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Abstract

This text serves as an introduction to representation theory of finite groups,
beginning with a background in group theory and linear algebra before formally
defining representations, some representations are shown to be irreducible, while
others are composed as a direct sum of the irreducibles (Maschke’s Theorem 3.24),
culminating in the proof of Schur’s Lemma 3.25, which ensure the uniqueness of
these compositions. Finally, character theory is introduced, simplifying represen-
tation theory by focusing on the trace of matrices, providing systematic methods
to identify and decompose any given representation. Examples to demonstrate the
these theoretical concepts are some cyclic and symmetric groups of small order. In
particular, C3, C4, C5, S3, and S4 are examined and completely decomposed and the
results are presented in Tables 3, 4, 5, 13 and 14.

Sammanfattning

Den här texten ger en introduktion till ändliga gruppers representationsteori.
Utifrån en inledning med ett par bakgrundsämnen inom gruppteori och linjär alge-
bra definieras representationer formellt. Vissa representationer visar sig vara ore-
ducerbara, medan andra visar sig vara den direkta summan av oreducerbara repre-
sentationer (Maschkes Sats 3.24), vilket kulminerar i beviset av Schurs Lemma 3.25
som visar att dessa sammansättningar är unika. Slutligen introduceras karaktärste-
orin som förenklar arbetet med att analysera representationer genom att under-
söka matrisers spår. Karaktärsteorin ger systematiska metoder för att identifiera
och sönderdela varje given representation. För att demonstrera dessa teoretiska
koncept ges några cykliska och symmetriska grupper som exempel, särskilt så un-
dersöks och sönderdelas C3, C4, C5, S3 och S4 helt och resultaten presenteras i
Tabellerna 3, 4, 5, 13 och 14.
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1 Introduction

The main purpose of this text is to study linear representations of groups, or in other
words replacing abstract groups with sets of matrices behaving the same way as the
elements of the group and replacing the group operation with matrix multiplication.
This is the intuition behind a homomorphism. The reader is assumed to be familiar
with first-year linear algebra and the definitions and basic concepts of vector spaces
and groups.

Only representations of finite groups in finite dimensional vector spaces will be
treated. As [Ser77, Sect.1.1.] notes, we are usually interested in a finite number of
elements of a vector space, and then we could span a finite dimensional subspace
with those elements. The restriction to finite groups is more severe however, as some
results in this text does not apply on infinite groups, or even compact infinite groups
(see [FH04, Ser77]).

Calculations performed in this text are my own and the examples are also my
own, unless otherwise noted. As practical examples we study the abelian cyclic
groups and the symmetric groups of small order extensively.

Section 2 introduces some background topics from group theory and linear al-
gebra required before introducing representation theory. Especially the symmetric
group, recollections of linear algebra and a brief introduction to tensor operations
on vector spaces are presented.

The idea of a representation is introduced in section 3 as a group homomor-
phism (a map respecting the group operation) bringing the elements of a group into
the set of invertible transformations of some vector space along with a few basic
consequences of the definition. Some typical representations follow with examples
applied on some small cyclic and symmetric groups. The notion of subrepresenta-
tion, analogous to vector subspaces, is introduced along with tensor operations on
representations, allowing us to construct new representations out of already known
ones. Some representations are indivisible however and are called irreducible, invit-
ing the main theorem of this text that any representation of a finite group in a finite
dimensional vector space is composed of a finite number of constituent subrepresen-
tations (Maschke’s Theorem 3.24), which along with Schur’s Lemma (Theorem 3.25)
allows us to claim that these decompositions are unique.

The last section is on character theory which strips back the “big” concepts of
linear algebra and matrix calculations into the trace of those matrices, a metric



related to the eigenvalues of a matrix, releasing us from the ambiguities of choices
of bases. The representations found earlier are reevaluated and we see that the
results allows us to find every irreducible representation of a group by providing a
limit for the number of irreducibles, and also completely decompose any arbitrary
representation into irreducibles with some “character calculus”. The cyclic groups
are quickly studied, and finally the symmetric groups of degree 3 and 4 are closely
studied.
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2 Preliminary topics

2.1 Groups

The action of a group G on a set X is a map

σ : G×X → X

satisfying for the identity element e ∈ G

σ(e, x) = x, for all x ∈ X

and for all g, h ∈ G,

σ(g, σ(h, x)) = σ(gh, x), for all x ∈ X.

It is easy to see that, for every fixed g ∈ G the map σ(g, x) : X → X is a permutation,
that is bijective. To simplify notation, we write

g · x := σ(g, x).

Recall ([DF04, 1.3.], [Sag01, 1.1]) that for a positive integer n, we denote by Sn

the set of permutations of the set {1, 2, . . . , n}, which is a group under composition
of permutations, called the Symmetric group of order n. The number of elements in
Sn is n!.

The elements may be represented in several ways or notations, one of which is
cycle decomposition. A cycle is a string of integers

(a1, a2, . . . , am)

which represent which elements of {1, 2, . . . , n} it permutes. The cycle above will
permute a1 to a2, a2 to a3 and ai to ai+1 for 1 ≤ i ≤ m−1. Lastly it will permute am

back to a1, completing the cycle. This cycle is of length m, hence it is an m-cycle.
Usually 1-cycles are omitted. 2-cycles are called transpositions. Two cycles are
disjoint if they have no integers in common. A cycle representation of an element of
Sn is not unique, however it can be uniquely expressed as a composition of disjoint
cycles.



Example 2.1. The elements of S3, expressed in cycle decomposition are

(1), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2).

There are 3! = 6 elements: the identity permutation (denoted (1)), three transpo-
sitions and two 3-cycles. For example, the element (1, 2) is the permutation that
maps 1 7→ 2, 2 7→ 1 and 3 7→ 3. 3 is called a fixed point of (1, 2).

Note. The group Sn is generated by all sequent transpositions (1, 2), (2, 3), . . . , (n−
1, n), that is any element of Sn can be expressed as the composition of transpositions.
In S3 we for example have (1, 2, 3) = (1, 2)(2, 3), (1, 3, 2) = (2, 3)(1, 2) and (1, 3) =
(1, 2)(2, 3)(1, 2).

Definition 2.2 (Sign of a permutation). Let σ ∈ Sn, and let s be the number of
transpositions required to compose σ. Then the function sgn : Sn → {±1} is defined
as

sgn : σ 7→ (−1)s.

If s is an even integer, then σ is called an even permutation, and vice versa for an
odd s.

Note that if σ is composed of s transpositions and τ is composed of t transpo-
sition, then their composition στ can be composed of s + t transpositions, in some
cycle decomposition of στ . The sign function is still well-defined, that is, a permu-
tation can not be expressed both as a composition of even number and of a odd
number of transpositions [Big04, Thm.12.6.1.].

The cycle type of a permutation σ ∈ Sn is an n-tuple (kmk)n
k=1 where mk is

the number of k-cycles in σ. For example, the cycle type of (1, 2)(3, 4, 5) ∈ S6 is
(11, 21, 31, 40, 50, 60) = (11, 21, 31), where in the last step the cycles of zero multiplicity
are omitted.

Another way to classify a permutation in Sn is to compare it to an integer
partition of n. An integer partition of n is a sum λ1 + λ2 + · · · + λl = n, where
l ≤ n and λi ≥ λi+1. The element (1, 2)(3, 4, 5) ∈ S6 corresponds to the partition
3 + 2 + 1 since it contains one 3-cycle, one transposition and one fixed point [Sag01,
Sect.1.1.].

Example 2.3 (S3). The elements of S3 and their signs, cycle types and corresponding
integer partitions are presented in Table 1.
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S3 (1) (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2)
Type (13) (11, 21) (11, 21) (11, 21) (31) (31)
Part. 1+1+1 2+1 2+1 2+1 3 3
Sign +1 −1 −1 −1 +1 +1

Table 1: Elements of S3.

Since the number of elements of Sn is n!, for larger n it becomes increasingly
cumbersome to describe every element of Sn, however as we will see, we can instead
study the conjugacy classes of Sn.

Recall that two elements g, g′ ∈ G are said to be conjugate if there exists an
element h ∈ G such that g′ = hgh−1. “Being conjugate in a group” is an equiva-
lence relation and the equivalence classes, called conjugacy classes, partition G into
disjoint subsets [Sag01, Sect.1.1.]. Denote by [g] the conjugacy class in G containing
g. If another element g′ is conjugate to g, then they share the same conjugacy class,
ie. [g] = [g′], and both g and g′ are said to be representatives of their class. The size
of the conjugacy class can be calculated with the centralizer of g in G, defined by

Cent(g) =
{
h ∈ G

∣∣∣ hgh−1 = g
}
,

and by the orbit-stabilizer theorem [Big04, Thm.21.3], the relationship between
Cent(g) and the elements of [g] is

|[g]| = |G|
|Cent(g)| ,

where | · | denotes the size of a set.
Returning to the symmetric group, two permutations σ and τ share conju-

gacy class if and only if they are of the same cycle type [Sag01, Sect.1.1.], [Big04,
Thm.12.5.]. Since the cycle type was linked to an integer partition of the degree of
the symmetric group, there are as many conjugacy classes in Sn as there are integer
partitions of n. For example, there are three conjugacy classes in S3, five in S4 and
seven in S5. Also, if the cycle type of a σ ∈ Sn is (kmk)n

k=1, then the size of its
centralizer is

n∏
k=1

kmkmk!,

([Sag01, Prop.1.1.1.] has a nice combinatorical proof).
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Example 2.4 (S4). The conjugacy classes of S4, along with their sizes, cycle types
and signs are presented in Table 2.

S4 (1) (1, 2) (1, 2)(3, 4) (1, 2, 3, 4) (1, 2, 3)
|Cent(σ)| 24 4 8 4 3

|[σ]| 1 6 3 6 8
Type (14) (12, 21) (22) (41) (11, 21)
Part. 1+1+1+1 2+1+1 2+2 4 3+1
Sign +1 −1 +1 −1 +1

Table 2: Classes of S4.

2.2 Linear algebra

We recall from linear algebra the concept of the trace of a square matrix (aij)n×n.
It is the sum of the elements along the diagonal,

Tr (aij) =
n∑

i=1
aii = a11 + · · · + ann,

and has the following properties:

Proposition 2.5. i) It is the sum of the eigenvalues of a matrix
[Nic18, Cor.8.6.1.].

ii) Two similar matrices have the same trace [Nic18, Thm.5.5.1.], consequently
the trace is independent of the basis chosen.

iii) It is constant under conjugation (Equivalent to ii) and also for two square
matrices A,B we have Tr AB = Tr BA, see [Nic18, Ex.2.3.30.]).

Also of importance is the kernel and image of a vector space map, a linear map
between two vector spaces.

Definition 2.6 (Kernel and image of a linear map). Let V and W be two vector
spaces and let φ : V → W be a linear map. Then the kernel and the image of the
map are defined thusly:

kerφ = {v ∈ V | φ(v) = 0} ,

im φ = {w ∈ W | ∃v ∈ V s.t. φ(v) = w} .

12



Remark 2.7. The kernel and the image of a linear map are subspaces of the domain
and codomain of the map respectively, that is kerφ is a subspace of V and im φ is
a subspace of W [HU15, Sect.5.4.].

Theorem 2.8. [HU15, Thm.12.16] Let V be a vector space and W be a vector
subspace of V . Then there exists a complementary vector subspace W ′ in V such
that W ∩W ′ = ∅ and W ∪W ′ = V . This is equivalent to saying that V is the direct
sum of W and W ′, denoted as V = W ⊕W ′.

Example 2.9. Letting V be a vector space with a subspace W , a linear map π : V →
W is called a projection of V onto W if we have that

i) π2 = π.

ii) For any v ∈ W we have that π(v) = v.

iii) If v /∈ W we have that π(v) = 0.

Hence im π = W and kerπ is a subspace of V complementary to W , that is V =
W ⊕ kerπ.

2.3 Tensor operations

For this section, let V and W be vector spaces of dimensions m and n and bases
(êi)m

i=1 and (f̂j)n
j=1. These definitions are from [Jee15] and [Yok92].

In Theorem 2.8 the direct sum of vector spaces was introduced. More gen-
erally, if V and W are any vector spaces, V ⊕W is the set of pairs (v,w) := v ⊕ w
where v ∈ V and w ∈ W . The basis of V ⊕W is constructed from the pairs êi ⊕ f̂j,
hence dim V ⊕W = dimV + dimW . In the sense of linear operators, if F ∈ GL(V )
and G ∈ GL(W ), then the direct sum of F and G is in some basis the block matrix

F ⊕G =
F 0

0 G


and it will act on the elements of V ⊕W bilinearly, that is

(F ⊕G) · (v ⊕ w) =
F 0

0 G

 · (v ⊕ w)

= (Fv) ⊕ (Gw).
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The direct sum of an arbitrary number of vector spaces is defined similarly [Ser77,
Sect.1.3.], [Sag01, Sect.1.5.].
Notation. The direct sum of n copies of a vector space V is here denoted nV . An
element of nV is an n-tuple (v1, . . . ,vn) where every vi ∈ V .
Example 2.10. The direct sum of n copies of a field K, nK, is usually denoted Kn,
for example the real space R3 is the direct sum of three pair-wise orthogonal lines.

A vector space equipped with a map

(v,w) 7→ v ⊗ w

for any v ∈ V and w ∈ W is called a tensor product of V and W and denoted
by V ⊗ W if it is linear in each constituent space1, and that the set (êi ⊗ f̂j) is a
basis for V ⊗W . The dimension of V ⊗W is dim V · dimW . An element of V ⊗W

is a linear combination of tensor products of elements from V and W . For the linear
maps F = (fij) ∈ GL(V ) and G = (gij) ∈ GL(W ) we have that their tensor product
is the mn×mn block matrix

F ⊗G = (fijG) =


f11G · · · f1mG

... . . . ...
fm1 · · · fmmG


and its action on an element v ⊗ w ∈ V ⊗W is again bilinear:

(F ⊗G) · (v ⊗ w) = (fijG) · (v ⊗ w)

= (Fv) ⊗ (Gw).

The tensor product of an arbitrary number of vector spaces is similarly defined
[Ser77, Sect.1.5.], [Sag01, Sect.1.7.].
Notation. We denote by V ⊗n the tensor product of n copies of V . This vector space
is called the nth tensor power of V .
Example 2.11. The tensor square of V is denoted by V ⊗V . An element of V ⊗V

is a linear combination of pairs of elements from V , that is they look like

∑
i,j

aijvi ⊗ v′
j.

1This means that (av1 + bv2, w) = a(v1, w) + b(v2, w) as well as (v, aw1 + bw2) = a(v, w1) +
b(v, w2) for some a, b ∈ C.

14



The dual space of V , denoted V ∗ is the set of linear maps V → C. An element
of V ∗ is a linear map φ that takes a vector from V and returns a complex number.

More generally, the set of linear maps V → W are denoted by Hom(V,W ).
An element of Hom(V,W ) is a linear map that takes a vector from V as input and
returns a vector from W , hence it is identified with the tensor product V ∗ ⊗ W

[FH04, Sect.1.1.].
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3 Representation Theory

The layout of this section is based on [FH04] and [Ser77].
Let G be a finite group written multiplicatively. We denote its size by |G| and

the action of its elements with ·, for example by g · x, sometimes abbreviated to gx.
Let V be a finite-dimensional vector space over the field of complex numbers

C. The group of invertible linear transformations of V is denoted by GL(V ). If V
is provided with a basis, usually denoted (êi)n

i=1 where n = dimV , then GL(V ) is
identified with the set of invertible n× n matrices, denoted GLn(C)[DF04, 18.1].

Definition 3.1 (Representation). [Ser77] A representation of a group G in the
vector space V is a homomorphism

ρ : G → GL(V ). (3.1)

The dimension of V , denoted dim V , is referred to as the degree of the representation.

For every g in G, there is a linear map ρg in GL(V ) that performs the group
action on V , that is

g · v = ρg(v).

The linearity of the map means that for any v,w ∈ V ,

g · (av + bw) = ag · v + bg · w,

with a, b ∈ C and also since it is a homomorphism, for any g, h ∈ G, we have

ρgh = ρgρh. (3.2)

From the homomorphism of ρ, two consequences follow.

Proposition 3.2. The homomorphism preserves identity and inverses. For the
identity element e of G and an arbitrary element g with inverse g−1 in G we have,

ρe = id and ρ−1
g = ρg−1 , (3.3)

where id is the identity transformation and ρg−1 is the map associated with the
inverse of g.



Proof. Take g as an arbitrary element of G. The first identity follows from taking
h = e in Equation 3.2:

ρeg = ρeρg.

Since eg = g for any g ∈ G we must have that ρg = ρeρg which is true if and only if
ρe = id. Now instead taking h = g−1 we have:

ρgg−1 = ρgρg−1 ,

but gg−1 = e and ρe = id, implying ρg−1 = ρ−1
g .

Notation. A vector space V provided with such a homomorphism discussed above
is said to be a representation space of G

Note. The homomorphism ρ, the set of maps {ρg}g∈G and the representation space
V may interchangeably and abusively be called the representation of G.

If a basis (êi)n
i=1 is provided for a representation space, then a matrix represen-

tation can be provided. In this case, ρg is the matrix in GLn(C) associated with the
action of g expressed in the basis provided. A matrix representation is not canonical
and is dependent on the basis chosen.

3.1 Tensor operations on representations

If we have one or more representations, we may construct additional ones using
tensor operations. Given two representations ρV : G → GL(V ) and ρW : G →
GL(W ), the following are also representations.

The direct sum of V ⊕W , given by

ρV ⊕W (v ⊕ w) = (ρV ⊕ ρW )(v ⊕ w) = ρV (v) ⊕ ρW (w).

By recursion, for a positive integer n, the direct sum of n copies of V , denoted

nV :=
n⊕

i=1
V = V ⊕ · · · ⊕ V︸ ︷︷ ︸

n times

.

The tensor product V ⊗W , given by

ρV ⊗W (v ⊗ w) = (ρV ⊗ ρW )(v ⊗ w) = ρV (v) ⊗ ρW (w).

17



By recursion, for a positive integer n, the nth tensor power of V , denoted

V ⊗n :=
n⊗

i=1
V = V ⊗ · · · ⊗ V︸ ︷︷ ︸

n times

.

3.2 Examples

This section follows [Ser77, 1.2.].

3.2.1 Trivial representations

Example 3.3 (Trivial representation). For any group G there is a trivial representa-
tion of degree 1 defined by mapping each element of G to 1, ie.

ρTriv
g = 1,

for every g ∈ G. It is clearly a homomorphism since for any g, h ∈ G we have that

ρTriv
gh = 1 = 1 · 1 = ρTriv

g · ρTriv
h .

This could be extended to any vector space by mapping g to the identity transfor-
mation of that vector space. For a vector space of dimension n, the representation
taking every g in a group to the n × n identity matrix can be described, in the
language of Section 3.1, as the direct sum of n copies of the trivial representation.

Note. The trivial representation (the mapping is trivial) is not to be confused with
the trivial zero space (the vector space containing only the zero vector).

Example 3.4 (Alternating representation of Sn). Choosing G = Sn, another degree
1 representation can be found by studying the signs, or parities, of the elements of
Sn. By [Big04, Thm.12.6.1.], the sign of a permutation is well-defined, so for any
two permutations σ and τ with respective signs (−1)s and (−1)t, their composition
has the sign

sgn(στ) = (−1)s+t = (−1)s · (−1)t = sgn(σ) · sgn(τ),

so clearly the map sgn : Sn → {±1} is a homomorphism and thus a representation
of degree 1, where even permutations are mapped to +1 and odd to −1.

18



3.2.2 Degree 1 representations of Cn

Choose G = Cn, and let g be a generator of Cn such that

Cn = {e, g, g2, . . . , gn−1} and gn = e.

Consider a map ρ : Cn → C defined as a homomorphism by ρgaρgb = ρga+b for some
integers a, b. By Equation 3.3 we have that ρe = 1, but gn = e and by induction
on Equation 3.2 we have that ρgn = (ρg)n. Then we must have that (ρg)n = 1, that
is ρg is mapped to a nth root of unity. In conclusion, for Cn we have then found n

representations of degree 1, denoted ρ0, ρ1, . . . , ρn−1, each mapping g to a nth root
of unity and the powers of g to the corresponding powers of that root of unity.

Example 3.5 (C3). The three third roots of unity are 1, ω = −1+i
√

3
2 and w2 = −1−i

√
3

2 .
Three representations of C3 are presented in table 3.

Example 3.6 (C4). The four fourth roots of unity are 1, i,−1 and −i. Four corre-
sponding representations of C4 are presented in Table 4.

Example 3.7 (C5). The five fifth roots of unity are e2πim/5, 0 ≤ m ≤ 4. Five repre-
sentations of C5 are presented in table 5.

C3 e g g2

ρ0 1 1 1
ρ1 1 ω ω2

ρ2 1 ω2 ω

Table 3: Three reprs. of
C3. ω = e2πi/3.

C4 e g g2 g3

ρ0 1 1 1 1
ρ1 1 i −1 −i
ρ2 1 −1 1 −1
ρ3 1 −i −1 i

Table 4: Four reprs. of C4.

C5 e g g2 g3 g4

ρ0 1 1 1 1 1
ρ1 1 ω ω2 ω3 ω4

ρ2 1 ω2 ω4 ω ω3

ρ3 1 ω3 ω ω4 ω2

ρ4 1 ω4 ω3 ω2 ω

Table 5: Five reprs. of C5.
ω = e2πi/5.

3.2.3 Permutation representation

Given a group G, we chose a finite set X that G acts on by permutation. Let V be
a vector space spanned by a natural basis (êx)x∈X , then we have a representation
ρPerm : G → GL(V ) defined by its action on the basis vectors by, for any g ∈ G,

ρPerm
g : êx 7→ êgx,

19



that is ρPerm inherited the group action of G on X. It is a homomorphism since for
any g, h ∈ G we have

g · (h · êx) = g · êhx

= êghx

= (gh) · êx

for any x ∈ X. In the (êx)x∈X-basis, ρPerm
g are permutation matrices, which have a

one once in every row and column, and the rest of the entries are zero.
Letting G = Sn, it would be appropriate to choose the set X = {1, 2, . . . , n} and

to let any σ ∈ Sn permute any 1 ≤ i ≤ n by i 7→ σ(i). Choosing a basis (êi)n
i=1 to

span a vector space V , we define a representation ρPerm : Sn → GL(V ) defined for
any σ ∈ Sn as

ρPerm
σ : êi 7→ êσ(i)

for any 1 ≤ i ≤ n. In this basis, the corresponding set of matrix representations are
the permutation matrices

ρPerm
σ = (rij)n×n, where rij = δj,σ(i) =

1, if j = σ(i),

0, otherwise,

in which the ith column has a 1 in the σ(i)th row, and the rest of the rows have a 0.
Under this action, a vector

(a1, a2, . . . , an) = a1ê1 + a2ê2 + · · · + anên ∈ V

is mapped to

(aσ−1(1), aσ−1(2), . . . , aσ−1(n)) = a1êσ(1) + a2êσ(2) + · · · + anêσ(n) ∈ V.

The dimension of V is |X|, for example the permutation representation of Sn is
of degree n.

Example 3.8 (Permutation representation of S2). The symmetric group of degree 2
has two elements, S2 = {(1), (1, 2)} and their matrix representations in ê1, ê2-space
are presented in Table 6.
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ρPerm
(1) =

(
1 0
0 1

)
, ρPerm

(1,2) =
(

0 1
1 0

)

Table 6: Matrix representations of S2

Example 3.9 (Permutation representation of S3). Likewise, representations of S3 are
presented in Table 7.

ρPerm
(1) =

1 0 0
0 1 0
0 0 1

, ρPerm
(1,2,3) =

0 0 1
1 0 0
0 1 0

, ρPerm
(1,3,2) =

0 1 0
0 0 1
1 0 0

,

ρPerm
(1,2) =

0 1 0
1 0 0
0 0 1

, ρPerm
(1,3) =

0 0 1
0 1 0
1 0 0

, ρPerm
(2,3) =

1 0 0
0 0 1
0 1 0

.

Table 7: Matrix representations of S3

Example 3.10 (Permutation representation of S4). Yet again, matrix representations
of some elements of S4 are presented in Table 8. The elements chosen are one
representative from each conjugacy class of S4.

ρPerm
(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, ρPerm
(1,2) =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

, ρPerm
(1,2)(3,4) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

,

ρPerm
(1,2,3) =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

, ρPerm
(1,2,3,4) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

.

Table 8: Some matrix representations of S4

3.2.4 Regular representation

Following the same reasoning as in the previous section, but instead we let G act on
itself, ie. X = G. The corresponding vector space V is spanned by the basis (êg)g∈G

constructed from the elements of G. The regular representation of G in V is then a
map ρReg : G → GL(V ) defined by g · êh = êgh for any g, h ∈ G.
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The dimension of V is |G|, for example the regular representation of Cn is of
degree n and for Sn it is of degree n!, a number which grows increasingly quick for
larger n, however the regular representation will be shown to be key in finding every
representation of a group.

Example 3.11 (Regular representation of C3). For G = C3 we calculate the action of
C3 on the ê, ĝ, ĝ2-basis thusly:


e · ê = ê,

e · ĝ = ĝ,

e · ĝ2 = ĝ2,


g · ê = ĝ,

g · ĝ = ĝ2,

g · ĝ2 = ê,


g2 · ê = ĝ2,

g2 · ĝ = ê,

g2 · ĝ2 = ĝ,

hence the permutation matrices in the ê, ĝ, ĝ2-basis are

ρReg
e = id, ρReg

g =


0 0 1
1 0 0
0 1 0

 , ρReg
g2 =


0 1 0
0 0 1
1 0 0

 .

Let’s choose a new basis inspired by the third roots of unity 1, ω and ω2:


f̂1 = ê + ĝ + ĝ2,

f̂2 = ê + ω2ĝ + ωĝ2,

f̂3 = ê + ωĝ + ω2ĝ2,

where ω = e2πi/3, corresponding to the change-of-basis matrix

P =


1 1 1
1 ω2 ω

1 ω ω2

 , with inverse P−1 = 1
3


1 1 1
1 ω ω2

1 ω2 ω

 .

Now, the matrices of C3 in this new basis are

ρReg
e = P−1 · id · P = id,

ρReg
g = P−1 ·


0 0 1
1 0 0
0 1 0

 · P =


1 0 0
0 ω 0
0 0 ω2

 , and
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ρReg
g2 = P−1 ·


0 1 0
0 0 1
1 0 0

 · P =


1 0 0
0 ω2 0
0 0 ω

 .

We can clearly see that the regular representation of C3 is the direct sum of the three
degree 1 representations found in Table 3, eg.

ρReg
g = (1) ⊕ (ω) ⊕ (ω2) = ρ0

g ⊕ ρ1
g ⊕ ρ2

g

after the change of basis.

3.3 Subrepresentations

As laid out in [FH04, Sect.1.2.], we are looking for representations which are said to
be “atomic” or “indivisible” and conversely, for any arbitrary representation we wish
to find how it is composed of these indecomposable representations. To proceed we
need the notion of a vector space map that respects or conserves the group action.

Definition 3.12 (G-linear map). [FH04, Sect.1.1.] Let V and W be two represen-
tation spaces of a group G. A vector space map φ : V → W is called a G-linear map
if it commutes with, the group action of G, ie. for any v ∈ V and g ∈ G we have

φ(g · v) = g · φ(v),

or in terms of the maps ρV
g : G → GL(V ) and ρW

g : G → GL(W ),

φ ◦ ρV
g (v) = ρW

g ◦ φ(v).

Equivalently one can say that the diagram in Figure 1 commutes for every g ∈ G.

V W

V W

φ

g· g·

φ

Figure 1: The map φ is G-linear if the diagram commutes for every g ∈ G.
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Consider the case where W is a subspace of V left fixed by G, that is gW ⊆ W

for all g ∈ G. Such a subspace is called G-invariant. Let ρV be a representation of G,
then the restriction of ρV to W , here denoted ρV |W , is a isomorphism (and then also
a homomorphism) of W onto itself since W is G-invariant, hence ρV |W : G → GL(W )
is a representation of G in the subspace W of V , motivating the following definition:

Definition 3.13 (Subrepresentation). Let G be a finite group and let ρ be a rep-
resentation of G in a vector space V . A restriction of ρ to a G-invariant vector
subspace W of V is called a subrepresentation of ρ.

Example 3.14 (Trivial subspaces). Any representation has itself as well as the zero
space as subrepresentations. These are referred to as non-proper or trivial subrep-
resentations and usually omitted.

3.3.1 Proper subrepresentations

Let G be any group and let us study its permutation and regular representations.

Example 3.15 (Trivial representation inside the permutation representation). [Sag01,
Example 1.4.3.] Let G act on a set X = {x1, x2, . . . , xk}, where k = |X|, and let V be
the vector space spanned by the basis (x̂1, x̂2, . . . , x̂k). Consider the one-dimensional
subspace of V spanned by the sum of all basis vectors, ie.

W = Span{x̂1 + x̂2 + · · · + x̂k}.

A vector w ∈ W is a scalar multiple of this sum, and for any g ∈ G, the action of g
on w will simply reorder this sum and return the same w, that is for any g ∈ G, we
have that ρV |W

g = 1. Thus W is a G-invariant subspace of V and the permutation
representation has the trivial representation as a subrepresentation.

Example 3.16 (Trivial representation inside the regular representation). [Sag01, Ex-
ample 1.4.4.] Similarly to the last example, we span a vector space V by a basis
(ĝ1, ĝ2, . . . , ĝk) for every gi ∈ G, where k = |G|, and consider the one-dimensional
subspace

W = Span{ĝ1 + ĝ2 + · · · + ĝk}.

Completely analogous to the last example, W is shown to be a G-invariant sub-
space of V and the regular representation also has the trivial representation as a
subrepresentation.
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Example 3.17 (Alternating representation inside the regular representation of Sn).
[Sag01, Example 1.4.4.] Let G = Sn, then for the regular representation, V is
spanned by a basis vector for every σ ∈ Sn. Let W be the subspace of V spanned
by the sum ∑

σ∈Sn
sgn(σ)êσ. The action of a τ ∈ Sn on a w ∈ W is

τ(w) = τ · a
∑

σ∈Sn

sgn(σ)êσ

= a
∑

σ∈Sn

sgn(σ)êτσ

= a
1

sgnτ
∑

σ∈Sn

sgn(τσ)êτσ

= {Scalar factor} · w ∈ Span(w),

where a ∈ C, hence W is a G-invariant subspace of V and the alternating represen-
tation is also found inside the regular representation of the symmetric group.

3.3.2 Subrepresentations as a kernel

From linear algebra, we are familiar with the kernel and image of a map (see Defi-
nition 2.6).

Proposition 3.18 (Kernel and image of a G-linear map). Let V and W be repre-
sentation spaces of a group G and let φ : V → W be a G-linear map. Then the
kernel and the image of φ are also representations of G and more specifically, kerφ
is a subrepresentation of V and im φ is a subrepresentation of W .

Proof. i) Let v ∈ kerφ. Then g · φ(v) = 0 since by definition φ(v) = 0, but
then we must also have φ(g · v) = 0 since φ is a G-linear map, implying that
g · v ∈ kerφ. Since this holds for any g ∈ G and v ∈ kerφ, the kernel of φ is
a G-invariant subspace of V and a subrepresentation of V .

ii) For a w ∈ im φ, by definition there exists a v ∈ V such that φ(v) = w. Since
g · v ∈ V , then we have that φ(g · v) ∈ W . This implies that g ·φ(v) is also in
W . Since this holds for any g ∈ G and v ∈ V , the image of φ is a G-invariant
subspace of W and a subrepresentation of W .

Recall from linear algebra the existence of complementary vector subspaces of
a vector space (Theorem 2.8). Is there a similar property of subrepresentations?
Consider the case when W is a subrepresentation of V and let π : V → W be the
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projection of V onto W . Recall (Theorem 2.8) that for each subspace W of V there
exists a complementary and disjoint subspace W ′ in V such that V = W ⊕W ′. This
means that every v ∈ V is partitioned into w ⊕ w′ where w ∈ W and w′ ∈ W ′ such
that 

π(v) = w,

π(w) = w and

π(w′) = 0.

The image of the projection is clearly W and the kernel is W ′, however it is not
clear that π a G-linear map.

Proposition 3.19 (Existence of complementary subrepresentations). Let ρ be a
representation of a finite group G in a finite-dimensional vector space V . Let W
be a G-invariant subspace of V . Then there exists a G-invariant subspace W ′ of V
complementary to W such that V = W ⊕W ′.

Proof. By Proposition 3.18 we know that a G-linear map from one representation
space V to another W has its kernel as a subrepresentation of V . If we can find such
a G-linear map from V to a G-invariant subspace W we are done. The projection
π may not generally be a G-linear map, instead we consider taking the average of π
over G,

π̄ := 1
|G|

∑
g∈G

ρg · π · ρ−1
g ,

and see if it conserves the action of G. Note that π̄ is still a projection of V onto W
since g preserves W . Now, does π̄ · ρg = ρg · π̄ hold for every g ∈ G? Equivalently,
let’s consider

ρg · π̄ · ρ−1
g = 1

|G|
∑
h∈G

ρg · ρh · π · ρ−1
h · ρ−1

g (Def. of π̄)

= 1
|G|

∑
h∈G

ρgh · π · ρ−1
gh (ρ homom., (gh)−1 = h−1g−1)

= 1
|G|

∑
g′∈G

ρg′ · π · ρ−1
g′ (Let g′ = gh)

= π̄. (Def. of π̄)

So, π̄ · ρg = ρg · π̄ for every g ∈ G and thus π̄ : V → W is a G-linear map, which
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means that its kernel is a G-invariant subspace of V complementary to W such that
V = W ⊕ ker π̄.

3.3.3 The standard represention of Sn

In Example 3.15, the trivial representation was found to be a subrepresentation
of the permutation representation. Let G = Sn and let V be the permutation
representation and assign it the basis (êi)n

i=1. The one-dimensional subspace W

spanned by the sum of all êi was found to be the trivial representation, then by
Proposition 3.19, there exists another subrepresentation W ′ of V complementary to
W . The dimension of W ′ is n− 1. Let’s introduce to V an inner product (·|·) that
fulfills the expected properties, in particular:

(êi|êj) = δi,j =

1, if i = j,

0, if i ̸= j,

for the basis (êi)n
i=1. Then the basis (f̂j)n−1

j=1 of W ′ can be constructed by ensuring
that each f̂j is orthogonal to the basis vector of W , that is

(
f̂j

∣∣∣∣∣
n∑

i=1
êi

)
= 0

for every 1 ≤ j ≤ n − 1. One can see that one such basis is found by for example
choosing every basis vector f̂j to be the difference of two sequent êi, that is choos-
ing the basis (êj − êj+1)n−1

j=1 for W ′. This is called the Standard representation of
Sn [Sag01, Sect.1.5.].

Example 3.20 (Standard representation of S3). The matrices of the standard repre-
sentation is found by studying the action inherited from S3 on the basis

f̂1 = ê1 − ê2,

f̂2 = ê2 − ê3.

For example,

(1, 2) · f̂1 = (1, 2) · (ê1 − ê2) = ê2 − ê1 = −f̂1, and

(1, 2) · f̂2 = (1, 2) · (ê2 − ê3) = ê1 − ê3 = f̂1 + f̂2,
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hence ρStan
(1,2) = ( −1 1

0 1 ). The matrices are presented in Table 9.

ρStan
(1) =

(
1 0
0 1

)
, ρStan

(1,2,3) =
(

0 −1
1 −1

)
, ρStan

(1,3,2) =
(

−1 1
−1 0

)
,

ρStan
(1,2) =

(
−1 1
0 1

)
, ρStan

(1,3) =
(

−1 0
0 −1

)
, ρStan

(2,3) =
(

1 0
1 −1

)
.

Table 9: Matrices of the standard representations of S3

If the trivial representation corresponds to the one-dimensional sum of all basis
vectors of the permutation representation of Sn (in S3 this would be the diagonal
through the origin and the point (1, 1, 1)) then the standard representation corre-
sponds to the (n− 1)-dimensional hyperplane perpendicular to that line. Again for
S3, this is the plane intersecting the origin perpendicular to the line through the
origin and the point (1, 1, 1).

Example 3.21 (Decomposition of the permutation representation of S3). Letting V
be a permutation representation space of S3, it was found to have two complementary
subrepresentations W and W ′, denoted the trivial and the standard representations
respectively. In the ê1, ê2, ê3-basis, the matrix for (1, 2) is by Example 3.9

ρPerm
(1,2) =


0 1 0
1 0 0
0 0 1

 .

Let’s consider a basis change


f̂1 = ê1 + ê2 + ê3

f̂2 = ê1 − ê2

f̂3 = ê2 − ê3

with corresponding change-of-basis matrix

P =


1 1 0
1 −1 1
1 0 −1

 , P−1 = 1
3


1 1 1
2 −1 −1
1 1 −2

 ,

in accordance with the bases of the trivial and standard representations. Then the
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matrix for (1, 2) in this new basis is

ρPerm
(1,2) = P−1 ·


0 1 0
1 0 0
0 0 1

 · P =


1 0 0
0 −1 1
0 0 1


= ρTriv

(1,2) ⊕ ρStan
(1,2).

The same calculations on the other elements of S3 confirm that the permutation
representation of S3 decomposes to the direct sum of the trivial and standard rep-
resentations.

3.4 Irreducible representations

In Section 3.3 we found that a given representation can be divided into complemen-
tary subrepresentations, now we introduce the notion of an “indivisible” representa-
tion.

Definition 3.22 (Irreducible representation). If there are no proper and non-trivial
G-invariant subspaces of a representation V , it is said to be irreducible.

We have already met a few of these.

Example 3.23 (Degree 1 representations are irreducible). [Sag01, Example 1.4.2.]
A vector space of dimension 1 has no other subspace other than itself and the zero
space, thus it is irreducible. Hence the trivial representation of degree 1 of any group
and the alternating representation of Sn discussed in Section 3.2 and the degree 1
representations of Cn found in Section 3.2.2 are irreducible representations of their
respective groups.

The results from Proposition 3.19 invites the notion of complete reducibility of
an arbitrary representation. This is presented in the following theorem (really a
corollary of Proposition 3.19).

Theorem 3.24 (Maschke’s theorem). Let G be a finite group and let V be any
representation space of G of finite dimension. Then V is composed as a direct sum
of a finite number of subrepresentations Wi of V , that is

V = W1 ⊕W2 ⊕ · · · ⊕Wk

=
k⊕

i=1
Wi.
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Proof. The theorem will be proved using induction on complementary subrepresen-
tations. If V itself is irreducible, then we are done. If V is not irreducible, then by
definition there exists a non-trivial and non-zero subrepresentation W of V , and also
by Proposition 3.19, there exists a complementary subrepresentation W ′ of V such
that V = W ⊕ W ′. If both W or W ′ are irreducible, then we are done, if either or
both are not, we then apply Proposition 3.19 on them. By the induction hypothesis
and by the fact that the dimension of V is finite, V will be decomposed into a direct
sum of a finite number of subrepresentations and we are done.

Maschke’s theorem tells us it is possible to decompose any arbitrary represen-
tation into the direct sum of irreducible representations, however it does not say
anything about the uniqueness of a given composition. We need to study which
kinds of G-linear maps that are permitted between two irreducible representations,
a key insight of Schur’s Lemma.

Theorem 3.25 (Schur’s Lemma). [FH04, Lemma.1.7.], [Ser77, Prop.2.4.] Let V
and W be irreducible representations of a group and let φ : V → W be a G-linear
map. Then:

i) Either φ is an isomorphism, or φ is the zero map, φ = 0.

ii) If V and W are isomorphic, then φ = λ · id, for some λ ∈ C.

Proof. Item i) follows from the G-linearity of φ, since by Proposition 3.18, kerφ
is a subrepresentation of V , but V is irreducible, hence kerφ must then be all of
V (φ = 0) or {0} (φ is injective). Likewise, im φ is a subrepresentation of the
irreducible W , hence im φ is either W (φ is surjective) or {0} (φ = 0). Combining
the two cases, we must have that either φ is an isomorphism, or that φ = 0.

Consider the case where V and W are isomorphic and let λ ∈ C be an eigenvalue
of φ. The map φ−λ · id is also a G-linear map since it is the sum of two such maps.
Since λ is chosen to be a eigenvalue of φ, ker(φ − λ · id) is non-empty (it contains
at least the eigenvector associated with λ) so by i) we must have that φ − λ · id is
the zero map, or equivalently φ = λ · id, and ii) follows.

In other words, there are no non-trivial maps between two inequivalent irre-
ducible representations.
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Schur’s Lemma tells us that if V is an arbitrary representation of some group,
then it is decomposed into the direct sum of irreducibles Wi by

V = m1W1 ⊕m2W2 ⊕ · · · ⊕mkWk

=
k⊕

i=1
miWi,

where mi is the number of occurences of Wi in V . This number is called the multi-
plicity of Wi in V .

Schur’s lemma also allows us to say something about the irreducible represen-
tations of an abelian group, that is a group in which every element commutes with
every other element (for example Cn).

Corollary 3.26. Any irreducible representation of an abelian group is of degree 1.

Proof. [FH04, Mentioned in passing in Sect.1.3.] Let ρ : G → GL(V ) be an irre-
ducible representation of an abelian group G. Consider the linear map ρh of some
h ∈ G, then for any g ∈ G we have

ρh · ρg = ρgh (ρ is a homomorphism)

= ρhg (G abelian)

= ρh · ρg. (homomorphism again)

We have found that ρh : V → V is a G-linear map, provided G is an abelian group.
Then, by Schur’s Lemma ii) it is a scalar multiple of the identity function, let’s say
ρh = λ · id for some λ ∈ C. Let v ∈ V , then we have that

φ(v) = λid · v

= λv ∈ Span(v) (id fixes v)

Now, this means that the action on ρg on an arbitrary v ∈ V changes v by a scalar
factor, hence the one-dimensional Span(v) is a G-invariant subspace of V . However,
V was taken to be an irreducible representation, hence V is identical to this subspace
and dim V = 1.
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4 Character Theory

This section is based on [Ser77, Ch.2.], as well as [FH04, Sect.2.2.].
Let V be a vector space with basis (êi)n

i=1 and let ρ : G → GL(V ) be a repre-
sentation. Now, for each g ∈ G, we define a function χ : G → C to be the trace
of the matrix of g in V . In other words χ(g) = Tr (ρg). This function is called the
character of a representation. Why is it useful when studying representations?

4.1 Basic properties of characters

Proposition 4.1. [Ser77, Prop.2.1.] The trace function characterizes the represen-
tation in some relevant ways:

i) The character of the identity element of G is the degree of the representation,
χ(e) = dim V .

ii) The character of an element in G is the complex conjugate of the character of
the inverse element, χ(g−1) = χ(g).

iii) The character is constant under conjugation, if g, h ∈ G are conjugate it
implies χ(g) = χ(h).

Proof. i) By Proposition 3.2, ρe is the n × n identity matrix, where n = dimV ,
hence χ(e) = Tr id = n = dimV .

ii) We are free to choose an orthonormal basis, then ρg is a unitary matrix with
roots of unity {λi} as eigenvalues [Nic18, Exercise.8.6.15.]. The character of
g−1 is then

χ(g−1) = Tr ρg−1 (Def. of character)

= Tr ρ−1
g (Prop.3.2.)

=
∑

i

1
λi

(Eigenvalues of unitary matrix)

=
∑

i

λi (Reciprocal of root of unity)

= Tr ρg (Trace is sum of eigenvalues)

= χ(g). (Def. of character)

iii) It is known that the trace is conserved under conjugation (see Prop.2.5.).



Now we properly introduce the character.

Definition 4.2. Let V be a representation space of a group G of dimension n and
let ρg = (rij) be the matrix representation of a g ∈ G. Then the character of g in V
is defined to be the trace of the matrix representation, that is

χV (g) := Tr ρg =
n∑

i=1
rii.

Notation (Group character). A “character vector”, simply called the (group) char-
acter, of G can be defined as the tuple containing the character of every element
of G, ie. χ = (χ(g))g∈G. If the group G is partitioned into the conjugacy classes
[k1], [k2], . . . , [kl], then as an ink-saving measure the group character can be abbrevi-
ated to contain one representative ki from every class [ki], ie. χ = (χ(ki))l

i=1, since
the character is fixed under conjugation.

Example 4.3 (Degree 1 representations). The trace of a 1 × 1 matrix is of course its
only element, hence the character of any representations of degree 1 is the represen-
tation itself. For example, the trivial character of any group is (1, . . . , 1).

Example 4.4 (Character of a permutation matrix). The character is the sum along
the diagonal of a matrix, which in a permutation matrix (eg. the permutation and
regular representations) correseponds to the fixed points of the group action. For
example the element (1, 2) ∈ S3 has one fixed point (3) and thus has the character
1 in the permutation representation.

Notation (Character table). A character table is an array of characters of a group.
Every column represents a conjugacy class and every row a representation. The
trivial representation is placed in the first row. The sizes of every conjugacy class is
placed under each class. An example is shown in Table 10.

Example 4.5 (S3 so far). So far, we have described the trivial, alternating, permu-
tation and standard representations of S3 (Examples 3.3, 3.4, 3.9, 3.20). These
representations are presented in Table 11.

4.2 Characters and tensor operations

Addition and multiplication of two characters χ and ψ are defined component-wise
thusly:

χ+ ψ = (χ(g) + ψ(g))g∈G, and
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G · · · [g] · · ·
|[g]| · · · |[g]| · · ·

Triv. · · · 1 · · ·
... ...
V · · · χV (g) · · ·
... ...

Table 10: Layout of a character table
of a group G.

S3 [(1)] [(1, 2)] [(1, 2, 3)]
|[σ]| 1 3 2

Triv. 1 1 1
Alt. 1 −1 1

Perm. 3 1 0
Stan. 2 0 -1

Table 11: Character table of S3.

χ · ψ = (χ(g) · ψ(g))g∈G.

To apply character theory on the tensor toolbox presented in Section 3.1, we
propose the following:

Proposition 4.6. Let V and W be representation spaces of a group G and let χV

and χW be its characters in those representations. Then we propose:

i) The character in V ⊕W is χV + χW .

ii) The character in V ⊗W is χV · χW .

Proof. Statement i) and ii) are consequences of Section 2.3.

i) The trace of ρV
g ⊕ ρW

g is clearly the sum of the traces of ρV
g and ρW

g .

ii) Likewise, the trace of ρV
g ⊗ ρW

g is found to be the product of the traces of ρV
g

and ρW
g .

The character of the direct sum or tensor product of an arbitrary number of
representations are defined similarly.

Example 4.7 (S3 again). The permutation representation was earlier found to be the
direct sum of the trivial and the standard representations, in fact

χTriv + χStan = (1, 1, 1) + (2, 0,−1) = (3, 1, 0) = χPerm.

Example 4.8 (S4 so far). For S4, we know the trivial representation and the alter-
nating representation.

Using Example 4.4, we can find the permutation character (4, 2, 1, 0, 0) by count-
ing the number of fixed points of every class, equivalently we count the number of
ones in the integer partitions of Table 2.
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We may also calculate the character of the standard representation by subtracting
the trivial character from the permutation character. These representations are
presented in Table 12.

S4 [(1)] [(1, 2)] [(1, 2, 3)] [(1, 2, 3, 4)] [(1, 2)(3, 4)]
|[σ]| 1 6 3 6 8

Triv. 1 1 1 1 1
Alt. 1 -1 1 -1 1

Stan. 3 1 0 -1 -1
Perm. 4 2 1 0 0

Table 12: Character table of S4.

Example 4.9 (Tensor power of alternating representation). The character of the al-
ternating representation of a symmetric group is χAlt = (1,−1, 1,−1, . . . , 1), hence
the nth tensor power of the alternating representation has the character

χn
Alt = (1, (−1)n), 1, (−1)n, . . . , 1)

=

χTriv, if n is even, and

χAlt, if n is odd.

That is, an even tensor power is isomorphic to the trivial representation and an odd
power is isomorphic to the alternating representation.

4.3 Orthogonality relations of characters

This section is based on [FH04, Sect.2.2.].
Continuing the discussion of Section 3.4, we want find characters of irreducible

representations. We call those irreducible characters. Let V be an arbitrary repre-
sentation and let W be an irreducible representation of some group G.

We denote by Hom(V,W ) the set of all homomorphisms from V to W , and by
the superscript (·)G we denote a subset which is fixed by G, for example

V G = {v ∈ V | g · v = v, ∀g ∈ G} (4.1)

is the subspace of V in which every element is fixed by all of G. Also, Hom(V,W )G

is the set of all G-linear maps V → W , and the set of linearly independent G-linear
maps for a basis for Hom(V,W )G.
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Proposition 4.10. The multiplicity of W in V is dim Hom(W,V )G, that is the
number of (linearly independent) G-linear maps from W to V . Conversely, if W is
arbitrary and V is irreducible, then dim Hom(V,W )G is the multiplicity of V in W .
If both V and W are irreducible, then by Schur’s Lemma we must have that

dim Hom(V,W )G =

1, if V and W are isomorphic, and

0, else.
(4.2)

Now, let V G be defined as the fixed points of V under the action of G, as defined
in Equation 4.1. A map from V G to itself is called an endomorphism of V G and
we set End(V G) := Hom(V G, V G). Such a map is not just a representation of G,
but also a trivial representation by definition, then the number of all such maps,
denoted dim End(V G) is the multiplicity of the trivial representation in V .

The map associated with any g is not generally a G-linear map, however as we
have previously seen, we can construct such a map by averaging over G, that is we
define a map φ : V → V by

φ = 1
|G|

∑
g∈G

g,

which is G-linear since for some h ∈ G,

h · φ(h−1 · v) = 1
|G|

∑
g∈G

(hgh−1) · v

= φ(v)

for any v ∈ V , also it is projection of V onto V G since the image of φ is V G and
clearly it then also is an endomorphism of V G.

Now, the eigenvalues of a projection are 1 for every eigenvector in the image
and 0 for every eigenvector in the kernel, hence the trace of the projection φ is the
dimension of V G, that is

dim V G = Tr φ = Tr
 1

|G|
∑
g∈G

g


= 1

|G|
∑
g∈G

Tr g (Trace is linear operator)
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= 1
|G|

∑
g∈G

χV (g) (Def. of character),

hence

dim V G = 1
|G|

∑
g

χV (g). (4.3)

Now, let’s apply Equation 4.3 to the set of all maps V → W , that is V becomes
Hom(V,W ), where both V and W are irreducible representations of G. Earlier
in Section 2.3, Hom(V,W ) was identified with V ∗ ⊗ W , hence the character of
Hom(V,W ) is χV (g) · χW (g), then by Equations 4.2 and 4.3 we have:

dim Hom(V,W )G = 1
|G|

∑
g

χV (g) · χW (g) =

1, if V ∼= W , and

0, if V ̸= W .

We have arrived at an expression that looks familiar, interpreting characters as
complex-valued vectors in some vector space, we have found an inner product of
characters.

Definition 4.11 (Inner product of characters). Let φ and ψ be the group characters
of a group G, then we define the inner product of characters as

(φ|ψ) := 1
|G|

∑
g∈G

φ(g)ψ(g).

It is an inner product since it satisfies the expected properties:

i) We have

(φ|ψ) = 1
|G|

∑
g∈G

φ(g)ψ(g) (Def. inner product)

= 1
|G|

∑
g∈G

φ(g)ψ(g) (a = a for all a ∈ C)

= 1
|G|

∑
g∈G

ψ(g)φ(g) (Scalars commute)

= (ψ|φ). (Def. inner product)
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ii) For a, b ∈ C we have

(φ|aψ1 + bψ2) = 1
|G|

∑
g∈G

φ(g) (aψ1(g) + bψ2(g)) (Def.)

= a
1

|G|
∑
g∈G

φ(g)ψ1(g) + b
1

|G|
∑
g∈G

φ(g)ψ2(g)

= a(φ|ψ1) + b(φ|ψ2) (Def.)

for any characters φ, ψ1 and ψ2, hence it is linear in ψ.

iii) Lastly, we have

(φ|φ) = 1
|G|

∑
g∈G

φ(g)φ(g)

= 1
|G|

∑
g∈G

|φ(g)|2 (Def. modulus)

for any character φ ̸= 0, hence (ψ|ψ) > 0 and (ψ|ψ) ∈ R since every summand
is positive and real.

We have also shown the following property of irreducible representations:

Theorem 4.12 (Irreducibility criterion). The characters of irreducible represen-
tations are orthonormal. In other words, let χ ̸= ψ be characters of irreducible
representations of G (called irreducible characters), then we have that

i) (χ|χ) = 1, and

ii) (χ|ψ) = 0.

In other words, irreducible characters create an orthonormal system, with these
irreducibles as a basis.

Now, let V be the direct sum of irreducible representations Wi of G such that

V =
⊕

i

Wi.

If χi is the character of Wi, then by Proposition 4.6 the character of V is φ = ∑
i χi.

Let χ be the character of an irreducible representation of G, then we have that
(φ|χ) = ∑

i(χi|χ). Since χ and all of the χi are irreducible characters, all of the

38



inner products (χi|χ) are either 1 or 0, depending on if χ and χi are of isomorphic
representations. Hence, (φ|χ) will return the multiplicity of χ in φ.

Remark 4.13. This also means that the composition of a representation φ into a
direct sum of irreducible subrepresentations χi is unique up to isomorphism, since
two isomorphic compositions would have the same decomposition, that is it would
be constructed the same way of the same irreducibles.

Remark 4.14. The converse is also true, if two representations have the same charac-
ter, then they are isomorphic since they contain the same irreducible representations.

Note. Let V be a representation with the composition

V =
k⊕

i=1
miWi,

where the mi are the multiplicities of the irreducible Wi. If the character of Wi is
denoted by χi, then the character of V is

φ =
k∑

i=1
miχi,

where mi = (φ|χi). Taking the inner product of φ with itself we have

(φ|φ) =
k∑

i=1
m2

i . (4.4)

Theorem 4.15. The character φ is irreducible if and only if (φ|φ) = 1.

Proof. If φ is irreducible, then by Theorem 4.12 we have that (φ|φ) = 1. For the
converse statement, if the sum in Equation 4.4 is equal to one, we must have that
only one of the mi is equal to 1, and the rest are equal to 0. Then V is composed of
only one irreducible character, hence it is irreducible.

Example 4.16 (S3). The standard representation of S3 is irreducible since

(χStan|χStan) = 1
6(22 + 3 · 02 + 2 · (−1)2)

= 1.

hence the standard representation of S3 is irreducible. The trivial and the standard
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representations are inequivalent since

(χTriv|χStan) = 1
6(2 + 3 · 0 − 2) = 0.

We already know that the permutation representation is not irreducible. This is
verified by

(χPerm|χPerm) = 1
6(9 + 3 · 1 + 0) = 2.

Example 4.17 (S4). Likewise, the standard character of S4, χStan = (3, 1, 0,−1,−1),
is also irreducible since

(χStan|χStan) = 1
24(32 + 3 · 02 + 2 · (−1)2)

= 1.

4.4 Decomposition of the regular representation

Earlier, the regular representation of any group where found have the trivial repre-
sentation as a subrepresentation, likewise, the alternating group was found in the
regular representation of Sn. Now, we will completely decompose the regular repre-
sentation of any group.

For a g ∈ G, it will act on a basis vector êh of the regular representation space
V by g · êh = êgh and the resulting matrix ρg can then be constructed by studying
the action of this g ∈ G on every êh, where h ∈ G. However, the trace of this
matrix, ie. the character χReg(g), only depends on the values on the diagonal, which
corresponds to the fixed points under the action of g. What this means is that the
“hth” column will have an 1 in the “hth” row if and only if gh = h, which holds only
if g = e since only e leaves every other element of G fixed, hence ρg is a |G| × |G|
permuation matrix with trace

χReg(g) =

|G|, if g = e,

0, otherwise,
(4.5)

and the character of the regular representation is then

χReg = (|G|, 0, . . . , 0)
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For any group G. Now taking the inner product of it with itself we have,

(χReg|χReg) = 1
|G|

∑
g∈G

χReg(g)χReg(g)

= 1
|G|

χReg(e)χReg(e) (All vanish except g = e.)

= 1
|G|

(dim V )2 (Prop. 4.1).

= 1
|G|

|G|2 (From def of V .)

= |G|.

Applying Equation 4.4, we have that (χReg|χReg) is the square sum of the multiplic-
ities of every irreducible subrepresentation of the regular representation, hence we
have:

∑
i

m2
i = |G|. (4.6)

If {Wi} is the family of all irreducible representations of a group with respective
characters {χi}, then the regular representation V is a direct sum of these with
(not-necessarily non-zero) multiplicities {mi}. Then we have that the multiplicity
of some irreducible Wj with character χj in χReg is

mj = (χReg|χj)

=
∑

i

mi(χi|χj) (Reg. is sum of miχi)

= 1
|G|

∑
i

mi

∑
g∈G

χi(g)χj(g). (Def. of inner product.)

= 1
|G|

∑
i

miχi(e)χj(e) (χi vanish for all g ̸= e.)

= 1
|G|

∑
i

mi dimWi dimWj (Character of e is degree of repr.)

= dimWj
1

|G|
∑

i

mi dimWi

= dimWj
1

|G|
dim V (V =

∑
i

miWi)

= dimWj
1

|G|
|G| (From def. of regular repr.)
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= dimWj.

We have shown the following:

Theorem 4.18. Every irreducible representation Wi of a group appears exactly
dimWi times in the regular representation V of the group. In other words, the
regular representation is decomposed as

V =
⊕

i

dim(Wi)Wi.

Returning to Equation 4.6, we have the following:

Corollary 4.19. The square sum of the degrees of every irreducible representations
of a group is the order of the group.

Remark 4.20. By Theorem 4.18 and Corollary 4.19, along with the orthogonality
relations and irreducibility criterion, we can use character theory to find every
irreducible representation of a group.

For example, to ensure we have found an irreducible representations of a group,
we take the inner product of its character with itself, expecting 1 if it is irreducible.
To ensure we have found every irreducible representation, we calculate the square
sum of the degrees of those we found so far. If it does not add up to the order of
the group, then we can conjecture possible degrees of the missing irreducibles.

4.5 Examples

Notation. For this section, a representation space may be denoted by its designa-
tion in the subscript, that is a trivial representation space is denoted by VTriv, a
permutation by VPerm, etc.

4.5.1 Characters of Cn

Example 4.21 (Characters of Cn). By Equation 4.5, the character of the regular
representation of Cn is χReg = (n, 0, . . . ). In section 3.2.2 we described n irreducible
representations of degree 1 of Cn, and by Theorem 4.18, we have then found every
irreducible representation of Cn since ∑n

i=1 12 = n.
Remember that the trace of a 1 × 1 matrix is its only element, therefore the

Tables 3, 4 and 5 are the character tables of respectively C3, C4 and C5.
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4.5.2 Characters of Sn

Example 4.22 (Characters of S3). Returning to Table 11, we have found three irre-
ducible representations of S3. Their degrees are 1, 1 and 2, and the square sum of
the degrees are 1 + 1 + 4 = 6 which is the order of S3, hence by Corollary 4.19, we
have found every irreducible representation of S3.

Now we decompose the tensor powers of the standard representation.

Decomposition of VStan ⊗VStan. Its character is (4, 0, 1), which by a quick glance
on the character table is seen to be the sum of all irreducibles, hence

VStan ⊗ VStan = VTriv ⊕ VAlt ⊕ VStan.

Decomposition of V ⊗n
Stan. [FH04, Exercise 2.7.] To find the decomposition of

larger tensor powers, we study the character χn
Stan = (2n, 0, (−1)n) and take the

inner product of it with the irreducibles and find:

(χTriv|χn
Stan) = (χAlt|χn

Stan) = 1
6 (2n + (−1)n) , and

(χStan|χn
Stan) = 1

6
(
2n+1 + (−1)n+1

)
,

hence

V ⊗n
Stan = an(VTriv ⊕ VAlt) ⊕ an+1VStan, where an = 1

6 (2n + (−1)n) .

We arrive at a “complete” character table for S3, presented in Table 13.

S3 [(1)] [(1, 2)] [(1, 2, 3)]
|[σ]| 1 3 2

χTriv 1 1 1
χAlt 1 -1 1
χStan 2 0 -1
χPerm 3 1 0
χ2

Stan 4 0 1
χReg 6 0 0

Table 13: Complete character table of S3. The representations above the dou-
blestruck line are irreducibles, and those below are composed.
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Example 4.23 (Characters of S4). This section follows the same methods from the
previous section on S3. So far, we have that the trivial, the alternating and the
standard representations are irreducibles, see Table 12. Their respective degrees are
1, 1 and 3, with the square sum 1 + 1 + 9 = 11, which is less than |S4| = 24, hence
by Corollary 4.19 we are expected to find additional irreducible representations of
S4. We will find them while constructing and decomposing new representations.

Decomposition of VAlt ⊗VStan. Consider an “alternating version of the standard
representation”, denoted with the space V ′

Stan := VAlt ⊗ VStan and the character
χ′

Stan := χAltχStan = (3,−1, 0, 1,−1). It clearly has the same inner product with
itself as χStan, hence it is also irreducible. It increments the square sum of degrees
to 11 + 32 = 20.

Decomposition of VStan⊗VStan. To find the next irreducible, we study the tensor
square of the standard representation. Its character is χ2

Stan = (9, 1, 0, 1, 1) and
calculations will show that

(χTriv|χ2
Stan) = 1

24(9 + 6 + 0 + 6 + 3) = 1,

(χAlt|χ2
Stan) = 1

24(9 − 6 + 0 − 6 + 2) = 0,

(χStan|χ2
Stan) = 1

24(27 + 6 + 0 − 6 − 3) = 1, and

(χAltχStan|χ2
Stan) = 1

24(27 − 6 + 0 + 6 − 3) = 1.

However these subrepresentations of non-zero multiplicity are of degrees 1, 3, and 3,
and their direct sum is of degree 7, which is less than the dimension of VStan ⊗VStan,
hence by Proposition 3.19 there is another (not necessarily irreducible) subrepre-
sentation of degree 2 complementing them. Denoting this representation by W , its
character is χW = χ2

Stan −χTriv −χStan −χ′
Stan = (2, 0,−1, 0, 2), which is found to be

such that

(χW |χW ) = 1
24(4 + 0 + 8 + 0 + 12) = 1,

hence W is irreducible and the tensor square of the standard representation is de-
composed to

VStan ⊗ VStan = VTriv ⊕W ⊕ VStan ⊕ V ′
Stan.
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We have now found all five irreducible representations of S4, since 12 + 12 + 22 +
32 + 32 = 24, the order of S4.

Decomposition of the nth tensor power of W . The character of W⊗n is

χn
W = (2n, 0, (−1)n, 0, 2n).

Its inner product with the irreducible characters are found to be

(χTriv|χn
W ) = (χAlt|χn

W ) = 1
6 (2n + 2 · (−1)n) ,

(χW |χn
W ) = 1

6
(
2n+1 + 2 · (−1)n+1

)
, and

(χStan|χn
W ) = (χ′

Stan|χn
W ) = 0,

hence the decomposition is

W⊗n = an(T ⊕ A) ⊕ an+1W, where an := 1
6 (2n + 2 · (−1)n) .

Decomposition of the nth tensor power of VStan. The character of V ⊗n
Stan is

χn
Stan = (3n, 1, 0, (−1)n, (−1)n),

and after projecting it on the irreducible characters we find that

V ⊗n
Stan = anVTriv ⊕ bnVAlt ⊕ cnW ⊕ an+1VStan ⊕ bn+1V

′
Stan, (4.7)

where 
an = 1

24(3n + 9 · (−1)n + 6),

bn = 1
24(3n − 3 · (−1)n − 6), and

cn = 1
12(3n + 3 · (−1)n).

Decomposition of the nth tensor powers of V ′
Stan. Since V ′

Stan = VAlt ⊗ VStan,
the character of (V ′

Stan)⊗n is the nth power of the character χAltχStan, which is
χn

Altχ
n
Stan, hence (V ′

Stan)⊗n = V ⊗n
Stan ⊗ V ⊗n

Alt .
By Example 4.9, the nth tensor power of VAlt is VTriv if n is even and VAlt if n is

odd, so for even n, (V ′
Stan)⊗n is isomorphic to V ⊗n

Stan, and for odd n, it is isomorphic
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to V ⊗n
Stan ⊗ VAlt. Tensor multiplying Equation 4.7 with VAlt, we have:

V ⊗n
Stan ⊗ VAlt =

(
anVTriv ⊕ bnVAlt ⊕ cnW ⊕ an+1VStan ⊕ bn+1V

′
Stan

)
⊗ VAlt

= bnVTriv ⊕ anVAlt ⊕ cnW ⊕ bn+1VStan ⊕ an+1V
′

Stan,

since

VTriv ⊗ VAlt = VAlt,

VAlt ⊗ VAlt = VTriv,

VStan ⊗ VAlt = V ′
Stan, and

V ′
Stan ⊗ VAlt = VStan ⊗ V ⊗2

Alt = VStan.

Then we have found the decomposition of all tensor powers of V ′
Stan: For even n, it

is the same as V ⊗n
Stan, and lastly for odd n, VTriv switch multiplicities with VAlt, and

VStan switch with V ′
Stan.

The findings of the last few paragraphs (except those on larger tensor powers) are
presented in table 14.

S4 [(1)] [(1, 2)] [(1, 2, 3)] [(1, 2, 3, 4)] [(1, 2)(3, 4)]
|[σ]| 1 6 8 6 3

χTriv 1 1 1 1 1
χAlt 1 -1 1 -1 1
χW 2 0 -1 0 2
χStan 3 1 0 -1 -1
χ′

Stan 3 -1 0 1 -1
χPerm 4 2 1 0 0
χ2

Stan 9 1 0 1 1

Table 14: Complete character table of S4. The representations above the dou-
blestruck line are irreducibles, and those below are composed.
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