
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Finding the Maximum of a Sum of Two Random Walks with Fixed
Endpoints

av

Tove Nordmark

2024 - K20

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Finding the Maximum of a Sum of Two Random Walks with
Fixed Endpoints

Tove Nordmark

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Daniel Ahlberg

2024





1 Abstract

This text concerns the problem of finding the argument maximum of a sum of two random walks
with fixed endpoints at 0, by choosing an appropriate subset of indices based on realizations of
one of these walks. A measure of the effectiveness of a strategy for choosing such a set of indices
has been proposed and a numerical study has been made. Furthermore, a subset asymptotically
containing 1/4 of the indices which contains the argument maximum with probability 1 has been
identified.
Denna text behandlar problemet att hitta index av maxpunkter för en summa av två slumpvandringar
med fixa ändpunkter med värdet 0 genom att välja en delmängd av index baserat på ett utfall av
en av slumpvandringarna. Ett mått på effektiviteten av en sådan strategi har föreslagits och en
numerisk studie har utförts. Vidare har en delmängd identifierats, med asymptotisk storlek 1/4 av
antalet index och som med sannolikhet 1 innehåller åtminstone ett index för en maxpunkt.
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3 Introduction

3.1 Background

The background necessary for this text mostly corresponds to a that of a typical undergraduate.
Firstly, the reader ought to be comfortable with the concept of random variables and more generally
the set theoretic foundation for probability as defined by Kolmogorov’s axioms. A review of the
subject may be found in for example [2].
Secondly, the reader should feel comfortable with elementary discrete mathematics such as the
multiplicative principle, binomial coefficients and the comparison of sizes of sets by bijection. An
overview may be found in [1].
Thirdly, the reader should be familiar with basic aspects of analysis, such as the definition of limits,
the values of standard limits and so-called big-O notation. These ought to be treated in any analysis
textbook for a first course in univariate analysis.
Finally, there are also references in the text to some definitions and results which are not necessarily
familiar to students of an undergraduate level. One is the countable subadditivity of measures. An
explanation may be found in [4]. In addition, a proof in the text rests on the Borel-Cantelli lemma
which is outlined in [2].
Though this text concerns random walks, it doesn’t use any results specifically relating to the theory
of them. A further outlook into the topic, and into the relation between random walks and Brownian
motion may be found in [3]. The book also contains exercises concerning Brownian bridges which
are related to the concept of random walk bridges dealt with in this text.

3.2 Problem Outline

This text is essentially concerned with a single problem concerning discrete so-called random walk
bridges. Let {Y known

i }2ki=0 and {Y unknown
i }2ki=0 be two discrete random walks of length 2k with fixed

endpoints at 0, that is,

Y known
0 = Y unknown

0 = 0 Y known
2k = Y unknown

2k = 0

In the jargon, we say that {Y known
i }2ki=0 and {Y unknown

i }2ki=0 are uniformly sampled among all random
walk paths that start and end at zero. For a rigorous definition, see section 3.3.
Suppose now that are shown an outcome of the first walk {Y known

i }2ki=0. Our task is now to systemat-
ically construct a set M of indices of the walk which with a certain probability, say 1/2, contains
the argument maximum of the sum

{Si}2ki=0 := {Y known
i + Y unknown

i }2ki=0

Specifically, we wish to find a strategy that results in choices of M which have a minimal ex-
pected/asymptotic cardinality.

3.3 Definitions

In the following, products of sets are formed using the Cartesian product. Define the set of outcomes
of series of increments of walks of length 2k

Ωk =

{
(x1, x2, . . . , x2k) ∈ {−1, 1}2k

∣∣∣∣ 2k∑
i=0

xi = 0

}
(3.1)



In other words, Ωk is the set of sequences consisting of series of length 2k consisting of k copies of
−1 and k copies of 1. For each sequence {xknown

i }2ki=0 in Ωk, we define the outcome {yknown
i }2ki=0 of

the walk {Y known
i }2ki=0 by taking the cumulative sum of the increments,

yknown
0 = 0, yknown

i =

i∑
j=1

xj (i = 1, 2, . . . , 2k) (3.2)

We define the outcomes of the walks {Y unknown
i }2ki=0 in the corresponding way. We now let the

probability of each outcome of a walk of a given length k be equal, by sampling the sequences of
increments by a uniform distribution on the set Ωk. For each k, the known and unknown walks
are sampled independently. In the terminology of random walks, this means that {Y known

i }2ki=0 and
{Y known

i }2ki=0 are simple and symmetric.

4 The Number of Peaks of a Random Walk with Fixed Endpoints

In the following section we shall find the distribution, expected value and asymptotic distribution
of the size of the random set

Mk = {i ∈ {1, 2, . . . , 2k − 1} : Yi = Yi−1 + 1, Yi+1 = Yi−1} (4.1)

We shall denote the size of this set by Nk. In this way, Nk may be regarded as the number of “peaks”
of a random walk. To begin with, we shall prove a useful result.

Theorem 1. For each positive integer k, the probability function ofNk is given by

P(Nk = j) =

(
k

j

)2

(
2k

k

) (4.2)

Proof. The proof rests on finding the sizes of the sets

Mk,j := {s ∈ Ωk : Nk = j} (4.3)

We shall show that for each pair of subsets of {1, 2, . . . , k}, each with cardinality j, there is one and
only one sequence s ∈ Ωk that satisfies Nk = j.
Let s = (x1, x2 . . . x2k) be a sequence of increments for which the corresponding walk satisfies
Nk = j. Let mk denote the corresponding realization of Mk, and let x0 = 0. For each i = 1, 2, . . . , 2k,
define

n+(i) = |{m ≤ i|xj = 1}|, n−(i) = |{m ≤ i|xj = −1}| (4.4)

where | · | denotes cardinality. Next, define the following sets:

A+ =
{
n ∈ {0, 1, 2, . . . , 2k}|∃i ∈ mk : n+(i) = n

}
, A− =

{
n ∈ {0, 1, 2, . . . , 2k}|∃i ∈ mk : n−(i+ 1) = n

}
(4.5)

We will endeavor to show that these form a pair of subsets of {1, . . . , k} containing j distinct
elements each. To this end, let i1 < i2 < . . . ij be an enumeration of mk. Define

∆+
l := n+(il)− n+(il−1) (4.6)

∆−
l := n−(il)− n−(il−1) (4.7)



It may now be realized that ∆+
l are positive for all 2 ≤ l ≤ j, because of the fact that xil = 1 for

all 1 ≤ l ≤ j, so that n+(il) is strictly greater than n+(il−1) for all 2 ≤ l ≤ j. Furthermore, ∆−
l

is strictly positive for all such l because xil+1 = −1 for all 1 ≤ l ≤ j, so that n−(il) is strictly
greater than n−(il−1). Thus all j elements in A+ and A− are distinct. The fact that xi1 = 1 and
xi1+1 = −1 together with the definition (4.5) further imply that all elements of A+ and A− are
greater than or equal to 1. Furthermore, all elements are less than or equal to k since there are
exactly k increments equal to 1, and exactly k increments equal to −1. Thus, (A+, A−) form a pair
of subsets of {1, 2, . . . , k} with precisely j distinct elements each.
We have thus found a map, defined by (4.47), from Mk,j to pairs of subsets of {1, 2, . . . , k} containing
j elements each. We shall now show that this map is injective. To see this, we note that since all
increments xi for 1 ≤ i ≤ 2k belong to {1,−1}, we have the following:

{m ≤ i|xm = 1} ∪ {m ≤ i|xm = −1} = {m ≤ i|xm ∈ {1,−1}} (4.8)

= {1, 2, . . . , i} (4.9)

Since the sets in the above union are disjoint and by the definition (4.4), we thus obtain

n+(i) + n−(i) = i (4.10)

In particular,
i ∈ mk ⇐⇒ n+(il) + n−(il + 1) = i+ 1 (4.11)

We now note that a sequence of increments (x1, . . . , x2k) is uniquely determined by the indices mk

of peaks together with the height differences yknown
il

− yknown
il−1

between peaks, where we let i0 = 0.
Now, suppose that we have two non-identical sequences of increments (x1, . . . , x2k) and (x′1, . . . , x

′
2k),

and denote the corresponding walks by {yknown
i }2ki=0, {y′known

i }2ki=0, respectively. Denote the corre-
sponding pairs of sets formed by (4.5) by (A+, A−) and (A′+, A′−). Now, since the sequences of
increments are non-identical, either the sets mk, m′

k of indices of peaks are different, or the height
differences yknown

il
− yknown

il−1
and y′known

il
− y′known

il−1
differ for some l = 0, 1, . . . j. In the former case,

equation (4.11) and the definition (4.5) imply that (A+, A−) and (A′+, A′−) must differ. In the latter
case, the pairs of sets (A+, A−) and (A′+, A′−) must again differ because at least for some peak with
index il, one of n+(il), n

−(il) must be different between the two walks.

Since the number of pairs of subsets of {1, 2, . . . , k} with precisely j distinct elements each is

(
k

j

)2

by the definition of binomial coefficients and the multiplicative principle, this means that

|Mk,j | ≤

(
k

j

)2

(4.12)
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Figure 1: An illustration of the relationship between k, j, the pair of sets (A+, A−) and the values
of n+ and n− at the points at which the walk changes direction. The walk was generated from a
choice of (A+, A−) using the rules (4.13) and (4.14).

We shall now prove the equality of the two quantities by finding an injective map from pairs of
subsets of the set {1, 2, . . . , k} with j elements each, to Mk,j . To this end, let A+ and A− be two
subsets of the set {1, 2, . . . , k} with j elements each. Form the sequence (x1, x2, . . . , x2k) in the
following way: Choose the first element according to the rule

x1 =

 1 1 ∈ A−

−1 otherwise
(4.13)

and the remaining elements according to the rule

xi+1 =


−1 xi = 1 and n+(i) ∈ A+

1 xi = −1 and n−(i) + 1 ∈ A− ∪ {k}

xi otherwise

(i = 1, 2, . . . , 2k − 1) (4.14)

In this way, the pair (A+, A−) determines the height differences between peaks, leading to a unique
set mk of indices of peaks, and thus the map defined by (4.5) is injective. For a visual example of
how the sets (A+, A−) generate a unique walk with j maxima, see figure (1). We find that

|Mk,j | ≥

(
k

j

)2

(4.15)

Together with (4.12), we thus have

|Mk,j | =

(
k

j

)2

(4.16)



In addition, the total size of the set Ωk is given by*

|Ωk| =

(
2k

k

)
(4.17)

Using the classical definition of probability, equations (4.16) and (4.17) now yield

P(Nk = j) =
|Mk,j |
|Ωk|

(4.18)

⇐⇒ P(Nk = j) =

(
k

j

)2

(
2k

k

) (4.19)

and the result is established.

Since the distribution of Nk is symmetric about k/2, its expected value is k/2. As a curiosity, this
implies that

k∑
j=1

j

(
k

j

)2

=
k

2

(
2k

k

)
(4.20)

This result is also attainable through an algebraic argument, which is given below for the interested
reader.

Lemma 1. For each positive integer k, the following identity holds:

k∑
j=1

j

(
k

j

)2

=
k

2

(
2k

k

)
(4.21)

Proof. The argument is inspired by a derivation of a similar identity in [1]. We consider the identity

d

dx
(1 + x)2k = 2(1 + x)k

d

dx

(
(1 + x)k

)
(4.22)

By the binomial theorem, the left hand side of (4.22) becomes

d

dx
(1 + x)2k =

2k∑
i=1

(
2k

i

)
ixi−1 (4.23)

Similarly, the right hand side of (4.22) is given by

2(1 + x)k
d

dx

(
(1 + x)k

)
= 2

 k∑
j=1

(
k

j

)
xj

 k∑
j=1

(
k

j

)
jxj−1

 (4.24)

Now, two polynomials are equal if and only if their coefficients are equal. In particular, by (4.22), the
coefficients before xk−1 in equations (4.23), (4.24) must be equal. Thus, by an elementary computation,

k

(
2k

k

)
= 2

k∑
j=1

j

(
k

j

)(
k

k − j

)
(4.25)

*To see this, notice the fact that the indices of the k copies of 1 in a given element of Ωk forms a subset of {1, . . . , 2k}
of size k



Using the property

(
k

j

)
=

(
k

k − j

)
, we obtain

k∑
j=1

j

(
k

j

)2

=
k

2

(
2k

k

)
(4.26)

as desired.

We shall use the expression for the distribution of Nk established by theorem 1 to find its expected
value and asymptotic distribution, but firstly we shall need the following result, taken from the field
of information theory:

Lemma 2. LetH(p) denote the binary entropy function,

H(p) := −p log2 p− (1− p) log2(1− p), 0 < p < 1 (4.27)

Then for all n ≥ 2 and for all 1 ≤ m < n, the following holds

log2

(
n

m

)
= nH

(m
n

)
+O(log2 n) (4.28)

Proof. We shall make use of Stirling’s approximation in the form

log2(n!) = n log2 n− n log2 e+O(log2 n) (4.29)

Which holds for positive integers n. The proof is now a simple matter of gathering terms and using
elementary properties of logarithms. Let n be a positive integer and m be some integer between
0 and n. Define α = m/n. By (4.29) and the definition of binomial coefficients as well as by the
properties of the O-symbol, we have

log2

(
n

m

)
= n log2 n− n log2 e+O(log2 n)

− nα log2(αn) + nα log2 e+O(log2 n)

− n(1− α) log2 ((1− α)n) + n(1− α) log2 e) +O(log2 n) (4.30)

⇐⇒ log2

(
n

m

)
= n (log2 n− α log2(αn)− (1− α) log2 ((1− α)n))

+ (α+ (1− α)− 1)n log2 e+O(log2 n) (4.31)

⇐⇒ log2

(
n

m

)
= n (log2 n− α log2(αn)− (1− α) log2 ((1− α)n)) +O(log2 n) (4.32)

Rearranging the terms and using the property log a− log b = log(a/b), we may rewrite the above
equation in the following way:

(4.31) ⇐⇒ log2

(
n

m

)
= n (−(α log2(αn)− α log2 n)− ((1− α) log2 ((1− α)n)− (1− α) log2 n)) +O(log2 n)

(4.33)

= n (−α log2(α)− (1− α) log2(1− α)) +O(log2 n) (4.34)

Recalling the definition (4.27) of the binary entropy function and that α := m/n, we obtain the result

(4.34) ⇐⇒ log2

(
n

m

)
= nH

(m
n

)
+O(log2 n) (4.35)

Q.E.D



We may now prove the following:

Theorem 2.
Nk

k

a.s.→ 1

2
as k → ∞ (4.36)

where a.s.→ denotes convergence almost surely.

Proof. We shall begin by proving that the series
∞∑
k=1

P
(
Nk ≤ k

(
1

2
− ε

))
(4.37)

converges to a finite number for each ε > 0, from which the theorem will naturally follow by
the Borel-Cantelli lemma[2], as well as the symmetry of the probability function of Nk about k

2 (see
theorem 1). In the case when ϵ ≥ 1/2, the convergence is obvious as the terms are all 0. With this in
mind, let ε be a number strictly between 0 and 1/2. Let k be any positive integer. By theorem 1.

P
(
Nk ≤ k

(
1

2
− ε

))
=

1(
2k

k

) k( 1
2
−ε)∑

j=0

(
k

j

)2

(4.38)

By the properties of binomial coefficients, the largest term in the above sum is for j = ⌊k
(
1
2 − ε

)
⌋.

Since there are ⌊k
(
1
2 − ε

)
⌋+ 1 terms in the sum, we thus obtain the following upper bound:

P
(
Nk ≤ k

(
1

2
− ε

))
≤

⌊k
(
1
2 − ε

)
⌋+ 1(

2k

k

) (
k

⌊k
(
1
2 − ε

)
⌋

)2

(4.39)

We now take the logarithm of both sides and obtain the asymptotic expression

log2 P
(
Nk ≤ k

(
1

2
− ε

))
≤ log2(⌊k

(
1

2
− ε

)
⌋+ 1) + 2 log

(
k

⌊k
(
1
2 − ε

)
⌋

)
− log2

(
2k

k

)
(4.40)

Using lemma 2, equation (4.40) now yields the following inequality:

log2 P
(
Nk ≤ k

(
1

2
− ε

))
≤ log2(⌊k

(
1

2
− ε

)
⌋+1)+log2(2k+1)−2k

(
H

(
1

2

)
−H

(
⌊
(
1
2 − ε

)
k⌋

k

))
(4.41)

We now define
αε := 2

(
1−H

(
1

2
− ε

))
(4.42)

Now, since H(1/2) = 1, H is strictly increasing on the interval (0, 1/2) and ⌊x⌋ ≤ x for all positive
real numbers x, we find that

0 < αε ≤ 2

(
H

(
1

2

)
−H

(
⌊
(
1
2 − ε

)
k⌋

k

))
(4.43)

Thus, equation (4.41) implies that

P
(
Nk ≤ k

(
1

2
− ε

))
≤
(
k

(
1

2
− ε

)
+ 1

)
(2k + 1) · 2−αεk (4.44)

where we have taken the (strictly increasing) exponential on both sides of the inequality and used
the previously mentioned fact that ⌊k

(
1
2 − ε

)
⌋ ≤ k

(
1
2 − ε

)
.



By a standard result, this establishes that there exist positive real numbers Cε and βϵ, and a positive
integer n such that for all k ≥ n,

P
(
Nk ≤ k

(
1

2
− ε

))
≤ Cε · e−βεk (4.45)

Thus, the sum
∞∑
k=1

P
(
Nk ≤ k

(
1

2
− ε

))
(4.46)

converges to a real number. Therefore, by the Borel-Cantelli lemma, the probability that the events
(Nk ≤ k

(
1
2 − ε

)
) occur for an infinite number of k is 0. Now, since by theorem 1, the probability func-

tion of Nk is symmetric about k/2, we may similarly argue that the probability of
(
Nk ≥ k

(
1
2 + ε

))
occurring for an infinite number of k is also 0. Thus, if we define Ak(ε) as the event

Ak(ε) :=

{
Nk

k
/∈
(
1

2
− ε,

1

2
+ ε

)}
(4.47)

it must be the case that for each 0 < ε < 1/2,

P {Ak(ε) i.o.} = 0 (4.48)

where i.o. denotes that the events occurs for an infinite number of indices k ≥ 1. This is obviously
also true when ε ≥ 1/2. In particular, it is true for all positive rational ε. By the countable subadditive
property of the probability measure, we thus have

0 ≤ P

 ⋃
ε∈Q,ε>0

{Ak(ε) i.o.}

 ≤
∑

ε∈Q,ε>0

P {Ak(ε) i.o} = 0 (4.49)

so that

P

 ⋃
ε∈Q,ε>0

{Ak(ε) i.o}

 = 0 (4.50)

Furthermore, suppose ε > 0 and let η > ε. Then if the outcomes Nk/k fall outside of the interval
(1/2− η, 1/2 + η) for an infinite number of indices k, then they must also fall outside of the interval
(1/2− ε, 1/2 + ε) for an infinite number of indices k. Thus it is the case that

{Ak(η) i.o.} ⊆ {Ak(ε) i.o.} (4.51)

We may therefore write
{Ak(ε) i.o} =

⋃
η≥ϵ

{Ak(η) i.o.} (4.52)

This in turn implies that ⋃
ε∈Q,ε>0

{Ak(ε) i.o} =
⋃

ε∈Q,ε>0

⋃
η≥ϵ

{Ak(η) i.o} (4.53)

=
⋃
ε>0

{Ak(ε) i.o} (4.54)

We may thus now “fill in” the irrational numbers in equation (4.50), to obtain

P

(⋃
ε>0

{Ak(ε) i.o.}

)
= 0 (4.55)



In order to further relate the above statement to the definition of a limit, we use the fact that by our
definition (4.47),

Ω\{Ak(ε) i.o.} = Ω\
{
Nk

k
/∈
(
1

2
− ε,

1

2
+ ε

)
i.o.
}

=

{
∃n ≥ 1 : ∀k ≥ n :

1

2
− ε <

Nk

k
<

1

2
+ ε

}
(4.56)

This is the case because if there is a finite number of k such that Nk/k does not fall within a given
interval, there must be a largest such k. Thus, for all larger k, Nk/k must fall within the interval.
Now, by set arithmetic, Kolmogorov’s axioms for probability and equation (4.55), we find that

P

(
Ω \

⋃
ε>0

{Ak(ε) i.o.}

)
= 1 (4.57)

⇐⇒ P

(⋂
ε>0

Ω \ {Ak(ε) i.o.}

)
= 1 (4.58)

⇐⇒ P

(⋂
ε>0

{
∃n ≥ 1 : ∀k ≥ n :

1

2
− ε <

Nk

k
<

1

2
+ ε

})
= 1 (4.59)

The above statement is equivalent to

P
{
∀ε > 0 : ∃n ≥ 1 : ∀k ≥ n :

1

2
− ε <

Nk

k
<

1

2
+ ε

}
= 1 (4.60)

Thus, by the definition of a limit, we have established the result

P
{
Nk

k
→ 1

2
as k → ∞

}
= 1 (4.61)

and thus, by definition,
Nk

k

a.s.→ 1

2
as k → ∞ (4.62)

Q.E.D.

5 Maxima of a Sum of Random Walks

We shall now turn to the problem of finding the maximum of the sum of two random walks. In the
following section, we shall be concerned with the sum

{Si}2ki=0 := {Y known
i + Y unknown

i }2ki=0 (5.1)

of the random walks {Y known
i }2ki=1 and {Y unknown

i }2ki=1 satisfying

Y known
0 = Y unknown

0 = 0, Y known
2k = Y unknown

2k = 0

In particular, we wish to find a subset Ik of indices of {Y known}2ki=0 such that Ik contains the argument
maximum of the sum {Si}2ki=0 with a given probability. The set of indices of “peaks” Mk described
in the previous section provides a good starting point, as illustrated by the following theorem:

Theorem 3. If we view the index of the walk as being modulo 2k, that is, that we view the indices 0 and 2k

as identical, we have the following: The union of set of indices

Mk =
{
i ∈ {1, 2, . . . , 2k − 1} : Y known

i = Y known
i−1 + 1, Y known

i+1 = Y known
i−1

}
(5.2)

and the set {2k} contains the argument maximum of the sum {Si}2ki=0 with probability 1.



Proof. Suppose {yknown
i }2ki=0 is a realization of the walk {Y known

i }i=0, {xi}2ki=0 be its sequence of
increments, and mk be the corresponding realization of Mk. Suppose further that t1 and t2 are
two consecutive elements of mk, in the sense that t1 < t2, and that there is no t ∈ mk such that
t1 < t < t2. Then there is no occurrence of the pattern

xt1+i = 1, xt1+i+1 = −1

for i = 1, 2 . . . t2 − t1, for if that were the case, then there would exist t ∈ mk such that t1 < t < t2.
Therefore, there exists a positive integer j such that

xt1+i =

−1 0 < i ≤ j

1 j < i ≤ t2 − t1
(5.3)

Therefore it is also the case that

yknown
t1+i =

yknown
t1 − i 0 < i ≤ j

yknown
t2 − ((t2 − t1)− i) j < i ≤ t2 − t1

(5.4)

An illustration of the structure of the known walk between the indices t1 and t2 is found in figure 2.

𝑡1 + 𝑗𝑡1 𝑡2

𝑡

𝑦𝑡
known

Figure 2: The structure of the known walk between the indices t1 and t2.

Now, we shall consider the possible values of the second walk {Y unknown
i }2ki=0.

We shall start with the case i = 1, 2, . . . , j where j is as in (5.4). Since each increment of the second
walk either takes the value −1 or 1, the following inequality holds:

Y unknown
t1+i ≤ Y unknown

t1 + i (5.5)

Using (5.4), we have in the case 0 < i ≤ j:

yknown
t1+i + Y unknown

t1+i ≤ yknown
t1+i + Y unknown

t1 + i (5.6)

= (yknown
t1 − i) + Y unknown

t1 + i (5.7)

= yknown
t1 + Y unknown

t1 0 < i ≤ j (5.8)



In the case i = j + 1, j + 2, . . . , t2 − t1 − 1, we can instead use the inequality

Y unknown
t1+i ≤ Y unknown

t2 + ((t2 − t1)− i) (5.9)

Again, this holds because the value of each increment is either 1 or −1. Using (5.4), the inequality
can be rewritten in the following way for the case i = j + 1, j + 2, . . . , t2 − t1:

yknown
t1+i + Y unknown

t1+i ≤ yknown
t1+i + Y unknown

t2 + ((t2 − t1)− i) (5.10)

= (yknown
t2 − ((t2 − t1)− i)) + Y unknown

t2 + ((t2 − t1)− i) (5.11)

= yknown
t2 + Y unknown

t2 j < i ≤ t2 − t1 (5.12)

Now, we may combine the inequalities (5.8) and (5.12) to obtain:

yknown
t + Y unknown

t ≤ max{yknown
t1 + Y unknown

t1 , yknown
t2 + Y unknown

t2 } t1 ≤ t ≤ t2 (5.13)

It is also of interest to find a corresponding inequality for the values of the random walk about 0. To
do this, let tmin and tmax be the smallest and largest elements of mk. Firstly, consider the case where

yknown
2k−1 = −1, yknown

1 = −1 (5.14)

In this case, if we view the walk as being modular, identifying 0 with 2k, we may construct additional
inequalities as follows: We note that we have the same situation between tmax and 2k, and between
0 and tmin that we had between two consecutive elements of mk. We may thus form the inequalities

yknown
t + Y unknown

t ≤ max{yknown
tmax + Y unknown

tmax , 0} tmax ≤ t ≤ 2k (5.15)

and
yknown
t + Y unknown

t ≤ max{0, yknown
tmin

+ Y unknown
tmin

} 0 ≤ t ≤ tmin (5.16)

In the case when (5.14) does not hold, we instead have the same situation between tmax and tmin as
between two consecutive elements of mk, leading to the inequality

yknown
t +Y unknown

t ≤ max{yknown
tmax +Y unknown

tmax , yknown
tmin

+Y unknown
tmin

} t ∈ {0, 1, . . . , tmin}∪{tmax, tmax+1, . . . , 2k}
(5.17)

Now, we may finish the proof. Let tm be a point at which the sum {Si}2ki=0 attains its maximum. Now,
if mk contains tm, or tm = 2k, we are done. If that is not the case, then there are two possibilities:
Either tm falls between two consecutive elements t1 and t2 of mk, or tm falls between tmax and tmin

†.
In the former case, by the inequality (5.13), the sum {Si}2ki=0 must also attain its maximum value at
either t1 or t2.
In the latter case, either both inequalities (5.15) and (5.16) hold, in which the sum of the walks attains
its maximum at 2k, tmin or tmax, or inequality (5.17) holds in which case the sum of the walks attains
its maximum at tmin or tmax. In any case, there is some element of mk ∪ {2k} at which the sum of
the walks attains its maximum.
Since this holds for each realization mk of Mk, the random set Mk∪{2k} must contain the argument
maximum of {Si}2ki=0 with probability 1, Q.E.D.

†“ between” in the“modular arithmetical” sense that tm is larger than tmax or smaller than tmin



6 Measures of the Effectiveness of a Strategy

As previously stated, the goal of our analysis is to find a strategy which, based on {Y known
i }2ki=0

produces a “small” subset of indices containing the argument maximum of the sum {Si}2ki=0 with a
fixed probability, say 1/2.
Now, if a given probability of success is desired one has to generate a subset of ones set of potential
argument maxima, the size of which corresponds to the desired probability of success. If we assume
that the elements of this subset are chosen at random, we can find a connection between the subset
size corresponding to a given probability of success and the number of argument maxima in the
set of potential peaks. Say the set of potential argument maxima is M , and that we know that the
number of argument maxima in M is nmax. If we choose n elements at random from M , the number
of argument maxima in a randomly sampled subset of M follows a hypergeometric distribution,
Hypergeometric(|M |, nmax, n). In particular, the probability that a randomly sampled subset of M
with n elements contains at least one argument maximum, given nmax, is

pn = 1−

(
m− nmax

n

)
(
m

n

) (6.1)

Since this is a probability conditioned on the number nmax of argument maxima in M , calculating
the probability of success for a given subset size n requires information about the distribution of
nmax. This problem shall not be further explored in the text. However, the formula (6.1) provides a
relatively numerically efficient way to estimate the probability of success from a sample of simulated
walks, for each value of n.

6.1 Numerical Analysis of the Effectiveness of a Strategy

With section 6 in mind, one can now easily numerically evaluate a strategy. Firstly, one may easily
simulate samples of the random walks {Y known

i }2ki=0 and {Y unknown
i }2ki=0 by repeatedly shuffling a list

containing k copies of 1 and k copies of −1. One may then for a given strategy of selecting a subset
estimate the probability of containing the argument maximum of the sum, for a given number of
elements chosen from the subset, by using formula 6.1. That is, one estimates the expected value of
pn.
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Figure 3: The number of elements of a subset needed to attain a given probability of success. Each
estimate is generated from a sample of 2000 random walks.
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Figure 4: The probability of finding the argument maximum when picking elements from Mk or
from the total set of indices in the case k = 800. A sample of 100 random walks was used to generate
the estimates of success probabilities.

7 Discussion

The theoretical achievements of this paper lie in providing an explicit probability function for the
size of the subset of indices of peaks as well as showing the (almost surely) limit of this size. It has
also been shown by a simple argument that the set of indices of peaks of the known walk together
with the endpoints {0, 2k} contains the argument maximum of the sum of the known and unknown



walks surely and almost surely. Furthermore, a measure of the effectiveness of a strategy in terms
of how the subsets scale in k has been discussed and a numerical method devised to empirically
estimate this measure.
For a given strategy, there must, for each success probability, say 1/2, be some law giving the size n

of an appropriate subset for that success probability. There is a question of what form this law might
take. Figure (3) indicates that for the strategies of picking random subsets of size n from either the
set of peaks or the total set of indices, the value n corresponding to each success probability scales
linearly in k. Furthermore, an analytical argument shows that for a success probability of 1/2, for
an optimal strategy, n can not scale slower than

√
2k. A reasonable guess, therefore, is that a large

class of strategies for picking a subset of size n1/2 corresponding to a success probability of 1/2,
exhibit relationships of the following form:

n1/2 = a0 · ka1 (7.1)

where a0 and a1 are some constants. As per the above discussion, a value of a1 close to 1 would
characterize an inefficient strategy and a value close to 1/2 would signify a near maximally efficient
strategy. Determining the optimal value of a1 is an open problem.
A possible extension of the strategy of choosing indices of peaks would be to consider a larger
neighborhood around a given index, and see for example if the increments of the walk are consistently
equal to 1 for smaller indices and −1 for larger indices in the neighborhood. This may either result
in a smaller subset also scaling linearly in k or potentially a more powerful strategy.

8 Appendix

8.1 Code

Python code for generating a random walk bridge with a specified length and number of peaks,
from a random choice of A+ and A−

def generate_rw_from_set_pair(k, j):

"""Generates a random walk bridge of length 2k with a specified number j of peaks.

Params:

-------

k: int

Half of the length of the walk

j: int

The desired number of peaks

Returns:

--------

(np.array(size=j), np.array(size=j), np.array(size=2k)):

A tuple consisting of (A+, A-, walk)"""

# Random choice of (A+, A-)

A_plus = np.random.choice(np.array(list(range(1, k + 1))), size=j, replace=False)

A_minus = np.random.choice(np.array(list(range(1, k + 1))), size=j, replace=False)



n_plus = np.zeros(2 * k, int)

n_minus = np.zeros(2 * k, int)

x = np.zeros(2 * k, int)

inverse_peak_indices = []

peak_indices = []

# Starting rule

if 1 in A_minus:

x[0] = 1

n_plus[0] = 1

else:

x[0] = -1

n_minus[0] = 1

# Iteration rule

for i in range(1, 2 * k):

if x[i - 1] == 1 and n_plus[i - 1] in A_plus:

x[i] = -1

n_minus[i] = n_minus[i - 1] + 1

n_plus[i] = n_plus[i - 1]

peak_indices.append(i)

elif x[i - 1] == -1 and (n_minus[i - 1] + 1 in A_minus or n_minus[i - 1] == k):

x[i] = 1

n_plus[i] = n_plus[i - 1] + 1

n_minus[i] = n_minus[i - 1]

inverse_peak_indices.append(i)

else:

if x[i - 1] == -1:

x[i] = -1

n_minus[i] = n_minus[i - 1] + 1

n_plus[i] = n_plus[i - 1]

else:

x[i] = 1

n_plus[i] = n_plus[i - 1] + 1

n_minus[i] = n_minus[i - 1]

walk = np.zeros(2 * k + 1, int)

# The walk is the cumulative sum of increments

for i in range(2 * k):

walk[i + 1] = walk[i] + x[i]

return A_plus, A_minus, walk
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