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Abstract

The emergence of quantum computers threatens the security of many current public key cryptosystems
(PKCs) by enabling quantum algorithms that can break them. Post-quantum cryptography (PQC)
seeks to address this challenge with both innovative and time-tested cryptographic systems. Among
these is the McEliece Key Encapsulation Mechanism (KEM), which utilizes Goppa codes, a type of
error-correcting code with a long history of security. This paper will explore the construction of Goppa
codes, the implementation of the McEliece KEM, and an analysis of information set decoding—the most
extensively studied attack method against these systems. Additionally, we will discuss the implications
of quantum algorithms on the security of McEliece KEM.

Abstract

Framväxten av kvantdatorer hotar säkerheten för många nuvarande publika nyckelsystem (PKC)
genom att möjliggöra kvantalgoritmer som kan bryta dem. Postkvantumkryptografi (PQC) syftar till
att hantera denna utmaning med både innovativa och beprövade kryptografiska system. Bland dessa
finns McEliece Key Encapsulation Mechanism (KEM), som använder Goppa-koder, en typ av felkor-
rigerande kod med en lång historia av säkerhet. Denna uppsats kommer att utforska konstruktionen
av Goppa-koder, implementeringen av McEliece KEM och en analys av informationsmängdsavkodning
- den mest omfattande studerade attackmetoden mot dessa system. Dessutom kommer vi att diskutera
konsekvenserna av kvantalgoritmer för säkerheten i McEliece KEM.



1 Introduction
Given the advances in quantum computing and its implications on previuosly considered secure cryptosys-
tems, the cryptographic community is currently working to change these out for other crpytosystems that
are believed to be secure in the face of these computers, and their algorithms. Many such systems rely-
ing on problems such as integer factorization and the discrete logarithm problem are rendered broken by
Shor’s quantum algorithm. Currently the National Institute of Standards and Technology (NIST) is un-
dergoing a competition to find replacements for the broken systems. One of these cryptosystems is called
Classic McEliece, it is a code based cryptosystem using specifically Goppa codes to encrypt and decrypt it’s
messages. This thesis aims to give the reader a complete understanding of Goppa codes and the Classic
McEliece.
The reader is assumed to have a introductory understanding of algebraic structures and linear algebra. Refer
to any introductory text on the subjects if so is needed.

2 Cryptography
Cryptography is the study of hiding or encrypting information such that only the ones with a specific
key can decrypt the information without too much effort. With this one can communicate over public
channels without fear of eavesdroppers. A common type of cryptosystems is called Public Key Cryptography
(PKC) where the encryption and decryption key are separate, with the encryption key being public and the
decryption key being private. Doing it like this simplifies the setup of the cryptosystem such that one does
not need to ensure private communication before sharing any private keys.
A lot of our current cryptographic methods rely on a small set of problems to which there is no traditional
algorithm solving them in polynomial time, as far as we know.
One of these problems is the Discrete Logaritm Problem (DLP). And another on is the Integer Factorization
Problem.
Though there are quantum algorithms, specifically Shor’s algorithm solving these in polynomial time.

2.1 Post-Quantum Cryptography
As it stands many if not all public key cryptosystems currently used are secure, but with the future of
quantum computing they are soon broken. This is due to Shor’s algorithm which solves the problems they
are based on in polynomial time.
McEliece relies on a linear code, most notable is a class of codes called Goppa code. These codes rely on the
difficulty of a problem called the syndrome decoding problem.
We can use Grover’s algorithm and the quantum walk algorithm to speed up decryptions without the private
key but this is easily remedied with larger key sizes.

3 Coding Theory
Originally derived from ensuring messages can be reconstructed from noise corrupting it when sent over a
communication channel, coding theory has found a surprising application in Cryptography. By adding noise
to a message before sending it we can ensure that only the people with the appropriate decryption key are
capable of reading the message.



In this section we will develop the mathematical core needed for the McEliece Cryptosystem.

This section starts with the basics of finite fields and linear codes before describing Goppa codes and how
we encode and decode messages using Goppa codes. Throughout the section we create examples meant to
illuminate the concepts and show how we work with them.

3.1 Finite Fields and Field Extensions
Though we assume the reader has a fundamental understanding of fields and algebraic structures, we will
spend some time discussing the fundamentals of finite fields and how we represent them.
The theoerems and definitions in this section are from [1]

Definition 3.1.1. A finite field is a field with a finite amount of elements.

A finite integer ring Z/pZ is only a field if it’s order p is prime.

Example 3.1.1. Z/pZ = Fp is a field iff p is a prime.

It is important to note that if the order is p prime Z/pZ is isomorphic to Fp, if the order is pm for a positive
integer m ≥ 1 then Fpm is still a field which we will construct but Z/pmZ is not. Hence the isomorphism
only holds if the order is prime.

Definition 3.1.2. The characteristic of a field is the least positive integer p such that p∗1 = 0 where 1 is the
multiplicative identity of the field. If there is no such integer in the field we define it to be of characteristic
0.

Definition 3.1.3. An element x ̸= 0 is a zero divisor if there exists y ̸= 0 s.t. xy = 0.

A field cannot contain a zero divisor, since every non-zero element in a field has a multiplicative inverse.
Because a ∗ b = 0 multiplied by a−1 gives b = 0.

Example 3.1.2. We see that for p, pm−1 ∈ Z/pmZ we have that p ∗ pm−1 = 0 making p and pm−1 zero
divisors. Therefore Z/pZ can’t be a field.

Theorem 3.1.1. A field with positive characteristic must have a prime characteristic.

Proof. Since F contains nonzero elements, F has characteristic n ≥ 2. If n were not prime, we could write
n = km. Then 0 = n ∗ 1 = (km) ∗ 1 = (k ∗ 1) ∗ (m ∗ 1) implying that either k ∗ 1 = 0 or m ∗ e = 0 since F
has no zero divisors it follows that either kr = (k ∗ 1)r = 0 for all r ∈ R or mr = (m ∗ 1)r = 0 for all r ∈ R
in contradiction to the definition of the characteristic n.

Following from this it is easy to see that any field with prime subfield Fp has characteristic p. since if they
had characteristic pm then pm ∗ 1 = (p ∗ 1)m = 0 which would make p a zero divisor, a contradiction.

Definition 3.1.4. Let K be a subfield of the field F and M any subset of F . Then the field K(M) is the
intersection of all subfields of F containing both K and M and is called the extension field of K obtained by
adjoining the elements in M . If M only contains one element θ then K(θ) is a simple extension of K with
θ being the defining element.

Definition 3.1.5. Let K be a subfield of F and θ ∈ F . If θ satisfies a nontrivial polynomial with coefficients
in K, meaning anθn + · · ·+ a1θ + a0 = 0 with ai ∈ K not all being 0, then θ is said to be algebraic over K.
An extension L of K is called algebraic over K if every element of L is algebraic of K.



Definition 3.1.6. If θ ∈ F is algebraic over K, the the uniquely determined monic polynomial g ∈ K[X]
where g is of smallest possible degree then g is called the minimal polynomial of θ over K.

Theorem 3.1.2. If θ ∈ F is algebraic over K, then its minimal polynomial g over K is irreducible in K[X].

Let θ ∈ F be algebraic of degree n over K and let g be the minimal polynomial of θ over K then K(θ) is
isomorphic to K[X]/(g).
By showing different isomorphisms we are given more tools to understand and work with our finite fields.

Theorem 3.1.3. Let f ∈ K[X] be irreducible over K. then there exists a simple algebraic extension of K
with a root θ of f as a defining element.

Theorem 3.1.4. If F is a finite field and |F | = pm where p is a prime, then it follows that F has charecter-
istic p. And F is a simple algebraic extension of Fp

Following from this and theorem 3.1.1 it is easy to see that any field with prime subfield Fp has characteristic
p. Since if they had characteristic pm then pm ∗ 1 = (p ∗ 1)m = 0 which would make p a zero divisor, a
contradiction.

Theorem 3.1.5. Let θ ∈ F be algebraic over degree n over K and let g be the minimal polynomial of θ over
K. Then K(θ) is isomorphic to K[X]/(g)

Example 3.1.3. We consider F9 as a simple algebraic extension of F3, which is obtained by adjunction of
a root α of an irreducible quadratic polynomial over F3, say f(x) = x2 + 1 ∈ F3[x]. Thus f(α) = α2 + 1 = 0
in F9 and the nine elements of F9 are given in the form a0 + a1α with a0, a1 ∈ F3. F9 = {0, 1, α, 1 + α, 2 +
α, 2α, 1 + 2α, 2 + 2α}

This gives us a general idea on how to work with finite fields of order pm. We can work in the polynomial
field F3[x]\(f(x)) as it makes the operations simple with respect to the irreducible polynomial.

Example 3.1.4. We now look at F22 as an extension of F2. First off we look for a irreducible polynomial
f(X) ∈ F2[X] say x2 + x+1 with root λ ∈ F22 . Then we have that F22 = F2[λ] = F2[X]\(x2 + x+1). With
this we can easily define the elements of this field,

{0, 1, λ, λ2 = λ+ 1}.

Which is the four elements we have. A simple show of computation

λ ∗ (λ+ 1) = λ2 + λ ≡ −1 ≡ 1.

With the first congruence being due to our polynomial and the second due to modular arithmetic.

Another example with m = 3 instead.

Example 3.1.5. In this case we have the irreducible polynomial x3+x+1 with root λ. So we have the three
fields

F8 = F2[λ] = F2[X]/(x3 + x+ 1)

With elements {0, 1, λ, λ3 = λ+ 1, λ2, λ6 = λ2 + 1, λ4 = λ2 + λ, λ5 = λ2 + λ+ 1}



We give both forms and note it is easier to use powers for multiplication and easier to use addition when in
the form aλ2 + bλ+ c.

Before moving on to linear codes we show that every element in a finite field is a square of another element.

Definition 3.1.7. Frobenius Map: over F2m

f : F2m → F2m f(x) = x2

Theorem 3.1.6. The Frobenius map over F2m is bijective.

Proof. We start by showing that f is injective. f is injective if f(λk) = ϕ(λr) implies that λk = λr.
f(λk) = f(λr) = λ2k = λ2r which gives us the equality λ2k − λ2r = (λk − λr)2 = 0 which is only true if
λk = λr.
Now we show that f is surjective. If f is surjective then for all y ∈ F2m there is a x such that f(x) = y.
We start with λk with k = 2r in this case it is easy to see that f(λr) = λk. Now for k = 2r + 1, we start
by noticing that λ2

m−1 = 1 so λ2
m

= λ. Meaning we can represent every odd power as an even power,
λk = (λ2

m

)k = f((λ2
m−1

)k).

Here the surjective part tells us that every element of a finite field is a square of an element in the finite
field.

3.2 Linear codes
The core theory of linear codes is mostly that of linear algebra with different names for the concepts. In this
section we will briefly define what we need before moving on to Goppa codes.

Let V be a vector space over F.

Definition 3.2.1. Subspace of a vector field:[2]
A subset U of V is called a subspace of V if U is also a vector space with the same additive identity, addition,
and scalar multiplication as on V.

Theorem 3.2.1. Conditions for a subspace: [2]
A subset U of V is a subspace if and only if U satisfies the following three conditions.

• Additive identity: 0 ∈ U .

• Closed under addition: u,w ∈ U implies u+ w = U .

• Closed under scalar multiplication: a ∈ F and u ∈ U implies au ∈ U

Though the theorem above is provided in it’s more general state its important to note that our scalars only
constitute 0 and 1. Hence the last conditions is not really needed.

Definition 3.2.2. Linear Code[3]
A linear code C of length n over Fp is a subspace of Fn

p [3]



Example 3.2.1. If we set p = 2 and n = 8 we have the simple subspace of Fn
p

C = {[00000000], [00111111], [11010101], [11101010]} To see that this is a subspace we need to show that it
is closed under vector addition and scalar multiplication and that it contains the additive identity. We see
immediately that it contains the additive identity and since the characteristic is 2 the only scalar multiples
are 0 and 1. Now we only need to show additive closure.

[00111111] + [11010101] = [11101010]

[11101010] + [00111111] = [11010101]

[11010101] + [00111111] = [11101010]

We see then that it is a linear code. This example as we will see later is a Goppa code.

Definition 3.2.3. Dual Code[3]
The dual code of C is C1, the orthogonal complement of the subspace C of Fn

p Meaning

C⊥ = {v ∈ Fn
p : c · v = 0 ∀ c ∈ C}.

Where · is the dot product of two vectors.

Definition 3.2.4. Dimension of linear code[3]
The dimension of a linear code is the dimension of C as a vector space over Fq. That is the amount of
vectors any basis of C consists of.

Definition 3.2.5. Hamming Distance[3]
Let x and y be vectors of length n. The Hamming distance from x to y, denoted by d(x,y), is defined to be
the number of places at which x and y differ. If x = x1 · · · xn and y = y1 · · · yn, then

d(x,y) = d(x1, y1) + · · ·+ d(xn, yn)

where xi and yi are regarded as words of length 1, and

d(xi, yi) =

{
1 if xi ̸= yi

0 if xi = yi

b

Definition 3.2.6. Hamming Weight[3]
Let x be a word in Fn

p . The Hamming weight of x, denoted by wt(x), is defined to be the number of nonzero
coordinates in x; i.e.,

wt(x) = d(x,0)

Definition 3.2.7. Generator Matrix[3] A generator matrix for a linear code C is a matrix G whose rows
form a basis for C.

Definition 3.2.8. Parity-Check Matrix[3] A parity-check matrix H for a linear code C is a generator
matrix for the dual code C⊥.

Since the rows of the parity-check matrix H is the basis for the orthogonal complement to the linear code
C we know that for any vector c ∈ C we have that HcT = 0 and cHT = 0. We can use this to find vectors
belonging to C



3.3 Goppa Codes
Goppa codes are the mathematical core of this thesis, here we explain in detail it’s construction and how to
effectively decode a cipher using a Goppa code. The majority of this section (3.3) and the next (3.4) relies
heavily on Overbeck’s review article[4].

Definition 3.3.1. Goppa polynomial: Let m and t be positive integers, and p a prime then

g(X) =

t∑
i=0

giX
i ∈ Fpm [X] (1)

is a monic polynomial of degree t.

We begin by constructing the finite field that we then construct a polynomial ring over.

Example 3.3.1. We set p = 2 and m = 3 such that

F23 = {0, 1, λ, λ3 = λ+ 1, λ2, λ6 = λ2 + 1, λ4 = λ2 + λ, λ5 = λ2 + λ+ 1} = F2[X]/(x3 + x+ 1)

as given in a previous section. These elements are then the coefficients used for the polynomials in Fpm [X].
With this we can now look for a Goppa polynomial preferably irreducible.
If we try with

X2 +X + 1

we see that for all our values in F23 it never reduces to 0. Hence we have a irreducible Goppa polynomial of
degree t = 2.

Definition 3.3.2. code support we have a vector of n distinct elements

L = (γ0, . . . , γn−1) (2)

such that γ ∈ Fpm and

g(γi) ̸= 0 ∀ 0 ≤ i ≤ n

Note that order of the elements is important for Patterson’s algorithm and in case the generator matrix does
not have a systematic form.
Since we have opted for an irreducible polynomial we could take L to be all of F23 .

Example 3.3.2. L = (0, 1, λ, λ3 = λ+ 1, λ2, λ6 = λ2 + 1, λ4 = λ2 + λ, λ5 = λ2 + λ+ 1)

Definition 3.3.3. Syndrome of c

Sc(X) = −
n−1∑
i=0

ci
g(γi)

g(X)− g(γi)
X − γi

mod g(X) (3)

Definition 3.3.4. Goppa code G(L, g(X)). The Goppa code is the set of all c = (c0, . . . , cn−1) ∈ Fn
p such

that

Sc(X) ≡
n−1∑
i=0

ci
X − γi

≡ 0 mod g(X) (4)

Where g(X) is the Goppa polynomial defined above.
Note that our codevectors are vectors over Fp and not Fpm



We can write this as
G(L, g(X)) = {c ∈ Fn

p |Sc(X) ≡ 0 mod g(X)}

If our polynomial is irreducible over Fpm , then we call G(L, g(X)) an irreducible Goppa code. With all of
this information we can now construct a simple Goppa code.

Example 3.3.3. we see that n = 8 and we write the syndrome out in it’s entirety.

Sc(X) ≡ c0
X − 0

+
c1

X − 1
+

c2
X − λ

+
c3

X − λ2
+

c4
X − λ3

+
c5

X − λ4
+

c6
X − λ5

+
c7

X − λ6
=

7∑
i=0

ci
X − γi

=

c0(X+1)+c1(X)+c2(λ
2X+λ5)+c3(λ

4X+λ3)+c4(λ
2X+λ3)+c5(λX+λ6)+c6(λX+λ5)+c7(λ

4X+λ6)

calculations for finding the inverses are in appendix A.
Now this leaves us with only c = (0, 0, 1, 1, 1, 1, 1, 1), c = (1, 1, 0, 1, 0, 1, 0, 1) and c = (1, 1, 1, 0, 1, 0, 1, 0) as
the only vectors in G from a total of 28 = 256 possibilities. In our example since n is very small we can easily
compute but for larger vectors we would need to set up a system of equations and solve for all solutions.
Before we move on we give a quick proof to show that Goppa codes indeed are linear codes.

Proof. Take k ∈ Fp and c, c′ ∈ G(L, g(X)) and γi ∈ L for i = 0, ..., n− 1
Closure under scalar multiplication
since c is a code vector its syndrome is congruent to 0 modulo g(x)

Sc(X) ≡ 0 mod g(X)

it is easy to see that

kSc(X) ≡
n−1∑
i=0

kci
X − γi

≡ Skc(X) ≡ 0 mod g(X)

hence ∀k ∈ Fp, kc is also a Goppa code vector.
Additive identity

S0(X) ≡
n−1∑
i=0

0

X − γi
≡ 0 mod g(X)

Additive closure

Sc+c′(X) ≡
n−1∑
i=0

ci + c′i
X − γi

≡
n−1∑
i=0

ci
X − γi

+

n−1∑
i=0

c′i
X − γi

≡ Sc(X) + Sc′(X) ≡ 0 mod g(X)



3.3.1 Constructing a Parity-Check Matrix

This section we will show how we can construct a parity-check matrix for our goppa code. We start by
looking at the equality

g(X)− g(γ)
X − γi

=

t∑
j=0

gj
Xj − γji
X − γi

=

t−1∑
s=0

Xs
t∑

j=s+1

gjγ
j−1−s
i (5)

While the first equality follows from the definition of the Goppa polynomial the second is a bit more involved
hence we prove it here. Expanding the middle equation gives

t∑
j=0

gj
Xj − γji
X − γi

= 0 + g1 + g2(X + γi) + g3
X3 − γ3i
X − γi

+ · · ·+ gt
Xt − γti
X − γi

With the difference of powers we see that

t∑
j=0

gj
Xj − γji
X − γi

=

t∑
j=0

gj

j−1∑
r=0

Xj−1−rγri

Expanding this step by step we get that

t∑
j=0

gj

j−1∑
r=0

Xj−r−1γri =

t∑
j=0

gj((

j−2∑
r=0

Xj−1−rγri ) +X0γj−1
i ) =

X0
t∑

j=0

gjγ
j−1
i +

t∑
j=0

gj((

j−3∑
r=0

Xj−1−rγri ) +X1γj−2
i ) =

...

k∑
s=0

Xs
t∑

j=0

gjγ
j−s−1
i +

t∑
j=0

gj((

j−k−2∑
r=0

Xj−1−iγri ) +Xk+1γj−k−2
i ) =

...

t−1∑
s=0

Xs
t∑

j=0

gjγ
j−s−1
i

Proving that the second equality of (5) is true.
Let ci be the ith position of a codeword c in our Goppa code. Now using equation 5 and plugging it into the
definition of the syndrome we see that for all s = 0, . . . , t− 1

n−1∑
i=0

(
1

g(γi)

t∑
j=s+1

gjγ
j−1−s
i

)
ci = 0



To show how this sum can give us a parity-check matrix we start by looking at s = 0.

n−1∑
i=0

(
1

g(γi)

t∑
j=1

gjγ
j−1
i

)
ci = 0

Here we can more clearly see how the outer sum gives the i:th position of the last row vector of our matrix
H below. This sum is then the dot product of the row vector and our codevector, that it is resulting in 0
confirms that the row vector is an element of our dual code. With this we can use it as a row vector in our
parity check matrix.
so we can write a parity-check matrix as

H =


gtg(γ0)

−1 · · · gtg(γn−1)
−1

(gt−1 + gtγ0)g(γ0)
−1 · · · (gt−1 + gtγn−1)g(γn−1)

−1

...
. . .

...
(
∑t

j=1 gjγ
j−1
0 )g(γ0)

−1 · · · (
∑t

j=1 gjγ
j−1
n−1)g(γn−1)

−1

 = XY Z

Such that

X =


gt 0 0 · · · 0
gt−1 gt 0 · · · 0

...
...

...
. . .

...
g1 g2 g3 . . . gt

 Y =


1 1 · · · 1
γ0 γ1 · · · γn−1

...
...

. . .
...

γt−1
0 γt−1

1 . . . γt−1
n−1

 Z =


1

g(γ0)
1

g(γ1)

. . .
1

g(γ1)


Since H is a t × n matrix and F2m

∼= Fm
2 we can write this matrix as a mt × n. We will prove this at the

end of this section.
Now we only need to show that each sum for different values of s (or each row) are linearly independent.
We can show this for s = t− 1 and s = t− 2

n−1∑
i=0

(
1

g(γi)

t∑
j=t

gjγ
j−1−t+1
i

)
,

n−1∑
i=0

(
1

g(γi)

t∑
j=t−1

gjγ
j−1−t+2
i

)
These then result in

n−1∑
i=0

(
1

g(γi)
gt

)
,

n−1∑
i=0

(
1

g(γi)
(gt−1 + gtγi)

)
To show more clearly that the sums represent the row vectors above we multiply by a unit vector vi where
only the i:th position is 1 and the rest are 0.

n−1∑
i=0

(
1

g(γi)
gt

)
vi,

n−1∑
i=0

(
1

g(γi)
(gt−1 + gtγi)

)
vi

To show that these vectors are linearly independent we need to show that

a

n−1∑
i=0

(
1

g(γi)
gt

)
vi + b

n−1∑
i=0

(
1

g(γi)
(gt−1 + gtγi)

)
vi = 0



if and only if a = b = 0. To show this we can assume that it is not true for i = i1, we then get that.

agt + b(gt−1 + gtγi1) = 0

where a, b ̸= 0. This would then mean that

agt + b(gt−1) = −bgtγi1

If we then take another index i = i2 we already know that γi1 ̸= γi2 so this would result in

agt + b(gt−1) = −bgtγi1 ̸= γi2

which tells us that the rows have to be linearly independent. Similar proofs follow for other values of s,
telling us that all the row vectors from the parity check matrix are linearly independent.
We now continue from our previous examples and show an example of the parity check matrix.

Example 3.3.4. We start our example by listing g(γi)−1 for 0 ≤ i ≤ 7 in order.

{1, 1, λ2, λ4, λ2, λ, λ, λ4}

And gt are just the coefficients from our polynomial so in our case the parity check matrix is

H =

[
1 1 λ2 λ4 λ2 λ λ λ4

1 0 λ5 λ3 λ3 λ6 λ5 λ6

]
=

[
1 0
1 1

] [
1 1 1 1 1 1 1 1
0 1 λ λ2 λ3 λ4 λ5 λ6

]


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 λ2 0 0 0 0 0
0 0 0 λ4 0 0 0 0
0 0 0 0 λ2 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 λ 0
0 0 0 0 0 0 0 λ4


With the parity check matrix we can now find the generator matrix We start by computing the kernel of

Hc =

[
1 1 λ2 λ4 λ2 λ λ λ4

1 0 λ5 λ3 λ3 λ6 λ5 λ6

]


c0
c1
c2
c3
c4
c5
c6
c7


=

[
0
0

]

To create the generator matrix from the parity check matrix we have to first find the null space to H. We
already know this to be our Goppa code and then have the matrix of row vectors

G =


0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
1 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0





Now if we add one of row two and one of row three to the last row we end up with the matrix

G =


0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
1 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0


with this we see that the needed basis vectors for our Goppa code can be the two middle vectors, making our
generator matrix.

G =

[
0 0 1 1 1 1 1 1
1 1 0 1 0 1 0 1

]
Before we move on we want to rewrite our matrix to be a 6× 8 matrix over F2 instead. To do this we first
need to prove that F3

2
∼= F23

Theorem 3.3.1. As vector spaces Fm
2 and F2m are isomorphic, Fm

2
∼= F2m .

Proof. We know that F2m
∼= F[X]/f(x) where deg(f(x)) = m. So every element in F2m can be written as

ϕ =
∑m−1

i=0 aix
i, where ai ∈ F2. This has an obvius bijection to Fm

2 , we define our map K : F2m → Fm
2 such

that

K(ϕ) =

am−1

...
a0


And it follows that this is homomorphic as well.

Applying this to our field we get the vectors

Example 3.3.5.

0 =

0
0
0

 , 1 =

0
0
1

 , λ =

0
1
0

 , λ2 =

1
0
0

 ,

λ3 =

0
1
1

 , λ4 =

1
1
0

 , λ5 =

1
1
1

 , λ6 =

1
0
1

 ,

And now we can rewrite our parity check matrix using these vectors.

Example 3.3.6.

H =


0 0 1 1 1 0 0 1
0 0 0 1 0 1 1 1
1 1 0 0 0 0 0 0
0 0 1 0 0 1 1 1
0 0 1 1 1 0 1 0
1 0 1 1 1 1 1 1





3.4 Binary Goppa Codes
By setting q = 2 we have a binary Goppa code, this will be the code we use in the McEliece Cryptopsystem.
A binary Goppa code offers some benefits over normal Goppa codes, for example the minimum distance
between codewords is increased, meaning there is a higher amount of "noise" we can add without losing
information, what this means is that the error vector we can add to mask our codeword can have a higher
weight. Also we have a more efficient decoding algorithm we can use to remove said error vector.

3.4.1 Minimum Distance of Irreducible binary Goppa codes

The minimum distance between codewords in our Goppa codes is the smallest hamming distance between
any two codewords.

Definition 3.4.1. [3] For a code C containing at least two words, the minimum distance of C, denoted by
d(C), is

d(C) = min{d(x, y) : x, y ∈ C, x ̸= y}

It is important that we have this distance as it allows us to add a certain amount of errors to our codeword
without losing any information.
Let G(L, g(X)) be an irreducible binary Goppa code with L = (γ0, . . . , γn−1) and c = (c0, . . . , cn−1) ∈
G(L, g(X)) be a codeword
We now define the error locator polynomial which we will also use later to remove any errors from our
codeword.

Definition 3.4.2. Error Locator Polynomial
First we define our index set Tc = {i : ci = 1}

σc(X) =
∏
j∈Tc

(X − γj) ∈ F2m [X].

Using the product rule we differentiate and get

σ′
c(X) =

∑
i∈Tc

∏
j∈Tc\{i}

(X − γj)

Which we can write out in the form of our syndrome. Note that ik = jk and set wt(c) = p meaning |Tc| = p.

X − γj1
X − γi1

[
(X − γj2)(X − γj3) . . . (X − γjp)

]
+

X − γj2
X − γi2

[
(X − γj1)(X − γj3) . . . (X − γjp)

]
+

...
X − γj1
X − γi1

[
(X − γj2)(X − γj2) . . . (X − γjp)

]
=[

(X − γj1)(X − γj2) . . . (X − γjp)
][

1

(X − γi1)
+ · · ·+ 1

(X − γip)

]
=



[
(X − γj1)(X − γj2) . . . (X − γjp)

][
c1

(X − γ1)
+ · · ·+ cn−1

(X − γn−1)

]
=

∏
j∈Tc

(X − γj1)
n−1∑
i=0

ci
X − γi

=

σc(X)Sc(X) ≡ σ′
c(X) mod g(X) (6)

since gcd(g(X), σc(X)) = 1 we have that σc is invertible modulo g(X) so we can write.

σ′
c(X)

σc(X)
≡ Sc(X) mod g(X)

Therefore we have
∀c ∈ Fn

2 : c ∈ G(L, g(X)) ⇐⇒ σ′
c(X) ≡ 0 mod g(x)

.
Recall from the end of section 3.1 where we showed that every element in our finite field is a square and also
a square root. Now we consider the Frobenius map

F2m [X]→ F2m [X]

f(X) =

n∑
i=0

fiX
i → f2(X) =

n∑
i=0

f2i X
2i

For polynomial rings the Frobenius map is only injective and not surjective. It’s image is F2m [X2]
Let iσi be the coeeficients of σ′

c(X) when σ′
c(X) is written in the form

σ′
c(X) =

n∑
i=0

iσiX
i−1

Since F2m has characteristic 2 every i = 2k is 0 so we are left with only even powers of X. Hence σ′
c is a

perfect square
Now if c ∈ G then σ′

c(X) ≡ 0 mod g(X) so σ′
c(X) = g(X)q(X) for some polynomial q(x) and since it is a

perfect square σ′
c(X) = (g(X)q1(X))2 for some polynomial q1(x) meaning σ′

c(X) ≡ 0 mod g2(X)
Thus for any c ∈ G we can define a relation between it’s hamming weight (wt(c)) to the degree of the Goppa
polynomial.

wt(c) = deg(σc(X)) ≥ 1 + deg(σ′
c(X)) ≥ 2 · deg(g(x)) + 1

Before we move on we give a quick proof that shows how the weight of our codewords also give us a minimun
distance.

Theorem 3.4.1. The distance between any codevectors in G has a minimum distance of 2t+ 1.

Proof. For all codevector c ∈ G we can represent it as c = c1 − c2 such that c1, c2 ∈ G then we have that
wt(c) = wt(c1 − c2) = d(c1, c2) = 2t+ 1.

With this we have a minimum distance between codewords and can move on to understanding error correction
for binary Goppa codes



3.4.2 Decoding: Patterson’s Algorithm

As we will see in the next section the McElliece cryptosystem refers to a decoding algorithm, this algorithm
is used to find the added error vector to the codeword. Normally this decoding algorithm is Patterson’s
algorithm. The process of error-correcting is the removal of any added error vector to our codeword, in
cryptography this error vector is explicitly added to obfuscate our codeword. We start by motivating the
algorithm then stating it in its entirety and end this section with a simple example.
As we see above we have now shown that our binary Goppa code G(L, g(X)) has minimum distance 2t+ 1,
where g is irreducible and has degree t.

Proposition 3.4.1. If m ∈ G then we can correct up to t errors in a ciphertext c = m+ e where m ∈ G and
c, e ∈ Fn

2 and wt(e) ≤ t

Proof. We know that wt(e) = t and d(m,m1) ≤ 2t+1 form,m1 ∈ G so then we get that t+1 ≤ d(m+e,m1) ≤
3t + 1 and d(m,m + e) = t so we are still closer to our original codevector than any other vector in our
Goppa code.

Recall from the section on finite fields that a finite field with characteristic 2 has a unique square root for
every element, we also showed that every finite field is isomorphic to a polynomial quotient field. Then every
element of this quotient field has a unique square root.
With Patterson’s algorithm we can now correct up to t errors of any codeword m ∈ G. Take any error vector
e ∈ Fn

2 such that w(e) = t
we are given c = m + e and want to compute m and e we know that Sm ≡ 0 mod g(X) so Sc ≡ Se

mod g(X). We use the error locator polynomial for e and split it into squares and non-squares.

σe(X) = α2(X) +Xβ2(X)

Then its derivative would be

σ′
e(X) = 2α(X)α′(X) + 2Xβ(X)β′(X) + β2(X) = β2(X)

Plugging this into equation (6) from the previous section we get that

(α2(X) +Xβ2(X))Se(X) ≡ β2(X) mod g(X)

which we can rewrite into
β2(1 +XSe(X)) ≡ α2(X)Se(X) mod g(X)

Since e is not a codeword, we have that Se(X) ̸≡ 0 mod g(X), this tells us that gcd(Se(X), g(X)) = 1
meaning that we have an inverse S−1

e (X) = T (X), we multiply our equation with this inverse.

β2(X)(T (X) +X) ≡ α2(X) mod g(X)

Each element of F2mt has a unique square root and since F2mt ∼= F2m [X]/(f(x)) where deg(f(x)) = t. We
have that there is a τ(X) ∈ F2m [X]. that is the unique square root of T (X) +X. The square root of our
equation is then

β(X)τ(X) ≡ α(X) mod g(X) (7)

Now we want to solve for α(X) and β(X). We know that deg(σe(X)) ≤ t, it follows that deg(α(X)) ≤ ⌊t/2⌋
and deg(β(X)) ≤ ⌊(t− 1)/2⌋.



We can find unique polynomials satisfying equation (7) using the Euclidean algorithm. We give initial values
α0(X) = g(X), α1 = τ(X), β0(X) = 0, β1(X) = 1 and the degree of our Goppa polynomial. The uniqueness
is dependent on the relation of the degrees of our polynomials.

deg(βk(X)) = deg(g(X))− deg(αk−1(X))

Meaning the degree of βk increases as αk decreases.
We iterate through the algorithm until we have that

deg(αk(X)) ≤ ⌊(t+ 1)/2⌋ − 1 = ⌊t/2⌋

and our beta polynomial would be of degree.

deg(βk(X)) = deg(g(X))− deg(αk−1(X) = t− ⌊(t− 1)/2⌋

Given our initial values we have unique polynomials with these degrees. We set

α(X) = αk(X), β(X) = βk(X)

And with this we now have our error locator polynomial.
Lastly we look at each value in our code support and note that this is one of the main reasons why the order
in our codesupport is important. The index of element in our codesupport that correspond to a zero in our
error locator polynomial σe(X) is the index where we have a one in our error vector e.

##not really eea
def extended_euclidean_algorithm(g, tau , t):

i = 0
r = [g, tau]
alpha = [g, tau]
beta = [galois.Poly([0], GF), galois.Poly([1], GF)]

while r[i].degree >= (t + 1) // 2:
i += 1
q, r_i = divmod(r[i-1], r[i-2])
r.append(r_i)
beta.append(beta[i-2] + q * beta[i-1])
alpha.append(r[i])

return alpha[i], beta[i]

def pattersons(notcodeword):
syndrome = np.matmul(coefffield.transpose (), notcodeword)
if (syndrome == zeroMat).all():

return (notcodeword , 0)
else:

syndrome = galois.Poly(syndrome)
T = galois.egcd(syndrome , goppaPol)[1]
Tpx = T +galois.Poly([1,0], GF)
tau = 0

for i in range(fOrd ** gPolDeg):
tau = pow(Tpx , i, goppaPol)
if pow(tau , 2, goppaPol) == Tpx:



print(tau)
break

alpha , beta = extended_euclidean_algorithm(goppaPol , tau , gPolDeg)
alpha_squared = pow(alpha ,2)
beta_squared = pow(beta ,2)
x = galois.Poly([1, 0], GF)
c = GF(2)

sigma = (alpha_squared + x * beta_squared)

leading_coeff = sigma.coeffs[0]

e = np.zeros(len(errVec[0]), int)
for i in range(len(errVec[0])):

if sigma.__call__(GF(i)) == 0:
e[i] = 1

e = GF(e)
m = notcodeword + e
return m, e

All code used is show in it’s entirety in the appendix. Let us now show an example of this algorithm.

Example 3.4.1. We are given the ciphertext c = (1, 1, 1, 0, 1, 1, 1, 1) and want to find the codeword m =
(1, 1, 1, 0, 1, 0, 1, 0) and the error vector e = (0, 0, 0, 0, 0, 1, 0, 1) and our Goppa polynomial g(x) = x2 + x+1.
First we check the syndrome

Sc = x+ 1 + x+ λ2x+ λ5 + 0 + λ2x+ λ3 + λx+ λ6 + λx+ λ5 + λ4x+ λ6 = λ4x+ λ ̸= 0

.
Since the syndrome is not zero we know the cipher is not a codeword. We now take the inverse of our
syndrome S−1

c = T = λ2x + λ4. (A method to find the inverse is given in the appendix, another method is
the extended euclidean algorithm).
We follow the algorithm Tx = λ6x + λ4 and check every power i of Tx where 0 < i < 82 until we find
an i such that (Tx)i =

√
Tx = τ = λ3x + λ5 meaning we look for the square root of Tx from the other

way. This works since the multiplicative group of a finite field is cyclical, we can see this in the finite fields
defined above. With this we can now look for polynomials α(x) = λ3x + λ5 and β(x) = 1 we do this using
the extended euclidean algorithm but stopping when deg(α(x)) < ⌊t/2⌋.
It’s important to note that the values given for α(x) and β(x) are dependent on the degree of the Goppa
polynomial, and in this case deg(g) = 2 hence our polynomials α(x) and β(x). We can now compute our
error locator polynomial. The square of our polynomials are then α2 = (λ6x+ λ4) and β2 = 1. And we end
up with

σc(X) = λ6x2 + x+ λ3

At this point all we have to do is plug in the values of our finite field and note the positions of those equating
the error locator polynomial to 0. Those positions are then the ’ones’ of our error vector.

σc(0) = λ3 σc(1) = λ5 σc(λ) = λ3 σc(λ
3) = λ5 σc(λ

2) = λ2 σc(λ
6) = 0 σc(λ

4) = λ4 σc(λ
5) = 0

Giving us the error vector e = (0, 0, 0, 0, 0, 1, 0, 1) the same as the one above. Adding this to the cipher gives
the message/code vector c+ e = m = (1, 1, 1, 0, 1, 0, 1, 0).



4 McEliece
The McEliece cryptosystem is a code based cryptosystem from 1978[5].
There have been many variations to this system replacing the Goppa codes with some other code in order
to decrease the key size but most of these have been shown to be insecure.
Code base cryptography is in general a practice in the trade off between security and efficiency.
The McEliece cryptosystem recommends a public key size of around 1Mb for optimal security. More specif-
ically we know from a paper called McBits[6] that with a keysize of 1046739 bits we have a security level
of 2263 compared to AES-256 which has it’s key size at 256 bits with a security level of 2256. However such
large keys can pose challenges in practical applications. To address this, techniques exist to distribute the
cost of each public key across multiple ciphertexts, effectively sharing the burden and improving efficiency.
Despite the large public keys, the resulting ciphertexts remain relatively small, ensuring efficient communi-
cation without compromising security.
To further optimize key size and performance, we leverage public keys in systematic form. This means the
parity-check matrix H is structured as H = (I|T ), where I represents the identity matrix and T is a smaller
matrix. By using this form, only the matrix T needs to be transmitted, significantly reducing the amount
of data involved.
Research indicates that approximately 29% of Goppa codes, which are fundamental to the McEliece system,
are naturally in systematic form for relevant parameters. This makes it a practical and effective approach.
If using systematic form with the original McEliece, any resulting ciphertext would leak parts of the plaintext,
this is mitigated in the classic McEliece KEM.
Where the Key encapsulation mechanism (KEM) is a sort of wrapper over our PKE bringing it to a higher
standard of security. What a KEM is and what this higher standard means will be explained in a later
section.
The main benefit of the McEliece crypstosystem is the efficiency of encrypting and decrypting messages.

4.1 Original McEliece PKE
While the original McEliece cryptosystem was set aside in favour of other algorithms with smaller key-
sizes, the modern implementation the so called classic McEliece Key encapsulation mechanism is currently
regaining favour as an alternative to our current methods that do not hold up against Shor’s algorithm.
In this section, we will define the original McEliece cryptosystem, a public-key encryption scheme proposed
by Robert McEliece in 1978.
The McEliece cryptosystem is based on the hardness of the decoding problem for general linear codes, which
is believed to be computationally intractable for certain parameters, meaning there is no polynomial time
deterministic algorithm solving it. This property makes the McEliece cryptosystem an viable alternative to
traditional public-key encryption schemes, in the context of post-quantum cryptography.
We will begin by writing out the algorithm, then we will show why the decryption is possible and finish with
an example written in python.
Before we move on we need to define the notation for our submatrix.

Definition 4.1.1. [4] We define G.I as the submatrix of G where the k columns with it’s index in I constitute
the columns of G.I . And I is called an information set or index set.



Algorithm 4.1.1 Original McElliece [4]
• System Parameters: n, t ∈ N, where t << n

• Key Generation: Given the parameters n,t generate the following matrices:
G: k × n generator matrix of a code G over F of dimension k and minimum distance d ≥ 2t + 1.(A
binary irreducible Goppa code in the original proposal.)
S: k × k random binary non-singular scrambler matrix.
P: n× n random permutation matrix.
Then, compute the k × n matrix Gpub = SGP.

• Public Key: (Gpub,t)

• Private Key: (S, DG , G,P ), where DG is an efficient decoding algorithm for G.

• Encryption (E(Gpub,t)): To encrypt a plaintext m ∈ Fk choose a vector z ∈ Fk of weight t randomly
and compute the ciphertext c as follows :

c = mGpub + z

• Decryption ( D(S,DG ,P ) ): to decrypt a ciphertext c calculate

cP−1 = (mS)G+ zP−1

first and apply the decoding algorithm (In our case this is Patterson’s algorithm.) DGpub for G to it.
Since cP−1 has a hamming distance of t to G we obtain the codeword

mSG = DG(cP
−1)

At this point we take I ⊂ {1, . . . , n} such that |I| = k and that G.I is invertible. Then we can compute
the plaintext

m = (mSG).IG
−1
.I S−1



Theorem 4.1.1. Existence of invertible submatrix of G
Let G be a k × n matrix with rank k. Then G has a k × k invertible submatrix.

Proof. Starting with the matrix G and putting it in row reduced echelon form we get a matrix with all rows
containing leading ones with only zeroes below.

G =

g1,1 . . . g1,n
...

...
gk,1 . . . gk,n

→ Grref

If we then take the column index where the leading ones are and make a submatrix G.I out of those columns,
we would have a matrix with a diagonal of ones in its row reduced echelon form. If we apply Gaussian on
G.I by putting it in the form [G.I |Ik×k] and tracking the changes on the identity matrix we get the result
[Ik×k|G−1

.I ]

Using an invertible submatrix of G to retrieve the plaintext.
One possible issue lies in the decryption of a cipher, here we see that the decryption does not use the whole
generator matrix to decrypt but rather a submatrix and yet we expect to receive the whole plaintext.
The reason we use a submatrix is that we can’t always expect to have a square generator matrix, therefore
we have to take a submatrix that is square and invertible.
Now the question we want answered is why is the following equation correct.

m = (mSG).IG
−1
.I S−1

To see why this works we need to show in general how the computation acts.

mSG =
[
a1 · · · ak

] g1,1 . . . g1,n
...

. . .
...

gk,1 . . . gk,n

 =
[∑k

i=1 aigi,1
∑k

i=1 aigi,2 . . .
∑k

i=1 aigi,n

]
Lemma 4.1.1. If v is a vector of length k and W is a k × n matrix with I being a subset as defined above,
then

(vW ).I = vW.I

Proof. If we set vW as mSG and take vW.I we end up with the array

vW.I =
[
a1 · · · ak

] w1,I1 . . . w1,Ik
...

. . .
...

wk,I1 . . . wk,Ik

 =
[∑k

i=1 aiwi,I1

∑k
i=1 aiwi,I2 . . .

∑k
i=1 aiwi,Ik

]
= (vW ).I

Meaning there is no loss of information in taking a submatrix, we can still get out all of our plaintext without
issue.



Example 4.1.1. If we continue on the previous examples we would only need to define a scrambler matrix
S and a permutation matrix P. We set

S =

[
1 1
0 1

]
P =



0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0


we end up with the public key being

Gpub =

[
0 0 0 1 1 1 1 1
1 1 1 0 1 0 1 0

]
and the degree t of our Goppa code. With the private key being our two random matrices and the efficient
decoding algorithm for our code.

Both encryption and decryption are basic computation of binary vectors with the addition of Pattersons
algorithm being used as the efficient decryption algorithm. We will later show how to decode a specific
cipher text without the private key.

def encrypt(g_pub , binary_plaintext):

c_arr = []
binary_plaintext = GF(binary_plaintext)
g_pub = GF(g_pub)
## we multiply k bits to our public key at a time and add the encrypted bits to an array

.
for i in range(0, len(binary_plaintext),2):

c_arr.append (( binary_plaintext[i:i+k]@ g_pub))

randint = rand.randint(1,len(err_vec)-1) ## cant use a new one for every k bits
##now we add an error vector to the vectors ## maybe take random err vector every time.

c_arr_err= [(i+err_vec[4]) for i in c_arr]
return c_arr_err

def decrypt(G,S,P, c_arr_err):
## we multiply with the inverse of the permutation matrix
c_arr_err = c_arr_err@np.linalg.inv(P)

c_arr_err = GF(c_arr_err.astype(int))

##remove error vector
decoded_c_arr =[]
for i in range(len(c_arr_err)):

plup ,_ = pattersons(c_arr_err[i])
decoded_c_arr.append(plup)

## we have to find an index set such that G_.I is invertible
I = information_set(G)



## now we revert our ciphertext
GInv = GF(np.linalg.inv(G[:,I]).astype(np.int32))
SInv = GF(np.linalg.inv(S).astype(np.int32))

c_arr_rev =[i[I]@GInv@SInv for i in decoded_c_arr]
return c_arr_rev

Let’s now look at an example. We want to encrypt the string

text = "Hello! My name is."
## 01001000 01100101 01101100 01101100 01101111 00100001 00100000 01001101 01111001
## 00100000 01101110 01100001 01101101 01100101 00100000 01101001 01110011 00101110

binary_array = str_to_binary(text)

First we have to translate the string into binary using the auxiliary function str_to_bin (available in the
appendix). Then we pass it into the encryption function with our previously defined public key Gpub

c_arr_err = encrypt(g_pub , binary_array)

A small part of the encrypted binary vectors end up being.

##[0 0 0 0 0 0 0 0], [0 0 1 1 1 1 1 1], [1 1 0 1 0 1 0 1], [1 1 1 0 1 0 1 0],
##[1 1 1 0 1 1 1 1], [0 0 0 0 0 1 0 1], [0 0 0 1 1 0 1 0], [0 0 0 0 0 1 0 1]

If we then feed into the decrypt function and retranslate the binary into a string

c_arr_rev = decrypt(G,S,P,c_arr_err)
bin_2_str(c_arr_rev)

We see that we end up with the original plaintext "Hello! My name is.".

4.2 From OW-CPA to IND-CCA2
This section relies on [7] and [8] for defining the following concepts.
The original McEliece PKC was designed to be OW-CPA, this mean it is difficult to invert the map from
ciphertext back to our plaintext given the public key but this is only when the plaintext is chosen uniformly
at random.

This will not work for encrypting an actual message which usually contains structure, this can supply the
attacker with some pattern that simplifies the inversion to the plaintext.

To solve this we want our cryptosystem to be IND-CCA2 secure, this type of security comes in two different
parts first is Adaptive chosen-ciphertext attack (CCA2).

In the CCA2 attack model the attacker is given a decryption oracle that can decrypt all ciphertext except
one specific challenge ciphertext c. A CCA2 secure cryptosystem is then a cryptosystem where such an
oracle won’t help with decrypting the challenge c.



And in the other part we have Indistinguishable (IND) where in addition to the CCA2 attack model the
attacker is given no advantage in determining between two plaintext which encrpyts into the given challenge
ciphertext.
To create a IND-CCA2 cryptosystem we can wrap our original McEliece PKE into a Key Encapsulation
Mechanism (KEM).
A KEM consists of three parts

1. Key generation: First we generate a public and a private key.

2. Encapsulation: Encrypt plaintext e into ciphertext c and compute session key K, output c and K.

3. Decapsulation: Decode the ciphertext into the plaintext and use it to compute the session key K.
Output K.

The KEM construction from a PKE is as follows.

• Start from any correct deterministic PKE.

• The KEM public key is the PKE public key.

• The KEM private key includes the PKE private and public key, and an implicit-rejection key s generated
uniformly at random.

• The session key for plaintext m and PKE ciphertext c is H(1,m, c).

• The KEM ciphertext is the same as the PKE ciphertext.

• Decapsulation of c checks if the decryption m reencrypts to c if yes then it outputs H(1,m, c) if not
the it outputs H(0, s, c).

Classic McEliece only difference from the above construction is that it does not include a copy of the public
key in the private key.

Let’s look at some attacks on the original McEliece to show how it is broken in the IND-CCA2 attack model.
We can later try the same attack model on the classic McElliece to confirm that that it is indeed IND-CCA2.

1. Attacker chooses two different message a and a′ and a challenge ciphertext c such that c = Ga+ e or
c = Ga′ + e′, it then checks if wt(c−Ga) = t.

2. Attacker chooses δ ̸= 0 adds to Ga + e resulting in Ga + Gδ + e, is then given a + δ subtracts δ to
receive a.

3. Add two errors to Ga + e there is a chance that one error is in e and the other is not. Turning a 1
into 0 and a 0 into 1. This produces a new ciphertext c = Ga+ e′ = Ga+ e+ e0 (e0 being the added
errors.), Giving the attacker a.

We show an example of the first case.



plain_1 = goppaCodes[3]
plain_2 = goppaCodes[2]

ciph = GF(encrypt(G, plain_1 , err_vec[3]))

#print("test parameters ")
print("plain_1", plain_1)
print("plain_2", plain_2)
print("ciph", ciph)
#print("error", err_vec[3])
#print("G",G)
zero_err_vec = GF([0,0,0,0,0,0,0,0])

## testing against the indcca2 attackmodel
def ind_cca2(G,c, m1 , m2):

#print(" encrypt m1 with 0 errors",GF(encrypt(G, m2, zero_err_vec)))
m1 = encrypt(G, m1, zero_err_vec)
m1 = GF(m1)
m2 = encrypt(G, m2, zero_err_vec)
m2 = GF(m2)
su = [0,0,0,0]
sa = [0,0,0,0]

for i in range(len(c- m1)): ##np.sum not working as expected
for j in (c- m1)[i]:

if j == 1:
su[i] = su[i] + 1

for i in range(len(c- m2)): ##np.sum not working as expected
for j in (c- m2)[i]:

if j == 1:
sa[i] = sa[i] + 1

def check_something(sasa):
for i in sasa:

if i != gPolDeg:
return False

return True
print(check_something(su), check_something(sa))
print(su ,sa)
if check_something(su) == True:

return plain_1

if check_something(sa) == True:
return plain_2

print(ind_cca2(G, ciph , plain_1 , plain_2))

4.3 Classic McEliece
Classic Mceliece is built from Niederreiter’s dual version (Defined in appendix.) of the McEliece PKE using
binary goppa codes. It is a conversion from OW-CPA to IND-CCA2.



Over time, as new research and literature on the topic emerged, various defenses have been incorporated
into the McEliece cryptosystem to enhance its security.
Before we define the classic McEliece KEM we will define some things, this gives us a clearer understanding
of any potential matrix we are working with and will be needed later in the thesis as well.

Definition 4.3.1. [8] Reduced row echelon form X is a matrix with n columns,where Gaussian elim-
ination computes the unique matrix R in row reduced echelon form (rref). Then there is a subsequence
{c1, c2, . . . , cr−1} of {1, 2, . . . , n} such that every row i starts with a 1 in column ci, and is the only nonzero
term in the column. Meaning ri,ci = 1 and rj,ci = 0 for all j ̸= i. The remaining rows of R are 0.

Definition 4.3.2. Rank of a matrix [2]
The rank of a matrix R is the dimension of the span of the columns or rows of R.

Definition 4.3.3. Systematic form [8]
A rref matrix R is in systematic form if the following conditions are met.

1. R has exactly r rows

2. ri,i = 1 for all 0 ≤ i ≤ r

meaning the matrix has form R = (Ir|T )

In case our parity check matrix is not in systematic form we can generalize the concept

Definition 4.3.4. Semi-systematic form [8]
Given µ ≥ 0 and ν ≥ 0, let R be an rank-r matrix in reduced row echelon form. Assume that r ≥ µ, and
that there are at least r − µ+ ν columns.
We say that R is in (µ, ν)-semi-systematic form if R has r rows (i.e., no zero rows); ci = i for 0 ≤ i < r−µ;
and ci ≤ i− µ+ ν for r − µ ≤ i < r.

As a special case, (µ, ν)-semi-systematic form is equivalent to systematic form if µ = ν. However, if ν > µ
then (µ, ν)-semi-systematic form allows more matrices than systematic form.

Example 4.3.1. General example of a matrix in (µ, ν)-semi-systematic form Since ci is the columns
where row i has its first 1 we see that the statement ci = i means that row i has its first 1 in column i, this
would yield an identity matrix of size r − µ. With this we can show the matrix in the form[

Ir−µ Q1

0 Q2

]

The first matrix 0 is a µ × r − µ 0 matrix (We know this since R is in Rref form.), while Q =

(
Q1

Q2

)
is a

r× ν+ matrix, where ν+ > ν. The statement ci ≤ i− µ+ ν simply states that the remaining leading ones in
Q are in the bound of the least amount of columns in R.

In case our we cannot generate a systematic but only a semi systematic parity check matrix we permute the
columns and the code support such that it results in a matrix in systematic form. This permutation would
then be a part of the private key.
We can now go on to define the classic McEliece KEM. This algorithm is written to be concise and cohesive
with the rest of the thesis. The information itself is taken from the most current specification sheet[8] at the
time of writing.



Algorithm 4.3.1 Classic McEliece KEM
• System Parameters: seed value δ ∈ Fl

2

• Key Generation: A vector E ∈ Fn+σ2q+σ1t+l
2 is generated from δ.

From E We define a random string s as the first n posittions.
The code support L is from the next σq positions.
And the Goppa polynomial is from the following σt positions.
The last l bits is used as a new random seed in case any operation fails.
Public Key: T where H = (I|T ) is our parity-check matrix.
Private Key: (δ, g, L, s)

• Encryption
Compute ciphertext c = He where e is the error vector representing our plaintext.
Compute session key K = H(1, e, c) where H is a cryptographic hash function called SHAKE256.
Output ciphertext c and session key K.

• Decryption Decode c using Patterson’s algorithm. if the decryption returns valid plaintext e, compute
K = H(1, e, c) otherwise compute K = H(0, s, c). Output session key K.

We are shown in both [7] and [9] that the classic McElice KEM is IND-CCA2 secure.

5 Security and attacks on the McEliece PKC
The McEliece has maintained it’s security since it was first proposed in 1978. Other than an attack coupled
with its defence in 2008 [10] there has been no major vulnerabilities.
No other proposal for post-quantum cryptography has such a long history of security.

Though there are several different ways one can attack the McEliece KEM, such as structural attacks or
statistical decoding, currently the most efficient set of attacks are called information set decoding (ISD).
This is also where quantum algorithms have been applied to improve on their efficiency.
With this in mind we have decided to limit this paper to ISD algorithms and how we can apply quantum
algorithms to them. We assume attacker has no information on the algebraic structure of the underlying error
correction code. Meaning the attacker would have to correct errors using only the public key. Any reader
who wishes to read more on the current research can go to " https://classic.mceliece.org/papers.html".

5.1 Information set decoding
Information set decoding is by far the most researched method of attack, it effects not only the McEliece
cryptosystem or Goppa codes but all of code based cryptography.
In this section we will describe the fundamentals of information set decoding as well as go through an
example.
ISD algorithms aim is to solve the syndrome decoding problem.



Definition 5.1.1. Syndrome Decoding Problem (SDP)[11]
Let n, k, w ∈ N such that k ≤ n and w ≤ n. Given a parity check matrix H ∈ F(n−k)×n

2 and s ∈ Fn−k
2 , find

a vector e ∈ Fn
2 of wt(e) = w such that He = s.

There are many variations on this problem but for our purposes we simply have our target size w be equal
the degree of our Goppa polynomial t.
The idea behind information set decoding relies on a simple computation. Given a cipher text c = mG+ e
and define cI , GI and eI as before we have that cI = mGI + eI . We want GI to be invertible and eI to be
the zero vector, this would turn our equality into cI = mGI . In case the error vector is not zero we can
proceed by guessing the remaining "ones" in it. The final check to validate is to confirm the weight

wt((cI + eI)G
−1
I G+ c) = t

This works because
(cI + eI)G

−1
I G+ c = mG+ c = mG+mG+ e = e

Algorithm 5.1.1 Generalized information set decoding [4]
Input: A k × n generator matrix G, a ciphertext c = mG + e, where m is the plaintext and e is the error
vector of weight t, a positive integer j ≤ t.
Output: The plaintext m

while true do
Choose randomly I ⊂ {0, . . . , n− 1}, with |I| = k
Q1 = G−1

I ; Q2 = Q1G
z = c+ cIQ2

for i = 0 to j do
for all eI with wt(eI) = i do

if wt(z + eIQ2) = t then
return (cI + eI)Q1

end if
end for

end for
end while=0

Example 5.1.1. We set

G =

[
0 0 1 1 1 1 1 1
1 1 0 1 0 1 0 1

]
c = (1, 1, 1, 0, 1, 1, 1, 1) = mG+ e = (1, 1)G+ (0, 0, 0, 0, 0, 0, 1, 0, 1)

with error correction capability t = 2 and a positive integer j = 2. We set I such that GI is invertible and
|I| = k

I = {2, 3} and GI =

[
1 1
0 1

]
Q1 = G−1

I = G =

[
1 1
0 1

]
Q2 = Q1G =

[
1 1
0 1

] [
0 0 1 1 1 1 1 1
1 1 0 1 0 1 0 1

]
=

[
1 1 1 0 1 0 1 0
1 1 0 1 0 1 0 1

]



z = c+ cIQ2 = (1, 1, 1, 0, 1, 1, 1, 1) + (1, 0)

[
1 1 1 0 1 0 1 0
1 1 0 1 0 1 0 1

]
=

(
0 0 0 0 0 1 0 1

)
= e

At this point we see that we have our error vector but an attacker wouldn’t know that so we continue with
the algorithm.
Now we check the weight of eJ for all information sets J s.t. wt(eJ) = i from i = 0 to i = j. For i = 0 we
have the set eI with weight 0 and see that wt(z + eIQ2) = t so we return (cI + eI)Q1 = cIQ1 = (1, 1) = m

As there are very many different variants and optimization we will only go through two of the most notable
ones.

5.2 Ball collision decoding algorithm
While Stern’s variant of the ISD algorithm (Collision Decoding) held its position as the asymptotically best
algorithm since 1989, The paper "Smaller decoding exponents: ball-collision decoding" published in 2010
[11] that this section heavily depends on, generalized this concept into the Ball collision decoding, showing
improved efficiency. Any reader interested in Stern’s algorithm and the early development of ISD algorithms
can look at the 2007 review article [4].

Ball collision decoding is one of several bigger development in researching more efficient ways to solve the
syndrome decoding problem.

Theorem 5.2.1. If G is a generator matrix in systematic form G = (Ik|−AT ), then it’s parity check matrix
is in form H = (A|In−k).

Proof. Since the rows of G belong to the null space of H and vice versa, we have that GHT = 0.

We can consider the parity check matrix in the form shown above, meaning that it is the dual of a generator
matrix in systematic form.

We can also think of the information set as I = {1, 2, . . . , k}. This would make U = In−k the identity matrix
in the algorithm. The algorithm divides H and syndrome s into corresponding blocks

H =

(
A1 I1 0
A2 0 I2

)
s =

(
s1
s2

)
A1 ∈ F(l1+l2)×k

2 , A2 ∈ F(n−k−l1−l2)×k
2 s1 ∈ Fl1+l2

2 , s2 ∈ Fn−k−l1−l2
2

We now give one iteration of Ball-Collision Decoding as given in [11] Constants: n, k, w ∈ I with 0 ≤ w, k ≤ n.
Parameters: p1, p2, q1, q2, k1, k2, l1, l2 ∈ I

0 ≤ p1 ≤ k1 0 ≤ p2 ≤ k2 k1 + k2 = k

0 ≤ q1 ≤ ℓ1 0 ≤ q2 ≤ ℓ2
0 ≤ w − p1 − p2 − q1 − q2 ≤ n− k − ℓ1 − ℓ2

Input: H ∈ F(n−k)×n
2 and s ∈ Fn−k

2 .
Output: Zero or more vectors e ∈ Fn

2 s.t. He = s and wt(e) = w.



1. Choose a uniform random information set I. Subsequent steps of the algorithm write FI
2 to refer to

the subspace of Fn
2 supported on I.

2. Choose a uniform random partition of I into parts of sizes k1 and k2. Subsequent steps of the algorithm
write Fk1

2 and Fk2
2 to refer to the corresponding subspaces of FI

2 .

3. Choose a uniform random partition of {1, 2, . . . , n} \ I into parts of sizes ℓ1, ℓ2, and n − k − ℓ1 −
ℓ2. Subsequent steps of the algorithm write Fℓ1

2 , Fℓ2
2 , and Fn−k−ℓ1−ℓ2

2 to refer to the corresponding
subspaces of F{1,2,...,n}\I

2 .

4. Find an invertible U ∈ F(n−k)×(n−k)
2 such that the columns of UH indexed by {1, 2, . . . , n} \ I are an

(n−k)×(n−k) identity matrix. Write the columns of UH indexed by I as
(
A1

A2

)
with A1 ∈ F(ℓ1+ℓ2)×k

2 ,

A2 ∈ F(n−k−ℓ1−ℓ2)×k
2 .

5. Write Us as
(
s1
s2

)
with s1 ∈ Fℓ1+ℓ2

2 , s2 ∈ Fn−k−ℓ1−ℓ2
2 .

6. Compute the set S consisting of all triples (A1x0 + x1, x0, x1) where x0 ∈ Fk1
2 , wt(x0) = p1, x1 ∈ Fℓ1

2 ,
wt(x1) = q1.

7. Compute the set T consisting of all triples (A1y0+y1+s1, y0, y1) where y0 ∈ Fk2
2 , wt(y0) = p2, y1 ∈ Fℓ2

2 ,
wt(y1) = q2.

8. For each (v, x0, x1) ∈ S:
For each y0, y1 such that (v, y0, y1) ∈ T :
If wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2:
Output x0 + y0 + x1 + y1 +A2(x0 + y0) + s2.

The first three steps deals with dividing out the subspaces of our vector space Fn
2 .

So FI
2 is then the set where all possible nonzero positions are the the elements of I.

Say n = 6, and k = 2. Then we set I = {1, 3}.
Meaning FI

2 = {(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0)}.

Similarly for k1 and k2 such that Ik1
and Ik2

allow only their respective positions to be non-zero.
The same follows for F{1,2,...,n}\I

2 and it’s subsets. It is important to note that this is true for the matrix
spaces as well F(ℓ1+ℓ2)×k

2 and F(n−k−ℓ1−ℓ2)×k
2 as well as for the vector subspaces containing s1 and s2. This

is made clear with the matrix-vector multiplication in the algorithm.

Lets look at the triples we collect at the end of the algorithm.
if we start with A1x0 we see that we only sum the columns indexed by Ik1

similarly with A1y0 and Ik2

We then have that A1x0 and A1y0 both belong to Fℓ1+ℓ2
2 . At this point x1 and y1 both add errors to their

respective part of the vectors. We see that the term "Ball-Collision decoding" originates from here, if we set
q1 = q2 = 0, p1 = p2 and k1 ≈ k2 the algorithm becomes what is essentially Stern’s algorithm, or "Collision
decoding" as the paper calls it. The addition of x1 and y1 allows us some leeway in looking for matching
triples, meaning instead of finding A1x0 = A1y0 we can find vectors within a given distance (q1 and q2)
of A1x0 and A1y0. Or equivalently look for collisions (equality of vectors) in the sets {A1x0 + x1 : x1 ∈
Fℓ1
2 , wt(x1) = q1} and {A1y0 + y1 : y1 ∈ Fℓ1

2 , wt(y1) = q2}



After this the algorithm becomes clearer and we simply look for two triples satisfying our weight check.
Lets look at a general example of what this process could look like, we will not seek to decode any cipher
with this but only seek to illustrate the process itself.

Example 5.2.1. To make it simple we consider the perfect conditions given above.

H =

(
A1 I1 0
A2 0 I2

)
s =

(
s1
s2

)
U = In−k

Our information set I = {1, 2, . . . , k}

FI
2 is then the subspace such that the first k positions can be non-zero. For this example every position that

can be non-zero will be a "1".
{1, 1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

} ∈ F I
2

similarly for k1 and k2 we have

{1, 1, . . . , 1︸ ︷︷ ︸
k1

, 0, . . . , 0︸ ︷︷ ︸
k2

, 0, . . . , 0︸ ︷︷ ︸
n−k

} ∈ F k1
2 {0, . . . , 0︸ ︷︷ ︸

k1

, 1, 1, . . . , 1︸ ︷︷ ︸
k2

, 0, . . . , 0︸ ︷︷ ︸
n−k

} ∈ F k2
2

It is important to note that since k1 and k2 is divided uniformly they can take any shape, such as.

{0, 1, 0, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
n−k

} ∈ F k1
2

we will not consider this for our example.
We also have that {1, 2, . . . , n}\I = {n− k + 1, . . . , n} = N Similarly we partition ℓ1, ℓ2, such that

{0, . . . , 0︸ ︷︷ ︸
k

, 1, 1, . . . , 1︸ ︷︷ ︸
ℓ1

, 0, . . . , 0︸ ︷︷ ︸
ℓ2

, 0, . . . , 0︸ ︷︷ ︸
n−k−ℓ1−ℓ2

}

as we have done above. Since U = In−k we have that UH = H and HN = In−k.

HI =

(
A1

A2

)
A1 ∈ F(ℓ1+ℓ2)×k

2 A2 ∈ F(n−k−ℓ1−ℓ2)×k
2

It is important to note that A1 and A2 really are (n− k)×n matrices and we follow the same convention as
above

A1 =

(
A11 0
0 0

)
such that A11 is a (ℓ1 + ℓ2)× k

A2 =

(
0 0
A22 0

)
such that A22 is a (n− k − ℓ1 − ℓ2)× k

Now if we construct the triples mentioned above we first end up with vectors where we sum the columns of
A1 indexed by x0 and y0 respectively

A1x0 = A1y0 = {1, . . . , 1,︸ ︷︷ ︸
ℓ1

1, . . . , 1,︸ ︷︷ ︸
ℓ1

0, . . . , 0︸ ︷︷ ︸
n−k−ℓ1−ℓ2

}



Of course this is only an illustrative example they will not necessarily be equal, and if they were not equal we
would correct that with the added vectors x1 and y1 such that.

A1x0 + x1 = {1 + x11, . . . , 1 + x1ℓ1︸ ︷︷ ︸
ℓ1

, 1, . . . , 1︸ ︷︷ ︸
ℓ1

, 0, . . . , 0︸ ︷︷ ︸
n−k−ℓ1−ℓ2

}

And similarly for A1y0 + y1. The sets of triples S and T has
(
k1

p1

)(
ℓ1
q1

)
and

(
k2

p2

)(
ℓ2
q2

)
elements respectively.

After we construct the sets of triples S and T we look for collisions and continue with the weight check.

Theorem 5.2.2. Correctness of ball-collision decoding[11] The set of output vectors e of the ball-
collision decoding algorithm is the set of vectors e that satisfy He = s and have weights p1, p2, q1, q2, w −
p1 − p2 − q1 − q2 in Fk1

2 ,F
k2
2 ,F

l1
2 ,F

l2
2 ,F

n−k−l1−l2
2 respectively. These weight are so we can manipulate the

distribution of "ones" in the error vector that we want to look for.

The weight check in step 8 checks if the algorithm succeeds. the equality we are looking for is.

UHe = UH

 x0 + y0
x1 + y1

A2(x0 + y0) + s2

 =

(
A1(x0 + y0) + x1 + y1

A2(x0 + y0) +A2(x0 + y0) + s2

)
=

(
s1
s2

)
This algorithm gives more fine tuning of the weight distribution of the error vector e with the parameters
k1, k2, ℓ1, ℓ2 dividing e into 5 different parts. With this we can look at more natural patterns of error vectors
for Goppa codes.
The success probability
The algorithm requires the error vector e to have the weight distribution p1, p2, q1 and q2 in positions ranges
given by k1, k2, ℓ1 and ℓ2 respectively. The probability of e having this weight distribution is then

b(p1, p2, q1, q2, k1, k2, ℓ1, ℓ2) =

(
n

w

)−1(
n− k − ℓ1 − ℓ2

w − p1 − p2 − q1 − q2

)(
k1
p1

)(
k2
p2

)(
ℓ1
q1

)(
ℓ2
q2

)

5.3 MMT Algorithm
The May Meurer Thomae algorithm was published published the same year, showing even more improve-
ments. Taking the time complexity from O(20.05558n) down to O(20.05363n). It is based on Finiaz-Sendrier
ISD as it is simpler than the ball collision decoding algorithm described above.

The submatrix matching problem is the problem of finding in a projected ℓ × (k + ℓ) submatrix a weight-p
sum of columns that sums to a target syndrome s = HcT = HmT +HeT = HeT .
We define QI and QI as the matrices of Q such that it only contains the rows or columns of Q respectively,
corresponding to I. Note that the difference here is that QI and QI are not defined as in the previous sec-
tion but as we defined QI in section 4.1, Meaning we do not mask the unwanted columns but remove them
completely.

we also define the projection of the sum of Q’s columns onto the rows of L

πL(Q) =

k∑
i=1

QL
{i} ∈ Fℓ

2



Definition 5.3.1. [12] The submatrix matching problem with parameters ℓ, k and p ≤ k + ℓ is defined as
follows. Given a random matrix Q = [q1, . . . , qk+ℓ] ∈ Fℓ×(k+ℓ)

2 (where qi are the columns of Q) and a target
vector s ∈ Fℓ

2, find and index set I of size at most p such that the corresponding columns of Q sum to s, i.e.,
find I ⊂ {1, 2, 3, ..., k + ℓ} = [k + ℓ], |I| ≤ p with

π(QI) =
∑
i∈I

qi = s ∈ Fℓ
2

This is a vectorial variant of the subset sum problem, meaning each individual row is its own subset sum
problem, we solve this problem using the column match algorithm.

We want to find two index sets I1 and I2 of size p/2 each from the set {1, . . . , k+ ℓ} so they form a partition
of I, giving

(
p

p/2

)
≈ 2p different partitions. each partition of I gives the equality∑

i∈I1

qi =
∑
i∈I2

qi + s

To guarantee that we find such an equality we add some extra parameters ℓ1 and ℓ2 such that ℓ1 + ℓ2 = ℓ,
that corresponds to disjoint subsets L1, L2 ⊂ {1, . . . , ℓ} with sizes
With this we can now define two lists

L1 =

{
(I1, πL1(QI1)) : I1 ⊂ [k + ℓ], |I1| =

p

2
and πL2(QI1) = 0 ∈ Fℓ2

2

}

L2 =

{
(I2, πL1

(QI2) + sL1
) : I2 ⊂ [k + ℓ], |I2| =

p

2
and πL2

(QI2) = sL2
∈ Fℓ2

2

}
Let’s look at these sets, the important parts in L1 is πL1(QI1) and πL2(QI1) = 0. We know that πL1(QI1) =∑

i∈I1
qL1
i sums the columns but only cares about the rows whose index lie in L1.

This ends up being a vector in Fℓ1
2 (

qi1,1 + qi1,2 + qi1,3
qi2,1 + qi2,2 + qi2,3

)
Similarly for πL2

(QI1) = 0 which is the main restriction defining L1. This states that given the set of
columns if there is a subset of the rows that sum up to the 0-vector we sum the remaining rows. It is easy to
consider QI1 as a standalone matrix and sum it’s rows, if the rows with index in L2 is a 0-vector we want
the vector that results from the remaining rows, that being πL1(QI1).
L2 is defined similarly but with a different restrictions.
Doing this leaves us with 2p−ℓ2 .
A simple example where L1 is the first half and L2 the second and similarly for I1 and I2.

A =
[
QI1 QI2

]
=

[
QL1

I1
QL1

I2

QL2

I1
QL2

I2

]
If the sum of the rows of QL2

I1
is the 0-vector in Fℓ2

2 we save the sum of the rows of QL1

I1
. Similarly for QL2

I2
.

Now we have L1 and L2 and search through them for matching vectors πL1
(QI1) = πL1

(QI2) + sL1

Since I1 and I2 are not necessarily disjoint we can take

I ′ = (I1 ∪ I2)\(I1 ∩ I2)



Elements in the intersection will cancel out so we end up with I ′, such that |I ′| = p− 2|(I1 ∩ I2)|.
Before moving describing the algorithm we show how to construct L1,1 andL1,2 with L2,1 and L2,2 being
constructed similarly. We partition I1 = I1,1 ∪ I1,2 such that |I1,1| = |I1,2| = p

4 with I1,1 ⊂ [1, k+ℓ
2 ] and

I1,2 ⊂ [k+ℓ
2 , k + ℓ]

we then compute the lists
L1,1 = {(I1,1, πL2(QI1,1))}

L1,2 = {(I1,2, πL2(QI1,2))}

The algorithm given in [12] is as follows

Algorithm 5.3.1 COLUMNMATCH

1: Input: Q ∈ Fℓ×(k+ℓ)
2 , s ∈ Fℓ

2, p ≤ k + ℓ
2: Output: I with π(QI) = s or ⊥ if no solution is found
3: Parameters: L1, L2 with [ℓ] = L1∪̇L2 and |Li| = ℓi for i = 1, 2
4:
5: Construct L1,1,L1,2,L2,1,L2,2

6: Sort L1,2,L2,2 according to their labels πL2
(QI1,2), πL2

(QI2,2) + sL2

7: Join L1,1 and L1,2 to L1, i.e., for all (I1,1, πL2
(QI1,1)) ∈ L1,1 do

8: for all (I1,2, πL2(QI1,2)) ∈ L1,2 with πL2(QI1,1) = πL2(QI1,2) do
9: I1 = I1,1 ∪ I1,2. Insert (I1, πL1(QI1)) into L1

10: Join L2,1 and L2,2 to L2, i.e., for all (I2,1, πL2
(QI2,1)) ∈ L2,1 do

11: for all (I2,2, πL2
(QI2,2) + sL2

) ∈ L2,2 with πL2
(QI2,1) = πL2

(QI2,2) + sL2
do

12: I2 = I2,1 ∪ I2,2. Insert (I2, πL1
(QI2) + sL1

) into L2

13: Sort L2 according to the label πL1(QI2) + sL1

14: Join L1 and L2 to L, i.e., for all (I1, πL1(QI1)) ∈ L1 do
15: for all (I2, πL1

(QI2) + sL1
) ∈ L2 with πL1

(QI1) = πL1
(QI2) + sL1

do
16: Output I1∆I2 = (I1 ∪ I2) \ (I1 ∩ I2)
17: Output ⊥ =0

We show a small example before moving on to the MMT algorithm.

Example 5.3.1. Set k = 2, ℓ = 4 and p = 4 ≤ 6 this makes Q an 4× 6 matrix and s a vector of length 4.
We set Q and s to be the following.

Q =


1 0 1 1 0 1
0 1 0 0 1 1
1 1 1 1 1 1
1 1 1 1 1 0

 , s =


1
1
1
1


We set our parameters to be L1 = {1, 3} and L2 = {2, 4}.
The first step is to construct the lists Li,j where i, j = 1, 2 We do this by taking creating random subsets Ii,j
of [6] following the constraint given above for the lists. This gives us

I1,1 = {1}, I1,2 = {4}, I2,1 = {2}, I2,2 = {5}



Which in turn gives us the lists.

L1,1 = {I1,1,
(
0
1

)
}, L1,2 = {I1,2,

(
0
1

)
}, L2,1 = {I2,1,

(
0
0

)
}, L2,2 = {I2,2,

(
0
0

)
}

At this point we take every match between L1,1 and L1,2 and put into L1 but replace πL2
with πL1

similarly
with L2,1 and L2,2. We end up with

L1 = {{1, 5},
(
0
0

)
}, L2 = {{3, 4},

(
1
1

)
}

Here we again do the same matching of elements in L1 and L2 but since there is no matching elements
we find no solution. We could tweak the values in Q, Ii,j and Li to give us such a match but since this
illustrates the concept well enough we will leave it at that. In a successful run of the algorithm we are given
an information set we can use in the MMT algorithm below.

MMT Algorithm
As usual H ∈ F(n−k)×n

2 is our parity check matrix for an [n, k, d]-code C. We want to decode c = m+ e such
that wt(e) = ⌊d−1

2 ⌋ = t. To achieve this we want t columns of H that sum to s(c) = HcT .
We start by putting H in semi systematic form.

H̃ = UGHUP =

(
Q

0
In−k−ℓ

)
With UP being a permutation matrix on the columns of H and UG being a Gaussian elimination matrix.
This also permutes e so we have ẽ = UP e. We set p ≤ t as an optimization parameter. We need that the t
positions containing a 1 have a distribution of p

2 ,
p
2 and w − p in [1, k+ℓ

2 ], [k+ℓ
2 + 1, k + ℓ] and [k + ℓ + 1, n]

respectively. We look at Q[1,ℓ] for a weight-p sum of the columns that exactly matches the first ℓ rows of s(x).

π[1,ℓ](Q) = s[1,ℓ](x) wt(π[1,ℓ](Q)) = p

we apply these to the column match algorithm, for every iteration that we get at least one I s.t. π[1,ℓ](QI) =

s[1,ℓ](x) we check the weight of their difference wt(π(QI − s(x))) = t− |I|. We can correct these by choosing
unit vectors from In−k−ℓ

The support function supp(v) returns the indices of non-zero elements in the vector v.



Algorithm 5.3.2 MMT

Input: Parity check matrix H ∈ F(n−k)×n
2 , syndrome s(x) = Het with wt(e) = ω

Output: Error e ∈ Fn
2

Parameters: p, ℓ, ℓ1, ℓ2 with ℓ = ℓ1 + ℓ2

Repeat
Compute Ĥ← Init(H) where Ĥ = UGHUP

For all (solutions I found by ColumnMatch(Q[ℓ], (UGs
t(x))[ℓ], p, ℓ1, ℓ2)) do

If wt(π(QI) + UGs
t(x)) = ω − |I| then

Compute ẽ ∈ Fn
2 by setting

ẽi = 1 ∀ i ∈ I
ẽk+ℓ+j = 1 ∀ j ∈ supp(π[n−k]\[ℓ](QI + UGs

t(x)))
Output e = ẽU t

P

6 Quantum ISD

6.1 Introduction
Quantum computers and quantum computing is a revolution within the field of computer science. Instead of
classical bits as we have now, they use qubits, that can exist in multiple states simultaneously.

Several problems whose difficulty we rely on for our current cryptography such as integer factorization prob-
lem and the discrete logarithm problem are solved exponentially faster with quantum computers using Shor’s
algorithm. This renders those cryptosystems useless.

In our use case the syndrome decoding problem has only quadratic improvement with the use of Grovers
algorithm and the quantum walk search algorithm. Hence the solution is simply to use larger keys.

The advent of quantum computing changes the P vs NP landscape and introduces BQP as the set of problems
that has an efficient solution on a quantum computer.

Now due to the exponential increase that Shor’s algorithm brings the cryptographic community has to work
to replace these broken cryptographic systems with systems that can resist attackers with quantum computers.
This is why the US national institute of standards and technology (NIST) has started a competition to test
and find replacements for these broken systems. Mceliece has been a candidate and is still in the running
which is now at the fourth round since July 5, 2022.
In this chapter we aim to give a short overview of quantum computing and explain the best we can how
Grover’s and the quantum walk algorithm works and how they are integrated into our previously discussed
MMT algorithm.



6.2 Basics of Quantum Computing
Quantum computing is heavily dependent on linear algebra as the reader will see.
This section and the next is heavily reliant on [13].
The basics of quantum computing starts with qubits. the base vectors of a qubit are usually

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
But also common are

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

these are then called our basis states.
A quantum state of a qubit is then defined as the superposition of the basis states.

|Ψ⟩ = α |0⟩+ β |1⟩ , |α|2 + |β|2 = 1

Where the qubit exist in both states simultanously and can fall into one or the other with probability α or β
respectively.
This superposition of states is valid for any set of vectors, it is then as above just a linear combination of
vectors.

|Ψ⟩ =
∑
i

αi |ψi⟩

We denote the complex conjugate and the transpose of a matrix A with A∗ and AT respectively.

Definition 6.2.1. Inner product An inner product on a complex vector space V is a mapping
(·, ·) : V × V → C s.t. ∀x, y, z ∈ V and all λ ∈ C

• (x, y) = (y, x)

• (λx, y) = λ(x, y)

• (x+ y, z) = (x, z) + (y, z)

• (x, x) > 0 when x ̸= 0

• (x, x) = 0 when x = 0

We will denote the inner product between vectors |ϕ⟩ and |ψ⟩ as ⟨ψ|ϕ⟩, or between |ϕ⟩ and A |ψ⟩ (or equiva-
lently A+ |ϕ⟩ and |ψ⟩) as ⟨ψ|A |ϕ⟩

Definition 6.2.2. Hilbert space A Hilbert space is an inner product space which is a complete metric space
with respect to the metric induced by it’s inner product.

Definition 6.2.3. Hermitian conjugate (Adjoint) The adjoint of a matrix A is simply the complex
conjugate of the transpose of the matrix, meaning A+ = (AT )∗.

For a vector |ϕ⟩ it’s dual vector ⟨ϕ| as it’s normally called is simply the adjoint of the vector.



Example 6.2.1. given |0⟩ =
(
1
0

)
we have that ⟨0| =

(
1 0

)
Definition 6.2.4. Linear operator A linear operator is any function A : V →W such that

A

(∑
i

ai |vi⟩
)

=
∑
i

aiA(|vi⟩)

We will consider any operator from here on to simply be a matrix

Definition 6.2.5. Unitary operator A matrix is said to be unitary if A+A = I

The tensor product is a way of creating a larger vector space from two given ones.

Definition 6.2.6. The tensor product ⊗ of two vectors |ψ⟩ ∈ Cn and |ϕ⟩ ∈ Cm such that |v⟩ = |ψ⟩ ⊗ |ϕ⟩ ∈
Cnm. Such that v(i,j) = ϕi ∗ ψj where the subscript gives the component position in lexicographic order,
meaning the first component is checked first and the second after.
We sometimes denote the tensor product of two vectors as |ψ⟩ |ϕ⟩ or |ψϕ⟩ for brevity.
We also write out |ϕ⟩⊗n when applying the tensor product of the same vector n times.
The tensor product satisfies the following properties.

1. For an arbitrary scalar z ∈ C and elements|ψ⟩ ∈ Cn and |ϕ⟩ ∈ Cm,

z(|ψ⟩ ⊗ |ϕ⟩) = z |ψ⟩ ⊗ |ϕ⟩ = |ψ⟩ ⊗ z |ϕ⟩ .

2. For arbitrary |ψ1⟩ , |ψ2⟩ ∈ Cn and |ϕ⟩ ∈ Cm,

(|ψ1⟩+ |ψ2⟩)⊗ |ϕ⟩ = |ψ1⟩ ⊗ |ϕ⟩+ |ψ2⟩ ⊗ |ϕ⟩ .

3. For arbitrary |ψ⟩ ∈ Cn and |ϕ1⟩ , |ϕ2⟩ ∈ Cm,

|ψ1⟩ ⊗ (|ϕ⟩+ |ϕ⟩) = |ψ⟩ ⊗ |ϕ1⟩+ |ψ⟩ ⊗ |ϕ2⟩ .

We also note that the adjoint operation distribute over the tensor product

(A⊗n)+ = (A+)⊗n

Example 6.2.2. (
1
2

)
⊗
(
3
4

)
=


1 ∗ 3
1 ∗ 4
2 ∗ 3
2 ∗ 4

 =


3
4
6
8


For matrices we would have the Kronecker product

Example 6.2.3.

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

Am1B Am2B · · · AmnB





Nielsen and Chuang in their book[13] define the hadamard operator on one qubit as

Definition 6.2.7.
H =

1√
2

[
(|0⟩+ |1⟩) ⟨0|+ (|0⟩ − |1⟩) ⟨1|

]
and we take this oppurtunity to write this out as a matrix in order to illustrate how we can work with this
notation. We start simply by rewriting the notation in normal linear algebra.

H =
1√
2

[
(

(
1
0

)
+

(
0
1

)
)
(
1 0

)
+ (

(
1
0

)
−

(
0
1

)
)
(
0 1

)]
Now it seems obvious how to continue.

H =
1√
2

[(
1
1

)(
1 0

)
+

(
1
−1

)(
0 1

)]
=

1√
2

[ [
1 0
1 0

]
+

[
0 1
0 −1

]]
=

1√
2

[
1 1
1 −1

]
This does not mean the notation used in quantum computation is meaningless it has its value in the density
of information, for example

Example 6.2.4. Say we want to represent n-qubits then we can write |00 . . . 0⟩︸ ︷︷ ︸
n

which represents a vector in

C2n with only n values. Let’s look at some specific values of n. For n = 1 we have the vectors |0⟩ and |1⟩
that we have been using so far. For n = 2 we would normally have a vector of length 22 = 4 but can simply
write

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 .

Now we would also like to look at H⊗n. From [13] we get the definition,

Definition 6.2.8.
H⊗n =

1√
2n

∑
x,y

(−1)xy |x⟩ ⟨y|

where |x⟩ and |y⟩ are the basis vectors of our vector space. indexed by x and y, meaning if x = 2 then the
third (offset by one) element in the vector is 1.

An example for n = 2 would then be 42 vector operations, which is very tedious and uninspiring work hence
we choose to write it out using the tensor product for matrices that we defined above.

Example 6.2.5.

1√
2

[
1 1
1 −1

]
⊗ 1√

2

[
1 1
1 −1

]
=

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Now we wanna look at how these matrices possibly affect our qubits, we look at some example.



Example 6.2.6. for n = 1 we have H, |0⟩ and |1⟩

H |0⟩ = 1√
2

[
1 1
1 −1

](
1
0

)
=

1√
2

(
1
1

)
=
|0⟩+ |1⟩√

2
= |+⟩

H |1⟩ = 1√
2

[
1 1
1 −1

](
0
1

)
=

1√
2

(
1
−1

)
=
|0⟩ − |1⟩√

2
= |−⟩

It is common to see |+⟩ and |−⟩ in the litterature and for good reason, but we will not use this here. We
move on to n = 2

Example 6.2.7.

H⊗2 |00⟩ = 1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



1
0
0
0

 =
1

2


1
1
1
1

 =
|00⟩+ |01⟩+ |10⟩+ |11⟩

2

Now the similarity in these is obviously the scalar component, if we look at the first one we see that 4| 1√
2
|2 = 1.

Similarly for the last one with two qubits we have 4| 12 |
2 = 1.

What this tells us is that we can use the Hadamard matrix to go from our initial state |0⟩⊗n to a superposition
of equal probability for all states.
We can write this in it’s general form,

H⊗n |0⟩⊗n
=

1√
2n

2n−1∑
j=0

|j⟩

Notice that the Hadamard transform is its own adjoint, meaning H+H = I = HH+. Followed with the
distributivity of the adjoint over tensor products we have that H⊗nH⊗n = I. This will be used in Grover’s
algorithm.
The Pauli matrix X will also used later in Grover’s algorithm so we will quickly define it, if interested in
the other Pauli matrices refer to [13].

Definition 6.2.9. Pauli matrix X

X = σx =

[
0 1
1 0

]

6.3 Grover’s Algorithm
Grover’s algorithm is a quantum algorithm that searches through an unstructured set of elements for a solu-
tion with a quadratic speedup compared to classical algorithms.
Given a search space of N = 2n elements and M ⊂ N possible solutions Grover’s algorithm uses a oracle to
recognize a solution to our search problem. The oracle is a unitary operator O. If we consider |x⟩ to be our
index register, that is x ∈ [0, . . . , N − 1] and |q⟩ to be our oracle qubit. The action of our oracle on these
qubits would then result in

O |x⟩ |q⟩ = |x⟩ |q ⊕ f(x)⟩



where ⊕ is addition mod 2, and

f(x) =

{
1 x ∈M
0 x ̸∈M

This essentially means we flip the oracle qubit if we find a solution. If we then use (|0⟩ − |1⟩)/
√
2 as our

oracle qubit we get that our oracle qubit only changes in sign.

O |x⟩
(
|0⟩ − |1⟩√

2

)
= (−1)f(x) |x⟩

(
|0⟩ − |1⟩√

2

)
.

with this we can omit the oracle qubit and only write

O |x⟩ = (−1)f(x) |x⟩

The procedure itself starts by putting the computer in the state |0⟩⊗n, then we apply the Hadamard transform
putting the computer in an equal superposition state.

|ψ⟩ = 1√
N

N−1∑
x=0

|x⟩ ,
∣∣∣∣ 1√
N

∣∣∣∣N = 1

Now we repeatedly apply Grover’s operator G, which we describe in the four steps below.

1. Apply oracle O

2. Apply Hadamard transform H⊗n

3. Conditional phase shift on all basis states but |0⟩

|x⟩ → −(−1)σx0 |x⟩

4. Apply Hadamard transform H⊗n

Note that step 2,3 and 4 gives

H⊗n(2 |0⟩⊗n ⟨0|⊗n − I)H⊗n = 2 |ψ⟩ ⟨ψ| − I

And Grover’s operator is defined as
G = (2 |ψ⟩ ⟨ψ| − I)O

We formally write out the algorithm as
The algorithm starts with the initial state and applies H⊗n to the first n qubits, and HX to the last, this is
step 1 and 2. It then applies the Grover operator R ≈ ⌈π

√
2n/4⌉ times. At this point it measures the qubits

and returns the resulting vector.
Let’s look a little bit at the result from steps 2, 3 and 4.

H⊗n(2 |0⟩⊗n ⟨0|⊗n − I)H⊗n = 2H⊗n |0⟩ ⟨0|H⊗n −H⊗nIH⊗n = 2 |ψ⟩ ⟨ψ| − I

Though it is simple, we write it out for clarity.



Algorithm 6.3.1 Grover’s Algorithm
Input:A black box oracle as described above and n+ 1 qubits in the state |0⟩
Output: x0

1. |0⟩⊗n |0⟩

2. → 1√
N

∑2n−1
x=0 |x⟩

[
|0⟩−|1⟩√

2

]

3. → [(2 |ψ⟩ ⟨ψ| − I)O]R 1√
N

∑2n−1
x=0 |x⟩

[
|0⟩−|1⟩√

2

]
≈ |x0⟩

[
|0⟩−|1⟩√

2

]
4. return x0

6.4 Quantum Walk Algorithm
The quantum walk algorithm is another algorithm we will use to further improve on our ISD algorithm,
the problem it aims to solve is finding a vertex belonging to a specific subset of vertices in a graph. More
specifically for us we will be using a Johnson Graph.

Definition 6.4.1. Johnson Graph:[14] A Johnson Graph J(x, r) is a graph, in which every vertex is
labeled by an r-element subset V of the set {1, 2, . . . , x}, and in which two vertices, U and V , are adjacent
to each other if and only if |U ∩ V | = r − 1.

In our case we have a graph G = J(x, r) = (V,E) where V and E denote our vertices and edges respectively.
We define AG as our adjacency matrix and PG = AG

r(x−r) as our stochastic transition matrix. The stochastic
transition matrix tells us the probability of transition to each vertex. We define the quantum state of a vertex
i with |i⟩ and |ij⟩ the quantum state of of the edge (i, j)
We define HE to be the hilbert space associated with our edge set E

Definition 6.4.2. [14] A hilbert space associated with an edge set E, denoted HE is a hilbert space whose
basis vectors are given by the elements in E

We also define Uo and Ud

Uo(|i⟩ |j⟩) =

{
− |i⟩ |j⟩ i ∈M
|i⟩ |j⟩ i ̸∈M

, Ud(|i⟩ |j⟩) = UdL(UdR(|i⟩ |j⟩))

Where
UdR = 2

∑
x∈V

|Φx⟩ ⟨Φx| − I|V |2 UdL = 2
∑
y∈V

|Ψy⟩ ⟨Ψy| − I|V |2

and
|Φx⟩ = |x⟩

( ∑
y∈V,(x,y)∈E

√
PG[x][y] |y⟩

)
, |Ψy⟩ =

( ∑
x∈V,(y,x)∈E

√
PG[y][x] |x⟩

)
|y⟩

Where PG[x][y] is the (x, y) component of the matrix.



Algorithm 6.4.1 QW search algorithm[14]
Input: G = J(x, r) = (V,E ⊂ V × V ), PG,M ⊂ V
Output: x ∈M

1. |ψ⟩ ← |0n⟩

2. |ψ⟩ ← H⊗n |ψ⟩

3. for i = 1 to ⌊ 1√
ϵδ
⌋

4. |ψ⟩ ← Uo |ψ⟩

5. |ψ⟩ ← Ud |ψ⟩

6. return |ψ⟩

Let’s take some time and look at what our operators do. The first operator is simple enough, just as in
with the oracle operator in Grover’s algorithm we flip the sign if we find a vertex i that belongs to our set of
solutions M .
Now the more difficult operator is Ud, we will start by explaining from the bottom up and try to give a concise

explanation of what the operator does. Starting with |Φx⟩ = |x⟩
(∑

y∈V,(x,y)∈E

√
PG[x][y] |y⟩

)
, the sum being

similar to the superposition of equal states this is the superposition of the transition probabilities from the
vertex x to the adjacent vertices y. This sum ends up as a vector as we know and we simply take the tensor
product of the quantum state of the vertex x with this superposition. We define |Ψy⟩ similarly. One step up
we have the so called reflection operators UdL and UdR, they are called so since they reflect a vector around
the subspace spanned by |Φx⟩ and |Ψy⟩. What this means is that given a vector |ϕ⟩ = |ϕ⊥⟩ +

∣∣ϕ||〉 where∣∣ϕ||〉 is the component in the subspace and |ϕ⊥⟩ is orthogonal to the subspace. Orthogonal to a subspace
means the vector is a linear combination other basis vectors than those spanning the subspace and cant be
defined using those. One can consider the subspace being two dimension and the orthogonal vector being in
three dimensions and the vector being reflected around the 2d-plane to give a simple geometric intuition. The
orthogonal vector isn’t dependent on the set of basis vectors that span the subspace and is reflected around
those basis vectors. This ends up being

UdL |ϕ⟩ = UdL(
∣∣ϕ||〉+ |ϕ⊥⟩) = ∣∣ϕ||〉− |ϕ⊥⟩ .

And of course UdR |ϕ⟩ works similarly. After we have done this a set number of times we arrive at our
solution. This set number of times,meaning the values given in the loop are ϵ = |M |

|V | and the spectral gap is
δ = x

r(x−r) .



6.5 Quantum MMT Algorithm
We first use Grover’s algorithm to find an appropriate permutation matrix. Let V be the entire set of n× n
permutation matrices, and a function f : V → F2 equals 1 if there exists a solution for the columnmatch
algorithm and 0 otherwise. It is important here to note that the function simply recognizes a solution not
that it knows a solution. This permutation coupled with Gaussian elimination puts our parity-check matrix
in semi systematic form.

Now the task of finding the error vector(or more specifically the information set) is done using the quantum
walk algorithm. Recall from the section on the MMT algorithm that we divide our information set in four
section, here we describe each section using a Johnson graph. To do this we need to define the products of
graphs.

Definition 6.5.1. The product of graphs For finite graphs G1 = (v1, E1) and G2 = (v2, E2), the product
being G = G1 × G2 = (V,E) where V = V1 × V2 and E = {(u1u2, v1v2)|(u1 = v1 ∧ (u2, v2) ∈ E2) ∨ (u2 =
v2 ∧ (u1, v1) ∈ E1)}

Essentially what this definition says is that we can only move in one graph at a time. This can then easily
be extended to the product of four graphs J(N,R) = J11(N,R)× J12(N,R)× J21(N,R)× J22(N,R). Where
N =

(
k+ℓ

p
4

)
and r is the number of solution satisfying the column match algorithm. M is then the set of all

solution satisfying the column match algorithm.

Algorithm 6.5.1 Quantum MMT Algorithm
Input: n, k, w,H, s, p, ℓ, ℓ1, ℓ2, ϵ
Output: e

1. e← 0n

2. while e == 0n

3. P ← Grovers(ℓ,H)

4. Q,U ← Gaussian(HP )

5. s− ← Us

6. e− ← QW (Q, p, ℓ1, ℓ2, s
−)

7. if wt(e−) == w − p− 4ϵ then

8. e← Pe−

9. return e



The main difference from the normal MMT algorithm is that we use Grover’s algorithm for finding an
appropriate permutation matrix and the quantum walk algorithm for finding an error vector.

6.6 Post quantum cryptography as a new field
Post quantum cryptography is still a very new field, reviewing the current litterature specifically for code
based cryptography has not lead to much understanding of how these quantum algorithms work.

This chapter sought to give an introduction to the topic and the relevant math but there is much more to
learn in quantum computing before the algorithms can be properly understood.

Quantum computing will revolutionize the field of cryptography and will bring many dangers and insecurities
with it. Cryptography now relies on a long history of research and attempts at breaking a cryptosystem for
it to be considered secure. The McEleice PKE for example has 40 years of research on it with no practical
improvement in decoding a message quickly without the private key. Quantum computing threatens this
balance by bringing in a completely new paradigm of attacks. so far there is no known attacks with exponential
speedup. But as quantum computing becomes more and more an integral part of computer science, more and
more people research it and the exploration of quantum computing will snowball into possible disasters for
the end users of these crytographic systems.
This is why it is so important to quickly find and research any possible cryptosystems before quantum com-
puters are widely available so we don’t have to deal with any potential catastrophes.
It might also be of value to base our cryptosystems on several different problems in the union of NP-complete
and QMA-complete problems so as to minimize any future damage.

7 Conclusion
In this paper we sought to give a current review article of McEliece used with Goppa codes and to explore it’s
inner workings akin to Overbecks article from 2007[4], we also wanted a more up to date on current attack
algorithms and how quantum algorithms can be applied to improve on these algorithms.
We start by constructing finite fields from the foundation of algebraic structures and show how they can be
used to define our Goppa codes. We proved the minimum distance of vectors in a Goppa code to be 2t + 1
where t ∈ N is the degree of our Goppa polynomial, and then showed how we can correct up to t errors in
a codevector using pattersons algorithm. From there we defined the McEliece PKE using Goppa codes and
showed how to encrypt and decrypt and proved some results showing specifically why the decryption works.
From there we showed that the PKE is only OW-CPA secure and why this matters for practical purposes,
we then solved this problem by defining KEM’s and the McEliece KEM which are IND-CCA2 secure.
Then we look at two notable ISD algorithms one of which (MMT) is currently one of the most efficient
classical methods for solving the syndrome decoding problem.
Lastly we give a brief introduction to quantum computation and try to explain Grover’s and the quantum
walk algorithm and show how these can be used to optimize the MMT-algorithm.

Many parts in this thesis can be lacking in details most notably the section on ISD algorithm and the quantum
walk algorithm, also the section on finite fields could be more brief.



8 Appendix

8.A How to find the multiplicative inverse of a polynomial modulo a irreducible
polynomial belonging to a polynomial ring over a finite field.

This section will show how we found the inverses to the polynomials defining the syndrome of our Goppa
code given the values chosen for our example.
Remember that since we have a characteristic of 2, we have that 1 = −1. We list the elements of our finite
field in both forms to help with any verification.

{0, 1, λ, λ2, λ3 = λ+ 1, λ4 = λ2 + λ, λ5 = λ2 + λ+ 1, λ6 = λ2 + 1}

The Goppa polynomial is x2 + x+ 1

• x
1 = x(ax+ b) = ax2 + bx = ax+ a+ bx

a+ b = 0 a = 1→ b = 1

x(x+ 1) = 1

• x− 1 see above.

• x− λ
1 = (x+ λ)(ax+ b) = ax+ a+ bx+ aλx+ bλ

a+ b+ aλ = 0 a+ bλ = 1

b = aλ3 a+ bλ = 1 = a+ aλ4 = aλ5 → a = λ2 and b = λ5

(x− λ)(λ2x+ λ5) = 1

• x− λ2
1 = (x+ λ2)(ax+ b) = ax+ a+ bx+ aλ2x+ λ2b

a+ b+ aλ2 = 0→ b = aλ6

a+ bλ2 = 1 = a(λ3)→ a = λ4 b = λ3

(x+ λ2)(λ4x+ λ3) = 1

• x− λ3
1 = (x+ λ3)(ax+ b) = ax+ a+ bx+ aλ3x+ bλ3

a+ b+ aλ3 = 0→ b = aλ

a+ bλ3 = 1 = aλ5 → a = λ2 b = λ3

(x+ λ3)(λ2x+ λ3) = 1



• x− λ4
1 = (x+ λ4)(ax+ b) = ax+ a+ bx+ aλ4x+ bλ4

a+ b+ aλ4 = 0→ b = aλ5

a+ bλ4 = 1 = a+ aλ2 = aλ6 → a = λ b = λ6

(x+ λ4)(λx+ λ6) = 1

• x− λ5
1 = (x+ λ5)(ax+ b) = ax+ a+ bx+ aλ5x+ bλ5

a+ b+ aλ5 = 0→ b = aλ4

a+ bλ5 = 1 = aλ6 → a = λ b = λ5

(x+ λ5)(λx+ λ5) = 1

• x− λ6
1 = (x+ λ6)(ax+ b) = ax+ a+ bx+ aλ6x+ bλ6

a+ b+ aλ6 = 0→ b = aλ2

a+ bλ6 = 1 = aλ3 → a = λ4 b = λ6

(x+ λ6)(λ4x+ λ6) = 1



8.B Niederreiter

Algorithm 8.B.1 Niederreiter
• System Parameters: n, t ∈ N, where t << n.

• Key Generation: Given the parameters n,t generate the following matrices:
H:(n− k)× n check matrix of a binary code G which can correct up to t errors
M: (n− k)× (n− k) random binary non-singular matrix
P: n× n random permutation matrix
Then, compute the systematic n× (n− k) matrix Hpub =MHP .

• Public Key:(Hpub,t)

• Private Key: (P ,DG , M), where DG is an efficient syndrome decoding algorithm for G.

• Encryption: A message m is represented as a vector e ∈ {0, 1}n of weight t, called plaintext. To
encrypt it, we compute the syndrome

s = HpubeT

.

• Decryption To decrypt a ciphertext s calculate

M−1s = HPeT

first, and apply the syndrome decoding algorithm DG for G to it in order to recover PeT . Now we can
obtain the plaintext eT = P−1PeT .



8.C Code

import galois
import numpy as np
import random as rand

rand.seed()

prima = 2 ## prime
orda = 3 ## prime power
fOrd = prima ** orda #field order
## o = 3 D = 2 gives three codewords
## o = 4 D = 2 gives an insane amount
## o = 4 D = 3 gives 15 codewords

gPolDeg = 2 ## degree of goppa polynomial
## Since the degree of the goppa polynomial increases the weight of codeword it makes far

less vectors viable
## how does this impact security and other aspects of the cryptosystem?
## the smaller the degree is the less values of the message vector we can hide

GF = galois.GF(prima , orda , repr="poly") ##defining our finite field

### increase code support size minize goppa degree for maximum amount of codewords.

print(GF.properties)
print(GF.elements)

goppaPol = galois.irreducible_poly(fOrd , gPolDeg ) ## find irreducible polynomial with
degree gPolDeg ##goppa polynomial

print("goppa polynomial: ",goppaPol)

codeSupportPol = [] ## list of polynomials used in defining the syndrome
codeSupportPolInv = [] ## their inverses
coefffield = [] ##list of coefficient for each polynomial of the syndrome used for

finding valid codevectors in our goppa code
for i in range(fOrd):

codeSupportPol.append(galois.Poly([1, i], field=GF))
# print(codeSupportPol[i])
codeSupportPolInv.append(galois.egcd(codeSupportPol[i], goppaPol)[1])
# print(codeSupportPolInv[i])
coefffield.append(codeSupportPolInv[i].coefficients ())

coefffield = GF(coefffield)
# print(" coefficients for inverse polynomials .")
# print(coefffield)



bb = 0b00
##help function used in generating every vector in our vectorspace
def bin2GF(bb):

arr = np.zeros(fOrd , int)
for i in range(len(arr)):

if bb % 2 == 1:
arr[fOrd-1 - i] = 1

bb >>= 1
return arr

def hammingWeight(arr):
w = 0
for i in arr:

if i == 1:
w += 1

return w

goppaCodes = [] ## valid goppa codevectors
err_vec = [] ## valid error vectors

## this for loop fills our above vectors
zeroMat = np.zeros(gPolDeg , int)
# print(" goppa codewords ")
for i in range(0, 2 ** fOrd):##list all c vectors such that goppa condition satisfied

arr = GF(bin2GF(bb))
kk = np.matmul(coefffield.transpose (), arr)
if (kk==zeroMat).all():

# print(kk)
print(arr)
goppaCodes.append(arr)

elif (hammingWeight(arr) == gPolDeg):
err_vec.append(arr)

bb += 1

# print(goppaCodes)
# print(err_vec)

##not really eea
def extended_euclidean_algorithm(g, tau , t):

i = 0
r = [g, tau]
alpha = [g, tau]
beta = [galois.Poly([0], GF), galois.Poly([1], GF)]

while r[i].degree >= (t + 1) // 2:
i += 1
q, r_i = divmod(r[i-1], r[i-2])
r.append(r_i)
beta.append(beta[i-2] + q * beta[i-1])
alpha.append(r[i])

return alpha[i], beta[i]



def pattersons(notcodeword):
syndrome = np.matmul(coefffield.transpose (), notcodeword)
if (syndrome == zeroMat).all():

return (notcodeword , 0)
else:

syndrome = galois.Poly(syndrome)
T = galois.egcd(syndrome , goppaPol)[1]
Tpx = T +galois.Poly([1,0], GF)
tau = 0
# tauS2 = 0
# i = 0
# while Tpx != tauS2: #fix this , the order thing online is wrong i = 32 not prima **(

orda -1) probably ford** gpoldeg instead
# tau = pow(Tpx , i, goppaPol)
# tauS2 = pow(tau , 2, goppaPol)#
# print( tauS2 , i)
# i += 1

for i in range(fOrd ** gPolDeg):
tau = pow(Tpx , i, goppaPol)
if pow(tau , 2, goppaPol) == Tpx:

#print(tau)
break

alpha , beta = extended_euclidean_algorithm(goppaPol , tau , gPolDeg)
##print("ap ,bve", alpha ,beta)
alpha_squared = pow(alpha ,2)
beta_squared = pow(beta ,2)
x = galois.Poly([1, 0], GF)

sigma = (alpha_squared + x * beta_squared)

leading_coeff = sigma.coeffs[0]
c = 0
for i in GF.elements:

if leading_coeff* i == 1:
c = i
break

#print(c)
sigma =c*sigma

# sigma , _ = divmod(sigma , galois.Poly([ leading_coeff], GF))
# print(sigma)
# sigma = sigma % goppaPol
# print(sigma.roots())

e = np.zeros(len(err_vec[0]), int)
for i in range(len(err_vec[0])):

if sigma.__call__(GF(i)) == 0:
e[i] = 1

e = GF(e)
#print(e)
m = notcodeword + e
#print(m)
return m, e



# print(goppaCodes[3])
# print(err_vec[4])
# nc = goppaCodes[3]+ err_vec[4]
# print(nc)

# pattersons(nc)

S=[[1,1],[0,1]]
P = [[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0

,0], [1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,
1,0,0,0,0,0]]

G = [[0,0,0,1,1,1,1,1,],[1,1,0,1,0,1,0,1]]
g_pub= [[0,0,0,1,1,1,1,1,],[1,1,1,0,1,0,1,0]]
k = len(G)
G = GF(G)
S = GF(S)

## Converts a string into an binary array
def str_to_binary(text):

# Convert the text to binary
binary_text = ’’.join(format(ord(char), ’08b’) for char in text)

# Convert the binary string to an array of integers
binary_array = [int(bit) for bit in binary_text]

return np.array(binary_array)

def encrypt(g_pub , binary_plaintext , add_error):

c_arr = []
binary_plaintext = GF(binary_plaintext)
g_pub = GF(g_pub)
## we multiply k bits to our public key at a time and add the encrypted bits to an array

.
for i in range(0, len(binary_plaintext),k):

c_arr.append (( binary_plaintext[i:i+k]@ g_pub))

randint = rand.randint(1,len(err_vec)-1) ## cant use a new one for every k bits
##now we add an error vector to the vectors ## maybe take random err vector every time.

c_arr_err= [(i+add_error) for i in c_arr]
return c_arr_err

def information_set(G):
while True:

k = len(G) ## verify this ## verified
I = []
## Tries a random I until G_.I is invertible. Meaning the determinant is nonzero.
while True:

I = rand.sample(population=range(1,fOrd),k=k)



gSub = G[:,I]
if np.linalg.det(gSub) != 0:

return I

def decrypt(G,S,P, c_arr_err):
## we multiply with the inverse of the permutation matrix
c_arr_err = c_arr_err@np.linalg.inv(P)

c_arr_err = GF(c_arr_err.astype(int))

##remove error vector
decoded_c_arr =[]
for i in range(len(c_arr_err)):

plup ,_ = pattersons(c_arr_err[i])
decoded_c_arr.append(plup)

## we have to find an index set such that G_.I is invertible
I = information_set(G)

## now we revert our ciphertext
GInv = GF(np.linalg.inv(G[:,I]).astype(np.int32))
SInv = GF(np.linalg.inv(S).astype(np.int32))

c_arr_rev =[i[I]@GInv@SInv for i in decoded_c_arr]
return c_arr_rev

text = "Hello! My name is."
#### "Hello! My name is."
#### 01001000 01100101 01101100 01101100 01101111 00100001 00100000 01001101 01111001

00100000 01101110 01100001 01101101 01100101
00100000 01101001 01110011 00101110

binary_array = str_to_binary(text)

c_arr_err = encrypt(g_pub , binary_array , err_vec[3])

cArrRev = decrypt(G,S,P,c_arr_err)

## we compare to the original plaintext for verification
plainConcat = np.reshape(cArrRev ,binary_array.shape)
#print("plain binary", plainConcat)

#print("asda",chr(72))

def bin_2_str(int_array):
#convert int array to sets of binary values
bin_int_array = []
for i in range(0,len(plainConcat),8):



bla =0
for j in range(8):

bla = bla +(2** (7-j))*plainConcat[i+j]
bin_int_array.append(bla)

chr_arr = []
for i in bin_int_array:

chr_arr.append(chr(i))

plain_text = "".join(i for i in chr_arr)
return plain_text

#print(bin_2_str(plainConcat))

## with this we have taken a plaintext written it in binary using the ascii/utf8 encoding
into an array , taken k bits of the array at a
time and encoded with the public key and later
reverted it.

## TODO: add error vector and remove using the pattersons algorithm.
## Bug: will only work for congruent length of array modulo k. this is not an issue for our

purposes , to keep code in line stick with
ascii and have k be 2,4 or 8. can be fixed
with padding.

################ GISD
## Generalized Information set decoding
## G is a random binary kxn matrix
## c =mG+e is a cipher hiding our plaintext
## integer j, j <= t ## t is in the public key

def GISD(G, c, j, t): ### this code is not completing , make sure it works.
while True:

k = len(G)
c = GF(c)
I = information_set(G)

Q_1 =GF(np.linalg.inv(G[:,I]))
Q_2 = GF(Q_1@G)
z = c + (c[:,I]@Q_2)

for i in range(j+1):
for e in err_vec[:5]:

if np.sum(np.take(e,I)) == i and np.sum(z + np.take(e,I)@Q_2) == t:
return (c[:,I]+np.take(e,I))@Q_1

#print(" errorvector",err_vec[4])
#text = "Hello! My name is."
#### "Hello! My name is."
#### 01001000 01100101 01101100 01101100 01101111 00100001 00100000 01001101 01111001

00100000 01101110 01100001 01101101 01100101
00100000 01101001 01110011 00101110

##binary_array = str_to_binary(text)



##c_arr_err = encrypt(g_pub , binary_array)
##cArrRev = GISD(G,c_arr_err ,1,2)

## we compare to the original plaintext for verification
#plainConcat = np.reshape(cArrRev ,binary_array.shape)
#print(plainConcat == binary_array)
##TODO: random matrix generator and generalize reused code in functions ,

#print(len(G[0]))
def stern(G, t, p, l):

I = information_set(G)
N = np.arange(len(G[0]))
NsI = np.delete(N,I)
K = np.arange(len(G))

## TODO: define P and G_r ,c
P = []
KsP = np.delete(K,P)
for i in range(1,k):

K = np.arange(len(G))

######## ind -cca2 for original mceliece

plain_1 = goppaCodes[3]
plain_2 = goppaCodes[2]

ciph = GF(encrypt(G, plain_1 , err_vec[3]))

print("test parameters")
print("plain_1", plain_1)
print("plain_2", plain_2)
print("ciph", ciph)
print("error", err_vec[3])
print("G",G)
zero_err_vec = GF([0,0,0,0,0,0,0,0])

## testing against the indcca2 attackmodel
def ind_cca2(G,c, m1 , m2):

#print(" encrypt m1 with 0 errors",GF(encrypt(G, m2, zero_err_vec)))
m1 = encrypt(G, m1, zero_err_vec)
m1 = GF(m1)
m2 = encrypt(G, m2, zero_err_vec)
m2 = GF(m2)
su = [0,0,0,0]
sa = [0,0,0,0]

for i in range(len(c- m1)): ##np.sum not working as expected
for j in (c- m1)[i]:

if j == 1:
su[i] = su[i] + 1



for i in range(len(c- m2)): ##np.sum not working as expected
for j in (c- m2)[i]:

if j == 1:
sa[i] = sa[i] + 1

def check_something(sasa):
for i in sasa:

if i != gPolDeg:
return False

return True
print(check_something(su), check_something(sa))
print(su ,sa)
if check_something(su) == True:

return plain_1

if check_something(sa) == True:
return plain_2

print(ind_cca2(G, ciph , plain_1 , plain_2))
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