
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Tensor Categories

av

Benjamin Andersson

2024 - No K24

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Tensor Categories

Benjamin Andersson

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Rikard Bögvad

2024

Abstract

Tensor categories, also known under the name of ”symmetric monoidal categories”, is an area of
import for research in pure mathematics, and with links to computation, logic and physics. In this
article, we go through their properties, introducing categorical concepts as needed as we go along.
We prove some well-known theorems, such as maclanes coherence theorem, for monoidal categories
(and in particular monoidal categories with a symmetry), and we zoom in on symmetric monoidal
categories with some more restrictive structure (e.g. rigidity). The work tries to lay the ground
for understanding the main theorem in P. Deligne & J.S. Milnes article ”Tannakian Categories”,
wherein it is shown that an exact, faithful k-linear tensor functor yields an equivalence of categories
between a more restricted type of tensor category, and the category of linear representations of a
group (perphaps affine group scheme) G.

Abstrakt

Tensor kategorier, ocks̊a kända under namnet “symmetriska monoidala kategorier”, är ett
omr̊ade med betydelse för b̊ade forskning inom ren matematik, men ocks̊a med kopplingar till
omr̊ade som teoretisk datavetenskap, logik, och fysik. I den här artikeln, s̊a kommer vi g̊a igenom
dessa typer av kategoriers egenskaper, där vi introducerar kategori-teoretiska koncept d̊a de behövs.
Vi bevisar n̊agra välkända teorem, s̊a somMaclanes koherensteorem, b̊ade för monoidala men ocks̊a
symmetriskt monoidala kategorier, och vi lägger sedan mer fokus p̊a en symmetriskt monoidala
kategorier mer fler restriktioner p̊a sin struktur (exempelvis rigiditet). Arbetet försöker bygga en
en bas för att kunna först̊a huvudsatsen i P. Deligne & J.S. Milnes artikel “Tannakian Categories”,
där i de visar att en exakt, trogen, k-linjär tensor-funktor ger en ekvivalens av kategorier mellan
en mer restriktiv typ av tensor kategori, och kategorin av linjära representationer av en grupp
(kanske eg. affint grupp schema) G.

Contents

1 Prelude 2

2 Introduction 2

3 Preliminaries; Categories 3
1.1 Some special objects of interest, in categories . 6
1.2 Natural transformations . 6

2 Tensor categories 7
2.1 Representations of a group G . 8
2.2 Tensor categories, again . 10

3 Iterates, Extensions 21
3.1 Coherence in tensor categories . 21

4 Invertible objects 35

5 Internal Hom 41
5.1 Hom(A,−) and Hom(−, A) . 41
5.2 Representable functors, presheafs, and internal-hom adjunctions 42
5.3 Duals . 51

6 Rigid tensor categories 59

7 Tensor functors 66

1

8 Morphism of tensor functors 78

9 Tensor subcategories 80

10 Abelian tensor categories 80
10.1 Buildup; introducing definitions . 80
10.2 Completion; the definition of an abelian category . 88
10.3 Additive categories; Abelian tensor categories; End(1) 88

11 Criterion for rigid abelian tensor categories 97

12 Main theorem 97

1 Prelude

The author has made his best to indicate where proofs are not fully developed, or when things are
assumed for sake of brevity or to avoid too much complication. I’ve used GPT-4 to ask questions and
to create biblatex references (mainly when they were hard to find by a quick google search).

This work is mainly an expansion on themes encountered in the the first chapter of P. Deligne & J.S.
Milnes “Tannakian Categories” ([10]). The reader already familiar with category theory at reasonably
high level, might find that some of the things stated in the thesis are too elementary. The author of
the thesis did not know much beyond quite elementary category theory at the beginning of writing
this thesis, whence a lot of work has been done to expand on assumptions and formal machinery that
is in the background of a lot definitions and theorems in [10].

Originally, the intent and goal of the article was to apply the theory of tannakian categories to more
elementary algebraic structures; as a lot of work went into understanding the theory behind tannakian
categories, over time, this morphed into a thesis that seeks to understand and unpack as much as
possible (with due time constraints) of the theorems and concepts at work in chapter 1 of [10]. We
have mainly used [13] as a reference for the categorical side of the thesis. The author wants to thank
several people for being willing to answer questions, or engage in dialogue about the material in the
thesis; among them Rikard Bögvad, David Rydh, Gregory Arone, Kilian Liebe, Victor Groth, and the
larger math-community at mathoverflow (MO) and mathstackexchange (MSE).

2 Introduction

Tannakian formalism was perhaps first seriously investigated by Grothendiecks student, Neantro Saave-
dra Rivano. The findings were published in “Catégories Tannakiennes” ([14]). This was later on taken
up by another of Grothendiecks students, Pierre Deligne. What in Deligne & Milne is called “tensor
categories”, also goes by the name of “symmetric monoidal categories”, among others. John Baez
has at one point called symmetric monoidal categories a “Rosetta Stone”, for their connections to
areas such as logic, computation and physics (for example, in certain types of topological quantum
field theories; see also the cobordism hypothesis; [3]). In this work, we will be happy to cover more
basic properties of what we call tensor categories; we will cover certain coherence conditions that are
imposed by the axioms, maclanes coherence theorem for monoidal (& symmetric monoidal categories),
dual objects, morphisms of tensor functors, and some other results related to these constructions. One
of the goals of this article can be seen to be, to lay the groundwork for being able to understand what
one of the main theorems in ([10, proposition 2.11]) says.

2

3 Preliminaries; Categories

We begin by introducing some relevant notations and definitions.

Definition 1.1. (Category). A category C = (Ob(C),Mor(C)) consists of

1. A class ob(C) whose elements are objects of C.

2. For every X,Y ∈ Ob(C), a class HomC(X,Y) where elements in HomC(X,Y) are called mor-
phisms in C from X to Y .

3. For every X ∈ Ob(C), there is a special element idX ∈ HomC(X,X) called the identity on X.

4. For every X,Y, Z ∈ Ob(C), a function called composition

HomC(Y,Z)×HomC(X,Y) → HomC(X,Z)

defined by
(g, f) 7−→ g ◦ f = gf.

The composition satisfies associativity :

h(gf) = (hg)f (when both sides make sense).

• Unitality: If f ∈ HomC(X,Y) then

idY ◦f = f ◦ idX
= f.

Definition 1.2. A category C is small if Ob(C),Mor(C) ∈ Set.

Example 1.3. Some examples of categories are

• Set with objects as sets and morphisms as functions.

• Top with objects as topological spaces and morphisms as continuous functions.

• Vectk over a field k, who:s objects are vector-spaces over k and where the morphisms are k-linear
maps.

• Grp, where the objects are groups and the morphisms are group homomorphisms.

• Take a set X with a preorder ≤. Then (X,≤) defines a category where the objects are the

elements of X, and Hom(x, y) :=

{
{fx,y}, if x ≤ y

∅, if x ̸≤ y

• Cat, where objects are small categories (1.2), and where the morphisms are functors.

A special type of category, which will be relevant in the context of the bifunctor − ⊗ −, are product
categories.

Definition 1.4. A product category is a category C × D whose objects are pairs (X,Y) where
X ∈ Ob(C) and Y ∈ Ob(D), whose morphisms are pairs (f, g) where f ∈ HomC(A,B) for objects
X,Y ∈ Ob(C), and g ∈ HomD(X,Y) for objects E,F ∈ Ob(D).

3

Furthermore, we define composition in the product category as (f1 ◦ f2, g1 ◦ g2) = (f1, g1)◦ (f2, g2) and
identities id(A,B) = (idA, idB) for objects (A,B) ∈ Ob(C×D).

Definition 1.5. A category C is locally small if for all objects A,B ∈ C, one has HomC(A,B) ∈ Set.

Example 1.6. Top×Top defines a product category. Morphisms are pairs of morphisms (f, g) where
f, g ∈ Mor(Top).

Crucially connected to categories, are functors.

Definition 1.7. A functor F : C → D where C,D are categories, is a map that fulfills the following
properties:

• For each object X ∈ Ob(C), F (X) ∈ Ob(D)

• For each morphism f ∈ HomC(X,Y), we get a morphism F (f) ∈ HomD(F (X), F (Y)), so that
the following conditions hold

1. F (idX) = idF (X) for all X ∈ Ob(C).

2. F (g ◦ f) = F (g) ◦ F (f) for all morphisms f ∈ HomC(X,Y) and g ∈ HomC(Y,Z).

Remark 1.8. For a functor (1.7) F : C → D, we generally call C the source category of F , and D its
target category.

Definition 1.9. A covariant functor is a functor F : C → D such that if f ∈ HomC(A,B) then
F (f) ∈ HomD(F (A), F (B)).

Definition 1.10. A bifunctor is a functor F whose domain is a product category (1.4). That is,
F : C×D → E for categories C,D,E.

We will mostly talk about the bifunctor ⊗ : C× C → C. In this case, we will take as a given that the
following conditions hold (as in [9, chapter 2]):

• For every pair of objects X,Y ∈ C gives us an object X ⊗ Y ∈ C.

• For pairs of morphisms f : X → X ′ and g : Y → Y ′, we have a morphism f⊗g : X⊗Y → X ′⊗Y ′.

• For identity morphisms idX and idY , we have idX ⊗ idY = idX⊗Y : X ⊗ Y → X ⊗ Y .

• For defined composites f ′ ◦ f and g′ ◦ g in C, it holds that (f ′ ◦ f)⊗ (g′ ◦ g) = f ′ ⊗ g′ ◦ f ⊗ g.

We will take these as facts in the following text; so we will use these properties freely without men-
tioning them each time.

Definition 1.11. A forgetful functor F : C → Set is a functor that “forgets” some of the underlying
structure in the source category (1.8) C. There is, as of yet, no precise formal definition of exactly what
a “forgetful” functor is. Hence this serves more as a heuristic for when to call a functor “forgetful”.

Example 1.12. We have a forgetful functor F : Repk(G) → Vectk from the category of representa-
tions of a group G (with fixed field k), to the category of vector spaces over k. It takes a representation
(V, ρ) to the vector space V , and takes G-equivariant maps to the linear transformation corresponding
to them in Vectk.

If H ≤ G is a subgroup, then one has a forgetful (restrictive) functor ResGH : Repk(G) → Repk(H).

4

If H ≤ G with ϕ : H ↪−→ G the inclusion homomorphism, then ⇝ φ∗ : Repk(G) → Repk(H) “pulls
back” a representation (V, ρ) from Repk(G) to Repk(H) by φ∗(ρ) := ρ◦φ : H → GL(V), as illustrated
below.

H G

GL(V)

φ

φ∗ρ
ρ

Remark 1.13. Note that ρ in the above example is always k-linear.

Example 1.14. If C = Grp, the category of groups, then we have a forgetful functor F : Grp →
Set that takes objects G ∈ Grp to their set in Set (without any relations imposed), and group
homomorphisms f : G→ H to functions f : G→ H between sets H,G in Set.

We now introduce the following lemma.

Lemma 1.15. Functors preserve isomorphisms.

Proof. As in [13]: Let F : C → D be a functor, and let f : X → Y for X,Y ∈ Ob(C) be an isomorphism
with inverse f−1 : Y → X. By 1.7, we find that

idF (X) = F (idX)

= F (f ◦ f−1)

= F (f) ◦ F (f−1)

so that F (f−1) is a right-inverse to F (f). By the same property, we have that

idF (Y) = F (f−1 ◦ f)
= F (f−1) ◦ F (f)

so that F (f−1) is a left-inverse to F (f). Hence F (f) is an isomorphism.

A category C can have substructures that themselves are categories; this motivatives the following
definition

Definition 1.16. Let C be a category. Then we say that C′ is a subcategory of C if

• if A ∈ C′ =⇒ A ∈ C.

• if f ∈ Mor(C′) =⇒ f ∈ Mor(C).

• ∀A ∈ C′, we have that idA ∈ Mor(C′), inherited from Mor(C).

• ∀f ∈ Mor(C′), where f : X → Y , we have that X,Y ∈ C′.

• If ∀f, g ∈ Mor(C′) with g : A→ B and f : B → C, we have that f ◦ g ∈ Mor(C′).

This in turn makes C′ = (Ob(C′),Mor(C′)) a category.

Definition 1.17. Let C be a category and let C′ be a subcategory. Then we say that C′ is a full
subcategory if ∀X,Y ∈ Ob(C′), one has HomC′(X,Y) = HomC(X,Y).

5

Definition 1.18. Let C be a category, and let f ∈ HomC(B,C). Then we say that f is an monomor-
phism, if

f ◦ g1 = f ◦ g2
=⇒ g1 = g2

for g1, g2 : A⇒ B.

Definition 1.19. Let C be a category, and let f ∈ HomC(B,C). f is an epimorphism if

g1 ◦ f = g2 ◦ f
=⇒ g1 = g2

for morphisms g1, g2 : C ⇒ D in C.

More generally, we characterize a diagram in a category the following way.

Definition 1.20. Let C be a category. Then a diagram in C is a functor F : J → C where the index
category J is small (see 1.2).

Usually, one write the diagram pictorially as its image, and leave the source category implicit.

Lemma 1.21. Functors preserve commutative diagrams

Proof. Let F : J → C be a diagram in C, with J small. Let (f1 ◦ . . . ◦ fn), (g1 ◦ . . . ◦ gm) ∈ Mor(J) with
f1 ◦ . . . ◦ fn = g1 ◦ . . . ◦ gm and m,n ∈ Z≥0. Then we find that F (g1 ◦ . . . ◦ gm) = F (g1) ◦ . . . ◦ F (gm)
and F (f1 ◦ . . . ◦ fn) = F (f1) ◦ . . . ◦ F (fn) by functoriality of F (use definition 1.7 repeatedly).

But since F by assumption is well-defined, we get

F (fn ◦ . . . ◦ f1) = F (gm ◦ . . . ◦ g1)
=⇒ F (fn) ◦ . . . ◦ F (f1) = F (gm) ◦ . . . ◦ F (g1).

1.1 Some special objects of interest, in categories

We want to introduce some objects in a given category C, with certain properties of interest.

Definition 1.22. Let C be a category, and let I ∈ C. If for each object X ∈ Ob(C) there exists a
uniqe morphism f : I → X, then we call I an initial object of C.

Definition 1.23. Let C be a category, and let T ∈ C such that for all objects Y ∈ C there is a unique
morphism t : Y → T. Then we say that T is a terminal object of C.

Definition 1.24. Let C be a category, and let 0 be an object in C that is both an initial and terminal
object. Then we call 0 a zero object.

1.2 Natural transformations

We want to introduce a definition that is crucial to understanding the relationship between and within
categories

We will use the following definition

6

Definition 1.25. . Let F,G : C ⇒ D be functors from a category C to D. We then say that α is a
natural transformation from C to D if the following two conditions hold

1. For every object X ∈ Ob(C), there is a morphism, αX : F (X) → G(X), called the component
of α at X.

2. For all components, and for every morphism f : X → Y where X,Y ∈ Ob(C), the following
diagram commutes

F (X) G(X)

F (Y) G(Y)

F (f)

αX

G(f)

αY

(1.1)

Furthermore, if for all X ∈ Ob(C), the morphism αX is an isomorphism in D, then we say that
α is a natural isomorphism.

2 Tensor categories

Before defining tensor categories we need some axioms.

In the following, let C be a category and let ⊗ : C× C → C be a bifunctor, where C× C is a product
category (1.4).

Definition 2.1. (Associativity constraint and pentagon-axiom). We define the natural isomorphism
(1.25) ϕ with components ϕX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y) ⊗ Z for X,Y, Z ∈ C. We call ϕ an
associativity constraint for (C,⊗), as in [10], if the following diagram commutes

X ⊗ (Y ⊗ (Z ⊗ T))

X ⊗ ((Y ⊗ Z)⊗ T) (X ⊗ Y)⊗ (Z ⊗ T)

(X ⊗ (Y ⊗ Z))⊗ T) ((X ⊗ Y)⊗ Z)⊗ T

idX⊗ϕY,Z,T ϕX,Y,Z⊗T

ϕX,Y ⊗Z,T ϕX⊗Y,Z,T

ϕX,Y,Z⊗idT

(2.1)

We call this the pentagon axiom.

Definition 2.2. (Commutativity constraint and hexagon-axiom). As in [10], and similarly to definition
2.2, we also define a natural isomorphism ψ with components

ψX,Y : X ⊗ Y → Y ⊗X

for X,Y ∈ C, which we call a commutativity constraint, where we have that

ψY,X ◦ ψX,Y = idX⊗Y : X ⊗ Y → X ⊗ Y.

7

We say that ϕ and ψ are compatible if for all objects X,Y, Z ∈ C, the following diagram commutes

X ⊗ (Y ⊗ Z) (X ⊗ Y)⊗ Z

X ⊗ (Z ⊗ Y) Z ⊗ (X ⊗ Y)

(X ⊗ Z)⊗ Y (Z ⊗X)⊗ Y

idX⊗ψZ,Y

ϕX,Y,Z

ψX⊗Y,Z

ϕX,Z,Y ϕZ,X,Y

ψX,Z⊗idY

(2.2)

We call this the hexagon axiom.

Before proceeding, we cover some more definitions.

Definition 2.3. (Equivalence of categories, see [13]) . We say that we have an equivalence of categories
C,D if we are given functors F : C⇆ D : F ′ such that η : idC ≃ F ◦F ′ and ρ : idD ≃ F ′ ◦F . We write
C ≃ D for this equivalence of categories.

Remark 2.4. Given a functor F : C → D, we say that it yields an equivalence of categories if there
exists a functor G : D → C such that the conditions in 2.3 are fulfilled.

Definition 2.5. . A pair (U, u) where U ∈ C together with an isomorphism u : U → U ⊗ U is called
an identity object of (C,⊗), if U ⊗ − : C → C defined by taking X ∈ C to U ⊗ X ∈ C, yields an
equivalence of categories (2.3, 2.4).

We are now ready to define a tensor category.

Definition 2.6. A tensor category consists of a 4-tuple (C,⊗, ϕ, ψ) where ϕ and ψ are compatible
(see 2.2), and there exists an identity object (2.5). One could also call these categories symmetric
monoidal categories, as [10] points out.

Remark 2.7. Henceforth, we shall denote a tensor category in a more succinct way as (C,⊗), or if we
are talking about objects X in (C,⊗), we will denote this as X ∈ C, and morphisms f : X → Y in
Mor((C,⊗)) as f ∈ HomC(X,Y) or f ∈ Mor(C).

2.1 Representations of a group G

Definition 2.8. We call a category G a groupoid if every morphism f : g → g′ for g, g′ ∈ G is
invertible.

Example 2.9. Every group (G, •) forms a groupoid with one object G and morphisms g : G→ G for
each element g ∈ G. Explicitly, we define g(g′) := g • g′.

Definition 2.10. (G-representation & G-Equivariance).

• Let (•, G) be the category consisting of one object, •, with elements g ∈ G as morphisms. Let
F : (•, G) → C be a functor from (•, G) into another category C. The functor F specifies objects
F (•) in C together with an endomorphisms g∗ : F (•) → F (•) that has the following properties

1. h∗g∗ = (hg)∗ for all h, g ∈ G.

8

2. e∗ = IdF (•).

Thus, F specifies a G-action of the group G on the object F (•) ∈ Ob(C). If C = Vectk of all
vector spaces over the field k, we call F (•) a G-representation. In the case of G-representations
F : (•, G) → Vectk where F (•) = V for some vector space V over k, we have that g∗ : V → V is
an automorphism of V , so that g∗ ∈ Aut(V) for all g ∈ G. This follows from lemma 1.15, since
F preserves isomorphisms.

Given functors F, F ′ : (•, G) ⇒ C, such that F (•), F ′(•) ∈ Ob(C). Let η ∈ HomC(F (•), F ′(•)),
and g∗ ∈ Aut(F (•)) as well as g∗ ∈ Aut(F ′(•)). Then we say that η is G-equivariant if the
following diagram commutes

F (•) F ′(•)

F (•) F ′(•)

g∗

η

g∗

η

(2.3)

that is, η ◦ g∗ = g∗ ◦ η, where

•

•
g

and g ∈ Mor((•, G)).

Example 2.11. Let G be a group and let k be a field. Then the category Repk(G) of representations
of G over k has

• As objects in said category, Ob(Repk(G)), are pairs (V, ρ) of vector spaces V over k and
representations ρ of G on V .

• For (V, ρV), (W,ρW) we have that

HomRepk(G)((V, ρV), (W,ρW))

consists of G-equivariant morphisms (2.10), where ρV : G → GL(V) is a G-equivariant group
homomorphism into the automorphism group GL(V) of V . Note here that if V = W , but
ρV ̸= ρW , then (V, ρV) and (W,ρW) are different objects in Repk(G).

• Composition consists of composition of G-equivariant maps.

• As identity object (2.5), we have the identity representation 1 : G → GL(1, k) ∼= k× defined
by 1(g) ≡ g, for all g ∈ G, and V = k, i.e. (k,1) is the identity object (see definition 2.4). We
have canonical isomorphisms

V ⊗k k ∼= k ⊗k V
∼= k

defined by

v ⊗ k 7−→ k ⊗ v

7−→ kv

9

(recall that scalar multiplication of v ∈ V by k ∈ k is well-defined, since V is a vector space over
k).

• With ⊗ as bifunctor, Repk(G) forms a monoidal category. One defines

ρV⊗W (g) := ρV (g)⊗ ρW (g).

2.2 Tensor categories, again

We continue our investigation into tensor categories.

Proposition 2.12. Let (U, u) be an identity object (2.5) of the tensor category (C,⊗).

(a) We get a natural isomorphism l with components lX : X → U ⊗ X for each object X in C, so
that lU : U → U ⊗ U is the same map as u in 2.5, that is, u = lU .

Furthermore, the following diagrams commute

X ⊗ Y U ⊗ (X ⊗ Y)

X ⊗ Y (U ⊗X)⊗ Y

lX⊗Y

ϕU,X,Y

lX⊗idY

(2.4)

X ⊗ Y (U ⊗X)⊗ Y

X ⊗ (U ⊗ Y) (X ⊗ U)⊗ Y

lX⊗idY

idX ⊗lY ψU,X⊗idY

ϕX,U,Y

(2.5)

Remark 2.13. Note that there is a typo in the proof of (b) in [10], in that lU in

a : U
lU
−→ U ′ ⊗ U

ψU′,U

−→ U ⊗ U ′
l−1

U′

−→ U ′

should be l′U .

Proof. (2.4): Let’s note the following; since we have an equivalence of categories X ⇝ U ⊗ X, we
have functors F : C ⇆ C : G so that GF (X) ∼= X and FG(U ⊗ X) ∼= U ⊗ X for all objects X ∈ C.
Furthermore, note that F (X) ∼= U ⊗X so that

GF (X) ∼= G(U ⊗X)
∼= X.

Assuming lX exists, then we have that lX : X ∼= U ⊗X and lU⊗X : U ⊗X ∼= U ⊗ (U ⊗X). It follows
that lX is completely determined by the map idU ⊗lX : U ⊗X → U ⊗ (U ⊗X).

10

We find that idU ⊗ lX : U ⊗X → U ⊗ (U ⊗X) can be defined as the composition

(U ⊗X)
u⊗idX

−→ ((U ⊗ U)⊗X)
ϕ−1
U,U,X

−→ (U ⊗ (U ⊗X)) (2.6)

where we have used that ϕU,U,X is an isomorphism, hence has an inverse ϕ−1
U,U,X .

The following part is inspired by [1].

We start with 2.4, then tensor the diagram with U ⊗−, which gives us the first diagram below. The
second diagram (the one after the downward arrow) is gotten by the naturality of ϕ.

U ⊗ (X ⊗ Y) U ⊗ (U ⊗ (X ⊗ Y))

U ⊗ (X ⊗ Y) U ⊗ ((U ⊗X)⊗ Y)

U ⊗ (X ⊗ Y) U ⊗ (U ⊗ (X ⊗ Y))

U ⊗ (X ⊗ Y) U ⊗ ((U ⊗X)⊗ Y)

(U ⊗X)⊗ Y (U ⊗ (U ⊗X))⊗ Y

idU ⊗lX⊗Y

idU ⊗ϕU,X,Y

idU ⊗(lX⊗idY)

idU ⊗lX⊗Y

idU ⊗ϕU,X,Y

idU ⊗(lX⊗idY)

ϕU,X,Y ϕU,U⊗X,Y

(idU ⊗lX)⊗idY

From here, we use 2.6 together with the fact that by naturality (of ϕ) together with ϕ being an
isomorphism at each component, we have

ϕU,U⊗X,Y ◦ idU ⊗(lX ⊗ idY) = (idU ⊗lX)⊗ idY ◦ϕU,X,Y
⇐⇒ idU ⊗(lX ⊗ idY) = ϕ−1

U,U⊗X,Y ◦ (idU ⊗lX)⊗ idY ◦ϕU,X,Y

11

U ⊗ (X ⊗ Y) (U ⊗ U)⊗ (X ⊗ Y) U ⊗ (U ⊗ (X ⊗ Y))

U ⊗ ((U ⊗X)⊗ Y)

(U ⊗X)⊗ Y ((U ⊗ U)⊗X)⊗ Y (U ⊗ (U ⊗X))⊗ Y

U ⊗ (X ⊗ Y) (U ⊗ U)⊗ (X ⊗ Y) U ⊗ (U ⊗ (X ⊗ Y))

U ⊗ ((U ⊗X)⊗ Y)

(U ⊗X)⊗ Y ((U ⊗ U)⊗X)⊗ Y (U ⊗ (U ⊗X))⊗ Y

u⊗idX⊗Y

ϕU,X,Y

ϕ−1
U,U,X⊗Y

idU ⊗ϕU,X,Y

(u⊗idX)⊗idY ϕ−1
U,U,X⊗idY

ϕ−1
U,U⊗X,Y

u⊗idX⊗Y

ϕU,X,Y

ϕ−1
U,U,X⊗Y

ϕU⊗U,X,Y

idU ⊗ϕU,X,Y

(u⊗idX)⊗idY ϕ−1
U,U,X⊗idY

ϕ−1
U,U⊗X,Y

(2.7)
where we have added ϕU⊗U,X,Y to the second square. We want to show that

idU ⊗ϕU,X,Y ◦ ϕ−1
U,U,X⊗Y = ϕ−1

U,U⊗X,Y ◦ ϕ−1
U,U,X ⊗ idY ◦ ϕU⊗U,X,Y (2.8)

In (2.1), we set 
X := U

Y := U

Z := X

T := Y

(2.9)

which by assumption gives us the following commutative diagram

U ⊗ (U ⊗ (X ⊗ Y))

U ⊗ ((U ⊗ X) ⊗ Y) (U ⊗ U) ⊗ (X ⊗ Y)

(U ⊗ (U ⊗X))⊗ Y ((U ⊗ U)⊗X)⊗ Y

idU ⊗ϕU,X,Y ϕU,X,X⊗Y

ϕU,U⊗X,Y ϕU⊗U,X,Y

ϕU,U,X⊗idY

If we start at (U ⊗ U) ⊗ (X ⊗ Y) move towards U ⊗ ((U ⊗ X) ⊗ Y) along the two paths available
(noting that we need to invert some maps), we find that

idU ⊗ϕU,X,Y ◦ ϕ−1
U,X,X⊗Y = ϕ−1

U,U⊗X,Y ◦ (ϕU,U,X ⊗ idY)
−1 ◦ ϕU⊗U,X,Y

⇐⇒ idU ⊗ϕU,X,Y ◦ ϕ−1
U,X,X⊗Y = ϕ−1

U,U⊗X,Y ◦ ϕ−1
U,U,X ⊗ idY ◦ ϕU⊗U,X,Y

12

where we have used that

(ϕU,U,X ⊗ idY) ◦ (ϕ−1
U,U,X ⊗ idY) = id(U⊗U)⊗X ⊗ idY

(ϕ−1
U,U,X ⊗ idY) ◦ (ϕU,U,X ⊗ idY) = idU⊗(U⊗X) ⊗ idY

=⇒ (ϕU,X,X ⊗ idY)
−1 = ϕ−1

U,U,X ⊗ idY .

This is exactly what we wanted to show (cf. (2.8)). Thus the rightmost subsquare in the square the
vertical arrow is pointing toward, in (2.7), commutes.

To elaborate on the first square: We note that ϕ(−),(−),(−) is a natural (1.25) with respect to all
arguments. We rewrite the first square as

U ⊗ (X ⊗ Y) (U ⊗X)⊗ Y

(U ⊗ U)⊗ (X ⊗ Y) ((U ⊗ U)⊗X)⊗ Y

ϕU,X,Y

u⊗(idX ⊗ idY) (u⊗idX)⊗idY

ϕU⊗U,X,Y

We see that this square commutes since ϕ is natural with respect to functors F := (−)⊗ ((−)⊗ (−))
and G := ((−)⊗ (−))⊗ (−). so that the leftmost square in the lowermost diagram in (2.7) commutes.
Hence the lowermost diagram in (2.7) commutes. One verifies that the larger diagram then commutes.

Lemma 2.14. If F : C → D is a functor which yields an equivalence of categories, then F reflects
commutative diagrams.

Proof. As we will show later (4.7), if F yields an equivalence of categories, then F is full, faithful and
essentially surjective. But then it follows that

F (g1) ◦ · · · ◦ F (gn) = F (f1) ◦ · · · ◦ F (fn)
=⇒ g1 ◦ · · · ◦ gn = f1 ◦ · · · ◦ fn.

Using 2.14 with F = U ⊗−, we find that (2.4) commutes.

(2.5): Let’s define idX ⊗ lY explicitly, as the composition

X ⊗ Y
lX⊗Y

−→ U ⊗ (X ⊗ Y)
ψU,X⊗Y

−→ (X ⊗ Y)⊗ U
ϕX,Y,U

−→ X ⊗ (Y ⊗ U)
idX⊗ψY,U

−→ X ⊗ (U ⊗ Y).

We use (2.4) to see that lX ⊗ idY = ϕU,X,Y ◦ lX⊗Y .

We can then rewrite (2.5) as

13

X ⊗ Y U ⊗ (X ⊗ Y) (U ⊗X)⊗ Y

(X ⊗ Y)⊗ U

X ⊗ (Y ⊗ U)

X ⊗ (U ⊗ Y) (X ⊗ U)⊗ Y

lX⊗U

idX⊗lY

ϕU,X,Y

ψU,X⊗Y

ψU,X⊗idYϕX,Y,U

idX⊗ψY,U

ϕX,U,Y

The inverted “right triangle” to the left commutes by definition of idX ⊗ lY , and we find that the
second square is really the hexagon in (2.2), hence commutes.

That is

ϕX,U,Y ◦ (idX ⊗ lY) = (ϕX,U,Y ◦ (idX ⊗ ψY,U) ◦ ϕX,Y,U ◦ ψU,X⊗Y)︸ ︷︷ ︸
= (ψU,X⊗idY)◦ϕU,X,Y

◦lX⊗Y

= ((ψU,X ⊗ idY) ◦ (ϕU,X,Y)) ◦ lX⊗Y .

Remark 2.15. As in [10] we will henceforth denote the (up to isomorphism) unique identity object in
(C,⊗) as 1.

Before proving our next proposition, we need to introduce some definitions, and lemmas. The structure
of our lemmas and proofs follows [6]

Definition 2.16. With respect to any identity object (U, u = lU), we define rX := ψU,X ◦ lX : X →
X ⊗ U , which is a composition of isomorphisms, hence an isomorphism. Since this is well-defined for
all objects X ∈ C, we can assemble rX for all X into a map between functors; since r is then defined
as the composition of natural transformations ψ, l, we get a natural isomorphism r with components
rX (see 4.4 for a proof that a composition of natural transformations, is a natural transformation).

Lemma 2.17. Let F : C ⇆ D : G be functors, and let λ : F ⇒ G be a natural isomorphism. Then
λ−1 : G⇒ F is a natural isomorphism.

Proof. By naturality of λ, we have that, for arbitrary morphism f : X → Y in C, we have

λY ◦ F (f) = G(f) ◦ λX
⇐⇒ λY ◦G(f) = F (f) ◦ λX ,

14

or in diagram form,

G(X) F (X)

G(Y) F (Y)

λ−1
X

G(f) F (f)

λ−1
Y

So that λ−1 : G⇒ F is a natural transformation (1.25). Since λ−1
X is an isomorphism at each X ∈ C,

λ−1 is indeed a natural isomorphism.

Proposition 2.18. Let (C,⊗) be a tensor category (2.6), and let X ∈ C be arbitrary, and let 1 be an
identity object in C. Then it holds that

l−1
1⊗X = id1 ⊗ l−1

X

and

r−1
X⊗1 = r−1

X ⊗ id1 .

Proof. We note that from 2.17 it follows that l−1 and r−1 are natural isomorphisms. For l−1
X , the

following diagram commutes by naturality of l−1, with respect to the functors 1⊗− and the identity
functor idC (that takes objects to themselves, and morphisms to themselves).

1⊗ (1⊗X) 1⊗X

1⊗X X

l−1
1⊗X

id1 ⊗l−1
X

l−1
X

l−1
X

. (2.10)

So, by commutativity of (2.10), we have

l−1
X ◦ id1 ⊗ l−1

X = l−1
X ◦ l−1

1⊗X

⇐⇒ id1 ⊗ l−1
X = l−1

1⊗X

⇐⇒ l1⊗X = id1 ⊗lX

Similarly, we have that by naturality of r−1, the following diagram commutes

(X ⊗ 1)⊗ 1 X ⊗ 1

X ⊗ 1 X

r−1
X ⊗id1

r−1
X⊗1

r−1
X

r−1
X

. (2.11)

15

So (2.11) gives us that

r−1
X ◦ r−1

X ⊗ id1 = r−1
X ◦ r−1

X⊗1

⇐⇒ r−1
X ⊗ id1 = r−1

X⊗1.

Proposition 2.19. Let (C,⊗) be a tensor category. Let 1 be an identity object in C, and let X,Y ∈ C

be arbitrary. Then the following diagram commutes

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y)

X ⊗ Y

r−1
X ⊗idY

ϕ−1
X,1,Y

idX ⊗l−1
Y

or equivalently

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y)

X ⊗ Y

ϕX,1,Y

rX⊗idY

idX ⊗lY (2.12)

Proof. By 2.12, we know that (where U = 1)

ϕX,1,Y ◦ idX ⊗lY = ψ1,X ⊗ idY ◦lX ⊗ idY

⇐⇒ l−1
X ⊗ idY ◦ψX,1 ⊗ idY = idX ⊗l−1

Y ◦ ϕ−1
X,1,Y

but

l−1
X ⊗ idY ◦ψX,1 ⊗ idY = (l−1

X ◦ ψX,1 ⊗ idY)⊗ idY

= r−1
X ⊗ idY

=⇒ r−1
X ⊗ idY = idX ⊗l−1

Y ◦ ϕ−1
X,1,Y

⇐⇒ rX ⊗ idY = ϕX,1,Y ◦ idX ⊗lY .

Proposition 2.20. Let (C,⊗) be a tensor category with identity object 1, and let X,Y ∈ C be arbitrary.
Then the following diagram commutes

(X ⊗ Y)⊗ 1 X ⊗ (Y ⊗ 1)

X ⊗ Y

r−1
X⊗Y

ϕ−1
X,Y,1

idX ⊗r−1
Y

.

or equivalently, that the following diagram commutes

16

X ⊗ (Y ⊗ 1) (X ⊗ Y)⊗ 1

X ⊗ Y

ϕX,Y,1

idX ⊗rY

rX⊗Y (2.13)

Proof.

Lemma 2.21. Let (C,⊗) be a tensor category with identity object 1, and let X,Y be an arbitrary
objects in C. Then r1 = l1.

Proof. Letting

X = Y

= 1

in 2.4, and using 2.18, we see that

l1 ⊗ id1 = ϕ1,1,1 ◦ l1⊗1

= ϕ1,1,1 ◦ id1 ⊗l1.
(2.14)

If we again let

X = Y

= 1

in (2.12), we get that

r1 ⊗ id1 = ϕ1,1,1 ◦ id1 ⊗l1. (2.15)

(2.14) and (2.15) together imply that r1 ⊗ id1 = l1 ⊗ id1.

Lemma 2.22. The functor −⊗ 1 : C → C yields an equivalence of categories.

Proof. Let F = −⊗ 1 and let G = idC be the identity functor.

Then we see r−1 : FG⇒ idC and r : idC ⇒ GF are natural isomorphisms.

Then, by 4.7, we have that F = −⊗ 1 is faithful, hence r1 = l1.

Proposition 2.23. Let (C,⊗) be a tensor category (2.6). If (1, l1) is an identity object (2.5), and
(1′, l′1) is another identity object in (C,⊗), then there is a unique isomorphism a : 1 → 1′ such that
the following diagram commutes

17

1 1⊗ 1

1′ 1′ ⊗ 1′

a

l1

a⊗a

l′
1′

(2.16)

Proof. Existence: We define a as the map

a : U
l′1
−→ 1′ ⊗ 1

ψ1′,1

−→ 1⊗ 1′
l−1

1′

−→ 1′

Lemma 2.24. The following diagrams commute.

1⊗X X ⊗ 1

X X

1′ ⊗X X ⊗ 1′

a⊗idX idX ⊗a

lX

l′X

rX

r′X

(2.17)

Proof. We draw the following diagram (see p. 34 in [14])

X ⊗ 1

X X ⊗ (1′ ⊗ 1) (X ⊗ 1′)⊗ 1

X ⊗ 1′

idX ⊗l′1
r′X⊗id1rX

r′X

ϕX,1′,1

idX ⊗r1′
rX⊗1′

If we let Y = 1 in (2.5) (also identifying U = 1′), the upper right triangle commutes. The lower right
triangle commutes by 2.20.

The outer perimeter commutes by naturality of r.

We have

idX ⊗l′1 = ϕ−1
X,1′,1 ◦ r′X ⊗ id1 (2.18)

and

idX ⊗r−1
1′ = r−1

X⊗1′ ◦ ϕX,1′,1 (2.19)

18

so that

idX ⊗a ◦ rX = rX ◦ (idX ⊗(r1′)−1) ◦ (idX ⊗l′1) ◦ rX
= r−1

X⊗1 ◦ ϕX,1′,1 ◦ ϕ−1
X,1′,1 ◦ r′X ⊗ id1 ◦rX

= r−1
X⊗1 ◦ r′X ⊗ id1 ◦rX︸ ︷︷ ︸

rX⊗1′◦r′X

= r−1
X⊗1′ ◦ rX⊗1′ ◦ r′X

= r′X .

This shows the commutativity of the rightmost diagram in (2.17).

For the leftmost diagram in (2.17), we draw the following diagram.

1⊗X

X (1′ ⊗ 1)⊗X 1⊗ (1′ ⊗X)

1′ ⊗X

l′1⊗idX

id1 ⊗l′XlX

l′X
r−1

1′ ⊗idX

ϕ−1

1,1′,X◦ψ1′,1⊗idX

l1′⊗X

(2.20)

The upper triangle to the right in (2.20) commutes by (2.5), by setting X = 1 and with respect to l′.
The outer perimeter commutes by naturality of l.

For the lower right triangle: From (2.4), we have that l1′⊗X = ϕ−1
1,1′,X ◦ l1′ ⊗ idX . Recalling that

r1′ = ψ1,1′ ◦ l1′ , we find that

(ϕ−1
1,1′,X ◦ ψ1′,1 ⊗ idX) ◦ (r1′ ⊗ idX) = (ϕ−1

1,1′,X ◦ ψ1′,1 ⊗ idX) ◦ ((ψ1,1′ ◦ l1′)⊗ idX)

= ϕ−1
1,1′,X ◦ l1′ ⊗ idX

= l1′⊗X

where we have used that ψ1′,1 ◦ ψ1,1′ = id1⊗1′ . So the lower right triangle in (2.20) commutes.

Finally, we see that

a⊗ idX ◦ lX = ((r−1
1′ ◦ l′1)⊗ idX) ◦ lX

= (r−1
1′ ⊗ idX) ◦ (l1′ ⊗ idX) ◦ lX

= (r−1
1′ ⊗ idX) ◦ (ψ1,1′ ⊗ idX) ◦ ϕ1,1′,X ◦ id1 ⊗l′X ◦ lX

= (r−1
1′ ⊗ idX) ◦ (ψ1,1′ ⊗ idX) ◦ ϕ1,1′,X ◦ l1′⊗X︸ ︷︷ ︸

r1′⊗idX

◦l′X

= l′X .

We conclude that the leftmost diagram in (2.20) commutes.

19

Using 2.24 and that r−1
1 = l−1

1 (2.21), we see that

a⊗ a = (a⊗ id1′)︸ ︷︷ ︸
l′
1′◦l

−1

1′

◦ (id1 ⊗a)︸ ︷︷ ︸
r′U◦r−1

1

= (l′1′ ◦ l−1
1′) ◦ (r′1 ◦ r−1

1︸︷︷︸
=l−1

1

)

= (l′1′ ◦ l−1
1′) ◦ (ψ1′,1 ◦ l′1 ◦ l−1

1)

= l′1′ ◦ (l−1
1′ ◦ ψ1,1 ◦ l′1) ◦ l−1

1

= l′1′ ◦ a ◦ l−1
1

which is what we wanted to show. Hence (2.16) commutes.

Uniqueness: Similar to [6], we note that if c : 1 → 1 is an arbitrary morphism, then by naturality of
l, the following diagram commutes

1 1⊗ 1

1 1⊗ 1

l1

c id1 ⊗c

l1

(2.21)

Note that for any morphisms a, b such that 2.16 commutes, we have that the leftmost diagram com-
mutes, so that we get the rightmost commutative diagram.

1 1⊗ 1

1 1⊗ 1

1′ 1′ ⊗ 1′ ⇝

1 1⊗ 1

1 1⊗ 1

a

l1

a⊗a

l1

τ τ⊗τ
l1′

b−1 b−1⊗b−1
l1

l1

where τ = b−1 ◦ a. By (2.21) we know that (id1 ⊗ τ) ◦ l1 = l1 ◦ τ . By the rightmost diagram above,
we know that

l1 ◦ τ = τ ⊗ τ ◦ l1
=⇒ (id1 ⊗τ) ◦ l1 = τ ⊗ τ ◦ l1

=⇒ id1 ⊗ τ = τ ⊗ τ

⇐⇒ τ−1 ⊗ id1 = id1 ⊗ id1 .

20

By 2.22 (assuming choice), we see that

τ−1 = id1

⇐⇒ a−1 ◦ b = id1

⇐⇒ a = b.

3 Iterates, Extensions

Let ϕ be a commutativity constraint for a tensor category (C,⊗). Then we can as in [10], given
⊗ : C× C → C, create new functors defined by repeated application of ⊗.

Definition 3.1. Any functor F : Cn → C constructed by repeated application of ⊗ is called an iterate
of ⊗.

Definition 3.2. A directed graph G = (V,E) consists of a set of vertices V , and a set of edges E,
and two functions s, t : E ⇒ V that takes an directed edge e ∈ E to its source, respectively its target.

To set up the proof of proposition 3.9, we need some definitions:

Definition 3.3. A preorder is a binary relation R ⊂ X ×X, which we will denote as ≤, on a set X,
such that the following conditions hold:

1. x ≤ x (∀x ∈ X).

2. If x ≤ y and y ≤ z, then x ≤ z (∀x, y, z ∈ X).

Definition 3.4. If we add antisymmetric as a condition to 3.3 then we get a partial order on X.
That is, for each x, y ∈ X, if x ≤ y and y ≤ x then x = y.

Example 3.5. Take the set Q of rational numbers with the binary relation ≤. Then the set Q together
with ≤ forms a preorder (Q,≤). As in example 1.2, (Q,≤) also gives us a category.

Definition 3.6. A category C is a thin category if there is at most one morphism between each pair
of objects X,X ′ ∈ C.

Example 3.7. A category X, obtained from a partial order (3.4) (X,≤), is a thin category. Here,
the objects are elements x, y ∈ X, and there is at most one morphism f : x→ y. More precisely; when
x ≤ y, then ∃!f : x→ y, f ∈ HomX(x, y), and if ¬(x ≤ y) =⇒ HomX(x, y) = ∅.

We will later construct a thin category W, consisting of “words” v, w such that if v, w is of the same
length, then there will be precisely one arrow v → w.

3.1 Coherence in tensor categories

If we let (C,⊗) be a tensor category (2.6), we see that we can form n-fold tensor-products by repeated
application of ⊗ : C× C → C, e.g. if X,Y, Z ∈ C then

⊗((X,⊗(Y,Z)) = ⊗((X,Y ⊗ Z))

= X ⊗ (Y ⊗ Z).
(3.1)

Lemma 3.8. An n-fold composition of functors Fn◦· · ·◦F1 : C1 → Cn is a functor (where n ∈ ω = N).

21

Proof. That composition is preserved is obvious since every Fi preserves composition. The same holds
for identity preservation.

Proof sketch by induction for identity preservation: The base case n = 1 is obvious (F1 being a functor).
Assume it holds for the composition Fn ◦ · · · ◦ F1 : C1 → Cn that it is a functor, then we see that

(Fn+1 ◦ Fn ◦ · · · ◦ F1)(idA) = Fn+1(idFn◦···◦F1(A))

= idFn+1◦···F1(A)

where we used induction and that Fn+1 is a functor.

It follows from 3.8 that we can form n-fold tensor-functors ⊗ : Cn → C where n ∈ ω is finite, by
repeated application of the tensor-product, e.g. as in (3.1). We call such an n-fold tensor functor an
iterate. If we have two different iterates F, F ′ : Cn ⇒ C, then one can construct a natural isomorphism
of F and F ′ by (possibly repeated) applications of the associator ϕ and its inverse ϕ−1. We can denote
this natural isomorphism by τ : F ⇒ F ′. [8, VII, chapter II] gives a proof of this fact. One should
keep in mind that the proof Maclane ([8]) gives is for monoidal categories; we don’t neccessarily have
a commutator ψ : X ⊗Y → Y ⊗X. But there is a way to extend the so called “coherence theorem for
monoidal categories” to tensor categories.

Proposition 3.9. Let (C,⊗) be a tensor category. The tensor structure on (C,⊗) then admits an
extension as follows: for each finite set I there is a functor

⊗
i∈I

: CI → C and for each map α : I → J

between finite sets I, J , there is a natural isomorphism χ(α) :
⊗
i∈I

Xi →
⊗
j∈J

(⊗
i 7→j

Xj

)
, such that the

following conditions hold:

a) If I only has one element, then
⊗
i∈I

is the identity functor idC ; if α is a map between sets with only

one element, then χ(α) is the identity automorphism of the identity functor (i.e., the identity of
idC, in the functor category [C,C]).

b) If we have a composition of morphisms I
α7−→ J

β7−→ K, they induce natural isomorphisms such
that the following diagram commutes.

⊗
i∈I

Xi

⊗
j∈J

(⊗
i 7→j

Xi

)

⊗
k∈K

(⊗
i 7→k

Xi

) ⊗
k∈K

(⊗
j 7→k

(⊗
i 7→j

Xi

))
χ(βα)

χ(α)

χ(β)

⊗(χ(α | Ik))

(3.2)

Proof. We claim that this is a direct consequence of maclanes coherence theorem for symmetric
monoidal categories (see e.g. [8, chapter XI, 2]). This follows from the fact that any possible concate-
nation of maps in the diagram 3.2 can be composed as a “path” of maps only involving ϕ, ψ, r, l, their
inverses, and n-fold products, which commutes by the coherence for symmetric monoidal categories.
We will prove the coherence for symmetric monoidal categories (i.e. tensor categories) below.

Remark 3.10. In 3.9, we have that Ik = βα−1(k).

22

Remark 3.11. Note that by e.g. i 7→ j in
⊗
j∈J

⊗
i 7→j

Xi

, we mean i ∈ I so that α(i) = j. So we could

just as well have written ⊗
j∈J

 ⊗
i∈α−1(j)

Xi


.

Furthermore, we define C∅ = {∗} such that
⊗

∅ : C∅ = {∗} → C is the functor Fe so that Fe(∗) = 1.

Remark 3.12. In 3.9, when we say that (
⊗
, χ) is an extension of the tensor structure on C, we mean

that e.g. if α : {1, 2} → {1, 2} such that

α(1) = 2

α(2) = 1

then
χ(α) = ψX1,X2

: X1 ⊗X2 → X2 ⊗X1

.

Before we prove 3.9, we will show the coherence theorem for tensor categories, without taking ψ into
account. The exact same arguments works for monoidal categories, that don’t have a commutator ψ
(or even a braiding ψ′; the difference is that a commutator need to satisfy ψA,B ◦ ψB,A = idA⊗B , but
this does not hold for a braiding).

In the proposition below, we will follow Maclane ([8, chapter 2, VII], but expanded to include the
exposition in [18]), but we will restrict our attention to tensor categories, which have a bit more
structure than just monoidal categories (although, formally, tensor categories are monoidal categories).
We will use ⊗ instead of Maclanes □, as ⊗ is more apt in this context.

Before proceeding to the proof, we will introduce some definitions. We will call “products” X ⊗ Y
binary words. In relation to binary word, we introduce the length of a binary word, recursively, as
follows.

Definition 3.13. A binary word of length 0 is the “empty word” e0. We can denote this as
L (e0) = 0. A binary word of length 1 is the symbol (−) (i.e. L ((−)) = 1).

More generally, we define L (X ⊗ Y) = L (X) + L (Y).

Example 3.14. To give a concrete example of how to think about the length L of a binary word,
take the binary word ((−)⊗ (−))⊗ e0,

⇝ L ((−)⊗ (−))⊗ e0) = L ((−)⊗ (−)) + L (e0)︸ ︷︷ ︸
=0

= L ((−)) + L ((−))

= 2.

We form a category W where the objects are the binary words of length n = 0, 1, 2, . . . and where we
have exactly one morphism between words if the words are of the same length, so that

HomW(X,Y) =

{
{•}, if L (X) = L (Y).

∅, if L (X) ̸= L (Y).

23

It follows easily that every arrow in W is invertible, since every object (every binary word) is required
to have an identity morphism. A consequence of the uniqueness of arrows between words of the same
length, is that every diagram in W will commute. Another consequence of the commutativity of each
diagram, is that the coherence conditions for a monoidal category will hold in W, with e0 as the
identity object ([8] calls this the “identity object”). Since functors preserve commutative diagrams
(1.21), it follows that each commutative diagram in W, will yield a commutative diagram in C under
some appropriate functor W → C.

Proposition 3.15. For any tensor category (C,⊗) and object X ∈ C, there is a unique functor
F : W → C such that (−) 7−→ X.

Proof. Our proof will follow [8]. For an excellent survey of the proof, see [18].

As in [8], we can write w 7−→ wX to mean “substitute X for all blank (−) in the word w ∈ W”. We set

(e0)X := 1

(−)X := X

(v ⊗ w)X := vX ⊗ wX .

Note that this definition is recursive (since all binary words are recursively built up from e0 and (−)
with ⊗).

If we fix a length L = n, we can construct a graph Gn,X , where the nodes are the words of length n,
that does not have an instance of e0 (i.e. exclusively built up from (−) and ⊗), and edges morphisms
v → w. We will call these arrows we define basic arrows.

Remark 3.16. We identify these arrows with their image vX → wX in C, but will suppress the subscript

X going forward.

Definition 3.17. We will label words of length n without instances of e0, as pure binary words (as
in [18]).

Definition 3.18. We define the basic arrows in Gn,X recursively as

• Arrows of the form ϕu,v,w : u⊗ (v ⊗ w) → (u⊗ v)⊗ w, and its inverse ϕ−1.

• β ⊗ idv and idv ⊗β, where idv is the identity such that its image under F is idv : vX → vX , and
where β is a basic arrow.

Remark 3.19. From the definition of basic arrows (3.18), we see that any basic arrow can only involve
one instance of ϕ or ϕ−1, exclusively; so, for example, (ϕ ⊗ idv) ⊗ ϕ−1 is not a basic arrow. To see
this, note that if we recursively start by taking ϕ, and then form ϕ⊗ idv, then, we are not allowed to
add another instance of ϕ, nor ϕ−1, since it would then take the form e.g. ϕ ⊗ β or β ⊗ ϕ−1, where
β ̸= idv.

Definition 3.20. If a basic arrow (3.18) has an instance of ϕ, we call it directed, and if it has an
instance of ϕ−1, we call it antidirected.

Observe that in Gn,X , the paths (in the graph-theoretic sense; a joining of two nodes by a sequence
of edges that are all distinct) between words u, v of length n, are all possible compositions of basic

24

arrows that when composed yield a morphism u → v. We aim to show that any sequence of edges
yielding a path in Gn between arbitrary words u, v of length n, is the same morphism under F in C.

Definition 3.21. Denote as w(n) the unique word of length n with all parenthesis in “the front”.

We illustrate the definition of w(n) for n = 1, . . . , 5 below.

1. w(1) = (−)

2. w(2) = (−)⊗ (−)

3. w(3) = ((−)⊗ (−))⊗ (−)

4. w(4) = (((−)⊗ (−))⊗ (−))⊗ (−)

5. w(5) = (((((−)⊗ (−))⊗ (−))⊗ (−))⊗ (−)

Lemma 3.22. There is a directed path (i.e. only using basic directed arrows) from any pure binary
word v (3.17) of length n to w(n).

Before proceeding with the proof below, note that w(n) = w(n−1) ⊗ (−).

Proof. See also [18, proposition 3.3.14]. The results hold vacously for the case n = 1, 2, since there is
only one pure binary word of length n = 1, 2; i.e. w(1), w(2).

Suppose it holds true for n, we want to show it holds for words of length n+ 1. So let u = v ⊗w be a
pure binary word of length n+ 1. We divide into two cases.

L (w) = 1: If L (w) = 1; then w = (−) and L (v) = n. Then we know that there is a directed path

from v to w(n). We can then construct an arrow β ⊗ idw : v⊗w → w(n) ⊗w = w(n+1), since w = (−).
β ⊗ idw is directed and basic, by induction (and using the recursive definition).

L (w) > 1: If L (w) > 1, then w must be on the form w = s⊗ t, so that u = v ⊗ (s⊗ t). But then we
can take ϕv,s,t as our basic directed arrow.

We conclude that the results hold, by induction.

Since all basic directed arrows are invertible, from 3.22 we can, for any two words v, w of length n,
find a map v → w(n) → w, where the map w(n) → w is gotten by inverting the arrows in the directed
path w → w(n). By the fact that W is a thin category (3.6), this composition must be equal to the
unique arrow from v to w.

Definition 3.23. We define the rank of a word ρ by recursion, as in [8]:

• ρ(e0) = 0.

• ρ((−)) = 0.

• ρ((v ⊗ w)) = ρ(v) + ρ(w) + L (w)− 1.

25

By [18, prop 3.3.11, prop. 3.3.12] we see that ρ(v) = 0 ⇐⇒ v = w(n), given that L (v) = n, and that
ρ(v) ≥ 0 for all pure binary words v.

We will show that Gn,X commutes.

Lemma 3.24. Directed basic arrows decrease rank.

Proof. In the interest of not being to long-winded, we will exclude a full proof; One can give a proof
that proceeds by induction on the structure of directed arrows, where ϕ is the base case, then treating
the cases ϕ⊗ id, id⊗ϕ, as in [18, proposition 3.13].

Remark 3.25. In the lemma below, we will identify arrows between pure binary words v, v′ with their
image in C under F in 3.15.

Lemma 3.26. Let v be a pure binary word of length n, and let β : v → v′ and γ : v → v′′ be two basic
directed paths from v to pure binary words v′, v′′ of length n. Then there exists a pure binary word z
and arrows β′ : v′ → z, γ′ : v′′ → z that are compositions of directed basic arrows, so that the following
diagram commutes

v

v′ v′′

z

β γ

∃β′ ∃γ′

Proof. We proceed by induction on the rank n of a word v. For the base case n = 0, we know that
ρ(v) = 0 ⇐⇒ v = w(n). Then the results hold vacously, since there are no basic directed paths β, γ
with domain w(n), since by 3.24 they must decrease rank, but we know that ρ(v′), ρ(v′′) ≥ 0.

Suppose it is true for every word of length less than n; we want to show that it holds for a word v of
rank n.

So let v be a pure binary word of rank n, and assume that β, γ are given. If β = γ, then we just take

z = v′

= v′′.

If β ̸= γ, write v = u⊗ w. Then β will have one of the following three forms:

• β′ ⊗ idw, so that β only “acts” on u.

• idu⊗β′, so that β only “acts” on w.

• ϕ, in which case u⊗ w = u⊗ (s⊗ t).

The same three cases holds for γ, so in total we have 9 different cases.

If β and γ acts inside the same factor, e.g. u:

26

u v = u⊗ w

v′1 v′′1 ⇝ v′ = v′1 ⊗ w v′′ = v′′1 ⊗ w

z1 z1 ⊗ w

β′ γ′ β′⊗idw γ′⊗idw

∃h ∃h′ h⊗idw h′⊗idw

The diagram to the left commutes by induction on the length n of words (the base case is clear, since
there is only one pure binary word of length 1, which is (−); for which it holds vacously). So the right
diagram commutes by induction and bifunctoriality of ⊗.

If either β or γ is ϕ: If both β and γ equals ϕ, then we can just take z = (u⊗ s)⊗ t as their common
codomain. Assume that β = ϕ, and β ̸= γ. Then γ acts inside say u. We then get the following
diagram

v = u⊗ (s⊗ t)

(u⊗ s)⊗ t u′ ⊗ (s⊗ t)

z = (u′ ⊗ s)⊗ t

β=ϕu,s,t γ⊗ids⊗t

(γ⊗ids)⊗idt ϕu′,s,t

which commutes by naturality of ϕ (also note that by byfunctoriality of ⊗, (γ⊗ ids)⊗ idt = γ⊗ ids⊗t).

If γ acts inside w, specifically inside s or t; let γ for example act inside t. Then we get a diagram

v = u⊗ (s⊗ t)

(u⊗ s)⊗ t u⊗ (s⊗ t′)

(u⊗ s)⊗ t′

β=ϕu,s,t idu ⊗(ids ⊗γ′)

(idu ⊗ ids)⊗γ′ ϕu,s,t′

that again commutes by naturality of ϕ.

27

β = ϕ and γ acts inside inside w, but not inside s or t:

v = u⊗ (s⊗ (p⊗ q))

(u⊗ s)⊗ (p⊗ q) u⊗ ((s⊗ p)⊗ q)

((u⊗ s)⊗ p)⊗ q

ϕu,s,p⊗q idu ⊗ϕs,p,q

ϕu⊗s,p,q (ϕu,s,p⊗id)◦ϕu,s⊗p,q

which is the pentagon axiom 2.1, hence commutes (note that we have here used the identification
remarked on in 3.16 to use the pentagon axiom).

Lemma 3.27. If v ∈ W is a pure binary word, and βm◦· · ·◦β1, γℓ◦· · ·◦γ1 : w ⇒ w(n) are compositions
of basic directed arrows in W, then their image under F : W → C defined in 3.15, is equal.

Proof. We proceed by induction on the rank ρ of a pure binary word v. If ρ(v) = 0 ⇐⇒ v = w(n)

and this is trivial (the compositions must both be the identity in W, and by functoriality they both
are the identitiy in the target category).

Assume it holds for rank ρ < n; we want to show it holds for ρ = n.

We want to show that the following diagram commutes

w

u1 v1

w(n)

β1 γ1

βm◦···◦β2
γℓ◦···◦γ2

By 3.26 we know that there exists a pure binary word z and β′ : u1 → z and γ′ : v1 → z such that the
following diagram commutes

w

u1 v1

z

β1 γ1

β′ γ′

By 3.22 there is a directed basic arrow Γn : z → w(n) ⇝ we have the following diagram

28

w

u1 v1

z

w(n)

β1 γ1

β′

βm◦···◦β2

γ′

γℓ◦···◦γ2

Γn

Consider the fact that β1 and γ1 decrease rank (3.24), from which it follows that ρ(u1) < ρ(w) and
ρ(v1) < ρ(w). By induction, both the lower left and lower right triangles commute. It follows that

βm ◦ · · · ◦ β1 = Γn ◦ β′ ◦ β1
= Γn ◦ γ′ ◦ γ1
= γℓ ◦ · · · ◦ γ1.

Lemma 3.28. If βm ◦ · · · ◦β1, γℓ ◦ · · · ◦γ1 : v ⇒ w are compositions of basic arrows from a pure binary
word v to a pure binary word w, then their identifications in C are equal.

Proof. Let

βi : ui → ui+1

γi : si → si+1

where we let

ui+1 = si+1

= w

and

u1 = s1

= v.

which leads to the following diagram

u2 · · · um

v w

s1 · · · sℓ

β2 βm−1

βmβ1

γ1

γ2 γℓ−1

γℓ

(3.3)

29

By 3.22 we know that for each pure binary word ui and si, there is a directed path (composition of basic
directed arrows to w(n)). Let’s denote the corresponding paths as Γsi : si → w(n) and Γui

: ui → w(n)

with

Γu1 = Γs1

= Γv : v → w(n)

Γum+1
= Γsℓ+1

= Γw : w → w(n).

Then we get the following (schematic) diagram

w(n)

u2 · · · um

v w

s1 · · · sℓ

β2

Γu2

βm−1

βm

Γum

β1

γ1

Γv Γw

γ2

Γs1

γℓ−1

γℓ

Γsℓ

(3.4)
Note that we have triangles in 3.4 of the form

w(n)

ui ui+1

Γui

βi

Γui+1

where βi is a basic directed arrow. By 3.27, this diagram commutes, for each i = 1, . . . ,m. By the
same lemma, triangles of the same form involving words si, si+1 and w(n) and arrows Γsi ,Γsi+1 and
γi, commutes.

By hypothesis of 3.28, we don’t know that βi is directed ; so assume that βi was anti-directed.

Then we see that β−1
i is directed, so that, again by 3.28, the following diagram commutes

w(n)

ui ui+1

Γui
Γui+1

(βi)
−1

Finally, note that each Γui ,Γsi is an isomorphism in W, and functors preserve isomorphisms, so the
identification with the respective morphisms in C are all isomorphisms, and the same holds for βi.

We have thus seen that in C, we have either (for βi)

Γui+1
◦ βi = Γi ⇐⇒ βi = Γ−1

ui+1
◦ Γi

Γui
◦ (βi)−1 = Γui+1

⇐⇒ βi = Γ−1
ui+1

◦ Γi.

30

The same holds for γi. Consider the path βm ◦ · · · ◦ β1. We rewrite this as

βm ◦ · · · ◦ β1 = (Γ−1
um+1

◦ Γum
) ◦ (Γ−1

um
◦ Γum−1

) ◦ · · · ◦ (Γ−1
u2

◦ Γu1
)

= Γ−1
um+1

◦ Γu1

= Γ−1
w ◦ Γv.

The path γℓ ◦ · · · ◦ γ1 yield the same morphism Γ−1
w ◦ · · · ◦ Γv = Γ−1

w ◦ Γv. Hence 3.3 commutes.

The proof then proceeds to incorporate units 1 in C and the natural isomorphisms l, r into the results.
That is, we want to treat cases where not only we have pure binary words, but also words including
instances of e0, the “empty word”. Also note that we have only looked at a functor such that it “fills”
all instances of (−) with the same object X ∈ C. But we also want to treat cases where we have
multiple objects X,Y, Z ∈ C that gives us e.g. tensor-products on the form X ⊗ (Y ⊗Z). We will not
provide explicit details for every step, but just give a sketch of how to continue the proof.

[8] considers graphs G′
n with vertices all words of a the same length n, where the words are no longer

pure. One then forms, recursively, directed and anti-dericted unitor arrows consisting of r and l, just
as we did earlier with ϕ. The graph G′

n then becomes infinite, since by definition of L , the length of
an instance of the empty word e0 is 0. Still, Gn is contained in G′

n. [18] gives the details for proving
that G′

n commutes (identifying morphisms with their image in the target category) by a similar proof-
strategy to what we have already covered (note that we find that there seems to be some smaller gaps
in atleast one proof in [18], but in general, it is a good thesis).

We let (C,⊗) be a tensor category. We then define an iterated functor category, It(C), such that:

• Objects in It(C) are functors F : Cn → C for n ∈ N, where, for n = 0, we set C0 = 1, the identity
object.

• Morphisms in It(C) are natural transformations F ⇒ G.

• We give It(C) a monoidal structure as follows:

(a) We give It(C) a product
⊙ : It(C)× It(C) → It(C),

where we want ⊙ to have the properties of a bifunctor. If F : Cn → C, G : Cm → C are two
functors (i.e. objects in It(C)), then we let

F ⊙G : Cn+m → C,

explicitly defined by

F ⊙G(X1, . . . , Xn, Xn+1, . . . , Xm+n) := F (X1, . . . , Xn)⊗G(Xn+1, . . . , Xm+n)

on objects Xi ∈ C.

For morphisms (i.e. natural transformations) in It(C); if F1, G2 : Cn ⇒ C and F2, G2 :
Cm ⇒ C are objects (functors), and η : F1 ⇒ G1, λ : F2 ⇒ G2 are morphisms, then we set

η ⊙ λ : F1 ⊙G1 ⇒ F2 ⊙G2,

such that, for objects Xi ∈ C, we have

η ⊙ λ(X1, . . . , Xn, Xn+1, . . . , Xm+n) := (η)X1,...,Xn ⊗ (λ)Xn+1,...,Xm+n .

31

Remark 3.29. Note that below, we make the weaker assertion that it holds when (C,⊗) is a
tensor category, instead of just a monoidal category. The stronger assertion also holds.

Lemma 3.30. Let (C,⊗) be a tensor category. Then (It(C),⊙, c,Φ, l, r) is a monoidal category,
where,

(a) ⊙ : It(C)× It(C) → It(C) is our bifunctor.

(b) The identity object is a functor c : {∗} → C such that c(∗) = 1.

(c) For any functors Fi : C
ni → C, for i ∈ {1, 2, 3}, we define ΦF1,F2,F3 : F1 ⊙ (F2 ⊙ F3) ⇒

(F1 ⊙ F2) ⊙ F3 as the morphism in It(C), so that for objects X1, . . . , Xn1+n1+n3 ∈ C, we
have

ΦF1,F2,F3(X1, . . . , Xn1+n2+n3) = (Φ)F1(X1,...,Xn1),F2(Xn1+1,...,Xn2+1),F3(Xn1+n2+1,...,Xn1+n2+n3)
.

(d) For any functor Fi : Ci → C in It(C), we define the natural transformation (morphism)
rFi

: c ⊙ F ⇒ F such that on objects (∗, X1, . . . , Xi) in the product-category {∗} × C, we
have

(rFi
)(∗, X1, . . . , Xi) = (r)F (X1,...,Xn),

while lFi
: Fi ⊙ c⇒ Fi is defined similarly.

We now reach the main result.

Lemma 3.31. For every tensor category (C,⊗), there exists a unique functor Gid : W → It(C),
where Gid((−)) = idC : C → C is the identity functor on C.

Proof. By 3.30 we know that It(C) is a monoidal category. Then from 3.15 we get the existence
of a unique functor Gid such that Gid(−) = idC, since idC is an object in It(C).

To illustrate why this gives us coherence in (C,⊗) of formal diagrams (i.e. diagrams consisting
only of ϕ, l, r and their tensored products), we investigate the behavior of Gid(−).

For a morphism ϕ(−),(−),(−) : (−)⊗ ((−)⊗ (−)) → ((−)⊗ (−))⊗ (−) in W, this gets mapped to
(as in the proof of 3.15)

Φid,id,id : id⊙(id⊙ id) → (id⊙ id)⊙ id .

We may then give Φid,id id any arguments X1, X2, X3 ∈ C to obtain ϕX1,X2,X3
: X1⊗(X2⊗X3)

≃→
(X1 ⊗X2)⊗X3 in C.

Recall that W is a strict category, so that all diagrams commute. By 1.21, we see that the
image of a diagram in W is commutative in It(C). So the image will be a commutative diagram
in It(C) consisting of natural isomorphisms between functors, with the identity functor in each
argument, of It(C), since functors also preserve isomorphisms (1.15). We can then give any
arguments X1, . . . , Xn to the image of a commutative diagram of words of length n (in W), to
such a commutative diagram, to see that it commutes in C. This concludes our investigation of
coherence in tensor categories (excluding ψ).

Now, we need to fold ψ into this mix, to make a coherence argument for symmetric monoidal categories,
or, as in [10], tensor categories. [8, chapter 2, XI] gives us such an argument. Recall that the symmetric
group of n letters, Sn, is generated by adjacent transpositions τi = (i i+ 1) for 1 ≤ i ≤ n− 1, subject
to the following relations:

32

1. τ2i = 1 (∀i ∈ {1, . . . , n− 1}) .

2. (τiτj)
2 = 1 ⇐⇒ τiτj = τjτi (∀|i− j| ≥ 2) .

3. (τiτi+1)
3 = 1 ⇐⇒ τiτi+1τi = τi+1τiτi+1 (∀i such that 1 ≤ i ≤ n− 2) .

The relations are easy to check: (a) holds trivially, since the order of any transposition is 2. The
second relation hold since disjoint transpositions commutes (disjointness assured by |i − j| ≥ 2), so
that

(τiτj)
2 = τ2i τ

2
j

= 1

where the last equality follows from (a). For (c): note that τi(τi +1) = (i i+1 i+2), hence has order
3, and the result follows.

For a given tensor category, what we call a permuted word wτ induces a functor (wτ)C : Cn → C

defined by permuting the indices of the argument, so that

(wτ)C(X1, . . . , Xn) = w(Xτ(1), . . . , Xτ(n)).

For example, if w = ((−)⊗ (−)) and τ = (1 2), then

(wτ)C(X1, X2) = ((−)⊗ (−))(Xτ(1), Xτ(2))

= ((−)⊗ (−))(X2, X1)

= X2 ⊗X1.

One can see that if wτ and vσ in the same # of letters, n (where τ, σ ∈ Sn) there is atleast one map
between (wτ)C(X1, . . . , Xn) and (vσ)C(X1, . . . , Xn), gotten from combining instances of directed and
anti-directed arrows (as defined earlier for ϕ; see 3.18, 3.20) of ϕ and ψ.

Furthermore, if we suppress ϕ in (2.2) as well as parentheses, we get the following two diagrams:

X ⊗ Y ⊗ Z Z ⊗X ⊗ Y X ⊗ Y ⊗ Z Y ⊗ Z ⊗X

X ⊗ Z ⊗ Y Y ⊗X ⊗ Z

ψ

id⊗ψ ψ⊗id

ψ

ψ⊗id id⊗ψ

(3.5)
where the rightmost one comes from the identification

Z = X

X = Y

Y = Z

at the object Z ⊗ (X ⊗ Y) in (2.2). From 2.2, with ϕ suppressed, we can also note that any instance
of ϕ exchanging blocks

We note that ψ ◦ ψ = id, so that ψ mirrors the first relation (1) of transpositions τi. For the second

33

relation, by bifunctoriality of ⊗, we have

(X ⊗ Y)⊗ (Z ⊗ T) (X ⊗ Y)⊗ (T ⊗ Z)

(Y ⊗X)⊗ (Z ⊗ T) (Y ⊗X)⊗ (T ⊗ Z)

id⊗ψ

ψ′⊗id ψ′⊗id

id⊗ψ

which mirrors τiτj = τjτi. For the third relation, we consider the following diagram.

X ⊗ Y ⊗ Z Y ⊗X ⊗ Z

X ⊗ Z ⊗ Y Y ⊗ Z ⊗X

Z ⊗X ⊗ Y Z ⊗ Y ⊗X

ψ⊗id

id⊗ψ
ψ

id⊗ψ

ψ⊗id

ψ
ψ⊗id

id⊗ψ

The triangles commute by (3.5), and the square in the middle commutes by naturality of ψ, since
naturality in ψ means that for any objects A,A′, B,B′ and morphisms f : A → B and g : A′ → B′,
the following diagram commutes,

A⊗B B ⊗A

A′ ⊗B′ B′ ⊗A′

ψA,B

f⊗g g⊗f

ψA′,B′

so we take f = id, g = ψ (with appropriate objects) above. If we think of ψ ⊗ id as τ1 and id⊗ψ as
τ2, we see that

τ1τ2τ1 = τ2τ1τ2

holds, for fixed arbitrary objects X,Y, Z ∈ C. This mirrors the third relation of 3.1. Hence ψ fulfills
all the relations of transpositions τi ∈ Sn, for fixed n. Since any permutation of a word w of length n
corresponds to a composition of directed and anti-directed ψ-arrows (with ϕ suppressed), which fulfills
the relations of transpositions, any two paths fm◦ . . .◦f1 and gℓ◦· · ·◦g1 of directed and anti-directed ψ
arrows, corresponding to the same permutation α ∈ Sn, will be equal, which is forced by the fact that

34

the relations defining Sn (i.e. Sn:s group presentation) are fulfilled. From the following diagram(s)

X 1⊗X X ⊗ 1 1⊗X

↭

X ⊗ 1 X

lX

rX
ψ1,X

ψX,1

r−1
X

l−1
X

we find that removing an identity object before or after applying ψ are identical operations. This
motivates how to fold the natural isomorphisms r, l and the object 1 into our coherence results for
tensor categories. By this proof (sketch), the coherence theorem for tensor categories is done. We then
claim that as a consequence, 3.9 follows.

Given an arbitrary tensor category (C,⊗), it is assumed that an extension such as in 3.9 has been
given.

4 Invertible objects

We start by giving a weaker version of when a functor has an inverse.

Definition 4.1. Let F : C → D be a functor. If there is a functor G : D → C so that G ◦F ∼= idC and
F ◦G ∼= idD, then we call G a quasi-inverse to F .

Given a tensor category, we introduce a definition relating to when we should call an object invertible.

Definition 4.2. Let (C,⊗) be a tensor category. We call an object L in C invertible if

L⊗− : C → C

defined by
C ∋ X 7−→ L⊗X ∈ C

yields an equivalence of categories.

As we shall see in 4.7, it follows that there is an object L′ in C so that L⊗L′ ∼= 1. On the other hand,
if L⊗ L′ ∼= 1 holds, and we denote this isomorphism by δ, then we see that L⊗− and −⊗ L′ acts as
quasi-inverses of each other: For an arbitrary object X in C, we have

(L⊗−) ◦ (−⊗ L′)(X) = L⊗ (X ⊗ L′)
idL ⊗ψX,L′

−→ L⊗ (L′ ⊗X)
ϕL,L′,X

−→ (L⊗ L′)⊗X
δ⊗idX

−→ 1⊗X
l−1
X

−→ X

(4.1)

We claim that ζ ⊗ idX is a natural isomorphism in X, for an arbitrary isomorphism ζ : X → Y .

35

Proof.

A X ⊗A Y ⊗A X

B X ⊗B Y ⊗B Y

f idX ⊗f

ζ⊗idA

idY ⊗f ζ

ζ⊗idB

The square to the right above commutes, for arbitrary morphism f : A→ B in C.

Remark 4.3. One can similarly show that idX ⊗ζ is a natural isomorphism in X. Note that the
isomorphism part is not needed to show that for arbitrary morphism ζ, we have that ζ ⊗ idX and
idX ⊗ζ are natural in X.

Lemma 4.4. Assume that α : F → G and β : G → H are natural transformations between parallel
functors F,G,H : C → D. Then there is a natural transformation β ◦ α : F → H so that

(β ◦ α)A := βA ◦ αA

.

Proof. For f : A→ B, we contemplate the following rectangle

F (A) G(A) H(A)

F (B) G(B) H(B)

αA

F (f) G(f)

βA

H(f)

αB βB

Let x ∈ F (A). Then we have that

(H(f) ◦ βA ◦ αA)(x) = (βB ◦G(f) ◦ αA)(x)
= (βB ◦ αB ◦ F (f))(x)

so that the larger square commutes, for an arbitrary morphism f ∈ Mor(C).

We see that by 4.4, (4.1) is a natural isomorphism

ϵ : (L⊗−) ◦ (−⊗ L′)
≃−→ idC.

Similarly, we find that for arbitrary X ∈ C, we have

(−⊗ L′) ◦ (L⊗−)(X) = (L⊗X)⊗ L′
ψL,X⊗idL′

−→ (X ⊗ L)⊗ L′
ϕ−1

X,L,L′

−→ X ⊗ (L⊗ L′)
idX ⊗δ
−→ X ⊗ 1

r−1
X

−→ X.

36

This is a composition of natural isomorphisms, hence a natural isomorphism. It follows that this
defines a natural isomorphism

η : (−⊗ L′)⊗ (L⊗−)
≃→ idC .

This shows that L⊗− defines an equivalence of categories, with quasi-inverse (−⊗ L′).

Example 4.5. In the category Repfd
k (G) of representations of G over finite dimensional vector spaces

over k, the invertible objects are precisely the 1-dimensional representations. This should be clear from
the fact that if (L, ρL) is a 1-dimensional representation, then L ∼= k. Hence we see that L ⊗k W ∼=
k ⊗k W ∼=W .

To expand on this, we introduce the following definitions

Definition 4.6. Let C and D be locally small categories. Let F : C → D be a functor. Define
FX,Y : HomC(X,Y) → HomD(F (X), F (Y)). We say that F is

• Faithful if FX,Y is injective for all objects X,Y in C.

• Full if FX,Y is surjective, for all objects X,Y in C.

• Fully faithful if it is both faithful and full.

• Essentially surjective if for each object B ∈ D,∃A ∈ C so that F (A) ∼= B.

We will prove that any functor that defines an equivalence of categories, possesses these three proper-
ties. The structure of our proof will follow [13] (chap. 1.5, page 31).

Proposition 4.7. A functor F : C → D defining an equivalence of categories, is full, faithful and
essentially surjective.

Lemma 4.8. Let C be a category and let f ∈ HomC(A,B), together with isomorphisms A ∼= A′ and
B ∼= B′. Then these morphisms together determines a unique morphism f ′ : A′ → B′ so that all of
the following four diagrams commute.

A A′ A A′ A A′ A A′

B B′ B B′ B B′ B B′

f

∼=

f ′

∼=

f f ′ f

∼=

f ′

∼=

f f ′

∼= ∼= ∼= ∼=

We start by proving 4.8, going from the leftmost diagram to the rightmost.

Proof. First diagram: Let δA : A ∼= A′ and δB : B ∼= B′. We let the leftmost diagram define f ′, so
that f ′ := δB ◦ f ◦ δ−1

A , where we have used that δA, δB are isomorphisms, together with the definition
of f ′.

Second diagram:

δB ◦ f = δB ◦ (δ−1
B ◦ f ′ ◦ δA)

= f ′ ◦ δA.

37

Third diagram:

f ◦ δ−1
A = (δ−1

B ◦ f ′ ◦ δA) ◦ δ−1
A

= δ−1
B ◦ f ′

by similar reasoning as in the 2nd diagram.

Fourth diagram:

f = δ−1
B ◦ f ′ ◦ δA

from the definition of f ′, and from the fact that δA, δB are isomorphisms.

We now proceed to prove proposition 4.7.

Proof.

Essentially surjective: We start by supposing that F,G : C ⇄ D defines an equivalence of categories,
so that FG ≃ idD and GF ≃ idC. Then we see that for objects d ∈ D we have FG(d) ≃ d, so that F
is essentially surjective.

Faithful : Let f, g : c⇒ c′ in C. We let η be a family of morphisms that define the natural isomorphism
between GF and idD. We get the following diagram

GF (c) c

GF (c′) c′

GF (f)=GF (g)

≃
η−1
c

f or g

η−1

c′

≃

that commutes by naturality.

We see that

f ◦ η−1
c = η−1

c′ ◦GF (f)
⇐⇒ f = η−1

c′ ◦GF (f) ◦ ηc
= η−1

c′ ◦GF (g) ◦ ηc
= g

Remark 4.9. In the third equality above, we used that GF (f) = GF (g).

Then, we see that f = g, and that the morphism making the diagram commute is unique (either by
definition or by using lemma 4.8). Again, by lemma 4.8, we assert that this morphism f = g is such
that diagrams that defines a natural isomorphism GF ≃ idC commutes.

It follows that if F (f) = F (g) then f = g, so that F is faithful. One can appply the same reasoning
to f ′, g′ : d ⇒ d′ ∈ Mor(D) together with FG ≃ idD to get a unique morphism f ′ = g′ so that the
diagrams associated to FG ≃ idD commutes, hence G is also faithful, by the same reasoning.

38

Full : Let k : F (c) → F (c′). From GF ≃ idC, we get an natural isomorphism η with components ηc, ηc′ .
We use this to define h

GF (c) c

GF (c′) c′

GF (k)

η−1
c

≃

h

η−1

c′

≃

by lemma 4.8, we see that h is the unique map that makes the diagrams in 4.8 commute. By naturality,
we also have

GF (c) c

GF (c′) c′

GF (h)

η−1
c

≃

h

η−1
c

≃

we see from this that

h = η−1
c′ ◦GF (k) ◦ ηc

⇐⇒ G(k) = ηc′ ◦ h ◦ η−1
c

and

h = η−1
c′ ◦GF (h) ◦ ηc

⇐⇒ GF (h) = ηc′ ◦ h ◦ η−1
c

=⇒ G(k) = GF (h).

Since we already showed that G is faithful, we find that F (h) = k, so that F is full.

We will leave the proof of the converse out for now; i.e. that if one assumes the Axiom of Choice, then
one can prove that any functor F that is faithful, full and essentially surjective defines an equivalence
of categories.

Remark 4.10. By definition 4.1, we see that if L⊗− : C → C defines an equivalence of categories, then
by proposition 4.3, L⊗− is essentially surjective ⇝ there exists an object L−1 in C so that

ζ : L⊗ L−1 ∼= 1.

The remark above motivates our next definition:

39

Definition 4.11. Let (C,⊗) be a tensor category, and let L be an invertible object. Then we call
(L−1, δ) an inverse of L, where δ :

⊗
i∈{±}

Xi
∼= 1, with X+ := L and X− := L−1.

Remark 4.12. Note that in a tensor category (C,⊗), one has

L⊗ L−1 ∼= L−1 ⊗ L ∼= 1;

hence (L, δ) is an inverse of L−1.

Proposition 4.13. If (L1, δ1), (L2, δ2) are both inverses of an invertible object L, then there exists a
unique isomorphism α : L1

∼= L2 so that

δ2 ◦ (idL⊗ α) = δ1 : L⊗ L1 → L⊗ L2 → 1

Proof. By assumption, L⊗− yields an equivalence of categories. Hence, by 4.7 we know that L⊗−
is fully faithful ⇝ Hom(L1, L2) → Hom(L⊗L1, L⊗L2) is bijective mapping, and is explicitly defined
by

Hom(L1, L2) ∋ γ 7−→ idL⊗ γ ∈ Hom(L⊗ L1, L⊗ L2). (4.2)

Since δ2 : L⊗ L2
∼= 1, we get a bijection

Hom(L⊗ L1, L⊗ L2) ∼= Hom(L⊗ L1,1). (4.3)

by post-composing with δ2, i.e.

Hom(L⊗ L1, L⊗ L2) ∋ g 7−→ δ2∗(g) = δ2 ◦ g ∈ Hom(L⊗ L1,1).

Composing 4.2 and 4.3, we get a bijection

F : Hom(L1, L2) → Hom(L⊗ L1,1). (4.4)

Since δ1 ∈ Hom(L⊗ L1,1), it follows that there is a unique α ∈ Hom(L1, L2) so that

F (α) = δ2 ◦ (idL⊗ α) = δ1 ⇐⇒ (idL⊗ α) = δ−1
2 ◦ δ1.

It remains to show that α is an isomorphism. Similarly, as before, we see that

Hom(L2, L1) → Hom(L⊗ L2, L⊗ L1) (4.5)

is a bijection by 4.7, defined by Hom(L2, L1) 7−→ idL⊗ γ, and that

Hom(L⊗ L2, L⊗ L1) → Hom(L⊗ L2,1) (4.6)

is a bijection, defined by Hom(L⊗ L2, L⊗ L1) ∋ f 7−→ δ1∗(f) = δ1 ◦ f ∈ Hom(L⊗ L2,1).

By composing 4.5 and 4.6, we have a bijection

G : Hom(L2, L1) → Hom(L⊗ L2,1).

Since δ2 ∈ Hom(L⊗ L2,1), there is a unique map β so that

G(β) = δ1 ◦ (idL⊗ β)

= δ2

=⇒ (idL⊗ β) = δ−1
1 ◦ δ2.

40

It follows that

idL⊗L2 = (δ−1
2 δ1)(δ

−1
1 δ2)

= (idL⊗ α)(idL⊗ β)

= (idL⊗αβ)
= idL⊗ idL2

=⇒ αβ = idL2 .

and

idL⊗L1
= (δ−1

1 δ2)(δ
−1
2 δ1)

= (idL⊗β)(idL⊗α)
= (idL⊗βα)
= (idL⊗βα)
= idL⊗ idL1

=⇒ βα = idL1
.

Therefore, α is an isomorphism.

5 Internal Hom

We start by introducing a certain kind of category

Definition 5.1. Given a category C, we call the category Copp the opposite category, where one has
that Ob(Copp) = Ob(C), but to every morphism f ∈ HomC(A,B) there is a corresponding morphism
fopp ∈ HomCopp(B,A).

Ob(Copp) = Ob(C) f ∈ HomC(A,B) ↭ fopp ∈ HomCopp(B,A)

Copp ∋ A ↭ A ∈ C A B

B A

f fopp

5.1 Hom(A,−) and Hom(−, A)

• Let C be a locally small category, and let f : X → Y be a morphism. Then we see that for
g ∈ Hom(Y,A), we can precompose g with f , i.e. f∗(g) := g ◦ f : X → A.

That is, for each objectA, and morphism f , we find that f : X → Y ⇝ Hom(Y,A)
f∗

→ Hom(X,A).
It follows that we can define an contravariant functor Hom(−, A) : C → Set, which takes
objects X to Hom(X,A) and morphisms f : X → Y to Hom(f,A) : Hom(Y,A) → Hom(X,A).

Assume that f : X → Y and h : Y → Z. Then we see that hf : X → Z, and that for

41

g ∈ Hom(Z,A) we have

Hom(hf,A)(g) := (hf)∗(g)

= g ◦ (hf) : X → A

as well as

Hom(hf, Y)(g) = (Hom(f, Y) ◦Hom(h, Y))(g)

= (f∗ ◦ h∗)(g)
= f∗(g ◦ h)
= g ◦ h ◦ f

where we used that function-composition is associative, . At last, we see that for a morphism
f : X → Y and Hom(idY , A) = id∗Y we have that for g ∈ Hom(Y,A) one finds

id∗Y (g) = g ◦ idY
= g.

• On the other hand, let f : X → Y be a morphism in C, and let g ∈ Hom(A,X). Then we can
define f∗(g) := f ◦g : A→ Y . Thus we claim that Hom(A,−) is a covariant functor that takes
objects X in C to Hom(A,X) and morphisms f : X → Y to Hom(A, f) = f∗.

Let f : X → Y and let h : Y → Z, and let g ∈ Hom(A,X). Then

Hom(A, hf) = (hf)∗(g)

= hf ◦ g : A→ Z

and

(Hom(A, h) ◦Hom(A, f))(g) = h∗(f∗(g))

= h∗(f ◦ g)
= h ◦ f ◦ g.

Lastly, we find that if g ∈ Hom(A,X), then

(idX)∗(g) = idX ◦ g
= g.

This shows that Hom(A,−) is a covariant functor.

5.2 Representable functors, presheafs, and internal-hom adjunctions

Definition 5.2. We call a functor F : C → Set a representable functor if it is naturally isomorphic
to the hom-functor Hom(A,−) for some object A of C, and we call (F, ϕ) the representation of F ,
where ϕ : Hom(A,−) ⇒ F is the natural isomorphism with components at objects B ∈ C, i.e. so that
the following diagram commutes for each morphism f : X → Y in C

42

f

X Hom(A,X) F (X)

Y Hom(A, Y) F (Y)

Hom(A,f)

ϕX

≃

F (f)

ϕY

≃

(5.1)

and where Hom(A, f) is defined as Hom(A,X) ∋ g 7−→ f ◦ g ∈ Hom(A, Y).

We introduce one more crucial definition, closely related to definition 5.2.

Definition 5.3. Let C be a category, and let G : C → Set be a contravariant functor. Then we call G
a presheaf. Furthemore, we say that G is representable if it is naturally isomorphic to Hom(−, A)
for some object A ∈ C. We can just as well define a presheaf as a functor F : Copp → Set.

Definition 5.4. Let C be a category. Then we define PSh(C) := [Copp,Set] as the presheaf cat-
egory on C, with objects as functors F : Copp → Set and morphisms α ∈ Mor(Psh(C)) as natural
transformations between functors F,G : Copp ⇒ Set.

We want to relate this to tensor-categories.

Definition 5.5. Let (C,⊗) be a tensor category. If the contravariant functor Hom(−⊗X,Y) : C → Set
defined by C ∋ T → Hom(T ⊗X,Y) ∈ Set is representable (5.3) for objects X,Y in C, then we denote
the object corresponding to the representation as Hom(X,Y) (given that Hom(X,Y) exists).

Then Hom(−⊗X,Y) would be an example of a representable presheaf.

To clarify what we mean by Hom(X,Y) being the corresponding object of the representation; we mean
that Hom(− ⊗ X,Y) is naturally isomorphic to Hom(−,Hom(X,Y)), that is, the following diagram
commutes for each morphism f : B → A in C

B Hom(A⊗X,Y) Hom(A,Hom(X,Y))

A Hom(B ⊗X,Y) Hom(B,Hom(X,Y))

f Hom(f⊗X,Y)

ηA
≃

Hom(f,Hom(X,Y))

ηB
≃

(5.2)

and we call evX,Y : Hom(T⊗X,Y) → Y the morphism corresponding to idHom(X,Y) under the (natural)
isomorphism ηHom(X,Y) (see diagram below)

43

T Hom(Hom(X,Y)⊗X,Y) Hom(Hom(X,Y),Hom(X,Y))

Hom(X,Y) Hom(T ⊗X,Y) Hom(T,Hom(X,Y))

f

≃

Hom(f⊗X,Y)

ηHom(X,Y)

Hom(f,Hom(X,Y))

≃
ηT

(5.3)

We see that
Hom(T ⊗X,Y)

ηT≃ Hom(T,Hom(X,Y)). (5.4)

If we assume that Hom(X,Y) exists for every pair of objects X,Y in C, then

Hom(Hom(X,Y)⊗Hom(Y, Z)⊗X,Z) ≃ Hom(Hom(X,Y)⊗Hom(Y, Z),Hom(X,Z)) (5.5)

where one finds that

Hom(X,Y)⊗Hom(Y,Z)⊗X
ϕHom(X,Y),Hom(Y,Z)⊗idX

−−−−−→ Hom(Y,Z)⊗Hom(X,Y)⊗X

idHom(Y,Z) ⊗evX,Y

−−−−−→ Hom(Y,Z)⊗ Y
evY,Z

−−−−−→ Z.

To prove our next proposition, we need a lemma, known under the name “Yoneda lemma”.

Lemma 5.6. Let F : C → Set be a any (covariant) functor from a locally small category C, and let
X be an object of C. Then there is a bijection

Nat(HomC(X,−), F) ∼= F (X).

Furthermore, natural transformations α : HomC(X,−) → F correspond to αX(1X) ∈ F (X), and this
correspondence is natural in X and F .

Proof. We start by proving the bijective property.

Bijection: Let ϕ : Hom(HomC(A,−), F) → F (A), where Hom(HomC(A,−), F) is the class of (natural
transformations) from HomC(A,−) to F .

ϕ is defined explicitly by taking a natural transformation α : Hom(A,−) → F to αA(1A) ∈ F (A), i.e.

α
ϕ7−→ αA(1A).

This map is clearly right unique and left total, hence a function.

We want to find an inverse function Ψ : F (A) → Hom(HomC(A,−), F) such that for x ∈ F (A), we get
a natural transformation Ψ(x) : Hom(HomC(A,−) → F .

It follows that we must define components Ψ(x)B : Hom(Hom(A,B)) → F (B), so that for f : A →
B ∈ Mor(C), we get

44

Hom(A,A) F (A)

Hom(A,B) F (B)

Hom(A,f)=f∗

Ψ(x)A

F (f)

Ψ(x)B

We find that 1A ∈ Hom(A,A) get’s taken to (Ψ(x)B)(f) by going downward left and then right, while
1A get’s taken to F (f) ◦ (Ψ(x)A)(1A) via the right-downward route.

We see that we need to define Ψ(x)A(1A) = x, since we want

Φ(Ψ(x)) = Ψ(x)A(1A)

= x.

It follows, since we need naturality, that

F (f)(x) = Ψ(x)B(f) (5.6)

We conclude by showing that for a generic morphism g : B → D ∈ Mor(C), Ψ(x) is a natural
transformation. I.e. showing that the following diagram commutes

Hom(A,B) F (B)

Hom(A,D) F (D)

Hom(A,g)=g∗

Ψ(x)B

F (g)

Ψ(x)D

For that, let f ∈ Hom(A,B). Then along the right-downward path we get that f gets taken to

(F (g) ◦Ψ(x)B)(f) = F (g) ◦Ψ(x)B(f)

= F (g)(F (f)(x)).

On the downward-right path, f gets taken to

(Ψ(x)D ◦ g)(f) = Ψ(x)D(gf)

= F (gf)(x)

using 5.6

Since F is a functor, we have F (gf) = F (g) ◦F (f), so that the paths gives the same element in F (D),
i.e. the diagram commutes, for arbitrary morphism g ∈ Hom(B,D), where B,D ∈ C are arbitrary.

45

We have already seen that Ψ is a right-inverse to ϕ, and we want to show that Ψ is a left-inverse to ϕ;
that is, that

Ψϕ(α) = ΨαA(1A)

= α

for a natural transformation α : Hom(A,−) → F . From (5.6) (with x = αA(1A) ∈ F (A)) have that

Ψ(αA(1A))B(f) = Ff(αA(1A)) (5.7)

Since α is a natural transformation, the following square commutes

A Hom(A,A) F (A)

B Hom(A,B) F (B)

f Hom(A,f)=f∗

αA

F (f)

αB

(5.8)

from which it follows that

F (f)(αA(1A)) = αB(f)(1A)

= αB(f)

so that Ψ(αA(1A))B(f) = αB(f) by (5.7).

This concludes the proof of the bijection Hom(HomC(A,−), F) ∼= F (A).

We prove naturality. Naturality: The assertion about naturality in X and F corresponds to the
following claims:

1. Naturality in F means that, given a natural transformation β : F → G, the element of G(A)
representing the composite natural transformation βα : Hom(A,−) → F → G is the image
under βA : F (A) → G(A) of the element of F (A) representing α : Hom(A,−) → F , that is, the
following diagram commutes

Hom(Hom(A,−), F) F (A)

Hom(Hom(A,−), G) G(A)

ϕF

β∗

∼=

βA

ϕG

∼=

where we have ϕF : Hom(A,−) → F (A) and ϕG : Hom(A,−) → G(A) defined explicitly by

ϕF (α) = αA(1A)

ϕG(β ◦ α) = (β ◦ α)A(1A).

46

To show that βA(ϕF (α)) = ϕG(β ◦ α) for α ∈ Hom(Hom(A,−), F), we will use

We note that we have parallel functors Hom(A,−), F,G : C⇒ Set, and natural transformations
α : Hom(A,−) → F and β : F → G. This gives us that (β ◦ α)A(1A) := (βA ◦ αA)(1A) by 4.4.

That is, we have

ϕG(β ◦ α) = (β ◦ α)A(1A)
= (βA ◦ αA)(1A)
= βA(ϕF (α))

where the last equality follows from ϕF (α) := αA(1A) and associativity of morphisms.

2. “Naturality in X” amounts to the assertion that given f : A → B ∈ Mor(C), the element of
F (B) representing the composite natural transformation αf∗ : Hom(B,−) → Hom(A,−) → F
is the image under F (f) : F (A) → F (B) of the element of F (A) representing α, i.e. the following
diagram commutes

Hom(Hom(A,−), F) F (A)

Hom(Hom(B,−), F) F (B)

ϕA

(f∗)∗

∼=

F (f)

ϕB

∼=

(5.9)

We see that the image of α along the right-downward path is F (f)ϕA(α) = F (f)(αA(1A)) and
that the image of α along the downward-right path is

ϕB((f
∗)∗ ◦ α) = ϕB(α ◦ f∗)

= (α ◦ f∗)B(1B).

We use the following lemma

Lemma 5.7. Let C be a category, and let f : A → B ∈ Mor(C). Then the pullback f∗ :
Hom(B,−) → Hom(A,−) is a natural transformation.

Proof. We contemplate the following diagram

X Hom(B,X) Hom(A,X)

Y Hom(B, Y) Hom(A, Y)

g Hom(B,g)=g∗

f∗
X

Hom(A,g)=g∗

f∗
Y

(5.10)

We want to show that for arbitrary h ∈ Hom(B,X) we have that (g∗ ◦ f∗X)(h) = (f∗Y ◦ g∗)(h).
This should be clear by definition.

47

It follows that αf∗ as assumed, is a composition of natural transformations. We have parallel
functors Hom(A,−),Hom(B,−), F : C → Set, and natural transformations f∗ : Hom(B,−) →
Hom(A,−) and α : Hom(A,−) → F . By 4.4, we have that

(αf∗)B(1B) = (αB ◦ f∗B)(1B)
= αB(f).

From diagram (5.8) we then see that αB(f) = F (f)(αA(1A)). It follows that

F (f)ϕA(α) = F (f)(αA(1A))

= αB(f)

= (αf∗)B(1B)

= ϕB((f
∗)∗ ◦ α)

so that diagram (5.9) commutes.

There is a dual statement of the “Yoneda Lemma”:

Lemma 5.8. Let F : C → Set be any (contravariant) functor from a locally small category C, and
let X be an object of C. Then there is a bijection

Nat(HomC(−, X), F) ∼= F (X).

Furthermore, natural transformations α : HomC(−, X) → F correspond to αX(1X) ∈ F (X), and this
correspondence is natural in X and F . □

A corollary of 5.6, called Yoneda embedding, follows. Before we give the corollary, we want to
clarify what we mean by embedding (in this context).

Definition 5.9. Let F : C → D be a functor. If F is faithful, and injective on objects in C, then we
call F an embedding.

Lemma 5.10. The functors y and y′ below, define full and faithful embeddings

C SetC
opp

C SetC

A Hom(−, A) A Hom(A,−)

B Hom(−, B) B Hom(B,−)

y y′

f f∗ f f∗

Proof. To show that y, y′ are injections, we use the following lemma:

48

Lemma 5.11. Let f, g : A ⇒ B be parallel morphisms in a category C. Then the induced natural
transformations

f∗, g∗ : Hom(−, A)⇒ Hom(−, B)

and
f∗, g∗ : Hom(B,−)⇒ Hom(A,−)

by post-and-pre composition, respectively, are distinct.

Proof. We have that (f∗)A(idA) := f ◦ idA and

(g∗)A(idA) := g ◦ idA
= g

but since f, g are distinct

⇝ (f∗)A(idA) ̸= (g∗)A(idA)

=⇒ f∗ ̸= g∗.

Similarly, we have that

(f∗)B(idB) ̸= (g∗)B(idB)

=⇒ f∗ ̸= g∗.

Using 5.11, we see that y, y′ are injective.

For each pair of objects A,B ∈ C, and natural transformation

αf : Hom(A,−) → Hom(B,−),

we want to show that ∃f ∈ Mor(C) so that

y′(f) = f∗

= αf .

From 5.6 we know that there is a bijection

Nat(Hom(A,−), F) ∼= F (A).

Taking F = Hom(B,−), we see that there is a bijection

Nat(Hom(A,−),Hom(B,−)) ∼= Hom(B,A)

Let f : B → A correspond to αf . Then again, by 5.6, we know that (αf)A(idA) = f .

We note that
f∗ : Hom(A,−) ⇒ Hom(B,−) ∈ Nat(Hom(A,−),Hom(B,−))

is such that

(f∗)A(idA) = idA ◦f
= f.

49

By the bijective property of 5.6, we need αf = f∗.

Similarly, for pair of objects A,B ∈ C, and natural transformation

αf : Hom(−, A) ⇒ Hom(B,−)

we want to show that there exists a morphism f in C so that

y(f) = f∗

= α.

By 5.6, and taking F = Hom(−, B), we have

Nat(Hom(−, A),Hom(−, B)) ∼= Hom(A,B).

Hence to each morphism f ∈ Hom(A,B), there exists a unique natural transformation αf so that
(αf)A(idA) = f .

We find that f : A→ B is such that

f∗ : Hom(−, A) ⇒ Hom(−, B) ∈ Nat(Hom(−, A),Hom(−, B)).

Then

(f∗)A(idA) = f ◦ idA
= f.

It follows that f∗ = αf .

For the next proposition, we will introduce a further notion of a certain type of functor.

Definition 5.12. A functor F : C → D is called conservative if F (f) being an isomorphism in D

implies that f itself is an isomorphism in C.

Proposition 5.13. Assume that Hom(X,Y) exists for every pair of objects X,Y in a tensor category
(C,⊗). Then Hom(Z ⊗X,Y) ∼= Hom(Z,Hom(X,Y)) for all objects X,Y, Z in C.

Proof. We follow the structure of the proof in [11].

Let A,X, Y, Z be arbitrary objects of C. Then we have

HomC(A,Hom(X ⊗ Y,Z)) ≃ HomC(A⊗ (X ⊗ Y), Z)

≃ HomC((A⊗X)⊗ Y,Z)

≃ HomC(A⊗X,Hom(Y,Z))

≃ HomC(A,Hom(X,Hom(Y,Z))

where we have repeatedly used that HomC(T ⊗ X,Y) ≃ HomC(T,Hom(X,Y)) and the associator ϕ
for the third isomorphism (recall that ϕ is a natural isomorphism).

Since A was arbitrary, we have that for all objects A in C, the isomorphism

HomC(A,Hom(X ⊗ Y, Z)) ≃ HomC(A,Hom(X Hom(Y,Z)))

50

holds. It follows that

HomC(−,Hom(X ⊗ Y, Z)) ≃ HomC(−,Hom(X,Hom(Y, Z))) (5.11)

in PSh(C).

Recall that from 5.10 we get that the functor F : C → PSh(C) defined by C ∋ A 7−→ HomC(−, A) ∈
PSh(C) = [Copp,Set] is fully faithful.

Let’s denote the natural isomorphism in (5.11) with α. By the fullness of F , we find that there exists
an f : X → Y ∈ Mor(C) so that F (f) = α.

Lemma 5.14. Fully faithful functors are conservative.

Proof. Let F : C → D be a fully faithful functor, and let α ∈ HomD(F (A), F (B)) for objects A,B
in C, be an isomorphism. Then there exists α−1 ∈ HomD(F (B), F (A)). Since F is full, there are
f : A → B and f−1 : B → A in Mor(C) so that F (f) = α and F (f−1) = α−1. By functoriality of F
we have

F (f−1 ◦ f) = F (f−1) ◦ F (f)
= α−1 ◦ α
= idF (A)

and

F (f ◦ f−1) = F (f) ◦ F (f−1)

= α ◦ α−1

= idF (B) .

By functoriality of F , we have that F (idA) = idF (A) and F (idB) = idF (B). By faithfulness of F , one
finds that f−1 ◦ f = idA and f ◦ f−1 = idB . It follows that f is an isomorphism.

Using lemma 5.14, we find that Hom(X ⊗ Y,Z) ∼= Hom(X,Hom(Y, Z)).

5.3 Duals

Let (C,⊗) be a tensor category. We note that we have an isomorphism

Hom(1,Hom(X,Y)) ≃ Hom(1⊗X,Y) ≃ Hom(X,Y) (5.12)

using 5.4 for the first natural isomorphism, and l−1
X : 1⊗X ≃ X in the last isomorphism. We introduce

duals.

Definition 5.15. Let X be an object in C. We denote the dual of X as X∨, defined explicitly as
X∨ = Hom(X,1).

Definition 5.16. There is an alternative characterization of the dual of an object X ∈ C, for (C,⊗)

a tensor category: It is a pair (Y, Y ⊗X
ev→ 1) with a morphism ϵ : 1 → X ⊗ Y such that

X
lX≃ 1⊗X

ϵ⊗idX

−→ (X ⊗ Y)⊗X
ϕ−1
X,Y,X≃ X ⊗ (Y ⊗X)

idX ⊗ ev

−→ X ⊗ 1
r−1
X≃ X (5.13)

51

and

Y
rY≃ Y ⊗ 1

idY ⊗ϵ
−→ Y ⊗ (X ⊗ Y)

ϕ−1
Y,X,Y≃ (Y ⊗X)⊗ Y

ev⊗ idY

−→ 1⊗ Y
l−1
Y≃ Y (5.14)

are the identity maps idX , and idY , respectively. (5.13) and (5.14) together are usually called the
zigzag-equations or the snake equations.

We then have a natural map evX : Hom(X,1)⊗X → 1 or, more succinctly, evX : X∨ ⊗X → 1.

From 5.4, we see that Hom(T,X∨) = Hom(T,Hom(X,1)) ≃ Hom(T ⊗X,1). Since T is an arbitrary
object, we have a natural isomorphism

γ : Hom(−, X∨) ≃ Hom(−⊗X,1) (5.15)

where we let F denote the functor F : Hom(− ⊗ X,1) : Copp → Set (note that we are implicitly
assuming that C is a locally small category here). By 5.6, we find that γ is uniquely determined by
γX∨(idX∨) = evX (see 5.2).

If we let C = Copp in 5.6, we see that HomCopp(X∨,−) ∼= HomC(−, X∨). This clarifies the concordance
between what we wrote above, and our formulation of 5.6.

For a tensor category (C,⊗), we let the functor Hom(− ⊗ X,Y) act on morphisms f ∈ HomC(T,B)
by Hom(−⊗X,Y)(f) = Hom(f ⊗X,Y) : Hom(B ⊗X,Y) → Hom(T ⊗X,Y), defined by

Hom(f ⊗X,Y)(g) = g ◦ (f ⊗ idX) : T ⊗X → Y

for g ∈ Hom(B ⊗X,Y).

The following diagram shows us that

γT (f) = F (f)(evX,Y)

= evX ◦(f ⊗ idX)
(5.16)

f

T Hom(X∨, X∨) F (X∨)

idX∨ evX

f γT (f) = F (f)(evX)

X∨ Hom(T,X∨) F (T)

γX∨

Hom(f,X∨)

∼=

F (f)

γT
∼=

(5.17)

Since γT is an isomorphism, it follows that for every g ∈ Hom(T ⊗X,Y) we get a unique f : T → X∨

so that 5.16 holds. We also see that this applies more generally, since instead of X∨ = Hom(X,1) we
could have taken Hom(X,Y) for arbitrary X,Y (atleast assuming we are in a tensor category where
Hom(X,Y) exists for all objects X,Y).

52

The following diagram (cf. diagram 1.6.1 in [10]) illustrates the more general situation:

T T ⊗X

Hom(X,Y) Hom(X,Y)⊗X Y

f f⊗idX
g

evX,Y

(5.18)

From this, we can make the map X 7−→ X∨ into a functor :

Let f : X → Y ∈ Mor(C). We note that evY ◦(idY ∨⊗f) : Y ∨⊗X → 1, hence evY ◦(idY ∨⊗f) ∈ F (Y ∨).

Since γY ∨ : Hom(Y ∨, X∨) ∼= Hom(Y ∨⊗X,1) is an isomorphism, there is a unique map tf : Y ∨ → X∨

so that γY ∨(tf) = evY ◦(idY ∨ ⊗f). But recall that γY ∨(tf) = evX ◦(tf ⊗ idX)

⇝ evX ◦(tf ⊗ idX) = evY ◦(idY ∨ ⊗f). (5.19)

Or, in diagrammatic form

Y ∨ ⊗X X∨ ⊗X

Y ∨ ⊗ Y 1

tf⊗idX

idY ∨ ⊗f evX

evY

(5.20)

Let f : X → Y be an isomorphism in a tensor category (C,⊗) and assume that X∨, Y ∨ exists. Then
its image under our functor (−)∨ is an isomorphism, since functors preserve isomorphisms (1.15).
Hence it follows that tf : Y ∨ → X∨ has an inverse (tf)−1 : X∨ → Y ∨. We denote this inverse by
f∨ := (tf)−1 : X∨ → Y ∨.

By properties of the tensor product as a bifunctor, we find that

evX ◦(tf ⊗ idX) ◦ (f∨ ⊗ idX) = evY ◦(idY ∨ ⊗f) ◦ (f∨ ⊗ idX)

=⇒ evX = evY ◦(f∨ ⊗ f).

Remark 5.17. Note that

evX ◦(tf ⊗ idX) ◦ (f∨ ⊗ idX) = evX ◦(tff∨ ⊗ idX)

= evX ◦(idX∨ ⊗ idX)

= evX .

by 5.15.

Remark 5.18. If f : X → Y , then tf : Y ∨ → X∨ is explicitly defined as (see [4, chap. 2.4])

tf : Y ∨ id⊗ϵ→ Y ∨ ⊗X ⊗X∨ id⊗f⊗id→ Y ∨ ⊗ Y ⊗X∨ ev⊗ id→ X∨ (5.21)

53

With the above remark in mind; if f : X → Y and g : Y → Z, so that g ◦ f : X → Z we have that

t(g ◦ f) = (evZ ⊗ id) ◦ (id⊗(g ◦ f)⊗ id) ◦ (id⊗ϵX) : Z∨ → X∨,

We aim to show that this is equal to tf ◦ tg: Consider the following diagram

Z∨ Z∨ ⊗ Y ⊗ Y ∨ Z∨ ⊗ Z ⊗ Y ∨ Y ∨ Y ∨ ⊗X ⊗X∨ Y ∨ ⊗ Y ⊗X∨ X∨

Z∨ ⊗X ⊗X∨ Z∨ ⊗ Y ⊗ Y ∨ ⊗X ⊗X∨ Z∨ ⊗ Z ⊗ Y ∨ ⊗X ⊗X∨ Z∨ ⊗ Z ⊗ Y ∨ ⊗ Y ⊗X∨ Z∨ ⊗ Z ⊗X∨

Z∨ ⊗ Y ⊗X∨ Z∨ ⊗ Y ⊗ Y ∨ ⊗ Y ⊗X∨ Z∨ ⊗ Y ⊗X∨

id⊗ϵY

id⊗ϵX

id⊗g⊗id

id⊗ id⊗ id⊗ϵX

evZ ⊗ id

id⊗ id⊗ϵX

id⊗ϵX id⊗f⊗id

evY ⊗ id

id⊗ϵY ...

id⊗f⊗id

id⊗g ⊗...

...f⊗id

evZ ⊗ id⊗ id

...f⊗id

evZ ⊗ id...

... evY ⊗ id

evZ ⊗ id

id⊗ϵY ⊗id

id

id⊗g...

... evY ⊗ id

id⊗g⊗id

(5.22)
In the diagram above, we have suppressed all canonical isomorphisms. All subdiagrams except the
lowermost commutes by bifunctoriality of ⊗, and the lowermost diagram is the a snake identity (5.16).
To clarify what we mean by bifunctoriality, we can exhibit an expanded diagram for the uppermost,
leftmost diagram as

Z∨ Z∨ ⊗ 1⊗ 1 Z∨ ⊗ Y ⊗ Y ∨ ⊗ 1 Z∨ ⊗ Y ⊗ Y ∨ ⊗X ⊗X∨

Z∨ ⊗ 1⊗ 1 Z∨ ⊗ 1⊗X ⊗X Z∨ ⊗ Y ⊗ Y ∨ ⊗X ⊗X∨

≃

≃

id⊗ϵY ⊗id id⊗id⊗ϵX

id⊗id⊗ϵX id⊗ϵY ⊗id

which commutes by bifunctoriality.

By following the outermost perimeter in (5.22) , and using the snake identity, we see that

(evY ⊗ id)◦(id⊗f⊗id)◦(id⊗ϵX)◦(evZ ⊗ id)◦(id⊗g⊗id)◦(id⊗ϵY) = (evZ ⊗ id)◦(id⊗g⊗id)◦(id⊗f⊗id)◦(id⊗ϵX)

⇐⇒ tf ◦ tg = t(g ◦ f).

For arbitrary X ∈ C, we have

t(idX) = (ev⊗ id) ◦ (id⊗ id⊗ id) ◦ (id⊗ϵ)
= (ev⊗ id) ◦ (id⊗ϵ)
= idX∨

again, by a snake identity (5.16).

We conclude that (−)∨ is indeed a functor.

We see that evX ◦ψX,X∨ : X ⊗ X∨ → 1, where we remember that ψX,X∨ is the commutator with
respect to X,X∨. We let X∨∨ := (X∨)∨. By (5.15) we then have a natural isomorphism

γ : Hom(−, X∨∨) ≃ Hom(−⊗X∨,1) (5.23)

54

which affords us with a bijection

γX : Hom(X,X∨∨) ∼= Hom(X ⊗X∨,1). (5.24)

Hence we have a unique map iX : X → X∨∨ so that γX(iX) = evX ◦ ψX,X∨ .

We introduce a definition in relation to iX , and a crucial definition related to representable functors.

Definition 5.19. Let (C,⊗) be a tensor category. If iX : X → X∨∨ (the map we induced from the
canonical isomorphism (5.23)) is an isomorphism, then we call X reflexive.

Definition 5.20. Let C be a category and let A be an object in C. A universal property of A is a
representable functor F together with a universal element X ∈ F (A) that together define a natural
isomorphism HomC(A,−) ≃ F or HomC(−, A) ≃ F , by 5.6.

Remark 5.21. F in 5.20 is covariant in the first case, and contravariant in the second.

Definition 5.22. Let F : C → D be a (covariant) functor, and let X be an object of D, and A,A′ be
objects of C. A universal morphism from X to F is a unique pair (A,µ : X → F (A)) that has the
following universal property (5.20): For each morphism f : X → F (A′), there exists a unique map
h : A→ A′ in C, so that the following (leftmost) diagram commutes

X F (A) A

F (A′) A′

µ

∀f F (h) ∃!h (5.25)

Dually, a universal morphism from F to X is a unique pair (A,µ : F (A) → X) that satisfies the
following universal property: For each morphism f ′ : F (A′) → X, there exists a unique morphism
h′ : A′ → A so that the following diagram commutes

X F (A) A

F (A′) A′

µ

∀f ′ F (h′) ∃!h′ (5.26)

Lemma 5.23. Let (A,µ : F (A) → X) and (A′, µ′ : F (A′) → X) both be universal morphism from F
to X. Then there is a unique isomorphism k : A→ A′ so that µ′ ◦ F (k) = µ.

We contemplate the following diagrams

X F (A) A X F (A′) A′

F (A′) A′ F (A) A

µ µ′

µ′ F (k′) ∃!k′ µ F (k) ∃!k

55

We find that there are unique k′, k so that

µ ◦ F (k′) = µ′ (5.27)

µ′ ◦ F (k) = µ. (5.28)

It follows that

µ ◦ F (k′) = µ′

⇐⇒ (µ′ ◦ F (k)) ◦ F (k′) = µ

⇐⇒ µ′ ◦ F (kk′) = µ′.

and

µ′ ◦ F (k) = µ

⇐⇒ (µ ◦ F (k′)) ◦ F (k) = µ

⇐⇒ µ ◦ F (k′k) = µ.

Again, by the universal property, we have

X F (A′) A X F (A) A′

F (A′) A′ F (A) A

µ′ µ

µ′ F (h′) ∃!h′
µ F (h) ∃!h

Clearly h′ = id′A and h = idA. By uniqueness of h′, h together with (5.27) and (5.28), we see that
k ◦ k′ = id′A and k′ ◦ k = idA so that k is the unique isomorphism such that µ′ ◦ F (k) = µ.

Proposition 5.24. Let (C,⊗) be a tensor category, and let X be an object in C that has an inverse

(X−1, δ : X−1 ⊗X
∼=→ 1). Then X is reflexive, and the map

f : X−1 → X∨

determined by δ, is an isomorphism.

Proof. By 5.8, we have an isomorphism

Nat(Hom(−, X−1),Hom(−⊗X,1)) ∼= Hom(X−1 ⊗X,1).

Since δ ∈ Hom(X−1 ⊗X,1), there is a unique corresponding natural transformation

α ∈ Nat(Hom(−, X−1),Hom(−⊗X,1))

.

56

Again, by 5.8, for each object Y ∈ C, with f : Y → X−1, we get the following commutative diagram

Hom(X−1, X−1) Hom(X−1 ⊗X,1)

idX−1 δ

f αY (f) = F (f)(δ)

Hom(Y,X−1) Hom(Y ⊗X,1)

Hom(f,X−1)

αX−1

Hom(f⊗X,1)

αY

Similar to the proof of 4.13, we get a bijection

Hom(Y,X−1) → Hom(X ⊗X−1,1)

defined by
Hom(Y,X−1) ∋ f 7−→ f ⊗ idX 7−→ δ ◦ (f ⊗ idX) ∈ Hom(X ⊗X−1,1).

It follows that αY is isomorphism, for each Y ∈ C, so that α is a natural isomorphism

Hom(−, X−1) ≃ Hom(−⊗X,1). (5.29)

By (5.15), we also have
Hom(−, X∨) ≃ Hom(−⊗X,1).

Lemma 5.25. Let F : C → D be a fully faithful functor, and let X,Y ∈ C. Then we have that

F (X) ∼= F (Y) =⇒ X ∼= Y.

Proof. Let f : F (X)
∼=→ F (Y) in D. Therefore, since F is full, there exist a morphism g : X → Y so

that F (g) = f . By 5.14, g itself must be an isomorphism.

From this we see that both (X−1, δ) and (X∨, evX) satisfy the same universal property (5.22). To be
more precise, let F = Hom(−⊗X,1) and let A = X−1, µ′ = δ and let X = 1 in (5.26). Similarly, we
can let A = X∨, µ′ = evX and X = 1.

By 5.23, there exists a unique isomorphism ξ : X−1 → X∨ so that evX ◦(ξ ⊗ idX) = δ.

(5.24) gives us the following relations, where the the diagram to the right commutes

X X ⊗Hom(X,1)

Hom(Hom(X,1),1) Hom(Hom(X,1),1)⊗Hom(X,1) 1

iX iX⊗idHom(X,1)
evX ◦ψX,X∨

evX∨,1

57

or with simpler notation, as

X X ⊗X∨

X∨∨ X∨∨ ⊗X∨ 1

iX iX⊗idX∨
evX ◦ψX,X∨

evX∨,1

We have natural isomorphisms

Hom(−, X∨∨) ≃ Hom(−⊗X∨,1)

≃ Hom(−⊗X−1,1)

≃ Hom(−, (X−1)−1).

In the last (natural) isomorphism, we used (5.29) with X := X−1. By 5.10, it follows that (X−1)−1 ∼=
X∨∨. We also know that X ∼= (X−1)−1 =⇒ X ∼= X∨∨.

Hence we have

X ⊗X∨ 1

X∨∨ ⊗X∨ 1

evX ◦ψX,X∨

evX∨,1

and natural isomorphisms

Hom(−, X) ≃ Hom(−, X∨∨)

≃ Hom(−⊗X∨,1)

≃ Hom(−⊗X−1,1).

For any finite families of objects (Xi)i∈I and (Yi)i∈I , there is a morphism

⊗
i∈I

Hom(Xi, Yi) → Hom

(⊗
i∈I

Xi,
⊗
i∈I

Yi

)
(5.30)

If we take T =
⊗
i∈I

Hom(Xi, Yi), X =
⊗
i∈I

Xi and Y =
⊗
i∈I

Yi in diagram 1.6.1 in [10], we see that

(5.30) is the unique morphism such that the diagram

58

(⊗
i∈I

Hom(Xi, Yi)

)
⊗
(⊗
i∈I

Xi

)

Hom

(⊗
i∈I

Xi,
⊗
i∈I

Yi

)
⊗
(⊗
i∈I

Xi

) ⊗
i∈I

Yi

f⊗id ⊗
i∈I

Xi g

⊗ evYi

commutes.

Let X1 = X,X2 = 1 = Y1 and Y2 = Y . By (5.30) we get

Hom(X,1)⊗Hom(1, Y) = X∨ ⊗Hom(1, Y) ∼= X∨ ⊗ Y → Hom(X ⊗ 1,1⊗ Y) ∼= Hom(X,Y) (5.31)

Remark 5.26. Since

Hom(−, Y) ≃ Hom(−⊗ 1, Y)

≃ Hom(−,Hom(1, Y))

and the isomorphisms are all natural, we see that Hom(−, Y) ≃ Hom(−,Hom(1, Y)) in PSh(C). Recall
that X 7−→ Hom(−, X) is fully faithful by 5.10.

Using 5.25, we find that

Hom(−, Y) ≃ Hom(−,Hom(1, Y)) =⇒ Y ∼= Hom(1, Y). (5.32)

This explains the first isomorphism in (5.31).

If we take Yi ≡ 1, for all i ∈ I, and use (5.30), we see that

⊗
i∈I

X∨
i =

⊗
i∈I

Hom(Xi,1) → Hom

(⊗
i∈I

Xi,1

)
=

(⊗
i∈I

Xi

)∨

.

6 Rigid tensor categories

Definition 6.1. Let (C,⊗) be a tensor category. Then we call (C,⊗) a rigid tensor category if

1. Hom(A,B) exists for all A,B ∈ C.

2. Morphisms Hom(A1, B1) ⊗ Hom(A2, B2) → Hom(A1 ⊗ A2, B1 ⊗ B2) are isomorphisms for all
A1, A2, B1, B2 ∈ C.

3. All objects in C are reflexive.

59

If (C,⊗) is a rigid tensor category, so that the conditions in 6.1 are fulfilled, then the morphisms in
(5.30) are all isomorphisms. This is clear from the fact that I is finite in 5.30. So, for example, let
I = {1, 2, 3}. Then

(Hom(X1, Y1)⊗Hom(X2, Y2))⊗Hom(X3, Y3) ∼= Hom(X1 ⊗X2, Y1 ⊗ Y2)⊗Hom(X3, Y3)
∼= Hom(X1 ⊗X2 ⊗X3, Y1 ⊗ Y2 ⊗ Y3).

The same idea applies more generally for any finite set I: Put an arbitrary ordering on I, so that
I = {i1, . . . , in}. Let fij ,iℓ denote the isomorphism

Hom(Xij , Xij)⊗Hom(Xiℓ , Yiℓ)
∼= Hom(Xij ⊗Xiℓ , Yij ⊗ Yiℓ)

and let fi1⊗···⊗iℓ,iℓ+1
⊗ id denote the isomorphism

Hom(Xi1 ⊗ · · · ⊗Xiℓ , Yi1 ⊗ · · · ⊗ Yiℓ)⊗
⊗

i∈I\{iℓ,...,in}

Hom(Xi, Yi)

∼=Hom(Xi1 ⊗ · · · ⊗Xiℓ+1
, Yi1 ⊗ · · · ⊗ Yiℓ+1

)⊗
⊗

i∈I\{iℓ+1,...,in}

Hom(Xi, Yi).

If ℓ = n− 1 then we define fi1⊗···⊗in−1,in as the isomorphismHom

 ⊗
i∈I\{in}

Xi,
⊗

i∈I\{in}

Yi

⊗Hom(Xin , Yin)

 ∼= Hom

(⊗
i∈I

Xi,
⊗
i∈I

Yi

)
.

⇝
⊗

Hom(Xi, Yi)
fi1,i2

⊗id
∼= Hom(Xi1 ⊗Xi2 , Yi1 ⊗ Yi2)⊗

⊗
i∈I\{i1}

Hom(Xi, Yi)

fi1⊗i2,i3
⊗id

∼= Hom(Xi1 ⊗Xi2 ⊗Xi3 , Yi1 ⊗ Yi2 ⊗ Yi3)⊗
⊗

i∈I\{i1,i2}

Hom(Xi, Yj)

...

fi1⊗···⊗in−1,in∼= Hom

(⊗
i∈I

Xi,
⊗
i∈I

Yi

)

Example 6.2. Let G be a group and let k be a field. Then the categoryRepfd
k (G) of finite dimensional

representations of G is rigid. One has that

V ∨ := HomRepfd
k (G)(V, k)

for each object (V, ρV) in Repfd
k (G), and where we define ρV ∨(g) := (ρV (g)

−1)∨.

We have maps evV V ⊗ V ∨ → k defined by k ⊗ φ 7−→ φ(k), and coevV : k → V ∨ ⊗ V defined

by k 7−→ k ·
n∑
i=1

v∗i ⊗ ei where {e1, . . . , en} is a basis for V and {v∗1 , . . . , v∗n} is a basis for V ∨, and

v∗i (vj) = δij =

{
1, if i = j

0, if i ̸= j
.

For more details, see [12].

60

Lemma 6.3. Any functor F : C → D that is full, faithful and essentially surjective, defines an
equivalence of categories.

Remark 6.4. Compare 6.3 with 4.7.

Remark 6.5. Note that in the proof of 6.3, we need to assume Axiom of Choice.

Proof. Assume that F : C → D is full, faithful and essentially surjective. Since F is essentially
surjective, we know that for eachD ∈ D, the set AD consisting of elements C ′ in C such that F (D) ∼= C ′

is non-empty. Then we can form the family of sets (AD)D∈D. Assuming Axiom of Choice ([5, p.
909]), there exists a choice function G : Ob(D) →

⋃
D∈D

AD such that G(D) ∈ AD =⇒ G(D) is

such that F (G(D)) ∼= D. By essential surjectivity, the choice-function also defines an isomorphism
ϵD : F (G(D)) ∼= D. Let ℓ ∈ HomD(D,D′) be arbitrary. Then by similar reasoning as in the proof of
4.8 there is a unique morphism f such that

F (G(D)) D

F (G(D′)) D′

ϵD
∼=

∃!f ℓ

ϵD′

∼=

commutes. Explicitly, we want ℓ ◦ ϵD = ϵD′ ◦ f =⇒ f = ϵ−1
D′ ◦ ℓ ◦ ϵD. Since F is fully faithful, the

map HomC(G(D), G(D′)) → HomD(F (G(D)), F (G(D′)) is bijective, so there is a unique morphism
Gℓ ∈ HomC(G(D), G(D′)) such that F (G(ℓ)) = f .

From this, we see that the morphisms ϵD assemble into the components of a natural transformation
ϵ : FG⇒ idD.

We need to prove that G is functorial (remember, G was originally a choice function). We note that
by the functoriality of F , one has F

(
idG(D)

)
= idFG(D).

Then we see that for ℓ = idD one has

idD ◦ϵD = ϵD ◦ F (G(idD))
=⇒ ϵD = ϵD ◦ F (G(idD))
=⇒ idD = F (G(idD)).

But we also have

ϵD ◦ F
(
idG(D)

)
= ϵD ◦ idF (G(D))

= ϵD

= 1D ◦ ϵD
Diagrammatically, this is

F (G(D)) D

F (G(D)) D

ϵD

F (G(idD)) or F(idG(D)) idD

ϵD

61

commutes, for both F (G(idD)) and F
(
idG(D)

)
By uniqueness of Gℓ, we need G(idD) = idG(D).

Let ℓ′ : D′ → D′′. Then we know that G(ℓ′ ◦ ℓ) is such that

FG(D) D

F (G(D′′)) D′′

ϵD

F (G(ℓ′◦ ℓ))

∼=

ℓ′◦ ℓ

ϵD′′

∼=

commutes. We contemplate the following diagram

F (G(D)) D

F (G(D′)) D′

F (G(D′′)) D′′

ϵD

F (G(ℓ))

∼=

ℓ

ϵD′

∼=

F (G(ℓ′)) ℓ′

ϵD′′

∼=

We know that the upper and lower constituent squares of the diagram commutes. We find that

ℓ′ ◦ ℓ ◦ ϵD = ℓ′ ◦ (ℓ ◦ ϵD)
= ℓ′ ◦ (ϵD′ ◦ F (G(ℓ)))
= (ℓ′ ◦ ϵD′) ◦ F (G(ℓ))
= (ϵD′′ ◦ F (G(ℓ′))) ◦ F (G(ℓ))
= ϵD′′ ◦ (F (G(ℓ′)) ◦ F (G(ℓ)))
= ϵD′′ ◦ F (G(ℓ′) ◦G(ℓ)).

By uniqueness, we see that G(ℓ′ ◦ ℓ) = G(ℓ′) ◦G(ℓ). We conclude that G is indeed a functor.

Lemma 6.6. Let F : C → D be a full and faithful functor. Then F both reflects and creates
isomorphisms.

Definition 6.7. A functor F : C → D reflects isomorphisms if F (f) is conservative (5.12).

Definition 6.8. A functor F creates isomorphisms if F (X) ∼= F (Y) in D =⇒ X ∼= Y in C.

Proof. For reflection, see the proof of 5.14. For creation, see proof of 5.25.

62

By fullness and faithfulness of F , we see that F both reflects and creates isomorphisms. Then we can
define ηC : C → GF (C) by finding isomorphisms FηC : F (C) → FGF (C). Let FηC := ϵ−1

F (C). Then

ηC will be defined as the unique morphism ηC ∈ HomC(C,GF (C)) such that its image under F is
ϵ−1
F (C). We see that it follows from 6.6 that ηC is an isomorphism.

Let f ∈ HomC(C,C
′), and consider the following diagram

F (C) FGF (C) F (C)

F (C ′) FGF (C ′) F (C ′)

F (f)

FηC ϵF (C)

FGF (f) F (f)

FηC′ ϵF (C′)

We have

F (f) ◦ ϵF (C) ◦ FηC = F (f) ◦
(
ϵF (C) ◦ FηC

)
= F (f) ◦

(
ϵF (C) ◦ ϵ−1

F (C)

)
= F (f) ◦ idF (C)

= F (f)

and

ϵF (C′) ◦ FηC′ ◦ F (f) =
(
ϵF (C′) ◦ FηC′

)
◦ F (f)

=
(
ϵF (C′) ◦ ϵ−1

F (C′)

)
◦ F (f)

= idF (C′) ◦ F (f)
= F (f)

so that the outer rectangle commutes.

The right square commutes since ϵ is a natural transformation (applied to the morphism F (f) in D).

Then we see that

F (f) ◦ ϵF (C) ◦ FηC = ϵF (C′) ◦ FηC′ ◦ F (f)
= ϵF (C′) ◦ (FGF (f) ◦ FηC).

Lemma 6.9. Let C be a category. If f ∈ Mor(C) is an isomorphism, then f is monic.

Proof. Let f : C → C ′ with inverse g : C ′ → C, and assume that h, k : A⇒ C, such that

f ◦ h = f ◦ k. (6.1)

Applying g on the left side of both sides of (6.1), we see that

g ◦ (f ◦ h) = g ◦ (f ◦ k)
⇐⇒ (g ◦ f) ◦ h = (g ◦ f) ◦ k

⇐⇒ idC ◦ h = idC ◦ k
⇐⇒ h = k.

63

Since ϵF (C′) is an isomorphism, by 6.9, ϵF (C′) is monic.

ϵF (C′) ◦ (FηC′ ◦ F (f)) = ϵF (C′) ◦ (FGF (f) ◦ FηC)
=⇒ FηC′ ◦ F (f) = FGF (f) ◦ FηC .

Hence the left-hand square also commutes, and we have a commutative rectangle where all constituent
squares commutes. Then faithfulness and functoriality of F gives us that

FηC′ ◦ F (f) = F (ηC′ ◦ f)
= F (GF (f) ◦ ηC)
= FGF (f) ◦ FηC

=⇒ ηC′ ◦ f = GF (f) ◦ ηC .

That is,

C GF (C)

C ′ GF (C ′)

f

ηC

GF (f)

ηC′

commutes, for all C ∈ C. We conclude that η : idC ⇒ GF is a natural transformation.

As we saw that ϵD and ηC were isomorphisms for all D ∈ D and all C ∈ C, we have that ϵ : FG⇒ idD
and η : idC ⇒ GF are indeed natural isomorphisms.

Proposition 6.10. Let (C,⊗) be a rigid tensor category. Then the (contravariant) functor F : C → C

defined explicitly by X 7−→ X∨ for X ∈ C and f 7−→ tf for f ∈ Mor(C) is an equivalence of categories.

Proof. Going back to the (contravariant) functor (−)∨ : C → C covered in (5.19), (5.20), (??), defined
by taking objects X ∈ C to their dual X∨, and morphisms f : X → Y to tf : Y ∨ → X∨, we see that
in a rigid tensor category we have:

X∨∨ X

t(tf) : X∨∨ → Y ∨∨ f : X → Y

i−1
X

∼=

We aim to show that (−)∨ yields an equivalence of categories. By 6.3 it is enough to show that (−)∨

is full, faithful and essentially surjective. Essentially surjective is clear, since for each object X ∈ C,
we know that X∨∨ ∼= X. So for any X ∈ C, we can choose X∨ such that X∨ 7→ X∨∨ ∼= X. We aim
to show that the map HomC(X,Y) → HomC(Y

∨, X∨) is a bijection.

By (5.32) and 6.1 we see that

X∨ ⊗ Y ∼= Hom(X,1)⊗Hom(1, Y)
∼= Hom(X ⊗ 1,1⊗ Y)
∼= Hom(X,Y).

64

So

Hom(X,Y) ∼= X∨ ⊗ Y
∼= X∨ ⊗ Y ∨∨

∼= Y ∨∨ ⊗X
∼= Hom(Y ∨, X∨)

where we in the last isomorphism used (5.31).

By (5.12) we find

Hom(1,Hom(X,Y)) Hom(1,Hom(Y ∨, X∨))

Hom(X,Y) Hom(Y ∨, X∨)

∼=

∼= ∼=

∼=

Definition 6.11. For any X ∈ C, we have f : Hom(X,X) ∼=︸︷︷︸
(5.31)

X∨ ⊗X
evX

−→ 1. Applying the functor

Hom(1,−) to f we get

Hom(1, f) := trX : Hom(1,Hom(X,X)) ∼= Hom(X,X) −→ Hom(1,1)

or in other notation trX : End(X) → End(1). We call trX the trace morphism.

Definition 6.12. For any X ∈ C, the rank of X, denoted rank(X), is defined as

rank(X) := trX(idX).

Remark 6.13. [10] warns us that 6.12 only makes sense in characteristic 0.

We have the following set of equations:{
trX⊗X′(f ⊗ f ′) = tr(f) · tr(f ′)
tr1(f) = f

(6.2)

Applying (6.2) we have

rank(X ⊗X ′) = trX⊗X′(idX ⊗ idX′)

= tr(idX) · tr(idX′)

= rank(X) · rank(X ′).

and

rank(1) = tr1(id1)

= id1 .

65

7 Tensor functors

We let (C,⊗) and (C′,⊗′) be tensor categories. Let’s introduce a functor related to tensor categories:

Definition 7.1. A tensor functor (C,⊗) → (C′,⊗′) is a pair (F, c) where F : C → C′ is a functor,
and c−,− : −⊗− → F (−⊗−) is a natural isomorphism. (F, c) has the following properties:

• For all X,Y, Z ∈ C, the following diagram commutes

F (X)⊗′ (F (Y)⊗ F (Z)) F (X)⊗′ F (X ⊗ Y) F (X ⊗ (Y ⊗ Z))

(F (X)⊗′ F (Y))⊗′ F (Z) F (X ⊗ Y)⊗′ F (Z) F ((X ⊗ Y)⊗ Z)

idF (X) ⊗cF (X),F (Y)

ϕ′
F (X),F (Y),F (Z)

cF (X),F (X⊗Y)

F (ϕX,Y,Z)

cF (X),F (Y)⊗idF (Y) cF (X⊗Y),F (Z)

• For all X,Y ∈ C

F (X)⊗′ F (Y) F (X ⊗ Y)

F (Y)⊗′ F (X) F (Y ⊗X)

cF (X),F (Y)

ψ′
F (X),F (Y) F (ψX,Y)

cF (Y),F (X)

commutes.

• If (U, u) is an identity object of (C,⊗), then (F (U), F (u)) is an identity object of (C′,⊗′).

The above conditions are those given in [10]. We will add the following two conditions, coming from
[7] (1.29, 1.30 on p. 47): The squares below must commute

F (X)⊗′ 1′ F (X) 1′ ⊗′ F (X) F (X)

F (X)⊗′ F (1) F (X ⊗ 1) F (1)⊗′ F (X) F (1⊗X)

(r′F (X))
−1

idF (X) ⊗a′ F (rX)

(l′F (X))
−1

a′⊗idF (X) F (lX)

c c

(7.1)
where a′ is the canonical isomorphism coming from 2.23 applied to F (1) and 1′ in C′ (using the third
condition in 7.1, i.e. that F (1) is an identity object).

Together, these conditions gives us, for any every finite family of objects (Xi)i∈I , an isomorphism

c :

′⊗
i∈I

F (Xi)
∼=→ F

(⊗
i∈I

Xi

)

66

Furthermore, for any map α : I → J , where I, J is finite, the following diagram commutes

′⊗
i∈I

F (Xi) F

(⊗
i∈I

Xi

)

′⊗
j∈J

(
′⊗

i 7→j

F (Xi)

)
′⊗

j∈J

(
F

(⊗
i 7→j

Xi

))
F

(⊗
j∈J

(⊗
i 7→j

Xi

))

c

χ′(α) F (χ(α))

c c

(F, c) takes inverse objects to inverse objects. Let X,Y ∈ C, if Hom(X,Y) exists, then

F (evX,Y) : F (Hom(X,Y))⊗′ F (X) → F (Y)

affords us with morphisms

FX,Y : F (Hom(X,Y)) → Hom(F (X), F (Y)).

To expand on this point: Recall that Hom(T ⊗X,Y) ≃ Hom(T,Hom(X,Y)). C′ is a tensor category,
so assuming Hom(X,Y) and Hom(FX,FY) exists, we have

HomC′(F (Hom(X,Y))⊗′ FX,FY) ≃ HomC′(F (Hom(X,Y)),Hom(FX,FY)).

Then we see, that there is a unique morphism FX,Y corresponding to F (evX,Y) ◦ c such that the
rightmost diagram below commutes (cf. (5.18)).

F (Hom(X,Y)) F (Hom(X,Y))⊗′ FX

↭

Hom(FX,FY) Hom(FX,FY)⊗′ FX FY

FX,Y FX,Y ⊗′idFX

F (evX,Y)◦c

evFX,FY

(7.2)

Letting Y = 1, we get

F (Hom(X,1)) = F (X∨) F (Hom(X,1))⊗′ FX

↭

Hom(FX,F1) = F (X)∨ Hom(FX,F1)⊗′ FX F1

FX FX⊗′idFX

F (evX,Y)◦c

evFX

(7.3)

67

where we have used the last condition in 7.1, i.e. that F1 is an identity object of C′.

Lemma 7.2. Let (F, c) : (C,⊗) → (C ′,⊗′) be a tensor functor of rigid tensor categories. Then F
preserves duals.

Proof. As in [10], we want to show that F preserves duality

⇝

X F (X)

1⊗X F (1⊗X)

(X ⊗ Y)⊗X F ((X ⊗ Y)⊗X

X ⊗ (Y ⊗X) F (X ⊗ (Y ⊗X))

X ⊗ 1 F (X ⊗ 1)

X F (X)

lX

idX

F (lX)

F (idX)=idF (X)

ϵ⊗idX F (ϵ⊗idX)

ϕ−1
X,Y,X F (ϕ−1

X,Y,X)

idX ⊗ ev F (idX ⊗ ev)

r−1
X F (r−1

X)

(7.4)

68

We rewrite the right diagram above the following way.

⇝

F (X) 1′ ⊗′ F (X)

(1)

F (1⊗X) F (1)⊗′ F (X)

(2)

F ((X ⊗ Y)⊗X) F (X ⊗ Y)⊗′ F (X) (F (X)⊗′ F (Y))⊗′ F (X)

(3) F (X)⊗′ (F (Y)⊗′ F (X))

F (X ⊗ (Y ⊗X)) F (X)⊗′ F (Y ⊗X)

(4)

F (X ⊗ 1) F (X)⊗′ F (1)

(5)

F (X) F (X)⊗′ 1′

F (lX)

F (idX)=idF (X)

l′F (X)

a′⊗′idF (X)

F (ϵ⊗idX)

c

F (ϵ)⊗′idF (X)

F (ϕ−1
X,Y,X)

c

c−1⊗′idF (X)

ϕ′
F (X),F (Y),F (X)

idF (X) ⊗′c

F (idX ⊗ ev)

c

idF (X) ⊗′F (ev)

F (r−1
X)

c

idF (X) ⊗a′−1

(r′F (X))
−1

(7.5)
We see that subdiagram (1) in (7.5) above, commutes by (7.1), (2) commutes by naturality of c, (3)
commutes by the first condition in definition 7.1, (4) commutes by naturality of c, and (5) commutes
by (7.1).

We let

ϵ′FX := 1′ a′

−→ F (1)
F (ϵX)

−→ F (X ⊗ Y)
c−1

−→ F (X)⊗′ F (Y)

ev′FX := F (Y)⊗′ F (X)
c

−→ F (Y ⊗X)
F (evX)

−→ F (1)
a′−1

−→ 1′.

(7.6)

Then we see that ϵ′FX and ev′FX are the corresponding duality data for F (X), by following the
rightmost outer circuit in (7.5), and using that

c−1 ⊗′ idF (X) ◦F (ϵ)⊗′ idF (X) ◦a′ ⊗′ idF (X) = ϵ′FX ⊗′ idF (X)

and similarly with ev′;

idF (X) ⊗′a′−1 ◦ idF (X) ⊗′F (ev) ◦ idF (X) ⊗′c = idF (X) ⊗′ ev′FX .

69

By similar reasoning, we see that the following diagram commutes

F (Y) F (Y)⊗′ 1′

(1)

F (Y ⊗ 1) F (Y)⊗′ F (1)

(2)

F (Y ⊗ (X ⊗ Y)) F (Y)⊗′ F (X ⊗ Y) F (Y)⊗′ (F (X)⊗′ F (Y))

(3) (F (Y)⊗′ F (X))⊗′ F (Y)

F ((Y ⊗X)⊗ Y) F (Y ⊗X)⊗′ F (Y)

(4)

F (1⊗ Y) F (1)⊗′ F (Y)

(5)

F (Y) 1′ ⊗′ F (Y)

r′F (Y)

F (rY)

F (idY)=idF (Y)

idF (Y) ⊗′a′

F (idY ⊗ϵ)

c

idF (Y) ⊗′F (ϵ)

F (ϕ−1
Y,X,Y)

c

idF (Y) ⊗′c−1

ϕ′
F (Y),F (X),F (Y)

c⊗idF (Y)

F (ev⊗ idY)

c

F (ev)⊗′idF (Y)

F (l−1
Y) (a′)−1⊗′idF (Y)

c

(l′F (Y))
−1

(7.7)
where (1) commutes by (7.1), (2) commutes by naturality, (3) commutes by the first condition in 7.1,
(4) commutes by naturality, and (5) commutes by (7.1). Hence (F (Y), ϵ′X , ev

′
X) is the duality data for

the image of X under the tensor functor F (cf. 5.13, 5.14).

Definition 7.3. Assuming that C,D are locally small categories. Then an adjunction consists of a
pair of functors F : C⇆ D : G such that

HomD(F (X), Y) ∼= HomC(X,G(Y)) (7.8)

for each pair of objects X ∈ C and Y ∈ D. We call F left adjoint to G and G right adjoint to F ,
and we usually denote this by F ⊣ G, or equivalently G ⊢ F .

By the isomorphism (7.8), we get pairs of morphisms

HomD(F (X), Y) ∋ f ♯↭ f ♭ ∈ HomC(X,G(Y)) (7.9)

that we call adjunct or transposes of each other.

Diagrammatically, this is the assertion

70

Copp ×D Set

HomD(F (−),−)

HomC(−,G(−))

∼=

Following [13], we can say a bit more. Naturality in D amounts to the assertion that for any morphism
k : D → D′ in D, the following diagram commutes in Set

D HomD(F (X), D) HomC(X,G(D))

⇝

D′ HomD(F (X), D′) HomC(X,G(D
′))

k

∼=

k∗ G(k)∗

∼=

So for any f ♯ ∈ HomD(F (X), D) and k : D → D′, we have that

(k∗ ◦ f ♯)♭ = (k ◦ f ♯)♭

= G(k)∗ ◦ f ♭

= G(k) ◦ f ♭.

Naturality in C, on the other hand, means that for each h : X → X ′, the diagram below commutes in
Set

X HomD(F (X ′), D) HomC(X
′, G(D))

⇝

X ′ HomD(F (X), D) HomC(X,G(D
′))

h

∼=

F (h)∗ h∗

∼=

What this means, is that for any h : X → X ′ and f ♯ ∈ HomD(F (X ′), D), we have

(F (h)∗ ◦ f ♯)♭ = (f ♯ ◦ F (h))♭

= h∗ ◦ f ♭

= f ♭ ◦ h.

Example 7.4. In particular, −⊗X ⊣ Hom(X,−) is an adjunction, in a rigid tensor category (C,⊗).

Similar to as in [13], we can pictorially represent an adjunction F ⊣ G as

C ⊥ D HomD(Fc, d) ∼= HomC(c,Gd)
F

G

.

If we fix c ∈ C, we get that Fc represents the (covariant) functor HomC(c,G(−)) : D → Set (since the
latter is naturally isomorphic to HomD(Fc,−)). Then, by Yoneda lemma (5.6), we see that

Nat(HomD(Fc,−),HomC(c,G(−))) ∼= HomC(c,G(Fc))

71

gives that the natural isomorphism α : HomD(Fc,−) ⇒ HomC(c,G(−)) corresponds to αFc(idFc) :=
ηc. This motivates the following.

Lemma 7.5. Let F ⊣ G be an adjunction; then there is a natural transformation η : idC ⇒ GF ,
called the unit of the adjunction, with components ηX : X → GF (X), defined to be the transpose of
the identity morphism idF (X).

Proof. Naturality of η:

Consider the diagrams

X GF (X) F (X) F (X)

Y GF (Y) F (Y) F (Y)

ηX

f GF (f)

idF (X)

F (f) F (f)

ηY idF (Y)

(7.10)

That the right hand diagram commutes follows trivially; For the left hand diagram, we use the following
lemma.

Lemma 7.6. Consider a pair of functors F : C⇆ D : G with isomorphisms

HomD(F (X), Y) ∼= HomC(X,G(Y)) (∀X ∈ C,∀Y ∈ D). (7.11)

Then we have that: If naturality of the families of isomorphisms in (7.11) holds ⇐⇒ for any
morphisms h : c → c′ ∈ Mor(C) and k : d → d′ ∈ Mor(D), the right-hand diagram below commutes if
and only if the left-hand diagram below commutes

Fc d c Gd

↭

Fc′ d′ c′ Gd′

Fh

f♯

k h

f♭

Gk

g♯ g♭

Proof. We will only prove =⇒ , since this is what we need.

=⇒ : Assume that the isomorphisms in (7.11) are natural, and furthermore, assume that the left-hand
diagram above commutes.

Then we have
g♯ ◦ Fh = k ◦ f ♭. (7.12)

Then, by naturality, (7.12) and reasoning as in 7.8, we see that

Gk ◦ f ♭ = (k ◦ f ♯)♭

= (g♯ ◦ Fh)♭

= g♭ ◦ h,

72

so that the right-hand square commutes.

On the other hand, if the right-hand square commutes, we have

Gk ◦ f ♭ = g♭ ◦ h. (7.13)

Then, we see that

(k ◦ f ♯)♭ = Gk ◦ f ♭

= g♭ ◦ h
= (g♯ ◦ Fh)♭.

But (−)♭ is bijective, hence k ◦ f ♯ = g♯ ◦ Fh.

It follows from 7.6, by the way η:s components was choosen, and the obvious commutativity of the
right diagram above, that the left-diagram commutes, so that η : idC ⇒ FG is natural.

Dually, given an adjunction F ⊣ G, one can, by fixing d ∈ D, and using the contravariant Yoneda lemma
(5.8) find that the object Gd ∈ C represents the functor HomD(F (−), d) : Copp → Set, and that the
natural isomorphism β : HomC(F (−), d) ⇒ HomD(−, Gd) corresponds to an element βGd(idGd) := εd.
By dualizing 7.5, we get that the εd gives us a family of morphisms who assemble into the components
of a natural transformation ε : FG⇒ idD.

We state the dual lemma.

Lemma 7.7. Let F ⊣ G be an adjunction. Then there is a natural transformation ε : FG ⇒ idD,
called the counit of the adjunction, such that εX : FG(X) → X is defined to be the transpose of the
identity idG(X).

Lemma 7.8. Let

C ⊥ D

F

G

be an adjunction, with unit η and counit ε. Then the following diagrams commute, in the functor
category [C,D] (leftmost diagram) and [D,C] (rightmost diagram), respectively.

F FGF G GFG

F G

Fη

idF

εF

ηG

idG

Gε (7.14)

Remark 7.9. By εF we mean, that for each X ∈ C, we have εFX = ϵFX , and similarly for ηG.

Definition 7.10. We call the identities in (7.14) the triangle identities for adjunctions.

Proposition 7.11. If we have

C ⊥ D and C ⊥ D

F

G

F ′

G

73

so that F, F ′ are left adjoint to G, then F ∼= F ′, and there exists a unique natural isomorphism
θ : F ⇒ F ′ such that both diagrams below commutes in their respective functor categories , [C,D] and
[D,C], for the left and right diagram below, respectively

idC GF FG idD

GF ′ F ′G

η

η′
Gθ

ε

θG
ε′

.

Proof. [13, proposition 4.4.1, p. 132].

Remark 7.12. By dualizing 7.11, we get a dual lemma, where we have two right adjoints F, F ′, and
one left adjoint G, such that the following pair of diagrams commutes

idC GF FG idD

GF ′ F ′G

η ϵ

ϵ′η′
Gθ θG .

We see that η, η′ corresponds to the two counits.

We introduce an equivalent definition of an internal hom object.

Definition 7.13. Let (C,⊗) be a tensor category. An internal hom in C is a functor

Hom(−,−) : Copp × C → C

such that ∀X ∈ C, we have a pair of adjoint functors

C ⊥ C

−⊗X

Hom(X,−)

.

Proposition 7.14. Let (F, c) : (C,⊗) → (C′,⊗′) be a tensor functor (7.1) of rigid tensor categories
(6.1). Then

FX,Y : F (Hom(X,Y)) → Hom(F (X), F (Y)) (7.15)

is an isomorphism for all X,Y ∈ C.

Remark 7.15. Note that there is a typo in (7.15) above, in [10, proposition 1.9, page 11].

Proof. We proceed similarly to [2].

Lemma 7.16. If F : C ⇆ D : G such that F ⊣ G, where ε : FG ⇒ idD and η : idC ⇒ GF are the
counit and unit respectively, then the leftmost diagram below commutes ⇐⇒ the rightmost diagram
below commute.

74

A GD FA D

↭

B C FB FC

f♭ f♯

b

c

g♭ Fb

Fc

g♯

Proof. Assume that the leftmost diagram commutes. Since functors preserve commutative diagrams,
we get the leftmost diagram below

FA FGD FA FGD D

⇝

FB Fc FB Fc

Ff♭ Ff♭

f♯

εD

Fb

Fc

Fg♭ Fb

Fc

Fg♭

g♯

leading to the rightmost diagram above, which also commutes, since by definition, we have f ♯ :=
εD ◦ Fg♭ (and similarly for g♯), and since we know that

Ff ♭ ◦ Fb = Fg♭ ◦ Fc
⇐⇒ εD ◦ Ff ♭ ◦ Fb = εD ◦ Fg♭ ◦ Fc

⇐⇒ f ♯ ◦ Fb = g♯ ◦ Fc,

which is what we wanted to show.

On the other hand, if the rightmost diagram commutes, by applying the functor G to the rightmost
diagram in 7.16, we get the leftmost diagram below, leading to the rightmost diagram below

GFA GD A GFA GD

⇝ (1)

GFB GFC B GFB GFC

(2)

C GFC

Gf♯ ηA

f♭

Gf♯

GFb

GFc

Gg♯ b

ηB

c

GFb

GFc

GFc

Gg♯

ηC

idGFC

75

where the rightmost diagram commutes since G preserves commutative diagrams, basic properties of
categories, and naturality of η (in (1) and (2)). We have also used that f ♭ = Gf ♯ ◦ ηA (and similarly
for g♭).

By following the down-right path from B, we see that g♭ ◦ c = f ♭ ◦ b, which is what we wanted to
show.

Applying 7.16 to the adjunction − ⊗ FX ⊣ Hom(FX,−) and the diagram to the left below, we get
the diagram to the right below

F (Hom(X,Y)) Hom(FX,FY) F (Hom(X,Y))⊗′ FX FY

⇝

F (X∨ ⊗ Y) F (X)∨ ⊗′ FY F (X∨ ⊗ Y)⊗ FX F (X)∨ ⊗′ F (Y)⊗′ FX

FX,Y F (evX,Y)◦c

α

γ

β α⊗idFX

γ⊗idFX

ev2′
FX,FY

(7.16)

We will utilize the following set of natural isomorphisms

HomC′(−⊗ FX,FY) ≃ HomC′(−,Hom(FX,FY))

≃ HomC′(−, F (X)∨ ⊗′ FY)

≃ HomC′(−, F (X∨)⊗′ FY)

≃ HomC′(−, F (X∨ ⊗ Y)).

By 7.12 we find that there is a unique such β so that the diagram below commutes, and that β is an
isomorphism.

F (X)∨ ⊗′ FY ⊗′ FX

Hom(FX,FY)⊗′ FX FY

β⊗id
ev2′

FX,FY

ev1′
FX,FY

(7.17)

We choose γ as the unique morphism making the following diagram commute:

F (X∨ ⊗ Y) F (X∨ ⊗ Y)⊗′ FX

F (X)∨ ⊗′ FY F (X)∨ ⊗′ FY ⊗′ FX FY

γ γ⊗id
F (ev1

X,Y)◦c

ev2′
FX,FY

(7.18)

coming from 7.12. It follows that γ is an isomorphism.

α in 7.16 was choosen to be the image under F of the unique isomorphism b (again, by 7.12, but now

76

in C) such that the diagram below commutes

Hom(X,Y)⊗X Y

X∨ ⊗ Y ⊗X

evX,Y

b⊗id
ev1

X,Y

Since F preserves isomorphisms, F (b) = α is an isomorphism. Applying F to the commutative diagram
above, we again get a commutative diagram

F (Hom(X,Y)⊗X) FY

F (X∨ ⊗ Y ⊗X)

F (evX,Y)

F (b⊗id)
F (ev1

X,Y)

By naturality of c, we also get the following diagram

F (X∨ ⊗ Y)⊗′ FX F (X∨ ⊗′ Y ⊗X)

F (Hom(X,Y))⊗′ FX F (Hom(X,Y)⊗X)

c

α⊗id F (b⊗id)

c

Then we have

F (evX,Y) ◦ F (b⊗ id) = F (ev1X,Y)

⇐⇒ F (evX,Y) ◦ c ◦ α⊗ id ◦ c−1 = F (ev1X,Y)

⇐⇒ F (evX,Y) ◦ c ◦ α⊗ id = F (ev1X,Y) ◦ c

By (7.18) we have F (ev1X,Y) ◦ c = ev2
′

FX,FY ◦γ ⊗ id. Hence the rightmost diagram in diagram (7.16)
commutes, so by lemma 7.16 the leftmost diagram commutes. Since β, γ, α are isomorphisms, it follows
that FX,Y is an isomorphism.

Definition 7.17. A tensor functor (7.1) (F, c) : (C,⊗) → (C′,⊗′) is a tensor equivalence (or an
equivalence of tensor categories) if F : C → C′ yields an equivalence of categories (2.3).

Proposition 7.18. Let (F, c) : (C,⊗) → (C′,⊗′) be a tensor equivalence (7.17). Then there exists a
tensor functor (F ′, c′) : C′ → C and isomorphisms of functors F ′ ◦ F ⇒ idC and F ◦ F ′ ⇒ idC′ that
commutes with tensor products. □

77

8 Morphism of tensor functors

Definition 8.1. Let (F, c), (G, d) : C ⇒ C′ be tensor functors (7.1). Then we say that a morphism
of tensor functors (F, c) → (G, c′) is a natural transformation λ : F ⇒ G such that, for all finite
index sets I, and families (Xi)i∈I of objects Xi ∈ C, the following diagram commutes

⊗
i∈I

F (Xi) F

(⊗
i∈I

Xi

)

⊗
i∈I

G(Xi) G

(⊗
i∈I

Xi

)

c

⊗
i∈I

λXi

λ ⊗
i∈I

Xi

d

(8.1)

[10] points out, that it is enough to require that (8.1) is commutative when I = {1, 2} or when I is the
empty set. If I = ∅, then 8.1 becomes

1′ F (1)

1′ G(1)

≃

λ1

≃

(8.2)

We see that when (8.2) commutes, and α : 1′ ≃−→ F (1) and β : 1′ ≃−→ G(1), with id1′ : 1′ → 1′ we have
that λ1 = (β ◦ id1) ◦ α−1 so that λ1 is an isomorphism.

Definition 8.2. Hom⊗(F,G) := {λ | λ is a morphism of tensor functors}.

Proposition 8.3. Let (F, c), (G, d) : C ⇒ C′ be tensor functors (7.1). If C and C′ are rigid tensor
categories (6.1), then every morphism of tensor functors (8.1) λ is an isomorphism.

Proof. We give a proof sketch for how to proceed. The natural transformation µ : G⇒ F making the
following diagram commute

F (X∨) G(X∨)

F (X)∨ G(X)∨

λX∨

≃ ≃

t(µX)

(8.3)

for all X ∈ C is an inverse of λ. Recall that in a rigid tensor category, each object is of the form X∨,
so we can assume that all objects are of the form X∨, so that λX∨ = λX since (X∨)∨ = X (up to
canonical isomorphism).

We have seen, in the proof of (7.2), that a tensor functor (7.1) of rigid (6.1) tensor categories C,C′,
preserve duality ; i.e. if X is a dualizable object, then F (X) is a dualizable. So, suppose we are given
λ : F ⇒ G, such that λ is a morphism of tensor functors, that is, fulfills the condition given in 8.1.

78

Let X be a dualizable object. We claim that λX : F (X) → G(X) is invertible, with inverse the
transpose tλX∨ : G(X∨) → F (X∨).

Let ev : X∨ ⊗ X → 1 and ϵ : 1 → X ⊗ X∨ be the duality data for X. Furthermore, let cF,X,Y :

F (X) ⊗′ F (Y)
≃→ F (X ⊗ Y) and cG,X,Y : G(X) ⊗′ G(Y) → G(X ⊗ Y) be the natural isomorphisms

coming from 7.1 for F,G respectively. Let aF : 1′ ∼=→ F (1) and aG : 1′ ∼=→ G(1) be the unique
isomorphism between identity objects in C′, coming from 2.23.

As in [17], we get the following diagram

1′ ⊗′ GX GX

(1)′ (1)

F (1)⊗′ GX G(1)⊗′ GX G(1⊗X) GX GX

(2) (3) (4)

F (X ⊗X∨)⊗′ GX G(X ⊗X∨)⊗′ GX G(X ⊗X∨ ⊗X) G(X ⊗ 1) (5) GX ⊗′ 1′ (6) FX

(7) (8) (9)

F (X)⊗′ F (X∨)⊗′ GX GX ⊗′ G(X∨)⊗′ GX GX ⊗′ G(X∨ ⊗X) GX ⊗′ G(1) (13) FX ⊗′ 1′

(2)′ (11) (12)

F (X)⊗′ G(X∨)⊗′ G(X) FX ⊗′ G(X∨ ⊗X) FX ⊗′ G(1)

aG⊗idGX

aF⊗idGX

l′GX

G(l′GX)

idGX

λ1⊗idGX

F (ϵ)⊗′idGX

cG

G(ϵ)⊗′idGX G(ϵ⊗idX)

idGX

λX⊗X∨⊗′idGX

c−1
F ⊗′idGX

cG

c−1
G ⊗′idGX

G(1⊗evX)

G(r−1
X) r′−1

GX

λX

λX⊗′λX∨⊗′idGX

idFX ⊗λX∨⊗idGX

idGX ⊗′cG

cG

idGX ⊗′G(ev)

cG idGX ⊗′a−1
G λX⊗′id1′

r′−1
FX

idFX ⊗′cG

λX⊗id⊗ id

idFX ⊗′G(ev)

λX⊗′id λX⊗′idGX
idFX ⊗′a−1

G

(8.4)

We then see that

• (1) commutes by 7.1.

• (1)′ commutes by 8.2.

• (2) commutes by naturality of λ.

• (2)′ commutes by bifunctoriality of ⊗.

• (3) commutes by naturality of cG.

• (4) commutes by the snake equation (5.13), if we unpack the suppressed ϕ, and functoriality of
G.

• (5) commutes by 7.1.

• (6) commutes by naturality of r′.

• (7) commutes by the constraint 8.1.

• (8) commutes by the structural constraint for tensor functors in 7.1 (one has to “unpack” the
suppressed associators ϕ and F (ϕ) to see this).

79

• (9) commutes by naturality of cG.

• (11), (12) commutes by naturality of λ.

• (13) commutes by bifunctoriality of ⊗.

It follows that the diagram above commutes. Then we see that, if we follow the outer perimeter of
the diagram, by (5.21) and (7.6), we have λX ◦ (id⊗ ev′G(X)) ◦ (id⊗λX∨ ⊗ id) ◦ (ϵ′FX ⊗ id) = id, but

(id⊗ ev′G(X)) ◦ (id⊗λX∨ ⊗ id) ◦ (ϵ′FX ⊗ id) = t(λX∨) so that λX ◦ t(λX∨) = id.

According to [17], a similar diagram shows that t(λX∨) ◦ λX = id.

9 Tensor subcategories

Recall the definition of 1.16.

Definition 9.1. A subcategory D of C is called replete if for any D ∈ D, we have that if f : D ∼= Y
for f ∈ HomC(D,Y), then Y ∈ D and f ∈ HomD(D,Y).

Definition 9.2. Let C be a category. We say that a subcategoryD of C is a strictly full subcategory
if D is full, and replete.

Definition 9.3. Let D be a strictly full subcategory of a tensor category C. We call D a tensor
subcategory of C if it is closed under finite tensor-products. That is, if A,B ∈ D =⇒ A⊗ B. One
could also define D as a tensor subcategory if it contains an identity object for C, and if A ⊗ B ∈ D

whenever A,B ∈ D.

Definition 9.4. Let (C,⊗) be a rigid tensor category. Then we call a tensor subcategory D a rigid
tensor subcategory if for all objects D in D, one has that D∨ is in D.

Subcategories that fit the descriptions of either 9.2 or 9.3 become tensor categories in their own right,
with the tensor product as bifunctor.

10 Abelian tensor categories

10.1 Buildup; introducing definitions

In this section, we build up the constructions we need, in order to finally be able to define what an
abelian category is. This is a special type of category, modelled on the prototypical example Ab,
where objects are abelian groups and morphisms are group homomorphisms.

Definition 10.1. We call a category C preadditive, if for all objects A,B ∈ C, HomC(A,B) has
the structure of an abelian group, and if there is a composition-operation Hom(A,B)×Hom(B,C) →
Hom(A,C) that is bilinear. What bilinarity amounts to is the following:

• Let f ∈ Hom(B,C) and let g, h ∈ Hom(A,B). Then f ◦ (g + h) = f ◦ g + f ◦ h, where + is the
group-operation in Hom(A,B) on the left hand side, and the group-operation in Hom(A,C) on
the right hand side.

• Let f, g ∈ Hom(B,C) and let h ∈ Hom(A,B). Then (f + g)◦h = f ◦h+ g ◦h (again, with + the

80

group-operation in the obvious respective groups on the left hand side and the right hand side).

Remark 10.2. Another way to phrase definition 10.1 is to say that C is preadditive ⇐⇒ C is enriched
over Ab, in the sense that all hom-sets have the structure of an abelian group, and where composition
is bilinear, in the sense given above.

Definition 10.3. Let C be a category and let A be an object in C. Then the functor F : J → C

defined by F (j) ≡ A for all objects j in J, and F (f) ≡ idA for all morphisms f in J, is the constant
functor at A. We will denote the specified constant functor as ∆A.

Definition 10.4. Let C be a category and F : J → C a diagram, and let A be an object in C, with
constant constant functor ∆A. Let λ : ∆A→ C be a natural transformation. We then call the natural
transformation λ the cone over the diagram F with summit or apex A and the components

(λj : ∆A(j) = A→ F (j))j∈J

the legs of λ.

We get the following commutative diagrams, for each f ∈ HomJ(i, j) with i, j ∈ J

f

i ∆A(i) = A F (i) A

⇝ F (i) F (j)

j ∆A(j) = A F (j)

∆A(f)=idA

λi

F (f)

λi

λj

F (f)

λj

where ⇝ follows from the fact that the leftmost diagram commutes, hence we have

λj ◦ idA = F (f) ◦ λi
⇐⇒ λj = F (f) ◦ λi.

We also want to define a dual concept.

Definition 10.5. Let F : J → C be a diagram, let A be an object in C and let λ : F → ∆A be a natural
transformation. We call λ a cone under F with nadir A and legs (λj : F (j) → ∆A(j) = A)j∈J.

We find the following commutative diagrams, for each f ∈ Mor(J)

81

f

i F (i) ∆A(i) = A F (i) F (j)

⇝ A

j F (j) ∆A(j) = A

F (f)

λi

∆A(f)=idA

λi

F (f)

λj

λj

where idA ◦λi = λi so that

idA ◦λi = λj ◦ F (f)
⇐⇒ λi = λj ◦ F (f).

Example 10.6. As in [13], to illustrate 10.4, let F be a functor indexed by the poset-category (Z,≤).
Then a cone over F with summit c consists of morphisms (λn : c→ F (n))n∈Z, so that for each pair
λm, λn with n ≤ m, and morphism F (n) → F (m), their respective triangles in the diagram below,
commutes

c

. . . F (−2) F (−1) F (0) F (1) F (2) . . .

λ−2 λ−1 λ0 λ1 λ2
... ...

Example 10.7. To illustrate 10.5, we again take the poset (Z,≤) with morphisms (λn : F (n) → c)n∈Z,
where, for each pair of objects n,m ∈ Z such that n ≤ m, morphisms λn, λm, and F (n) → F (m), the
triangle they constitute in the diagram below, commutes

. . . F (−2) F (−1) F (0) F (1) F (2) . . .

c

λ−2 λ−1 λ0 λ1 λ2
... ...

We are now ready to define limits and colimits.

82

Definition 10.8. Assume that J is small and C is locally small. Let F : J → C be a diagram (1.20).
Then let

Cone(−, F) : Copp → Set (10.1)

be the functor that sends X ∈ C to the set of cones over F with summit c (recall 10.4).

A limit of F is a representation for Cone(−, F). By 5.6, a limit consists of an object lim F ∈ C together
with a universal cone λ : lim F ⇒ F , called the limit cone, which defines the natural isomorphism

HomC(−, lim F) ≃ Cone(−, F). (10.2)

Definition 10.9. Again, assume that J is small and C is locally small. Let F : J → C be a diagram.
Let

Cone(F,−) : C → Set (10.3)

be the functor that sends X ∈ C to the set of cones under F (see 10.5). Then a colimit of F is a
representation for Cone(F,−). As in 10.8, by 5.6, a colimit consists of an object colim F ∈ C, together
with a universal cone λ : F ⇒ colim F , called the colimit cone, giving us a natural isomorphism

HomC(colim F,−) ≃ Cone(F,−). (10.4)

One might ask what we mean by universal cone in 10.8 and 10.9. The following definition aims to
make this clear.

Definition 10.10. We say that a cone λ : X ⇒ F from the constant functor at X to the functor
F : J → C is universal if for any other cone η : Y ⇒ F (Y again a constant functor), there is a unique
morphism u : X → Y such that for all objects A, ηA factors through u and λA. The diagram below
illustrates what we mean

X

Y

F (A) F (B)

∃!u
ηA ηB

λA λB

F (f)

In the diagram above, we have that

λA ◦ u = ηA

λB ◦ u = ηB

F (f) ◦ λA = λB

holds for arbitrary objects A,B ∈ J.

Dualizing 10.10, we get the following definition.

Definition 10.11. A cone λ : F ⇒ X from the functor F : J → C to the constant functor at X is
universal if for any other cone η : F ⇒ Y (Y again the constant functor at Y), there is a unique
morphism u : Y ⇒ X such that the following diagram commutes

83

F (A) F (B)

Y

X

F (f)

λA

ηA

λB

ηB
∃!u

so that

u ◦ λA = ηA

u ◦ λB = ηB

λB ◦ F (f) = λA.

Definition 10.12. Let X,Y be objects in a category C. Then a (binary) product of X,Y (if it exists),
which one can denote as X × Y , is an object in C, that comes equipped with a pair of morphisms
πX : X × Y → X,πY : X × Y → Y that have the following universal property (5.20):

• For every other object Z ∈ C and every pair of morphisms fX : Z → X and fY : Z → X, there
is a unique morphism f : Z → X × Y such that the following diagram commutes

Z

X X × Y Y

∃!f
fX fY

πYπX

Dualizing 10.12, we get the following definition.

Definition 10.13. Let C be a category and let X,Y ∈ C. Then a (binary) coproduct of X,Y (if it
exists), which we denote as X

∐
Y , is an object in C together with morphisms iX : X → X

∐
Y and

iY : Y → X
∐
Y that satisfies the following universal property :

• For any other object Z, and for every pair of morphisms fX : X → Z and fY : Y → Z, there is
a unique map f such that the following diagram commutes

Z

X X
∐
Y Y

iX

fX ∃!f fY

iY

There is also a definition when 10.12 and 10.13 coincide. To describe this object, we need a few more
definitions.

84

Definition 10.14. Let C be a category, and let f : X → Y be a morphism in C. If for any object
Z ∈ C and any pair of morphisms g, h : Z ⇒ X it holds that f ◦ g = f ◦ h, then we call f a constant
morphism.

Definition 10.15. Let C be a category, and let f : X → Y be a morphism in C. If for any object
Z ∈ C and any pair of morphisms g, h : Y ⇒ Z it holds that g ◦f = h◦f , then we call f a coconstant
morphism.

Definition 10.16. If C is a category, and f : X → Y is a morphism in C that is both a constant
morphism (10.14) and a coconstant morphism (10.15), then we call f a zero morphism.

We can put the above three definitions into the context of a certain property an arbitrary category C

can possess.

Definition 10.17. Let C be a category. Then we say that C is a category with zero morphisms if

• for every pair of objects X,Y ∈ C, there is a zero morphism (10.16) 0XY : X → Y , giving us
what we can call a system 0−,− such that it gives us a zero morphism, for every pair (X,Y) of
objects in C.

• For all objects X,Y, Z and morphisms f : X → Y and g : Y → Z, there is a zero morphism 0XZ
such that the following diagram commutes

X Y

Y Z

f

0XY
0XZ 0Y Z

g

Definition 10.18. Let X,Y be objects in C, for a category C, and let C be a category with zero
morphisms (10.17). Then we say that X ⊕ Y (if it exists) is a binary biproduct if it holds that

• There are projection morphisms πX : X ⊕ Y → X,πY : X ⊕ Y → Y , together with embedding
morphisms iX : X → X ⊕ Y, iY : Y → X ⊕ Y satisfying

(a) πX ◦ iX = idX .

(b) πX ◦ iY = 0XY .

• (X ⊕ Y, πX , πY) is a product (10.12).

• (X ⊕ Y, iX , iY) is a coproduct (10.13).

Definition 10.19. A equalizer of a parallel pair of morphisms f, g : X ⇒ Y is a system
(E, e : E → X) such that the following holds:

• f ◦ e = g ◦ e.

• For any other such system (E′, e′ : E′ → X), there is a unique map u such that e′ = e ◦ u. Or,

85

in diagrammatic form, as

E X Y

E′

e
f

g

∃!u
e′

Definition 10.20. A coequalizer of a parallel pair of morphisms f, g : X ⇒ Y is a system
(Q, q : Y → Q) such that the following holds:

• q ◦ f = q ◦ g.

• Given any other pair (Q′, q′ : Y → Q′) with the same property, there is a unique morphism
u : Q→ Q′ such that q′ = u ◦ q. This is usally written in diagrammatic form as

X Y Q

Q

f

g

q

q′

∃!u

Definition 10.21. Let C be a category with zero morphisms (10.17). Let f : X → Y be an arbitrary
morphism in C. Then we say that a kernel of f is an object K and a morphism k : K → X, defining
a pair (K, k), such that the following holds:

• The following diagram commutes

X

K Y

f

0KY

k

so that f ◦ k = 0KY .

• Let k′ : K ′ → X be any other morphism such that f ◦ k′ = 0K′Y . Then there is a unique
morphism u such that the following diagram commutes

X

K Y

K ′

f
k

0KY

∃!u

0K′Y

k′

86

k then has the property of being a monomorphism. It is easy to show that any two kernels (K, k) and
(K ′, k′) of f then gives rise to a canonical isomorphism K ∼= K ′, via the induced unique maps u, v
that comes from the diagram above (v induced from permuting the two systems of kernels of f in the
diagram above).

In for example an abelian category (see 10.24), we can also more succintly define ker(f) as eq(f, 0X,Y),
the equalizer (10.19) of f and 0X,Y .

Dualizing 10.21, we get the following definition.

Definition 10.22. Let C be a category with zero morphisms (10.17), and let f : X → Y be an
arbitrary morphism. Then the cokernel of f is an object Q together with a morphism q : Y → Q
such that the following holds:

• The following diagram commutes

Y

X Q

q
f

0XQ

such that q ◦ f = 0XQ.

• For any other object Q′ and morphism q′ : Y → Q′ in C such that q′ ◦ f = 0XQ′ , there exists a
unique morphism u : Q→ Q′ such that the following diagram commutes

Y

X Q

Q′

q

q′

f

0XQ

0XQ′

∃!u

The map q then also has the property of being an epimorphism. In a similar fashion as we mentioned
for the kernel, it is then easy to see that there is an induced canonical isomorphism Q ∼= Q′ for any
two systems of cokernels (Q, q) and (Q′, q′) of f , coming from the existence of unique maps u, v in the
diagram above (by just permuting the two systems we get a unique v : Q′ → Q).

In for example an abelian category (see 10.24), we can also more succintly define coker(f) as coeq(f, 0X,Y),
the coequalizer (10.20) of f and 0X,Y .

Remark 10.23. If each morphism f : X → Y in C has a kernel (10.21) and cokernel (10.22), then we
say that C has all kernels and cokernels.

87

10.2 Completion; the definition of an abelian category

Definition 10.24. We call a category C an abelian category if

1) It has a zero object (1.24).

2) It has all binary biproducts (10.18).

3) It has all kernels (10.21) and cokernels (10.22).

4) Every monomorphism (1.18) is the kernel of some morphism, and every epimorphism (1.19) is
the cokernel of some morphism.

10.3 Additive categories; Abelian tensor categories; End(1)

After some interlude exploring abelian categories, we will specifically look at abelian tensor categories.
We will assume that such categories are additive. To say what we mean by additive, we first introduce
a related notion.

Definition 10.25. We say that a category C admits all finitary products if for any finite set of
objects X1, . . . , Xn ∈ C (n ∈ Z>0), there is an object X1 × . . .×Xn ∈ C.

Definition 10.26. Let C be a preadditive (10.1) category. Then we say that C is additive if C admits
all finitary products (10.25).

Definition 10.27. If C is an abelian category (10.24), then we call a sequence

· · · −−−→
fn+2

Xn+1 −−−→
fn+1

Xn −→
fn

Xn−1 −−−→
fn−1

Xn−2 −−−→
fn−2

· · ·

exact if ker(fn) = im(fn+1).

Lemma 10.28. Right adjoints (7.8) preserve limits (10.8).

Proof. [13, Theorem 4.5.2].

Dualizing 10.28, we get the following corollary.

Corollary 10.29. Left adjoints preserves colimits.

Proposition 10.30. Let (C,⊗) be a rigid tensor category (6.1). If C is abelian (10.24), then ⊗ is
biadditive and commutes with direct and inverse limits in each variable; in particular, it is exact in
each variable.

Proof. As we have seen, Hom(X ⊗ Y, Z) ≃ Hom(X,Hom(Y,Z)) for all objects X,Y, Z ∈ C (since by
rigidity, Hom(X,Y) exists for all pairs of objects X,Y ∈ C), so −⊗ Y has a right adjoint Hom(Y,−).
By 10.29, it follows that −⊗ Y preserves colimits.

We also want to show that −⊗ Y has a left-adjoint. We consider

Hom(X ⊗ Y ∨,W) ≃ Hom(X,Hom(Y ∨,W))

≃ Hom(X,Y ⊗W)

≃ Hom(X,W ⊗ Y),

88

where the last canonical isomorphism above is using the functorial isomorphism

ψA,B : A⊗B → B ⊗A (∀A,B ∈ C).

We have also used that in a rigid abelian tensor category, all objects X ∈ C are of the form Z∨ for
some Z ∈ C and that Hom(X,Y) ≃ X∨ ⊗ Y . Hence − ⊗ Y has a left-adjoint − ⊗ Y ∨, so preserves
limits.

Furthermore, we note that

Hom(Hom(X∨, Y ∨), Z) ≃ Hom(X ⊗ Y ∨, Z)

≃ Hom(X,Hom(Y ∨, Z))

≃ Hom(X,Y ⊗ Z),

so that Y ⊗− has a left-adjoint Hom(−, Y ∨). Hence Y ⊗− preserves limits.

We also have

Hom(Y ⊗X,Z) ≃ Hom(X ⊗ Y,Z)

≃ Hom(X,Hom(Y,Z)).

so that Y ⊗− has a right adjoint Hom(Y,−), and so preserves colimits.

It follows that ⊗ is exact in both variables. And this in turn implies that −⊗− : C×C → C is additive
(see e.g. [16]).

We will introduce two definitions of the image (in a categorical setting) of a morphism f . We start
with the most general definition.

Definition 10.31. Let C be a category, and let f : X → Y be an arbitrary morphism. Then the
image of f , denoted im(f), if it exists, is defined as a monomorphism m : I → X from some object I,
such that:

• There exists some morphism e : X → I such that f = m ◦ e.

• m satisfies the universal property that if there is some other morphism e′ : I ′ → X such that
f = m ◦ e′, then there is a unique map v such that m = m′ ◦ v.

Pictorially, we represent this as

X Y

I

I ′

f

e m

∃!v

In an abelian category, we can define the image as given below, although when suitable, we use the
general definition given above.

89

Definition 10.32. In an abelian category C, we define the image, im(f), of a morphism f as the
kernel of its cokernel, im(f) = ker(coker(f)).

Definition 10.33. An additive functor F : C → D between additive tensor categories C,D is a
functor fulfilling any of the two equivalent definitions below (cf. [16]):

1. F (X ⊗ Y) ∼= F (X)⊗ F (Y) (∀X,Y ∈ C).

2. F (X)⊗ F (Y) ∼= F (X ⊗ Y) (∀X,Y ∈ C).

Definition 10.34. Let C be an abelian category. Then a short exaqt sequence is a sequence

0 → X
f−→ Y

g−→ Z → 0

such that im(f) = ker(g) and the sequence is exact at X,Y, Z.

Definition 10.35. A subobject X of an object Y ∈ C is a monomorphism X ↪−→ Y .

Proposition 10.36. Let (C,⊗) be a rigid abelian tensor category. If U is a subobject of 1, then
1 = U ⊕ U⊥. Therefore, 1 is a simple object if End(1) is a field.

Remark 10.37. In 10.36, we have U⊥ := ker(1 → U∨).

Proof. By assumption, we have a monomorphism ι : U ↪−→ 1. We let V = coker(ι).

We consider

0 −→ U
ι
↪−→ 1

q
↠ V −→ 0. (10.5)

Here, p is the map associated with the cokernel V . It follows that p ◦ ι = 0UV . In an abelian category,
we have im(ι) = ker(coker(ι)), but coker(ι) = p so that im(ι) = ker(p).

By 10.30 we know that tensoring with −⊗ U is exact, hence we get a short exact sequence

0 → U ⊗ U → U ⊗ 1 → U ⊗ V → 0.

Since right adjoints preserve monomorphisms, we see that tensoring U ↪−→ 1 with T ⊗−, for any object
T , gives us a monomorphism T ⊗ U → T ⊗ 1 ≃ T , and since every isomorphism is mono and epi, it
follows that the composite of the canonical isomorphism with the induced (from tensoring) mono is
mono. So, in particular, tensoring U ↪−→ 1 with U ⊗ − gives us a mono U ⊗ U ↪−→ U , and tensoring
U ↪−→ 1 with V ⊗− gives us a mono v : V ⊗ U ↪−→ V ⊗ 1 ≃ V .

Consider the following diagram

U 1 V

U ⊗ U U V ⊗ U

ι p

ι′

ι′ ι

p′

0UV v

(10.6)
where i′, p′ are the induced maps from tensoring with −⊗U (up to natural isomorphism U ⊗ 1 ≃ U).
Both the lower and upper sequence is exact, and it is clear that the leftmost diagram commutes. That

90

the righthand square commutes follows by the diagram below, where the rightmost upper diagram
and lower leftmost diagrams commutes by naturality, and the lower rightmost diagram commutes by
bifunctoriality.

1 V

1 1⊗ 1 V ⊗ 1

U 1⊗ U V ⊗ U

p

l1 p⊗id

≃ ≃

ι

lU p⊗id

id⊗ι id⊗ι

Note that v is a monomorphism, so that since v ◦ p′ = 0, it follows that p′ = 0. Therefore, (using that
p′ is epi) any distinct two maps g, h : V ⊗ U → D, for arbitrary D, are such that

g ◦ p = h ◦ p
= 0.

This in turn implies that there is a unique map V ⊗ U → V ⊗ U , and this must be the zero map!
Therefore, V ⊗ U = 0. We also note that U ⊗ U is a subobject of 1 ≃ 1 ⊗ 1 (a composition of
monomorphisms is a monomorphism!). Since we then have an exact sequence 0 → U ⊗ U → U → 0,
this implies that im(ι′) = ker(0), but ker(0) = id, and im(ι′) = ι′ if ι′ is a monomorphism, hence ι′ is
an isomorphism, such that ι ◦ ι′ = ϕ, where ϕ : U ⊗ U ↪−→ 1. Hence U ⊗ U = U as subobjects of 1.

We claim that T ⊗ U = 0 ⇐⇒ T ⊗ U → T is zero. ⇐= follows from the fact that T ⊗ U → T is
mono, and any mono which is the zero-morphism must have 0 as domain, hence T ⊗ U = 0. =⇒
follows by definition.

Furthermore, we have the following sequence of natural isomorphisms:

Hom(T ⊗ U, T) ≃ Hom(T ⊗ U ⊗ T∨,1)

≃ Hom(T,U∨ ⊗ T).

where the first (natural) isomorphism comes from Hom(T,X∨) ≃ Hom(T ⊗ X,1), and the second
one comes from noting that U∨ ⊗ T ≃ Hom(U, T) (by rigidity), and so that Hom(T ⊗ U, T) ≃
Hom(T,Hom(U, T)).

So we in fact have the following equivalences

T ⊗ U = 0 ⇐⇒ T ⊗ U → T is zero ⇐⇒ T → U∨ ⊗ T is zero (10.7)

The above set of equivalences comes from that the associated natural isomorphism respects the Ab-
enrichment, hence are abelian group homomorphism. It follows that a zero-map must be sent to zero,
just as was written in (10.7).

91

Taking arbitrary object X ∈ C, and subobject T of X, then if we postcompose Hom(T,U∨ ⊗ T) with
idU∨ ⊗ι, where ι : T ↪−→ X identifies T as a subobject of X, it follows that if T → U∨ ⊗ T is zero
⇐⇒ T → U∨ ⊗X is zero (since post-composition is an abelian group homomorphism). In fact, the
kernel of f : X → U∨ ⊗ X must be the largest subobject T (with mono ι : T ↪−→ X) of X such that
f ◦ ι = 0. It follows that

T = ker(X → U∨ ⊗X).

Then we have (since im(ι) = ι for a monomorphism in an abelian category) an SES

0 → U⊥ → 1 → U∨ → 0.

Upon tensoring with −⊗X, which is exact by 10.30, we get an SES

0 → U⊥ ⊗X → 1⊗X ≃ X → U∨ ⊗X → 0.

Then we see that U∨ ⊗X ≃ T as subobjects of X. If we let X = V , then we see that U∨ ⊗ V ≃ V ,
since V ⊗ U = 0, so that T = V .

If we instead let X = U , and noting that U ⊗ U = U , we see that T ≃ U⊥ ⊗ U so

T ⊗ U = 0

⇐⇒ (U⊥ ⊗ U)⊗ U = 0

⇐⇒ U⊥ ⊗ (U ⊗ U) = 0

⇐⇒ U⊥ ⊗ U = 0.

Upon tensoring (10.5) with U⊥ ⊗− we get an exact sequence

0 → U⊥ ⊗ U → U⊥ → U⊥ ⊗ V → 0.

Since U⊥ ⊗ U = 0, it follows that ker(U⊥ → U∨ ⊗ V) is a monomorphism (since its kernel is zero by
exactness at U⊥). Since U⊥ → U⊥ ⊗ V is also an epimorphism, it follows that

U⊥ ∼= U⊥ ⊗ V

= V,

where the last equality comes from our earlier result. One should then show that U ⊗ U⊥ ∼= 1.

Lemma 10.38. An exact functor F : C → D between abelian categories C,D preserves images.

Proof. Note that an exact functor F : C → D between abelian categories preserves kernels and
cokernels, and that im(f) = ker(coker(f)), hence

F (im(f)) = F (ker(coker(f))

= ker(coker(F (f))

= im(F (f)).

92

One property of additive functors F : C → D between abelian categories, is that they act like group
homomorphism, in the sense that if f, g ∈ Mor(C), then

F (f) = F (g)

⇐⇒ F (f)− F (g) = 0

⇐⇒ F (f − g) = 0.

Proposition 10.39. Let F : C → D be an exact functor between abelian categories. Then

F (X) = 0 =⇒ X = 0 (∀X ∈ C)

implies that F is faithful.

Proof. Note that

F (f) = F (g)

F (f − g) = 0.

We want to show that if FX = 0 =⇒ X = 0, then

F (f − g) = 0

=⇒ f − g = 0

⇐⇒ f = g.

Lemma 10.40. If C is an abelian category, then for arbitrary morphism f : X → Y in C, it holds that

f = 0 ⇐⇒ im(f) = 0.

Proof. If f = 0, then one finds that coker(f) = id, and in turn that ker(id) = 0. Since im(f) =
ker(coker(f)), it follows that im(f) = 0.

On the other hand, if im(f) = 0, then from 10.31, we see that f factors as

f = 00,Y ◦ 0X,Y
= 0X,Y .

Hence f = 0.

Therefore,

F (f) = 0

⇐⇒ im(F (f)) = 0 (by 10.40)

⇐⇒ F (im(f)) = 0 (by 10.38)

im(f) = 0

f = 0.

(10.8)

Here, we have used that im(F (f)) = F (im(f)), and that im(F (f)) is a monomorphism. If a monomor-
phism is 0, the domain of the monomorphism is 0. I.e. then we see that the system (im(F (f)),m)
with m mono, is such that im(F (f)) = 0. From our assumption that FX = 0 =⇒ X = 0, then we
see that im(f) = 0, and so f = 0 by 10.40. Hence (10.8).

93

Theorem 10.41. Let (C,⊗), (C′,⊗′) be two rigid abelian tensor categories, and let 1,1′ be identity
objects of C and C′, respectively. If End(1) is a field, and 1′ ̸= 0, then every exact tensor functor
F : C → C′ is faithful.

Proof. Assuming that if End(1) is a field then 1 is a simple object, we want to show that X ̸= 0 ⇐⇒
X ⊗ X∨ → 1 is an epimorphism, and that this is respected by F , and that this implies that F is
faithful, where X ⊗X∨ → 1 is the map ev ◦ψX∨,X . We will just write this as ev going forward.

We claim that the following shows that if X = 0, then X ⊗X∨ → 1 is not an epimorphism. We have
0⊗ 0∨ → 1. Without thinking about what 0∨ is; note that

Hom(0⊗ 0∨,1) ≃ Hom(0,Hom(0∨,1)), (10.9)

and that the latter is the one-element set consisting of the zero morphism. But (10.9) is an isomorphism!
So Hom(0 ⊗ 0∨,1) must consist of the zero morphism 0(0⊗0∨),1 : 0 ⊗ 0∨ → 1. Consider that 00⊗0∨,1

is not an epimorphism, since it is coconstant (10.15) so that we have, for Y ̸= Z, 0Y,0⊗0∨ ◦ 00⊗0∨,1 =
0Z,0⊗0∨ ◦ 00⊗0∨,1 but 0Y,0⊗0∨ ̸= 0Z,0⊗0∨ .

For the other direction, we proceed as in [15]: Assume that ev is not an epimorphism. Then there are
morphisms α, β : 1 → Z such that α ◦ ev = β ◦ ev but α ̸= β. Since we are in an abelian category,
Hom(1, Z) has the structure of an abelian group, so α − β is defined. Then we can form ker(α − β).
Consider the following diagram.

1

ker(α− β) Z

X ⊗X∨

α−β
k

0

ev

0
∃!u

The diagram describes a well-defined situation, since by preadditivity of C, α ◦ ev = β ◦ ev ⇐⇒
(α − β) ◦ ev = 0. Then we see that there is a unique morphism u : X ⊗X∨ → ker(α − β) such that
ev = k ◦ u, where k : ker(α− β) → 1 is a monomorphism (see 10.21). This means that ker(α− β) is a
subobject of 1. By assumption, End(1) is a field, so by 10.30, 1 is a simple object. Therefore, we know
that ker(α− β) = 0 or ker(α− β) = 1.

If ker(α−β) = 1, then k must be an isomorphism, since End(1) is a field. It follows that k ◦ (α−β) =
0 ⇐⇒ (α− β) = k−1 ◦ 0. Since 0 work as the additive identity in an abelian group, we have

k−1 ◦ 0 = k−1 ◦ (0 + 0)

⇐⇒ k−1 ◦ 0 = 0

=⇒ α− β = 0

=⇒ α = β (contradiction!).

So ker(α− β) = 0. Therefore, k : 0 → 1 is the zero morphism.

94

Then we get the following diagram

1

0 Z

X ⊗X∨

α−β
k=0

0

ev

0

∃!u

so that ev = 0◦u. Hence ev must be the zero morphism, since any zero morphism factors as A→ 0 → B

([8, chapter 2, VIII]), so in particular ev : X ⊗X∨
u

−→ 0
k

−→ 1 = 0X⊗X∨,1.

The chain of natural isomorphisms Hom(X⊗X∨,1) ≃ Hom(X∨⊗X,1) ≃ Hom(X∨, X∨) is in fact an
isomorphism of abelian groups1. Note that map between hom-sets defined by pre-or-post-composition
by some map f is an abelian group homomorphism. This explains why the first natural isomorphism
above is a group homomorphism. The second natural isomorphism is an adjunction. We see that
ev 7→ 0 under this isomorphism. This follows from the fact that Hom(X ⊗X∨,1) → Hom(X∨ ⊗X,1)
is explicitly defined by f 7→ f̃ := f ◦ ψ. So Hom(X ⊗ X∨,1) → Hom(X∨ ⊗ X,1) → Hom(X∨, X∨)
maps ev ◦ψ as follows:

ev ◦ψ 7→ ev ◦ψ2 = ev 7→ id .

But recall that ev = 0, hence the identity morphism for X∨ must in fact be the zero-morphism (since
a group homomorphism takes zero to zero). It follows that X∨ is the zero-object. Since C is rigid,
each object is reflexive, so X∨∨ ∼= X =⇒ 0∨ ∼= X. One checks that 0∨ = 0 (using that the associated
evaluation and coevaluation maps are zero-morphisms, together with the snake-identity), hence X = 0.

To prove the theorem, note that X ⊗X∨, F (X ⊗X∨) are internal hom-objects, and that F preserves
the associated counit from X⊗X∨. Therefore, if X ̸= 0, then ev ◦ψ : X⊗X∨ → 1 is an epimorphism,
and F preserves epimorphisms, so F (ev ◦ψ) : F (X ⊗ X∨) → F (1) ∼= 1′ is an epimorphism, and
hence FX ̸= 0. This follows from the fact that if FX = 0, then F (f) would be the zero-morphism
0 → 1′, which is not an epimorphism. The criterion 1′ ̸= 0 ensures that this holds, since otherwise,
we would have that FX = 0 would imply that the counit was the unique map 0 → 0, which must be
an isomorphism, hence epi (this shows why this fails unless 1′ ̸= 0).

But the argument in the preceding paragraph is the contrapositive of FX = 0 =⇒ X = 0. Hence F
is faithful by 10.39.

Definition 10.42. When (C,⊗) is an abelian tensor category, then we say that a family of objects
{Xi}i∈I is a tensor generating family for C, if all objects of C are isomorphic to a subquotient of
P (Xi) for some P (ti) ∈ N[ti]i∈I .

Remark 10.43. Note that P (ti) is some polynomial in the variables ti for i ∈ I, interpreted so that if
e.g. I = {1, 2, 3} with P (ti) = t21 + t2 + t1t3 ∈ N[t1, t2, t3], then

P (Xi) = (X1 ⊗X1)⊕ (X2)⊕ (X1 ⊗X3).

Furthermore, we have an action of R := End(1) on objects X in C as in the diagram below.

1See e.g. [19].

95

1 X 1⊗X

⇝

1 X 1⊗X

φ

lX

ψ φ⊗id

l−1
X

where ψ := l−1
X ◦ φ⊗ id ◦lX ∈ End(X). So we have an action A : R×X → X defined so that

A(φ,−) : X → X.

For arbitrary f ∈ End(X) and ψ induced from A, we have

f ◦ ψ = f ◦ (l−1
X ◦ φ⊗ id ◦lX)

= l−1
X ◦ id⊗f ◦ φ⊗ id ◦lX

= l−1
X ◦ φ⊗ id ◦ id⊗f ◦ lX

= (l−1 ◦ φ⊗ id ◦lX) ◦ f
= ψ ◦ f,

where we have used naturality of l, l−1 and bifunctoriality of ⊗. By applying this with X = 1, and
using the commutativity of the diagram below

1 1⊗ 1

1 1

l1=e

φ φ⊗id

l−1
1 =e−1

then we see that R = End(1) is in fact a commutative ring.

Remark 10.44. To see that R is a ring, note that R has an abelian group structure coming from the
Ab-enrichment, and ◦ acts as multiplication, with id1 the multiplicative identity.

If we let f : A → B be an arbitrary morphism in an abelian tensor category (C,⊗), and r ∈ R, then
we can define

r · f := l−1
Y ◦ (r ⊗ f) ◦ lX : X → Y.

By biadditivity of ⊗ and the left and right distributivity of ◦, this defines an action of R on the
hom-sets of (C,⊗). For example, we note that, again for arbitrary morphism f : X → Y , we have

id1 ·f = l−1
Y ◦ (id⊗f) ◦ lX = f

by naturality of l. This endows HomC(A,B) with an R-module structure.

96

One checks that the action defined is such that ◦ is R-bilinear with respect to it. For example, if r ∈ R
and f : X → Y and g : Y → Z, then

(r · g) ◦ f = l−1
Z ◦ (r ⊗ g) ◦ lY ◦ f

= l−1
Z ◦ (r ⊗ g) ◦ (id1 ⊗f) ◦ lX

= l−1
Z ◦ (r ⊗ gf) ◦ lX

= r · (g ◦ f),

where we have used naturality of l and bifunctoriality of ⊗.

11 Criterion for rigid abelian tensor categories

Definition 11.1. Let Vectk denote the category consisting of objects as finite-dimensional vector
spaces over a field k, with morphisms as linear maps.

As in [10], we present the following proposition, which characterizes rigid abelian tensor categories.

Proposition 11.2. Let C be a k-linear abelian tensor category, such that k is a field, and let ⊗ : C×C →
C be a k-bilinear functor. Suppose that we have an exact, k-linear, faithful functor F : C → Vectk,
a natural isomorphism ϕX,Y,Z (associator), and a natural isomorphism ψX,Y (commutator) such that
the following holds:

(a) F ◦ ⊗ = ⊗ ◦ (F × F).

(b) F (ϕX,Y,Z) is the associativity isomorphism in Vectk.

(c) F (ψX,Y) is the commutativity isomorphism in Vectk.

(d) There exists an identity object U in C, such that k → End(U) is an isomorphism, and F (U) has
dimension one.

(e) If F (L) has dimension one, then there is an object L−1 ∈ C such that L⊗ L−1 = U .

Then it follows that (C,⊗, ϕ, ψ, U) is a rigid abelian tensor category. □

12 Main theorem

We arrive at the main theorem of this article, as presented in [10]. We will not prove this theorem,
only state it. We will introduce two more definitions, before stating the theorem.

Definition 12.1. A rigid abelian tensor category C with k = End(1) a field, is called a neutral
tannakian category over k, if it admits an exact, faithful, k-linear tensor functor (7.1) ω : C → Vectk.

Definition 12.2. Any such functor ω as in 12.1 is called a fibre functor.

Theorem 12.3. Let (C,⊗) be a rigid (6.1), abelian (10.24) tensor category, such that End(1) = k,
for a field k, and let ω : C → Vectk be an exact, faithful, k-linear tensor functor. Then the functor
C → Repk(G) defined by ω, is an equivalence of categories.

Proof. See [10, theorem 2.11.(b), p. 21].

97

Remark 12.4. Although we did state in our introduction that G was some group, G in 12.3 is really
some affine algebraic group scheme.

What the statement above then claims, is that any neutral tannakian category C that admits a fibre
functor from C to Vectk induces an equivalence of categories between C and the category of linear
representations of some affine algebraic group scheme G, on finite dimensional k-vector spaces.

References

[1] Gregory Arone (https://mathoverflow.net/users/6668/gregory-arone). Question about references
for proof of Proposition 1.3 in P. Deligne & J.S. Milne's article on "Tannakian
Categories" eprint: https://mathoverflow.net/q/461729. url: https://mathoverflow.
net/q/461729.

[2] Daniël Apol. Tensor functors on rigid categories. Mathematics Stack Exchange. url: https:
//math.stackexchange.com/q/4932534.

[3] J. Baez and M. Stay. “Physics, Topology, Logic and Computation: A Rosetta Stone”. In: New
Structures for Physics. Springer Berlin Heidelberg, 2010, pp. 95–172. isbn: 9783642128219. doi:
10.1007/978-3-642-12821-9_2. url: http://dx.doi.org/10.1007/978-3-642-12821-9_2.

[4] Pierre Deligne. “Categories tannakiennes”. In: The Grothendieck Festschrift. Vol. II. Progr. Math.
Boston, MA: Birkhäuser Boston, 1990, pp. 111–195.

[5] David Steven Dummit and Richard M. Foote. Abstract algebra. 3rd. Wiley; Sons, 2004.

[6] P. Etingof et al. Tensor Categories. Mathematical Surveys and Monographs. American Math-
ematical Society, 2016. isbn: 9781470434410. url: https://books.google.se/books?id=
Z6XLDAAAQBAJ.

[7] Chris Heunen and Jamie Vicary. Categories for Quantum Theory: An Introduction. Oxford, Nov.
2019. doi: 10.1093/oso/9780198739623.001.0001.

[8] Saunders Mac Lane. Categories for the working mathematician. 2nd. Graduate Texts in Mathe-
matics 5. Republication of 1971 original. MR:1712872. Zbl:0906.18001. New York: Springer, 1998,
pp. xii+314. isbn: 9780387984032.

[9] Saunders Mac Lane. “Natural associativity and commutativity”. In: Rice Univ. Studies 49.4
(1963), pp. 28–46.

[10] James Milne and Pierre Deligne. Tannakian Categories. 2018. url: https://www.jmilne.org/
math/xnotes/tc2018.pdf.

[11] nLab authors. internal hom. https://ncatlab.org/nlab/show/internal+hom. Revision 76.
Apr. 2024.

[12] nLab authors. rigid monoidal category. https://ncatlab.org/nlab/show/rigid+monoidal+
category. Revision 25. Apr. 2024.

[13] E. Riehl. Category Theory in Context. Aurora: Dover Modern Math Originals. Dover Publica-
tions, 2017. isbn: 9780486820804. url: https://books.google.se/books?id=6B9MDgAAQBAJ.

[14] N.S. Rivano. Catégories tannakiennes. Lecture notes in mathematics. Springer-Verlag, 1972.
isbn: 9780387058443. url: https://books.google.se/books?id=ifNUAAAAYAAJ.

[15] Alex Saad. Epimorphisms and faithful functors in a rigid abelian tensor category. Mathematics
Stack Exchange. url: https://math.stackexchange.com/q/1755986.

[16] The Stacks project authors. The Stacks project. https://stacks.math.columbia.edu. 2024.
url: https://stacks.math.columbia.edu/tag/010M.

[17] Todd Trimble. Morphism between tensor functors. Dec. 2012. url: https://ncatlab.org/
toddtrimble/published/Morphisms+between+tensor+functors.

98

https://mathoverflow.net/q/461729
https://mathoverflow.net/q/461729
https://mathoverflow.net/q/461729
https://math.stackexchange.com/q/4932534
https://math.stackexchange.com/q/4932534
https://doi.org/10.1007/978-3-642-12821-9_2
http://dx.doi.org/10.1007/978-3-642-12821-9_2
https://books.google.se/books?id=Z6XLDAAAQBAJ
https://books.google.se/books?id=Z6XLDAAAQBAJ
https://doi.org/10.1093/oso/9780198739623.001.0001
https://www.jmilne.org/math/xnotes/tc2018.pdf
https://www.jmilne.org/math/xnotes/tc2018.pdf
https://ncatlab.org/nlab/show/internal+hom
https://ncatlab.org/nlab/revision/internal+hom/76
https://ncatlab.org/nlab/show/rigid+monoidal+category
https://ncatlab.org/nlab/show/rigid+monoidal+category
https://ncatlab.org/nlab/revision/rigid+monoidal+category/25
https://books.google.se/books?id=6B9MDgAAQBAJ
https://books.google.se/books?id=ifNUAAAAYAAJ
https://math.stackexchange.com/q/1755986
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu/tag/010M
https://ncatlab.org/toddtrimble/published/Morphisms+between+tensor+functors
https://ncatlab.org/toddtrimble/published/Morphisms+between+tensor+functors

[18] Luke Trujillo. ”A Coherent Proof of Mac Lane’s Coherence Theorem” (2020). HMC Senior
Theses. 243. https://scholarship.claremont.edu/hmc theses/243.

[19] Eric Wofsey. Adjunction in Abelian Categories. Mathematics Stack Exchange. url: https://
math.stackexchange.com/q/4326798.

99

https://math.stackexchange.com/q/4326798
https://math.stackexchange.com/q/4326798

	Prelude
	Introduction
	Preliminaries; Categories
	Some special objects of interest, in categories
	Natural transformations

	Tensor categories
	Representations of a group G
	Tensor categories, again

	Iterates, Extensions
	Coherence in tensor categories

	Invertible objects
	Internal Hom
	`3́9`42`"̇613A``45`47`"603AHom(A,-) and `3́9`42`"̇613A``45`47`"603AHom(-,A)
	Representable functors, presheafs, and internal-hom adjunctions
	Duals

	Rigid tensor categories
	Tensor functors
	Morphism of tensor functors
	Tensor subcategories
	Abelian tensor categories
	Buildup; introducing definitions
	Completion; the definition of an abelian category
	Additive categories; Abelian tensor categories; `3́9`42`"̇613A``45`47`"603AEnd(1)

	Criterion for rigid abelian tensor categories
	Main theorem

