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Abstract

In this thesis, we explore the mathematical results used to find a solution
to the optimal stopping problem for American put options. We begin with an
overview of probability theory, stochastic processes, and stochastic calculus
to build a foundation for understanding the optimal stopping problem. We
then apply these mathematical concepts to derive and prove a solution for the
perpetual American put option. Additionally, we analyze the reasonableness
of our results in the context of the characteristics of the underlying asset on
which the option is based.

Abstract

I denna uppsats utforskar vi de matematiska resultat som används för att
fastställa när man ska sälja en amerikansk säljoption för att maximera den
förväntade avkastningen. Inledningsvis ger vi en grund i sannolikhetsteori,
stokastiska processer och stokastisk differentialkalkyl för att bygga upp och
introducera teorin gällande optimal stoppning. Vi kommer att använda denna
teori för att presentera matematiska resonemang som löser och bevisar den
optimala tidpunkten för att sälja en evig amerikansk säljoption. Därefter kom-
mer vi att tolka och resonera kring de resultat vi har uppnått med avseende
på de egenskaperna hos den underliggande tillgången optionen är baserad på.
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1 Introduction

When should one stop to obtain success? Should one take the first best option or
wait for a better opportunity? Mathematicians who tried to answer these questions
developed the theory of optimal stopping.

When solving the optimal stopping problem for American put options, we aim to
determine the optimal time to exercise the option in order to maximize the expected
return. By optimizing the expected return, we ensure that the potential profit is
not only substantial but also has a high probability of being realized.

Let us outline the structure of the paper. In Section 2 we will introduce the
probability space, random variables and some results, such as conditional probabil-
ity and conditional expectation. Section 2.1 explains what a stochastic process is,
introduces filtrations and gives examples of some stochastic processes, such as Mar-
tingales and Markov processes. Section 2.1.1 introduces symmetric random walks
as an intuition of Brownian motion, while Section 2.1.2 formally defines Brownian
Motion. Section 3 delves into stochastic calculus, where Section 3.1 introduces Itô’s
integral and formula, and Section 3.2 stochastic differential equations. Section 4
introduces stopping times, optimal stopping times and the Dirichlet problem as a
method of solving a optimal stopping problems. Section 5 presents American put
options and how the optimal stopping problem for the perpetual American put is
solved. Finally in Section 6 we analyse the results found in Section 5 and examine
what happens to the solution when the parameters value changes.



2 Probability Theory

Let us begin by introducing some probability theory, to establish a foundation upon
which the latter sections will rest. The definitions presented in this section take
inspiration mainly from the introductory Chapter in An Intermediate Course in
Probability by [Gut, 1998] and Chapter 1 Stochastic Calculus for Finance II, by
[Shreve, 2004].

The basis for probability theory is the probability space. We can think of the
probability space as a structure built by three components, the sample space Ω,
which contains all possible events ω. From the sample space, we can find a σ-algebra
F , which equals the collection of measurable subsets of Ω. Probability spaces are
also equipped by a probability measure P, which gives us the probability that an
event A ∈ F occurs or not. We can formally define the components as

Definition 2.1. Let Ω be a nonempty sample space, and F be a collection of subsets
of Ω. F is said to be a σ-algebra if the following holds:

i) the empty set ∅ belongs to F ,

ii) if the set A belongs to F , then A:s complement Ac will also belong to F ,

iii) if the sets A1, A2, ... belongs to F , then their union ∪∞
n=1An belongs to F as

well.

Definition 2.2. Consider the non-empty set Ω and let F be a σ-algebra of Ω. A
probability measure P is a function that, for every event A in F , P maps A onto
[0, 1].

The following must hold:

i) P(Ω) = 1,

ii) whenever A1, A2, .. is a selection of disjoint sets in F then,

P(
∞⋃

n=1
An) =

∞∑
n=1

P(An). (1)

Definition 2.3. The triple (Ω,F ,P) is a probability space.



Example 2.4. Consider a symmetric six-sided die and an experiment where you toss
the die once. The sample space Ω is then {1, 2, 3, 4, 5, 6}. A σ-algebra F is the set
of all subsets of Ω, including the empty set and Ω. The maximal σ-algebra for a
single die-cast consists of 2|Ω| = 26 = 64 elements. First, we have the trivial cases

{∅}, {1}, {2}, {3}, {4}, {5}, {6},

and their complements

{Ω},{2, 3, 4, 5, 6}, {1, 3, 4, 5, 6}, {1, 2, 4, 5, 6}, {1, 2, 4, 5, 6}, {1, 2, 3, 5, 6},

{1, 2, 3, 4, 6}, {1, 2, 3, 4, 5}.

Let us call the event when you rolled a one, A = {1}. The complement (not A) is
then Ac = {2, 3, 4, 5, 6}, i.e. you did not roll a one, or you rolled either a two, three,
four, five or six. We can expand this reasoning to all possible combinations of the
elements in the sample space, B = {1, 2} is the event where you roll either a one
or a two, and so on. The probability measure P given the symmetric die, for the
event A is given by P(A) = P({1}) = 1

6 , and by the nature of the symmetric die it
is as likely to roll a one as any other possible number. By definition of probability
measure P(B) = P({1, 2}) = P({1} ∪ {2}) = 1

6 + 1
6 = 1

3 .

Definition 2.5. Given a probability space (Ω,F ,P), an event A ∈ F that satisfies
P(A) = 1 is said to occur almost surely.

The following definitions are borrowed from Chapter 2 in Stochastic Differential
Equations, by [Øksendal, 2013]. We will use some analytical concepts, which we will
not expand on in this paper. However, if you are interested, we refer to Princi-
ples Of Mathematical Analysis, by [Rudin, 1976], which will give you a substantial
understanding of the concepts below.

Definition 2.6. Let U be the collection of all open subsets of Ω, given a probability
space (Ω,F ,P). The σ-algebra generated by U is called a Borel σ-algebra B on Ω
and the sets B ∈ B are called Borel sets.

Remark 2.7. By generated by U , we mean that since U are a collection of subsets of
Ω, there exists a smallest σ-algebra FU which contains U . We say that the σ-algebra
FU is generated by U .
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Definition 2.8. Consider a probability space (Ω,F ,P). We define a function Y :
Ω → Rn as F -measurable if the preimage of all open set U ∈ Rn,

Y −1(U) := {ω ∈ Ω;Y (ω) ∈ U} ∈ F .

Remark 2.9. If U is a Borel set, we call the Y Borel-measurable.

Definition 2.10. Consider a probability space (Ω,F ,P). A Stochastic variable X
is a Borel-measurable real-valued function, which maps Ω onto Rn.

Remark 2.11. We sometimes refer to a stochastic variable as a random variable
without changing the meaning.

Example 2.12. Consider the die and probability space we examined in Example 2.4.
We might play a game where we win a coin if we roll a one, two or three and lose a
coin if we roll a four, five or six. We can now define a stochastic variable

X(ω) =

1 if ω ∈ {1, 2, 3}

−1 if ω ∈ {4, 5, 6}.

We can calculate the probability to win a coin P(X = 1) = P({1, 2, 3}) = P({1} ∪
{2} ∪ {3}) = 1

2 .

In Example 2.12, we describe a random variable where all outcomes have the
same probability. This is rarely the case. Consider the random variable, which
is the sum of two symmetric dice. We see that it is more likely for the sum to
equal 7 than 12, since there is only one way for the sum to equal 12, namely two
sixes. However, there are six ways to construct seven. We call this phenomenon the
stochastic variables distribution, and we will now formally define it.

Definition 2.13. Consider a discrete random variable X on (Ω,F ,P). We define
the Distribution function of X as

FX(x) = P(X ≤ x),

which is equal to

FX(x) =
∑
y≤x

pX(y),
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where pX(x) = P(X = x). We call pX(x) the Probability function. When X is
continuous we get that

FX(x) =
∫ x

−∞
fX(y)dy.

and we call fX(x) the probability density function.

Remark 2.14. When considering continuous random variables, we note that the
functionX : Ω → R is typically assumed to have a continuous distribution. However,
there are cases where X does not meet the criteria for density functions, resulting in
cases when the density function does not exist. We will not explore these exceptions
further in this paper.

Definition 2.15. The expected value of a random variable X is given by

E[X] :=


∑∞

k=1 xkpX(xk) if X is discrete,∫∞
−∞ xfX(x)dx if X is continuous.

We say that the expected value exists if E[|X|] < ∞.

Definition 2.16. Consider the random variable X. We define the variance of X as

V ar(X) = E[X2] − E[X]2.

The general definitions above can be explained by an example.

Example 2.17. The game described in Example 2.12 gives us the random variable
X. The distribution of X is called symmetric Bernoulli or Be(1

2) since we have two
outcomes +1 or −1 with equal probability p = 1

2 . The expected value is given by
the weighted average of all possibilities,

E[X] := p(−1) + p(1) = 1
2(−1 + 1) = 0.

We interpret E[X] = 0 as when you play many iterations of the game, the aggregate
of the winnings and losses would equal 0 coins. The variance

V ar(X) = E[X2] − E[X]2 = E[X2] = 1
2(12 + (−1)2) = 1.

Definition 2.18. Consider a stochastic variable X defined on the probability space
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(Ω,F ,P). The distribution measure of X is defined as the probability measure
µX(B) = P(X ∈ B), where B is each Borel subset of Ω.

Definition 2.19. The conditional probability of two events is given by the formula

P(A|B) = P(A ∩B)
P(B) ,

assuming P(B) ̸= 0, which means the probability of event A given B has already
happened. If

P(A|B) = P(A) ⇐⇒ P(A ∩B) = P(A)P(B),

we call the events independent. This means that the events do not affect each other’s
probability.

Definition 2.20. Consider two random variablesX and Y defined on the probability
space (Ω,F ,P). Their joint distribution function is given by

FX,Y (x, y) = P(X ≤ x, Y ≤ y),

for −∞ < x, y < ∞. When X and Y are discrete their joint probability function is
given by

pX,Y (x, y) = P(X = x, Y = y),

and when X and Y continuous the joint density function

fX,Y (x, y) = ∂2FX,Y (x, y)
∂x∂y

.

Remark 2.21. When applying the concepts defined in Definition 2.19 to stochastic
variables, let us follow the reasoning given in [Gut, 1998] page 8 and 9. We say that
the stochastic variables X and Y are independent if

FX,Y (x, y) = FX(x) · Fy(y)

for all x and y. In the discrete case

pX,Y (x, y) = pX(x) · pY (y)
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and the continuous case

fX,y(x, y) = fX(x) · fY (y).

The formula for conditional probability is given by in the discrete case

pX|Y (x, y) = pX,Y (x, y)
pY (y) .

In the continuous case, we then get

fX|Y (x, y) = fX,Y (x, y)
fY (y) .

Definition 2.22. Let two random variables X and Y have a joint distribution. The
conditional expectation of Y given X = x is given by

E[Y |X = x] =


∑

y ypY |X=x(y) discrete case,∫∞
−∞ yfY |X=x(y)dy continuous case.

2.1 Stochastic processes

We will now introduce the notion of stochastic processes. This section based upon
Chapter 2 in [Shreve, 2004].

Definition 2.23. Given some probability space (Ω,F ,P) a stochastic process (X(t))t≥0

is a collection of stochastic variables,

{X(t) : t ∈ T} (2)

where T is some indexed set.

Remark 2.24. A couple of examples of T are [0, 1, 2, 3, ...] or [0,∞).

Definition 2.25. A filtered probability space (Ω,F , (Ft)t≥0,P) is a probability space
equipped with an additional structure of the σ-algebras called a filtration (Ft)t≥0.
The filtration is defined as the the sequence of σ-algebras Fs ⊆ Ft ⊆ F where s ≤ t.

Definition 2.26. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. A stochastic
process (X(t))t≥0 is called adapted to the filtration (Ft)t≥0 if for every t ≥ 0, X(t)
is Ft-measurable.
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Let us put a filtration in context by an example inspired from the thread [GEdgar, 2017].

Example 2.27. Consider our earlier example with the symmetric die. If we cast the
die once more, we now get the filtered probability space (Ω2,F , (Ft)t≥0,P), where
Ω2 = Ω × Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, leading to a event possibly looking
like ({1}, {2}) if you roll a one in the first cast, and a two in the second. Remember
the σ-algebra from Example 2.4 these are the possible outcomes of the fist cast,
which gives us F1. When the first cast is thrown, and we know the result, let us call
the event A. We can generate a collection subsets of Ω which all share the element
given by the first cast. The σ-algebra for the second cast is the Cartesian product
between A and F1, i.e. F2 = A× F1. Giving us a filtration.

A purpose of filtered probability spaces is to condition on the filtration. Given a
stochastic process (X(t))t≥0 and a filtration (Ft)t≥0. An intuition of the conditional
expected value E[X(t)|Fs] is that it is the expectation of X(t) depending on the
information given in Fs, where s ≤ t. Refer to pages 68 and 69 in [Shreve, 2004],
for a more formal definition.

We will now use the conditional expected value to define two important stochastic
processes, the Martingale and the Markov Process.

Definition 2.28. Given a filtered probability space (Ω,F , (Ft)t≥0,P) a stochastic
process (X(t))t≥0 is called a martingale if

i) X(t) is Ft-measurable for t ≥ 0, i.e. ((X(t))t≥0 is adapted to (Ft)t≥0),

ii) E|X(t)| < ∞ for t ≥ 0,

iii) E[X(t)|Fs] = X(t) for s ≤ t (called a super-martingale if E[X(t)|Fs] ≤ X(t)
and sub-martingale i E[X(t)|Fs] ≥ X(t)).

An intuition for the Markov process can be a stochastic process that continuously
restarts itself. Consider a function f and a random process (X(t))t≥0. If we take
the conditional expectation f(X(t)) on a filtration (Fs)s≤t to a time s ≤ t, i.e.
E[f(X(t))|Fs], it is equivalent to starting the process at time s. This gives us a
formal definition.

Definition 2.29. Consider a filtered probability space (Ω,F , (Ft)t≥0,P) and an
adapted stochastic process (X(t))t≥0. We say that (X(t))t≥0 has the Markov property
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if, for 0 ≤ s ≤ t and for every non-negative, Borel-measurable function f , there exists
a second Borel-measurable function g such that

E[f(X(t))|Fs] = g(X(s)). (3)

2.1.1 Random walks

We will make use of a famous and useful stochastic process later in this paper
called Brownian Motion. To build an intuition of Brownian Motion as a stochastic
process, we begin with a more straightforward concept: symmetric random walks.
This section of the paper follows the reasoning given in [Shreve, 2004] Chapter 3.2.

Example 2.30. Suppose you have a fair coin you repeatedly toss. Note that the
tosses are independent. A count starts at 0, and if the coin shows heads (H), you
add 1, and if the coin shows tails (T ), subtract 1. Let us denote the tosses as ω and

X =

1 if ω = H,

−1 if ω = T,
(4)

We define M(0) = 0 (the start), and the process

M(k) =
k∑

j=1
X(j), k = 1, 2, .... (5)

The stochastic process M(k) is an example of a symmetric random walk.

Proposition 2.31. A symmetric random walk has independent increments.

Proof. Consider a partition 0 = k0 < k1 < ... < km where all ki for i = 0, 1, ...,m
are integers. The stochastic variables

Mk1 = (Mk1 −Mk0), (Mk2 −Mk1), (Mkm −Mkm−1) (6)

are independent. We call Mki+1 −Mki
= ∑ki+1

j=ki+1 X(j) an increment of the random
walk and depends on different coin tosses.

Corollary 2.32. We see E[Mki+1 −Mki
] = 0 since the expected value of the random
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variable X(j) is 0. The variance of the increment

V ar(Mki+1 −Mki
) =

ki+1∑
j=ki+1

V ar(X(j)) =
ki+1∑

j=ki+1
1 = ki+1 − ki.

Lemma 2.33. A symmetric random walk is a martingale.

Proof. If we choose two non-negative integers k < l and remember the definition of
a martingale,

E[M(l)|Fk] = E[(M(l) −M(k)) +M(k)|Fk] (7)

= E[M(l) −M(k)|Fk] + E[M(k)|Fk] (8)

= E[M(l) −M(k)|Fk] +M(k) (9)

= E[M(l) −M(k)] +M(k) = M(k). (10)

Step (8) uses the linearity of the conditional expectation, and step (9) M(k) is Fk-
measurable and only depend on the first k tosses. Step (10) follows from M(l)−M(k)
independence of Fk.

Definition 2.34. Let M(k) be a stochastic process. We define quadratic variation
as

[M,M ](k) =
k∑

j=1
(M(j) −M(j − 1))2. (11)

Lemma 2.35. The quadratic variation of a symmetric random walk up to time k
equals k.

Proof. We see that M(j)−M(j−1) = X(j), which equals either 1 or -1. This gives
us that (X(j))2 = 1 and the sum ∑k

j=1 1 = k.

2.2 Brownian Motion

Brownian motion was discovered by and named after the botanist Robert Brown.
While looking at pollen immersed in water through a microscope, Brown discovered
that the pollen kept moving in a random pattern, which later was explained to derive
from the water molecules bouncing off the pollen, making it move. We will now see
how to model this motion as a stochastic process.
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We can think of the Brownian motion as a continuous symmetric random walk.
However, the symmetric random walk defined in the previous section is discrete,
which makes this argument imprecise. The following reasoning is taken from Chapter
3 in [Shreve, 2004] and gives a good intuition of a Brownian motion before giving a
formal definition. We now introduce the scaled symmetric random walk

W (n)(t) = 1√
n
M(nt), (12)

where M(nt) is a symmetric random walk, n is a positive integer, and nt is also
a positive integer. Since t is not necessarily an integer we might get cases where
nt is not an integer. Then, we choose s and u, which are the closest integers of
the form s < t < u and we define W (n)(t) as the interpolation between 1√

n
M(ns)

and 1√
n
M(nu). As with the regular symmetric random walk, the scaled symmetric

random walk has independent increments. Consider the partition 0 = t0 < t1 <

... < tm where ntj is and integer for all j. Then we have

(W (n)(t1) −W (n)(t0)), (W (n)(t2) −W (n)(t1)), ..., (W (n)(tm) −W (n)(tm−1))

are independent. When considering the walk presented in Example 2.30, we see
that W (100)(0.10) −W (100)(0) depend on the first 10 coin tosses and W (100)(0.90) −
W (100)(0.30) depends on the 60 tosses starting at toss 30. Using this reasoning, we
can conclude that

E[W (n)(t) −W (n)(s)] = 0 and V ar(W (n)(t) −W (n)(s)) = t− s

since W (n)(t) −W (n)(s) is the sum of n(t− s) independent stochastic variables with
expected value 0 and variance 1

n
. The intuition of the Brownian Motion is given by

the limit when n → ∞ of the scaled symmetric random walk. When letting n go to
infinity and observing a single increment, we get by the Central Limit Theorem (see
page 89 in [Shreve, 2004]) that each increment is normally distributed.

The formal definition of Brownian motion, we use is borrowed from [Øksendal, 2013]
pages 13 to 15.

Definition 2.36. Let (Ω,F ,P) be a probability space, a stochastic process (W (t))t≥0

is called a Wiener process or Brownian Motion if it satisfies the following properties

13



i) The incrementsW (t)−W (s), for s ≤ t, are normally distributed with E[W (t)−
W (s)] = 0 and V ar(W (t) −W (s)) = t− s,

ii) (W (t))t≥0 has independent increments, i.e. if r < s < t < u then the incre-
ments W (s) −W (r) and W (u) −W (t) are independent,

iii) (W (t))t≥0 paths are almost surely continuous.

We have defined the Brownian Motion, but how can we be certain that the
process exists? To show this, we introduce some results from pages 11 to 14 in
[Øksendal, 2013], and page 49 and 50 in Brownian Motion and Stochastic Calcu-
lus by [Karatzas and Shreve, 1998], which we will use to prove the existence of the
Wiener process as we formally defined it.

Definition 2.37. Consider a stochastic process X = (X(t))t≥0. We define the
finite dimensional distribution of X as the distribution measures µt1,t2,...,tk

on Rk,
for k = 1, 2, ..., satisfying

µt1,...,tk
(F1 × F2 × . . . Fk) = P(Xt1 ∈ F1, ..., Xtk

∈ Fk),

where F1, ..., Fk denotes Borel sets in R.

Let us now introduce a result that gives us a framework how to construct the
Brownian motion.

Theorem 2.38. (Kolmogorov’s extension theorem) Consider a stochastic pro-
cess (X(t))t≥0 and consider the partition t1, t2, ..., tk ∈ Rk

≥0 where k is a natural
number. Then, for all ti let µti

be distribution measures for i = 1, 2, ..., k meaning
that µt1 denotes the probability distribution of the element X(t1), and so on. We
want the distribution measures to satisfy:

µtσ(1),...,tσ(k)(F1 × . . .× Fk) = µt1,...,tk
(Fσ−1(1),× . . .× Fσ−1(k)) (13)

for all permutations σ on {1, 2, ..., k} and all Borel sets Fi for i ∈ {1, 2, ..., k}. We
also want the measures to satisfy:

µt1,...,tk
(F1 × . . .× Fk) = µt1,...,tk,tk+1,...,tk+m

(F1 × . . .× Fk × R × . . .× R) (14)
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for all m ∈ N. If (13) and (14) are satisfied, there exist a probability space (Ω,F ,P)
and a stochastic process (X(t))t≥0 where X(t) : Ω → R such that

µt1,...,tk
(F1 × . . .× Fk) = P(X(t1) ∈ F1, . . . X(tk) ∈ Fk) (15)

for all ti ∈ R≥0 and k ∈ N and all Borel sets Fi.

Theorem 2.39. (Kolmogorov’s continuity theorem) Let (X(t))t≥0 be a stochas-
tic process. If for all T > 0 there exist positive constants α, β,D such that

E[|X(t) −X(s)|α] ≤ D|t− s|1+β 0 ≤ s, t,≤ T.

Then there exists a continuous version X̃ of (X(t))t≥0 such that X̃ is a continuous
function for almost all possible paths.

Let us now prove that the Brownian motion as we have defined it in Definition
2.36 exists.

Proof. To show that the Wiener process defined in Definition 2.36 exists, we con-
struct a process in accordance with Kolmogorov’s Extension Theorem. The rea-
soning will closely follow Chapter 2.2 in [Øksendal, 2013]. We specify a family of
probability measures µt1,...,tk

satisfying (13) and (14) and define a probability density
function

p(t, x, y) = 1√
2πt

exp{−(x− y)2

2t }, (16)

for x, y ∈ R and t > 0. For 0 ≤ t1 ≤ ... ≤ tk we define a probability measure µt1,...,tk

on Rk. From Kolmogorov’s Extension Theorem, we see that

µt1,...,tk
(F1 × . . .× Fk) = (17)∫

F1×...×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) . . . p(tk − tk−1, xk−1, xk)dx1dx2 . . . dxk = (18)

P(W (t1) ∈ F1, . . . ,W (tk) ∈ Fk). (19)

To further confirm that the Wiener process exists, we confirm each of the conditions
given in Definition 2.36.

(i) Since (W (t))t≥0 has normally distributed increments, we know that for all
0 ≤ t1 ≤ ... ≤ tk the vector Z = (W (t1),W (t2), ...,W (tk)) ∈ Rk has a multivariate
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normal distribution. This means that there exists an expected value vector E[Z] =
u ∈ Rk and a covariance matrix Λ ∈ Rk×k. Note that we observe a one-dimensional
Wiener process. Using the characteristic function (see page 71 [Gut, 1998]), we can
confirm that the Wiener process is normal. From page 123 in [Gut, 1998] and page
13 in [Øksendal, 2013], we get that

φZ(t) = exp{i
∑

j

tjuj − 1
2
∑
j,m

tjλjmtm} (20)

where t = (t1, ..., tk) ∈ Rk and λjm = E[(Zj − uj)(Zm − um)] by definition of covari-
ance. We get (20) by setting E[W (t)] = x for all t ≥ 0 and, we get E[(W (t)−x)2] =
t, E[(W (t) − x)(W (s) − x)] = min(s, t). We also get E[(W (t) − W (s))2] = (t − s)
for t ≥ s by simple calculation.

(ii) To confirm that (W (t))t≥0 has independent increments, we use the result from
page 130 in [Gut, 1998], that the components in a multivariate normally distributed
vector are independent if and only if they are uncorrelated. We want to prove

E[(W (ti) −W (ti−1))(W (tj) −W (tj−1)] = 0

for ti < tj. From (step 1) we get that

E[W (ti)W (tj) −W (ti−1)W (tj) −W (ti)W (tj−1) +W (ti−1)W (tj−1)]

= ti − ti−1 − ti + ti−1 = 0.

(iii) Using Kolmogorov’s Continuity Theorem, we can see, using the result, that
the n :th derivative of the moment generating function (see page 64 [Gut, 1998])
ψ

(n)
Z (t) = E[Zn], we get that

E[|W (t) −W (s)|4] = 3|t− s|2,

which fulfills the continuity theorem.
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Let us see some results from pages 102 to 108 in [Shreve, 2004].

Theorem 2.40. Let (W (t))t≥0 be a Wiener process, then the quadratic variation
[W,W ](T ) = T for all T ≥ 0.

Proof. Consider a partition P = {t0, t1, ..., tn} of [0, T ], and define the quadratic
variation corresponding to P as

QP =
n−1∑
j=0

(W (tj+1) −W (tj))2.

We can prove the theorem by showing that QP converges to T as ∆t → 0, where
∆t is the distance between ti+1 and ti for all ti ∈ P . Remember that the expected
value of the increments of The Wiener process equals 0, and we get,

E[(W (tj+1) −W (tj))2] = V ar(W (tj+1) −W (tj)) = tj+1 − tj, (21)

which in turn gives us that,

E[QP ] =
n−1∑
j=0

E[(W (tj+1) −W (tj))2] =
n−1∑
j=0

(tj+1 − tj) = T.

We also have that,

V ar
(
(W (tj+1) −W (tj))2

)
= E

[(
(W (tj+1) −W (tj))2 − (tj+1 − tj)

)2
]

= E
[
(W (tj+1) −W (tj))4

]
− 2(tj+1 − tj)E

[
(W (tj+1) −W (tj))2

]
+ (tj+1 − tj)2.

Using the moment generating function ψX(t) and the fact that E[Xn] = ψ
(n)
X (0)

(n:th derivative) for proof, see Chapter 3.3 in [Gut, 1998]; we get that

E
[
(W (tj+1) −W (tj))4

]
= 3(tj+1 − tj)2

V ar
(
(W (tj+1) −W (tj))2

)
= 3(tj+1)2 − 2(tj+1 − tj)2 + (tj+1 − tj)2

= 2(tj+1 − tj)2.



This, in turn, gives us that,

V ar(QP) =
n−1∑
j=0

V ar
(
(W (tj+1) −W (tj))2

)
=

n−1∑
j=0

2(tj+1 − tj)2

≤
n−1∑
j=0

2∆t(tj+1 − tj) = 2∆tT.

To conclude, V ar(QP) → 0 as ∆t → 0, and we get that lim∆t→0 QP = E[QP ] =
T .

Theorem 2.41. The Wiener process is a Martingale.

The proof is similar to the proof for symmetric random walks. Let us introduce
an important result from pages 107 and 108 in [Shreve, 2004].

Theorem 2.42. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and let W =
(W (t))t≥0 be a Wiener process with filtration (Ft)t≥0. Then, W is a Markov process.

Proof. Consider the Markov property defined in Definition 2.29. We want to show
that

E[f(W (t))|Fs] = g(W (s)),

where f and g are defined as in Definition 2.29. We begin by setting

E[f(W (t))|Fs] = E[f((W (t) −W (s)) +W (s))|Fs],

and note that the increment W (t) − W (s) is independent of Fs, and W (s) is Fs-
measurable. By the Independence lemma, Chapter 2 [Shreve, 2004], and replace
W (s) with a dummy variable x and get g(x) = E[(f(W (t) − W (s)) + x)]. By
property of the Wiener process we know that W (t) −W (s) is N(0, t− s)-distributed
which gives us that

g(x) = 1√
2π(t− s)

∫ ∞

−∞
f(w + x)e− w2

2(t−s)dw.

We now replace x with W (s), and the equation holds.
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3 Stochastic Calculus

Calculus is a powerful tool for studying and understanding change, and is widely
used in the physical sciences, such as physics and engineering. However, the regular
rules for calculus do not hold for the Wiener process. This, leads us to Stochastic
calculus, which will let us apply the benefits of calculus to the stochastic processes
in which, we are interested.

3.1 Itô’s Integral

To build an understanding of stochastic calculus, we will study Itô’s integral. We
will begin with simple integrands ϕ(t), which we can then generalize to nonsimple
integrands. The reasoning presented in this section is mostly based on Chapter 3 in
[Øksendal, 2013] and Chapter 4 in [Shreve, 2004].

Consider a partition 0 < t1 < ... < tn−1 < T of [0, T ] and define a simple process
ϕ(t) to be constant on each subintervall [tj, tj+1). Note that the interval does not
contain tj+1 but approaches it. The value ϕ(tj) of each element in the partition tj

depends on a path ω generated by the Wiener process. We also know that ϕ(t) can
only depend on the information given at time t, so ϕ(0) has to be the same for all
paths. We can conclude that the first step of ϕ(t) for 0 ≤ t < t1, t always start at
0. However, the second step on the interval [t1, t2) depends on the information from
[0, t1) as well as ω. We define each step of the partition

∫ t

0
ϕ(s)dW (s) = ϕ(0)[W (t) −W (0)] = ϕ(0)W (t), for 0 ≤ t ≤ t1∫ t

t1
ϕ(s)dW (s) = ϕ(t1)[W (t) −W (t1)], for t1 ≤ t ≤ t2

and so on. In general, if tk ≤ t ≤ tk+1, then we get the definition:

Definition 3.1. Consider the partition 0 < t1 < ... < tn−1 < t and tk ≤ t ≤ tk+1

for some integer k, the Ito integral for simple integrands is of the form

∫ t

0
ϕ(s)dW (s) =

k−1∑
j=0

ϕ(tj)[W (tj+1) −W (tj)] + ϕ(tk)[W (t) −W (tk)]. (22)

Before we generalise the Itô integral for simple integrands to non simple, let us



explore some of its properties.

Theorem 3.2. The Itô integral for simple integrands is a martingale.

We refer to pages 128 and 129 in [Shreve, 2004] for the proof. The theorem and
proof below is inspired by page 26 in [Øksendal, 2013].

Theorem 3.3. (Itô isometry) The Itô integral for simple integrands satisfy

E[(
∫ t

0
ϕ(s)dW (s))2] = E

∫ t

0
ϕ2(s)ds (23)

Proof. Let the
∫ t

0 ϕ(s)dW (s) = ∑
j ej(W (tj+1) − W (tj)), where ej is some Ftj

-
measurable function. By ease of notation let the increment W (tj+1)−W (tj) = ∆Wj.
We then get

E[eiej∆Wi∆Wj] =

0 if i ̸= j,

E[e2
j ](tj+1 − tj) if i = j,

from the fact that eiej∆Wi is independent from ∆Wj if i < j. This gives us that

E[(
∫ t

0
ϕ(s)dW (s))2] =

∑
i,j

eiej∆Wi∆Wj

=
∑

j

E[e2
j ](tj+1 − tj)

= E[
∫ t

0
ϕ2(s)ds].

Theorem 3.4. Let the Itô integral
∫ t

0 ϕ(s)dW (s) be denoted as I(t). The quadratic
variation of I(t) on the interval [0, t] is

[I, I](t) =
∫ t

0
ϕ2(s)ds (24)

Proof. Consider the Itô integral for a subinterval [tj, tj+1] where ϕ(s) is constant.
Choose a partition such that tj = s0 < s1 < ... < sm = tj+1 and consider the sum

m−1∑
i=0

[I(si+1) − I(si)]2 =
m−1∑
i=0

[ϕ(tj)(W (si+1) −W (si)]2

= ϕ2(tj)
m−1∑
i=0

[W (si+1) −W (si)]2.
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As the step sizes approach zero and m infinity, the sum approaches the quadratic
variation for the Wiener process. This gives us that

ϕ2(tj)(tj+1 − tj) =
∫ tj+1

tj

ϕ2(s)ds (25)

since ϕ(s) is constant on the interval [tj, tj+1]. We use the same reasoning for the
interval [tk, t]. Finally, we can add all the integrals over all the intervals to finish
the proof.

Let us now extend the definition of Itô integral for simple integrands to the gen-
eral case. The intuition is to construct a sequence of simple processes (ϕn)n≥0 such
that

∫ T
0 ϕn(t)dW (t) →

∫ T
0 f(t)dW (t), for a general stochastic process f . [Øksendal, 2013]

shows in depth how to choose such a stochastic process on pages 27 and 28.

Definition 3.5. To define Ito’s integral for general integrands, we want to choose a
B ×F -measurable function f , where B is the Borel σ-algebra on [0,∞), the function
is also (Ft)t≥0 adapted (see Remark 3.15) and E[

∫ t
0 f(s, ω)2ds] < ∞. Choose also a

sequence of simple processes ϕn such that

E[
∫ t

0
(f − ϕn)2ds] → 0

as n → ∞. Then, we can define
∫ t

0
f(s)dW (s) = lim

n→∞

∫ t

0
ϕn(s)dW (s).

Note that the limit is an L2-limit (see Remark 3.6), since (
∫ t

0 ϕn(s)dW (s)) is a Cauchy
sequence (see Remark 3.6).

Remark 3.6. Consider the probability space (Ω,F ,P) and the random variable X :
Ω → Rn. The L2-norm is given by

||X||2 = ||X||L2(P ) = (
∫

Ω
|X(ω)|2dP (ω)) 1

2 .

The L2-space is defined by

L2(P ) = L2(Ω) = {X : Ω → R; ||X||2 < ∞}.

In [Øksendal, 2013] page 10, we are given that the L2-space is a complete inner
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product space, with the inner product defined as

(X, Y )L2(P) := E[X · Y ]

for X, Y ∈ L2(P). The definition of complete gives us that all Cauchy sequences (see
page 52 in [Rudin, 1976]) converge on L2. We now have to show that ϕn is a Cauchy
sequence. We can do this by following the reasoning given on page 4 in Lecture notes
in Introduction and Techniques in Financial Mathematics [Ortiz-Latorre, 2015]. Let
us use the Itô isometry to show that

E[(
∫ t

0
ϕndW (s) −

∫ t

0
ϕmdW (s))2] = E[(

∫ t

0
ϕn − ϕmdW (s))2]

= E[
∫ t

0
|ϕn − ϕm|2ds]

= E[
∫ t

0
|ϕn − f + f − ϕm|2ds]

≤ 2E[
∫ t

0
|f − ϕn|2ds] + 2E[

∫ t

0
|f − ϕm|2ds].

Since (ϕn)n≥1 is a sequence of simple processes approximating f as n → ∞, we see
that the right-hand side of the inequality converges to zero. To conclude, we see
that

∫ t
0 ϕndW (s) is a Cauchy sequence that converges in L2.

Remark 3.7. Theorems 3.2, 3.3 and 3.4 also hold for the general Itô integral see page
137 in [Shreve, 2004].

To show how to use the Itô integral, we look at an example from pages 134 to
136 in [Shreve, 2004].

Example 3.8. Compute the integral
∫ t

0 W (s)dW (s).

We begin by observing
∫ t

0
W (s)dW (s) = lim

n→∞
ϕn(s)dW (s)

= lim
∆tj→0

∑
j=0

W (tj)[W (tj+1) −W (tj)],
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where ∆tj = tj+1 − tj. We can expand the statement inside the sum to find

W (tj)[W (tj+1) −W (tj)] = W (tj+1)W (tj) −W (tj)2

= W (tj+1)W (tj) − 1
2W (tj)2 − 1

2W (tj)2

= −1
2W (tj+1) +W (tj+1)W (tj) + 1

2W (tj)2 − 1
2W (tj)2 + 1

2W (tj+1)

= −1
2[W (t2j+1 − 2W (tj+1)W (tj) +W (tj)2] + 1

2[W (tj+1)2 −W (tj)2]

= 1
2[W (tj+1)2 −W (tj)2] − 1

2[W (tj+1) −W (tj)]2

We separate the terms and observe let us observe the first term. Note that

1
2

n−1∑
j

[W (tj+1)2 −W (tj)2]

= 1
2[W (tn)2 −W (tn−1)2 +W (tn−1)2 − . . .−W (t0)2]

where all of the terms cancel except for t0 = 0 and tn = t which gives us that the
first term is 1

2W (t)2. Observe that the second term is the quadratic variation of the
Wiener Process (see Theorem 2.40), which gives us that the integral

∫ t

0
W (s)dW (s) = 1

2W (t)2 − 1
2t.

We have seen the Itô integral, and we now want to expand our understanding of
Stochastic calculus to include derivation. Let us start by defining a new process from
page 44 in [Øksendal, 2013], which will help us understand the stochastic derivative.

Definition 3.9. Consider the probability space (Ω,F , (Ft)t≥0,P) and the Wiener
process (W (t))t≥0. Let µ, σ be Ft-adapted stochastic processes where the filtration
is generated by (W (t))t≥0 (see Remark 3.15). Assume

P
(∫ t

0
σ(s)2ds < ∞; for all t > 0

)
= 1

and

P
(∫ t

0
|µ(s)|ds < ∞; for all t > 0

)
= 1.
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We call (X(t))t≥0 an Itô process if it is of the form

X(t) = X(0) +
∫ t

0
µ(s)ds+

∫ t

0
σ(s)dW (s). (26)

Calculating the integral in Example 3.8 using regular calculus, we would use the
chain rule followed by the Fundamental Theorem of Calculus. However, since we do
not have access to differentiation yet, we have to find another way. Using the Itô
process, we will introduce the stochastic calculus version of the chain rule. We take
inspiration from the theorem on page 44 in [Øksendal, 2013].

Theorem 3.10. (Itô’s fomula/Itô’s Lemma) Let g(t, x) be a function defined on
[0,∞) × R and be twice continuously differentiable. Let (X(t))t≥0 be a Itô process
defined in Definition 3.9. Then Y (t) = g(t,X(t)) is also an Itô process where,

dY (t) = ∂g

∂t
(t,X(t))dt+ ∂g

∂x
(t,X(t))dX(t) + 1

2
∂2g

∂x2 (t,X(t))(dX(t))2. (27)

The following rules hold

1. dt · dt = dt · dW (t) = dW (t) · dt = 0,

2. dW (t)2 = dW (t) · dW (t) = dt.

Remark 3.11. We can express Itô’s formula in integral form as

g(t,X(t)) = g(0, X(0)) +
∫ t

0
(∂g
∂t

+ µ
∂g

∂x
+ 1

2σ
2 ∂

2g

∂x2 )ds+
∫ t

0
σ
∂g

∂x
dW (s)

Let us show the theorem using an example inspired by Example 4.1.3 on page 45
in [Øksendal, 2013]. For a general proof, we refer to pages 46 to 48 in [Øksendal, 2013].

Example 3.12. Remember the integral from Example 3.8. Using Itô’s Formula, we
want to show that we can choose X(t) = W (t) and g(t, x) = 1

2x
2 to solve the

stochastic integral
∫ t

0 W (s)dW (s). We set Y (t) = g(t,W (t)) = 1
2W

2(t) and note
that ∂g

∂x
= x and ∂2g

∂x2 = 1 by regular derivation. This gives us that

dY (t) = W (t)dW (t) + 1
2dt.

By integrating both sides, we get

1
2W

2(t) =
∫ t

0
W (s)dW (s) + 1

2ds.
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Rearranging gives us
∫ t

0 W (s)dW (s) = 1
2W

2(t) − 1
2t, which is the same answer as in

Example 3.8.

Remark 3.13. This is the 1-dimensional version of the theorem. We refer to page 49
in [Øksendal, 2013], for the general formula. In this paper, we will also denote the
partial derivative ∂g

∂x
as gx.

3.2 Stochastic Differential Equations

A powerful tool that calculus gives us access to is differential equations. These
are equations that include both one or more functions and their derivatives. Since
we have introduced stochastic calculus in the previous section; It is time to intro-
duce stochastic differential equations (SDE:s). This section is based on Chapter
5 in [Øksendal, 2013] and Chapter 5 in Arbitrage Theory in Continuous Time by
[Björk, 2004].

Definition 3.14. Let (W (t))t≥0 be the Wiener process, µ : R+ × R → R and
σ : R+ × R → R and a constant x0 ∈ R. We define a Stochastic Differential
Equations (SDE) as equations of the form

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), (28)

X(0) = x0. (29)

The solution X(t) is called an Itô Diffusion and is an Itô process that satisfy

X(t) = X(0) +
∫ t

0
µ(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s). (30)

We call the functions µ and σ the drift and diffusion.

Remark 3.15. An Itô diffusion X = (X(t))t≥0 is adapted to the filtration (Ft)t≥0,
which in turn is generated by the Wiener process. Using the definition on page 39 in
[Björk, 2004], we get that for each t ≥ 0, the stochastic variable X(t) is a function
depending on the Wiener trajectory (the path generated by the Wiener process) on
the interval [0, t].

Let us now introduce an existence theorem for the (SDE) inspired by the theorem
on page 70 in [Øksendal, 2013].
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Theorem 3.16. Let T > 0, µ and σ be defined as in Definition 3.9 and satisfying

|µ(t, x)| + |σ(t, x)| ≤ C(1 + |x|), (31)

for x ∈ R, t ∈ [0, T ] and C is a constant. They also satisfy

|µ(t, x) − µ(t, y)| + |σ(t, x) − σ(t, y)| ≤ D|x− y|, (32)

where x, y ∈ R, t ∈ [0, T ] and D is a constant. For some σ-algebra Fs generated by
W (s) for s ≥ 0, the SDE

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), (33)

for 0 ≤ t ≤ T and X(0) = x0 has a unique t-continuous solution X(t).

The solution is equipped with the property that X(t) is adapted to the filtration
(Ft)t≥0 generated by W (s) for s ≤ t and

E[
∫ t

0
|X(u)|2du] < ∞.

Example 3.17. An example of an SDE is the Geometric Brownian Motion (GBM),
often used to model a stock price. It is of the form

dS(t) = rS(t)dt+ σS(t)dW (t). (34)

Let r be the µ defined above. To solve the GBM we introduce a function g(S(t)) =
ln(S(t)). By applying Ito’s formula on g, we get

dg(S(t)) = ∂g

∂t
dt+ ∂g

∂S(t)dS(t) + 1
2

∂2g

∂S(t)2dS(t)2, (35)

By regular derivative rules, we get

∂g

∂t
= 0, ∂g

∂S(t) = 1
S(t) ,

∂2g

∂S(t)2 = − 1
S(t)2 . (36)
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By substituting the results into Ito’s Formula, we get

dg(S(t)) = 0 + 1
S(t)(rS(t)dt+ σS(t)dW (t)) − 1

2σ
2dt

= rdt+ σdW (t) − 1
2σ

2dt

= (r − 1
2σ

2)dt+ σdW (t).

Let us integrate both sides,
∫ t

0
dg(S(t)) =

∫ t

0
(r − 1

2σ
2)dt+

∫ t

0
σdW (t),

g(S(t)) − g(S(0)) = (r − 1
2σ

2)(t− 0) + σ(W (t) −W (0)).

By the logarithm laws, we get

ln(S(t)
S(0)) = (r − 1

2σ
2)t+ σW (t)

Finally, we get that the (GBM:s) solution is of the form

S(t) = S(0) exp
{
σW (t) + (r − 1

2σ
2)t
}
. (37)

Now we introduce some notation. Let the expected value Ex[X(t)] denote that
the initial value of the process (X(t))t≥0 is X(0) = x ∈ R, and we can write

Ex[f(X(t))] = E[f(Xx(t))],

for all bounded Borel functions f and E denote the expected value with respect to
the probability law P0, meaning the process starts at 0.

Theorem 3.18. (The Markov Property for Itô diffusions) Let f be a bounded Borel-
measurable function from R to R. Then, for t, h ≥ 0

Ex[f(X(t+ h)|Ft] = EX(t)[f(X(h))]. (38)

Let us refer to the proof in [Øksendal, 2013] pages 117 and 118.

Definition 3.19. Let X(t) be a Itô diffusion in R. The generator L of X(t) is
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defined by

LXf(x) = lim
t↓0

Ex[f(X(t))] − f(x)
t

; x ∈ Rn. (39)

The set of functions f : R → R such that the limit exists at x is denoted by DL(x),
while DL denotes the set of functions for which the limit exists for all x ∈ Rn.

Theorem 3.20. Consider the Ito diffusion X(t) of

dX(t) = µ(X(t))dt+ σ(X(t))dW (t). (40)

If f is a twice continuously differentiable function, then f is in DL, and

LXf(x) = µ(x)∂f
∂x

+ 1
2σ(x)2∂

2f

∂x2 . (41)

The proof follows from Itô’s Lemma, and we refer to a formal proof in [Øksendal, 2013]
pages 124 and 125.

A relation between stochastic differential equations and stochastic processes is
useful in solving SDE:s. To examine this relation, introduce the Feynman-Kac for-
mula, the theorem and proof are inspired by [Björk, 2004] pages 68 and 69.

Theorem 3.21. (Feynman-Kac formula) Assume that X solves the SDE

dX(s) = µ(s,X(s))ds+ σ(s,X(s))dW (s),

X(t) = x,

and consider F as a solution to the boundary value problem

∂F

∂t
(t, x) + µ(t, x)∂F

∂x
+ 1

2σ
2(t, x)∂

2F

∂x2 = 0

F (T, x) = Φ(x).

Assume as well that the process σ(s,X(s)∂F
∂x

(s,X(s)) is in L2. Then, we can repre-
sent F as

F (t, x) = Et,x[Φ(X(T )]
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Proof. (Sketch) Consider the infinitesimal generator

LX = µ(t, x) ∂
∂x

+ 1
2σ

2(t, x) ∂
2

∂x2 .

We can now rewrite the BVP as

∂F

∂t
(t, x) + LXF (t, x) = 0

F (T, x) = Φ(x)

By applying Itô’s formula to the process F (s,X(s)) we get that

F (T,X(T )) = F (t,X(t)) +
∫ T

t

(
∂F

∂t
(s,X(s)) + LF (s,X(s))

)
ds

+
∫ T

t
σ(s,X(s))∂F

∂x
(s,X(s))dW (s).

If the process σ(s,X(s))(∂F
∂x

)(s,X) is sufficiently integrable and when the expected
value is taken, the stochastic integral vanishes by property of the Itô integral (see
page 30 in [Øksendal, 2013]). The boundary condition F (T, x) = Φ(x) and the
initial value X(t) = x gives us the formula

F (t, x) = Et,x[Φ(X(T ))],

which proves the theorem.
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4 Optimal Stopping Problem

The Optimal Stopping Problem studies when to stop a stochastic process to obtain
success. This could be to maximize an expected gain function or when to stop
searching for an employee. A classic example of this is the Secretary problem.

Example 4.1. In this scenario, you aim to hire the best secretary from n applicants.
The applicants are interviewed in a random order; you can rank the current applicant
relative to those previously interviewed. At the end of each interview, you must
immediately decide whether to hire that applicant.

Consider a strategy where you first interview a number of the applicants, let us
call this number k. We will reject all k of these applicants, and then hire the next
applicant who is better than the best of the first k. This is one strategy to solve the
secretary problem, and we will show this strategy in the paragraph below. There are
instances where the best possible applicant is one of the k applicants, or the k + s

applicant is better than the k first, but worse the the k + t applicant, where s < t.
Then, the strategy does not yield the optimal result. However, it turns out that the
strategy results in the highest probability of success. To solve the problem, we want
to find the k that maximize the probability of success.

This solution is based upon the reasoning given in the video [Numberphile2, 2014]
and is a simplification of the real solution. However, it gives a good understanding
of the Optimal Stopping Problem and how one can attempt to solve it. Assume that
the best secretary is as likely to be any of the n applicants. We can then conclude
that the probability of the best applicant to be in a specific place is 1

n
. If the best

candidate is in the k + 1 place, the probability of picking the best candidate is 1
because of our strategy. What if the best candidate is in the k + 2 place? What
is the probability that we pick them? This problem is equivalent to the probability
that the best candidate is not in the k + 1 place, i.e. 1 − 1

k+1 = k
k+1 . If we carry

on this reasoning, we find that the probability of picking the best candidate if they
are in the k + 3 place is k

k+2 , k + 4 is k
k+3 , and so on. Together, the probability

for the best applicant to be in a specific place 1
n

and the probability of picking the
best applicant given its place, yields the probability function p(k), describing the
probability of picking the best applicant out of the n, given our strategy of rejecting



the k first. We formulate the probability function as:

p(k) = 1
n

(1 + k

k + 1 + k

k + 2 ...+
k

n− 1

= k

n
(1
k

+ 1
k + 1 + ...+ 1

n− 1).

We ignore the k first applicants since the probability of picking them is 0. The series
inside the brackets can be approximated by the integral of the function f(x) = 1

x
,

we assume this without giving proof. This gives us an approximation

p̃(k) = k

n

∫ n

k

1
x
dx.

Using regular calculus gives us p̃(k) = k
n
(ln(n) − ln(k)) and by the laws of logarithm

we get p̃(k) = k
n

ln(n
k
). If we now substitute k

n
= x, we get a function g(x) = x ln( 1

x
)

and by the laws of logarithm, g(x) = −x ln(x). If we plot g(x) we see that the
function increases to a maximum point, and after the max is attained, it decreases.
To find the max, we differentiate using regular calculus and solve the equation where
g′(x) = 0. We get that g′(x) = − ln(x) − x 1

x
= 0, which gives us that g attains max

when x = 1
e
. We maximize p̃(k) when k = n

e
and, we have solved the problem. To

summarize, our strategy described above yields the result that we should reject the
n
e

first applicants. As a percentage this is 1
e

≈ 0.37 of the applicants. If we choose
the next best applicant, the probability of success can be derived from the statement
k = n

e
, and results in k

n
= 1

e
. To conclude if you reject the first 37% of applicants,

then you have a 37% likelihood of picking the best applicant.
Let us give an outline for the structure of this section. We begin by formulating

the optimal stopping problem, then show a strategy to derive a solution. Finally,
we will introduce some results that will help us verify that the solution derived, is
actually optimal.

Using the theory of stochastic processes and calculus, we will formalize the stop-
ping time and some ways to solve the optimal stopping problem. To begin, we will
follow the reasoning given in Chapter 1 in Optimal Stopping and Free Boundary
Problem by [Peskir and Shiryaev, 2006].

Definition 4.2. Consider a filtered probability space (Ω,F , (Ft)t≥0,P) and a ran-
dom variable τ : Ω → [0,∞], is called a stopping time if {τ ≤ t} ∈ Ft for all
t ≥ 0.
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Example 4.3. An example of a stopping time is

τ = inf{t ≥ 0 : X(t) ∈ B}. (42)

for some predetermined set B. We see that τ is the first time the random process
(X(t))t≥0 enters B. This is a stopping time since we know B, and we can check for
each t ≥ 0 if X(t) ∈ B.

Example 4.4. A non-example of a stopping time is quite simple: consider

τ = sup{t ≥ 0 : X(t) ∈ B}.

Since τ is the largest t where X(t) is in B we cannot know when this is since we
cannot see the future. This means that τ is not a stopping time.

To find the optimal stopping time, we will closely follow the reasoning of the
Markovian approach, is given in Chapter 1.2 in [Peskir and Shiryaev, 2006].

From now on we will denote X = (X(t))t≥0, and let X be a Markov process,
which takes values on E ⊂ R and maps onto R.

We define the optimal stopping problem as.

Definition 4.5. Consider a stochastic process X, and E denote all possible val-
ues of X(t). Let G : E → R be a Borel-measurable function satisfying that
Ex[sup0≤t≤T |G(X(t))|] < ∞ for all x ∈ E. The optimal stopping problem is then
given by,

V (x) = sup
0≤τ≤T

Ex[G(X(τ))], (43)

for a stopping time τ < ∞.

We call V (x) the value function and G the gain function. To solve the optimal
stopping problem we want to first evaluate V , then we will introduce a method to
check if the stopping time is optimal.

The intuition of the Markovian approach uses the memoryless property of the
Markov process. Consider a stopped process, we have to choose if we want to
continue the process or accept the result. So we have to find a stopping set S such
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that when the process is inside of S, the conditions for optimal stopping are fulfilled.
We will follow the reasoning on pages 12 and 13 in [Peskir and Shiryaev, 2006].

Definition 4.6. We define the stopping set S, and the continuation set C formally
as,

S = {x ∈ E : V (x) ≤ G(x)},

C = {x ∈ E : V (x) > G(x)}

Definition 4.7. Define the first entry time of X into S as

τS = inf{t ≥ 0 : X(t) ∈ S} (44)

Remark 4.8. We will only handle continuous functions in this paper, which gives us
that S is closed.

An important concept for understanding the Markovian approach to solving the
optimal stopping problem is the Strong Markov property. To give an intuition of
the Strong Markov property, we remember the Markov Property in Definition 2.29.
Instead of determining a particular time point s, we now have a random stopping
time τ , in which the process can restart. We can formalise this in a definition.

Definition 4.9. Consider a stochastic process X. We can express the strong Markov
property of X as

Ex[F ◦ θτ |Fτ ] = EX(τ)[F ] (45)

for a bounded function F and stopping time τ .

Remark 4.10. We say that θ : Ω → Ω is a shift operator. The shift operator acts on
a stochastic process X like

θn ◦X(t) = X(n+ t).

For a formal definition see page 122 in [Øksendal, 2013].

Using some of the reasoning given in [Peskir and Shiryaev, 2006] pages 77 and
78, we can examine some results from the shift operator.
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Corollary 4.11. Consider a stopping time σ ≤ τ where τ is an entry time (the
value of t where the process X enters a set). Then

X(τ) ◦ θσ = X(τ ◦ θσ + σ). (46)

This means that we can shift the process with finite stopping time. We keep the θσ

term since the stopping time σ is a random variable. If σ = n where n ∈ R we get
that X(τ) ◦ θn = X(τ + n).

Definition 4.12. Consider a strong Markov process X on a filtered probability
space (Ω,F , (Ft)t≥0,P). Let X start at x, where x ∈ E and consider a stopping
time τ . We call optimal stopping problem discounted when it is of the form:

V = sup
τ
E[e−rτG(X(τ))]

where r ∈ R+ is the discount factor and τ < ∞ a stopping time. Consider reducing
the problem presented above to the original optimal stopping problem

V = sup
τ
E[G(X̃(τ))],

where X̃ is the Markov process corresponding to the "discounting" of X by the same
rate as r. The infinitesimal generator LX̃ is given by, LX̃ = LX − rI, where I is the
identity operator.

Remark 4.13. Let us refer to page 127 in [Peskir and Shiryaev, 2006] if you want to
see a more general definition of the discounted problem.

Let us now introduce an important result using the Dirichlet problem or, first
boundary problem (for a formal formulation of the Dirichlet problem, see page 84
in [Peskir and Shiryaev, 2006]). We will use the Dirichlet problem together with
Theorem 4.15 to create a system of equations that will help us derive a solution to
the optimal stopping problem. The theorem below is inspired by the theorem given
on page 130 in [Peskir and Shiryaev, 2006].

Theorem 4.14. Consider a continuous function G : ∂C → R, let

V (x) = Ex[e−rτSG(X(τS))]

where τS is defined in Definition 4.7, r is the discount factor and ∂C is the boundary
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of the continuation set C. The function V solves the discounted Dirichlet Problem:

LXV = rV in C,

V |∂C = G.

Proof. (Sketch) From Definition 4.12, we see that we can represent

Ex[e−rτG(X(τS))] = Ex[G(X̃(τS))].

The infinitesimal generator LX̃ = LX − rI applied on V . By following the proof for
the regular Dirichlet problem (see page 130 in [Peskir and Shiryaev, 2006]) we get
that LX̃V = 0, which leads to the first equality. The second equality follows from
V evaluated at the optimal stopping time.

Finally, let us introduce a result which helps us study the value function V is
defined at the optimal stopping point.

Theorem 4.15. (Smooth fit) Assume that the stopping set is [0, b] and the contin-
uation set (b,∞), note that b is the optimal stopping point. If V is differentiable at
b then V ′(b) = G′(b).

For a more general formulation and proof, see page 150 in [Peskir and Shiryaev, 2006].

Using the theorems above, we can derive a system of equations which solved
will gives us a candidate for a solution to an optimal stopping problem. We in-
troduce some results from [Peskir and Shiryaev, 2006] page 37 and page 214 in
[Øksendal, 2013], that will help us prove that the solution is optimal.

Definition 4.16. Consider a measurable function F : E → R. We call F superhar-
monic if it satisfies

f(x) ≥ Ex[f(X(τ))],

for all stopping times τ and x in E.

Proposition 4.17. A measurable function F is superharmonic if and only if the
process (F (X(t))t≥0 is a supermartingale.
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Proof. [⇐=] Consider a supermartingale (F (X(t)))t≥0. By the Markov property, we
get

Ex[F (X(t))|Fs] = EXs [F (X(t− s))] ≤ F (X(s))

for all t ≥ 0 and we have shown the supermartingale property of (F (X(t)))t≥0.

[=⇒] Consider the superharmonic function F , for all x ∈ E. Then, we can follow
the reasoning above backwards, which proves the right direction as well.

Theorem 4.18. Suppose there exists an optimal stopping time τ∗ such that

V (x) = Ex[G(X(τ ∗))] (47)

for all x ∈ E. Then, V is the smallest superharmonic function, which dominates
the function G on E.

Proof. We want to show that V (x) is a superharmonic function. Using the strong
Markov property, we see that

Ex[V (Xσ)] = Ex [EXσ [G(X(τ ∗))]] = Ex [Ex[G(X(τ ∗)) ◦ θσ|Fσ]]

= Ex[G(X(τ ∗ ◦ θσ + σ))] ≤ sup
τ
Ex[G(X(τ))] = V (x).

Where σ is some stopping time and θ is a shift operator. Consider F a superharmonic
function that dominates G on the set E. We then have

Ex[G(X(τ))] ≤ Ex[F (X(τ))] ≤ F (x), (48)

for all τ and all x in E. Let us take

sup
0≤τ≤T

Ex[G(X(τ))] = V (x) ≤ F (x) for all x ∈ E. (49)

Since V (x) is a superharmonic function, we have now proven the statement.

Theorem 4.19. Consider the optimal stopping problem

V (x) = sup
0≤τ≤T

Ex[G(X(τ)] (50)
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and suppose that Ex[sup0≤t≤T |G(X(t))|] < ∞ is fulfilled. Let V̂ be the smallest
superharmonic function that dominates G on E. Let S and τS be defined as in Def-
inition 4.6 and 4.7. Then

i) If Px(τS < ∞) = 1 for all x ∈ E, then V̂ = V and τS is optimal.

ii) If P(τS < ∞) < 1 for some x ∈ E, then there exists no optimal stopping time.

Let us refer to the proof in [Peskir and Shiryaev, 2006] pages 41,42 and 43.

The optimal sampling theorem, which we will borrow from the formulation on
page 342 in [Shreve, 2004], is a helpful fact we will use to prove that the optimal
stopping times are optimal.

Theorem 4.20. (Optional sampling) Consider a martingale (X(t))t≥0 and a stop-
ping time τ . The stopped process (X(t ∧ τ))t≥0 is also a martingale. Where t ∧ τ is
the minimum.
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5 American Put Options

An option is a financial derivative where the parties agree upon a premium that
the holder (the party going long the option) will pay for the option, but not the
obligation, to buy or sell an asset from or to the writer (the party going short the
option), at an agreed-upon price, called the strike price, on a predetermined future
date. We call the right to sell the asset in the future, for the put option, and the
name put comes from the expression "put up for sale". Let us give an example of
how and why you would buy (go long) a put option:

Example 5.1. Consider a stock that costs 100 dollars, and you believe that the stock
will go down in value. You now buy a put option and pay a premium of 10 dollars,
and you agree to an exercise date in the future and the strike price, which, in our
case, is the same price as the underlying stock, i.e., 100 dollars. There are a couple
of possible outcomes. If the stock’s value goes up or stays the same at the exercise
date, you decide not to exercise, and lose the premium. The stock price can also
fall; for example if the stock’s price is 80 dollars at the exercise date, you can now
exercise the put (Buy a stock at 80 dollars and sell the stock at the strike price of
100 dollars). This gives a gain of 10 dollars since 100−80−10 = 10. The transaction
only becomes profitable when the price of the asset falls below the strike price with
more than the premium.

The option described in example 5.1 is called a European Put Option, meaning
you can only exercise the option at the exercise date. An American Put Option, in
which we are interested, can be exercised at any time, including the exercise date.

To determine the return of a put option. Consider the stock price modelled by
a geometric Brownian motion S(t) at time t. Suppose we exercise an American
put option at this time, with a strike price K. The gain from exercising the put
option would be K − S(t) dollars, or since we do not exercise if we lose money, the
gain is max(0, K − S(t)), we will denote this as G(t) = (K − S(t))+ from now on.
However, it is crucial to recognize that we also assume a risk by investing in the
option. Consequently, we need to account for the gains we could have been achieved
by investing the same amount in risk-free assets over the same period. These risk-
free gains are given by the compounding interest over the same time as the option
is held, i.e. from t = 0 to t = t. We can express this discount factor as e−rt, where
r represents the risk-free interest rate. We now have a formula for the value of an



American put,

e−rtG(t) = e−rt(K − S(t))+. (51)

We aim to find a stopping time τ , which maximizes e−rτG(τ).

Remark 5.2. We will assume that all prices are arbitrage-free. Arbitrage occurs
when there is an opportunity for risk-free gain, i.e. you can buy the asset or option
at a price and sell at a gain directly afterwards. We also call an arbitrage-free priced
asset a fair-priced asset.

5.1 Perpetual Put

A perpetual put is a conceptual derivative. However, it allows us an excellent op-
portunity to solve the optimal stopping problem explicitly. You can derive from
the perpetual puts name that it lacks an exercise date, giving the possibility that
t → ∞. The optimal stopping problem for the perpetual put addresses the question
of when to exercise the option to maximize the expected return. We will use the
approach described in Section 4 to derive a guess for the solution and then prove
that the guess is correct. The intuition is that we will derive from the method de-
scribed in Section 4, a lower boundary for the underlying asset, which maximizes the
expected return. If and when the asset reaches that valuation, we exercise the option.

We will assume that the expected discounted return at a stopping time gives the
value of the perpetual American put option. The reasoning presented in this section
follows pages 375 to 378 in [Peskir and Shiryaev, 2006] mixed with pages 349 to 356
in [Shreve, 2004].

Definition 5.3. Let τ be a stopping time and S(t) be the price of an underlying
asset generated by a GBM with S(0) = x. The value of the perpetual put is given
by

V (x) = sup
τ
E[e−rτ (K − S(τ))+]. (52)

Consider the process (S(t))t≥0 = S which solves the GBM presented in Example
3.17. Remember that S(0) = x, the interest rate r > 0, K is the strike price, and
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σ > 0 is the volatility coefficient. From Example 3.17, we get that the solution is

S(t) = x exp{σW (t) + (r − x
σ2

2 )t}

for t ≥ 0. Note that the process S is equipped with the strong Markov property and
the infinitesimal generator

L = rx
∂

∂x
+ σ2

2 x
2 ∂

2

∂x2 .

To solve the optimal stopping problem for a perpetual put, our approach is to find
a b ∈ (0, K) such that the stopping time

τb = inf{t ≥ 0 : S(t) ≤ b} (53)

is optimal. Note that b is then the boundary ∂C of the continuation set C.

Using Theorem 4.14 and Theorem 4.15, we can reduce (52) to the free boundary
problem:

LV = rV for x > b, (54)

V (x) = (K − x)+ for 0 < x ≤ b, (55)

V ′(x) = −1 for x = b, (56)

V (x) > (K − x)+ for x > b. (57)

The solution to the free-boundary problem we note that the equation (54) can
be expanded to

σ2

2 x
2V ′′(x) + rxV ′(x) − rV = 0. (58)

The equation in (58) is a so-called Cauchy-Euler equation. To solve such an equation,
we seek a solution of the form V (x) = xp, and by insertion, we get

p2 − (1 − r
2
σ2 )p− r

2
σ2 = 0.

Solving the equation results in the roots p1 = 1 and p2 = −r 2
σ2 , which gives us the
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general solution

V (x) = C1x+ C2x
−r 2

σ2 ,

where C1 and C2 are constants. From the conditions given in (55) and (56), we see
that C1 = 0 and by setting x = b and solving the system

C2b
−r 2

σ2 = K − b,

r 2
σ2C2b

−r 2
σ2 −1 = 1,

we get that b = K

1+ σ2
2r

and C2 = σ2

2r
( K

1+ σ2
2r

)1+r 2
σ2 . Finally, we get that

V (x) =


σ2

2r
( K

1+ σ2
2r

)1+r 2
σ2 x− 2r

σ2 if x ∈ [b,∞),

(K − x)+ if x ∈ (0, b],
(59)

We have now reached a possible solution to the optimal stopping problem for the
perpetual put. This means we exercise the option when the price S(t) = b. However,
we want to show that this is indeed the optimal solution. We will do this by present-
ing and proving the following theorem from page 377 in [Peskir and Shiryaev, 2006].

Figure 1: A visualisation of the strategy

Theorem 5.4. Consider the arbitrage-free price V (x) given by Definition 5.3. The
value function is given by (59). The stopping time τb presented in (53) where b =

K

1+ σ2
2r

is optimal in (52).
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Proof. For ease of notation, we let V∗(x) be the function given in Definition 5.3,
and we want to show V∗(x) = V (x) for all x > 0, given that V (x) is from (59).
We begin by applying Itô’s formula (see Remark 3.11) on the function e−rtV (S(t)),
which gives us

e−rtV (S(t)) = V (x)+
∫ t

0
e−rs(LV−rV )(S(s))I(S(s) ̸= b)ds+

∫ t

0
e−rsσS(s)V ′(S(s))dW (s),

(60)
Where I is the indicator function that is defined

I(S(t) ̸= b) =

1 if S(t) ̸= b,

0 else.

We use the indicator function since we can see from (56) that V ′′(x) is undefined in
x = b. Note that by setting G(x) = (K − x) we get (LG− rG)(x) = −rK and since
LV − rV = 0 for x > b we get that

LXV − rV ≤ 0 (61)

except when x = b. From (55) and (57), we get that V (x) ≥ (K − x)+ for all x and
together with (60) and (61), we get that

e−rt(K − S(t))+ ≤ e−rtV (S(t)) ≤ V (S(t)) +M(t),

where M = (M(t))t≥0 is given by

M(t) =
∫ t

0
e−rsσS(s)V ′(S(s))dW (s).

Note that M is a martingale (see Remark 3.7), since |V ′(x)| ≤ 1 for all x > 0.
Consider a sequence of stopping times (τn)n≥0 for M . Then we have that for every
stopping time τ of S, we know

e−r(τ∧τn)(K − S(τ ∧ τn))+ ≤ V (x) +M(τ ∧ τn),

for all n ≥ 1, by Theorem 4.20. Taking the expected value over x, we get that
Ex[M(τ ∧ τn)] = 0 for all n. By taking the limit n → ∞ and using Fatou’s Lemma
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(see Theorem A.21 in [Björk, 2004]) we get that

Ex[e−rτ (K − S(τ))+] ≤ V (x).

If we take the supremum over all stopping times τ of S, we get that V∗(x) ≤ V (x)
for all x > 0.

We also want to prove that V∗(x) ≥ V (x) before we can conclude that V∗(x) =
V (x). We do this by using equation (60) together with the condition in (55) and by
Theorem 4.20, we get that

Ex[e−r(τb∧τn)V (S(τb ∧ τ))] = V (x)

for all n ≥ 1. If we look at the limit when n → ∞ and using the fact that
e−rτbV (S(τb)) = e−rτb(K −S(τb))+ (note that both left and right-hand sides tend to
0 in τb → ∞), we find that

Ex[e−rτb(K − S(τb))+] = V (x),

which concludes the proof that τb is optimal. Thus showing that V∗(x) = V (x) for
all x > 0.
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6 Sensitivity Analysis

We have found the solution to the optimal stopping problem for perpetual American
put. In this section, we will explore what the solution tells us and what happens
to the solution when we change the values of the constants. A visualisation of
the strategy is shown in Figure 1: wait until the stock price reaches b to exercise.
Consider the solution

b = K

1 + σ2

2r

,

with strike price K, σ is the volatility, and r is the risk-free interest rate. We are
interested in observing the changes in b while using different values of σ and r.

Figure 2: The difference in optimal exercise level depending on σ.

Figure 2 shows two interesting results: The higher the volatility σ, the lower
the optimal exercise boundary b. Also, when the interest rate is low, we see that b
gets lower. To explain the results, we can look at the statement for the Geometric
Brownian Motion (34) used to simulate a stock price. Note that the second term
σS(t)dW (t) denotes the random price changes where the volatility constant σ is a
scalar factor, i.e. higher volatility leads to more significant price changes. Larger
price changes lead to a higher possibility of a lower stock price and therefore lower
boundary. However, we are only interested in asset prices lower than the strike price.
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This reasoning confirms the results seen in Figure 2 regarding σ. The first term in
(34) rS(t)dt is the drift rate of the asset. This means that the underlying asset can
be expected to rise in value equal to the interest rate. A higher interest rate leads
to higher b since we can expect the underlying asset to rise in value, when r > 0.
This is following the results seen in Figure 2.

When considering the value of the American put option, its intrinsic value is
given by K − x, where K is the strike price and x is the stock price. The intrinsic
value represents the payoff when exercising the put option at price x. As shown
in (59) and Figure 3, the value of the American put equals its intrinsic value at
0 ≤ x ≤ b. For x ≥ b, the option’s value exceeds its intrinsic value, indicating that
it is more profitable for the holder not to exercise the option until the optimal exercise
boundary b. We see that the green line is the value of the perpetual American put
corresponding to the boundary b2, meaning the underlying asset has interest rate
r = 0.05 and volatility σ = 0.3, and the red line corresponding to b1. This shows
us that the value of different perpetual puts equals their intrinsic value at different
points.

Figure 3: The value of the put depending on stock price.

Furthermore, when analysing the option’s value at different volatility levels, we
see that higher volatility leads to a lower optimal exercise boundary b.
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To conclude, when the price of the underlying asset reaches the optimal boundary
b, the value of the perpetual American put equals that of its intrinsic value. If the
price of the underlying asset is higher then the optimal boundary, the value of the
option is higher then its intrinsic value and it is more favorable for the holder of
the option to keep it. If the price of the underlying asset is lower then the optimal
boundary, then the value of the perpetual American put equals its intrinsic value
as well. The boundary depends on the interest rate, represented as the drift of the
underlying asset r and the volatility σ which indicates the scale of the price changes.
An increase in interest rate leads to a higher expected value of the underlying asset,
leading to a higher exercise boundary. When the volatility σ increases we see that
the changes in price increases, resulting to a lower exercise boundary.
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