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1 Abstract
1.1 English
Permutation patterns is an interesting and niche branch of mathematics that give rise to many
fascinating sequences ranging from simple combinatorial operations all the way to the Catalan and
Fibonacci numbers. In this thesis we study the basics of permutation patterns and prove some
of the more well-known results that have been discovered during the last century. We look at
permutation patterns from a more combinatorial approach rather than an algorithmical approach
that is more common as seen in the works of Donald Knuth. We cover avoidance of permutation
patterns and explore multi-avoidance and the kind of sequences that occur as a result of patterns
avoiding more than two 3-patterns.

1.2 Svenska
Permutationmönster är ett intressant och nisch gren av matematik som ger upphov till många
fascinerande sekvenser, allt från enkla kombinatoriska operationer till de Katalanska och Fibonacci-
talen. I det här arbetet studerar vi grunderna i permutationmönster och bevisar några av de mer
välkända resultaten som har upptäcks under det senaste århundradet. Vi tittar på permutation-
mönster från ett mer kombinatoriskt perspektiv snarare än ett algoritmiskt synsätt vilket är något
som är mer vanligt i verken av Donald Knuth. Vi förklarar och ger exempel av undvikande av
permutationmönster och går igenom mång-undvikande samt vilka sorter av sekvenser som uppstår
som ett resultat av mång-undvikande av fler än två 3-mönster.
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2 Introduction and Background
The history of permutation patterns is relatively brief and has been ongoing for barely over a
century. Percy MacMahon was one of the first mathematicians who delved into the topic and
showed in 1915 that 123-avoiding permutations are counted by the Catalan numbers in Section
5 of his book Combinatory Analysis although back then he called them "lattice permutations"[7].
During the latter half of the 19th century Donald Knuth came along and showed that stack-sortable
permutations are enumerated by the Catalan numbers[6]. It was not until later when Simion and
Schmidt constructed the first useful bijection between 123- and 231-avoiding permutations[11]. The
topic of avoiding permutations of size 3 has been thoroughly studied since and their relation to the
Catalan numbers is well-understood.
In this thesis we introduce permutation patterns and introduce the necessary definitions, we prove
important theorems and show examples to provide the reader with a good understanding of the
subject even if the reader does not have proficiency of the topic. Furthermore in Section 4 we
expand on the previous concepts and examine multi-avoidance. We show interesting results and
sequences that arise when avoiding multiple permutations simultaneously and prove the formula
for containing all permutation patterns of length 3. In section 5 we cover Wilf-classes and some
interesting topics related to permutation patterns, we also touch upon recent discoveries within
the field in order to inspire the reader to delve deeper into the topic of permutation patterns.



3 Basics
3.1 Permutation Patterns
Definition 3.1 (Permutation). Define a permutation π of length n as a bijection from [n] onto
itself where [n] denotes the first n positive integers. The length of π can be denoted as size(π) = n
and π can be denoted as an ordered list:

π = [π(1), π(2), . . . , π(n)]. (1)

We write the empty permutation as ∅ = [ ].

Example 3.1 (Permutation examples). Let π1 = [4, 1, 6, 2, 3, 5] be a permutation of length 6 and
let π2 = [3, 1, 4, 2] be a permutation of length 4. We can verify that both π1 and π2 are valid
permutations as all the elements are unique integers less than or equal to the length given but we
can explicitly confirm by inspecting the bijections π1 and π2:

π1 = [π(1), π(2), π(3), π(4), π(5), π(6)] = [4, 1, 6, 2, 5, 3], (2)

π2 = [π(1), π(2), π(3), π(4)] = [3, 1, 4, 2]. (3)

Definition 3.2 (Permutation matrix). Define a permutation matrix M(π) of a permutation π of
length n as a n × n matrix where π(i) = j =⇒ Mj,i(π) = 1 and π(i) ̸= j =⇒ Mj,i(π) = 0. In
this text we will refer to non-zero entries of the matrix as elements for the sake of simplicity.

Example 3.2 (Permutation matrix example). Inspect the permutation from earlier π2 = [3, 1, 4, 2].
We get the following values from the definition:

π(1) = 3 =⇒ M3,1(π2) = 1,

π(2) = 1 =⇒ M1,2(π2) = 1,

π(3) = 4 =⇒ M4,3(π2) = 1,

π(4) = 2 =⇒ M2,4(π2) = 1,

(4)

which gives us the following 4 × 4 matrix:
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

.

Definition 3.3 (Permutation group). Define the permutation group Sn to be the group of all
possible permutations of length n. This group has n! elements.

Example 3.3 (Permutation group example). S3 = {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}.
Note that creating a new group of all the permutation matrices of the permutations in S3 is a sub-
group of GL3(R). This is true in general regardless of what n we choose.

Definition 3.4 (Permutation grid). A more common way to visualize permutation matrices is
with the help of a permutation grid, the usefulness of this becomes apparent as we move onto the
subject of permutation patterns. Define a permutation grid of a permutation π as its permutation
matrix where each 1 is transformed into a dot and where each 0 is omitted.

Example 3.4. Consider the permutation π2 = [3, 1, 4, 2] from earlier, we get the following permu-
tation grid. Notice the similarity to its permutation matrix.
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Performing the same process for π1 = [4, 1, 6, 2, 5, 3] of length 6 from earlier we get the following
permutation grid:
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Note that different sources use different conventions for the orientation of the permutation grids.
Some of them use the bottom left corner as origin while some place the elements directly on the
gridlines.
Definition 3.5 (Identity permutation). Define the identity permutation en of length n as the
permutation that maps every element onto itself.
Example 3.5. The identity permutation of length 4 is e4 = [1, 2, 3, 4]. Note that the permutation
matrix of every identity permutation is the identity matrix. In this case the permutation matrix
of e4 is I4 where In denotes the n × n identity matrix.
Definition 3.6 (Permutation inverse). Define the permutation inverse π−1 as the unique permu-
tation that fulfills π · π−1 = en.
Example 3.6. Let π = [1, 6, 2, 5, 3, 4], we get that π−1 = [1, 3, 5, 6, 4, 2] because

e6 = [π(π−1(1)), π(π−1(2)), π(π−1(3)), π(π−1(4)), π(π−1(5)), π(π−1(6))]
= [π(1), π(3), π(5), π(6), π(4), π(2)]
= [1, 2, 3, 4, 5, 6].

(5)

Notice that the matrix of a permutation inverse is the inverse of the original permutation matrix.

M(π) =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

 , M(π−1) =


1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

 . (6)



We can indeed verify that (M(π))−1 = M(π−1) = MT(π), this is true because the matrix is
orthogonal. The latter part is true because of Lemma 1.4.

3.2 Pattern Avoidance
Definition 3.7 (Permutation pattern). Define a permutation pattern σ as a "sub-pattern" of a
bigger permutation π if σ occurs in π. If it does occur then we say that π contains σ otherwise we
say that π avoids σ. Formally we can say that σ occurs in π if there are integers i1 < i2 < · · · < ik

such that:

π(ia) < π(ib) ⇐⇒ σ(a) < σ(b).

Example 3.7 (Permutation pattern example). Let π = [1, 6, 2, 5, 4, 3] and σ = [3, 1, 2]. Let us
investigate if σ occurs in π. Visually one can inspect the permutation grids of π and σ:

Note that the pattern σ does not have to occur exactly as it is shown for it to qualify as occuring
in π, it just has to occur in the same relative order. We see that the red diamonds below all fulfill
the criteria for σ to occur in π. There are more possible occurences, but we only illustrate four
examples here.



Definition 3.8 (Pattern avoidance). Let AVπ(n) be the number of permutations in Sn that are
being avoided by π.

Example 3.8 (Pattern avoidance example). Consider the permutation pattern σ = [1, 2, 3] and
let us investigate AVσ(4). There is a total of 24 patterns that exist of length 4 but note that σ
is avoided by 14 of them, therefore AVσ(4) = 14. One can verify this by checking all of the 24
permutations and seeing that σ does not occur in the following:

[1, 4, 3, 2], [2, 1, 4, 3], [2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 4, 2], [3, 2, 1, 4], [3, 2, 4, 1],
[3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 3, 2], [4, 2, 1, 3], [4, 2, 3, 1], [4, 3, 1, 2], [4, 3, 2, 1].

(7)

Meanwhile σ is contained by the remaining 10 permutations:

[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3],
[2, 1, 3, 4], [2, 3, 1, 4], [2, 3, 4, 1], [3, 1, 2, 4], [4, 1, 2, 3].

(8)

Note that some of these have more than one way for σ to occur such as for [1, 2, 3, 4] which has
four ways it can occur as shown below:

[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]. (9)

Definition 3.9 (Reverse permutation). Given a permutation π of length n we define the reverse
permutation as rev(π) = [πn, πn−1, . . . , π1]. One can think of a reverse permutation as flipping
the permutation matrix across the vertical axis.

Example 3.9 (Reverse permutation example). If π = [1, 4, 3, 2] then rev(π) = [2, 3, 4, 1].

Definition 3.10. Given a permutation π of length n we define the flip permutation as flip(π) =
[(n + 1) − π1, (n + 1) − π2, . . . , (n + 1) − πn]. One can think of a flip permutation as flipping the
permutation matrix across the horizontal axis.

Example 3.10 (Flip permutation example). If π = [1, 4, 3, 2] then rev(π) = [4, 1, 2, 3].

Lemma 3.1 (Transitive property). If π contains σ and σ contains τ then π also contains τ .

Proof. If π contains σ then from the definition there must exist integers i1 < i2 < · · · < im such
that π(ia) < π(ib) ⇐⇒ σ(a) < σ(b). If σ contains τ then from the definition there must exist
integers j1 < j2 < · · · < jn such that σ(ja) < σ(jb) ⇐⇒ τ(a) < τ(b). We know that i1 ≤ j1 and
jn ≤ im since size(π) ≥ size(σ) ≥ size(τ). That means for all j we can find an i such that ia = jb

for some a, b. Therefore we can for all j find a k such that kx = iy for some x and y(x) such that
it fulfills the following: There exist integers k1 = iy(1) < k2 = iy(2) < · · · < kn = iy(n) such that
π(ka) < π(kb) ⇐⇒ τ(a) < τ(b) Therefore we have proven from the definition that if π contains σ
and σ contains τ then π also contains τ .



We illustrate this more clearly by the use of a visual example:

Here we have π = [1, 6, 2, 5, 4, 3], σ = [1, 4, 3, 2] and τ = [2, 1]. We intuitively see that the transitive
property holds and it is not difficult to see that it is true in general.

Lemma 3.2 (Reverse avoidance). We have that AVπ(n) = AVrev(π)(n).

Proof. If π contains σ, then rev(π) contains rev(σ). This is clear by considering the permutation
matrices. Moreover, {rev(π) | π ∈ Sn} = Sn because of symmetry. Therefore we have concluded
that AVπ(n) = AVrev(π)(n).

Lemma 3.3 (Flip avoidance). We have that AVπ(n) = AVflip(π)(n).

Proof. This follows from a similar argument as above.

Lemma 3.4 (Inverse equals transpose). We have that π−1 = rev(flip(π)).

Proof. Flipping the permutation matrix across the vertical axis and the horizontal axis results in
a flip across the diagonal which gives the transpose of the matrix.

Definition 3.11 (Upper-triangular part of a permutation). We define the upper-triangular part
UTP(π) of a permutation π as the sub-sequence of elements in π such that π(i) ≤ i. In a similar
fashion we define the lower-triangular part LTP(π) of a permutation π as the sequence of elements
such that π(i) > i.

Example 3.11 (Upper-triangular part example). Given π = [1, 7, 4, 5, 2, 3, 6] we get UTP(π) =
[1, 2, 3, 6] and LTP(π) = [7, 4, 5] as shown below:

One way to think about UTP(π) is to consider all the elements on or above the diagonal line of the
permutation matrix. In a similar fashion one can think of LTP(π) as considering all the elements
below the diagonal line.

Lemma 3.5 (Structure of 321-avoiding patterns). A permutation π avoids [3, 2, 1] if and only if
UTP(π) and LTP(π) are both increasing. Furthermore UTP(π) uniquely determines π.



Proof. First we consider the trivial case of π = In, this gives UTP(π) = In and LTP(π) = ∅. We
clearly see that In avoids [3, 2, 1]. Suppose that π is 321-avoiding but UTP(π) is not ascending.
This means that there is at least one k < m such that π(k) > π(m) and because of the definition
of UTP(π) we know that π(k) ≤ k as shown by the figure below:

k − 1 n − k

Since π is 321-avoiding we must have that π(i) < π(k) for all i = 1, 2, . . . , k − 1 otherwise
we would get an occurrence of [3, 2, 1]. We also note that π(i) ̸= π(m). But this means that
{π(1), π(2), . . . , π(k − 1)} are only allowed to take different values in {π(1), π(2), . . . , π(k − 1)} \
{π(m)} which by the pigeon-hole principle is impossible since the first set has a cardinality of k −1
while the latter set has a cardinality of k − 2. Because of this we get that if π is 321-avoiding then
UTP(π) has to be ascending. One can use a similar argument for LTP(π). Now let us prove that if
UTP(π) and LTP(π) are ascending then π is 321-avoiding. Suppose that π(a) > π(b) > π(c) where
a < b < c. This is impossible since either a, b or a, c or b, c must both be in UTP(π) or LTP(π),
which contradicts the ascending property. As an example, consider the figure below. Any descent
must involve one element from UTP(π) and one from LTP(π).

We now prove the latter part of the lemma, namely that assuming if π is 321-avoiding then UTP(π)
determines π. It is clear that the elements in LTP(π) are {1, 2, 3, . . . , n} \ UTP(π), furthermore we
know that LTP(π) is ascending hence we can easily find LTP(π) if given UTP(π). Therefore we
have proven the lemma.

3.3 Connection to the Catalan Numbers
Definition 3.12 (Catalan numbers). The Catalan numbers are a sequence of non-negative integers
that frequently occur in combinatorics, especially those that involve recursively defined operations.



One way to calculate the nth Catalan number is by the following formula:

Cn = 1
n + 1

(
2n

n

)
.

However do note that there are many formulas and recurrence relations one can use to acquire the
values of Cn. The recurrence formula that will come of use for us later is Cn =

∑n
i=1 Ci−1Cn−i

with C0 = 1. The first Catalan numbers from n = 0 to n = 9 are as follows:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862.

Definition 3.13 (Lattice paths). We define a lattice path as a path going from (0, 0) to (a, b) that
only allows for downwards and rightwards movement. In this work we only consider lattice paths
going from (0, 0) to (n, n) and such that they never cross the diagonal. We say that such a lattice
path has length n.

Example 3.12 (Lattice paths example). The figure below shows an example of a lattice path
going from (0, 0) to (7, 7). Note that it never crosses the diagonal line.

Lemma 3.6 (Number of lattice paths). The number of possible lattice paths for a (n, n) grid is
equal to the Catalan numbers.

Proof. Let Wn be the number of possible lattice paths of length n. Let (i, i) be the last time that
this path reaches the diagonal line except for (n, n). We split the lattice path into two smaller
lattice paths of length i and n − i − 1 respectively. Wi and Wn−i−1 denotes the number of such
possible paths. The reason for n − i − 1 is simply because the latter path has one less option due
to being unable to reach the diagonal as is illustrated in the figure below:

(i, i)

(n, n)

(0, 0)



Enumerating from i = 0 to i = n − 1 and assuming W0 = 1 gives us the following sum:

Wn = Wn−1 + W1Wn−2 + · · · + Wn−2W1 + Wn−1

Wn = W0Wn−1 + W1Wn−2 + · · · + Wn−2W1 + Wn−1W0

Wn =
n−1∑
i=0

WiWn−i−1

Wn =
n∑

i=1
Wi−1Wn−i.

This sum is exactly the recursive formula for the Catalan numbers. Therefore we have that Wn =
Cn and we have proven that the number of possible lattice paths of length n is equal to Cn.

Combinatorial Proof. There is another way to prove that the number of possible lattice paths
gives rise to the Catalan numbers, the idea is fairly straight forward and makes use of binomial
coefficients. The total number of paths from (0, 0) to (n, n) without restricting the path to the
upper-triangular half is given by

(2n
n

)
. One can find that the number of paths that are below the

upper-triangular half is given by
( 2n

n+1
)
. Simple algebra gives us

(2n
n

)
−

( 2n
n+1

)
= 1

n+1
(2n

n

)
which

aligns with the formula of the Catalan numbers as given in Definition 3.12.

Example 3.13 (Lattice paths of length 4). In the figure below one can see the process of enumer-
ating the sum for the case of n = 4.

We get the sum C0C3 + C1C2 + C2C1 + C3C0 = C4. Note that the dashed line is the diagonal line
of the latter lattice path.

Theorem 3.7. Given π ∈ S3 we have that AVπ(n) = Cn.

Proof. We have that rev([1, 2, 3]) = [3, 2, 1] and we also have bijections between the remaining 4
permutations in S3 by performing flip and reverse operations on them as seen in the figure below:

[1, 3, 2]

[3, 1, 2] [2, 1, 3]

[2, 3, 1]

flip

rev

rev

flip

We need to show that AVπ(n) = Cn holds for at least one element in both P1 = {[1, 2, 3], [3, 2, 1]}
and in P2 = {[3, 1, 2], [2, 1, 3], [1, 3, 2], [2, 3, 1]}. This is because of Lemma 3.2 and 3.3. We start by
proving AV[3,1,2](n) = Cn by using a combinatorial argument.



1 2 . . . i . . . . . . n

AV[3,1,2](i − 1)

AV[3,1,2](n − i)

In the figure above we have the grid of a permutation π whose structure avoids [3, 1, 2]. Assume
that 1 is placed in the ith position. Every element to the left of 1 has to be smaller than every
element to the right of 1 otherwise we would end up with an occurrence of [3, 1, 2]. This is obvious
if one considers the structure of [3, 1, 2]. Furthermore we know that both the left and the right
sub-matrices have to avoid [3, 1, 2]. Assuming that π is of length n there are n possibilities for
1 to be placed. We enumerate from i = 1 until i = n where the ith term counts the number of
312-avoiding permutations with 1 at position i. We get the following sum:

AV[3,1,2](n) = AV[3,1,2](0)AV[3,1,2](n − 1) + · · · + AV[3,1,2](n − 1)AV[3,1,2](0)

=
n∑

i=1
AV[3,1,2](i − 1)AV[3,1,2](n − i).

This aligns with the recursive formula for the Catalan numbers Cn given that AV[3,1,2](0) = 1 = C0.
We conclude that given π ∈ P2 we know that AVπ(n) = Cn.
For [3, 2, 1] and [1, 2, 3] we need a different approach.
We examine [3, 2, 1] to prove that π ∈ P1 satisfy AVπ(n) = Cn. By Lemma 3.5 if π avoids [3, 2, 1]
then it needs to be uniquely defined by one ascending list of elements π(i1) < π(i2) < · · · < π(ik).

1 2 3 4 5 . . . n

Consider the figure above of a upper-triangular half of the permutation matrix. We create a path
by starting in the top left corner and moving to the rightwards until we reach an element, after that
we move downwards until we are at the height of another element or at the diagonal, we repeat
this process until we reach (n, n). The path that is formed is indeed a lattice path as every corner
of the path corresponds to an element in the upper half of the permutation matrix. We know from



Lemma 3.6 that the number of possible lattice paths of length n is equal to Cn. We know that
there is a bijection between the paths caused by this algorithm and the lattice paths because each
element in the ascending list gives rise to a "peak" on the path, all of the possible arrangements
of these elements gives rise to all the possible lattice paths. This is obvious if one considers the
possible placements for the elements and the paths that they produce. We have therefore proven
that AV[3,2,1](n) = Cn hence proving the case for [1, 2, 3] as well due to Lemma 3.2. Therefore we
have proven that given π ∈ S3 we have AVπ(n) = Cn.

Example 3.14 (Bijection example for C3 = 5). Below we show all the cases for the example of
C3 = 5:

4 Multi-Avoidance
4.1 Introduction
In this section we study multi-avoidance and see how we can extend the concepts shown in the
previous section. We study the work of Simion and Schmidt[11] during 1985 and show the most
relevant results. We work our way up from double restrictions all the way to restrictions of or-
der 5 and arrive at a very fascinating formula for containing all six permutations of length 3.
In order to keep the notation tidy we may omit commas and brackets. For example instead
of writing AV[1,2,3],[1,3,2],[2,1,3](n) = AV[2,3,1],[3,1,2],[3,2,1](n) we may write AV[123],[132],[213](n) =
AV[231],[312],[321](n).

4.2 Multi-avoidance
Definition 4.1 (Multi-avoidance). Given the permutation π we define multi-avoidance as π avoid-
ing two or more permutations simultaneously. The number of permutations in Sn that simulta-
neously avoid the permutations π1, π2, . . . , πk is denoted by AVπ1,π2,...,πk

(n) or for the sake of
simplicity as AVP(n) where P = {π1, π2, . . . , πk}. In this section we only consider permutations of
length 3.



Example 4.1 (Multi-avoidance example). Consider the permutation π = [2, 3, 4, 5, 1] as shown by
the permutation grid below, we note that it is 321- and 213-avoiding.

Avoiding [1, 2, 3] and [3, 2, 1] at the same time will be a recurring theme as we investigate multi-
avoidance. We refer to the following lemma numerous times throughout the section.

Lemma 4.1 (123- and 321- avoiding permutations). If {[1, 2, 3], [3, 2, 1]} ⊆ P then AVP(n) = 0
for n ≥ 5.

Proof. For π to be 321-avoiding we can write it as the union of two ascending sub-sequences. For π
to also be 123-avoiding we can write it as the union of two descending sub-sequences. It is obvious
that such an arrangement is not possible for n ≥ 5.

4.3 Double Restrictions
Theorem 4.2 (Bijections when |P| = 2). We proved earlier that by Lemmas 3.2, 3.3 and 3.4 that
due to symmetries between permutation patterns we can find a bijection between permutations to
reduce the amount of cases that need examining. The same holds true when it comes to multi-
avoidance. Simion and Schmidt[11] proved that there are only 6 pairs of permutations that need
to be considered as shown below:

1. AV[1,2,3],[1,3,2](n) = AV[1,2,3],[2,1,3](n) = AV[2,3,1],[3,2,1](n) = AV[3,1,2],[3,2,1](n).

2. AV[1,3,2],[2,1,3](n) = AV[2,3,1],[3,1,2](n).

3. AV[1,3,2],[2,3,1](n) = AV[2,1,3],[3,1,2](n).

4. AV[1,3,2],[3,1,2](n) = AV[2,1,3],[2,1,3](n).

5. AV[1,3,2],[3,2,1](n) = AV[1,2,3],[2,3,1](n) = AV[1,2,3],[3,1,2](n) = AV[2,1,3],[3,2,1](n).

6. AV[1,2,3],[3,2,1](n).

Proof. Refer to [11, p. 392].

The two following lemmas will be useful for us for proving the first 5 cases shown above.

Lemma 4.3. Given f(n) = 1 +
∑n−1

k=1 f(k) we know that f(n) = 2n−1 for n ≥ 1.

Proof. We use an inductive proof to show that this lemma is true. We first prove the base case
n = 1. We get that f(1) = 1 = 21−1. Assume that f(m) = 1 +

∑m−1
k=1 f(k) = 2m−1 for some



m ≥ 1. Now we have that:

f(m + 1) = 1 +
m∑

k=1
f(k)

= 1 +
m−1∑
k=1

f(k) + f(m)

= f(m) + f(m)
= 2 · f(m)
= 2 · 2m−1

= 2m.

By induction we have shown that f(n) = 1 +
∑n−1

k=1 f(k) = 2n−1.

Lemma 4.4. Given f(n) = n − 1 + f(n − 1) and f(1) = 1 we have that f(n) =
(

n
2
)

+ 1 for n ≥ 2.

Proof. We use an inductive proof to show that this lemma is true. We first prove the base case
n = 2. We get that 1 − 1 + f(1) = 2 =

(2
2
)

+ 1. Assume that f(m) =
(

m
2
)

+ 1 for some m ≥ 2. Now
we have that:

f(m + 1) = (m + 1) − 1 + f((m + 1) − 1)
= m + f(m)

= m +
(

m

2

)
+ 1

= m + m(m − 1)
2 + 1

= m(m + 1)
2 + 1

=
(

m + 1
2

)
+ 1.

By induction we have shown that f(n) = n − 1 + f(n − 1) =
(

n
2
)

+ 1.

Lemma 4.5 (Double Restrictions Case 1). We have that AV[3,2,1],[3,1,2](n) = 2n−1.

Proof. This is Case 1 from Theorem 4.2. Let P = {[3, 2, 1], [3, 1, 2]}. We know from earlier in
Theorem 3.7 that a 312-avoiding permutation must have the following structure:

1 2 · · · k · · · · · · n

AVP(n − k)



We know from earlier that a 321-avoiding permutation can be written as the union of two ascending
sub-sequences which causes a restriction on the elements in the left sub-matrix. We know that
π(1) > π(2) > · · · > π(k − 1) has to hold otherwise we would have an occurrence of [3, 2, 1], this is
the only way to avoid [3, 2, 1] as we saw in the previous section. We know that it is impossible for
[3, 2, 1] occur unless [3, 2, 1] occurs in the right sub-matrix because all the values to the left of it
are smaller than the values in the right sub-matrix. We also know that it is impossible for [3, 1, 2]
to occur unless [3, 1, 2] occurs in the right sub-matrix because the left sub-matrix already avoids
it and all the values to the left of the right sub-matrix are smaller than the values in the right
sub-matrix. We conclude that it in order for π to avoid [3, 2, 1] and [3, 1, 2] the right sub-matrix
needs to also avoid [3, 2, 1] and [3, 1, 2]. Note that when k = n there is only one possibility for the
permutation. Enumerating from k = 1 to k = n we get the following sum:

AVP(n) = AVP(n − 1) + AVP(n − 2) + · · · + AVP(1) + 1

= 1 +
n−1∑
k=1

AVP(k).

Because of Lemma 4.3 we know that AVP(n) = 2n−1 and therefore we have proven the Lemma.

Lemma 4.6 (Double Restrictions Case 2). We have that AV[2,3,1],[3,1,2](n) = 2n−1.

Proof. This is Case 2 from Theorem 4.2. The proof is similar to the proof of Lemma 4.5 but with
a different structure which is as shown below:

1 2 · · · k · · · · · · n

AVP(k − 1)

We note that the overall structure is 312-avoiding for the same reasons as in 3.7. Furthermore
a permutation with this structure is also 231-avoiding as long as the left sub-matrix is also 231-
avoiding. Similarly to the previous proof we enumerate from i = 1 until i = n and we get
AVP(n) = 1 + AVP(1) + · · · + AVP(n − 2) + AVP(n − 1) = 1 +

∑n−1
k=1 AVP(k) and because of

Lemma 4.3 we know that AVP(n) = 2n−1 and therefore we have proven the lemma.

Lemma 4.7 (Double Restrictions Case 3). We have that AV[1,3,2],[2,3,1](n) = 2n−1.

Proof. This is case 3 from Theorem 4.2. The proof is similar to the proof of Lemma 4.5. Refer to
[11, p. 393]

Lemma 4.8 (Double Restrictions Case 4). We have that AV[1,3,2],[3,1,2](n) = 2n−1.

Proof. This is case 4 from Theorem 4.2. The proof is similar to the proof of Lemma 4.5. Refer to
[11, p. 393]

Lemma 4.9 (Double Restrictions Case 5). We have that AV[1,2,3],[3,1,2](n) =
(

n
2
)

+ 1.



Proof. Let P = {[1, 2, 3], [3, 1, 2]}. Once again we consider the structure of a 312-avoiding per-
mutation π. We saw in Theorem 3.7 that a 312-avoiding permutation must have the following
structure:

1 2 · · · k · · · · · · n

We know that this is true because a 123-avoiding permutation has to be made up of 2 descending
lists of elements for the same reason that 321-avoiding permutations have to be made up of 2
ascending lists as we saw in Lemma 3.5. From k = 1 to k = n − 1 there is only one way for
π to avoid both [1, 2, 3] and [3, 1, 2] for every k. This is obvious if one considers that any other
placement would result in an occurrence of [1, 2, 3]. Notice that this structure does not necessarily
need to be as shown above in the case of k = n:

1 2 · · · · · · · · · · · · · · · n

AVP(n − 1)

If π(n) = 1 then that element does not affect the 123- and 312-avoiding nature of the structure so
what we are left with is AVP(n − 1). Enumerating from k = 1 until k = n we get the following
sum:

AVP(n) = AVP(n − 1) +
n−1∑
k=1

(1)

= AVP(n − 1) + (n − 1)

=
(

n

2

)
+ 1.

This is true because of Lemma 4.4. Therefore we have proven that AV[1,2,3],[3,1,2](n) =
(

n
2
)

+ 1.



Lemma 4.10 (Double Restrictions Case 6). The cases of AV[1,2,3],[3,2,1](n) are as following:

AV[1,2,3],[3,2,1](n) =


n if n = 1 or n = 2
4 if n = 3 or n = 4
0 if n ≥ 5.

Proof. We ignore the trivial cases of n = 1 or n = 2. For n = 3 there are only two cases which do
not avoid both [3, 2, 1] and [1, 2, 3]. It is indeed [3, 2, 1] and [1, 2, 3] themselves. There is a total of
3! = 6 permutations which gives us 6 − 2 = 4 permutations that avoid both [3, 2, 1] and [1, 2, 3].
For the case n = 4 there are also only four permutations as shown below:

For the case n ≥ 5 refer to Lemma 4.1, we know that it is not possible to have a permutation avoid
both [1, 2, 3] and [3, 2, 1] if n ≥ 5.

4.4 Triple Restrictions
Theorem 4.11 (Bijections when |P| = 3). Similarly to how we reduced the number of cases for
double restrictions we can do the same for triple restrictions as shown below:

1. AV[123],[132],[213](n) = AV[231],[312],[321](n).

2. AV[123],[132],[231](n) = AV[123],[213],[312](n) = AV[132],[231],[321](n) = AV[213],[312],[321](n).

3. AV[132],[213],[312](n) = AV[132],[213],[312](n) = AV[132],[231],[312](n) = AV[213],[231],[312](n).

4. AV[123],[132],[312](n) = AV[123],[213],[231](n) = AV[132],[312],[321](n) = AV[213],[231],[321](n).

5. AV[123],[231],[312](n) = AV[132],[213],[321](n).

6. AV[123],[321],[132](n) = AV[123],[321],[213](n) = AV[123],[321],[231](n) = AV[123],[321],[312](n).

Proof. Refer to [11, p. 396].

Lemma 4.12 (Triple Restrictions Case 1). We have that AV[2,3,1],[3,1,2],[3,2,1](n) = Fn+1 where Fn

is the n:th Fibonacci number.

Proof. A reminder that Fn is given by the recursive formula Fn = Fn−1 + Fn−2 with F0 = 1 and
F1 = 1. Let P = {[2, 3, 1], [3, 1, 2], [3, 2, 1]} In order for a permutation π to be 312-avoiding it needs
to follow the structure shown in Theorem 3.7. In order for π to be 321-avoiding it needs to follow
the structure shown in Lemma 3.5. These two restrictions give us a permutation with a structure
as shown below:



1 2 · · · k · · · · · · n

We immediately notice that a permutation like this is not 231-avoiding as highlighted by the
diamonds above. There are only two placements of π(k) = 1 that allow for [2, 3, 1] to be avoided,
namely when k = 1 and k = 2.

1 · · · · · · · · · · · · n

AVP(n − 1)

1 2 · · · · · · n

AVP(n − 2)

Note that the case π(1) = 1 does not have any impact on the occurrence on any of the permutations
in P. The same is true for π(2) = 1. We see that AVP(n) = AVP(n − 1) + AVP(n − 2). We know
that AVP(1) = 1 and AVP(2) = 2 which gives us the recursive Fibonacci relation offset by one.
Therefore we have shown that AVP(n) = Fn+1.

Lemma 4.13 (Triple Restrictions Case 2). We have that AV[1,2,3],[1,3,2],[2,3,1](n) = n.

Proof. The proof for this lemma uses a very similar setup to Lemma 4.15 further down.

Lemma 4.14 (Triple Restrictions Case 3). We have that AV[1,3,2],[2,1,3],[3,1,2](n) = n.

Proof. The proof for this lemma uses a very similar setup to Lemma 4.15 further down.

Lemma 4.15 (Triple Restrictions Case 4). We have that AV[1,3,2],[3,1,2],[3,2,1](n) = n.

Proof. Let P = {[1, 3, 2], [3, 1, 2], [3, 2, 1]}. Similarly to the previous proof we know that in order
for a permutation π to be 312- and 321-avoiding is as shown below:



1 2 · · · k · · · · · · n

We note that this structure also avoids [1, 3, 2] for every value of π(k) = 1. There is exactly one
way to avoid all permutations in P for every k. Enumerating from k = 1 to k = n gives us the
simple formula AVP(n) =

∑n
k=1 (1) = n. Therefore we have proven the lemma.

Lemma 4.16 (Triple Restrictions Case 5). We have that AV[1,2,3],[2,3,1],[3,1,2](n) = n.

Proof. The proof for this lemma uses a very similar setup to Lemma 4.15.

Lemma 4.17 (Triple Restrictions Case 6). We have that AV[1,2,3],[3,2,1],[3,1,2](n) = 0 given n ≥ 5.

Proof. Let P = [1, 2, 3], [3, 2, 1], [3, 1, 2]. In order to avoid both [1, 2, 3] and [3, 2, 1] it is obvious that
if n ≥ 5 we can no longer construct two ascending and two descending principal lists, this leads us
to AVP(n) = 0. For the trivial cases n = 1 and n = 2 we know that AVP(1) = 1 and AVP(2) = 2.
For n = 3 we quickly see that there are only 3 permutations in S3 that avoid all permutations in
P as shown below:

Furthermore, one can easily see that given |P| = m we get that AVP(3) = 6 − m since one must
avoid m permutations and there are 3! = 6 permutations in total in S3.
For the cases of n = 4 we exhaustively examine the possibilities as shown below:

One can easily see that π(1) = 1, π(3) = 1 and π(4) = 1 gives us no way to avoid both [1, 2, 3] and
[3, 2, 1]. For π(2) = 1 we get one possibility as shown above, namely π = [2, 1, 4, 3]. We know from
Lemma 4.1 that if n ≥ 5 then AVP(n) = 0. Therefore we get the following cases for AVP(n) :

AVP(n) =


n if 1 ≤ n ≤ 3,

1 if n = 4,

0 if n ≥ 5.



4.5 Restrictions of Order 4
Theorem 4.18 (Bijections when |P| = 4). There are two cases to consider when |P| = 4:

1. {[1, 2, 3], [3, 2, 1]} ⊂ P.

2. {[1, 2, 3], [3, 2, 1]} ̸⊂ P.

Proof. We easily see that these are the only two possible cases for |P| = 4. Either both of [1, 2, 3]
or [3, 2, 1] are in P or not.

Lemma 4.19 (Restrictions of Order 4 Case 1). Given {[1, 2, 3], [3, 2, 1]} ⊂ P then AVP(n) = 0 if
n ≥ 5.

Proof. We note that the trivial cases are AVP(1) = 1 and AVP(2) = 2. As we saw in the proof
of Lemma 4.17 there are 6 − |P| ways to avoid all permutations in P given n = 3. Therefore
AVP(3) = 2. For the case of n = 4 we refer back to the figure from early on in Theorem 3.7 that
showed the bijections between [3, 1, 2], [2, 1, 3], [2, 3, 1] and [1, 3, 2]. The permutations that are not
connected by an immediate bijection allow for avoidance of both. For example one immediately
notices that if one is to avoid both [3, 1, 2] and [2, 1, 3] then π(1) or π(4) has to be equal to 1
but we know that if π(1) = 1 or π(4) = 1 we get I4 or Rev(I4) which results in an occurrence
of [1, 2, 3] or [3, 2, 1] respectively. There are two cases that avoid this problem. Namely when
P1 = {[1, 2, 3], [3, 2, 1], [2, 1, 3], [1, 3, 2]} and P2 = {[1, 2, 3], [3, 2, 1], [3, 1, 2], [2, 3, 1]}. We know that
in order to avoid both [1, 2, 3] and [3, 2, 1] we have that π(1) or π(4) can not equal to 1. For P1 we
get one possibility with [2, 1, 4, 3] and for P2 we get one possibility of [3, 4, 1, 2]. If n ≥ 5 we know
from Lemma 4.1 that AVP(n) = 0. We summarize all cases of n as following:

AVP(n) =


1 if n = 1,

2 if n = 2 or n = 3,

1 if n = 4 and P ∈ {P1, P2},

0 otherwise.

Lemma 4.20 (Restrictions of Order 4 Case 2). Given {[1, 2, 3], [3, 2, 1]} ̸⊂ P then AV(n) = 2.

Proof. We note that if [3, 2, 1] and [1, 2, 3] are not in P then there are only two cases that avoid
all the permutations in P, namely In and Rev(In). If either [1, 2, 3] or [3, 2, 1] are in P then there
are also two cases that avoid all the permutations in P. First is either In or Rev(In) respectively
and the second permutation can be found by placing an element in one of the corners or the
permutation matrix and In or Rev(In) depending on the last permutation in S3 that is missing
from P. For example given P = {[1, 2, 3], [3, 1, 2], [2, 1, 3], [2, 3, 1]} we get [n, n − 1, . . . , 2, 1] and
[1, n, n − 1, . . . , 3, 2] that avoid all the permutations in P. The same reasoning can be applied for
all the other possibilities of |P| = 4.

4.6 Restrictions of Order 5
Theorem 4.21 (Bijections when |P| = 5). There are two cases to consider when |P| = 5:

1. At most one of [1, 2, 3] ∈ P or [3, 2, 1] ∈ P, AVP(n) = 1.

2. {[1, 2, 3], [3, 2, 1]} ⊂ P, AVP(n) = 0 if n ≥ 5.

Proof. It should be clear to the reader at this point that there is an issue when avoiding both
[1, 2, 3] and [3, 2, 1] at the same time. Given a permutation π of length n we know from earlier
that if {[1, 2, 3], [3, 2, 1]} ⊆ P and n ≥ 5 then AVP(n) = 0. The other possibility is that either
[1, 2, 3] ∈ P or [3, 2, 1] ∈ P. In this case we get that either π must equal to Rev (In) or to In. This
is obvious if one considers the proof of Lemma 4.20.



4.7 Containing all permutations of length 6
In this section we finalize all the results thus far of avoiding different permutations of length 3. We
make use of most of the theorems and lemmas that we have proved in this section.

Theorem 4.22 (Number of permutations that contain all permutations of length 3). Let X(n) be
the number of permutations in Sn, given n ≥ 5, that contain all permutations of length 3 as

X(n) = n! − 6Cn + 5 · 2n + 4 ·
(

n

2

)
− 2Fn+1 − 14n + 20. (10)

This is sequence A124188 in OEIS [9].

Proof. We make use of the inclusion exclusion principle to arrive at the formula above. Note that
there are 3! = 6 permutations of length three. We know from Theorem 3.7 that the number of
permutations that avoid π is given by the Catalan numbers Cn. We add all the cases for double
restrictions. From Theorem 4.2 and the lemmas following it we know that there is a total of 10
double restrictions that are counted by 2n−1. This gives us 10 · 2n−1 = 5 · 2n. Case 5 has four
distinct possibilities each counted by

(
n
2
)

+ 1. This gives us

n! − (6Cn) + (5 · 2n + 4 ·
(

n

2

)
+ 4).

Consider the triple restrictions. We know from Theorem 4.11 and the lemmas following it that
the total number is 2Fn+1 + 14n. The lemma for Case 1 gives us Fn+1 and there are two such
possibilities. Cases 2 through 5 are counted by n and there are 14 possibilities. This gives us

n! − (6Cn) + (5 · 2n + 4 ·
(

n

2

)
+ 4) − (2Fn+1 + 14n).

Consider the restrictions of order 4. We know from Theorem 4.5 that Case 2 is counted by 2. The
number of possibilities is 2 ·

(5
4
)

− 1 = 9 which gives us 2 · 9 = 18. This is true because there is
only one way to avoid both [1, 2, 3] and [3, 2, 1]. There are four ways to include exactly [1, 2, 3] and
four ways to include exactly [3, 2, 1] which gives us 9 ways. For restrictions of order 5 we know
from Theorem 4.6 that Case 1 is counted by 1. The number of possibilities is 2 ·

(5
5
)

= 2, either
P = {[123], [132], [213], [231], [312]} or P = {[321], [132], [213], [231], [312]}. This gives us

X(n) = n! − (6Cn) + (5 · 2n + 4 ·
(

n

2

)
+ 4) − (2Fn+1 + 14n) + (18) − (2)

= n! − 6Cn + 5 · 2n + 4 ·
(

n

2

)
− 2Fn+1 − 14n + 20.



5 Literature Study
5.1 Introduction
Permutation patterns have gained popularity over the years. A yearly international conference
about permutation patterns has been held since 2003[3]. Every year since then except for 2020 and
2021 due to the COVID pandemic there has been a conference where prestigious and knowledgeable
mathematicians have presented research result to other enthusiasts of permutation patterns[2]. It
is apparent that permutation patterns are not just a challenge for fun and a branch of mathe-
matics that can be cast aside as a mere puzzle. An example of this is during the 2022 conference
where many impactful uses were presented ranging from computer science to combinatorics and
graph theory[1]. This section is dedicated to further topics, recent discoveries and unsolved prob-
lems within permutation patterns. We cover Wilf-equivalence, avoidance of patterns of length 4,
superpermutations, superpatterns and mention other interesting concepts within the topic.

5.2 Avoidance of Length 4
We have studied permutations of length 3 and their avoidance in great depth so far. For permuta-
tions of length 4 it becomes a much trickier endeavour. In 1997 Miklós Bóna[4] proved that:

AV[1342](n) = 7n2 − 3n − 2
2 · (−1)n−1 + 3

n∑
i=2

[
2i+1 · (2i − 4)!

i! (i − 2)! ·
(

n − i + 2
2

)
· (−1)n−1

]
.

This is sequence A022558 in OEIS [10]. This is a very complicated formula but we can verify that
it holds true. The same can not be said for all permutations of length 4 however let alone length 5.
For example there is currently no formula for AV[1324](n) which remains an open problem. Miklós
discussed in his work that an upper bound has been found for [1342], namely AV[1342](n) < 8n.
Miklós discusses polynomial recursiveness in his work which is a very important tool to help
determine not only the upper bound but potentially the formula for the sequence. Miklós further
explains that a function f(n) is P -recursive if and only if its ordinary generating function u(x)
is differentiably finite (D-finite). If there exist polynomials p0(x), p1(x), . . . , pd(x) with pd(x) ̸= 0
and

pd(x)u(d)(x) + pd−1(x)u(d−1)(x) + · · · + p1(x)u(1)(x) + p0(x)u(x) = 0,

where u(i)(x) is the i:th derivative then we say that u(x) is D-finite. Miklós makes use of the fact
that all algebraic power series are D-finite and shows that there is a connection between certain
permutations of length 4 and rooted bicubic maps whose generating function can be represented by
an algebraic power series. Miklós notes that there are only three cases of permutations of length 4
that are relevant and proves that two of them are P -recursive. The third class represented by [1324]
remains unknown to this day which raises doubts to whether all permutations are P -recursive and
if all permutations have a closed formula. Igor Pak and Scott Garrabrant showed that based on
experimental evidence it seems that the sequences AV[4231],[4123] and AV[4231],[4123],[4312] are not
P -recursive [5]. There are other examples of higher order multi-avoidance that seem to not be
P -recursive but it is not yet absolutely certain that the same holds true for avoidance of order 1.
Mathematicians suspect that the sequence AV[1324] is not P -recursive but this remains an open
problem.

5.3 Superpermutations
Definition 5.1 (Superpermutation). We define a superpermutation Perm(n) as a sequence that
contains all permutations of length n. Note that unlike permutations that were discussed earlier
superpermutations allow for elements being repeated. Let |Perm(n)| be the length of the super-
permutation.

Example 5.1 (Superpermutation example Perm(3)). We realize that there are 3! = 6 permuta-
tions of length 3. The naive approach would be to put them after eachother in order to achieve
123132213231312321 but one immediately notices that there is a way to do it with significantly



fewer elements. In general we want to find the shortest superpermutation for each n. In the case
of n = 3 the shortest superpermutation is actually 123121321. It is certainly shorter and one can
verify that it contains all occurrences of all permutations of length 3.

5.4 Superpatterns
Definition 5.2 (Superpattern). We define a superpattern πS(n) as a permutation that contains
all permutations of length n.

Example 5.2 (Superpattern example πS(3)). Similarly to superpermutations we could take a
naive approach and end up with πS(3) = [1, 2, 3, 4, 6, 5, 8, 7, 9, 14, 15, 13, 18, 16, 17, 21, 20, 19]. It is
obvious however that we can find a superpattern that is smaller. It turns out that the smallest
πS(3) has length 5. There are two such patterns and one can see that they are symmetrical:

5.5 Wilf-equivalence
An interesting aspect of avoiding permutations that we have noticed so far is that certain patterns
are avoided equally. For example we know from Theorem 3.7 that AV[1,2,3](n) = AV[1,3,2](n).
We also saw many other examples in Section 4. In general when talking about Wilf-equivalence
however we usually refer to classes of permutations and for that we need a few definitions.

Definition 5.3 (Symmetry class). We define a symmetry class of a permutation π as the set of all
permutations that can be acquired through the operations Flip and Rev or through a combination
of them.

Definition 5.4 (Wilf-equivalence). We say that two distinct symmetry classes A and B are Wilf-
equivalent if and only if for each permutation π ∈ A, τ ∈ B, we have AVπ(n) = AVτ (n) for all
n.

Example 5.3 (Symmetry class and Wilf-equivalence example). We saw two examples of sym-
metry classes in Theorem 3.7. We note that there are two symmetry classes in S3 namely
A = {[123], [321]} and B = {[132], [213], [231], [312]}. We clearly see that these are Wilf-equivalent
from Theorem 3.7.

Definition 5.5 (Wilf-class). We define a Wilf-class as a set that is made up of all relevant sym-
metry classes that are Wilf-equivalent.

Example 5.4 (Wilf-class examples). We saw earlier that there are two symmetry classes in S3, it
is easy to see that there is only one Wilf-class in S3 which is just S3 itself. Throughout Section 4
we saw many different symmetry classes and Wilf-classes. Below we have combined the results for
avoiding two and three patterns of length 3.



Table 1: Classes avoiding two patterns of length 3

A Sequences enumerating AVA(n) Formula OEIS
{[123], [321]} 1, 2, 4, 4, 0, 0, 0, . . . — —
{[132], [321]} 1, 2, 4, 7, 11, 16, 22, . . .

(
n
2
)

+ 1 A000124
{[123], [132]}
{[132], [213]}
{[132], [231]}
{[132], [312]}

1, 2, 4, 8, 16, 32, 64, . . . 2n−1 A000079

Table 2: Classes avoiding three patterns of length 3

A Sequences enumerating AVA(n) Formula OEIS
{[123], [321], π} 1, 2, 3, 1, 0, 0, 0, . . . — —

{[123], [132], [213]} 1, 2, 3, 5, 8, 13, 21, . . . Fn+1 A000045
{[123], [132], [231]}
{[132], [213], [312]}
{[123], [132], [312]}
{[123], [231], [312]}

1, 2, 3, 4, 5, 6, 7, . . . n A000027

5.6 Further Reading
We have presented the reader a few interesting topics related to permutation patterns such as
superpatterns, superpermutations and Wilf-equivalence during this section. If one wants to pursue
the topic of combinatorics further with a more rigorous resource then the book "Handbook of
Enumerative Combinatorics" compiled by Miklós Bóna who we mentioned earlier might be of
interest[8]. This is a large piece of literary work that is over a thousand pages long and features
several contributors one of whom is Vincent Vatter who has made many contributions with regards
to the topic of permutation patterns. It does not come as a surprise that his contribution to this
book is also about permutation patterns. He defines and explains Wilf-classes and gives examples
of them and then delves deeper into the topic of growth rates of principal classes and notions of
structure. There are many other topics covered in the book that might be of interest. Trees,
graphs, lattice path enumeration and Catalan paths are just a few of the interesting topics in the
book.

https://oeis.org/A000124
https://oeis.org/A000079
https://oeis.org/A000045
https://oeis.org/A000027
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A Permutation Avoidance Program
During my work on this thesis I wrote a program in C# that was of great use when checking the
avoidance of certain patterns.

A.1 Permutation Handler Class
Below is the code of the permutation handler class:

public class PermutationHandler
{

public static int Factorial(int n)

{
if (n == 0)

return 1;
return (n * Factorial(n - 1));

}
static IEnumerable<IEnumerable<T>> GetPermutations<T>(IEnumerable<T> list, int length)
{

if (length == 1) return list.Select(t => new T[] { t });

return GetPermutations(list, length - 1)
.SelectMany(t => list.Where(e => !t.Contains(e)),

(t1, t2) => t1.Concat(new T[] { t2 }));
}

public static List<int[]> AllPossiblePatterns(int length)
{

// Get all possible permutations of given length
List<int[]> list = new List<int[]>();
int[] ints = new int[length];
for (int i = 0; i < length; i++)
{

ints[i] = i + 1;
}

var test = GetPermutations(ints, length);
foreach(IEnumerable<int> t in test.ToList())
{

int[] temp = new int[length];
for (int i = 0; i < length; i++)
{

temp[i] = t.ToArray()[i];
}

list.Add(temp);
}

return list;
}

public static List<int[]> AvoidsPattern(int[] pattern, int n, bool reverse = false)
{

List<int[]> avoidsPattern = new List<int[]>();
List<int[]> allPatterns = AllPossiblePatterns(n);



for (int i = 0; i < allPatterns.Count(); i++)
{

List<int[]> allPossibleCombos
= AllPossibleCombinations(pattern.Length, allPatterns[i]);

List<int[]> validPerms = ValidPermutations(allPossibleCombos, pattern);

if (!reverse)
{

if (validPerms.Count == 0)
avoidsPattern.Add(allPatterns[i]);

}
else
{

if (validPerms.Count > 0)
avoidsPattern.Add(allPatterns[i]);

}

}

return avoidsPattern;
}

/// <summary>
/// Returns a list of all arrays of length (permLength) from permutation
/// </summary>
/// <param name="permLength"></param>
/// <param name="permutationMatrix"></param>
/// <returns></returns>
public static List<int[]> AllPossibleCombinations
(int permLength, int[] permutationMatrix)
{

List<int[]> indexList = new List<int[]>();
int[] finalMatrix = new int[permLength];
int[] currentMatrix = new int[permLength];

for (int i = 0; i < permLength; i++)
{

finalMatrix[i] = permutationMatrix.Length - permLength + i;
}

for (int i = 0; i < permLength; i++)
currentMatrix[i] = i;

indexList.Add(currentMatrix);

while (!currentMatrix.SequenceEqual(finalMatrix))
{

int[] newMatrix = AddToMatrix(currentMatrix);

if (!ValidMatrix(newMatrix, permutationMatrix.Length))
FixMatrix(newMatrix, permutationMatrix.Length);



indexList.Add(newMatrix);
currentMatrix = newMatrix;

}

List<int[]> result = new List<int[]>();

// Get the actual values

for (int i = 0; i < indexList.Count; i++)
{

int[] valueArray = new int[permLength];
for (int j = 0; j < permLength; j++)
{

valueArray[j] = permutationMatrix[(indexList[i])[j]];
}
result.Add(valueArray);

}

return result;
}

static int[] AddToMatrix(int[] previousMatrix)
{

int[] newMatrix = new int[previousMatrix.Length];
for (int i = 0; i < previousMatrix.Length; i++)
{

newMatrix[i] = previousMatrix[i];
}
newMatrix[newMatrix.Length - 1] += 1;
return newMatrix;

}

static bool ValidMatrix(int[] matrix, int maxVal)
{

for (int i = 0; i < matrix.Length; i++)
{

if (matrix[i] >= maxVal)
return false;

}
return true;

}

static int[] FixMatrix(int[] matrix, int maxVal)
{

bool validM = false;

while (!validM)
{

for (int i = matrix.Length - 1; i > 0; i--)
{

if (matrix[i] == maxVal)
{

matrix[i - 1] += 1;
for (int j = 0; j < (matrix.Length - i); j++)



{
matrix[i + j] = matrix[i + j - 1] + 1;

}
}

}
validM = ValidMatrix(matrix, maxVal);

}

return matrix;
}

public static List<int[]> ValidPermutations(List<int[]> allCombinations,
int[] mainPermutation, bool stopEarly = false)
{

List<int[]> validCombinations = new List<int[]>();

int[] ordInd = new int[mainPermutation.Length];
for (int i = 0; i < ordInd.Length; i++)
{

ordInd[mainPermutation[i] - 1] = i;
}

for (int i = 0; i < allCombinations.Count; i++)
{

bool validPerm = true;
int[] currentTest = allCombinations[i];
int[] newTest = new int[currentTest.Length];

for (int j = 0; j < currentTest.Length; j++)
{

newTest[j] = currentTest[ordInd[j]];
}

for (int j = 0; j < newTest.Length - 1; j++)
{

if (validPerm && newTest[j] >= newTest[j + 1])
validPerm = false;

}

if (validPerm)
{

if (stopEarly)
return new List<int[]>();

validCombinations.Add(currentTest);
}

}

return validCombinations;
}

}



A.2 Testing Code
Below is sample code used for testing:

int[] testPattern = { 1, 2, 3};
int length = 5;
List<int[]> allAvoids = PermutationHandler.AvoidsPattern(testPattern, length, false);

Console.WriteLine("Testing how many and which of the permutation patterns that are "
+ string.Join("", testPattern) + "-avoiding.");

for (int i = 0; i < allAvoids.Count; i++)
{

Console.WriteLine(string.Join("", allAvoids[i]));
}

Console.WriteLine("It turns out that " + string.Join("", testPattern) + " avoids "
+ allAvoids.Count() + "/" + PermutationHandler.Factorial(length).ToString()
+ " patterns, as you can see above.");



A.3 Testing Code Output
This gives us the following output:

Testing how many and which of the permutation patterns that are 123-avoiding.
15432
21543
25143
25413
25431
31542
32154
32514
32541
35142
35214
35241
35412
35421
41532
42153
42513
42531
43152
43215
43251
43512
43521
45132
45213
45231
45312
45321
51432
52143
52413
52431
53142
53214
53241
53412
53421
54132
54213
54231
54312
54321
It turns out that 123 avoids 42/120 patterns, as you can see above.
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