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Abstract

This paper classifies finite groups whose order has a particularly simple
prime factorization.
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Abstract

Detta arbete presenterar en klassificering av ändliga grupper vars ord-
ning har en enklare primtalsfaktorisering.
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1 Introduction

The problem of classifying distinct finite groups is seemingly not too involved.
After all, the axioms of groups are quite simple, and conceptually they aren’t
difficult objects. But the methods of classification can range quickly from simple
to very intricate. For example, there is only one group of order 11, up to
isomorphism. This result is obtained by an application of Lagrange’s theorem.
For groups of order 4, one can deduce that there are two such distinct groups
by studying group tables. But for order 16, there are fourteen distinct groups,
requiring more advanced methods of classification.

It is a fascination with this that motivates the present paper, which will
give a basic classification of a number of finite groups. Specifically, we will
consider the prime factorisations p, p2, p3 and pq where p and q are distinct
prime numbers. For each factorisation, a classification will be given for some or
all of the groups of corresponding order.

Section 2 treats the very basics of group theory. Section 3 introduces con-
cepts that are more involved in the procedure of classification. Some results
in this section will be proven, while the proof of other results will be left out.
Section 4 treats the classification itself.

A word on notation

Throughout this paper, whenever a group is said to have order p or q, it invari-
ably means prime numbers. Sometimes the word p-group will be used, referring
to some group of prime order p. When groups of arbitrary orders are discussed,
the letters m and n will be used.
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2 Preliminary notions

2.1 Groups: basic definitions and properties

Definition 2.1. A group is a non-empty set G together with a function f :
G×G → G such that the following hold:

• (Associativity) f(a, (b, c)) = f((a, b), c) for all a, b, c in G

• (Identity) There exists an element e ∈ G such that f(e, g) = f(g, e) = g,
for all g ∈ G. This element is called the identity element.

• (Invertibility) For every g ∈ G there exists an element g−1 such that
f(g, g−1) = f(g−1, g) = e. The element g−1 is called the inverse of g.

The notation f(a, b) will from here on be substituted with ab and be referred
to as the product of a and b. A consequence of the associative law is that when
multiplying a group element by itself several times, we are free to parenthesize
the product as we wish, which motivates the use of a multiplicative notation

ggg . . . g︸ ︷︷ ︸
n times

= gn

Example 2.1. The set (Z,+) of positive integers numbers with the operation
of addition constitutes a group. The identity element in this group is the integer
0.

Example 2.2. The set (R+,×) of positive real numbers with the operation of
multiplication constitutes a group. The identity element in this group is the
real number 1.

Example 2.3. The set of integers modulo n, denoted Z/nZ is a group under
addition, with 0 as the identity element.

Example 2.4. the set V4 = {1, a, b, c}, with operation defined by v2 = 1 for all
v ∈ V4, and where any pair among a, b, c gives the third element constitutes a
group. This group is called the Klein-4 group.

We now prove some consequences of the definition.

Proposition 2.1. Let G be a group. The following hold.

1. The identity element e is unique.

2. The inverse of an element is unique.

3. (ab)−1 = b−1a−1.

4. (gn)−1 = g−n.
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Proof. 1. Suppose e and e′ are two distinct identity elements and let g ∈ G.
Then

ge = ge′

⇔ e = e′

since we can multiply both sides on the left by g−1.

2. Suppose b and c are both inverses of an element g. Then

b = b(ca)

= b(ac)

= (ba)c

= ec

= c.

3. Notice that for the product ab, the element b−1a−1 has the property that

ab(b−1a−1) = (b−1a−1)ab = e.

4. Because

gn = ggg . . . g︸ ︷︷ ︸
n times

and g−1 = g−1g−1g−1 . . . g−1︸ ︷︷ ︸
n times

we get

gng−n = (ggg . . . g)(g−1g−1 . . . g−1)

= (gg−1)(gg−1)(gg−1) . . . (gg−1)

= e.

Definition 2.2. The order of a group element g is the smallest positive integer
n for which gn = e, if this number exists. We denote this |g| = n. If gn ̸= e for
no n then g is said to have infinite order and we denote it |g| = ∞. The identity
element is the only element that has order 1.

Remark. If |g| = n and m is a multiple of n, then gm = 1, because gk = gkn

for some factor k, implying gkn = gnk = (gn)k = 1k = 1.

Proposition 2.2. Let G be a finite group. Then every element g ∈ G has finite
order.

Proof. Suppose |g| = ∞. Given that G is finite, it is impossible that powers of
g be distinct. Hence gi = gj for i ̸= j. This implies gi−j = e.
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Proposition 2.3. Let G be a finite and group and let g ∈ G with |g| = n.
Then powers of g are distinct up to the order of g.

Proof. If gi = gj for j < i < n and i ̸= j then gi−j = e implies that the order
of g is at most i− j, but could be smaller.

2.2 Subgroups

A subgroup is a subset of a group which itself acts like a group. The following
definition is particular to finite groups.

Definition 2.3. Let G be a finite group and let H be a non-empty subset of
G. Then H is a subgroup of G, written H ≤ G, if it closed under the operation
defined on G.

To check that a subset H is indeed a subgroup G the following suffices.

Proposition 2.4. Let G be a finite group and let H be a subset of G. Then
H is a subgroup of G if and only if H ̸= ∅ and x, y ∈ H =⇒ xy ∈ H.

Proof. IfH is a subgroup then the rest follows immediately. Conversely, suppose
H is non-empty and closed under products, and Let x ∈ H. By closure, the set
{x, x2, . . . , xn−1, xn} ⊆ H. In particular xn = 1 ∈ H and xn−1 ∈ H, the latter
of which being equal to the inverse of x, since

xxn−1 = xn−1x

= xn−1+1

= xn

= 1.

Finally, Associativity is inherited from G.

Centers, Centralisers and Normalizers

The following are an important class of subgroups which will be used later.
They provide various aspects on the property of commutativity and are related
to one another.

Definition 2.4. Let G be a group. The center of G, denoted Z(G) is the set

Z(G) = {g ∈ G | ga = ag ∀a ∈ G}.

In other words, the center of G is the set of elements that commute with all
other elements of G.

Proposition 2.5. The set Z(G) is a subgroup of G.
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Proof. The set Z(G) is non-empty, since 1 ∈ Z(G). Suppose x, y ∈ Z(G) and
let g be any element of G. It follows that

(xy)g = x(yg)

= x(gy)

= (xg)y

= (gx)y

= g(xy).

Remark. If G is abelian then Z(G) = G.

Definition 2.5. Let G be a group with an element g. The Centraliser of g in
G denoted CG(g) is the set

CG(g) = {x ∈ G | xg = gx}

of all elements in G that commute with g.

Proposition 2.6. The centraliser of an element is a subgroup of a G.

Proof. The proof is identical to the previous proof.

The centraliser can be defined for subsets of G as well, where if A is a
subset, CG(A) is taken to mean the set of elements in G that commute with
every element of A. In particular CG(G) = Z(G), and in general Z(G) ⊆ CG(g)
for every g ∈ G.

For the next subgroup, we define the notion of conjugation.

Definition 2.6. Let H = {h1, h2, . . . , hn be a subset of a group G. For an
arbitrary element g ∈ G define

gHg−1 = {gh1g
−1, gh2g

−1, . . . , ghng
−1}

The set gHg−1 is said to be conjugate to H, or that H has been conjugated
by g. Conjugation can be defined for individual elements as well.

Definition 2.7. Let G be a group with a subset A. Define

NG(A) = {g ∈ G | gAg−1 = A}.

The set NG(A) is called the normaliser of A in G.

That gAg−1 = A for an element g means that A is stable under conjugation
by g: no element of the form gaig

−1, where ai ∈ A leaves the set A. In the case
of the centraliser, if g ∈ CG(A) then gAg−1 fixes every element of A. We may
thus think of the normaliser as a relaxed form of the centraliser. In fact, the
latter is contained in the former, and for individual elements they coincide. If
g is an element of a group G then
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NG(g) = {x ∈ G | xgx−1 = x}
= {x ∈ G | xg = gx}
= CG(g).

Proposition 2.7. Let A be a subset of a group G. Then NG(A) ≤ G.

Proof. Since e ∈ NG(A), NG(A) is non-empty. If x, y ∈ NG(A) then

xyA(xy)−1 = xyAy−1x−1

= x(yAy−1)x−1

= xAx−1

= A.

We finally define the notion of a normal subgroup.

Definition 2.8. A subgroup H of G is called normal in G if NG(H) = G. This
is written N ⊴ G.

Proposition 2.8. Let G be a group and let A be a non-empty subset of G.
Then

1. Z(G) ≤ CG(A) ≤ NG(A)

2. If G is abelian, then Z(G) = CG(A) = NG(A) = G

Proof. We have already shown the inclusions as sets. Since each is a subgroup of
G, the closure property ensures that they are indeed subgroups in the presented
manner. If G is abelian, we know that Z(G) = G and (1) forces the latter two
subgroups to be equal to G, although this can be deduced by looking at each of
them individually.

Subgroups generated by subsets

Proposition 2.9. Let H1, H2, . . . ,Hn be a collection of subgroups of a group
G. Then the intersection of all these subgroups is a subgroup of G.

Proof. Let

I =

n⋂
i=1

H.

Since e ∈ Hi for all i, I is non-empty. If x, y ∈ Hi for all i, then since every Hi

is a group, ab ∈ Hi for all i. Thus ab ∈ I and I ≤ G by Proposition 2.4.
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Definition 2.9. Let K be a subset of a group G and let

⟨K⟩ =
⋂

K⊆H
H≤G

H

that is, the interserction of all subgroups that contain K. We call ⟨K⟩
the subgroup of G generated by K. It has the property of being the smallest
subgroup of G that contains K: for if there was a smaller such subgroup ⟨K ′⟩,
the implication is that there is an element x in ⟨K⟩ that is not in ⟨K ′⟩. But by
definition, x is in the intersection of all subgroups that contain K, which simply
forces it to be in ⟨K ′⟩.

A more involved way of constructing this subgroup is by defining the closure
K̄ of a set K as

K̄ = {kϵ1kϵ2 . . . kϵn}

where ki ∈ K and ϵ = ±1 so that K̄ is the set of finite products of elements
in K and their inverses. We also define ∅̄ = {1}.

Proposition 2.10. K̄ = ⟨K⟩.

Proof. By previous results, K̄ is non-empty. If k, q ∈ K̄ where k = kϵ1k
ϵ
2 . . . k

ϵ
n

and q = qδ1q
δ
2 . . . q

δ
m then kq ∈ K̄ in the finite case since

kq = kϵ1k
ϵ
2 . . . k

ϵ
n · qδ1qδ2 . . . qδm

is just a product of elements of K raised to 1 or −1. The same is true in
the general case. Because every element of K can be written k1, K ⊆ K̄
and ⟨K⟩ ⊆ K̄. But because ⟨K⟩ contains K and is closed under the group
operation, ⟨K⟩ contains all elements of the form kϵ2 . . . k

ϵ
n, implying K̄ ⊆ ⟨K⟩

and K̄ = ⟨K⟩.

2.3 Different types of groups

In this section we give definitions of the following

Direct products of groups

The Cyclic group Cn

The Symmetric group Sn

The Dihedral group D2n

The Quaternion group Q8

11



The direct product of groups

Definition 2.10. The direct product of n groups G1, G2, . . . , Gn is the Carte-
sian product

G1 ×G2 × . . .×Gn.

An element in this set is the n-tuple (g1, g2, . . . , gn), where the i :th component
is an element of Gi. If we define an operation on the direct product by

(g1, g2, . . . , gn) ◦ (h1, h2, . . . , hn)

= (g1h1, g2h2, . . . , g
n−1hn−1)

that is, componentwise, then the direct product is a group under this operation.

The cyclic group

Definition 2.11. The cyclic group Cn of order n is the group that is generated
by a single element ⟨x⟩ = {1, x, x2, . . . , xn−1}.

Remark. The cyclic group is a special case of a subgroup being generated by
a subset, namely, when the subset is a single element.

12



The dihedral group

Suppose we have the group elements r ∈ Cn and s ∈ C2. We wish to create
a group, for now denoted D, with r and s as generators. First we impose the
condition that rn = s2 = 1. Noting that srα ̸= srβ for α ̸= β and α, β < n,
there are at least 2n elements in D. These are

D = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}.

Next we require that sr = r−1s. This implies sri = r−is for any i, since

sri = (s r)r . . . r︸ ︷︷ ︸
i times

= r−1s rr . . . r︸ ︷︷ ︸
i−1 times

since sr1 = r−1s.

Continuing in this manner results in a right hand side that is equal to r−is.
Let z be an element in D consisting of an arbitrary product of powers of r and
powers of s

z = rα1sα1rα2sα2 . . . rαksαk

with no particular conditions placed on the exponents αi. The requirement that
sr = r−1s implies z = skri where k and i have been obtained by the successive
interchanging of r and i. We conclude that any element in the group can be
written in this form. And since k is counted modulo 2 and i is counted modulo n
there are at most 2n elements in the group. We conclude that there are exactly
2n elements.

Definition 2.12. The Dihedral group D2n is the group generated by the ele-
ments r and s subject to the relations

rn = s2 = 1 and sr = r−1s.

Remark. There is a geometric interpretation of the group D2n. For n ∈ Z,
n ≥ 3, consider a regular n-gon centered at the origin. A symmetry on the n-gon
is either a rotation of 2π/n about the origin, or a reflection along any symmetry
axes, or indeed any composition of the two. With a labeling of vertices from 1
to n the symmetries can be uniquely described as permutations on the set of
vertices.

The symmetric group

For a non-empty set X, the set of bijections from X to itself constitutes a group.
A bijection has a 2-sided inverse, and the composition of bijections is another
bijection. Furthermore, the composition of functions in general is associative,
and there is a bijection that fixes all elements of X.
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Definition 2.13. For a non-empty set X, symmetric group SX is the group
of bijections of X. When X is a subset of the natural numbers of the form
{1, 2, . . . , n} the symmetric group is denoted Sn.

The Quaternion group

As with the dihedral group we begin with a motivation. Let a ∈ C4 and b ∈ C4.
We wish to create a group, for now denoted Q with a and b as genereators.
The First condition imposed is a4 = 1. Secondly, a2 = b2. This implies that
b4 = a2a2 = a4 = 1. Lastly, we require that ab = b−1a. With this, we have at
least 8 elements

Q = {1, a, a2, a3, b, b3, ab, ba}

which is reasonable, because supposing that ab = ba implies ulitmately that
b2 = a2 = 1. Similarly, supposing that ab = ak implies either that b = 1, b = b2

or b = a.
The relation ab = b−1a allows us, as in the case of the dihedral group, to

write any element uniquely as a product aibj , both i and j being counted modulo
4. Hence there are at most, and therefore exactly 8 elements in this group.

Definition 2.14. The Quaternion group Q8 is the group generated by the
elements a, b subject to the relations

a4 = 1 a2 = b2 ab = b−1a

Exploring the consequences of the relations reveals that

(ab)2 = abab = b−1a2b = b−1b2b = b2 = a2

which also holds for ba. Letting

a = i b = j ab = k
a3 = −i b3 = −j ba = −k

and a2 = b2 = (ab)2 = (ba)2 = −1, the group can be expressed as

Q8 = {1,−1, i,−i, j,−j, k,−k}

with the notable properties

(−1)(−1) = 1 (−1)a = a(−1) = −a ∀a ∈ Q8

i2 = j2 = k2 = −1

ij = k , ji = −k

jk = i, kj = −i

ki = j, ik = −j

14



2.4 Group Isomorphisms

A group isomorphism is best described by first defining a group homomorphism.

Definition 2.15. Let G and H be groups. A mapping ϕ : G → H is a homo-
morphism if

ϕ(g1g2) = ϕ(g1)ϕ(g2)

for all g1, g2 ∈ G. An isomorphism is simply a homomorphism that is bijec-
tive. Two isomorphic groups are structurally identical. The only difference is
what we choose to name them and their elements.

2.5 Group actions

Definition 2.16. A group action of a group G on a setX is a mapping G×X →
X such that

(1) g1 · (g2 · x) = (g1g2) · x for all g1, g2 in G and all x in X.

(2) 1 · x = x for all x in X.

Two properties of group actions are that for every given g ∈ G, the associated
map σg is a permutation ofX, and that the map fromG to SX defined by g 7→ σg

is a homomorphism. To show the first property, we observe that permutations
are bijections from a set to itself and will therefore need to show that the map
σg has a two-sided inverse. Let x be any element of X:

(σg−1 ◦ σg)(x) = σg−1(σg(x)) by associativity of function composition

= g−1 · (g · x) by definition of σg and σg−1

= (g−1g) · x by property (1)

= 1 · x = x by property (2).

The above shows that σg−1 ◦ σg is the identity map in X. Because g can be
any given element in G, we may interchange the places of g and g−1 to arrive
at σg ◦ σg−1 being the identity map in X as well. Therefore the map σg has a
two-sided inverse and is a permutation of X.

Now let ϕ : G → SX be defined by ϕ(g) = σg and observe that

ϕ(g1g2)(x) = σg1g2(x) by definition of ϕ

= (g1g2) · x by definition of σg1g2

= g1 · (g2 · x) by property (1)

= σg1(σg2(x)) by definition of σg1 , σg2

= (ϕ(g1) ◦ ϕ(g2))(a) by definition of ϕ

This shows that ϕ : G → SX is a homomorphism. Conversely, if ϕ : G → SX

is any homomorphism, then the map G × X → X defined by g · x = ϕ(g)(x)
satisfies

15



(g1g2) · x = ϕ(g1g2)(x)

= ϕ(g1)ϕ(g2)(x)

= (σg1 ◦ σg2) · x
= σg1 · (σg2 · x)
= g1 · (g2 · x)

and

1 · x = ϕ(1)(x)

= 1(x)

= 1.

Example 2.5. Let G be a group and let g, h ∈ G. Define a map G × G → G
by g · h = gh. This constitutes a group action (we put X = G), since 1 · h = h
for all h ∈ G, and

g1 · (g2 · h) = g1(g2h)

= (g1g2)h

= (g1g2) · h.

This action is called the left multiplication by G on itself, and will be used later
to prove Lagrange’s theorem.

Example 2.6. Let G be a group and let g, h ∈ G. Define a map G × G → G
by g · h = ghg−1. This constitutes a group action (we put X = G), since
1 · ehe−1 = h for all h ∈ G, and

g1 · (g2 · h) = g1(g2hg
−1
2 )g−1

1

= g1g2h(g1g2)
−1

= (g1g2) · h.

This action is called conjugation by G on itself.

3 Some structure theory

3.1 Group tables: a doomed approach

The idea of a group table is a simple one, and might hint at a combinatorical
method of classifying groups. However, as the order of a group grows larger the
concept becomes unwieldy. It is included in this paper to show just how quickly
(Example 3.1) it falls apart.

Definition 3.1. Let G be a group. The group table of G is the cartesian product
G×G, where an element (a, b) ∈ G×G is the result of the product ab in G.

16



A pictorial presentation of the group table of V4 = {1, a, b, c} is given by the
labeled array

1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Now in the group Z/4Z, if we assigned new names to the elements, specif-
ically 0 = 1, 1 = a, 2 = b, 3 = c, then the corresponding presentation of Z/4Z
gives us the array

1 a b c
1 1 a b c
a a b c 1
b b c 1 a
c c 1 a b

The structural difference between them is in some sense laid bare in these
presentations. With the notion of a group table introduced, we point out that
any jumble of a finite elements within an array does not constitute a group
table. A special property that group tables have is that they are so called latin
squares.

Definition 3.2. A Latin square is an n × n array populated by n distinct
elements, such that each row of the array contains an element exactly once, and
each column contains each element exactly once.

To prove that the group table of a group G is a latin sqare, we observe that
the row corresponding to the element gi contains the elements

gig1 gig2 . . . gign.

These are all unique, since if gigt = gigr, left cancellation implies that gt = gr.
Similarly, right cancellation implies that every element in a column is unique.
The group table of G is thus a latin square.

Somewhat surprisingly, this doesn’t necessarily hold in the other direction:
a latin square doesn’t necessarily represent a group table.

Example 3.1. Let S = {1, a, b, c, d} be a set equipped with an operation ◦ such
that the table of the operation is given by the array

1 a b c d
1 1 a b c d
a a 1 d b c
b b c 1 d a
c c d a 1 b
d d b c a 1

17



It is clear that this table is a latin square. It is not, however, a group:
Consider the product aab. We should have that (aa)c = a(ac). But (aa)c = c
and a(ac) = d according to the table. The associative property does not hold.

3.2 Lagrange’s Theorem

Lagrange’s theorem relates the order of a group to the order of its subgroup in
a very useful way.

Proposition 3.1. Let G be a group and X a set, and let G act on X. Define
a relation on X given by

x1Rx2 ⇔ x1 = g · x2 for some g ∈ G

then R is an equivalence relation.

Proof. Reflexivity is shown by taking g = 1, as then x1 = 1 · x1, implying that
x1 is related to itself. For symmetry, if xRy then x = g · y for some g ∈ G.
Letting g−1 act on both sides we obtain g−1 · x = (g−1g) · y = y, which shows
that yRx. Lastly, if xRy and yRz then

x = g1 · y and y = g2 · z
then g−1 · x = g2 · z, implying that x = (g1g2) · z and hence xRz which shows
transitivity.

The set O = {y ∈ X | y = g ·x for some g ∈ G} of all the images of x under
the action of G is called orbit of x. Having shown that group actions partition
the set that is acted upon, we will show a narrower but important case.

Proposition 3.2. Let G be a group and H ≤ G. Let H act on G by left
multiplication. For an arbitrary g ∈ G, let O be the orbit of g under the action
of H. Then |H| = |O|
Proof. Define a map H → O by h 7→ hg. We will show that this mapping is
bijective. It is injective, because h1g = h2g implies that h1 = h2. It is surjective,
since by definition every element in O is of the form hg for some h ∈ H. Hence
it is bijective.

The proposition shows that a subgroup H partitions a group G into sets of
equal size, from which follows

Theorem 3.1. (Lagrange) Let G be a finite group and H be a subgroup of G.
Then the order of H divides the order G.

Proof. Let |H| = m. By Proposition 3.1, H partitions G through the action of
left multiplication. Let k be the number of these. Since they are of equal size,
|G| = km and hence the order of H divides the order of G.

A partial converse to Lagrange’s theorem is Cauchy’s theorem. We leave out
the proof.

Theorem 3.2. (Cauchy)
If G is a finite group and p divides |G|, then G has an element of order p.
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3.3 The Orbit-Stabilizer Theorem

Definition 3.3. Let G be a group acting on a set X. For a fixed element x ∈ X,
the stabilizer of x in G is the set Gx = {g ∈ G | g · x = x}.

Note that the set Gx is a subgroup of G, since if g1, g2 ∈ Gx then g−1
2 g1 ∈ Gx

because

(g−1
2 g1) · x = g−1

2 · (g1 · x)
= g−1

2 · x
= x.

We can thus let Gx act on G by right multiplication. As we have shown, this
action partitions G into k equal parts, namely, the left cosets of Gx in G. Let
G/Gx denote the set of these cosets, and let O be the orbit of x as introduced
previously. We arrive at the following result.

Theorem 3.3. (Orbit-stabilizer) Let the group G act on a setX, and fix x ∈ X.
Then |O| = [G : Gx].

Proof. Let f : G/Gx → O be a map defined by gGx 7→ g · x. We will show
that this map is well-defined and bijective. The equality f(g1Gx) = f(g2Gx) is
equivalent to g1 · x = g2 · x from which follows that (g−1

2 g1) · x = x, meaning
that g−1

2 g1 ∈ Gx which implies g1Gx = g2Gx. This shows injectivity.
Now if y is any element of O, then y = g · x for some g ∈ G. Consider the

coset gGx: by definition of f this coset maps to g · x = y. The map is therefore
surjective, and hence a bijection.

Finally, the domain of f is G, but since G is constant on left cosets of Gx in
G, it descends to a map whose domain G/Gx and is hence well-defined.

3.4 The Class Equation

Definition 3.4. Let G be a group. Two elements x and y are said to be
conjugate if there is some g ∈ G such that y = gxg−1. Similarly, two sets X
and Y are conjugate if for some g, Y = gXg−1. In both cases, conjugation is
equivalent to the two objects being in the same orbit of G under the action of
conjugation on itself. These orbits are called conjugacy classes.

Theorem 3.4. Let G be a finite group with g1, g2, . . . , gn be representatives of
the distinct conjugacy classes of G not contained in the center Z(G) of G. Then

|G| = |Z(G)|+
n∑

i=1

|G : CG(gi)|.

Proof. See Dummit and Foote, page 124.

Corollary 3.4.1. Let P be a group of order pα, α ≥ 1. Then Z(P ) ̸= 1.
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Proof. Note that the order of the centraliser CP (g) of any element g ∈ P cannot
be P itself, else the result follows trivially. Hence 1 ≤ |CP (g)| ≤ pα−1. Whatever
the case, p divides |P : CP (g)| for all g ∈ P . It also divides |P |. Hence by the
class equation

|P | = |Z(P )|+
n∑

i=1

|P : CP (gi)|

⇔ |P | −
n∑

i=1

|P : CP (gi)| = |Z(P )|.

Since p divides the left hand side, it must also divide the right, implying Z(P )
is non-trivial.

3.5 Sylow’s Theorems

Sylow’s theorem provides a partial converse to Lagrange’s theorem. Before
stating it we introduce some notation. We refer to page 139 of Dummit and
Foote for the proof.

Definition 3.5. Let G be a p-group.

• Subgroups of G that are p-groups are called p-subgroups.

• If G is a group of order pαm where p ∤ m then a subgroup of order pα is
called a Sylow p-subgroup of G.

• The set of Sylow p-subgroups of G is called Sylp(G) and their cardinality
is called np.

Theorem 3.5. Let G be a group of order pαm where p ∤ m. Then

• Sylp(G) ̸= ∅

• if P ∈ Sylp(G) and Q is a p-subgroup then Q is contained in a conjugate of
P , Q ≤ gPg−1 for some g ∈ G. In particular, any two Sylow p-subgroups
are conjugate in G.

• The number np satisfies np ≡ 1 (mod p). Moreover, it is the index of
NG(P ) in G for any Sylow p-subgroup P and hence divides m.

Note that np = 1 implies that a Sylow p-subgroup of G is normal in G

3.6 Quotient groups

Definition 3.6. Let G be a group and N be a normal subgroup of G. The
quotient group G/N is defined as the group of left cosets of N in G with group
operation defined as

(aN)(bN) = (ab)N.

For proof that G/N is indeed a group we refer to page 81 of Dummit and
Foote.
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The First isomorphism theorem

Proposition 3.3. Let G and H be groups and let ϕ : G → H be a homomor-
phism. Then

G/ kerϕ ∼= imϕ

Proof. See Dummit and foote, page 97.

3.7 Automorphisms

The notion of automorphisms are relevant to the use of semidirect products.

Definition 3.7. Let G be a group. An isomorphism ϕ : G → G is called an
automorphism. The set of automorphisms of G is denoted Aut(G)

We leave out the proof that Aut(G) is itself a group under composition of
automorphisms, called the automorphism group of G.

In classifying certain finite groups in section 4, we need the automorphism
groups of a certain kind of group. This is given by the following proposition

Proposition 3.4. The automorphism group of the cyclic group of order pn is
itself cyclic of order pn−1(p− 1).

Proof. See Dummit and Foote, page 136.

Example 3.2. For Cp We have Aut(Cp) ∼= Cp−1 and Aut(Cp2) ∼= Cp(p−1)

3.8 Relation between indicies and normality

Proposition 3.5. Let G be a group let H be a subgroup G. Then if H has
index 2, it is a normal subgroup.

Proof. The two cosets of H in G are H itself and gH for some g ∈ G. A
subgroup is normal if and only if its right cosets are equal to its left cosets.
Suppose then that gH ̸= Hg. The possibilities for Hg are restricted to H,
implying g is the identity.

The following proposition generalizes the previous one.

Proposition 3.6. Let G be a group and let H be a subgroup of G with index
p, where p is the smallest prime dividing |G|. Then H is normal in G.

Proof. Let G act on the set of left cosets of H by left multiplication, x · (gH) =
(xg)H. The action affords a homomorphism ϕ from G into Sp. The kernel K is
contained in H, and the quotient G/K is isomorphic to a subgroup of Sp. It is
therefore the case that |G/K| divides both p! and |G| implying |G/K| = p. We
now note that

|G/K| = |G|
|K|

=
|G|
|H|

· |H|
|K|

= p
|H|
|K|

forces H/K to be the trivial group. Hence K = H and the latter is normal.
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3.9 Semidirect products

This section introduces the notion of the semidirect product, which will be used
heavily in classifying groups in section 4. We will also show how it relates to
the direct product that was introduced in Section 1. We begin by studying
some consequences of normality as it relates to subgroups: for two subgroups
H and K of a group G, we want to know under what circumstances the set
HK = {hk | h ∈ H, k ∈ K} is a subgroup of G.

Proposition 3.7. Let G be a group. For any finite subgroups H,K of G, the
set defined as

HK = {hk | h ∈ H, k ∈ K}

has cardinality

|HK| = |H||K|
|H ∩K|

.

Proof. We first observe that HK is a union of left cosets of K

HK =
⋃
h∈H

hK = h1K ∪ h2K ∪ . . . ∪ hsK. (1)

By Proposition 3.2 |hK| = |K| for any h. We need to find the distinct
number of cosets of K. For two identical cosets we have the equivalence

h1K = h2K

⇔ h−1
2 h1K = K

⇔ h−1
2 h1 ∈ K

⇔ h−1
2 h1 ∈ H ∩K

⇔ h−1
2 h1(H ∩K) = H ∩K

⇔ h1(H ∩K) = h2(H ∩K).

We may thus count the distinct number of cosets h(H ∩ K) for h ∈ H.

By Lagrange’s theorem this number is given by |H|
|H∩K| . Hence the union in

(1) consists of |H|
|H∩K| distinct cosets of K, each of size |K|, which proves the

statement.

Corollary 3.5.1. Let H,K be subgroups of a group G with |H ∩ K| = 1.
Then every element of HK can be expressed uniquely as a product hk for some
h ∈ H, k ∈ K.

Proof. Suppose h1k1 = h2k2. Equivalently h−1
2 h1 = k2k

−1
1 . Clearly the left

hand side is an element of H and the right hand side an element of K. This
implies h−1

2 h1 ∈ H ∩ K. Since the latter is assumed to be trivial h1 = h2. It
now follows that also k1 = k2.
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Proposition 3.8. The set HK in Proposition 3.7 is a subgroup of G if and
only if HK = KH, that is, if at least one of H or K is normal in G.

Proof. Suppose that HK = KH with x, y ∈ HK. We will show that xy−1 ∈
HK. If x = h1k1 and y = h2k2 for hi ∈ H, ki ∈ K then xy−1 = h1k1k

−1
2 h−1

2 .
Write k3 = k1k

−1
2 and h3 = h−1

2 . Then xy−1 = h1k3h3. The property HK =
KH ensures that k3h3 = h4k4 for some h4 ∈ H, k4 ∈ K. Hence

xy−1 = (h1h4)k4 ∈ HK

Conversely, if HK ≤ G and both H,K ≤ G then by closure KH ⊆ HK. Now
suppose hk ∈ HK. Write hk = hikj for some (hikj)

−1 ∈ HK. Then

hk = k−1
i h−1

i ∈ KH.

Now that we know when the set HK is a subgroup of G, the following
proposition shows that one more assumption implies that the subgroup HK is
isomorphic to the direct product of H and K.

Proposition 3.9. Let G be a group and let H,K be subgroups of G such that

• H ∩K=1

• Both H and K are normal in G

Then the subgroup HK is isomorphic to H ×K.

Proof. We know from Proposition 3.8 that HK is a subgroup. By the normality
both H and K, the element h−1k−1hk is a member of both H and K. This can
be seen by parenthesizing appropriately

(h−1k−1h)︸ ︷︷ ︸
∈K

k h−1 (k−1hk)︸ ︷︷ ︸
∈H

.

Since H ∩ K = 1 this implies that h−1k−1hk = 1, and further that hk = kh.
Hence all elements of H commute with all elements of K. By Corollary 3.5.1,
every element in HK is a unique product hk for some h ∈ H and k ∈ K. Thus
the map ϕ : HK → H ×K defined by hk 7→ (h, k) is well-defined. We now see
that

ϕ(h1k1h2k2) = ϕ(h1h2k1k2) Since H and K commute

= (h1h2, k1k2)

= (h1, k1, k1, k2)

= ϕ(h1k1)ϕ(h2k2)

is a homomorphism. Since every hk ∈ HK can be uniquely expressed, it follows
that there is one for every (h, k) ∈ HK and hence ϕ is a homomorphism.

23



If, in Proposition 3.9, we add the condition that HK = G, we have that
G ∼= H ×K, and we would say that G is a direct product of its subgroups H
and K.

So far, we have presupposed that G contains subgroups H and K fulfilling
the conditions of the previous propositions. The idea of a semidirect product is
to approach the matter from the other way. We begin with two general groups
H and K, with a homomorphism ϕ : K → Aut(H) and then define a group G
such that the conditions of Proposition 3.7 hold.

Theorem 3.6. Let H and K be groups. Let ϕ be a homomorphism from K
into Aut(H), and G the set of ordered pairs (h, k). Define an operation on G
by

(h1, k1)(h2, k2) = (h1k1 · h2, k1k2)

where · is the left action of of K on H as determined by ϕ. This makes G a
group of order |H||K|.

Proof. The identity element is (1H , 1K) since

(1H , 1K)(h, k) = (1H1k · h, 1Hk)

= (1Hh, 1Kk)

= (h, k)

= (hk · 1H , k1K)

= (h, k)(1H , 1K).

for all (h, k) ∈ G.
Let (x, y) ∈ G and consider (h, k)(x, y) = (hk · x, ky). For (x, y) to be the

inverse of (h, k) we require that

(hk · x, ky) = (1H , 1K)

⇔ hk · x = 1H , ky = 1K

The first equation is equivalent to x = k−1h−1 and the second to y = k−1.
Hence k−1h−1, k−1 is the inverse of (h, k). That they commute can be easily
checked. Associativity is shown by

((a, x)(b, y))(c, z) = (ax · b, xy)(c, z)
= (ax · b(xy) · x, xyz)
= (ax · bx · (y · c), xyz)
= (ax · (by · c), xyz)
= (a, x)(by · c, yz)
= (a, x)((b, y)(c, z)).

Lastly, it is clear that the order of G is the product of the orders of H and
K.
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The following proposition shows that there are isomorphic copies of H and
K in G.

Proposition 3.10. The sets {(h, 1) | h ∈ H} and {(k, 1) | k ∈ K} are sub-
groups of G such that

H ∼= {(h, 1) | h ∈ H} K ∼= {(k, 1) | k ∈ K}

Proof. We show that the finite, that {(h, 1) | h ∈ H} is closed under the group
operation of G. Consider two elements (h1, 1) and (h2, 1). Their product is

(h1, 1)(h2, 1) = (h11 · h2, 11)

= (h1h2, 1),

with the closure of H implying (h1h2, 1) is in the set. Clearly, |H| = |{(h, 1) |
h ∈ H}| and the map ϕ : H → {(h, 1) | h ∈ H} defined by ϕ(h) = (h, 1) has the
property that

ϕ(h1h2) = (h1h2, 1)

= (h11 · h2, 11)

= ϕ(h1)ϕ(h2)

and is hence a homomorphism. It is clearly surjective and, by the two sets
having equal cardinality, also injective and thus an isomorphism.

Proposition 3.11. Identifying H and K with their isomorphic copies in G
from the previous theorem, we have that

1. H ∩K = 1

2. khk−1 = k · h = ϕ(k)ϕ(h) for all h ∈ H, k ∈ K

3. H ⊴ G

Proof. That H ∩K = 1 is clear, since otherwise some h would be an element of
K or vice versa. To identify conjugation of H by K with the homomorphism ϕ
we consider

khk−1 = (1, k)(h, 1)(1, k)−1

= ((1, k)(h, 1))(1, k−1)

= (k · h, k)(1, k−1)

= (k · hk · 1, kk−1)

= (k · h, 1)
= k · h

Finally, the normality of H can be seen by noting that both K ≤ NG(H),
N ≤ NG(H) and that HK = G.
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Definition 3.8. Let H and K be groups. Let ϕ be a homomorphism from K
into Aut(H). The group G from theorem 3.6 is called the semidirect product
of H and K with respect to ϕ, denoted H ⋊ϕ K or just H ⋊ K when ϕ is
unambiguous.

The last proposition in this section shows how the semidirect product is a
generalisation of the direct product.

Proposition 3.12. Let H,K and ϕ be as in Theorem 3.6. If ϕ is the trivial
homorphism then

H ⋊K ∼= H ×K

Proof. Consider any product in the group H ⋊K

(h1, k1)(h2, k2) = (h1k1 · h2, k1k2).

If ϕ is the trivial homorphism then ϕk(h) = h for all k ∈ K. Hence

(h1k1 · h2, k1k2) = (h1h2, k1k2)

and the semidirect product coincides with the direct product.

4 Classification of finite groups

We have seen Example 2.3 and Example 2.4 that the groups V4 and Z/4Z both
have order 4. Yet they have differences. For instance, in Z/4Z the element 2
is the only non-trivial element that is equal to its own inverse, since 2 + 2 = 0
modulo 4. But in V4, every element is equal to it’s own inverse. It raises a
question if there are other groups of order 4 that are different from these two,
and if so, how many? This will be explored in the present section.

4.1 A note on cyclic groups

For every n ∈ Z+ there exists a cyclic group Cn of order n. An example of this
is the group Z/nZ with generator 1. In the following classifications, we will only
look at the non-cyclic isomorphism classes of a group G of some finite order,
referring to this subsection as needed.

4.2 Groups of order p

Suppose G is a group and |G| = p. Let x ∈ G be any non-trivial element, and
consider the cyclic subgroup ⟨x⟩ generated by x. Lagrange’s theorem dictates
that the order of x be a divisor of p. But p being prime and x being non-trivial,
the only possibility is |⟨x⟩| = p, implying that ⟨x⟩ = G. If a group has prime
order, then it must be cyclic.
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4.3 Groups of order p2

In this subsection we classify groups of order p2. We start by developing a
necessarily result.

Lemma 4.1. Let G be a group of order p2. Then G is abelian.

Proof. By Lagrange, and that Z(G) is non-trivial by Corollary 3.4.1, |Z(G)| is
restricted to p or p2. If the latter is true then Z(G) = G and we are done.

Suppose then that |Z(G)| = p. The quotient group G/Z(G) has order p2

p = p
and hence is cyclic: there is an element x ∈ G such that

⟨xZ(G)⟩ = G/Z(G)

so that every g ∈ G can be written g = xnz, for some z ∈ Z(G) and some n ∈ Z.
If g1 = xnz1 and g2 = xmz2, then

g1g2 = xnz1x
mz2

= xmz2x
nz1

= g2g1

using that z1, z2 ∈ Z(G) and that any element commutes with powers of itself.
Note that this meansG/Z(G) is trivial: ifG is abelian, then Z(G) = G, implying
G/Z(G) = G/G = 1.

Proposition 4.1. Let G be a non-cyclic group of order p2 for a prime number
p. Then G is isomorphic to Cp × Cp.

Proof. Let a and b be distinct non-trivial elements of G and let A = ⟨a⟩, B = ⟨b⟩
be the respective cyclic subgroups they generate. Note that these subgroups
have a trivial intersection, and each have order p. Since G is abelian, every
subgroup is normal and hence AB is a subgroup of G, by Proposition 3.8. We
have that

|AB| = |A||B|
|A ∩B|

=
p · p
1

= p2

hence AB = G. Now define a map ϕ : AB → A × B by ab 7→ (a, b). Letting
a1, a2, b1, b2 all be elements of G it follows that

ϕ(a1b1a2b2) = ϕ(a1a2b1b2) Since G is abelian.

= (a1a2, b1b2)

= (a1, b1)(a2, b2) by the operation in A×B.

= ϕ(a1b1)ϕ(a2b2).

Since |A×B| = |A||B| = p2, ϕ is an isomorphism and hence G ∼= Cp × Cp.

Recalling attention to the discussion of the V4-group and group tables, we
conclude that these are the only groups of order 4, up to isomorphism.
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4.4 Groups of order p3

The case p = 2

We begin with the non-abelian subcase, and will derive generators whose orders
will determine the isomorphism type.

In a group G of order 8, the possible orders of its elements are 1, 2, 4, 8 by
Lagrange’s Theorem. We know that no element can have order 8, since it implies
G is cyclic, and hence abelian. The following proposition helps us show that G
must have an element of order 4, by assuming all elements have order at most
2.

Proposition 4.2. Let G be a group and suppose that |x| = 2 for every non-
identity element x ∈ G. Then G is abelian.

Proof. That |x| = 2 implies x−1 = x. Generally speaking, a product xy has
inverse

(xy)−1 = y−1x−1

but since every element is its own inverse, the left hand side may simply be
written as xy. For the same reason, we can replace y−1 with y and x−1 with x
in the right hand side

(xy)−1 = y−1x−1

⇔ xy = yx

hence G is abelian.

The proposition shows that not all elements of G can have order 2: there
exists an element x of order 4. Let X = ⟨x⟩ = {x0, x1, x2, x3} and y ∈ G −X.
Because ⟨x, y⟩ contains ⟨x⟩, its order is divisible by 4. Since it also contains ⟨y⟩,
its order is greater than the order of ⟨x⟩. Hence ⟨x, y⟩ generates G.

We now examine the generators x and y. Note that the element z = yxy−1

is in X, since X has index 2 and hence is normal. It cannot be that z = x0 = 1
since that implies x = 1 and ⟨x, y⟩ won’t generate G. If z = x1 = x then x and
y commute, implying that the generated group G is abelian, contradicting our
assumption. The only possibilty is that z = x3, meaning |z| = 4. With this we
consider the order of y.

If |y| = 2 then G ∼= D8 because G is then given by the relation

G = ⟨x, y | x4 = s2 = 1, yx = x−1y⟩.

If |y| = 4 then G ∼= Q8 because G is then given by the relation

G = ⟨x, y | x4 = 1, x2 = y2, yx = x−1y⟩.

For an abelian group G of order 8 we will use the theory of semidirect products
to classify its isomorphism types. Assuming that G is non-cyclic, no element
can have order 8. Hence for non-trivial elements, the possible orders are 2 and
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4. Suppose G has no element of order 4. Then every non-trivial element must
have order 2. Let x, y, z be three such elements. Define

H = ⟨x⟩ ∼= C2 and H = ⟨y, z⟩ ∼= C2 × C2

The normality of H follows from G being abelian, and we also have that K ∩
H = 1. Thus the criterion of Proposition 3.7 are fulfilled, and we can look at
automorphims ϕ from K → Aut(H) or equivalently

ϕ : C2 × C2 → Aut(C2)

⇔ C2 × C2 → C2

Hence G is isomorphic to the semidirect product C2 × C2 ⋊ C2 for different
homomorphisms ϕ. But since the only possible homomorphism is the trivial
one, G ∼= C2 × C2 × C2.

If G does have an element of y of order 4, let K = ⟨y⟩ ∼= C4 and let H be as
previously. We thus look at autmorphisms

ϕ : C4 → Aut(y) = C2.

Since here too, the only possible homomorphism is the trivial one, the semidi-
rect product coincides with the direct product, and G ∼= C4 × C2.
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4.4.1 The case p ̸= 2

For the case when p is an odd prime, we introduce an object known as a com-
mutator. Intuitively it can be thought of as a measure of how ’non-abelian’ a
group is. The following four proposition develop its properties that will be used
later.

Definition 4.1. Let G be a group and let g, h ∈ G. The commutator [g, h] of
g and h is defined as

[g, h] = g−1h−1gh.

Proposition 4.3. Let g and h be as in the above definition. The following is
true.

1. gh = hg[g, h]

2. gh = hg if and only if [g, h] = 1

3. [g, h]−1 = [h, g].

Proof. (1) By definition [g, h] = g−1h−1gh. Thus the right hand side becomes

hg(g−1h−1gh) = h(gg−1)h−1gh

= hh−1gh

= gh.

(2) If [g, h] = g−1h−1gh = 1 then we can multiply on the left by h−1g−1 and
obtain gh = h−1g−1 = (gh)−1 implying that g and h commute. Conversely. If
gh = hg then by (1) [g, h] = 1.

(3) follows if we compute the products [g, h][h, g] and [h, g][g, h].

Proposition 4.4. Let G be a group and let a, b, c ∈ G. Then

1. [a, bc] = [a, c](c−1[a, b]c)

2. [ab, c] = (b−1[a, c]b)[b, c]

Proof. For a proof of 1, consider the right hand side: rewriting the leftmost
commutator gives us

[a, c](c−1[a, b]c) = a−1c−1ac(c−1[a, c]c)

= a−1c−1a(cc−1)[a, b]c

= a−1c−1a[a, b]c.

Rewriting the commutator that is left then gives

a−1c−1a[a, b]c = a−1c−1a(a−1b−1ab)c

= a−1c−1(aa−1)b−1abc

= a−1c−1b−1abc

= a−1(bc)−1abc

= [a, bc]
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hence the two sides are equal. The proof of 2 is analogous.

Lemma 4.2. let g and h be elements of the group G. Suppose that g and h
commute with [g, h]. Then

[g2, h] = [g, h2] = [g, h]2

Proof. The result follows from applying proposition 4.4, letting the squared
element take the role of ab or bc.

Proposition 4.5. Suppose g, h ∈ G, both of which commute with [g, h]. Then

(gh)n = gnhn[h, g]
n(n−1)

2

for all positive integers n.

Proof. The proof follows from induction on n. Notice that for n = 2, n(n−1)
2 = 1

and so

(gh)n = ghgh

= ghhg[g, h] By (1) of Proposition 4.3

= gh2g[g, h]

= ggh2[h2, g][g, h] By the same property

= g2h2[h, g]2[h, g]−1 By Corollary 4.4.1 and Property (3) of Proposition 4.3

= g2h2[h, g].

Suppose now that the result holds for the first n− 1 integers

(gh)n−1 = gn−1hn−1[h, g]
(n−1)(n−2)

2

Multiplying both sides on the right by gh we obtain

(gh)n = gn−1hn−1[h, g]
(n−1)(n−2)

2 gh

= gn−1hn−1gh[h, g]
(n−1)(n−2)

2

since both g and h commute with [g, h]. to reach the induction step we now
shift g and h a number of times, giving rise to additional commutators as in the
base case:

gn−1hn−1gh[h, g]
(n−1)(n−2)

2 = gn−1hn−1hg[g, h][h, g]
(n−1)(n−2)

2 By (1) of Proposition 4.3

= gn−1hng[g, h][h, g]
(n−1)(n−2)

2

= gn−1ghn[hn, g][g, h][h, g]
(n−1)(n−2)

2

= gnhn[h, g]n[h, g]−1[h, g]
(n−1)(n−2)

2 By Corollary 4.4.1

= gnhn[h, g]
(n−1)(n−2)

2 +n−1

= gnhn
n(n−1)

2

31



Proposition 4.6. Let G be a group and H ⊴ G. If G/H is abelian then
G′ ≤ H.

Proof. See Dummit and Foote, page 169 (point 4 of Proposition 7.)

Proposition 4.7. Let p be an odd prime, and P a non-abelian group of order
p3. Then P ′ = Z(P ).

Proof. By proposition 4.6, P ′ ≤ Z(P ). Note that |Z(P )| = p3 implies P is
abelian. By Lemma 4.3, |Z(P )| = p2 also implies P is abelian. Finally, we
know by Corollary 3.4.1 that Z(P ) is non-trivial. Hence the only possibility is
|Z(P )| = p, hence by Lagrange’s Theorem P ′ = Z(P ).

Proposition 4.8. Let p be an odd prime, and P a non-abelian group of order
p3. Then the map ϕ defined by x 7→ xp is a homomorphism from P into Z(P ).
Furthermore, the kernel of ϕ has order p2 or p3.

Proof. We first show that the image of ϕ is contained in Z(P ). Consider the
image xp for an arbitrary x ∈ P . For any other element y ∈ P

xpy = yxp[xp, y]

= yxp[x, y]p By Lemma 4.4.1

= yxp

since P ′ = Z(P ) and |P ′| = p by Proposition 4.7. Next we show that ϕ is a
homomorphism. By definition ϕ(xy) = (xy)p, and by Proposition 4.5

(xy)p = xpyp[y, x]
p(p−1)

2 .

Since p is odd, p−1
2 is an even integer. Thus p divides p· (p−1)

2 and [y, x]
p(p−1)

2 = 1.
Hence ϕ is a homomorphism.

To show that the kernel of ϕ has order p2 or p3, we rule out other possibilities.
If | kerϕ| = 1 then ϕ is injective, implying |P | = |Z(P )|, contradicting the
assumption that P is non-abelian. By the First Isomorphism Theorem

P/ kerϕ ∼= imϕ ≤ Z(P ).

Since imϕ divides |Z(P )|, the only possibilities are | kerϕ| = p2 or | kerϕ| =
p3.

Remark. The equation (xy)p = xpyp[y, x]
p(p−1)

2 would not have been satisfied
if p were even, because then p − 1 would be odd, and the denominator would
halve p itself.
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We can now go on to the classification itself. Let P be a non-cyclic group
of order p3. Proposition 4.8 showed that the map ϕ defined by x 7→ xp is a
homomorphism from P into Z(P ), and that kerϕ has order p2 or p3. The first
possibility implies P has an element of order p2: there exist non-trivial elements
outside of kerϕ. These cannot have order p3 since P is non-cyclic. The second
possibility implies every non-trivial element has order p, since the whole group
is contained in kerϕ. In this paper we will confine ourselves to the first case.

P has an element of order p2

Let x be an element of order p2 and let H = ⟨x⟩. Note that since H index p,
it is normal in G. If E is the kernel of the pth power map, then in this case
E ∼= Zp×Zp and E∩H = ⟨xp⟩. Let y be any element of E−H and let K = ⟨y⟩,
a cyclic group of order p. By construction, H ∩K = 1, and both K and H are
normal in G. Hence G is isomorphic to the semidirect product Cp ⋉ Cp2 for
various homomorphisms from K into Aut(H), the latter being isomorphic to
Cp(p−1) by By Sylow’s Theorem, Aut(H) has a unique subgroup of order p,
so any non-trivial homomorphism must map K to this subgroup. Let γ be a
generator. Then, for x ∈ H

γ(x) = x1+p

γ2(x) = x(1+p)(1+p)

= x1+2p

...

γp(x) = xp2+1

= x

Up to choice of generator of the cyclic group K there is only one non-trivial
homomorphism ϕ from K into Aut(H), given by ϕ(y) = γ; hence up to isomor-
phism there is a unique non-abelian group K ⋉H. This group is given by the
presentation

⟨x, y | xp2

= yp = 1, yxy−1 = x1+p⟩.
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4.5 Groups of order pq

4.5.1 The case p ∤ q-1

Suppose G is a group of order pq, with p < q. Sylow’s theorem asserts that
Sylq(G) and Sylp(G) are non-empty. Let Q ∈ Sylq(G). Between them, the
conditions

nq = 1 + kq for k ≥ 0

nq | p
p < q

imply k = 0. Hence nq = 1 and Q ⊴ G. If we can show that additionally,
P ⊴ G then the conditions of Proposition 3.9 are satisfied. Assume for now this
is the case. We prove the following.

Lemma 4.3. Cm × Cn
∼= Cmn if and only if m and n are coprime.

Proof.

The normality of P depends on p and q. By Sylow, np divides q, so np = 1
or q. If p ∤ q − 1 then np ̸= q. Hence P ⊴ G and we have proven that

Proposition 4.9. Let G be a group of order pq, with p < q. If p ∤ q − 1 then
G is cyclic.

Remark. Stated in terms of semidirect products, G ∼= P ⋊ Q, the condition
p ∤ q − 1 implies the only homormophism from P to Aut(Q) is the trivial one.

4.5.2 The special case p | q-1 and p = 2

Lemma 4.4. For an abelian group G, the inversion map ϕ given by x 7→ x−1

is an automorphism of G.

Proof. For x1, x2 in G, the abelian property assures that

ϕ(x1x2) = x−1
2 x−1

1

= x−1
1 x−1

2

= ϕ(x1)ϕ(x2)

If p = 2 then p | q − 1 implies p = 2 and q − 1 = 2m for some integer
m. Let γ be a generator of Aut(Q) and let x ∈ P . There exists a non-trivial
homomorphism ϕ : P → Aut(Q) given by x 7→ γm as can be seen by

ϕ(x2) = ϕ(e)

= γmγm

= ϕ(x)ϕ(x).
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The associated action has the property that, for every y ∈ Q, x · y = y−1. The
element x thus acts as the inversion map of Q. Hence multiplication in the
semidirect product takes the form

(y1, x1)(y2, x2) = (y1x1 · y2, x1x2)

= (y1y
−1
2 , x1x2)

for y ∈ Q, x ∈ P .

Proposition 4.10. Let P ⋉Q be the group as discussed above. Let (y, 1) = r
and (1, x) = s. Then r and s satisfy the relation

rq = s2 = 1 and sr = r−1s

i.e the semidirect product P ⋉Q is isomorphic to the dihedral group D2n.

Proof. That rq = s2 = 1 follows from composing the elements the respective
number of times. The other relation can be shown as follows

sr = (1, x)(y, 1)

= (1x · y, x)
= (y−1, x)

= (y−1, 1)(1, x)

= r−1s.

Depending on the choice of generator of Aut(Q) there are seemingly different
homomorphisms from P into Aut(Q). That these are isomorphic to each other
will not be shown in this paper.
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