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Abstract

The discrete Fourier transformation (DFT) is a map that takes a finite se-
quence from one domain into another. Typically, from time to frequency,
generating the amplitude and phase of the constituent complex-sinusoidal
components, which are its basis. The aim of this thesis is to gain an under-
standing of how the discrete Fourier transformation (DFT) is constructed in
terms of its mathematical foundation. Some of its properties are delved into,
amongst a few are linearity, one-to-oneness, periodicity, and its property of
simplifying convolution operations.

Once a mathematical foundation and some properties have been explored,
the fast Fourier transformation (FFT) is introduced. The FFT is an algo-
rithm used in practice in order to reduce the number of complex multipli-
cations needed to perform the DFT. This is done by exploiting some nice
properties of the DFT matrix. Such as its symmetries, the fact that it is
unitary, and that its inverse has similar elements.

Finally, applicative examples are demonstrated. A case of denoising a
signal by applying the FFT is shown. Following the denoising example is an
example of differentiation, where the error is compared with the Euler for-
ward method. Lastly, an example of integration using the FFT is presented.
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Sammanfattning

Den diskreta Fouriertransformationen (DFT) är en avbildning som tar en
ändlig sekvens från en domän till en annan. Typiskt sätt från tid till frekens,
vilket genererar amplitud och fas av de komplexa sinusodiala komponenterna
som är dess bas. Syftet med denna uppsats är att få förståelse kring hur
DFT:n är uppbygd utifrån en matematisk grund. Några av dess egenskaper
undersöks, varav ett urval är linjäritet, injektivitet, periodisitet samt dess
egenskap att simplifiera konvolutionsoperationer.

Efter att en matematisk grund och egenskaper berörts introduceras den
snabba Fouriertransformationen (FFT). FFT:n är en algoritm som används i
praktiken för att förenkla beräkningen av DFT:n genom att reducera antalet
komplexvärda multiplikationer. Detta uppnås genom att nyttja egenskaper
hos DFT:n. Såsom dess symmetri, unitäritet samt att dess invers har snarlika
element.

Avslutningsvis demonsteras några utav dess aplikationer. Ett fall av att
avbrusa en signal genom tillämning av FFT demostreras. Följt av detta är
ett exempel av differentiering där beräkningsfelet jämförs med Eulers framåt-
metod. Slutligen tas ett exempel av integration upp.
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Introduction

The discrete Fourier transformation, commonly denoted as DFT, is closely
related to Fourier series. But instead of representing functions on an interval
of real numbers, the DFT is used on functions on ZN . This means that
the DFT takes as input elements from Z modulo N . One of many fields of
applications is within signal processing, where the input is a discrete-time
signal of finite length. The output of the DFT is then the amplitudes of the
frequencies of the signal. In other words, when using the DFT on a signal,
it can be used to gain knowledge about and alter the amplitude of different
frequencies. We delve into this towards the end of the thesis. We take a
linear algebraic approach to the DFT, representing our input functions as
sequences, or rather vectors.
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Jean Baptise Joseph Fourier

Figure 1: Portrait by
Jules Boilly.

Jean Baptiste Joseph Fourier was born at Aux-
erre in the province of Yonne, France on 21
March 1768. The name “Joseph” was that of his
father, and the name “Fourier” is a variant of the
word fourrier which means in a military sense
a quartermaster [6, p. 1]. Fourier was a mathe-
matician, famous for his work within mathemat-
ics and physics. His work on heat flow is arguably
among the more well-known and in 1822 Fourier
published Théorie analytique de la chaleur, in
which he claimed any function of a variable could
be expressed as a series of sines and cosines. This
was the beginning of what today is known as the
Fourier transformation [2, p. 47].
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Chapter 1

Functions on ZN

Before we begin looking at the DFT, we need to go through some useful
definitions and theorems. We begin by refreshing our memory of some linear
algebra, followed by defining a set of vectors, {E0, . . . , EN−1} ⊂ ℓ2(ZN). It
turns out these vectors will play a key role in the construction of the so-
called Fourier basis [4, p. 107]. We also need to know what a geometric sum
[13, p. 833] is, which is why it is defined in this section.

1.1 Some Useful Linear Algebra

Definition 1. We define a vector of complex numbers as z where z =
(z(0), z(1), . . . , z(N − 1)), and each entry or component of the vector is com-
plex. That is, z(i) ∈ C, for i = 0, 1, . . . , N − 1 and because z is N -periodic,
we have

z(m) = z(N +m) = z(2N +m) = · · · = z(nN +m);

for all m,n ∈ Z. This means z regarded as a function is defined on all of Z,
not only ZN .

Example 1. For m = 1, 2 we have

z(0) = z(N) = z(2N) = · · · = z(nN),

z(1) = z(N + 1) = z(2N + 1) = · · · = z(nN + 1).
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Since z is defined on all of Z, we can regard it as the function

z : Z → C,
k 7→ z(k).

Alternatively, z can be viewed as a sequence

z = (z(0), z(1), . . . , z(N − 1)) ∈ CN . (1.1)

The point of bringing up a few different ways of interpreting z is simply
because depending on how one approaches the study of Fourier analysis,
different interpretations may be made. As previously mentioned, we take a
linear algebraic approach to the study and will refer to z as a vector. The
vector space CN is endowed with an inner product.

Definition 2. A basis for a subspace V ∈ CN can be characterized by the
following three equivalent definitions:

• It is a maximal set of linearly independent vectors in V ; adding another
vector to the set makes it no longer linearly independent.

• It is a minimal spanning set of vectors in V ; removing a vector from
the set makes it no longer span V .

• It is a set of linearly independent vectors that span V .

Definition 3. For any two vectors z, w ∈ CN the inner product is defined as

⟨z, w⟩ =
N−1∑
k=0

z(k)w(k), (1.2)

where w(k) is the complex conjugate of the kth component of the vector w.

This means CN is a complex inner product space [5, p. 332]. We clarify
this with the following definition.

Definition 4. Let V be a vector space over C. A complex inner product is
a map ⟨·, ·⟩ : V × V → C with the following properties:

• Additivity ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩ for all u, v, w ∈ V .
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• Scalar homogeneity ⟨αu, v⟩ = α⟨u, v⟩ for all scalars α ∈ C and all
u, v ∈ V .

• Positive definiteness ⟨u, u⟩ ≥ 0 for all u ∈ V and ⟨u, u⟩ = 0 if and only
if u = 0.

• Conjugate symmetry ⟨u, v⟩ = ⟨v, u⟩.

Furthermore, the norm associated to the inner product is

||z||2 :=
√

⟨z, z⟩ =

(
N−1∑
k=0

|z(k)|2
) 1

2

. (1.3)

The set of elements of CN , associated with the norm which square sum is
finite can be defined as the so-called l-2 space, or Lebesgue space [3, p. 6], and
is commonly denoted as ℓ2(ZN). Another way of expressing ℓ2(ZN) would be
as the set of all N -sized square-summable complex-valued sequences

ℓ2(ZN) =

{
{z(n)}N−1

n=0 : z(n) ∈ C, ∀ n ∈ {0, 1, . . . , N − 1}, and
N−1∑
n=0

|z(n)|2 < ∞

}
.

(1.4)

Definition 5. A geometric sum can be interpreted as a sum of numbers
where each term is obtained by multiplying the previous term with some
fixed constant a ̸= 1, that is

SN−1 =
N−1∑
n=0

an =
1− aN

1− a
,

which converges as N → ∞ if and only if |a| < 1.

Definition 6. Suppose V is a complex inner product space. Let B be a
collection of vectors in V . B is an orthogonal set if any two different elements
of B are orthogonal. B is an orthonormal set if B is an orthogonal set and
||v|| = 1 for all v ∈ B. Two vectors v, u ∈ B, are orthogonal, denoted u ⊥ v,
if their inner product is equal to zero. That is, if ⟨u, v⟩ = 0.

Definition 7. The dimension of a vector space is equal to the number of
vectors in its basis.
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Lemma 1. Suppose V is a complex inner product space. Suppose B is an
orthogonal set of vectors in V and 0 /∈ B. Then B is a linearly independent
set, i.e., for B = {b0, b1, . . . , bN−1} and some scalars α0, α1, . . . , αN−1, the
only solution to

α0b0 + α1b1 + · · ·+ αN−1bN−1 = 0, (1.5)

is α0 = α1 = · · · = αN−1 = 0.

Proof. If we take the inner product of both sides of Equation (1.5) with bn,
where n is chosen arbitrarily and n ∈ {0, 1, 2, . . . , N − 1} we will, by the
properties in Definition 4, get

⟨α0b0 + α1b1 + · · ·+ αN−1bN−1, bn⟩ = ⟨0, bn⟩
⇔ α0⟨b0, bn⟩+ α1⟨b1, bn⟩+ · · ·+ αN−1⟨bN−1, bn⟩ = 0.

Now, by the assumption of orthogonality, note that ⟨bk, bn⟩ = 0 if k ̸= n.
Thus all but one term above is zero and what remains is

αn⟨bn, bn⟩ = 0.

Since bn ̸= 0 and by assumption ⟨bn, bn⟩ ≠ 0, this implies αn = 0. Because n
was chosen arbitrarily, this can be duplicated for any n ∈ {0, 1, 2, . . . , N−1}.
Thus, proving B is linearly independent. In particular, if N = dim V , B is
a basis of V .

Theorem 2. Let V be a vector space over a field F. Suppose that V has a
basis consisting of N vectors. Then any other basis of V also has N vectors.

Proof. This can be proven by contradiction. Let B = {b0, . . . , bN−1} denote
a basis of V with N vectors. Assume that there is another set of vectors, A0

consisting of K vectors, K < N such that A0 = {a0, . . . , aK−1} spans V . We
add b0 to A0, denoting this set of vectors as

A
′

1 = { b0︸︷︷︸
∈V

, a0, . . . , aK−1︸ ︷︷ ︸
spans V

}.

This means b0 can be written as a linear combination of the rest of the vectors
of A′

1, since they span V and B ⊂ V , i.e.

b0 = α0a0 + α1a1 + · · ·+ αrar + · · ·+ αK−1aK−1,

6



where at least one of the scalars, αr ̸= 0. This in return means

ar = − 1

αr

(−b0 + α0a0 + · · ·+ αr−1ar−1 + αr+1ar+1 + · · ·+ αK−1aK−1).

Hence ar can be removed from A
′
1, forming a set we call A1. This process

is repeated, adding b1 to A1 yields the set A
′
2 which will also contain some

vector, ai, which can be expressed by a linear combination of the rest of the
vectors by the same analogy as in the case of A

′
1. Repeating this process

K times, where for each iterative set there is at least one element αi ̸= 0,
we end up with the set AK = {b0, . . . , bK} which spans V . This, however,
is impossible, since AK ⊂ B and B is a basis of V , i.e. B consists of N
linearly independent vectors. Hence, we reach a contradiction. So K ≮ N .
If K > N , A0 is linearly dependent, since if it was linearly independent B
could not span it which is impossible since B is a basis of V . Thus, if A0 is
a basis, K = N .

Theorem 3. Suppose V is an N -dimensional vector space and v0, . . . , vN−1

are vectors in V , then these vectors are linearly independent if and only if

span {v0, . . . , vN−1} = V.

Proof. Since V is N -dimensional, V has a basis consisting of N vectors,
W = {W0, . . . ,WN−1} by Definition 2. Suppose v = {v0, . . . , vN−1} is a
set of N linearly independent vectors. Let u ∈ V be chosen arbitrarily but
with the restriction u /∈ v and u ̸= 0. Then {u, v0, . . . , vN−1} are linearly
dependent by Theorem 2. This means {u, v0, . . . , vN−1} ∈ span W and u ∈
span {v0, . . . , vN−1}. But since u was chosen arbitrarily with the restrictions,
this can be repeated for any u ∈ V , still fulfilling the restrictions. Hence
span v = V .

Now, instead assume v is a set of N vectors, and span v = V . Since V is
N -dimensional, and v consists of N vectors, v must then indeed be linearly
independent. Since, if it was linearly dependent, we could by Theorem 2 find
a subset of, at most N − 1 vectors that still spans V . This would, however,
be impossible, since W is linearly independent and consists of N vectors.

7



1.2 The Normalized Exponentials

Definition 8. We define the vectors Em ∈ ℓ2(ZN), m = 0, 1, . . . , N − 1 by

Em(n) :=
1√
N
e

2πimn
N , 0 ≤ m,n ≤ N − 1. (1.6)

What we mean by this is that the vector Em consists of the entries
1√
N
e

2πimn
N , having n range from 0 to N − 1. We further clarify with some

simple examples.

Example 2. For m = 0, the vector E0 is

E0(n) =

{
1√
N
,

1√
N
, . . . ,

1√
N

}
.

Example 3. For m = 1, the vector E1 is

E1 =

{
1√
N
e

2πi
N ,

1√
N
e

4πi
N , . . . ,

1√
N
e

2πi(N−1)
N

}
.

Lemma 4. The set of vectors {E0, E1, . . . , EN−1} is an orthonormal basis
for ℓ2(ZN).

Proof. By Definition 6, an orthonormal set of vectors is a set of vectors in
which all of the vectors are of length one and where the inner product between
two distinct vectors z, w is equal to 0, z ̸= w. In other words, all vectors are
unit vectors and orthogonal to one another. By Lemma 1, an orthonormal
set of vectors is linearly independent, and by Theorem 3 a set of N elements,
or vectors which are all linearly independent and elements of some complex
inner product space will span that inner product space, and be a basis for
that space. This means if we can prove the inner product between any two
distinct vectors Ej, Ek are equal to 0, and that the norm of any vector Ej is
equal to one, we are done since the set consists of N elements, all of which
are elements of ℓ2(ZN). For 0 ≤ j, k ≤ N − 1 the inner product between Ej

and Ek as previously defined in Equation (1.2) is

⟨Ej, Ek⟩ =
N−1∑
n=0

Ej(n)Ek(n) =
N−1∑
n=0

1√
N
e

2πijn
N · 1√

N
e

2πikn
N

=
1

N

N−1∑
n=0

e
2πijn

N · e−
2πikn

N =
1

N

N−1∑
n=0

e
2πin(j−k)

N .
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We divide this into two cases, either j = k or j ̸= k. The first case is
somewhat trivial, since if j = k we simply end up with

1

N

N−1∑
n=0

e0 =
1

N
·N = 1.

Hence, according to Equation (1.3) all vectors Ej, 0 ≤ j ≤ N − 1, are unit
vectors since taking the square root of 1 is just 1.

In the case where j ̸= k we use Definition 5. Continuing with our proof,
note that since j ̸= k we have e

2πin(j−k)
N ̸= 1. Also note that, for the same

reason −N < j − k < N , and lastly that e
2πin(j−k)

N can be expressed as(
e

2πi(j−k)
N

)n
. Using the definition of a geometric sum, we get

1

N

N−1∑
n=0

(
e

2πi(j−k)
N

)n
=

1−
(
e

2πi(j−k)
N

)N
1− e

2πi(j−k)
N

=
1− e2πi(j−k)

1− e
2πi(j−k)

N

.

Since j and k are integers, j − k will also be an integer, this together with
Euler’s identity [12, p. 28] gives us e2πi(j−k) = 1, which means for j ̸= k

⟨Ej, Ek⟩ =
1− e2πi(j−k)

1− e
2πi(j−k)

N

=
1− 1

1− e
2πi(j−k)

N

= 0. (1.7)

Thus, the set {E0, E1, . . . , EN−1} is an orthonormal basis for ℓ2(ZN).

The vectors forming this basis are called the normalized complex expo-
nentials, or the pure tones of order N [11, p. 51]. A pure tone is a sinusoidal
wave at a single specific frequency, intuitively what this means is that the set
consists of N sinusoidal waves, where, for each value of m a certain specific
frequency is expressed. We will momentarily see that this basis bears close
resemblance to the so-called Fourier basis F which we will be looking at a
little bit later.

Within most applicative uses of the DFT, the main focus is to change
coordinates from the standard basis to the Fourier basis, in order to, with
greater simplicity and efficiency perform some sort of operation on our given
vector. Depending on the field of application, this vector can be anything
from functions to signals. In the case of signals, the input domain is in time,
and when we perform the DFT we map to the frequency domain. Once a
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signal is represented in the Fourier basis, that is, once we are representing
our signal in the frequency domain, we want to perform some operations on
the signal before changing coordinates back to the standard basis. This is
the key essence of the DFT and has many different applications. One of
them is noise filtering. Once we have frequencies expressed in the Fourier
basis, we can remove certain frequencies with low overall magnitude in the
signal-input, or frequencies that are very high and worsen the signal quality.
Often this can be done at the cost of minor if not unnoticeable changes in
the actual signal. But by removing unnecessary frequencies the signal input
can be decompressed and will take up less memory while stored.

1.3 Defining the DFT

From [2, p. 105], since the complex exponentials are a basis for ℓ2(ZN), for
any z, w ∈ ℓ2(ZN),

z =
N−1∑
m=0

⟨z, Em⟩Em, (1.8)

⟨z, w⟩ =
N−1∑
m=0

⟨z, Em⟩⟨w,Em⟩, (1.9)

||z||2 =
N−1∑
m=0

|⟨z, Em⟩|2. (1.10)

Recall, by Definition 3 of inner product between two complex-valued vectors

⟨z, Em⟩ =
N−1∑
n=0

z(n)Em(n) =
1√
N

N−1∑
n=0

z(n)e−
2πimn

N . (1.11)

Definition 9. Suppose z ∈ ℓ2(ZN), for 0 ≤ m,n ≤ N − 1 we define

pz(m) :=
√
N⟨z, Em⟩ =

N−1∑
n=0

z(n)e−
2πimn

N . (1.12)

We call the map that takes z to the vector pz = (pz(0), pz(1), . . . , pz(N − 1))
the discrete Fourier transformation [4, p. 105], or DFT. That is, for two
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vectors z, pz, the DFT is the map

p : ℓ2(ZN) → ℓ2(ZN),

z 7→ pz.

In fact, the DFT is a linear transformation. Recall a linear transformation
is a map which preserves vector addition and scalar multiplication. This will
be useful later on when we define the DFT as a matrix.

Definition 10. A linear transformation [5, p. 65], T is a map between two
vector spaces that preserves additivity and scalar multiplication, for two
vectors u, v, and some scalar α, that is:

T (u+ v) = T (u) + T (v),

T (αv) = αT (v).

Theorem 5. The DFT is a linear transformation.

Proof. For z, w ∈ ℓ2(ZN), and some scalar α ∈ C,

{(z + w)(m) =
N−1∑
n=0

(z(n) + w(n))e−
2πimn

N

=
N−1∑
n=0

z(n)e−
2πimn

N +
N−1∑
n=0

w(n)e−
2πimn

N = pz(m) + pw(m),

xαz(m) = α
N−1∑
n=0

z(n)e−
2πimn

N = αpz(m).

Thus, the DFT is a linear transformation.

There is also a formula for inverting the vector pz back to z, this formula is,
perhaps not too surprisingly called the Fourier inversion formula [4, p. 109].

Theorem 6. Letting z ∈ ℓ2(ZN) the Fourier inversion formula is

z(n) =
1

N

N−1∑
m=0

pz(m)e
2πimn

N , 0 ≤ n ≤ N − 1. (1.13)
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Proof. Using Equation (1.8),

z(n) =
N−1∑
m=0

⟨z, Em⟩Em(n) =
N−1∑
m=0

1√
N

pz(m)
1√
N
e

2πimn
N =

1

N

N−1∑
m=0

pz(m)e
2πimn

N .

Using the Fourier inversion formula, we can define the so-called Fourier
basis.

Definition 11. We define the vectors Fm ∈ ℓ2(ZN) by

Fm(n) :=
1

N
e

2πimn
N , 0 ≤ m,n ≤ N − 1.

Much like what we did in Definition 8, we can define the set of vectors
F = {F0, F1, . . . , FN−1} by fixing a value of m for each vector and letting n
assume each integer value from 0 to N − 1, for each vector. We may also,
similarly to when we looked at the normalized exponential basis have a look
at an example.

Example 4. Let m = 1 and 0 ≤ n ≤ N − 1, we then get

F1 =

{
1

N
e

2πin
N

}N−1

n=0

=

{
1

N
,
1

N
e

2πi
N ,

1

N
e

4πi
N , . . . ,

1

N
e

2πi(N−1)
N

}
.

The set of vectors {F0, F1, . . . , FN−1} is called the Fourier basis for ℓ2(ZN).
Note that this is simply the normalised complex exponentials basis multiplied
with 1√

N
, Fm = 1√

N
Em. Using the Fourier basis, we can express our vector z

as

z =
N−1∑
m=0

pz(m)Fm. (1.14)

When we express z in terms of the Fourier basis the coefficients used are
pz(m). A common way of denoting this is

pz = [z]F , (1.15)

which can be interpreted as expressing the vector z in the Fourier basis by
using the components of the pz-vector [4, p. 36].
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1.4 The Inverse DFT

Definition 12. Given a vector z ∈ ℓ2(ZN), we define

z

∧

(n) :=
1

N

N−1∑
m=0

z(m)e
2πimn

N , 0 ≤ n ≤ N − 1. (1.16)

And much like when we defined the DFT, we define the vector z

∧

=
(z

∧

(0), z

∧

(1), . . . , z

∧

(N − 1)). Note that q is inverting the p mapping, and it
is this map that is commonly known as the inverse DFT, or simply IDFT.
That is, given two vectors pz, z ∈ ℓ2(ZN)

q : ℓ2(ZN) → ℓ2(ZN),

pz 7→ z.

1.5 The DFT as a Matrix

Depending on what literature one chooses to study, the notation used for
the discrete Fourier matrix varies. We will be using the notation WN for
the Fourier matrix which, to be clear is the change-of-base matrix from the
standard basis to the Fourier basis. Before we get to the matrix, we do some
quick simplifications to our notations, we define

ωN := e−
2πi
N ,

such that, for m,n ∈ {0, 1, . . . , N − 1}

e
2πimn

N = ω−mn
N ,

e−
2πimn

N = ωmn
N .

Using this notation, we can express the pz-components as

pz(m) =
N−1∑
n=0

z(n)ωmn
N . (1.17)

Since we are working with indexation ranging from 0, rather than 1 up till
now, we continue this habit for our matrices. So columns and rows are
indexed from 0 to N − 1.
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Definition 13. The DFT matrix, here denoted as WN is defined as [ωmn]0≤m,n≤N−1

writing this out we get

WN :=
1√
N


ω00
N ω01

N ω02
N · · · ω

0(N−1)
N

ω10
N ω11

N ω12
N · · · ω

1(N−1)
N

ω20
N ω21

N ω22
N · · · ω

2(N−1)
N

...
...

... . . . ...
ω
(N−1)0
N ω

(N−1)1
N ω

(N−1)2
N · · · ω

(N−1)2

N



=
1√
N


1 1 1 · · · 1
1 ωN ω2

N · · · ωN−1
N

1 ω2
N ω4

N · · · ω
2(N−1)
N

...
...

... . . . ...
1 ωN−1

N ω
2(N−1)
N · · · ω

(N−1)2

N

 .

Note that using this matrix, we obtain pz by

pz = WNz. (1.18)

Definition 14. A Matrix A is said to be invertible [5, p. 100] if there exists
a matrix B such that

AB = I, (1.19)

where I is the identity matrix.

A very useful property that the DFT matrix possesses is that it is unitary.
We can use this to show it is invertible is the definition on a unitary matrix.

Definition 15. We say a matrix U is unitary [8, p. 84] if

U∗U = UU∗ = I,

where U∗ is the so called conjugate transpose, or Hermitian transpose [8,
p. 6]. The conjugate transpose is obtained, perhaps not too surprisingly by
transposing U and taking the complex conjugates of each of its entries. This
means, for each entry Uij, we get

(U∗)ij = U ji.

14



Theorem 7. The DFT matrix is unitary.

Proof. We prove this by simply performing the matrix multiplications WW ∗,
as well as W ∗W . If both of these turn out to be equal to the identity matrix
I, we are done.

We let Wj denote the vector consisting of the entries on row j of the
matrix W , and Wj(n) denote the nth entry of this vector. Similarly, we let
Wk denote the vector consisting of elements on column k of matrix W ∗ and
Wk(n) denote its nth entry. Using this notation, for 0 ≤ j, k ≤ N − 1 the
entries of WW ∗ are

(WW ∗)jk =
N−1∑
n=0

Wj(n)Wk(n) =
N−1∑
n=0

e−
2πijn

N · e
2πikn

N =
N−1∑
n=0

e
2πi(k−j)n

N .

We end up with the two cases j = k and j ̸= k. The first one means that all
of the N terms in the sums are just 1, meaning when added up we get N ,
multiplied with the constant ( 1√

N
)2 we end up with all 1:s. Of course, the

case where j = k only occurs on the diagonal, so all the diagonal entries are
1. In the other case, where j ̸= k

(WW ∗)jk =
N−1∑
n=0

e
2πi(k−j)n

N =
N−1∑
n=0

(
e

2πi(k−j)
N

)n
.

We remind ourselves of Definition 5 of a geometric sum, and the proof of
Lemma 4. Using this we get

(WW ∗)jk =
1−

(
e

2πi(j−k)
N

)N
1− e

2πi(j−k)
N

=
1− e2πi(j−k)

1− e
2πi(j−k)

N

=
1− 1

1− e
2πi(j−k)

N

= 0. (1.20)

The proof for W ∗W is analogous, we would end up with the same situation,
due to the symmetry of the matrix we would just have the conjugate as the
first terms, but the result would be the same. This completes the proof, the
DFT matrix is unitary.

1.6 The Inverse DFT Matrix

Proposition 8. A unitary matrix is invertible.
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Proof. Since a matrix U is unitary if UU∗ = U∗U = I, the inverse of U has
to exist per definition and is in fact U∗.

Proposition 9. The DFT matrix is invertible and its inverse, W−1
N is WN .

Proof. If we transpose the matrix WN , then in place of entry ωmn
N , the element

ωnm
N will take place. But recall we defined ωmn

N as e−
2πimn

N , thus ωnm
N =

e−
2πimn

N , so ωmn
N = ωnm

N . This means the transpose of WN is equal to WN

itself, W T
N = WN . A matrix which is equal to its transpose is called a

symmetric matrix [8, p. 7]. Thus, when computing the hermitian transpose,
the conjugation of the matrix is the only operation which changes the matrix
which means W ∗

N = WN , and therefore

W−1
N = WN . (1.21)

This is a proof that is of great importance to us. Remember, we started in
Lemma 4 by showing that the complex exponentials were a basis for ℓ2(ZN).
We then saw that the Fourier basis was strikingly similar to this basis. In
fact, it is the complex exponential basis multiplied by the scalar 1√

N
. Since

the complex exponentials were an orthonormal basis, the Fourier basis is
orthogonal. We then proceeded to express the DFT in matrix form, and now
we have shown that the DFT matrix is unitary and that it is invertible. This
also tells us that the DFT is one-to-one or injective.

1.7 Properties of the DFT

Definition 16. We define Rkz as the translation of z by k as

(Rkz)(n) = z(n− k),

where z ∈ ℓ2(ZN) and n, k ∈ Z.

The operation known as translation, or sometimes rotation or circular
translation [4, p. 132] could be described as a shift of each of the components
z(n) of z by k steps to the right. The best way of explaining this is by an
illustrative example.
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Let z = (0, 1, 2, 3), then N = 4. We let k = 3, performing translation on
z gives us

(R3z)(0) = z(0− 3) = z(−3) = z(1) = 1,

(R3z)(1) = z(1− 3) = z(−2) = z(2) = 2,

(R3z)(2) = z(2− 3) = z(−1) = z(3) = 3,

(R3z)(3) = z(3− 3) = z(0) = 0.

We end up with the shifted vector R3(z) = (1, 2, 3, 0), where each of the
components has been shifted 3 steps to the right. This operation is illustrated
in the two graphs above. It is not too hard to see where the names rotation or
circular transformation come from. As depicted in Figure 2, when presented
in a circular fashion, the translation rotates the elements 3 steps to the right.

(a) Pre-translation. (b) Post-translation.

Figure 2: Demonstration of translation, with k = 3.

The DFT’s component magnitude, |pz(m)|, is unchanged by translation.
However, the phase might change.

Lemma 10. Suppose z ∈ ℓ2(ZN) and k ∈ Z. Then for any m ∈ Z,

{(Rkz)(m) = e−
2πimk

N
pz(m).

What Lemma 10 states is essentially what we claimed in words just above.
That taking the DFT of a translation of z by k units will at most affect z by
an angular (phase) factor of e−

2πimk
N , sometimes referred to as modulation.
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Proof. Recalling Definition 9 of the DFT, and Definition 16 of translation,

{(Rkz)(m) =
N−1∑
n=0

(Rkz)(n)e
−2πimn

N =
N−1∑
n=0

z(n− k)e
−2πimn

N .

Since k is fixed, it will of course have a constant value when we sum over n.
We can change variables from n to p, where we let p = n−k, note that when
defining p in such a way n = p+ k.

Furthermore, if n = 0 then p = −k and if n = N − 1 then p = N − k− 1,
hence if we take the sum over p instead of n we get

N−k−1∑
p=−k

z(p)e
−2πim(p+k)

N =
N−k−1∑
p=−k

z(p)e
−2πimp

N · e
−2πimk

N ,

but again, since k is fixed we can move around the term e
−2πimk

N and end up
with

e
−2πimk

N

N−k−1∑
p=−k

z(p)e
−2πimp

N .

This looks very similar to what we claimed would be the outcome of taking
the DFT of the translation, what remains to show is that this sum equals
pz(m). That is, what remains to show is that

N−k−1∑
p=−k

z(p)e
−2πimp

N =
N−1∑
n=0

z(n)e
−2πimn

N . (1.22)

Observe that in Equation (1.22) both z(p) and e
2πimp

N are periodic func-
tions of p with periodicity N . We can split up Equation (1.22) into two cases.
Either k = 0, or 1 ≤ k ≤ N − 1. In the first case, we do not really have
anything to show since we end up with exactly pz(m), this perhaps is not too
surprising since if k = 0 there is no translation being performed on z to begin
with. The relevant case to look at and prove is when 1 ≤ k ≤ N − 1.

N−k−1∑
p=−k

z(p)e
−2πimp

N =
−1∑

p=−k

z(p+N)e
−2πim(p+N)

N +
N−k−1∑
p=0

z(p)e
−2πimp

N .
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We let n = p+N in the first sum and in the second sum we simply let n = p,
giving us

N−1∑
n=N−k

z(n)e
−2πimn

N +
N−k−1∑
n=0

z(n)e
−2πimn

N =
N−1∑
n=0

z(n)e
−2πimn

N .

We now need to show this equality will hold for any arbitrary k. There-
fore, we choose k ∈ Z arbitrarily and use some clever tricks. We note that
there will always be some integer r such that (k + rN) ∈ {0, 1, . . . , N − 1},
this is not too hard to see. If k ∈ {0, 1, . . . , N − 1}, we just let r = 0, if
k ∈ α · {0, 1, . . . , N − 1}, where α ∈ Z and N ≤ |α|, we can “adjust” for this
by letting r be the integer-factor “correcting” k, placing (k + rN) into some
value in {0, 1, . . . , N − 1}. For simplicity, we let k′ = (k + rN). We now do
the same for p, we let p′ = (p−rN) Finally, we change from the sum over the
variable p to variable p′. Since p = n− k, and p′ = p+ rN , our new limits of
summation thus become −k− rN to N −k− rN −1. But since k′ = k− rN ,
these limits of summation can be expressed as −k′ to N − k′ − 1. Thus we
get

N−k−1∑
p=−k

z(p)e
−2πimp

N =
N−k′−1∑
p′=−k′

z(p′)e
−2πimp′

N ,

since, once again both z and the exponential have periodicity N and k′ ∈
{0, 1, . . . , N − 1} we sum over the entirety of {0, 1, . . . , N − 1}, and this adds
up to pz(m).

This is an important property, so it will not hurt to clarify exactly why
this means the magnitude remains unchanged. Recall from properties of
Euler’s identity,

∣∣eiθ∣∣ = 1, for any θ ∈ R. Also from basic analysis, we know
for any two numbers a, b ∈ C, |a · b| = |a| · |b|. This means, looking at the
magnitude, we get

|{(Rkz)(m)| =
∣∣∣e−2πimk

N
pz(m)

∣∣∣ = ∣∣∣e−2πimk
N

∣∣∣ · |pz(m)| = |pz(m)|.

1.8 Translation Invariance

Recall in Definition 10, we said a linear transformation is a function from
one vector space to another, preserving addition and scalar multiplication.
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In our case, we are looking at functions from ℓ2(ZN) to ℓ2(ZN). We will
momentarily see that any function which is both a linear transformationation
and translation invariant has a very interesting synergy with the Fourier
basis. Arguably one of the most fascinating properties of the DFT is that
its basis, namely the Fourier basis F , is that any translation-invariant linear
transformation from ℓ2(ZN) to ℓ2(ZN) is diagonalized by F . This of course
needs to be proven. We start by reminding ourselves of an important property
of linear transformations and vector spaces as well as some definitions from
linear algebra.

Definition 17. Given a linear transformationation T : V → V , a non-zero
vector F and a scalar a ∈ C if

T (F ) = aF, (1.23)

we say F is an eigenvector of T and a is an eigenvalue [5, p. 246] of T .

Definition 18. Let V be a finite-dimensional vector space and T : V → V a
linear transformation. If V has a basis consisting of eigenvectors of T , then
T is said to be diagonalizable [4, p. 109].

In our case, the basis in question is of course the Fourier basis, F . This
means each element of F will be an eigenvector of any translation-invariant
linear transformationation T .

Theorem 11. Let T : ℓ2(ZN) → ℓ2(ZN) be a translation-invariant linear
transformation. Then each element of the Fourier basis F is an eigenvector
of T , and T is in particular diagonalizable.

Proof. We start by fixing a value for m, where m ∈ {0, 1, . . . , N − 1}. Recall
that Fm is the mth vector of the basis F , and that we denote the nth entry
of the mth vector as Fm(n). Since T is a linear transformationation, there
exist scalars {a0, a1, . . . , aN−1} ∈ C such that

T (Fm)(n) =
N−1∑
k=0

akFk(n) =
1

N

N−1∑
k=0

ake
2πikn

N , (1.24)

for all n ∈ Z. In the last step in the Equation (1.24), we have simply used the
definition of the Fourier basis from Definition 11. Note that this is nothing
other than the change of basis formula, where Fm(n) represents an entry of

20



the current basis, and T (Fm)(n) represents our entries expressed in the new
basis. Also note that if we perform translation on Fm(n) by shifting one unit,
that is, by letting k = 1 we get

(R1Fm)(n) = Fm(n− 1) = ake
2πim(n−1)

N =
1

N
e

2πimn
N · e−

2πim
N = e−

2πim
N Fm(n).

Since m is fixed and Fm(n) only depends on n, we can treat e−
2πim
N as a

constant. This in combination with the property of scalar multiplication of a
linear transformationation, applying the linear transformationation T to our
translation gives us

T (R1Fm)(n) = e−
2πim
N T (Fm)(n) = e−

2πim
N

N−1∑
k=0

akFk(n) =
N−1∑
k=0

ake
− 2πim

N Fk(n).

This corresponds to the middle part of Equation (1.24) but where our scalar
is ake

− 2πim
N . However, looking at the right part of Equation (1.24) we also

see that

(R1T (Fm))(n) = (T (Fm))(n− 1) =
1

N

N−1∑
k=0

ake
2πik(n−1)

N

=
N−1∑
k=0

ak
1

N
e−

2πik
N · e

2πin
N =

N−1∑
k=0

ak
1

N
e−

2πik
N · Fm(n).

But because of the assumption that T is translation invariant, we must have
that T (R1FM(n)) = R1(T (Fm))(n) for all n. If we look at our two results
above, both implied by Equation (1.24) we see that for every fixed value for
k ∈ {0, 1, . . . , N − 1} we get

ake
−−2πm

N = ake
−−2πik

N . (1.25)

If k ̸= m we will have e−
−2πm

N ̸= e−
−2πik

N , but for Equation (1.25) to hold, this
must imply that ak = 0. This means, for k ̸= m we have proven that ak = 0.
Thus, returning to Equation (1.25), all terms are equal to 0 except for when
k = m, in which case

T (Fm)(n) = amFm(n),
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which exactly corresponds to what we previously defined would mean am are
eigenvalues of T , and Fm are eigenvectors of T . Since we chose m arbitrarily,
this can be repeated for any m defined as above. Hence, every vector of the
Fourier basis F , Fm is an eigenvector of T with eigenvalues am. Furthermore,
since all terms but where k = m are equal to 0, T is diagonalizable.

Before looking at other interesting properties of the DFT, we go through
some useful definitions. First off, we define what it means for a matrix A to
have periodicity with period N .

Definition 19. We say A with entries [am,n] is periodic [4, p. 132] with
period N if

am+N,n = am,n and am,n+N = am,n,

where m,n,N ∈ Z.

Recall from Definition 1 that this is pretty much exactly the way we
defined functions on ZN , which we denoted as z, except now we are doing it
in relation to a matrix. We explain this further with an example.

Example 5. Let N = 5, then

a−3,−2 = a−3+5,−2+5 = a2,3.

Definition 20. A matrix A with entries [am,n] and period N is called circu-
lant [4, p. 132] if

am+k,n+k = am,n, (1.26)

for all m,n, k ∈ Z.

What we are saying is if we shift the indices for the row and column
positions by the same integer k, then the entry we will end up at will be
identical to the entry am,n, we could also interpret it as A having identical
elements along any diagonal. Furthermore, note that we defined this for all
m,n, k ∈ Z. This is fine because of the periodicity with period N .

We illustrate with an example.

Example 6.

A =

 1 1 + i 2
2 1 1 + i

1 + i 2 1

 ,

the above matrix A is circulant.
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Definition 21. Let z, w ∈ ℓ2(ZN), we denote the convolution [4, p. 134] of
z and w as z ∗ w, where z ∗ w ∈ ℓ2(ZN) with components

z ∗ w(m) =
N−1∑
n=0

z(m− n)w(n),

for all m ∈ Z.

The usefulness of the convolution operation will become apparent momen-
tarily. As we will see, applying the DFT to convolution will greatly simplify
the operation computationally.

Example 7. Let z = (1, i, 2), w = (0, 2, 1) ∈ ℓ2(ZN), then

z ∗ w(0) =
2∑

n=0

z(0− n)w(n) = z(0)w(0) + z(−1)w(1) + z(−2)w(2)

= z(0)w(0) + z(2)w(1) + z(1)w(2) = 0 + 4 + i = 4 + i,

analogously

z ∗ w(1) =
2∑

n=0

z(1− n)w(n) = 4,

z ∗ w(2) =
2∑

n=0

z(2− n)w(n) = 3 + 2i.

So z ∗ w = (4 + i, 4, 3 + 2i).

Definition 22. Let b ∈ ℓ2(ZN), we define

Tb : ℓ
2(ZN) → ℓ2(ZN) (1.27)

by

Tb(z) = b ∗ z,

for all z ∈ ℓ2(ZN).

Thus, Tb performs convolution on any function z with some fixed function
b. Furthermore, Tb is sometimes called a convolution operator [4, p. 135].
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Lemma 12. A convolution operator Tb for some b ∈ ℓ2(ZN) is a linear
transformation.

Proof. This is not too hard to prove. We recall a function is a linear trans-
formation if scalar multiplication and addition are preserved. That is if

Tb(αz) = αTb(z) = α(b ∗ z),

for some α ∈ C and

Tb(z + w) = Tb(z) + Tb(w) = b ∗ z + b ∗ w.

We begin by performing multiplication with a scalar, α

Tb(αz)(m) =
N−1∑
n=0

b(m− n) · αz(n) = α
N−1∑
n=0

b(m− n)z(n) = α(b ∗ z)(m).

Now looking at addition for any z, w ∈ ℓ2(ZN)

Tb(z + w)(m) =
N−1∑
n=0

b(m− n)(z + w)(n) =
N−1∑
n=0

b(m− n)(z(n) + w(n))

=
N−1∑
n=0

b(m− n)z(n) +
N−1∑
n=0

b(m− n)w(n) = b ∗ z(m) + b ∗ w(m).

So Tb is a linear transformation.

We now have a look at how the DFT interacts with convolution. We will
see that the DFT can greatly simplify the convolution operation.

Lemma 13. Suppose z, w ∈ ℓ2(ZN), then

{(z ∗ w)(m) = pz(m) pw(m).

Proof. Recall we defined the DFT as

pz(m) =
N−1∑
n=0

z(n)e
−2πimn

N ,
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using this on convolution we get

{(z ∗ w)(m) =
N−1∑
n=0

(z ∗ w)(n)e
−2πimn

N =
N−1∑
n=0

(
N−1∑
k=0

z(n− k)w(k)e
−2πimn

N

)
.

We can now use a clever trick, note that

e
−2πimn

N = e
−2πim(n−k)

N · e
−2πimk

N ,

using this, we can express the sums as

N−1∑
n=0

(
N−1∑
k=0

z(n− k)w(k)e
−2πimn

N

)
=

N−1∑
k=0

w(k)e
−2πimk

N

N−1∑
n=0

z(n− k)e
−2πim(n−k)

N .

The left sum is already on the desired form and is equal to pw(m). For
the right sum we change variables and let p = n − k, thus adjusting the
summation to sum from p = −k to p = N − k − 1. We get

N−k−1∑
p=−k

z(p)e
−2πimp

N =
N−1∑
p=0

z(p)e
−2πimp

N = pz(m).

The second step above holds since both z and the exponential are periodic
with period N . Thus, we have shown the DFT simplifies convolution to
multiplication.

To finish off this chapter, we have a look at how one can go about adjust-
ing the magnitude of specific components of the Fourier basis in ones DFT.
Recall we defined the inverse DFT, that is the IDFT as

z =
N−1∑
k=0

pz(k)Fk.

We previously expressed the IDFT using the variable m. We now make a
small adjustment, replacing the notation m with k, to be consistent with the
literature. But we are otherwise defining it in the same way. We remind
ourselves that Fk is, as we recall, the kth component of the Fourier basis F
and pz(k) is the kth DFT coefficient or Fourier coefficient. The magnitude of
these coefficients determines the strength, or as it sometimes is called, the
weight of Fk. If we could adjust these coefficients pz(k), we could adjust the
strength of specific components of the basis F in our function z.
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Definition 23. Let m ∈ ℓ2(ZN). We define Tm : ℓ2(ZN) → ℓ2(ZN) by

Tm(z) = (mpz)

∧

, (1.28)

where (mpz) is obtained by multiplying m and pz componentwise, so (mpz)(n) =
m(n)pz(n), for each n. Such a transformationation is called a Fourier multi-
plier operator.

Note that if we were to look at Equation (1.28) term-wise, then for each
term k we have

Tm(z)(k) = (m(k)pz(m))

∧

. (1.29)

Thus, applying the DFT to the above equation yields

{(Tm(z))(k) = m(k)pz(m).

If we have a look at the components, pz(k) in the IDFT, we see that this
is rather similar, but with a strength, or magnitude component m(k)pz(k),
rather then just the pz(m). Thus, per the definition of the IDFT, multiplying
this with the Fourier basis component Fk yields the IDFT of m(k)pz(k), rather
than just pz(k).

What this means is, if we look at Tm(z) term-wise, where each term is
{(Tm(z))(k), rather than the pz(k) in the definition of the IDFT, we can express

it as

Tm(z) =
N−1∑
k=0

{(Tm(z))(k)Fk =
N−1∑
k=0

m(k)pz(k)Fk.

This clarifies and shows the usefulness of the Fourier multiplier operator.
This is widely used within fields such as signal processing, where, using a
Fourier multiplier operator, one can remove unwanted components of a signal.
Such a method is within the field of signal processing called filtering [4,
p. 139].

Furthermore, we note the similarities between the Fourier multiplier oper-
ator and convolution. Recall we proved in Lemma 13 that applying the DFT
to convolution resulted in the multiplication of two functions z, w componen-
twise. This is more or less exactly what we have performed in the Fourier
multiplier operator, except we now perform multiplication with the Fourier
basis thus performing IDFT. This means convolution is in fact, in terms of
signal processing, also filtering!

26



Chapter 2

The Fast Fourier transformation

So far, we have defined the DFT and had a look at some of the many interest-
ing properties that it possesses. In terms of actual application, however, that
is, in terms of performing the actual computations, the DFT is rather slow
and inefficient. This is where the fast Fourier transformation [4, p. 151],
or FFT comes into big use. The FFT is an algorithm that minimizes the
amount of operations needed to be performed to obtain the DFT of some
function z. To be more clear, using the FFT we can reduce the amount of
complex-multiplication by a significant amount. An interesting fact about
the FFT is that it was actually initially formulated by Gauss [2, p. 57] as a
means to approximate the orbits of the asteroids Pallas and Juno in 1805.
Meaning it predated even Fourier’s announcement of the Fourier series ex-
pansion. However, Gauss did not find the FFT to be a major breakthrough
and his formulation only appeared much later, in 1866, in his compiled notes.

2.1 Change of Basis

Recall in Equation (1.15), for a vector z ∈ ℓ2(ZN) expressed in some basis
B for ℓ2(ZN) we denote it as [z]B. Similarly, z with respect to the standard
basis is denoted as [z]E. If we wish to obtain [z]B, having z with respect
to E, we can obtain it by multiplying [z]E with the E to B change of basis
matrix, which we can denote as A.

The standard change-of-basis calculation from linear algebra is done by

[z]B = A[z]E = Az.
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To obtain each component of Az, we need to perform N complex multipli-
cations since component m is computed by

N−1∑
n=0

am,nz(n).

This means since Az has a total of N components we need to perform N2

complex multiplications in order to compute the entire vector. The situation
is the same in the case of the Fourier basis. Thus, if we wish to compute the
DFT

pz = WNz.

Whereas in Definition 13, WN is the change of base matrix from the standard
basis to the Fourier basis. The number of complex computations needed is
the same as in the general case above. It is worth pointing out that the
literature has varying definitions for the Fourier matrix. What usually differs
is a scalar of 1√

N
. We defined the Fourier matrix as a matrix multiplied by the

scalar 1√
N

, but the scalar 1√
N

has a rather small impact on the overall time
needed to perform the DFT computations. And in terms of computational
complexity, it is of less importance. What is important to emphasize is the
actual change of basis computation. This is because, as we recall, complex
multiplication requires a total of 4 real multiplications. For two complex
numbers am,n = a+ bi and z(n) = c+ di, we compute

am,nz(n) = (a+ bi)(c+ di).

This is where the FFT comes in handy. We will see that the FFT can reduce
the total amount of computations needed from N2 to at most 1

2
(N log2(N)).

It turns out the FFT maximizes the reduction in the number of computations
when N is a power of 2. That is, when N = 2n, for some n ∈ N. As an
example, if N = 212 = 4096, then the amount of complex multiplications
needed is reduced from about 16 million to a mere 24 567.

2.2 The Simplest Case

In cases where N is not a power of 2, we will see the FFT is still very useful.
We have a look at a simple case where N is an even integer. That is, when
N = 2M , for some M ∈ N.
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Lemma 14. Let N = 2M , M ∈ N, z ∈ ℓ2(ZN) and u, v ∈ ℓ2(ZM). Further-
more define u, v by

u(k) = z(2k), k = 0, 1, . . . ,M − 1,

v(k) = z(2k + 1), k = 0, 1, . . . ,M − 1.

That is, u would consist of all even indices of z, and v all the odd ones.
Then, if m = 0, 1, . . . ,M − 1,

pz(m) = pu(m) + e−
2πim
N

pv(m). (2.1)

And, if m = M,M + 1, . . . , N − 1 we let P = m − M such that P =
0, 1, . . . ,M − 1. Then

pz(m) = pu(P )− e−
2πiP
N

pv(P ). (2.2)

Proof. Recall by definition, for any m = 0, 1, . . . , N − 1,

pz(m) =
N−1∑
n=0

z(n)e−
2πimn

N .

This sum can be broken up into sums over the even values, n = 2k and the
odd values n = 2k+1, k = 0, 1, . . . ,M−1. We end up with the two following
sums:

pz(m) =
M−1∑
k=0

z(2k)︸ ︷︷ ︸
=u(k)

e−
2πi(2k)m

N +
M−1∑
k=0

z(2k + 1)︸ ︷︷ ︸
=v(k)

e−
2πi(2k+1)m

N .

In the first sum, we simply rewrite the exponent as −2πikm
N/2

, and for the
second sum we first break out e−

2πim
N , and then rewrite the exponent just as

we did in the first sum, that is, as −2πikm
N/2

. Note however, since N = 2M ,
N/2 is just M , so what we end up with is

pz(m) =
M−1∑
k=0

u(k)e−
2πikm

M + e−
2πim
N

M−1∑
k=0

v(k)e−
2πikm

M . (2.3)

If, in Equation (2.3), m = 0, 1, . . . ,M − 1, the two sums add up to pu(m) +

e−
2πim
N

pv(m), which is what we had in Equation (2.1). If, on the other hand,
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m = M,M + 1, . . . , N − 1 we as previously mentioned use P = m − M or
equivalently m = P +M . If we replace m with P +M in Equation (2.3) we
get

pz(m) =
M−1∑
k=0

u(k)e−
2πik(P+M)

M + e−
2πi(P+M)

N

M−1∑
k=0

v(k)e−
2πik(P+M)

M .

This simplifies to Equation (2.2) by firstly observing that e−
2πik(P+M)

M =

e−
2πikP

M , due to the M -periodicity. Secondly, e−
2πi(P+M)

N = e−
2πiP
N · e− 2πiM

N .
But, since M = N/2, the exponent in the last term is πi, and eπi = −1.
Thus we end up with

pz(m) =
M−1∑
k=0

u(k)e−
2πiP
M − e−

2πiP
N

M−1∑
k=0

v(k)e−
2πiP
M = pu(P )− pv(P )e−

2πiP
N ,

which was the desired form.

This is the basic structure of the FFT algorithm. We obtain the values
pz(0), pz(1), . . . , pz(M − 1) using pu(m) and pv(m) accordingly to Equation (2.1),
and the values pz(M), pz(M + 1), . . . , pz(N − 1) accordingly to Equation (2.2).
This means we obtain pz by computing and using pu and pv, both of which are
of length M , thus requiring M2 complex multiplications respectively. We
then need to compute the products e−

2πim
N

pv(m) for m = 0, 1, . . . ,M − 1,
adding another M multiplications. The rest of the computations are done
using addition and subtraction, which usually is not taken into account when
discussing computational complexity. This means in the above case, the most
basic one that is, we at most require a number of complex multiplications
totaling at

2M2 +M = 2

(
N

2

)2

+
N

2
=

1

2
(N2 +N).

When N is large, this is essentially N2

2
. So in the most basic case, we have

already cut the number of complex multiplications by half.

2.3 The Most Favorable Case

So what would happen if N was not just divisible by 2, but by 4? Well, we
could divide N by 2 and define the vectors u, v as above, but we could then
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take things one step further. If N is divisible by 4, that would mean the order
of u and v would have to be divisible by 2. Hence, we can apply the same
algorithm on u and v, reducing the computational complexity even further.
This can be generalized and is the reason why the most favorable case is when
N is a power of 2. As an example, if N was 29 = 512, we could represent
F512 by F256, which in return could be represented by F128 → F64 → F32 →
· · · → F2. In fact, this case is so computationally efficient that if N ̸= 2n,
vectors can be padded with zeroes until N = 2n. Thus, the example above
was more of a demonstrative case to get a better understanding of how the
algorithm works.

Definition 24. Define #N to be the least number of complex multiplications
required to compute the DFT of a vector of length N .

Using this notation, the FFT algorithm reduces the number of complex
multiplications to

#N ≤ 2#M +M. (2.4)

Lemma 15. Suppose N = 2n, n ∈ N. Then

#N ≤ 1

2
N log2N.

Proof. This proof is easily done by induction on n. When n = 1, N = 2 and
z is a vector consisting of only two elements, z = (a, b). the Fourier matrix,
F is

W2 =

[
1 1
1 −1

]
,

pz = W2z = (a + b, a − b). As we can see, for n = 1, the statement holds
since #2 = 0 and 1

2
·2 log2 2 = 1. We suppose, by induction, that it also holds

for n = k − 1. Then for n = k, we have by Equation (2.4) as well as the
induction hypothesis that

#2k ≤ 2# 2k

2

+
2k

2
= #2k−1 + 2k−1 ≤ 2 · 1

2
2k−1(k − 1) + 2k−1 =

1

2
k2k =

1

2
N log2N.
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Chapter 3

Applications

A natural way to finish this essay is to look at some applicative demonstra-
tions of the FFT, as we shall in this chapter. We look at three applicative
cases, namely noise filtering of a signal, computing the derivative of a func-
tion, and the integral of a function. We begin by using the FFT to denoise
a signal, we then move on to differentiation and demonstrate how the FFT
can be used to approximate derivatives, as well as primitives. The Python
code used can be found in the Appendix.

3.1 Noise Filtering

A function, within the field of signal processing, is referred to as a signal.
Thus, in accordance, we refer to our function as a signal in this chapter.
These signals can be audio, imagery or video, however, we will only study
the case of audio. The purpose of these sub-fields of signal processing is to
analyze, process and modify signals. The term noise refers to an unwanted,
often interfering part of the signal that one would like to either reduce or
remove entirely, hence the term noise filtering.

The demonstrative example is in great resemblance to the one in [2, p. 60].
What we will do is begin with a rather simple signal, and to that signal add
Gaussian white noise, which is white noise following a Gaussian distribution
[7, p. 406]. Gaussian white noise is used in signal processing to mimic random
noise effects that occur in nature. The process is rather simple. We begin by
comparing our signal with the noisy signal, we will add a rather large amount
of Gaussian white noise so that the difference will be more pronounced. We
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apply the FFT to both signals to get a better understanding of what the
Gaussian white noise looks like and what its impact is on the original signal.
Remember, applying the DFT, or FFT to a signal allows us to see each of the
frequencies in the signal as well as their respective magnitudes. The idea is
to identify the frequencies with lower magnitudes, hence lower overall weight
in the signal. This is the noise. We then filter out the Gaussian white noise.
Once filtered out, we apply the IFFT to obtain the time-domain signal and
compare it with the original clean signal. Our signal, denoted as f is

f(t) = sin(2π · 50t) + sin(2π · 120t).

Following the literature and common notation within the field, we denote
our input variable as t. This is a natural notation as the discrete inputs of
the signal, t are in time.

Figure 3: Comparing original signal with and without added noise.

As previously explained, we begin by comparing f to itself, but with
added noise. We plot the two functions, see Figure 3. Here the original
signal is called “Clean”, in black, and “Noisy”, in red, is the noisy signal. We
plot over the period of one second and sample 210 discrete data points.
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Figure 4: Comparing FFT of signal with and without added noise.

In Figure 4 we apply the FFT to the noisy signal as well as the original
signal. The noise is in red, and the original is in blue. There are four big
spikes in magnitude which are identical for both signals. The reason behind
the symmetrical look is that the sinusoidal waves have equal positive and
negative peaks in absolute terms. We filter out this noise by computing
the so-called Power Spectrum Density (PSD) [2, p. 60], which is a way to
measure the strength of each frequency component in the signal. We do this
by squaring the magnitudes and then normalizing by the periodicity N , that
is

PSD(m) =
|pz(m)|2

N
.

The normalization is used to get a power-measurement fit to the frequency
interval we are using. It is clear the four frequencies have a higher magnitude
than the noise, so we filter out any frequency with PSD under 100.
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Figure 5: Comparing our original signal with the filtered one.

Figure 5 shows what the two signals look like in comparison after we have
removed the noise and transformationed them back using the IFFT. As we
can see, after filtering out the Gaussian white noise, the filtered signal looks
almost identical to the original one. The results conclude the FFT is an
excellent tool for denoising signals.

3.2 Spectral Derivative

Another interesting application of the FFT is within numerical computations
of derivatives. The way it works is rather simple. Given a function f(x), we
can apply the FFT, once transformationed, we multiply each component by
i2πm

N
, applying the IFFT to this then gives us the derivative of the function

but in the time domain. The term 2πm
N

is often denoted as κ(m). Again,
we adjust our notations from n to x per the literature and common notation
within the study.

It is often called the spectral derivative [2, p. 61] simply because the
frequency domain can be referred to as the spectral domain. As in the
case of noise filtering, this example coincides with an example one may find
in [2, p. 62]. We look at the function f(x) = cos (x)e−

x2

25 . We plot the
analytical derivative and compare it with the numerical derivative obtained
by two different numerical methods. Firstly using the FFT, secondly using
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Euler’s forward method or the forward difference method [10, p. 339], defined
as

df

dx
(xk) ≈

f(xk+1)− f(xk)

∆x
.

Figure 6: Derivative comparison.

In Figure 6, the black line denotes the true derivative or the analytical
derivative. The red dotted line represents the numerical derivative obtained
by the FFT, and the blue dotted line is the numerical derivative obtained by
the Forward difference. As we can see, both numerical methods do a good
job of approximating the analytic solution, however, the forward difference
has a clear shift which is expected with the method, cf. [10, p. 343]. Thus
the FFT is a powerful tool for differentiation.

36



3.3 Error Comparison on Numerical Derivatives

Figure 7: Error comparison.

To get a better understanding of how the errors compare, we compare them
when increasing N in powers of 2, ranging from 2 to 214. We compare them
using mean square error (MSE) [9, p. 28], where the analytical values are
used as the true values. We denote pdf

dx
(xi) as the values obtained by the

numerical method in a discrete point xi, and df
dx
(xi) denote the analytically

computed values,

MSE =
1

N

N−1∑
i=0

(
pdf

dx
(xi)−

df

dx
(xi)

)2

.

Figure 7 shows that the FFT has a significantly smaller error for smaller
N , measured by powers of 10. They are, however, both decreasing as N
increases. This once again establishes the FFT as a powerful tool for differ-
entiating.

37



3.4 Integration

Figure 8: Original function compared with FFT integral.

As a final applicative demonstration, we look at how the FFT can be used
to compute the integral, or primitive of a function. The process is almost
identical to the one of differentiating, except once the FFT is applied to a
given function, we multiply by 1

iκ(m)
[1, p. 2], before applying the IFFT. In

this example we integrated f ′(x) = −2π sin (2πx) and compare it to f(x) =
cos (2πx). Figure 8 shows our results, where the blue line is the function
cos (2πx) and the orange dotted line is the primitive of −2π sin (2πx). As
we can see, the method yields a near-perfect match. Thus, the FFT is a
prominent method for integrating.
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Appendix

Python Code

import numpy as np
import matplotlib

matplotlib.use(’TkAgg ’)
import matplotlib.pyplot as plt

plt.rcParams[’figure.figsize ’] = [16 , 12]
plt.rcParams.update({’font.size’: 18})

""" Denoising a signal """

# Defining our function , interval and adding noise.

# Create a simple signal with two frequencies
dt = 0.0009765625 # Our step -size , which is 1/2^10. So n = 0

,1,..., 1024.
t = np.arange(0, 1, dt)
z = np.sin(2 * np.pi * 50 * t) + np.sin(2 * np.pi * 120 * t)

# Sum of 2 frequencies
z_clean = z
z_noised = z + 2.5 * np.random.randn(len(t)) # Add some

noise

# Compute the Fast Fourier transformation (FFT)

n = len(t) # This is our N, we sample a total of
# 1024 samples in the interval [0,1]
z_hat = np.fft.fft(z_noised , n) # Compute the FFT on our

function with noise.
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PSD = z_hat * np.conj(z_hat) / n # Computing the Power
Spectrum Density

freq = (1 / (dt * n)) * np.arange(n) # Create x-axis of
frequencies in Hz

L = np.arange(1, np.floor(n),dtype=’int’)

# Use the PSD to filter out noise

indices = PSD > 100 # Find all frequencies with large power
PSD_clean = PSD * indices # Zero out all others
z_hat = indices * z_hat # Zero out small Fourier

coefficients
z_filtered = np.fft.ifft(z_hat) # Inverse FFT for filtered

time signal

# Plotting our results

plt.plot(t, z_noised , color=’r’, linewidth=1.5, label=’Noisy’
)

plt.plot(t, z_clean , color=’k’, linewidth=2, label=’Clean’)
plt.xlim(t[0], t[-1])
plt.xlabel(’t’)
plt.ylabel(’Function value’)
plt.legend ()
plt.show()

plt.plot(t, z_clean , color=’k’, linewidth=1.5, label=’Clean’)
plt.plot(t, z_filtered , color=’r’, linewidth=2, label=’

Filtered ’)
plt.xlim(t[0], t[-1])
plt.xlabel(’t’)
plt.ylabel(’Function value’)
plt.legend ()
plt.show()

plt.plot(freq[L], PSD[L], color=’r’, linewidth=2, label=’
Noisy’)

plt.plot(freq[L], PSD_clean[L], color=’k’, linewidth=1.5,
label=’Clean’)

plt.xlim(freq[L[0]], freq[L[-1]])
plt.xlabel(’Frequency ’)
plt.ylabel(’Magnitude ’)
plt.legend ()
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plt.show()

plt.show()

""" Spectral derivative """

n = 128
L = 30
dx = L / n
x = np.arange(-L / 2, L / 2, dx , dtype=’complex_ ’)
f = np.cos(x) * np.exp(-np.power(x, 2) / 25) # Function
df = -(np.sin(x) * np.exp(-np.power(x, 2) / 25) + (2 / 25) *

x * f) # Derivative

# Euler’s Forward

dfFD = np.zeros(len(df), dtype=’complex_ ’)
for kappa in range(len(df) - 1):

dfFD[kappa] = (f[kappa + 1] - f[kappa]) / dx # Array ,
Euler’s Forward

dfFD[-1] = dfFD[-2]

# Derivative using FFT (spectral derivative)
fhat = np.fft.fft(f) # FFT on f
kappa = (2 * np.pi / L) * np.arange(-n / 2, n / 2)
kappa = np.fft.fftshift(kappa) # Re -order fft frequencies
dfhat = kappa * fhat * (1j) # Array , ikappa * FFT
dfFFT = np.real(np.fft.ifft(dfhat)) # inverse of dfhat ,

derivative
# Plots
plt.plot(x, df.real , color=’k’, linewidth=2, label="True

Derivative")
plt.plot(x, dfFD.real , ’--’, color=’b’, linewidth=1.5, label=

"Euler Forward")
plt.plot(x, dfFFT.real , ’--’, color=’r’, linewidth=1.5, label

="FFT Derivative")
plt.xlabel(’x’)
plt.ylabel(’Function value’)
plt.legend ()
plt.show()

""" Error comparison , numerical derivative """

n = 131072
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L = 30
dx = L / n
x = np.arange(-L / 2, L / 2, dx , dtype=’complex_ ’)
f = np.cos(x) * np.exp(-np.power(x, 2) / 25) # Function
df = -(np.sin(x) * np.exp(-np.power(x, 2) / 25) + (2 / 25) *

x * f) # Derivative

n_list = [2, 4, 8, 16, 32 , 64, 128 , 256 , 512 , 1024 , 2048 ,
4096 , 8192 , 16384]

error_forward_list = []
error_FFT_list = []

for i in n_list:
dx = L / i
x = np.arange(-L / 2, L / 2, dx , dtype=’complex_ ’)
f = np.cos(x) * np.exp(-np.power(x, 2) / 25) # Function
df = -(np.sin(x) * np.exp(-np.power(x, 2) / 25) + (2 / 25

) * x * f) # Derivative

# Euler’s Forward Difference
df_FD = np.zeros(len(df), dtype=’complex_ ’)
for kappa in range(len(df) - 1):

df_FD[kappa] = (f[kappa + 1] - f[kappa]) / dx #
Array , Euler’s Forward

df_FD[-1] = df_FD[-2]

# Spectral Derivative , FFT
f_hat = np.fft.fft(f) # FFT on f
kappa = (2 * np.pi / L) * np.arange(-i / 2, i / 2)
kappa = np.fft.fftshift(kappa) # Re -order fft

frequencies
df_hat = kappa * f_hat * (1j) # Array , ikappa * FFT
df_FFT = np.real(np.fft.ifft(df_hat)) # inverse of dfhat

, derivative

error_forward = (np.sum((df - df_FD) ** 2)) / i
error_FFT = (np.sum(df - df_FFT)) ** 2 / i

error_forward_list.append(error_forward)
error_FFT_list.append(error_FFT)

plt.figure(figsize=(10 , 6))
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plt.plot(n_list , error_forward_list , label=’Euler Forward
Error’, marker=’o’)

plt.plot(n_list , error_FFT_list , label=’FFT Error ’, marker=’x
’)

plt.xlabel(’Number of Points ’)
plt.ylabel(’Error’)
#plt.title(’Error Comparison between Numerical Methods ’)
plt.xscale(’log’)
plt.yscale(’log’)
plt.legend ()
plt.grid(True)
plt.show()

""" Integration """

# Original setup
n = 1024
L = 10
dx = L / n
x = np.arange(-L / 2, L / 2, dx , dtype=’complex_ ’)
f = np.cos(2 * np.pi * x)
df = -2 * np.pi * np.sin(2 * np.pi * x)
# FFT of the derivative
dfhat = np.fft.fft(df)
kappa = (2 * np.pi / L) * np.arange(-n / 2, n / 2)
kappa = np.fft.fftshift(kappa) # Re -order fft frequencies

# Handling the zero frequency to avoid division by zero
kappa[0] = 1 # Avoid division by zero
fhat = dfhat / (1j * kappa)
fhat[0] = 0 # Set the zero frequency component to 0 (or the

integral constant if known)

# Inverse FFT to get the primitive
f_primitive = np.real(np.fft.ifft(fhat))

# Plotting the original function and its primitive
plt.figure(figsize=(10 , 6))
plt.plot(x, f, label=’Original function $f(x)$’)
plt.plot(x, f_primitive , label=’Primitive of $df/dx$’,

linestyle=’dashed ’)
plt.xlabel(’x’)
plt.ylabel(’Function value’)
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#plt.title(’Original Function and Its Primitive ’)
plt.legend ()
plt.grid(True)
plt.show()
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