M(c, IdX) i.e the reduced double
mapping cylinder of the constant map and the identity on X.

2. The reduced mapping cone on X with respect to the based map f : X → Y ,
denoted Cf , is the space M(c, f).

3. The reduced suspension of X, denoted by ΣX, is the space M(c, c) i.e taking
the constant map on both ends of X × I.

Since ⋆ has a CW structure consisting of one 0-cell and the constant map being
cellular the reduced mapping cone and the reduced suspension can be given CW
structure when X is one. The reduced mapping cone of a based map f : X → Y can
also be given CW structure if Y is a CW complex and f is cellular. Notice also that
CX and ΣX are connected for all X and Cf is connected if Y is.

There are alternative ways to view the later two. For the reduced mapping cone
one can take the adjunction space CX ∪f̃ Y where f̃ : X × 0 → Y by f̃(x, 0) =
f(x) ∈ Y . One then verifies that this is exactly the identification of the reduced
mapping cone. The reduced suspension ΣX can be seen as taking two reduced cones
and adjoining them via just the identity map on X × 1.

We also note here that CX is contractible by the homotopy H : CX × I → CX
defined by H((y, t), s) = (y, (1− s)t).

Lastly we also define a construction similar to the reduced double mapping cylinder
but for a whole sequence of maps.

Definition 1.6. Given a sequence of based maps

X0
f0−→ X1

f1−→ X2
f2−→ X3

f3−→ · · · ,

we create the reduced mapping telescope for this sequence. This is the space

MT =
∞∐
i=0

Xi × I/ ∼

where Xi × I ∋ (xi, 1) ∼ (f(xi), 0) ∈ Xi+1 × I for all i and (⋆i, t) ∼ (⋆j, s) for all i, j
and t, s ∈ I where ⋆i is the basepoint of Xi.

Similarly as for the previous constructions this can be given CW structure when
Xi are CW complexes and all maps fi are cellular. It is obviously connected if all Xi

are connected.
The following definition is central in homotopy theory.
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Definition 1.7. A continuous function f : X → Y is called:

1. A 0-equivalence if f induces a surjection on the set of path components.

2. An n-equivalence, for a positive integer n, if f induces an isomorphism on the
set of path components and for any choice of basepoint x0 of X the induced
homomorphism on the k-th homotopy group f∗ : πk(X, x0) → πk(Y, f(x0)) is
an isomorphism for k < n and surjective for k = n.

3. A weak (homotopy) equivalence if it induces an isomorphism on the set of
path components, and for any choice of basepoint x0 of X the induced map
f∗ : πk(X, x0)→ πk(Y, f(x0)) is an isomorphism for all k.

Given a path from x0 to x1 there exists a change of basepoint isomorphism from
πk(X, x0) to πk(X, x1) for all k > 0. Thus, f is a weak equivalence given that
f induces a bijection between the set of path components π0(X) and π0(Y ) and the
induced maps f∗ : πk(X, x0)→ πk(Y, f(x0)) are isomorphisms for some x0 in each path
component of X, and similarly for n-equivalence. In particular for path connected
spaces we only need to check the condition for one point. For example any connected
CW complex is path connected and thus if it has a basepoint one only needs to check
equivalence on that point.

A function f : X → Y being a weak equivalence is unsurprisingly a weaker
condition than f being a homotopy equivalence between X and Y . But, for CW
complexes we have Whitehead’s theorem which says that a weak equivalence of CW
complexes X and Y is a homotopy equivalence. We shall use this in the proof of the
Brown representability theorem. For a proof see Hatcher page 346 [4]. Furthermore,
our definition of hCW∗ is equivalent to the category hTop∗ formed from the category
of pointed topological spaces by inverting all the weak equivalences, see remark 2 page
1.16 chapter 1 in Quillen [7]. The reason why we can choose CW complexes as the
representatives of these weak equivalences of all topological spaces is that for any
space X there exists a CW complex that is weakly equivalent to X. This is called
CW approximation and can be deduced from cellular approximation, see page 352 in
Hatcher [4].

One important example of an n-equivalence is the following. Given a CW complex
X that is obtained from X̃ by attaching (n+ 1)-cells, a finite or infinite amount, the
inclusion i : X̃ ↪→ X is an n-equivalence. This is since the pair (X, X̃) is n-connected
by corollary 4.12 in Hatcher [4] as X − X̃ only contains (n + 1)-cells. Thus one can
conclude from the long exact sequence in relative homotopy that the induced map
i∗ : πk(X̃, x0)→ πk(X, x0) is an isomorphism for k < n and surjective for k = n. For
more details see Hatcher [4] pages 344 to 351.
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2 Proof of necessity and statement of theorem

We start by defining the conditions we require of our functors.

Definition 2.1. A contravariant functor h : hCW∗ → Set∗ from the homotopy
category of pointed CW complexes to the category of pointed sets is called a Brown
functor if it satisfies the following 2 axioms:

1. (Wedge axiom) for any wedge sum of pointed CW complexes X =
∨
α∈I Xα the

based inclusion maps ια : Xα ↪→ X induces bijection of pointed sets

(h(ια))α∈I : h(X)→
∏
α∈I

h(Xα).

2. (Mayer-Vietoris axiom) Given some based CW complex X with subcomplexes
A,B ⊂ X such that the basepoint of X lies in A ∩B and A ∪B = X with the
commutative square

X A

B A ∩B

i

j

l

k

where i, j, k, l are based inclusion maps. The induced commutative square after
applying h

h(X) h(A)

h(B) h(A ∩B)

h(i)

h(j) h(k)

h(l)

is a so called weak pullback square, which means that given x ∈ h(A) and
y ∈ h(B) such that h(k)(x) = h(l)(y) there exists a z ∈ h(X) such that
h(i)(z) = x and h(j)(z) = y. In other words, the canonical map

h(X)→ h(A)×h(A∩B) h(B)

is surjective.

We can extend the definition of a Brown functor to functors defined on the full
category of based CW complexes h : CW∗ → Set∗ by adding the condition that if
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f ≃ g : X → Y relative to the basepoint then h(f) = h(g), but this is equivalent to
our functor factoring through the homotopy category

CW∗

hCW∗ Set∗.

hq

h′

We shall therefore stick to the homotopy category for convenience, but if a functor
from the ordinary category CW∗ is said to be a Brown functor we mean that it
satisfies this additional axiom.

The Mayer-Vietoris axiom is named this way due to its connection with the long
exact Mayer-Vietoris sequence that arises in any reduced cohomology theory, which
we will encounter in Section 4.

One immediate consequence of the Wedge axiom is that for a one-point CW
complex ⋆ we have h(⋆) = {a} a singleton. This follows from the fact that if X is
any space then X ∨ ⋆ = X so that h(X) = h(X ∨ ⋆)→ h(X)× h(⋆) is a bijection for
every X implying that h(⋆) is a singleton. This in turn means that any contractible
space X also has h(X) = {a} since h takes homotopy equivalences to bijections.

We prove that the two conditions in 2.1 are necessary for a contravariant functor
to be representable.

Proposition 2.1. Any representable contravariant functor from hCW∗ to Set∗ is a
Brown functor.

Proof. Let h : hCW∗ → Set∗ be a representable contravariant functor with natural

isomorphism φ : h(−)
∼=−→ [−, K]∗ for some based CW complex K.

Let X =
∨
α∈I Xα with inclusions ια : Xα → X then

ϑ : [X,K]∗ →
∏
α∈I

[Xα, K]∗

is a bijection induced by the inclusions ια by the characteristic property of wedge
sums, namely that to define a based map with domain wedge sum is the same as
defining a based map from each of the summands independently. Thus we have the
commutative diagram

h(X)
∏

α∈I h(Xα)

[X,K]∗
∏

α∈I [Xα, K]∗

φX

ϑ

(φXα )α∈I

giving us the bijection (φ−1
Xα

)α ◦ ϑ ◦ φX : h(X)→
∏

α h(Xα).
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Now given a based CW complex X with subcomplexes A,B as in the Mayer-
Vietoris axiom with the diagram of inclusions

X A

B A ∩B,

i

j

l

k

applying [−, K]∗ and h and connecting via φ, we get

[X,K]∗ [A,K]∗

h(X) h(A)

[B,K]∗ [A ∩B,K]∗

h(B) h(A ∩B).

i∗

j∗
k∗

φX

∼=
h(i)

h(j)

φA

∼=

h(k)

l∗

φB

∼=
h(l)

φA∩B

∼=

where we wish to verify that the front square is a weak pullback square.
Let x ∈ h(A) and y ∈ h(B) be such that h(k)(x) = h(l)(y) and let φA(x) ∈ [A,K]∗

be represented by f and φB(y) be represented by g. Then k∗[f ] = [f◦k] = [g◦l] = l∗[g]
by commutativity, meaning that f ◦ k = f|A∩B ≃ g|A∩B = g ◦ l. We have that
subcomplexes have the homotopy extension property with respect to any space so
we get that the homotopy H : A ∩ B × I → K from f|A∩B to g|A∩B extends to
a homotopy H ′ : A × I → K such that H ′(x, 0) = f and H ′(x, t) = H(x, t) for
x ∈ A ∩ B. In particular, we get a map H ′(x, 1) : A → K that agrees with g on
A∩B and is homotopic to f . Combining H ′(x, 1) with g by the gluing lemma we get
a map F : X → K such that i∗[F ] = [F|A] = [H ′(x, 1)] = [f ] and j∗[F ] = [F|B] = [g].
Letting z = φ−1

X [F ] we get our required element z ∈ h(X) since

h(i)(z) = φ−1
A i∗φX(z) = φ−1

A i∗[F ] = φ−1
A [F|A] = φ−1

A [f ] = x

and similarly for h(j)(z) = y.

What we did to prove the Mayer Vietoris axiom is basically just proving that the
back square of the commutative box above is a weak pullback square and then by
naturality of the isomorphism φ concluding that the front one is. This argument shall
be used again later.

We state the main theorem
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Theorem 2.1 (Brown Representability theorem). Every Brown functor restricted
to connected CW complexes is representable. More specifically, given a contravariant
functor h : hCW→ Set∗ satisfying the wedge axiom and Mayer-Vietoris axiom there
exists a connected CW complex K, unique up to homotopy, and an element u ∈ h(K)
such that Tu : [−, K]∗ → h(−) defined by [f ] 7→ h(f)(u) is a natural isomorphism for
all connected CW complexes X.

The restriction to connected CW complexes can not be removed. A counter-
example is given in the paper ”Splitting homotopy idempotents II“ by Peter Freyd
& Alex Heller [3].

Proving this theorem will take some work and we will therefore divide it up into
small lemmas which build upon each other. The first two concern algebraic properties
in the form of exactness of a certain sequence and when group structure can be given
to h(X). Using these lemmas we prove that we can build a space K with an element
u ∈ h(K) with properties we are looking for. The last lemma will then give us the
last tool needed to prove that Tu(X) : [X,K]∗ → h(X) is an isomorphism for all X.

Before we start we shall note that the uniqueness of K is purely categorial and
follows from the Yoneda lemma. Spelling it out clearly, if Tu : [−, K]∗ → h(−)
and Tv : [−, L]∗ → h(−) are both natural isomorphisms, composing Tu with the
inverse of Tv gives a natural isomorphism N : [−, K]∗ → [−, L]∗. In particular
we get two bijections NK : [K,K]∗ → [L,K]∗ and NL : [L,K]∗ → [L,L]∗. Let
[f ] = NK [IdK ] ∈ [K,L]∗ and let [g] = N−1

L [IdL] ∈ [L,K]∗. We get by naturality of N
the following diagram

[K,K]∗ [K,L]∗ [IdK ] [f ]

[L,K]∗ [L,L]∗ [g] [IdL] = [fg]

NK

g∗ g∗

NL

so by commutativity we get IdL ≃ fg. Similarly

[L,L]∗ [L,K]∗ [IdL] [g]

[K,L]∗ [K,K]∗ [f ] [IdK ] = [gf ]

N−1
L

N−1
K

f∗ f∗

so therefore gf ≃ IdK and thus K ≃ L are homotopy equivalent spaces.
Naturality of Tu is also immediate for any CW complex K and element u ∈ h(K).
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If f : X → Y is any based map we have a commutative square

[Y,K]∗ h(Y )

[Y,K]∗ h(X)

Tu(Y )

f∗ h(f)

Tu(X)

since if [α] ∈ [Y,K]∗ we have that

h(f)Tu(Y )[α] = h(f)h(α)(u) = h(αf)(u) = Tu(X)[α ◦ f ] = Tu(X)f ∗[α].

3 Proof of the Brown representability theorem

Throughout this section let h be a fixed Brown functor.
Given a based cellular map f : X → Y of based CW complexes with basepoints

x0 and y0 we can build its associated cofiber sequence X
f−→ Y

i−→ Cf where Cf is the
reduced mapping cone of f and i is the inclusion of Y into the mapping cone. Then i
is a cofibration since Cf can be given a CW structure such that Y is a subcomplex.
In a cofiber sequence such as this the composition i ◦ f is nullhomotopic via the
homotopy H : X × I → Cf by H(x, t) = (x, 1− t) using that (x, 1) ∼ f(x) in Cf .

Lemma 3.1. Given X
f−→ Y

i−→ Cf as above the induced sequence

h(Cf)
h(i)−−→ h(Y )

h(f)−−→ h(X)

is exact. Under the notion that for functions of pointed sets g : A→ B the kernel is
ker(g) = {a ∈ A | g(a) = b0} where b0 is the distinguished element of B.

Proof. We have the following diagram

Cf Y

CX X

i

k f

j

where i, j and k are inclusion of subcomplexes by giving Cf and CX the appropriate
CW structure. Applying our functor h and noting that since CX is contractible we
get
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h(Cf) h(Y )

{a} h(X).

h(i)

h(k) h(f)

h(j)

It follows that im(h(i)) ⊂ ker(h(f)) since h(f)h(i)(z) = h(j)h(k)(z) = h(j)(a) = x0
the base point of h(X), the other inclusion takes some more thought.

Given the right CW structure we can decompose the cone Cf into the sub-
complexes A = X × [0, 1

2
]/ ∼ and B = Y ∪f X × [1

2
, 1]/ ∼, so that A∩B = X ×

{
1
2

}
.

Now A is contractable via the homotopy H((x, t), s) = (x, t(1 − s)) from IdA to the
constant map from A to the basepoint (x, 0) ∼ (x0, 0). Similarly B is homotopy
equivalent to Y seen as a subset of Cf via

H(z, s) =

{
z if z ∈ Y
(x, t+ (1− t)s) if z = (x, t) ∈ CX.

For every s these agree on the subset X × 1 ∼ f(X) ⊂ Y under the identification
so H is continuous by the gluing lemma. Lastly, we identify A ∩ B = X × 1

2
with

just X. We summarize as A ≃ ⋆,B ≃ Y,A ∩ B ≃ X and note that the homotopy
equivalences can be made compatible with inclusions so that the diagram

⋆ X Y

A A ∩B B

≃

j f

≃ ≃

commutes up to homotopy given the right CW structure on Cf . A similar diagram
can be put up to show it compatibility for the inclusions of A and B into Cf . Now
using the Mayer Vietoris axiom we get the weak pullback square

h(Cf) h(B)

h(A) h(A ∩B).

h(ι3)

h(ι4) h(ι1)

h(ι2)

Because of the homotopy equivalences, this diagram is in bijective correspondence to
the one above so we get a cube
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h(Cf) h(A)

h(Cf) {a}

h(B) h(A ∩B)

h(Y ) h(X).

∼=
h(k)

h(i)

∼=

h(j)

∼=

h(f)

∼=

with commutative sides from the compatibility of the homotopies with inclusions.
Now just like in the proof of Proposition 2.1 we have two isomorphic squares where
the back one is a weak pullback square. We thus conclude by the same type of
diagram chasing as before that the front one also is. Thus if y ∈ kerh(f) then
h(f)(y) = h(j)(a) = x0 the distinguished element in h(X) then there exists z ∈ h(Cf)
such that h(i)(z) = y proving that kerh(f) ⊂ imh(i).

Although we are just assuming that h takes values in the category of pointed sets
Set∗ there are spaces X where h(X) has a natural group structure, namely when X
is a suspension X = ΣY . The connection here comes from that ΣY is a so called
H-cogroup for any based space Y . When a space is a H-cogroup the covariant functor
[ΣY,−]∗ takes values in the category of groups, see section 1.6 in Spanier [8].

Lemma 3.2. For any based CW complex Y the pointed set h(ΣY ) has a natural group
structure. With this structure, for any other CW complex K and element u ∈ h(K)
the based set map Tu(ΣY ) : [ΣY,K]∗ → h(ΣY ) is a group homomorphism.

Proof. Consider the map p : ΣY → ΣY ∨ΣY that ”pinches” the center Y × 1
2
⊂ ΣY

to the base point, defined explicitly as

p(y, t) =

{
(y, 2t)1 if t ∈ [0, 1

2
]

(y, 2t− 1)2 if t ∈ [1
2
, 1].

where the index denotes which copy of ΣY in ΣY ∨ΣY we are in. We get the induced
map h(p) : h(ΣY ∨ΣY )→ h(ΣY ) and by the wedge axiom we can precompose it with
the isomorphism h(ΣY ∨ ΣY ) ∼= h(ΣY ) × h(ΣY ) to get a potential multiplication
map m : h(ΣY )× h(ΣY )→ h(ΣY ), we just have to check the axioms.
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The following diagram commutes up to homotopy

ΣY ΣY ∨ ΣY

ΣY ∨ ΣY ΣY ∨ ΣY ∨ ΣY ,

1∨p

p∨1

p

p

via some tedious homotopies of the upper and lower compositions to the map

f(y, t) =


(y, 3t)1 if t ∈ [0, 1

3
]

(y, 3t− 1)2 if t ∈ [1
3
, 2
3
]

(y, 3t− 2)3 if t ∈ [2
3
, 1]

and using transitivity of homotopy. Now applying our functor h and simplifying using
the wedge axiom we get the commutative diagram

h(ΣY ) h(ΣY )× h(ΣY )

h(ΣY )× h(ΣY ) h(ΣY )× h(ΣY )× h(ΣY )

(1,m)

(m,1)

m

m

proving that m is associative.
If c : ΣY → ⋆ is the unique map to the one point space then the pointed function

h(c) : h(⋆) = {a} → h(ΣY ) must send a to the distinguished element of h(ΣY ). We
claim that the distinguished element e = h(c)(a) ∈ h(ΣY ) acts like the identity. The
sequence of maps

ΣY
p−→ ΣY ∨ ΣY

1∨c−−→ ΣY ∨ ⋆ = ΣY

can be seen to be homotopic to the identity on ΣY via the homotopy defined by

H((y, t), s) =

{
(y, (1 + s)t) if t ∈ [0, 1

1+s
]

⋆ if t ∈ [ 1
1+s

, 1].

Thus applying h yields the diagram

h(ΣY ) h(ΣY ∨ ΣY ) h(ΣY )

h(ΣY )× h(ΣY ) h(ΣY )× h(⋆)

h(p) h(1∨c)

(1,h(c))

∼= ∼=m

which commutes by the wedge axiom. We see that since the upper row is equal to
the identity on h(ΣY ) we get that for any y ∈ h(ΣY ), m(y, h(c)(a)) = m(y, e) = y.
Thus the distinguished element e ∈ h(ΣY ) acts as the identity.
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For inverses let r : ΣY → ΣY be the map that reverses the direction of the
suspension, i.e (y, t) 7→ (y, 1− t). We have the sequence

ΣY
p−→ ΣY ∨ ΣY

1∨r−−→ ΣY ∨ ΣY
f−→ ΣY

where f just identifies the two copies. We get the following

(y, t)
p7−→

{
(y, 2t)1 t ∈ [0, 1

2
]

(y, 2t− 1)2 t ∈ [1
2
, 1]

1∨r7−−→

{
(y, 2t)1

(y, 2− 2t)2

f7−→

{
(y, 2t)

(y, 2− 2t)

where the indexes show whether it is in the first or second copy of ΣY in the wedge
ΣY ∨ΣY . Now we claim that this composition, call it F , is nullhomotopic. We have
a homotopy H : ΣY × I → ΣY defined by

H((y, t), s) =

{
(y, 2st) t ∈ [0, 1

2
]

(y, 2s(1− t)) t ∈ [1
2
, 1],

the two definitions agrees at t = 1
2
so it is continuous and it is stationary at the base-

point due to the identification. We see that H((y, t), 0) = (y, 0) ∼ y0 the constant
map while H((y, t), 1) = F (y, t) showing that the composition F is thus nullhomo-
topic. The intuition here is to identify ΣY as Y ∧ S1 smash product and then to see
that the degree of the map on S1 is 0. Applying h we get

h(ΣY ) h(ΣY ∨ ΣY ) h(ΣY ∨ ΣY ) h(ΣY )

h(ΣY )× h(ΣY ) h(ΣY )× h(ΣY )

h(p) h(1∨r) h(f)

∼=
(1,h(r))

∼=
(1,1)m

and thus going from right to left we see that m(x, h(r)(x)) = h(F )(x) but since F
was nulhomotopic it is equal to h(c)(a) = e which is the identity by above. Thus
multiplying x by h(r)(x) on the right we get the identity. In exactly the same way
one shows that this also holds on the left and hence we have inverses. This proves
that h(ΣY ) is a group. To prove that Tu(ΣY ) is a group homomorphism we have

Tu(ΣY )([f ] · [g]) = Tu(ΣY )[(f ∨ g) ◦ p] = h(p)h(f ∨ g)(u) =
=m(h(f)(u), h(g)(u)) = m(Tu(ΣY )[f ], Tu(ΣY )[g])

by definition of multiplication of [f ] and [g] in [ΣY,K]∗ as the composition with the
pinch map.

By this lemma we have in particular, since Sn ∼= ΣSn−1, that h(Sn) has group
structure when n ≥ 1.
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Definition 3.1. For a given CW complex K and a Brown functor h we call an object
u ∈ h(K) n-universal for n ≥ 1 if Tu(S

k) : [Sk, K]∗ → h(Sk) is an isomorphism for
1 ≤ k < n and surjective for k = n. We call the element universal if it is n-universal
for all n i.e that Tu(S

k) is an isomorphism for all k ≥ 1.

The goal of this next part is to construct a CW complex that has a universal
element for our fixed Brown functor h. We shall do this by induction, starting by
construction a space with a 1-universal element. Then given a n-universal element
we shall construct a new CW complex by adding (n + 1)-cells which has a (n + 1)
universal object using the following lemma. The proof uses Lemma 3.2 to prove
injectivity since for group homomorphisms injectivity is equivalent to having trivial
kernel.

Lemma 3.3. Given a CW complex Kn and a n-universal for object un there exists a
CW complex Kn+1 with a (n+ 1)-universal object un+1 that has Kn as a subcomplex.
Furthermore if i : Kn → Kn+1 is inclusion then h(i)(un+1) = un.

Proof. Since un is n-universal, the map

Tun(S
n) : [Sn, Kn]∗ → h(Sn)

is surjective. The kernel ker(Tun(S
n)) consists of based homotopy classes of maps. Let

M be a set of representatives for the kernel so that each f ∈M is in exactly one of the
homotopy classes of maps in the kernel. By the cellular approximation theorem we
may let each f ∈M be cellular. Now let X =

∨
f∈M Sn and Y = Kn∨

∨
a∈h(Sn+1) S

n+1

i.e X is a wedge of n-spheres, one for each f ∈M and Y is Kn wedged with a wedge
of (n+ 1)-spheres, one for each a ∈ h(Sn+1). We have maps

X

∨
f∈M f
−−−−→ Kn

j−→ Y

where
∨
f∈M f maps each Sn in X via the associated f ∈ M to Kn and j is the

inclusion ofKn into Y . If we denote the composition with g : X → Y and consider the

cofiber sequence X
g−→ Y

l−→ Cg where Cg is the reduced mapping cone of g : X → Y
we have by Lemma 3.1 that the sequence

h(Cg)
h(l)−−→ h(Y )

h(g)−−→ h(X) (1)

is exact since a wedge of cellular maps is cellular. The map j can be made cellular
by giving Y a CW structure such that Kn is a subcomplex. Now by construction and
the wedge axiom we get two based bijections

h(Y )
φ−→ h(Kn)×

∏
a∈h(Sn+1)

h(Sn+1) and h(X)
ψ−→

∏
f∈M

h(Sn).

14



Summarizing this we have the following diagram

h(X) h(Y ) h(Kn)×
∏

a∈h(Sn+1) h(S
n+1)

∏
f∈M h(Sn) h(Kn)

h(j)

φh(g)

π1

(h(f))f∈M

ψ

where the triangle commutes since the inclusion j is one of the inclusion which induces
the bijection φ and the left square commutes since h(g) = h(j ◦

∨
f∈M f).

Let vn+1 = φ−1(un, (a)a∈h(Sn+1)) ∈ h(Y ) then we have

h(g)(vn+1) = ψ−1(h(f))f∈M(un) = x0

the distinguished element of h(X). This follows from that each f ∈ M satisfies
h(f)(un) = Tun [f ] = s0 the distinguished element of h(Sn) since f is a representative
for a class in ker(Tun(S

n)). By exactness of (1) we can find an element un+1 ∈ h(Cg)
such that h(l)(un+1) = vn+1 which gives h(j)h(l)(un+1) = un by commutative of the
diagram above. We claim that the CW complex Cg = Kn+1 and the element un+1

is as stated in the lemma. Notice that Kn lives inside Cg since Y = Kn ∨
∨
Sn+1 is

seen as a subcomplex of Cg. We therefore have the inclusion l ◦ j = i : Kn → Kn+1,
and as seen above h(i)(un+1) = h(j)h(l)(un+1) = un. What we have left to prove is
that un+1 ∈ h(Kn+1) is a (n+ 1)-universal object.

We look at how we constructed the space Kn+1. We began by wedging Kn with
one (n + 1)-sphere for each element in h(Sn+1) we then created the mapping cone
of the map g which was mapping a sum of n-spheres into Kn. Notice that this is
equivalent to attaching n+ 1-cells since the reduced cone on Sn is homeomorphic to
Dn+1 and we attach the boundary via the cellular maps f ∈ M . Therefore what
we have essentially done is just attached n + 1-cells with cellular attaching maps
f ∈ ker(Tun(S

n)) to Kn.
With this in mind we see that i : Kn → Kn+1 is a n-equivalence, as defined

in the introduction, since we have just attached n + 1-cells. This is useful since
[Sk, Kn]∗ = πk(Kn) the k:th homotopy group. We therefore have the commutative
diagram

πk(Kn) = [Sk, Kn]∗ [Sk, Kn+1]∗ = πk(Kn+1)

h(Sk)

i∗

Tun (S
k) Tun+1 (S

k)

where i∗ is the induced map of i under the covariant functor πk(−). The diagram is
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commutative since if f : Sk → Kn then

Tun(S
k)[f ] = h(f)(un) = h(f)h(i)(un+1) = h(if)(un+1) =

= Tun+1(S
k)[if ] = Tun+1(S

k)(i∗[f ]).

Now if k < n then Tun(S
k) is an isomorphism by assumption, and since i is an n-

equivalence so is i∗, it follows that Tun+1(S
k) is an isomorphism. For k = n, the

homomorphism Tun(S
k) is surjective, thus by commutativity so must Tun+1(S

k) be.
What is therefore left to prove is injectivity for k = n, and surjectivity for k = n+1.
We start with the former.

Let a : Sn → Kn+1 be a based map so that [a] ∈ ker(Tun+1(S
n)), since i∗ is

surjective for k = n we can find b : Sn → Kn such that i∗[b] = [a]. By commutativity
of the diagram it therefore follows that [b] ∈ ker(Tun) and is thus represented by some
cellular map b ∈M . We therefore get the following sequence of continuous maps

Sn X Kn Y Kn+1
ιb

∨
f∈M f j l

b i

g

where ιb is inclusion into X =
∨
f∈M Sn so that

∨
f∈M f ◦ ιb = b. Also notice here that

l ◦ g is nullhomotopic since it is the composition in a cofiber sequence as remarked in
the beggining of this section, we get that

[a] = i∗[b] = [i ◦ b] = [l ◦ g ◦ ιb] = [c ◦ ιb] = [c]

where c is the constant map and therefore [a] is equal to 0 in πn(Kn+1). Having
trivial kernel is equivalent to injectivity here since Tun(S

n) is a group homomorphism
by Lemma 3.2 for n ≥ 1.

For surjectivity in the case k = n + 1, let a ∈ h(Sn+1). We have the map
ιa : S

n+1 → Y since Y = Kn∨
∨
a∈h(Sn+1) S

n+1 then composing it with l we get a map

l ◦ ιa : Sn+1 → Kn+1. From this we conclude that

Tun+1(S
n+1)[l ◦ ιa] = h(l ◦ ιa)(un+1) = h(ιa)h(l)(un+1) = h(ιa)(vn+1)

= h(ιa)(φ
−1(un, (a)a∈h(Sn+1))

= πa(un, (a)a∈h(Sn+1)) = a,

where the last line comes from the following commutative diagram induced by the
wedge axiom where πa is the projection of the a-component,

h(Sn+1)

h(Y ) h(Kn)×
∏

a∈h(Sn+1) h(S
n+1)

φ

h(ιa) πa
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which concludes the proof.

Note that by construction Kn+1 is connected if Kn is. We shall now use this to
build inductively a space CW complex K that has a universal element u ∈ h(K).

Lemma 3.4. For any based CW complex Y and element v ∈ h(Y ) there exists a
based CW complex K with universal element u ∈ h(K) such that Y is a subcomplex
of K and if i : Y → K is inclusion we have h(i)(u) = v.

Proof. We start by creating a space K1 with a 1-universal element u1 from Y . Let

K1 = Y ∨
∨
a∈h(S1) S

1 so that φ : h(K1)
∼=−→ h(Y ) ×

∏
a∈h(S1) h(S

1) is a bijection of

pointed sets by the wedge axiom. Let u1 ∈ h(K1) be φ−1(v, (a)a∈h(S1)). Then u1
is 1-universal as Tu1(S

1) : [S1, K1]∗ → h(S1) is surjective by the same argument as
in the last paragraph of the proof of Lemma 3.3. Namely, if a ∈ h(S1) we have an
inclusion map ιa : S1 → K1 with Tu1 [ιa] = h(ιa)(u1) = πa(v, (a)a∈h(S1)) = a. Notice
that a similar argument also shows that h(i0)(v) = u1 if i0 : Y → K1 is the inclusion.

Letting Y = K0 and v = u0 for ease of notation we apply Lemma 3.3 inductively
starting from the pair K1, u1. We get a sequence of spaces Kn, n-universal elements
un and inclusions in : Kn ↪→ Kn+1 such that h(in)(un+1) = un giving the sequence

Y = K0
i0
↪−→ K1

i1
↪−→ K2

i2
↪−→ K3

i3
↪−→ · · · . (2)

From this sequence we can construct the reduced mapping telescope, denote it by K

K =
∞∐
n=0

Kn × I/ ∼ .

Categorically K is the homotopy colimit of the sequence (2), and we now wish to
show that there exists a natural surjection h(K) → lim←−h(Kn) the inverse limit in
Set∗. Define two subspaces

A =
∞∐
n=0

K2n × I/ ∼ B =
∞∐
n=0

K2n+1 × I/ ∼ .

visually this would be like coloring the telescope with color A and color B and alter-
nating after every cylinder so that K = A∪B, one may equip K with a CW structure
so that these are subcomplexes. Now notice that

A ∩B =
∞∐
n=0

Kn × {1} / ∼ ∼=
∞∨
n=0

Kn
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since A ⊃ K2n × {1} ∼ i2n(K2n) × {0} ⊂ K2n+1 × {0} ⊂ B. Furthermore A and B
deformation retracts to

A ≃
∞∐
n=0

K2n × {0}/ ∼ ∼=
∞∨
n=0

K2n (3)

B ≃
∞∐
n=0

K2n+1 × {0} / ∼ ∼=
∞∨
n=0

K2n+1. (4)

Thus by the wedge axiom we have a bijection h(A) ∼=
∏∞

n=0 h(K2n) via the induced
map from inclusions j2n : K2n → A and similarly for h(B) ∼=

∏∞
n=0 h(K2n+1) and

h(A ∩ B) ∼=
∏∞

n=0 h(Kn). In particular, since it is a bijection, we can find elements
a ∈ h(A) such that h(j2n)(a) = u2n ∈ h(K2n), the 2n-universal element, for all n ≥ 0.
Similarly we can find b ∈ h(B) with h(j2n+1)(b) = u2n+1 for all n ≥ 0 and c ∈ h(A∩B)
such that h(jn)(c) = un for all n ≥ 0. We have a diagram of inclusions

K A

B A ∩B

l3

l4 l1

l2

which we wish to use the Mayer Vietoris axiom on. We therefore want h(l1)(a) = c
and similarly for b. Since h(j2n)(a) = h(j2n)(c) = u2n and we have a commutative
diagram

h(A) h(K2n)

h(A ∩B) h(K2n−1)

h(j2n)

h(l1)

h(j2n−1)

h(i2n−1)

for n ≥ 1 so that h(i2n−1)h(j2n)(a) = h(i2n−1)(u2n) = u2n−1 = h(j2n−1)(c) we can
conclude that h(l1)(a) = c by injectivity of (h(jn)) : h(A ∩ B) →

∏∞
n=0 h(Kn). A

similar argument works for B to show that h(l2)(b) = c. By the Mayer-Vietoris
axiom we may find u ∈ h(K) such that h(l3)(u) = a and h(l4)(u) = b. We have
that h(jn) : h(K) → h(Kn) gives h(jn)(u) = h(jn)(a or b) = un by slight abuse of
notation. In particular h(j0)(u) = h(i)(u) = v where this i is an in the statement of
the lemma.
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We are only left with proving that u is universal i.e n-universal for all n. Let
n ≥ 1 be arbitrary and consider the diagram

πk(Kn) = [Sk, Kn]∗ [Sk, K]∗ = πk(K)

h(Sk)

(jn)∗

Tun (S
k) Tu(Sk)

with 1 ≤ k < n. It commutes since if f : Sk → Kn is a based map then we get
Tun(S

k)[f ] = h(f)(un) and

Tu(S
k)(jn)∗[f ] = Tu(S

k)[jnf ] = h(jnf)(u) = h(f)h(jn)(u) = h(f)(un).

Now the inclusion jn : Kn → K is an n-equivalence since K is homotopy equivalent
to the mapping telescope starting at Kn and then each Kt with t > n is obtained
by attaching cells of dimension t + 1 and thus is a t-equivalence. Thus (jn)∗ is an
isomorphism when k < n. Tun(S

k) is an isomorphism by assumption and thus it
follows that Tu(S

k) is an isomorphism for k < n. Since n can be made arbitrarly big
we conclude that Tu(S

k) is an isomorphism for all k and thus that u is universal.

Again just like in Lemma 3.3 we note that by construction this universal space
K is connected if Y is. Now is when we need to turn to only considering connected
spaces.

Lemma 3.5. Suppose we are given a based connected CW complex K with universal
element u ∈ h(K), a based connected CW complex X and some element w ∈ h(X).
If there exists a subcomplex A with inclusion i : A → X and a based cellular map
g : A → K such that h(g)(u) = h(i)(w) then g extends to a map G : X → K which
agrees with g on A and h(G)(u) = w.

Proof. Let Z be the reduced double mapping cone of g : A → K and i : A → X.
Since X and K are connected Z will also be connected and as i and g are cellular Z
is a CW complex. The CW structure may be taken so that we can decompose Z into
subcomplexes

B = (A× [0, 1
2
] ⊔K)/ ∼ C = (A× [1

2
, 1] ⊔X)/ ∼ . (5)

It is not too hard to see that there are homotopy equivalences B ≃ K, C ≃ X and
B ∩ C ≃ A where the inclusions of B ∩ C into B and C are equivalent to g and i so
that

B B ∩ C C

K A X

≃ ≃ ≃

g i
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commutes up to homotopy. Our weak pullback square in the Mayer-Vietoris axiom
is thus isomorphic to

h(Z) h(K)

h(X) h(A)

h(l1)

h(l2) h(g)

h(i)

since including g(a) ∈ K into Z is the same as including directly into (a, 0) ∈ Z by
the identification. We conclude that the square above also is a weak pullback square
just as in the proof of Lemma 3.1. Thus, we find z ∈ h(Z) such that h(l1)(z) = u and
h(l2)(z) = w. By Lemma 3.4 we can create a CW complexK ′ with a universal element
u′ ∈ h(K ′) such that Z is a subcomplex of K ′ and if j : Z → K ′ is inclusion then
h(j)(u′) = z. Since Z is connected K ′ will be as well. Notice also that K lives inside

K ′ as K
l1
↪−→ Z

j
↪−→ K ′. Let φ = j ◦ l1 so that h(φ)(u′) = h(l1)h(j)(u

′) = h(l1)(z) = u.
We have the diagram

πn(K) πn(K
′)

h(Sn)

Tu(Sn) Tu′ (S
n)

φ∗

which commutes since if f : Sn → K is a map, then

Tu′(S
n)φ∗[f ] = h(φf)(u′) = h(f)h(φ)(u′) = h(f)(u)

and since u and u′ are universal Tu(S
n) and Tu′(S

n) are isomorphisms, it thus follows
that φ∗ is an isomorphism. Since this is true for all n ≥ 1 and the spaces K and K ′

consists of just one path components as they are connected we have a weak homotopy
equivalence φ : K → K ′ which by Whitehead theorem is a homotopy equivalence.

Let H : A × I/ ∼ ↪→ Z ↪→ K ′. This defines a pointed homotopy from the map
H0 : A× {0} → K ′ to H1 : A× {1} → K ′ and since A× {0} is attached to K via g

we see that H0 = φg. Furthermore, if g′ : X
l2
↪−→ Z

j
↪−→ K ′ then H1 = g′i. Now by the

homotopy extension property of A ⊂ X we get a based homotopy H ′ : X × I → K ′

which agrees on A ⊂ X and H ′
1 = g′. Now H ′

0 : X ×{0} = X → K ′ has the property
that H ′

0i = H0 = φg. Furthermore since φ is a homotopy equivalence say with some
homotopy inverse ψ : K ′ → K we get a homotopy H̃ : A× I → K from ψφg to g and
the map ψH ′

0 : X → K has the property that ψH ′
0i = ψφg. Thus, H̃ extends via the

homotopy extension property to X which gives a map G = H̃ ′
1 : X → K where H̃ ′ is

the extended homotopy such that Gi = g.
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All we have left is to prove that this G has the desired property. We have that
h(G)(u) = h(G)h(φ)(u′) = h(φG)(u′). Now since G ≃ ψH ′

0 we have that

φG ≃ φψH ′
0 ≃ H ′

0 ≃ H ′
1 = g′.

Thus h(G)(u) = h(g′)(u′) = h(jl2)(u
′) = h(l2)h(j)(u

′) = h(l2)(z) = w and we are
done.

We are finally ready to prove the Brown representability theorem.

Proof of Theorem 2.1. Let ⋆ be the one-point CW complex so that h(⋆) = {a}. Using
Lemma 3.4 we get a connected CW complex K with universal element u ∈ h(K). We
verify that Tu(X) : [X,K]∗ → h(X) is an isomorphism for all based connected CW
complexes X.

For injectivity suppose h(f0)(u) = h(f1)(u) where f0, f1 : X → K we shall prove
that f0 ≃ f1 are based homotopic, here f0 and f1 represent homotopy classes so we
may assume that they are cellular by the cellular approximation theorem. We get
the unique cellular map sum f0 ∨ f1 : X ∨X → K. Consider then X ∧ I+ the smash
product with I+ = I ⊔ {x0} the interval with an extra based point, notice also that
X ∨X can be identified as the subcomplex X × {0} ∨X × {1} in X ∧ I+ so we get
an inclusion i : X ∨X → X ∧ I+. We also get the projection p : X ∧ I+ → X giving
us a diagram which is commutative in the two right triangles, but not the left two

X

X ∧ I+ X ∨X K

X.

p

p

i

l1

l0

f0∨f1

f0

f1

Notice also that p ◦ i ◦ l0 = IdX while other directions around the two left triangles
must not be the identity. Applying h using the wedge axiom on the middle and that
X ∧ I+ is homotopy equivalent to X via p we get

h(X)

h(X ∧ I+) h(X)× h(X) h(K)

h(X)

h(p)

h(i)

h(l0)

h(l1)

h(f0)

(h(f0),h(f1))

h(f1)
h(p)
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where h(p) is an isomorphism. By the wedge axiom we get that h(l0)(x0, x1) = x0
and similarly for l1, it then follows h(i)(x) = (h(p)−1(x), h(p)−1(x)) for the relation

h(p ◦ i ◦ lk) = h(lk)h(i)h(p) = Idh(X)

to be true for both k = 0 and k = 1. Therefore if w = h(p)h(f0)(u) = h(p)h(f1)(u),
recall that h(f0)(u) = h(f1)(u), then

h(i)(w) = (h(p)−1(w), h(p)−1(w)) = (h(f0)(u), h(f1)(u))

the bijective image of h(f0 ∨ f1)(u). Now using Lemma 3.5 on f0 ∨ f1 : X ∨X → K
we get a map G : X ∧ I+ → K such that h(G)(u) = w and G ◦ i = f1 ∨ f2. This
G is then a based homotopy from G0 = f0 : X → K to G1 = f1 : X → K and thus
f0 ≃ f1 so equal in [X,K]∗.

For surjectivity we simply note that the base-point ⋆ is included into any based
space X. Thus if w ∈ h(X) is arbitrary we get two maps: g : ⋆→ K and i : ⋆→ X.
As noted earlier h(⋆) = {a} singleton and thus h(g) and h(i) must map everything to
a. So h(i)(w) = a = h(g)(u) and thus by Lemma 3.5 we can extend g to G : X → K
such that h(G)(u) = w. Therefore there exists G ∈ [X,K]∗ such that Tu(X)[G] =
h(G)(u) = w proving surjectivity and thus we are done.

4 Representing reduced cohomology theories

Using the Brown representability theorem we wish to understand reduced cohomology
theories on CW∗.

Definition 4.1. A reduced cohomology theory on CW∗ is a sequence of functors hn

from CW∗ to Ab for n ∈ Z and natural isomorphisms hn(X) ∼= hn+1(ΣX) such that

1. (Homotopy axiom) If f ≃ g : X → Y with respect to the basepoints of X, then
hn(f) = hn(g) : hn(Y )→ hn(X) for all n.

2. (Exactness axiom) For every inclusion A ↪→ X of subcomplexes and every n
the sequence hn(X/A)→ hn(X)→ hn(A) is exact.

3. (Wedge axiom) for any wedge sum of pointed CW complexes X =
∨
α∈I Xα the

based inclusion maps ια : Xα ↪→ X induces a bijection

(ι∗α)α∈I : h
n(X)→

∏
α∈I

hn(Xα)
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We would like to classify every reduced cohomology theory on CW∗ as the axioms
are fairly general. Since they are homotopy invariant functors to Ab which has a
forgetful functor to Set∗ we can prove the following using Brown Representability
theorem.

Theorem 4.1 (Classification of reduced cohomology theories). There is a bijective
correspondence between reduced cohomology theories hn on CW complexes and Ω-

spectra {Kn} of CW complexes given by natural isomorphisms hn(−)
∼=−→ [−, Kn]∗ for

all n ∈ Z.
We shall define Ω-spectra when they appear naturally in the proof.

Proof. We start by showing that any reduced cohomology theory on CW∗ defines
Brown functors. Axiom 1 makes sure that we can factor each hn through hCW∗,
composing with the forgetful functor from Ab to Set∗ we get functors h̃

n : hCW∗ →
Set∗. The wedge axiom in Definition 2.1 is exactly the same as the one in 4.1 since
the forgetful functor from Ab to Set∗ respects products. The main difference here
will be to translate the second axiom in Definition 4.1 to the Mayer Vietoris axiom.

We have the so called Puppe sequence, see Hatcher [4] page 398,

A→ X → X/A→ ΣA→ ΣX → Σ(X/A)→ Σ2(A)→ ...

from thinking of quotients X/A as homotopy equivalent to taking the mapping cone
of the inclusion i : A ↪→ X by collapsing the retractable cone. The mapping cone
from inclusion can simply be written as X ∪CA. We can then look at each adjacent
pair of maps in this sequence as inclusion then quotient. The first triplet is obvious,
the second one X → X/A ≃ X ∪ CA → Σ(A) ≃ X ∪ CA ∪ CX ≃ (X ∪ CA)/X
can be seen as including X into the mapping cone trivially then collapsing all of X
to a point giving us ΣA. Thus, by the exactness axiom together with the homotopy
axiom applying any of the functors gives an exact sequence

· · · → hm(Σ(X/A))→ hm(ΣX)→ hm(ΣA)→ hm(X/A)→ hm(X)→ hm(A).

In the case m = n+ 1 together with the isomorphism hn+1(ΣX) ∼= hn(X) we get the
sequence

· · · → hn(X/A)→ hn(X)→ hn(A)→ hn+1(X/A)→ hn+1(X)→ hn+1(A)

the reason for considering this is so that the square in the Mayer Vietoris axiom can
be extended to the commutative diagram

hn(X/A) hn(X) hn(A) hn+1(X/A)

hn(B/A ∩B) hn(B) hn(A ∩B) hn+1(B/A ∩B)

hn(i)

hn(k)

hn(l)

hn(j)

β

β′

α

α′

∼= ∼=
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with exact rows, the isomorphism comes from the fact that X/A ∼= B/(A ∩ B)
assuming X = A∪B. We can from here create a part of the Mayer Vietoris sequence

hn(X)
Ψ−→ hn(A)⊕ hn(B)

Φ−→ hn(A ∩B)

defined as Ψ(x) = (hn(i)(x),−hn(j)(x)) and Φ(a, b) = hn(k)(a)+ hn(l)(b) remember-
ing here that hn is a functor into Ab. Exactness can now be proved by some classic
diagram chasing. First notice that Φ(Ψ(x)) = hn(k)hn(i)(x) − hn(l)hn(j)(x) = 0
by commutativity of the middle square, which gives imΨ ⊂ kerΦ. Conversely if
Φ(a, b) = hn(k)(a) + hn(l)(b) = 0 then hn(k)(a) = −hn(l)(b) so hn(k)(a) ∈ im(hn(l)).
Thus, β′hn(k)(a) = 0 by exactness, so the isomorphism on the right gives β(a) = 0
and there exists an element x′ ∈ hn(X) mapping to a by exactness. Then

hn(l)(hn(j)(x′) + b) = hn(l)hn(j)(x′) + hn(l)(b) = hn(k)(a) + hn(l)(b) = 0

so we find some c ∈ hn(B/A∩B) mapping to hn(j)(x′)+b under α′. By commutativity
and the left isomorphism we get

hn(j)(x′ − α(c)) = hn(j)(x′)− α′(c) = hn(j)(x′)− hn(j)(x′)− b = −b

and we see then that x = x′ − α(c) will give hn(i)(x) = hn(i)(x′) + hn(i)(α(c)) = a
and hn(j)(x) = −b. Therefore Ψ(x) = (hn(i)(x),−hn(j)(x)) = (a, b).

From this we can finally conclude that the Mayer Vietoris axiom for h̃n holds.
Since if h̃n(k)(a) = h̃n(l)(b) seen just as set maps then the pair (a,−b) maps to zero by
Φ and hence there exists x ∈ hn(X) such that Ψ(x) = (hn(i)(x),−hn(j)(x)) = (a,−b)
and thus h̃n(i)(x) = a and h̃n(j)(x) = b.

We can now apply the Brown representability theorem to the Brown functors
h̃n for each n to get representating spaces Kn and universal elements un so that
Tun : h̃n(−) → [−, Kn]∗ is a natural isomorphism when restricting the functors to
hCWc

∗. Thus for every connected CW complex X the underlying set of the abelian
group hn(X) is in bijective correspondence with [X,Kn]∗. We can thus give [X,Kn]∗
the same group structure as hn(X). The next question that arises is what happens
when X is a suspension X = ΣY . Since then by Lemma 3.2 h̃n(ΣY ) has group
structure and Tun(ΣY ) is a group homomorphism which by the Brown representability
theorem is an isomorphism. But hn(ΣY ) has (abelian) group structure by assumption
that hn is a part of a cohomology theory. Thus we wish to know if these coincide.

Proposition 4.1. For a cohomology theory the group structure of h̃n(ΣY ) is the same
as that of hn(ΣY ). In particular it is abelian.

Proof. Just like in the proof of Lemma 3.2 we get m : hn(ΣY )× hn(ΣY )→ hn(ΣY )
induced from the pinch map p : ΣY → ΣY ∨ΣY , but unlike before this is a homomor-
phism since hn takes values in Ab. The identity for m is the element hn(c)(0) where

24



c : ΣY → ⋆ and hn(⋆) = {0} from the wedge axiom. But then hn(c)(0) = 0 since
it is a homomorphism. Thus m(x, 0) = m(0, x) = x for all x ∈ hn(ΣY ). This gives
that m(x, y) = m(x, 0) +m(0, y) = x + y thus the multiplication map m is exactly
the addition (abelian multiplication) of hn(ΣY ). Since this m is exactly what gives
h̃n(ΣY ) its group structure the result follows.

We sidetrack by introducing a construction dual to that of the suspension.

Definition 4.2. Given a based space X with basepoint x0, let ΩX be the set of loops
α : I → X based at x0 (so that α(0) = α(1) = x0). By giving ΩX the compact-open
topology it becomes a based space where the base point is the constant loop.

Notice that if X is not path connected then ΩX will just capture the path con-
nected component where the basepoint lies i.e ΩX ∼= ΩX0 ifX0 is the path component
of x0.

For any based space X the loop space ΩX is a type of space called a H-group, see
chapter 1.5 in Spanier [8]. What’s special about H-groups is that the contravariant
functor [−,ΩX]∗ naturally takes it values in the category of groups Grp. Just like
how the covariant functor [ΣX,−]∗ also takes it values in Grp for any based space
X since ΣX is a H-cogroup as remarked in Section 3.

The reason why the suspension and loop space are central is that they define
functors Σ(−) and Ω(−) from the category of based spaces to the category of H
cogroups and H groups respectively with continuous homomorphisms. The former
sends a based map f : X → Y to Σf : ΣX → ΣY defined by Σf(x, t) = (f(x), t)
which is well defined since f is based. The later sends f to Ωf : ΩX → ΩY defined
by Ωf(α) = f ◦ α for loops α ∈ ΩX.

In addition these functors are adjoint to eachother, which means that there is a
natural isomorphism for every pair of spaces X, Y

[ΣX, Y ]∗ ∼= [X,ΩY ]∗.

Which means that for every homotopy class of based maps f : ΣX → Y there exists
a class of maps f̃ : X → ΩY . Given a map f : ΣX → Y then f̃ sends x to the loop
αx given by αx(t) = f(x, t), and given a function f̃ assigning points of x to loops αx
we get a function f : ΣX → Y given by f(x, t) = αx(t). One then checks that if
f ≃ g based homotopic then f̃ ≃ g̃ and vice versa which gives the correspondence.
We can even iterate to get for n ≥ 1

[ΣnX, Y ]∗ ∼= [X,ΩnY ]∗.

In our case we do not need to worry about the general theory behind this but if
the reader is worried about the details section 1.6 in Spanier [8] is a good resource.
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We continue where we left off. The bijection of pointed sets [X,Kn]∗ ∼= h̃n(X) for
connected X from the Brown representability theorem makes us equip [X,Kn]∗ with
group structure isomorphic to hn(X). By assumption we also have that hn(X) is
isomorphic hn+1(ΣX) as abelian groups. The isomorphism h̃n+1(ΣX) ∼= [ΣX,Kn+1]∗
from Tun+1(ΣX) in the Brown representability theorem is a group homomorphism by
Lemma 3.2. But now that we have proved that the two group structures are identitical
we get that hn+1(ΣX) ∼= [ΣX,Kn+1]∗ which by the adjoint relation of Σ and Ω is
isomorphic to [X,ΩKn+1]∗. Therefore we can conclude that [X,Kn]∗ ∼= [X,ΩKn+1]∗
so that our arbitrary choice of giving [X,Kn]∗ the same structure as hn(X) was
justified with the natural group structure of [X,ΩKn+1]∗ from the fact that ΩKn+1

is a H-group.
Another consequence of the isomorphism [X,Kn]∗ ∼= [X,ΩKn+1] is that inserting

X = Sk gives that πk(Kn) = [Sk, Kn]∗ ∼= [Sk,ΩKn+1]∗ = πk(ΩKn+1) for all k,
thus by Whitehead theorem they are homotopically equivalent Kn ≃ ΩKn+1 (in
the construction all the Kn are connected), alternatively one can see that they are
homotopically equivalent since representing spaces are unique up to homotopy by the
Yoneda lemma discussed in Section 2.

These types of spaces are of interest

Definition 4.3. A collection of pointed spaces {Kn} for n ∈ Z together with based
maps σn : ΣKn → Kn+1 is called a spectrum. If the adjoints σ̃n : Kn → ΩKn+1 are
weak homotopy equivalences then the spectrum is an Ω-spectrum.

Therefore for any cohomology theory hn the representing spaces {Kn} with the
adjoint of the homtopy equivalences Kn ≃ ΩKn+1 define an Ω-spectrum of CW com-
plexes.

All of these have only been for connected X, when X is not connected we cannot
make use of the Brown representability theorem directly. But because of the sus-
pension isomorphism together with the fact that ΣX is connected for all X we have
natural isomorphisms of abelian groups

hn(X) ∼= hn+1(ΣX) ∼= [ΣX,Kn+1]∗ ∼= [X,ΩKn+1]∗ (6)

and as ΩKn+1 ≃ Kn the pointed set [X,Kn]∗ gets it group structure, but this is
isomorphic to the group structure of hn(X) by the equation above. Therefore we can

conclude that hn(−)
∼=−→ [−, Kn]∗ also holds for non-connected CW complex.

Conversely we can prove that any Ω-spectrum of based CW complexes defines a
reduced cohomology theory.

Proposition 4.2. Given a Ω-spectrum {En} of based CW complexes with structure
maps σn : ΣEn → En+1 the functors hn(−) := [−, En]∗ defines a reduced cohomology
theory on CW∗.
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Proof. Since En ≃ ΩEn+1 and En+1 ≃ ΩEn+2 we can replace En by Ω2En+2 so that
[X,En]∗ gets its abelian group structure from [X,Ω2En+2]∗ where the constant map
acts as the zero. We also see that

hn(X) = [X,En]∗ ∼= [X,ΩEn+1]∗ ∼= [ΣX,En+1]∗ = hn+1(ΣX)

by the adjoint relation. We are therefore just left to check the axioms.
We have clearly that if f ≃ g : X → Y then f ∗ = g∗ as composition respects

homotopy f ∗[α] = [α ◦ f ] = [α ◦ g] = g∗[α] for any α : Y → En.
If A is a subcomplex of X we consider

[X/A,En]∗
j∗−→ [X,En]∗

i∗−→ [A,En]∗ (7)

where we identify X/A with the homotopy equivalent space X ∪ CA the reduced
mapping cone of i : A→ X. If f : X → En is in the kernel of i∗ then f ◦ i = f|A ≃ c
the constant map. If H is the homotopy then we get a map F : X∪CA→ En defined
by

F (x) =

{
f(x) if x ∈ X
H(a, t) if (a, t) ∈ CA

since H(a, 0) = f|A and all the maps here are based it makes sense with the identifi-
cation. Also clearly F ◦j = F|X = f . Thus f ∈ im(j∗). Similarly if F : X∪CA→ En
then F|CA defines a homotopy H : A × I → En with H(a, 0) = F|A and H(a, 1) = c
thus i∗j∗(F ) = F|A ≃ c so j∗(F ) ∈ ker i∗. Thus (7) is exact.

The wedge axiom is immediate by the universal property of the wedge sum. We
conclude that Ω-spectra defines reduced cohomology theories on CW∗.

We conclude the bijective correspondance between Ω-spectrum and reduced co-
homology theories proving Theorem 4.1.

For example singular cohomology with coefficients in an arbitrary abelian group
G is a cohomology theory by setting Hn(X;G) as hn(X) for n ≥ 0 and the 0-
functor for n < 0. Restricting these to CW complexes we get Ω-spectrum representing
the functors. These are the so called Eilenberg-Maclane spaces named after Samuel
Eilenberg and Saunders Mac Lane and denoted K(G, n). In section 4.3 of Hatcher
[4] the isomorphisms Hn(X;G) ∼= [X,K(G, n)] are proved without Theorem 4.1 by
assuming that these spaces exists. But now using the Brown representability theorem
we know that these spaces do exist.

The various cohomology theories of Cobordism are represented via Theorem 4.1
with Ω-spectrum called Thom Spectrum, named after René Thom. The classifying
spaces of vector bundles corresponds to the cohomology theory that arises from K-
theory. See lectures 38 and 43 in Fomenko and Fuchs [2].
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