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Abstract

This paper explores polynomial quotient rings with monomial ideals. Special interest
is taken in the kernels for maps between sets of degree d and d+1 where d maximises
the value of the Hilbert function. The two classes of ideals that are covered in
detail are those on the form I = ⟨xd

1, xd
2, xd

3, x
d/2
1 x

d/2
2 ⟩ for d = 2 + 6n as well as

I = ⟨x2
1, x2

2, . . . , x2
n⟩ with a new result regarding the vector basis of the kernel for the

latter. Minor results regarding a formula for the Hilbert function and it’s maximum
value for the first class of ideals are also discussed and proven.
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Abstrakt

I denna uppsats kommer vi att utforska polynomiska kvotringar med monomiska
ideal. Av särskilt intresse är kärnorna för avbildingarna mellan delmängderna av
grad d och grad d +1 där d maximerar värdet för Hilbert funktionen. De två klasser
av ideal som täcks i synnerhet är de på formen I = ⟨xd

1, xd
2, xd

3, x
d/2
1 x

d/2
2 ⟩ för d = 2+6n

samt I = ⟨x2
1, x2

2, . . . , x2
n⟩ med nya resultat angående vektorbasen till kärnan för den

sistnämnda klassen. Andra resultat angående en formel för Hilbert funktionen och
dess maxvärde för första klassens ideal diskuteras och bevisas också.
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1 Introduction

In this paper we will be primarily searching for kernels of maps over a polynomial
quotient ring with monomial ideals from one degree to the next. We will only be
using the map induced by multiplication with ℓ = x1 + x2 + ... + xn, and we will go
through definitions and give illustrative examples of kernels arising from this map
as we dive deeper into this topic. The Hilbert function and the sequenc eof numbers
it generates of monomial ideals are of central importance, and basic linear algebra
will be used in the cases of multi-dimensional kernels. We will be taking a practical
approach to the subject with multiple examples and not so much on any theoretical
background.

1.1 Definitions and terminology

Definition 1.1. A ring is a set R equipped with 2 binary operations, addition and
multiplication, satisfying the following 3 axioms

• R is an abelian group under addition.

• R is a monoid under multiplication.

• Multiplication is distributive with respect to addition.

Definition 1.2. An ideal I is a subgroup of a ring R such that for every r ∈ R
and every x ∈ I, the product rx is in I. For commutative rings, ideals are two-
sided. Every element in the ideal equals “zero” in the corresponding quotient R/I,
so it can be easily compared with the concept of modulo and congruence classes.
For quotients of polynomial rings, the ideals generally have an infinite number of
elements. It is sufficient to express the elements that generate the ideal, for example
I = ⟨xd1

1 , xd2
2 , ..., xdn

n ⟩.

Definition 1.3. A polynomial ring R = C[x1, x2, . . . , xn], where C is the field of
complex numbers, together with an ideal I = ⟨xd1

1 , xd2
2 , . . . , xdn

n ⟩ form a quotient
ring R/I. With the addition of ideals that are generated by terms where one or
more is a monomial and not a single variable, these are the only quotient rings we
will be discussing in this paper. For simplicity we can view them as the set of all
polynomials with terms that are not multiples of any element that generates the
ideal, as any such polynomial would be congruent to 0.



For a given quotient ring, and for any degree d ≥ 0, there is a finite set of
monomials, up to scalar multiplication, that are not part of the ideal. A monomial
is a polynomial with a single term. For monomial ideals, the Hilbert function
HF(R/I, d) is a function from N to N that counts the number of monomials of
degree d. This function gives rise to a sequence that will be of great interest, that
we will be referring to as the Hilbert sequence.

An important theorem to remember throughout most of this paper is the Rank-
nullity theorem. This is a theorem from linear algebra that argues for the existence
of kernels and the size of their dimensions. It is formally defined as follows:

Theorem 1.4. Rank-nullity theorem The number of columns of a matrix M is the
sum of the rank of M and the nullity of M, and the dimension of the domain of a
linear transformation ℓ is the sum of the rank of ℓ and the nullity of ℓ.

The rank here refers to dimension of the vector space that is spanned by the
columns of the matrix. That is, the maximal number of linearly independent
columns. The same is true for the rows of the matrix, there are equally many.
Nullity refers to the dimension of the kernel, or the columns in the matrix that are a
linear combination of 2 or more other columns if they exist. For the purpose of this
paper, it states that the dimension of a linear maps image and the dimension of its
kernel add up to the rank of the domain. The kernels dimension is what’s important
here, as the following chapter shows.

1.2 An introductory example

Consider the ring R = C[x1, x2, x3] and the ideal I = ⟨x3
1, x3

2, x3
3⟩, and let’s create

the Hilbert sequence for the quotient ring R/I. Since any monomial containing a
variable of degree 3 or higher is in the ideal, the maximum degree in the Hilbert
sequence is 2 · 3 = 6. Since 1 is technically a monomial, we end up with 7 numbers
in the sequence. The process of calculating the value of the Hilbert function for
any given degree d can be a tricky combinatorical one. In this simple case, there
is a single element of degree 0, namely 1. For d = 1 we have 3 options, x1, x2

and x3. For d = 2 we can combine any 2 variables, so we get
(

3
2

)
= 3 as well as

x2
1, x2

2 and x2
3, totaling 6 elements. Continuing this process we arrive at the sequence

[1, 3, 6, 7, 6, 3, 1]. Notice that this sequence is symmetrical, a property that will be
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discussed in the next chapter. Another thing to note is that this sequence has a
so called “sharp” peak. The sequence corresponding to the ideal I = ⟨x2

1, x2
2, x2

3⟩ is
[1, 3, 3, 1] and is called a “flat” peak, since the sequence’s highest value appears twice
in a row.

1.3 Example of a simple kernel

Of central interest in this paper are kernels of maps between two sets of monomials
with degrees differing by one. A map can be viewed as a function applied to every
element of a set. The map in question, the one that will be used throughout this
paper, is one induced by multiplication with the sum of all variables present in the
ring. We will mostly be investigating the kernels for the maps where the domain
correspond to the peak of the Hilbert sequence.

Using the previous example with the ring R = C[x1, x2, x3] and the ideal I =
⟨x3

1, x3
2, x3

3⟩. The peak of the Hilbert sequence for R/I is 7, and is the number of
monomials of degree 3. These monomials are x2

1x2, x1x
2
2, x1x2x3, x2

1x3, x2
2x3, x1x

2
3 and x2x

2
3.

Multiplying each of these elements with ℓ = x1 +x2 +x3 and removing any resulting
term that is in I yields

ℓ · x2
1x2 = x3

1x2 + x2
1x

2
2 + x2

1x2x3 = x2
1x

2
2 + x2

1x2x3

ℓ · x1x
2
2 = x2

1x
2
2 + x2

1x
3
2 + x1x

2
2x3 = x2

1x
2
2 + x1x

2
2x3

ℓ · x1x2x3 = x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3 = x2

1x2x3 + x1x
2
2x3 + x1x2x

2
3

ℓ · x2
1x3 = x3

1x3 + x2
1x2x3 + x2

1x
2
3 = x2

1x2x3 + x2
1x

2
3

ℓ · x2
2x3 = x1x

2
2x3 + x3

2x3 + x2
2x

2
3 = x1x

2
2x3 + x2

2x
2
3

ℓ · x1x
2
3 = x2

1x
2
3 + x1x2x

2
3 + x1x

3
3 = x2

1x
2
3 + x1x2x

2
3

ℓ · x2x
2
3 = x1x2x

2
3 + x2

2x
2
3 + x2x

3
3 = x1x2x

2
3 + x2

2x
2
3

As is shown, none of the monomials by themselves are in the kernel for this map,
but since we have 7 expressions with only 6 distinct terms, basic linear algebra tells
us that that at least one expression is a linear combination of the others. This can
be done through setting up a system of linear equations, or simply by trying to find
common terms to cancel out. In fact, we can determine that adding result 1, 5 and
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6 together and subtracting result 2, 4 and 7 gives us a polynomial congruent with
0. This tells us that the polynomial x2

1x2 + x2
2x3 + x1x

2
3 − x1x

2
2 − x2

1x3 − x2x
2
3 is in

the kernel of the map induced by multiplication with ℓ. There is a clear pattern
in this polynomial which at a glance explains why this polynomial is in the kernel.
We multiply the polynomial by each variable once and add the results together, and
we can see that every positive term, when multiplying with a variable that would
not immediately make it part of the kernel, is accompanied by a negative term that
when multiplied by another variable will cancel out the first. These patterns can
become quite intriguing as we will show later, as they often seem to follow some
logic even if we cannot explicitly explain or prove it.

1.4 Multi-dimensional kernels

It is important to ask if this is the only element in the kernel, or in a more general
case, if a kernel must exist at all? Let I be an ideal generated by monomials. An
algebra R = C[x1, x2...xn]/I is said to have the Weak Lefschetz property (WLP)
if the map induced by multiplication with ℓ = x1 + x2 + . . . + xn from the set of
elements with degree d to d+1 for all possible d, is either injective or surjective. The
study of this property for graded algebras has been a central subject in commutative
algebra in recent years. There are many results for when this property holds with
a key one being that R has the WLP if I = ⟨xd1

1 , xd2
1 , . . . , xdn

n ⟩. This result is due
to Richard P. Stanley [1]. By this property, the map from the previous subchapter
must be surjective between degrees 3 and 4 since the first set has more elements,
thus no other polynomial can be in the kernel. Let’s continue by taking a look at a
case where the kernel is multi-dimensional.

An example of a quotient ring where the kernel is a sub-space is that when R =
C[x1, x2, x3, x4] and I = ⟨x2

1, x2
2, x2

3, x2
4⟩. This class of quotient rings is discussed in

greater detail in chapter 4, and the existence of linearly independent polynomials
that span the entire null-space that make up the kernel is the central result of this
paper. R/I has a Hilbert sequence with a peak equal to

(
4
2

)
= 6, and the set that

ℓ maps it to has
(

4
3

)
= 4 elements. The sequence in it’s entirety is [1, 4, 6, 4, 1]. The

set containing the 6 elements have degree 2, and are all pairs of 2 distinct variables.
Multiplication of these elements with ℓ creates the map with image that is the set of
elements of degree 3, and we can look for kernels the same way as before. A quick
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demonstration of how to do this by solving a system of linear equations follows:

ℓ · (Ax1x2 + Bx1x3 + Cx1x4 + Dx2x3 + Ex2x4 + Fx3x4) (1)

= (A+B+D)x1x2x3 + (A+C+E)x1x2x4 + (B+C+F)x1x3x4 + (D+E+F)x2x3x4

and the problem has been reduced to finding values of the coefficients A through F
so that each of the above sums equal 0. Doing this, one notices that some coefficients
can be written as the sum or difference of 2 others, or that some of them are equal.
In fact we get that A = F, B = E, and C = D = −A − E. Using this, (1) can be
simplified and factorised, giving us the kernel φ = A(x1 − x3)(x2 − x4) + B(x1 −
x2)(x3 − x4). It is easy to verify that both terms are elements of the kernel and that
are linearly independent, the latter coming from the fact that the first polynomial
has a term with x1x2 while the second one does not. Since the difference between
the number of monomials of degree 2 and 3 is 2, finding 2 polynomials that span
the kernel is expected. However, this way of expressing the kernel is not unique. It
could also be expressed as φ = A(x1 −x3)(x2 −x4)+B(x1 −x4)(x2 −x3), but adding
another factorisation to either expression would make one term a linear combination
of the other 2. You could of course add a lot of things to kernels while keeping them
congruent to 0, but as they serve no purpose the simplest way is the best. This
also makes it easier to verify that we have the right number of linearly independent
polynomials and if we can see any patterns. This neat way of writing the complete
kernel to a quotient ring of this class, that class being those where the ideal is
generated by squared variables, is not due to coincidence and will be central to
proving that this can be done for any number of variables in chapter 4.
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2 Symmetry in the Hilbert sequence

In the introduction, we noticed that the sequences of numbers generated by the
Hilbert function were symmetrical. As stated then, this is no coincidence. However
it is important to note, that this is only true for ideals as defined below. For ideals
that are generated by a product of 2 distinct variables, the symmetry does not
necessarily need to hold. The indexing of the variables in the following proof is
unorthodox but ultimately is easier to read.

Theorem 2.1. Let R = C[x0, x1, ..., xn] be a polynomial ring with ideal I = ⟨xd0
0 , xd1

1 , ..., xdn
n ⟩,

where di > 0. Then the Hilbert sequence associated with the quotient ring R/I will
be symmetrical.

Proof of Theorem 2.1. The single monomial with the highest degree not in I is
xd0−1

0 xd1−1
2 · · · xdn−1

n and will have degree d = ∑n
i=0(di − 1). Likewise, the single

monomial with the lowest degree will be 1, which has degree 0. With the indexing
of the numbers in the Hilbert sequence starting from 0, the k’th number will equal
the number of integer solutions (k0, k1, . . . , kn) to the equation k0 +k1 + . . .+kn = k
such that 0 ≤ ki ≤ di − 1 for all 0 ≤ i ≤ n. A monomial of of this degree would be
on the form xk0

0 xk1
1 · · · xkn

n . From here we can create a bijection between this set of
monomials and the set of monomials on the form xd0−k0−1

0 xd1−k1−1
1 . . . xdn−kn−1

n , since
the number of integer solutions (k0, k1, . . . , kn) will be the same for both cases. Thus
we can see a link between the number of monomials of degree (k0 + k1 + . . . + kn)
and those of degree (d− (k0 +k1 + . . .+kn)). The sets of monomials of both degrees
are clearly each others reflection across the middle of the sequence, and thus the
sequence must be symmetrical.



3 The class I = ⟨xd
1, xd

2, xd
3, x

d/2
1 x

d/2
2 ⟩

We will be taking a detailed look of two different classes of ideals. The first being
ideals on the form I = ⟨xd

1, xd
2, xd

3, x
d/2
1 x

d/2
2 ⟩ for d = 2 + 6n, n = 1, 2, 3.... The goal is

to find the singular kernel for the map induced by multiplication with ℓ = x1+x2+x3

from the peak of the Hilbert sequence to the next degree, as their difference happens
to be 1 for such values of d.

The second class of ideals are those generated by the square of the variables I =
⟨x2

1, x2
2...x

2
n⟩, and finding the kernel for every value of n. More specifically, finding a

set of polynomials which span the null-space for any value of n. We begin with the
first class.

This class has multiple interesting properties that will be discussed, one of them
being that the WLP holds due to a result by David Cook II and Uwe Nagel [2], and
thus the map is surjective from the peak of the Hilbert sequence to the next degree,
which happen to differ by exactly 1. As such a one-dimensional kernel is expected.

3.1 Deriving a formula for the Hilbert function of C[x1, x2, x3]/I

Working over the ideal I = ⟨xd
1, xd

2, xd
3, x

d/2
1 x

d/2
2 ⟩ we want to determine the number

of monomials of degree r that are not congruent to zero. We determine a formula
for this using the inclusion-exclusion principle.

First, we find that all possible monomials of degree r equals
(

r+2
r

)
, since we have

3 different variables to which we distribute the r degrees among. Any monomial
where the degree of any of the 3 variables is greater than or equals d is in the ideal,
and should not be counted. After allocating d degrees to either of the 3 variables,
the remaining r − d degrees can be distributed in

(
r−d+2

r−d

)
different ways. Since we

have 3 different variables that can have a degree of d or higher we remove 3 times
this value from our total. Now, any monomial where d degrees have been allocated
equally between x1 and x2 is also in the ideal, and should also be removed from the
total. Once again, there are

(
r−d+2

r−d

)
such monomials, for the same reason.

We now have arrived at the formula
(

r+2
r

)
−4
(

r−d+2
r−d

)
. For certain values of r however,



this will not be correct. We must employ the inclusion part of the inclusion-exclusion
principle because we have “double counted” certain monomials. For instance, any
monomial where deg(x1), deg(x2) ≥ d has been counted 3 different times. First we
add back any monomial where deg(x1), deg(x2) ≥ d

2 and deg(x1) ≥ d or deg(x2) ≥ d.
We must allocate at least 3

2d degrees to get such a monomial, and the remaining
r− 3

2d degrees can be distributed in
(

r− 3
2 d+2

r− 3
2 d

)
different ways. Since we have a choice of

x1 and x2 to exceed d, we multiply this number by 2 and add it to our total. Lastly,
we add back any monomial where 2 out of 3 variables have a degree exceeding d as
they were also double-counted. We count a total of 3

(
r−2d+2

r−2d

)
such monomials. In

total, we then have
(

r+2
r

)
− 4

(
r−d+2

r−d

)
+ 2

(
r− 3

2 d+2
r− 3

2 d

)
+ 3

(
r−2d+2

r−2d

)
monomials of degree r

not in I. Since every other possible monomial have been taken into account during
this process, there are no more to include or exclude. Note that the last 2 terms may
be equal to 0 for certain values of r, giving us a shorter formula that will prove much
more manageable. We have arrived at the result that the number of monomials of
degree r not in I equals

Lemma 3.1. The number of monomials of degree r can be calculated using the
formula

(
r+2

r

)
− 4

(
r−d+2

r−d

)
+ 2

(
r− 3

2 d+2
r− 3

2 d

)
+ 3

(
r−2d+2

r−2d

)
.

3.1.1 A note on these particular values of d

You may ask why we limit the values of d to be on the form 2 + 6n. As briefly
mentioned, these are the only values of d where the Hilbert sequence has a peak
that is one greater than the number following it, thus giving ℓ a one-dimensional
kernel. For other values of d the peaks have different shapes that are on a rotation
when increasing d by 2. With p denoting the maximum value of the sequence, the
peak rotates between the 3 different forms [p − 2, p, p − 1], [p − 1, p − p − 2], and
[p − 3, p, p, p − 3] in that order. Verifying these claims using the aforementioned
shortened formula from 3.1 is quite simple and this part is only included as an
interesting tidbit about this class. Certainly these other values of d could have
properties of interest but we will stick with d = 2 + 6n in this paper.
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3.2 The peak of the Hilbert sequence

Now that we can calculate the degree of the peak of the Hilbert sequence, we can
begin looking for kernels to the map ℓ. In order to do this, we must first determine
which degree has the highest number of monomials not in I, as this would be the
peak. This is done by finding the value of r where the formula from lemma 3.1
has it’s maximum value. Calculating this can be tricky, but we can actually use the
shorter version of the formula where we ignore the last 2 terms, as they will equal
0 for any degree r < 3

2d. We know this will be the case for the maximum, because
for ideals on the form ⟨xd

1, xd
2, xd

3⟩ its maximum can be found for degree r = 3d−3
2 .

Since the ideal we are working over has the extra element x
d/2
1 x

d/2
2 , some elements

that are not in ⟨xd
1, xd

2, xd
3⟩ would be in I. Then the Hilbert sequence peak must have

a smaller index.

After expanding the binomial coefficients we can reduce the formula to something
simpler to work with, namely

1
2(r + 1)(r + 2) − 2(−d + r + 1)(−d + r + 2).

From here we can take the partial derivative with respect to r to find a maximum
value. We get

∂

∂r
(1
2(r + 1)(r + 2) − 2(−d + r + 1)(−d + r + 2)) = 4d − 3r − 9

2 = 0,

and if we isolate r we get r = 1
6(8d − 9). For the values of d we are interested in,

this is not an integer, but it is very close. We know that d = 6n + 2, so we can
rewrite the expression as r = 48n+16−9

6 = 48n+7
6 . Subtracting 1

6 will make sure that
r is an integer, simplified to r = 4d−5

3 . Plugging this value into the reduced form of
the binomial expression we get the value 1

3(2d2 + 1), the number of monomials of
degree r that are not congruent to 0. To ensure that this is indeed the maximum,
we must consider the fact that we arbitrarily chose to subtract a number to make r

an integer. If instead of subtracting 1
6 , we add 5

6 which gives us the closest integer
value that is higher than the actual maximum, we get the value 1

3(2d2 − 1) when
plugging it into the formula, which is clearly less. Since the function takes a form
similar to a parabola, the maximum value must be 1

3(2d2 + 1) and is found when
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r = 4d−5
3 . This is an improvement of lemma 5.3 in [3] which states that the value of

the Hilbert function at degree ⌊3d−3
2 − 1⌋ is strictly greater than the value at degree

⌊3d−3
2 ⌋.

Lemma 3.2. For I = ⟨xd
1, xd

2, xd
3, x

d/2
1 x

d/2
2 ⟩ the Hilbert function has a maximum value

of 1
3(2d2 + 1) when r = 4d−5

3 .

3.3 Finding kernels

Now that we can easily find the peak of the Hilbert sequence that arises from the ideal
I = ⟨xd

1, xd
2, xd

3, x
d/2
1 x

d/2
2 ⟩, we can begin to look for kernels. As previously mentioned,

this ideal does have the WLP. However, there is no obvious way for us to try to
find a kernel, but for d = 8 my thesis supervisor Samuel Lundqvist gave the answer
for me to investigate. From there I was able to extrapolate how it was constructed
and what a kernel for general values of d = 2 + 6n might look like. Plugging in the
value d = 8 in our formula for the degree that corresponds with the peak of the
Hilbert sequence, we get that the peak has degree 9. The kernel to the familiar map
ℓ = x1 + x2 + x3 is then a polynomial where every term has degree 9. The kernel is
expressed in the following lemma:

Lemma 3.3. The kernel for d = 8 can be expressed as φ = (f − 42g) where

f = x3(7x2
1 − 16x1x2 + 7x2

2)
(x1 + x2)7 + x7

3
x1 + x2 + x3

g = x2
1x

2
2(x1 − x2)(x4

1 − x4
2).

Since the rational expression in f can be written as (x1 + x2)6 − (x1 + x2)5x3 +
(x1 + x2)4x2

3 + ... + x6
3, f is indeed a polynomial. These expressions look quite

pleasant, and we can immediately see that it follows some sort of pattern. If we try
to multiply (f − 42g) with ℓ, we will see a more general method that can be used to
find kernels when d is larger. We begin by applying the map to the f term, which
just so happens to have the polynomial that induces the map as a denominator,
giving us

ℓ · x3(7x2
1 − 16x1x2 + 7x2

2)
(x1 + x2)7 + x7

3
x1 + x2 + x3

= x3(7x2
1 − 16x1x2 + 7x2

2)((x1 + x2)7 + x7
3)

= x8
3(7x2

1 − 16x1x2 + 7x2
2) + (7x2

1 − 16x1x2 + 7x2
2)(x1 + x2)7.
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Since the first term of the last expression is a multiple of x8
3, which is in the ideal,

the entire term is congruent to 0 and can be ignored. In the second term, we
start by expanding the exponential term. A polynomial written on this form will,
when expanded, result in 7 binary choices of variables and therefore the resulting
polynomial will be

(x1 + x2)7 =
(

7
0

)
x7

1 +
(

7
1

)
x6

1x2 + ... +
(

7
6

)
x1x

6
2 +

(
7
7

)
x7

2.

Multiplying this with (7x2
1 −16x1x2 +7x2

2) can be seen as multiplying the expression
with a single term 3 separate times and adding them together. Viewing it from
this perspective is beneficial since we can easily see which resulting terms belong
to the ideal and can be ignored. When multiplying with 7x2

1, every term where
the exponent of x1 equals 6 or more can be ignored as the product would have an
exponent 8 or greater. Likewise, multiplying with −16x1x2 lets us remove any term
with an exponent equal to 7 for either variable, and for 7x2

2 the same principle as
for 7x2

1 applies. The below illustration showcases the coefficients that arise for each
monomial as they can be products of multiple factors. Each row represents each
of the three terms in the factor (7x2

1 − 16x1x2 + 7x2) and the colums are summed
up to get the number of such monomials (when multiplied with the appropriate
coefficients)

x9
1 x8

1x2 x7
1x2

2 x6
1x3

2 x5
1x4

2 x4
1x5

2 x3
1x6

2 x2
1x7

2 x1x8
2 x9

2(7
0
) (7

1
) (7

2
) (7

3
) (7

4
) (7

5
) (7

6
) (7

7
)

(7
0
) (7

1
) (7

2
) (7

3
) (7

4
) (7

5
) (7

6
) (7

7
)

(7
0
) (7

1
) (7

2
) (7

3
) (7

4
) (7

5
) (7

6
) (7

7
)

This way of constructing the kernel practically removes the variable x3 during
any calculations, and simplifies the process as x3 is different than the other variables
in the ideal. We now get the coefficients for each term by adding the columns in
the illustration above where the monomials are not part of the ideal, so for x7

1x
2
2 the

coefficient equals

7
(

7
0

)
− 16

(
7
1

)
+ 7

(
7
2

)
= 42.

Likewise for x6
1x

3
2 we have the coefficient −42, and the symmetry with the terms x3

1x
6
2
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and x2
1x

7
2 means they equal −42 and 42 respectively. −42 is the coefficient before

the expression g, as well as the greatest common multiple of 7 and 16. Looking at
the g term, the 2 parenthesis expand to the expression x5

1 − x1x
4
2 − x4

1x2 + x5
2, which

when multiplied by x2
1x

2
2 yields the same result as f after multiplying with 42, and

thus the polynomial (f − 42g) = 0 and is a kernel of this map.

You can use the same type of method to find a kernel for d = 14 and beyond,
but with additional and different coefficients. The g term does not always factor as
nicely either, but through testing it appears that for every other ideal it does while
the ones in between it don’t. What does not change however, is the symmetry of
the first polynomial in the f term. Since the other factor is symmetrical and x1 and
x2 are interchangeable, there has to be a symmetrical solution. We can then switch
our focus to the question of the existence of a kernel that is on a similar form to
this one. Since this is a pretty straightforward process we would prove that we can
find a kernel for any d = 2 + 6n. In this example we had the coefficients 7 and -16,
which is a solution to the following system

(7
0

)
+
(

7
2

) (
7
1

)(
7
1

)
+
(

7
3

) (
7
2

) A

B

 =
 1
−1

 .

For greater values of d, this matrix of binomial coefficients grows larger and in
order to ensure that such a method of constructing a kernel works, the system must
be solvable. That is to say the matrix must be invertible, or in other words have a
determinant that is non-zero. This proves to be a very difficult problem and remains
unsolved, meaning that this method of finding kernels is not guaranteed to work for
every value of d = 2 + 6n. As such the problem of finding a method to generate
kernels for any of these values of d remains unsolved. An example of a larger matrix
is that of d = 20:



(
19
0

)
+
(

19
6

) (
19
1

)
+
(

19
5

) (
19
2

)
+
(

19
4

) (
19
3

)(
19
1

)
+
(

19
7

) (
19
2

)
+
(

19
6

) (
19
3

)
+
(

19
5

) (
19
4

)(
19
2

)
+
(

19
8

) (
19
3

)
+
(

19
7

) (
19
4

)
+
(

19
6

) (
19
5

)(
19
3

)
+
(

19
9

) (
19
4

)
+
(

19
8

) (
19
5

)
+
(

19
7

) (
19
6

)




A

B

C

D

 =


1

−1
1

−1

 .

It’s easy to see the difficulty in showing that the generalised matrices have a non-
zero determinant. If you reconstruct the binomial coefficients to polynomials you can
find some interesting patterns for the exponents and coefficients when calculating
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the determinant, something we unfortunately won’t get to the bottom of in this
paper.
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4 Ideals with square elements

We now switch our attention to quotient rings with ideals on the form I = ⟨x2
1, x2

2, . . . , x2
n⟩.

We want to determine the kernel of the same map we have used before, that is mul-
tiplying with ℓ = x1 + x2 + ... + xn the set of elements corresponding to the peak
of the Hilbert sequence to the next degree. Since this quotient ring has the WLP
and the codomain has fewer elements then the domain, the map is surjective and
a kernel does exist. By the rank-nullity theorem, we also know that the kernel is
multi-dimensional (in almost all cases) and exactly how many dimensions it has.
Calculating every number in the sequence is simple. Since we have a binary choice
between including or not including each variable in any monomial the r’th number
in the sequence will be

(
n
r

)
. The index for the maximum value in the sequence is

then ⌈n
2 ⌉. We take the ceiling function because for odd n we have 2 subsequent

numbers that are equal, and starting from the second one ensures that the following
number in the sequence is lower. For the sake of simplicity, we will assume that n

is even and that n = 2m. Odd values of n will be discussed later in the chapter.

In 1.4 we looked at the kernel for n = 4 which can be written as c1(x1−x2)(x3−x4)+
c2(x1 − x3)(x2 − x4) where c1 and c2 are arbitrary constants. As a reminder, these 2
linearly independent polynomials span the entire kernel. The fact that there are 2
of them is expected since

(
4
2

)
−
(

4
3

)
= 2. It turns out that we can write any element

in the kernel as a factorised polynomial on the form (xa1 −xa2) · · · (xan−1 −xan) with
no repeat of variables, as that would mean that it already is in the ideal.

Theorem 4.1. Let R = C[x1, x2, ..., xn] and I = ⟨x2
1, x2

2, ..., x2
n⟩. The kernel of the

map induced by multiplication with ℓ = x1 + ... + xn from the set of monomials not
in I of degree

(
n
m

)
to degree

(
n

m+1

)
will contain any polynomial that can be factorised

as (xa1 − xa2) · · · (xan−1 − xan).

Proof of Theorem 4.1. Consider the following expression:

(x1 + ... + xa + ... + xb + ...xn)(xa − xb)P (x)

where P (x) is the rest of some arbitrary polynomial factorisation on the form
mentioned, and xa, xb are any 2 variables that are terms in the same factor. This
can be rewritten as



(x1 + . . . + xa−1 + xa+1 + . . . + xb−1 + xb+1+n)P (x) + (xa + xb)(xa − xb)
= M(x)P (x) + (x2

a − x2
b),

and since the term factor on the right hand side is congruent to 0 it can be
removed. Because xa, xb are any 2 variables that are terms of the same factor, along
with the fact that every variable appears once, you can repeat the same process for
any 2 variables of the same factor and the result would be congruent to 0.

In order to find every possible polynomial in the kernel, we need to find enough
linearly independent factorisations that span the entire null-space of the kernel. The
number of factorisations we need is

(
n
m

)
−
(

n
m+1

)
, since that is the difference between

the number of monomials in the domain and in the codomain of ℓ. These numbers
happen to be known as the Catalan numbers, usually denoted Cm. The Catalan
numbers on their own have very many interesting combinatorial properties, with one
of them being of central importance to this problem.

4.1 Linear independence

So how can we determine if a large number of polynomials are linearly independent?
We will be using some properties of matrices to do this. The following 2 defini-
tions are needed to understand how we can use linear algebra to show properties of
polynomials.

Definition 4.2. A unit triangular matrix is a special kind of square matrix. It’s
diagonal entries are all equal to 1 and for an upper unit triangular matrix every
entry below the diagonal is 0. Similarly, a lower unit triangular matrix has
every entry above the diagonal equal 0. Every unit triangular matrix is invertible
and therefore it’s columns are linearly independent.

Definition 4.3. A sub-matrix is a matrix obtained by removing a number of
columns and/or rows from a larger matrix.

The key takeaway from these two definitions is that if a matrix M has a unit
triangular sub-matrix with rank r, then the rank of M is at least r.

In order to proceed, we will also need a way to order monomials and polynomial
factorisations, and the way we will do this is defined below.
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Definition 4.4. The lexicographical order is a generalization of the alphabetical
ordering that can be applied to totally ordered sets. Such a set is made up of
elements that are comparable in some way, such that if S is totally ordered and
a, b ∈ S, then a ≤ b or a ≥ b.

For the purposes of the content of this chapter, every set of monomials will be
ordered lexicographically, and may be referred to as just being ordered. What this
means is that each monomial will always be internally ordered, so that their indices
are monotonically increasing from left to right, and we compare two monomials
xa1

1 , . . . , xan
n > xb1

1 , . . . , xbn
n if the first non-zero element in (a1 − b1, . . . , an − bn) is

positive. The first monomial comes before the second in the ordering and is referred
to as being larger.

In order to find Cm factorisations that are linearly independent, we will convert
every possible unique factorisation to a vector of size

(
n
m

)
, where every element

equals 1, 0 or −1, depending on the coefficient that arise when expanding the fac-
torisation. Combining all of these vectors as columns of a matrix, is it sufficient
to prove that through regular matrix operations, we can find a unit triangular sub-
matrix of size Cm. The columns of this matrix are the factorisations we need. This
is the key takeaway from definitions 4.2 and 4.3 mentioned earlier. We now definine
a map between monomials and polynomial factorisations that will be the foundation
of the method we use to find these linearly independent factorisations.

Definition 4.5. Let R have 2m variables and define ψ as a map from monomials
of degree m to polynomial factorisations with m factors. Let the variables of the
monomial be lexicographically ordered, then the factorisation will contain the factors
on the form (xa −xb) that will be ordered in the same manner where xa is a variable
in the monomial, and xb a variable that isn’t. The second terms of each factor will
also be ordered lexicographically, so the first factor (xa − xb) will have the property
that a is the lowest index of any variable in the monomial, and b is the lowest of any
variable not in the monomial. We can call ψ the factorisation map.

As an example, if R has 6 variables, ψ maps the monomial x1x2x3 to the factori-
sation (x1 − x4)(x2 − x5)(x3 − x6). Now we need to introduce a connection between
monomial orderings and the number of factorisations needed to form the basis of
the null-space.
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4.2 Dyck paths

One property of the Catalan numbers is that Cm is the number of Dyck paths
along the edges of a m × m grid. A Dyck path is a lattice path that does not cross
the diagnonal of the square, and goes from the bottom left corner (0, 0) to the top
right corner (m, m). These paths are said to have length 2m. We will give a short
overview why this relationship between Dyck paths and Catalan numbers hold and
why it is important for finding the basis of the kernel. Let’s first take a look at an
example, all Dyck paths for a 4 × 4 grid.

Figure 1: Graphical illustration of Dyck paths across a 4×4 grid, not ordered. Image
taken from [4]

We can clearly see that there are C4 = 14 different Dyck paths. One definition
of the Catalan numbers are that they follow the recurrence relation

C0 = 1, Cm+1 =
m∑

k=0
CkCm−k+1 for m > 0.

If we assume that Cm does in face count the number of Dyck paths over a m×m

grid, consider a Dyck path of length 2(m + 1). Now let (k, k) be the first point after
(0, 0) where the path touches the diagonal. Between the points (0, 0) and (k, k)
is a shorter Dyck path of length 2k, and there are Ck such Dyck paths from our
assumption. Then from the point (k, k) to (m + 1, m + 1) is another Dyck path of
length 2(m−k +1) and likewise there are Cm−k+1 such Dyck paths. Letting k range
from 0 to m gives us the recurrence relation above.

From here we will transform these Dyck paths to sequences of numbers, with the
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number in the k’th position being equal to the height of the k’th column as seen in
the picture, or the number of “up-steps” that the path has taken before that point.
In this example of a 4×4 grid, the first path in the image correlates with the sequence
[0, 0, 0, 0] and the last with [0, 1, 2, 3]. More generally, a path can be described as
a sequence [a0, a1, a2, ..., an], with the conditions that ak ≤ k and ak−1 ≤ ak for
all 1 ≤ k ≤ n. From this set of sequences we make a simple bijection by letting
ak = ak +k+1. In the given example the sequences would then range from [1, 2, 3, 4]
to [1, 3, 5, 7], where the number with index i does not exceed 2(i + 1) − 1 and every
number is unique and always appear in a monotonically increasing order.

We can now transform these sequences into monomials, with the numbers in the
sequence referencing the indices of the variables present in the internally ordered
monomial, and let the indices follow the sequence from left to right. Thus we have
Cm monomials of m variables with indices ranging from 1 to 2m − 1 and that all
follow the conditions above. We say that such a monomial fulfills the Dyck path
criteria.

4.3 An illustrative example

In the interest of brevity, before formally proving a method for finding linearly in-
dependent factorisations we will take a look at the specific case of n = 8. That
is to say there are 8 variables and we need to find C4 = 14 linearly independent
polynomial factorisations, as they would span the entire kernel. We start with the
14 monomials that follow the Dyck path criteria and take the factorisations that
they are mapped to by ψ.

Let the monomials be ordered, with the first monomial equaling x1x2x3x4, and
it’s corresponding factorisation being (x1 − x5)(x2 − x6)(x3 − x7)(x4 − x8). Now we
will introduce a different notation to make the process of finding these factorisation
easier to read. Since every monomial is defined only by their indices, and the factori-
sations only have negative signs inside each factor, we will remove the variable letter
x and negative signs completely. Instead we express the fact that the monomial and
factorisation above correspond like this:
(1 2 3 4) - (1 5)(2 6)(3 7)(4 8)
Remember that the monomial on the left is made up of the first variables of each
factor on the right. Let’s continue with the monomials in the order previously men-
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tioned
(1 2 3 5) - (1 4)(2 6)(3 7)(5 8)
(1 2 3 6) - (1 4)(2 5)(3 7)(6 8)
(1 2 3 7) - (1 4)(2 5)(3 6)(7 8)
(1 2 4 5) - (1 3)(2 6)(4 7)(5 8)
The first of these factorisations has indices 1 and 4 in the same factor, which means
that expanding the factorisation will not result in a term equal to the previous
monomial. On the second row 1 and 4 are still in the same factor and so is 2 and 5,
so that this factorisation cannot expand into either of the 2 previous monomials. In
the last row, the 3 factors that were required to ensure that the factorisations will
not generate any previous monomial can be swapped with (1 3), since every previous
monomial has both indices 1 and 3, but this monomial does not. Continuing this
way we get the rest of the monomials
(1 2 4 6) - (1 3)(2 5)(4 7)(6 8)
(1 2 4 7) - (1 3)(2 5)(4 6)(7 8)
(1 2 5 6) - (1 3)(2 4)(5 7)(6 8)
(1 2 5 7) - (1 3)(2 4)(5 6)(7 8)
(1 3 4 5) - (1 2)(3 6)(4 7)(5 8)
(1 3 4 6) - (1 2)(3 5)(4 7)(6 8)
(1 3 4 7) - (1 2)(3 5)(4 6)(7 8)
(1 3 5 6) - (1 2)(3 4)(5 7)(6 8)
(1 3 5 7) - (1 2)(3 4)(5 6)(7 8)
And those are all 14 monomials and respective factorisations that span the kernel.
Once again, on row number 5 the factor (1 2) makes an appearance as every previous
monomial has variables with these 2 indices, but the monomial on that row does
not. In order to loop back to the concept of linear independence, let’s create the

26



appropriate sub-matrix for these polynomials.





x1x2x3x4 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x1x2x3x5 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x1x2x3x6 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x3x7 0 0 0 1 0 0 0 0 0 0 0 0 0 0
x1x2x4x5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x1x2x4x6 0 0 0 0 0 1 0 0 0 0 0 0 0 0
x1x2x4x7 −1 0 0 0 0 0 1 0 0 0 0 0 0 0
x1x2x5x6 0 0 0 0 0 0 0 1 0 0 0 0 0 0
x1x2x5x7 0 −1 0 0 −1 0 0 0 1 0 0 0 0 0
x1x3x4x5 0 0 0 0 0 0 0 0 0 1 0 0 0 0
x1x3x4x6 −1 0 0 0 0 0 0 0 0 0 1 0 0 0
x1x3x4x7 0 0 0 0 0 0 0 0 0 0 0 1 0 0
x1x3x5x6 0 −1 −1 0 0 0 0 0 0 0 0 0 1 0
x1x3x5x7 0 0 −1 −1 0 0 0 0 0 −1 0 0 0 1

These are the first 14 rows of the matrix that arise when transforming every
factorisation we generated into a vector of coefficients to each possible monomial
and order them correctly, meaning the first 14 rows correspond with the monomials
that fulfill the Dyck path criteria and are lexicographically ordered. Each vector
makes up a column of the matrix and each row correspond with the monomial
shown on the left side of the matrix. The columns are ordered from left to right in
the same fashion as their respective monomials. This sub-matrix is lower triangular
and by definition 4.2 and 4.3, the columns are linearly independent.

4.4 A method to find the basis of a kernel

Now we are ready to prove that, for n = 2m we can find Cm polynomial factorisations
that are linearly independent and as such will span the entire kernel. The method
we will use is described in the theorem and following proof.

Theorem 4.6. Take the set of all monomials of degree m that fulfill the Dyck path
criteria, ψ will map that set to a set of linearly independent polynomial factorisa-
tions. As there are Cm such monomials, these factorisations will span the entire
kernel of ℓ.
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Proof of Theorem 4.6. Let Pd be the set of polynomial factorisations that arise from
the map ψ when applied to the monomials fulfilling the Dyck path critera. When
expanded, these polynomials can be represented as vectors with elements correspond-
ing to the coefficients to every possible monomial of degree m. Let these vectors be
columns of a matrix ordered from left to right the same way the monomials they
were mapped from would be ordered. In addition, let the first Cm rows be ordered
in the same manner. For column number k, that we call pk, it’s k’th row would be
the first row with a non-zero element, as as this would correspond to the highest
ordered monomial that is generated by the polynomial factorisation. Due to the
construction of the factorisation, this element is 1. No monomial that is a term in
the expansion of the factorisastion can have a higher ordering than the monomial
ψ−1(pk), since it is made up of the variables with the lowest indices of each of the
factors. From here we can then create a lower trianglular sub-matrix of size Cm ×Cm

and by definition 4.2 and 4.3 the columns must be linearly independent. With the
columns being a one-to-one representation of the factorisations Pd, they are also
linearly independent. Finally, by theorem 4.1 these factorisations are themselves in
the kernel and together they span the entire sub-space that is the kernel.

At the start of this chapter, we assumed that n was an even number as it was
more convenient. If n is an odd number, say n = 2m − 1 nothing about the pro-
cess of finding linearly independant polynomial factorisations that span the kernel
changes, as the variable x2m is never used in any monomial. If we instead let the
last variable of each monomial be a lone factor in the polynomial factorisation the
exact same method can be applied for odd values of n. Since if n = 2m we have
the equality

(
n
m

)
−
(

n
m+1

)
=
(

n−1
m

)
−
(

n−1
m+1

)
, the kernels also have the same dimensions.

To summarize, we began by showing that certain factorisations were elements of
the kernel to the map ℓ. We preceeded to use a property of the Catalan numbers to
create monomials that would map onto specific factorisations such that they were
linearly independent. A final but important remark is that the map ψ is not the only
map that would have this property. In fact, the only restriction on the factorisations
that are associated with the set of ordered monomials is in each factor, the second
term have the higher index. This ensures the original monomial is the maximum in
the lexicographical ordering.
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Final thoughts

When I began to work on this thesis I had very little knowledge of the subject as
my supervisor Samuel Lundqvist introduced it to me. I found it very intriguing due
to the fact that it was not very heavy with theory but had a lot of profound ideas.
There are still problems related to this work I want to keep working on, namely the
class of ideals in chapter 3. I am very proud to have been able to stumble upon
the class of ideals with square elements and the connections to prove a method for
finding linearly independent polynomials that for a basis for the kernel. As a likely
previously unknown result, the details and connections between different areas of
mathematics were very rewarding to uncover and I hope I can keep the same spark
of interest in my further studies. Doing something original for my bachelor’s thesis
has been very meaningful to me. It has inspired me to keep learning more than any
other project, and made me want to keep studying for as long as I can, because
discovering these niche things feel like validation that I’m doing something different.
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