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Abstract
The purpose of this thesis is to explore Mersenne primes. Mersenne primes are prime numbers of the form 2n − 1
where n itself is prime. We delve into some properties of Mersenne primes and discuss conjectures about their
distribution. We also analyse their connection to other families of integers, such as Sophie Germain primes, Wieferich
primes, and perfect numbers. Furthermore, we describe different methods for discovering Mersenne primes. The
theory is illustrated with examples and simple Python code. Finally, we present the computer software programme
GIMPS and how it is used to find Mersenne primes. With the help of GIMPS, we performed Lucas–Lehmer and
Fermat primality tests on 200 previously unverified/uncertified potential candidates for Mersenne primes. All tests
were, however, negative for new prime numbers.

Key Words: Mersenne prime, Lucas–Lehmer primality test, Fermat primality test, GIMPS.

Sammanfattning på svenska
Syftet med denna uppsats är att undersöka Mersenneprimtal. Mersenneprimtal är primtal på formen 2n − 1, där
n själv är ett primtal. Vi fördjupar oss i några egenskaper hos Mersenneprimtal och diskuterar förmodanden
om deras fördelning. Vi analyserar även deras koppling till andra heltalsfamiljer, såsom Sophie Germain-primtal,
Wieferichprimtal och perfekta tal. Vidare beskriver vi olika metoder för att upptäcka Mersenneprimtal. Teorin
illustreras med exempel och enkel Python-kod. Slutligen presenterar vi datorprogrammet GIMPS och hur det
används för att hitta Mersenneprimtal. Med hjälp av GIMPS genomförde vi Lucas–Lehmer och Fermats primtester
på 200 tidigare overifierade/ocertifierade potentiella kandidater för Mersenneprimtal. Alla tester var emellertid
negativa för nya primtal.

Nyckelord: Mersenneprimtal, Lucas–Lehmers primtest, Fermats primtest, GIMPS.
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1 L. G. Levenius

1 Introduction
Prime numbers have fascinated mathematicians for
millennia, serving as the building blocks of number the-
ory. As we observe larger numbers, the primes become
more and more sparse. So, to find new primes, it is de-
sirable to focus on certain types of primes with useful
properties. One such subset is Mersenne primes, which
can be expressed as 2n− 1 for some prime n. The pur-
pose of this thesis is to explore what makes Mersenne
primes so special and how one could go about finding
new ones.

The starting point of the literature used in this thesis
comes mainly from Ribenboim [27] and the works refer-
enced there. The Wikipedia page on Mersenne primes
[30] has been a great inspiration for topics, albeit the
mathematical rigorousness there is often far from sat-
isfactory. Several of the theorems and proofs presen-
ted in this thesis originating from other sources are
reworded to be (hopefully) more understandable and
concise.

But why is any of this interesting? The dry answer
is that prime numbers have real-life applications, e.g.
in cryptography, so it is always of interest to find new
ones. Expanding empirical evidence is also important
to discuss and formulate conjectures of the underly-
ing theory. Further, it is in some way about man’s
quest to explore the unknown, push the boundaries
using evolving technology, and find what those before
us could only dream about.

1.1 Preliminary of Primes and Defini-
tion of Set Notation

Definition 1.1. Let F ⊆ R. The set of all elements in
F greater than or equal to x ∈ R is denoted by

F≥x := {ω ∈ F : ω ≥ x}.

In particular, N := Z≥0.

Definition 1.2. Let n ∈ Z≥2. If the only divisors1
of n are 1 and itself, then n is called a prime number.
Otherwise, we say that n is a composite number.

Definition 1.3. We denote the set of all primes by

P := {ω ∈ Z≥2 : δ | ω =⇒ δ ∈ {1, ω}}

and the set of all composites by

Pc := Z≥2 \ P.

In 300 BC, Euclid [13, Prop. 20] proved the follow-
ing.

Theorem 1.4 (Euclid’s theorem). There are an infin-
ite number of primes.

1Note, throughout this thesis, all divisors are assumed to be
positive.

Proof. Assume the opposite. Let {ak}Nk=1 be the finite
set of all primes. Further, let a :=

∏N
k=1 ak and b :=

a + 1. Then, b is either prime or composite. If it is
prime, we have a contradiction, as b is not in {ak}Nk=1.
If b is composite, there must be some ak that divides
b. But since ak divides a, it must also divide b−a = 1.
However, no such prime exists. Therefore, our original
assumption cannot hold.

1.2 How do We Know if a Number is
Prime?

The simplest algorithm to determine whether n is
prime is to check if any integer in [2, n − 1] divides
n. If not, n is prime. However, this is far from effi-
cient. A simple, yet deterministic and relatively effi-
cient method is discussed in this section.

Lemma 1.5. Let n be composite. Then, there exists
a δ ≤

√
n such that δ | n.

Proof. Assume the opposite. Let n = δ1δ2, where
δ1, δ2 >

√
n. Then,

n = δ1δ2 >
√
n
√
n = n;

a contradiction.

From Lemma 1.5 we find that when searching for
whether n is prime, we only need to test potential
factors until

√
n. If no such factor exists, then n is

prime. Furthermore, it suffices to test potential factors
which are prime. For example, if we know that 3 is not
a factor, then 6 = 2 · 3 cannot possibly be one either.
This gives us the following result.

Proposition 1.6. Let n ∈ Z≥2 with no prime factors
less than or equal to

√
n. Then, n is prime.

In 1588, Pietro Cataldi used this method to determ-
ine that 219 − 1 is prime, which was the largest known
prime number for almost two centuries [31, p. 486].
Python code for an algorithm implementing Propos-
ition 1.6 to determine whether n ∈ Z≥2 is prime is
shown below.

from sympy import primerange
from math import isqrt

def basic_primality_test(n):
prime_list = primerange(isqrt(n) + 1)

for d in prime_list:
if n % d == 0:

return("Composite")

else:
return("Prime")

There are, of course, much more advanced primality
tests for arbitrary primes. A relatively recent discov-
ery is the AKS primality test by Agrawal et al. [1].
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However, we do not go into further details as it is not
used in practice to determine the type of primes we are
interested in; Mersenne primes.

2 Mersenne Primes

Definition 2.1. A Mersenne prime is a prime number
that can be expressed as

Mn := 2n − 1, (2.1)

where n ∈ Z≥2.

Mersenne primes are a subset of Mersenne num-
bers which simply is Mn without the primality re-
quirement. Note that in this thesis we conveniently
let n ≥ 2 (in contrast to including 0 and 1) resulting in
all Mersenne numbers being prime or composite. The
latter is known as Mersenne composites. If n ∈ P, we
call Mn a prime exponent Mersenne number, or as I
refer to them, PEMN for short. Concerning each sub-
set of Mersenne numbers, PEMNs are by far the most
studied, something that will become apparent later on
in this text.

2.1 History

Mersenne primes have been known since the ancient
Greeks. They are named in honour of the French
monk and mathematician Marin Mersenne who stud-
ied them in the 17th century. Since then, a total of 52
Mersenne primes have been discovered. The largest,
M136,279,841, found in 2024, is over 41 million digits
long [18] (see [21] where I have compiled M136,279,841

in its entirety on 10,407 pages). For almost three dec-
ades, all new Mersenne primes have been discovered by
the GIMPS project (see Section 5). A list of all dis-
covered Mersenne primes can be seen in Table C.1 in
Appendix C.

2.2 In Base 2

Mersenne numbers have a certain property that makes
them interesting when expressed in binary form. But
first, a lemma that generalises the difference of two
squares formula, which we also use generously in sev-
eral forthcoming proofs.

Lemma 2.2. Let a, b ∈ R and n ∈ Z≥2. Then,

an − bn = (a− b)

n−1∑
k=0

akbn−k−1. (2.2)

Proof. Distribute and expand the sum on the right-

hand side;

(a− b)

n−1∑
k=0

akbn−k−1 =

n−1∑
k=0

(ak+1bn−k−1 − akbn−k)

= (abn−1 − bn) + (a2bn−2 − abn−1) + · · ·+ (an − an−1b)

= −bn + (abn−1 − abn−1) + · · ·+ (an−1b− an−1b) + an

= an − bn,

which equals the left-hand side of (2.2).

If we let a = 2 and b = 1 in (2.2) we end up with

2n − 1 = (2− 1)

n−1∑
k=0

2k1n−k−1,

or equivalently

Mn =

n−1∑
k=0

2k. (2.3)

From (2.3) we can derive the following result when
changing the base from decimal to binary.

Proposition 2.3. In base 2, Mn can be expressed as
an n-digit repunit, i.e.

Mn = 11 . . . 1︸ ︷︷ ︸
n

2. (2.4)

Remark 2.4. Want to impress a friend? Tell him/her
that you have memorised the world’s biggest known
prime number, M136,279,841. When asked to demon-
strate, simply say “one” 136,279,841 times (you never
said that it had to be base 10). If you average one “one”
each second, every minute, hour, and day, it would only
take a bit more than four years to complete.

From Proposition 2.3, we get the trivial corollary
when exploring palindromic numbers, i.e. numbers
which stay the same when the digits are reversed.

Corollary 2.5. In base 2, all Mersenne numbers are
palindromic.

2.3 An Alternative Definition
In some literature, Mersenne numbers are synonym-
ous with PEMNs. The reasoning behind this can be
explained by the following result.

Theorem 2.6. Let Mn be prime. Then, n is prime.

Proof. Suppose n is composite, i.e. n = αβ, where
α, β ∈ Z≥2. Then, according to Lemma 2.2;

Mn = 2n − 1 = (2α)β − 1 = (2α − 1) ·
β−1∑
k=0

2αk.

Thus, Mn ∈ Pc as both factors are greater than 1.
By contraposition, if Mn is prime, it must follow that

n is prime.
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Mersenne primes are ergo a subset of PEMNs.
Therefore, when searching for new Mersenne primes,
only PEMNs are to be considered. This is why some
mathematicians see PEMNs and Mersenne numbers as
the same. Furthermore, Theorem 2.6 gives us an equi-
valent definition to Definition 2.1.

Definition 2.7. A Mersenne prime is a prime number
that can be expressed as

Mn := 2n − 1,

where n is prime.

Note that the reversed implication in Theorem 2.6
does not necessarily hold. Otherwise, we would end up
with a brilliant prime number generator, making the
latter part of this thesis rather redundant.

2.4 Generalisations
In this part, we look at two different ways to generalise
Theorem 2.6. (The first theorem was originally proved
by Ligh & Neal [22].) It turns out that Mersenne
primes are quite unique in their form. The two co-
rollaries follow directly from Theorem 2.6. We finish
the section by introducing a generalisation of the two
generalisations.

Theorem 2.8. Let Mn be a prime power, i.e. Mn =
pN for some p ∈ P and N ∈ Z≥1. Then, N = 1.

Proof. We start by looking at the case p = 2. That
2n − 1 ̸= 2N for all n and N should be considered
trivial. Therefore, this scenario can be ignored.

Henceforth, we let p ≥ 3. Firstly, assume that n is
even, i.e. n = 2m for some m ∈ Z≥1. Then,

Mn = 2n − 1 = (2m)2 − 1 = (2m + 1)(2m − 1)
!
= pN .

For m ≥ 2, p must divide both 2m+1 and 2m− 1, and
hence their difference (2m + 1) − (2m − 1) = 2. The
only prime for which this applies is 2, but we assumed
p ≥ 3. Thus, a contradiction. If m = 1, however, then
n = 2 and Mn = 3. This means pN = 3 and clearly
N = 1.

Now, assume n is odd, i.e. n = 2m + 1 for some
m ∈ Z≥1, and N ≥ 2. Then,

Mn = 2n − 1 = 22m+1 − 1 = 2(22m − 1) + 1
!
= pN .

(2.5)

Observe that, by invoking Lemma 2.2;

22m − 1 =

2m−1∑
k=0

2k

and

pN − 1 = (p− 1)

N−1∑
k=0

pk.

Equation (2.5) is therefore equivalent to

2m−1∑
k=0

2k =
(p− 1)

2

N−1∑
k=0

pk. (2.6)

If N is even, the right-hand side of (2.6) is even, since
we have an integer multiplied by a sum of an even
number of odd terms. On the other hand, the left-
hand side is always odd, as it is a sum of even numbers
and 1; a contradiction.

Suppose instead that N is odd. It holds that

2n = pN + 1 = (p+ 1)

N−1∑
k=0

(−p)k

⇐⇒ 2n

p+ 1
=

N−1∑
k=0

(−p)k. (2.7)

Here, the right-hand side is an odd number of odd sum-
mands, i.e. odd. However, the left-hand side of (2.7) is
even as 2n > p+1 (this we know from our assumption
2n−1 = pN > p); another contradiction. Thus, N ≱ 2,
meaning N = 1 and the proof is complete.

Corollary 2.9. Let Mn be a prime power. Then, n is
prime.

Theorem 2.10. Let an − 1 ∈ P, where a ∈ N and
n ∈ Z≥2. Then, a = 2.

Proof. Because an − 1 ≥ 2, it follows a ≥ 2. Using
Lemma 2.2;

an − 1 = (a− 1) ·
n−1∑
k=0

ak. (2.8)

The sum is clearly greater than 1. Therefore, for an−1
to be prime, a− 1 must be equal to 1, so a = 2.

Corollary 2.11. Let an − 1 ∈ P, where a ∈ N and
n ∈ Z≥2. Then, n is prime.

One might be tempted to combine Corollaries 2.9
and 2.11 to conclude that if an − 1 is a prime power,
then n is prime. Well, it turns out that this is true.

Theorem 2.12. Let an − 1 be a prime power, where
a ∈ N and n ∈ Z≥2. Then, n is prime.

Proof. We have an − 1 = pN for some p ∈ P and N ∈
Z≥1. Corollary 2.11 tells us the statement is true for
N = 1, so what we need to consider is N ≥ 2. The
equation an − 1 = pN with the given conditions, is
nothing less than a special case of Mihăilescu’s theorem
(also known as Catalan’s conjecture) which famously
says the only solution is

32 − 1 = 23.

This means n = 2, which of course is prime.
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2.5 Wieferich Primes
An interesting subset of primes is the following.

Definition 2.13. Let n be prime. If

2n−1 ≡ 1 (mod n2), (2.9)

we call n a Wieferich prime.

Keeping in the theme of this thesis, we can equival-
ently define n to be a Wieferich prime if

n2 | Mn−1. (2.10)

Wieferich primes were first studied by the German
mathematician Arthur Wieferich at the beginning of
the 20th century as an attempt to prove the first case
of Fermat’s last theorem. As of writing, just two ex-
amples have been discovered; 1,093 and 3,511. Albeit,
it has been conjectured that there exist infinitely many
(see e.g. Crandall et al. [10]). But what is certain is
that none of them are also Mersenne primes. (The only
source for Theorem 2.14 that I have found is Wikipedia
[30] from which I have made significant improvements
to the provided proof.)

Theorem 2.14. Let Mn be prime. Then, Mn cannot
be a Wieferich prime.

Proof. Assume Mn is a Wieferich prime, then by Defin-
ition 2.13;

2Mn−1 − 1 = MMn−1 ≡ 0 (mod M2
n). (2.11)

From Fermat’s little theorem (see Theorem 4.8), we
know

2Mn−1 − 1 ≡ 1− 1 = 0 (mod Mn).

This means that Mn | MMn−1, and therefore can (2.11)
be rewritten as

MMn−1

Mn
≡ 0 (mod Mn). (2.12)

Again, using Fermat’s little theorem, we see

Mn − 1 = 2n − 2 ≡ 2− 2 = 0 (mod n),

as n is prime by Theorem 2.6. This tells us n divides
Mn − 1, i.e. Mn − 1 = nk, for some k ∈ Z. Hence,
(2.12) can be expressed as

Mnk

Mn
≡ 0 (mod Mn). (2.13)

The left-hand side is a geometric sum;

Mnk

Mn
=

(2n)k − 1

2n − 1
=

k−1∑
ℓ=0

(2n)ℓ.

As Mn = 2n − 1, it follows that 2n ≡ 1 (mod Mn).
Thus,

Mnk

Mn
=

k−1∑
ℓ=0

(2n)ℓ ≡
k−1∑
ℓ=0

1ℓ = k (mod Mn). (2.14)

Combining (2.13) and (2.14), it follows

k ≡ 0 (mod Mn).

Now, using Mn − 1 = nk, we have

−1 ≡ 0 (mod Mn);

a contradiction. The assumption (2.11) must there-
fore be false, thus proving that no prime can be both
Mersenne and Wieferich.

2.6 Perfect Numbers

Perfect numbers are one of the oldest concepts in num-
ber theory, first studied by mathematicians in ancient
Greece. Before we define what they are, we introduce
the sigma function as the sum of an integer’s divisors,
or more precisely

ς(n) :=
∑
δ: δ|n

δ, (2.15)

where n ∈ N.

Example 2.15. The sum of the divisors of 69 equals
96.

Proof. Using the sigma function, we see

ς(69) = 1 + 3 + 23 + 69 = 96. (2.16)

Something that particularly interested ancient math-
ematicians was when the sum of the divisors equals
twice the original number (or equivalently; the sum
of all divisors strictly less than the number equals the
number itself).

Definition 2.16. We call n ∈ N a perfect number if

ς(n) = 2n. (2.17)

Example 2.17. The number 28 is perfect.

Proof. From Definition 2.16, we find that

ς(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2 · 28. (2.18)

One important property of the sigma function is that
it is—under the right conditions—multiplicative.
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Lemma 2.18. Let a, b ∈ Z such that gcd(a, b) = 1.
Then,

ς(ab) = ς(a)ς(b). (2.19)

Proof. Let A := {δa1, δa2, . . . , δaN} and B :=
{δb1, δb2, . . . , δbM} be the sets of divisors of a and b,
respectively. Then, the set of divisors of ab is

A× B := {δaδb : δa ∈ A, δb ∈ B}.

Since gcd(a, b) = 1, there are no “duplicate” divisors of
ab, i.e.

δaiδbj ̸= δakδbℓ if (i, j) ̸= (k, ℓ),

for all i, k ∈ [1, N ] and j, ℓ ∈ [1,M ], and |A×B| = NM .
It therefore follows that

ς(ab) =
∑

δ∈A×B

δ =
∑
δa∈A

∑
δb∈B

δaδb

=
∑
δa∈A

δa
∑
δb∈B

δb = ς(a)ς(b).

Remark 2.19. Lemma 2.18 can be generalised to
show that ς(ab) ≤ ς(a)ς(b) for any a, b ∈ Z, with equal-
ity if and only if gcd(a, b) = 1.

As of writing this thesis, all perfect numbers dis-
covered have been even. Odd perfect numbers have
neither been proven nor disproven to exist. If they do,
however, we know from Ochem & Rao [26] that they
must be at least greater than 101,500 (the most recent
lower bound is even larger at 102,200).

It turns out that there is a bijection relation between
Mersenne primes and even perfect numbers. Con-
sequently, the number of known even perfect numbers
is the same as known Mersenne primes (i.e. 52), and
the discovery of one carries with it the discovery of the
other. That a Mersenne prime implies the existence
of a corresponding even perfect number (=⇒ in The-
orem 2.20) was first proven by Euclid [13, Prop. 36]
(albeit the proof below is rather different). The reverse
implication was shown by Euler [14, Sec. 8] around two
millennia later.

Theorem 2.20 (Euclid–Euler theorem). The integer
ξ is even and perfect if and only if

ξ =
Mn(Mn + 1)

2
, (2.20)

for some prime Mn.

Proof. =⇒ : For the first implication, we assume that
(2.20) is true. Then, we can write

ξ = 2n−1(2n − 1), (2.21)

where 2n − 1 is assumed to be prime. There are two
types of positive divisors for ξ; 2k and 2k(2n−1), where
k ∈ [0, n− 1]. Therefore,

ς(ξ) =

n−1∑
k=0

2k +

n−1∑
k=0

2k(2n − 1) = 2n
n−1∑
k=0

2k

= 2n(2n − 1) = 2
(
2n−1(2n − 1)

)
= 2ξ,

where we have used the formula for a geometric sum.
Thus, by Definition 2.16, ξ is perfect. Furthermore, it
is even as 2n−1 is a multiple of 2 because n ≥ 2.

⇐= : Because ξ is even, we can express it as ξ =
2Nm, where N ∈ Z≥1 and m is odd. Using Lemma 2.18
and the arguments above, we find

ς(ξ) = ς
(
2Nm

)
= ς

(
2N

)
ς(m) =

(
2N+1 − 1

)
ς(m).

As ξ is perfect, the following must hold;

ς(ξ) = 2ξ = 2N+1m
!
=

(
2N+1 − 1

)
ς(m)

⇐⇒ ς(m) = 2N+1 · m

2N+1 − 1
. (2.22)

Observe that 2N+1−1 is odd (and greater than 1) and
therefore must divide m, as ς(m) is an integer. Thus,
m/(2N+1 − 1) will also divide m. On the other hand,
using the definition of the sigma function;

ς(m) =
m

2N+1 − 1
+m+

∑
δ∈D

δ

= 2N+1 · m

2N+1 − 1
+

∑
δ∈D

δ, (2.23)

where D is the subset of divisors of m such that
{m/(2N+1 − 1),m} ⊈ D. The only way for (2.22) and
(2.23) to both be true is if

∑
δ∈D δ = 0 which implies

D = ∅. That is, {m/(2N+1−1),m} is the complete set
of divisors. Furthermore, this tells us

m

2N+1 − 1
= 1,

as 1 is always a divisor of any integer. Thus, m =
2N+1 − 1. Introducing the substitution n = N + 1, we
get m = 2n − 1 = Mn. A number with solely 1 and
itself as divisors is, by Definition 1.2, prime. Hence, we
conclude that Mn ∈ P. Finally, combining our results,
we get

ξ = 2Nm = 2n−1(2n − 1) =
Mn(Mn + 1)

2
,

which is the desired form.

Using Theorem 2.20, we can provide an alternative
proof to Example 2.17. We simply observe that

28 =
7(7 + 1)

2
=

M3(M3 + 1)

2
, (2.24)

where of course M3 is prime.
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2.7 Distribution
A discussion regarding the distribution of Mersenne
primes was made by Ribenboim [27, pp. 411–413]. In
this section, we focus on two conjectures on the subject.
The first was made in 1964 by Gillies [15].

Conjecture 2.21 (Gillies’s conjecture). The following
three statements are true:

1. The number of Mersenne primes less than x is
about

2

log 2
log log x ≈ 2.8854 log log x. (2.25)

2. The expected number of Mersenne primes in the
interval [Mx,M2x] is about 2.

3. The probability that Mn is prime is about

2

log 2
· log 2n

n
≈ 2.8854

log 2n

n
. (2.26)

Remark 2.22. The probability theorist within me
insists on making the following remark. The third
statement of Conjecture 2.21—and Conjecture 2.24 as
well—is incorrect from a proper probabilistic view-
point. (The same also holds for the second statement.)
A simple motivation for this is that there is no ran-
domness in the primality of a given integer. Instead,
the conjectures should not be viewed using the formal
definition of probability, but rather as a frequentist in-
terpretation of the proportion of PEMNs we expect to
be prime. If we were to make it proper, this is how it
should be done:

Let Ω be some sample space with a corresponding σ-
algebra F to the sequence (Xn)n≥2, where Xn : Ω 7→ R
is the random variable

Xn(ω) :=

{
1 if Mn ∈ P,
0 if Mn ∈ Pc;

(2.27)

for all ω ∈ Ω. Let P : F 7→ [0, 1] be a probability
measure on (Ω,F). Then,

P({ω ∈ Ω : Xn(ω) = 1}) =
{
P(Ω) = 1 if Mn ∈ P,
P(∅) = 0 if Mn ∈ Pc;

(2.28)

which follows from the definition of probability meas-
ures. Clearly, (2.28) is not the same as (2.26) or (2.30).
Furthermore, the result is completely trivial and does
not help us in the slightest in acquiring information
about Mersenne primes. Which could explain why Gil-
lies and Wagstaff chose different approaches. For more
details on probability spaces and random variables, see
e.g. [2, Chs. 1–3].

Example 2.23. The second statement of Conjec-
ture 2.21 is precise for x = 100 and x = 100,000.

Proof. We want to show that the intervals [M100,M200]
and [M100,000,M200,000] contain two Mersenne primes
each. Looking at Table C.1 shows that this is indeed
the case, with {M107,M127} and {M110,503,M132,043}
corresponding to the sets of Mersenne primes in each
respective interval.

In 1983, Wagstaff [29] proposed a new conjecture on
the distribution of Mersenne primes. His conjecture is
a modification of Gillies’s, based on further heuristic
and empirical evidence.

Conjecture 2.24 (Wagstaff’s conjecture). Let γ =
0.57721 . . . be the Euler–Mascheroni constant. Then,
the following three statements are true:

1. The number of Mersenne primes less than x is
about

eγ

log 2
log log x ≈ 2.5695 log log x. (2.29)

2. The expected number of Mersenne primes in the
interval [Mx,M2x] is about eγ ≈ 1.7811.

3. The probability that Mn is prime is about

eγ

log 2
· log ann

n
≈ 2.5695

log ann

n
, (2.30)

where

an =

{
2 if n ≡ 3 (mod 4),
6 if n ≡ 1 (mod 4).

(2.31)

Remark 2.25. Wagstaff’s conjecture is also known
as the Lenstra–Pomerance–Wagstaff conjecture, after
Hendrik Lenstra and Carl Pomerance who independ-
ently derived (2.29) prior to Wagstaff.

Remark 2.26. Note that (2.30), as written in [27,
p. 412], is incorrect.

Both conjectures can obviously not be true simultan-
eously. Arguments have been made in favour of both of
them; however, no definitive proof has been presented.
In the following section, I argue in favour of rejecting
Conjecture 2.21, while abstaining from drawing con-
clusions regarding Conjecture 2.24.

2.7.1 Linear Regression

In this section, we analyse how well Gillies and Wag-
staff’s conjectures apply to the empirical evidence. To
be able to easily illustrate the distribution of Mersenne
primes, we approximate Mn with 2n. Then,

log logMn ≈ log log 2n = log n+ log log 2. (2.32)
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Figure 2.1: Plot of the number of Mersenne primes less
than x and the expected ditto according to Gillies and
Wagstaff’s conjectures. The dotted lines indicate the
number and size of Mersenne primes known at the time
of writing the respective conjectures (Gillies’s conjec-
ture to the lower left).

As shown in Figure 2.1, when applying the log–log
scale, the distribution seems to grow fairly linearly.
However, there seems to be somewhat of an increase
in the slope for the largest observed primes. Note
that we have tacitly assumed that there are no un-
known Mersenne primes less than M136,279,841 (cf. the
last paragraph of Section 6). If this is not the case,
the slope would be even steeper. Both conjectures ap-
proximately follow the data, albeit Wagstaff’s seems to
have a better fit. An interesting observation is how—
so far—extrapolating the model from its inception is
still fairly accurate; indicating it is not unreasonable
to believe the conjecture is true.

To test this further, we perform a simple linear re-
gression on the 52 known Mersenne primes. Our con-
jectured model is

y(x) := β0 log log x, (2.33)

where y(x) is the expected number of Mersenne primes
less than or equal to x. Under Gillies’s conjecture,
we assume β0 = 2/ log 2, and for Wagstaff’s, β0 =
eγ/ log 2. We now fit the model

ŷ(x) := β̂ log log x, (2.34)

where ŷ(x) is the estimated number of Mersenne primes
less than or equal to x, and β̂ is the least-square estim-
ate of the slope defined as

β̂ :=

∑52
i=1(log log xi − log log x̄)(yi − ȳ)∑52

i=1(log log xi − log log x̄)2
; (2.35)

where yi := y(xi), and log log x̄ := 1
52

∑52
i=1 log log xi

and ȳ := 1
52

∑52
i=1 yi are the sample means. We find

β̂ ≈ 2.5881. Using a t-test, we can compare whether

β̂ is plausible given one of the two assumptions for β0.
Let

t :=
β̂ − β0

sβ̂
, (2.36)

where sβ̂ is the standard error such that

sβ̂ :=

√√√√ 1
52−1

∑52
i=1(yi − ŷi)2∑52

i=1(log log xi − log log x̄)2
. (2.37)

Then, t has a Student’s t-distribution with 51 degrees
of freedom. This means that we can calculate the
probability, or p-value, of observing β̂ given that β0

is true. The corresponding p-values are approximately
2.6 · 10−19 (t ≈ −14) for Gillies’s conjecture and 0.89
(t ≈ 0.38) for Wagstaff’s. So, when using a standard
threshold of significance at 0.05, we can confidently re-
ject Gillies’s conjecture.

However, in Wagstaff’s conjecture, we cannot con-
clude its truthfulness. Judging from Figure 2.1, Wag-
staff’s conjecture seems to follow the empirical data
rather well; albeit not perfect—especially for larger
x. We most likely need to observe more Mersenne
primes—if there are any (see Section 2.9)—to be able
to make a conservative conclusion.

Remark 2.27. For a rigorous analysis, we would have
to look at the model assumptions. As this is out of
scope of this thesis, we will not delve into it. For further
reading on linear regression, see e.g. [20, Ch. 3].

2.8 New Mersenne Conjecture
In 1644, Mersenne [24] made the following conjecture.

Conjecture 2.28 (Mersenne’s conjecture). Let n ≤
257. Then, Mn is prime if and only if

n ∈ {2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257}.

Mersenne’s conjecture was, however, incorrect. Not
only are M67 and M257 composites, he also did not ac-
count for the primality of M61, M89, and M107. This
inspired Bateman et al. [3] to produce a new, and hope-
fully true, conjecture.

Conjecture 2.29 (New Mersenne conjecture). Let
n ≥ 1 be odd. If two of the following statements hold,
then so does the third:

1. n = 2k ± 1 or n = 4k ± 3.

2. Mn is prime.

3. 2n+1
3 is prime.

Each of the statements in Conjecture 2.29 are true
for n ∈ {3, 5, 7, 13, 17, 19, 31, 61, 127}. No further ex-
amples have been found and all primes n < 2 ·107 have
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been checked [8]. Bateman et al. even argued that no
number greater than 127 satisfies all three conditions.
Given this, the conjecture could be rewritten as: for
n > 127, either one or none of the statements holds.

2.9 How Many Mersenne Primes are
There?

Perchance the most important and widely researched
unanswered question regarding Mersenne primes is
whether there exist infinitely many or not. The leading
theory is that there are infinitely many, which is also
the hypothesis presented in this thesis.

Conjecture 2.30. There are an infinite number of
Mersenne primes.

Many mathematicians support this claim, see e.g.
Ribenboim [27, p. 97]. Further, both Gillies and Wag-
staff’s conjectures imply that this would be the case.
What is also not known is the infinitude of composite
PEMNs. Thus, if one were to prove that one of the two
groups is finite, then by complement the other would
have to be infinite in size. Also, an interesting result
if Conjecture 2.30 were to be proven true, is that it
would imply there exists an infinite number of periodic
primes in base 2 as per Corollary 2.5.

Before the discovery of M136,279,841 this year, a coun-
terargument to Conjecture 2.30 was that we had not
discovered a new Mersenne prime since 2018. Such a
long time between new primes had never occurred since
the foundation of GIMPS. The fault in that thinking is
that, as we have shown above, Mersenne primes seem
to grow on a log–log scale. This is unbelievably slow.
With this in mind, when observing Figure 2.1, the gap
between the two largest known Mersenne primes no
longer seems to be unprecedented.

2.10 Double Mersenne Primes
Looking at Definition 2.7, it is not unreasonable to
ask oneself what happens when n itself is a Mersenne
prime.

Definition 2.31. A double Mersenne prime is a prime
number that can be expressed as

MMn = 22
n−1 − 1, (2.38)

where Mn is prime.

At the time of writing, four double Mersenne primes
have been discovered:

MM2
= M3 = 7,

MM3
= M7 = 127,

MM5
= M31 = 2,147,483,647,

MM7 = M127 = 1.701 . . .× 1038.

Before the age of computers, it was conjectured that
all double PEMNs were prime. This is not the case, as
MMn

where n ∈ {13, 17, 19, 31} are confirmed compos-
ites. For n > 31, the results are unknown. Although it
has been conjectured that there exist no more primes
than the four listed above (see e.g. Caldwell [7]).

2.10.1 Triple and Quadruple Mersenne Primes

If we take it one step further, we get triple Mersenne
primes, i.e. primes of the form

MMMn
= 22

2n−1−1 − 1, (2.39)

where MMn is prime. There are two known triple
Mersenne primes:

MMM2
= MM3 = M7 = 127,

MMM3
= MM7

= M127.

Lastly, observe that

M127 = MM7 = MMM3
= MMMM2

,

making it the only known quadruple Mersenne prime.
This gives us the following beautiful result that

22 − 1, 22
2−1 − 1, 22

22−1−1 − 1, and 22
22

2−1−1−1 − 1

are all primes. It is not certain if the pattern continues,
as the next entry

22
22

22−1−1−1−1 − 1 = MMMMM2

= MM127
,

simply is too large to calculate at the present moment
(GIMPS allows users to test exponents up to 1010).

2.10.2 A Conjecture

I would like to believe that the pattern continues for
k ≥ 5 and therefore propose the following conjecture.
Maybe someday someone will prove (or disprove) its
truthfulness.

Conjecture 2.32. Let the recursive sequence (µk)k≥1

be defined as

µk :=

{
M2 if k = 1,

Mµk−1
else. (2.40)

Then, all elements of (µk)k≥1 are prime.

There are four key observations to make regarding
Conjecture 2.32:

1. If Conjecture 2.32 is true, it would imply the more
famous Conjecture 2.30—the existence of an infin-
ite number of Mersenne primes.
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2. If Conjecture 2.32 is true, it would also imply
that there are an infinite number of double, triple,
quadruple, et cetera, Mersenne Primes. Thus, if
we can prove that one of those groups is finite,
then the conjecture must be false.

3. If µ5 is prime, then it would contradict Conjec-
ture 2.29 as (2M127 +1)/3 is proven composite (see
[25]) while the first condition of the conjecture is
true for all elements of (µk)k≥1.

4. If we prove that µp is composite for some p ≥ 5,
then we have shown that all elements of (µk)k≥p

are composite, according to Theorem 2.6.

Remark 2.33. When researching Conjecture 2.32, I
found that Catalan [9, p. 96] beat me to it with about
150 years (cf. Catalan–Mersenne numbers). Further-
more, some mathematicians, see e.g. Caldwell [7] and
Good [16], believe the conjecture to be false.

3 Determining if Mn is composite

A great task in the quest of finding new Mersenne
primes is rejecting Mersenne numbers which are not
prime. It turns out that certain useful properties are
associated with composite Mersenne numbers that can
be used to drastically simplify this process. We discuss
some of them in this section.

3.1 Sophie Germain Primes

A set of numbers connected to Mersenne numbers are
Sophie Germain primes, named after the French math-
ematician Sophie Germain of the early 19th century.

Definition 3.1. Let n be prime. If m = 2n+1 is prime
as well, we call n a Sophie Germain prime, while m is
known as a safe prime.

The first five Sophie Germain primes are 2, 3, 5,
11, and 23 (and the corresponding safe primes are 5,
7, 11, 23, and 47). As shown in the theorem below
[27, pp. 90–91], Sophie Germain primes can be used to
easily find a composite PEMN.

Theorem 3.2. Let n ≥ 11 be a Sophie Germain prime
such that n ≡ 3 (mod 4). Then, Mn is composite and
the corresponding safe prime is one of its divisors.

Proof. Denote the safe prime by m = 2n+ 1. Because
n ≡ 3 (mod 4), we can write n = 4k+3 for some k ∈ Z.
Observe that

m = 2(4k + 3) + 1 = 8k + 7 ≡ 7 ≡ −1 (mod 8).

Then, by Lemma A.3; (2/m) = 1, where (·/·) denotes
the Legendre symbol (see Appendix A). That is, there

exists some b ∈ Z such that b2 ≡ 2 (mod m). It follows,

Mn = 2n − 1 = 2(m−1)/2 − 1

≡ bm−1 − 1 ≡ 1− 1 = 0 (mod m),

according to Fermat’s little theorem. Thus, m divides
Mn. Moreover, as n ≥ 11;

Mn = 2n − 1 > 2n+ 1 = m,

so Mn is composite.

Remark 3.3. It can also be shown that if 2n + 1 di-
vides Mn where n ∈ P, then 2n + 1 ∈ P, i.e. n is a
Sophie Germain prime.

A consequence of Theorem 3.2 is that with the dis-
covery of a new Sophie Germain prime, we can with
limited computation trivially classify a Mersenne num-
ber as composite and obtain one of its prime factors.

Example 3.4. The Mersenne number M23 is compos-
ite.

Proof. We see that 23 ∈ P is a Sophie Germain prime
as 23 · 2 + 1 = 47 ∈ P. Furthermore, 23 ≡ 3 (mod 4).
Thus, by Theorem 3.2, M23 ∈ Pc with 47 as a divisor
(the remaining being 178,481).

3.1.1 “Mersenne–Germain Primes”

While studying Theorem 2.14, the question of if
there exist primes that are both Mersenne and Sophie
Germain—or what I would like to call Mersenne–
Germain primes—occurred to me. I have not found
any literature on the subject; however, the answer is
rather simple.

Proposition 3.5. The number 3 is the only
Mersenne–Germain prime.

Proof. Let Mn be prime. For Mn to be a Sophie Ger-
main prime, then

2Mn + 1 = 2(2n − 1) + 1 = 2n+1 − 1 = Mn+1

must also be prime. Using Theorem 2.6, this tells us
that n and n+1 must be primes. But the only solution
to this is n = 2 and therefore M2 = 3 is the single
number that satisfies this property.

3.2 Properties of Factors
When dealing with large Mersenne numbers, all meth-
ods to minimise the number of computations are highly
appreciated. As shown here, Mersenne composites
have some additional properties to e.g. Proposition 1.6.
(The foundation of the proof of (3.1) is credited to
Ribenboim [27, p. 91] and the statement2 of (3.2) to
Wagstaff [29, p. 385].) But we first introduce a lemma
on multiplicative order.

2The author never proves (3.2), but instead writes “[i]t is well
known”.
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Lemma 3.6. Let gcd(a, x) = 1 for some a ∈ Z and
x ∈ Z≥1. Further, let n be the multiplicative order of
a modulo x, i.e. n is the smallest positive integer such
that an ≡ 1 (mod x). Then, am ≡ 1 (mod x) if and
only if m is a multiple of n.

Proof. =⇒ : As m is a multiple of n, we can write
m = nk for some k ∈ Z. Thus,

am = ank = (an)k ≡ 1k = 1 (mod x).

⇐= : Let m = nk + r for some k, r ∈ Z such that
0 ≤ r < n. Then,

am = ank+r = (an)kar ≡ 1k · ar = ar
!≡ 1 (mod x).

If r > 0 it contradicts the definition of n as the order of
a modulo x. Thus, r = 0 and m is a multiple of n.

Remark 3.7. Lemma 3.6 can—with an analogous
proof—be generalised to apply to the order of an ele-
ment in a finite group (cf. [4, Thm 20.4]).

Theorem 3.8. Let δ | Mn such that n ∈ P≥3. Then,

δ ≡ 1 (mod n) and δ ≡ ±1 (mod 8). (3.1)

Furthermore,

δ = 2nk + 1, (3.2)

where k ≡ 0 or k ≡ −n (mod 4).

Proof. The theorem is clearly true for δ = 1. To prove
(3.1), it suffices to show it holds for prime factors as
composites follow trivially. We therefore let δ ∈ P≥7

(no smaller prime fulfils the second part of the equa-
tion). That δ divides Mn implies

2n ≡ 1 (mod δ). (3.3)

Because n is prime and gcd(2, δ) = 1, it from follows
from Lemma 3.6 that n is the multiplicative order of
2 modulo δ. Further, from Fermat’s little theorem, we
know

2δ−1 ≡ 1 (mod δ).

Then, by the same lemma, there exists some m ∈ Z
such that δ−1 = mn or, since δ−1 is even, δ−1 = 2kn,
for some k ∈ Z. Therefore,

δ = 2kn+ 1 ≡ 1 (mod n), (3.4)

proving the first part of (3.1). Now, using Theorem A.2
and (3.3);(

2

δ

)
= 2

δ−1
2 = 2

2kn
2 = (2n)k ≡ 1k = 1 (mod δ).

Lastly, by Lemma A.3, the remaining part of (3.1) fol-
lows.

Note that in (3.4) we in passing showed (3.2). We
now prove the aforementioned condition for k. As n is
odd, we have n ≡ 1 or n ≡ 3 (mod 4). This gives us
four cases to examine:

1. n ≡ 1 (mod 4) and δ ≡ 1 (mod 8).
We have

δ = 2kn+ 1 ≡ 1 (mod 8)

⇐⇒ 2kn = 8ℓ

⇐⇒ kn = 4ℓ,

for some ℓ ∈ Z. By assumption kn ≡ k (mod 4).
Thus, k ≡ 0 (mod 4).

2. n ≡ 1 (mod 4) and δ ≡ −1 (mod 8).
If δ ≡ −1 (mod 8), we analogously have kn +
1 ≡ 4ℓ (mod 4), for some ℓ ∈ Z. This tells us
k ≡ −1 ≡ −n (mod 4).

3. n ≡ 3 (mod 4) and δ ≡ 1 (mod 8).
Now we analyse the case n ≡ 3 ≡ −1 (mod 4).
The modulo 8 results from earlier do not change.
When δ ≡ 1 (mod 8), we have kn ≡ −k ≡ 0 (mod
4), i.e. k ≡ 0 (mod 4).

4. n ≡ 3 (mod 4) and δ ≡ −1 (mod 8).
For δ ≡ −1 (mod 8), observe kn+1 ≡ −k+1 ≡ 0
(mod 4) or k ≡ 1 ≡ −3 ≡ −n (mod 4).

To conclude, k ≡ 0 or k ≡ −n (mod 4).

Remark 3.9. Note that Theorem 3.8 holds even when
Mn is prime.

Example 3.10. The divisors of M11 fulfil The-
orem 3.8.

Proof. Note M11 = 2047 = 23 · 89. Thus, if δ | M11,
then δ ∈ {1, 23, 89, 2047}. Now, observe that

1 ≡ 1 (mod 11) and 1 ≡ 1 (mod 8),

23 ≡ 1 (mod 11) and 23 ≡ −1 (mod 8),

89 ≡ 1 (mod 11) and 89 ≡ 1 (mod 8),

2047 ≡ 1 (mod 11) and 2047 ≡ −1 (mod 8);

thereby satisfying (3.1). Moreover,

1 = 2 · 11 · 0 + 1,

23 = 2 · 11 · 1 + 1,

89 = 2 · 11 · 4 + 1,

2047 = 2 · 11 · 93 + 1;

where 0 ≡ 4 ≡ 0 (mod 4) and 1 ≡ 93 ≡ −11 (mod 4),
fulfilling (3.2) and the theorem.

Using Theorem 3.8, Leonhard Euler proved in 1772
that M31 is prime. Instead of testing all 4,792 poten-
tial prime factors, he limited his search to 372 factors
(fewer if excluding composites) [31, p. 486].

Theorem 3.8 also tells us the following.

Corollary 3.11. Let δ | Mn such that δ > 1 and
n ∈ P≥3. Then, δ ≥ 2n+ 1.



11 L. G. Levenius

Remark 3.12. I have not seen Corollary 3.11 expli-
citly written before—perhaps it is too obvious. But
I believe that it is significant, as it provides a lower
bound to Proposition 1.6 for Mersenne numbers. Fur-
thermore, it implies that when Mn increases, so does
its smallest divisor (excluding 1).

3.3 Uniqueness of Factors

Another useful result on factors, shown by Edington
[11], is Theorem 3.16 listed below. However, the au-
thor’s proof is somewhat hard to follow, which promp-
ted me to this alternative method. Furthermore, Ed-
ington restricts his statement to prime factors; an as-
sumption that I disregard, as it is not needed for this
proof. But first, we introduce some lemmas.

Lemma 3.13. We have δ | a and δ | b if and only if
δ | gcd(a, b).

Proof. =⇒ : We can rewrite a and b such that a =
α gcd(a, b) and b = β gcd(a, b) for some α, β ∈ Z. So,
given δ | gcd(a, b), the divisibility of a and b follows.

⇐= : It holds that a = kδ and b = ℓδ, for some
k, l ∈ Z. Bézout’s identity tells us

ax+ by = gcd(a, b), (3.5)

for some x, y ∈ Z. Substitution gives

gcd(a, b) = kδx+ ℓδy = δ(kx+ ℓy)

and thus δ | gcd(a, b).

Lemma 3.14. Let a, b ∈ Z≥1 such that a | b and b | a.
Then, a = b.

Proof. The assumptions can be reformulated as b = ka
and a = ℓb, for some k, ℓ ∈ Z≥1. Combining the two,
tells us a = ℓka or kℓ = 1. But k and ℓ are integers, so
therefore k = ℓ = 1. Thus, a = 1 · b = b.

Lemma 3.15. Let a, n,m ∈ Z≥1. Then,

gcd(an − 1, am − 1) = agcd(n,m) − 1. (3.6)

Proof. For convenience, let δ1 := gcd(an − 1, am − 1)
and δ2 := gcd(n,m). It holds

an ≡ 1 and am ≡ 1 (mod δ1).

We can now write

1 ≡ anam ≡ (an)x(am)y = anx+my (mod δ1),

for all x, y ∈ Z. Choose x and y such that nx+my =
gcd(n,m) = δ2. Then, it follows

aδ2 ≡ 1 (mod δ1)

or equivalently

gcd(an − 1, am − 1) | (agcd(n,m) − 1). (3.7)

On the other hand, we have the following. We can
write n = αδ2 and m = βδ2 for some α, β ∈ Z. It
follows using Lemma 2.2;

an − 1 = (aδ2)α − 1 = (aδ2 − 1)

α−1∑
k=0

aδ2k,

am − 1 = (aδ2)β − 1 = (aδ2 − 1)

β−1∑
k=0

aδ2k.

From this, it is clear that aδ2 − 1 divides an − 1 and
am−1, which from Lemma 3.13 tells us aδ2 −1 divides
δ1. Or, to be more precise;

(agcd(n,m) − 1) | gcd(an − 1, am − 1). (3.8)

Combining (3.7) and (3.8) with Lemma 3.14, finally
gives us

gcd(an − 1, am − 1) = agcd(n,m) − 1.

Letting a = 2 in (3.6), we find

gcd(Mn,Mm) = Mgcd(n,m). (3.9)

Theorem 3.16. Let δ ∈ Z≥2 and n,m ∈ P such that
δ | Mn and δ | Mm. Then, n = m.

Proof. Assume the opposite, i.e. δ | Mn and δ | Mm

for some n ̸= m. Then, from Lemma 3.13, it follows
that δ divides gcd(Mn,Mm). But by Lemma 3.15 with
a = 2, we get

gcd(Mn,Mm) = gcd(2n − 1, 2m − 1)

= 2gcd(n,m) − 1 = 21 − 1 = 1,

as n and m are distinct primes and therefore coprime
to each other. What we have thus shown, is that δ | 1,
but δ > 1 so it cannot divide 1. That is, our original
assumption must be wrong.

A way to paraphrase Theorem 3.16 is that an in-
teger greater than 1 can at most divide one unique
PEMN. An important consequence of this, is that
when searching for potential factors for a suspected
Mersenne prime, we do not need to test numbers which
are known factors in other PEMNs. Thereby, making
the algorithm deduced from combining Proposition 1.6,
Theorem 3.8, and Corollary 3.11 even more efficient.
This also motivates the study of computing factors for
known composite PEMNs.
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4 Determining if Mn is Prime

4.1 Lucas–Lehmer Primality Test
The Lucas–Lehmer primality test was the first sys-
tematic method introduced to determine whether a
Mersenne number is prime or not. It is named after
Édouard Lucas who developed it in the late 19th cen-
tury and D. H. Lehmer who proved it about 50 years
later. The test follows a simple algorithm and was until
2018 the method of choice for GIMPS in finding new
Mersenne primes. In fact, all Mersenne primes from
M521 until M82,589,933 have been uncovered using the
Lucas–Lehmer test [18]. We express the test as the
following theorem.

Theorem 4.1 (Lucas–Lehmer primality test). Let the
recursive sequence (sk)k≥1 be defined as

sk :=

{
4 if k = 1,

s2k−1 − 2 else. (4.1)

Then, Mn is prime, where n ∈ P≥3, if and only if

sn−1 ≡ 0 (mod Mn). (4.2)

Proof. See Section 4.1.1.

Example 4.2. The Mersenne number M5 = 31 is
prime.

Proof. We find the first four terms in (sk)k≥1 to be
4, 14, 194, and 37,634. Observe that 37, 634 = 31 ·
1, 214; i.e. 37, 634 ≡ 0 (mod 31). Thus, according to
Theorem 4.1; M5 ∈ P.

It is not hard to see that sk increases rapidly for large
values of k. As we are only interested in the remainder
(or lack thereof) of our final term, we can use the rules
of modular arithmetic and perform a reduction mod-
ulo Mn in each step. Hence, limiting the squaring op-
eration to numbers less than Mn. However, for hu-
mongous Mersenne numbers, squaring the remainder
is still computationally demanding. In practice, this is
addressed by splitting the number into pieces forming
a large array. We then perform a fast Fourier trans-
form, square it, and finally use an inverse Fourier trans-
form to obtain the squared number. We do not go into
further detail on this procedure. Instead, we refer to
Egusquiza Castillo’s [12] tour de force on Fourier trans-
forms.

Simple Python code for the Lucas–Lehmer primality
test (where we use the remainder from dividing with
Mn at each term) can be seen below.

def Lucas_Lehmer_primality_test(n):
M_n = 2 ** n - 1
s_k = 4

for k in range(2, n):
s_k = (s_k ** 2 - 2) % M_n

if s_k == 0:
return("Prime")

else:
return("Composite")

4.1.1 Proof of the Lucas–Lehmer Primality
Test

To prove the Lucas–Lehmer primality test, it is con-
venient to express sk in closed form. It turns out that
this is possible.

Lemma 4.3. Let sk be defined as in (4.1). Then, for
all k ≥ 1;

sk = ω2k−1

+ ω̄2k−1

, (4.3)

where ω := 2 +
√
3 and ω̄ := 2−

√
3.

Proof. The proof is done using induction:
Our base case is k = 1 and we see

s1 = ω20 + ω̄20 = ω + ω̄ = (2 +
√
3) + (2−

√
3) = 4,

which agrees with (4.1).
Now, assume (4.3) holds for some k = p where p ≥ 1,

i.e.

sp = ω2p−1

+ ω̄2p−1

.

Then, it holds for k = p+ 1, as

sp+1 = s2p − 2 =
(
ω2p−1

+ ω̄2p−1
)2

− 2

= ω2p + ω̄2p + 2(ωω̄)2
p−1

− 2 = ω2p + ω̄2p ,

where we have used that

ωω̄ = (2 +
√
3)(2−

√
3) = 1. (4.4)

Thus, according to the principle of induction, (4.3)
holds for all k ≥ 1.

Remark 4.4. The reason (4.3) is not used in practice
is because it is insanely computationally demanding for
large values of k.

We also introduce the following two lemmas, where
the first one is a true case of the freshman’s dream.

Lemma 4.5. Let a, b ∈ Z and n ∈ P. Then,

(a+ b)n ≡ an + bn (mod n). (4.5)

Proof. By the binomial theorem, we have

(a+ b)n =

n∑
k=0

(
n

k

)
anbn−k

= an + bn + n

n−1∑
k=1

(n− 1)!

k!(n− k)!
anbn−k.
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Because n ∈ P and k, (n−k) < n, we have gcd(n, k!) =
gcd(n, (n− k)!) = 1, for all k ∈ [1, n− 1]. Thus,

n

n−1∑
k=1

(n− 1)!

k!(n− k)!
anbn−k ≡ 0 (mod n),

and the lemma follows.

Lemma 4.6. Let n ≥ 3 be odd. Then,

2n ≡ 8 (mod 12). (4.6)

Proof. Clearly,

23 = 8 ≡ 8 (mod 12).

Assuming (4.6) is true for some odd n = p where p ≥ 3,
it is also true for the next odd number n = p+ 2, as

2p+2 = 4 · 2p ≡ 4 · 8 = 32 ≡ 8 (mod 12).

Thus, by the principle of induction, the lemma is true.

For the proof presented in the following of the Lucas–
Lehmer primality test, the reader is expected to have
a rudimentary knowledge of group and ring theory. To
prove the sufficiency of the test, i.e. sn−1 ≡ 0 (mod
Mn) =⇒ Mn ∈ P, we use the results of Bruce [5] and
his humorously named article A Really Trivial Proof
of the Lucas–Lehmer Test. The necessity implication
is maybe somewhat less “really trivial” and the proof
we show follows the structure of Rödseth [28].

Proof of Theorem 4.1. =⇒ : We prove the implication
using reductio ad absurdum. Given sn−1 ≡ 0 (mod
Mn), then by Lemma 4.3;

sn−1 = ω2n−2

+ ω̄2n−2

≡ 0 (mod Mn).

Thus, ω2k−2

+ ω̄2k−2

= kMn for some k ∈ Z. Rearran-
ging and multiplying by ω2n−2

, we end up with(
ω2n−2

)2

= kMnω
2n−2

− (ωω̄)2
n−2

⇐⇒ ω2n−1

= kMnω
2n−2

− 1, (4.7)

where (4.7) follows from (4.4).
Now, assume Mn is composite. Let δ be the smallest

prime factor for Mn. Because Mn is odd, it follows
δ ≥ 3. Let X := {a +

√
3b : a, b ∈ Zδ} and X∗ :=

{x ∈ X : x−1 ∈ X}, where Zδ = {0, 1, . . . , δ− 1} is the
set of all integers modulo δ. It is clear that X under
multiplication is associative, commutative, and has 1
as the identity element (of course 1 = 1+

√
3 · 0 ∈ X).

In addition, it is closed, as for a, b, c, d ∈ Zδ, we have

(a+
√
3b)(c+

√
3d)

= [ac+ 3bd (mod δ)] +
√
3[ad+ bc (mod δ)] ∈ X.

All these properties also apply to X∗ and thus X∗ is
an Abelian group.

It is established that zero lacks an inverse for mul-
tiplication. This tells us 0 /∈ X∗, while on the other
hand 0 = 0 +

√
3 · 0 ∈ X. Thus,

|X∗| ≤ |X| − 1 = δ2 − 1.

From our assumption, we have Mn ≡ 0 (mod δ).
Moreover, ω ∈ X meaning

kMnω
2n−2

= 0 in X.

Then, by (4.7);

ω2n−1

= −1 in X. (4.8)

Squaring both sides results in

ω2n = 1 in X.

Thus, ω−1 = ω2n−1 in X and ω ∈ X∗. From Re-
mark 3.7 we know that the order of ω divides 2n. How-
ever, note from (4.8) that ω2n−1 ̸= 1 in X. Therefore,
by the reversed implication of the same remark, the
order of ω cannot divide 2n−1 or, in fact, any smaller
number (as 2n−1 would have be a multiple of it). This
concludes that the order of ω equals 2n.

It is known that the order of an element is at most
the order of the group, so

2n ≤ |X∗| ≤ δ2 − 1 < δ2. (4.9)

But δ is the smallest prime factor of the composite Mn,
so by Lemma 1.5;

δ2 ≤ Mn = 2n − 1. (4.10)

Combining (4.9) and (4.10) we have 2n < 2n − 1; an
obvious contradiction. Hence, our assumption that
Mn ∈ Pc is incorrect, so Mn ∈ P, which is what we
wanted to show.

⇐= : We now let Mn ∈ P where n ∈ P≥3. From
Lemma 4.6 we have

Mn = 2n − 1 ≡ 8− 1 = 7 ≡ −5 (mod 12).

Then, by Lemma A.4, we see (3/Mn) = −1, or written
using Theorem A.2;

3
Mn−1

2 ≡ −1 (mod Mn). (4.11)

We know 2n ≡ 1 (mod Mn). Therefore,

2 = 2 · 1 ≡ 2 · 2n = 2n+1 =
(
2

n+1
2

)2

(mod Mn)

and we can conclude that 2 is a quadratic residue mod-
ulo Mn (as 2

n+1
2 is an integer) and (2/Mn) = 1. Thus,

2
Mn−1

2 ≡ 1 (mod Mn). (4.12)
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Now, using (4.11) and (4.12) we find

24
Mn−1

2 =
(
2

Mn−1
2

)3

· 3
Mn−1

2

≡ 13 · (−1) = −1 (mod Mn). (4.13)

Let σ := 2
√
3 so that

(6 + σ)2

24
=

(6 + 2
√
3)2

24
= 2 +

√
3 = ω. (4.14)

Further, let Y := {a +
√
3b : a, b ∈ ZMn

}. It is eas-
ily shown that Y fulfils the properties of a ring under
multiplication and addition. We see

(6 + σ)Mn = 6 + σMn = 6 + 2Mn · 3
Mn−1

2 ·
√
3

= 6 + 2 · (−1) ·
√
3 = 6− σ in Y, (4.15)

where we have used Lemma 4.5, Fermat’s little the-
orem, and (4.11).

Combining our results from (4.13)–(4.15), we get

ω
Mn+1

2 =
(6 + σ)Mn+1

24
Mn+1

2

=
(6 + σ)(6 + σ)Mn

24 · 24Mn−1
2

=
(6 + σ)(6− σ)

24 · (−1)
= −1 in Y.

Adding 1 and multiplying by ω̄
Mn+1

4 we end up with

0 = ω
Mn+1

2 · ω̄
Mn+1

4 + ω̄
Mn+1

4

= ω
Mn+1

4 · (ωω̄)
Mn+1

4 + ω̄
Mn+1

4

= ω
Mn+1

4 + ω̄
Mn+1

4 = ω
2n−1+1

4 + ω̄
2n−1+1

4

= ω2n−2

+ ω̄2n−2

= sn−1 in Y.

Since sn−1 = 0 in Y , we can write sn−1 ≡ 0 (mod Mn);
which is what we wanted.

4.2 Fermat Primality Test
Our next test is—unlike e.g. the Lucas–Lehmer test—
probabilistic. This means that it does not give a guar-
anteed answer as to whether or not a number is prime.
However, the idea is that the probability that it is
composite is incredibly small. To understand this, we
present the following definition.

Definition 4.7. Let n ∈ Z≥2. If n satisfies a condi-
tion satisfied by all prime numbers, but not by most
composite numbers, we call n a probable prime.

One of these conditions is the famous Fermat’s little
theorem, proposed by Pierre de Fermat in 1640.

Theorem 4.8 (Fermat’s little theorem). Let n ∈ P
and a ∈ N such that n ∤ a. Then,

an−1 ≡ 1 (mod n). (4.16)

Proof. See Section 4.2.1.

Observe that Theorem 4.8 is not an equivalence re-
lation, i.e. there exist composite numbers that fulfil
(4.16). Though, they are in general rare, giving us the
Fermat primality test.

Corollary 4.9 (Fermat primality test). Let n be a
potential prime and choose some a ∈ I ⊂ N such that
n ∤ a. Then, if

an−1 ≡ 1 (mod n),

n is a probable prime. Otherwise, n must be composite.

The idea behind Corollary 4.9 is that it is unlikely
that the congruence holds for an arbitrarily chosen a if
n is composite. The test is, however, not a guarantee of
primality. Although it is a great indicator for further
study of the suspected prime in question. Either by
applying the Fermat primality test again for another
value of a or using a completely different test, such as
the Lucas–Lehmer test. Also, it works for all types of
potential primes—not just Mersenne numbers.

When choosing I, there are key considerations to
observe. For example, if a = 1 all values of n are
classified as probable primes. Also, if n is odd—which
of course is the case for all primes excluding 2—then
the same holds for a = n− 1, as

(n− 1)n−1 ≡ (−1)n−1 = 1 (mod n).

Therefore, these trivial cases are often omitted. Thus,
a good candidate for I is [2, n−2], as it excludes trivial
cases and avoids multiples of n. It can also be ap-
propriate to choose a low value for a, as it is faster
to compute. If the tested number is composite, this
means that we can comparatively quickly reject it.

Conceptual Python code of the Fermat primality test
for Mersenne numbers and I = [2,Mn−2] can be found
below. Note, however, this code is crazily slow for
large n. In practice, something like, e.g. exponenti-
ation by squaring combined with a fast Fourier trans-
form, would be needed to make these computations
within reasonable time.

from random import randint

def Fermat_primality_test(n):
M_n = 2 ** n - 1
a = randint(2, M_n - 2)

if a ** (M_n - 1) % M_n == 1:
return("Probable prime")

else:
return("Composite")
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4.2.1 Proof of Fermat’s Little Theorem

Fermat’s little theorem can be proven in several ways
using vastly different methods. Like his last theorem,
Fermat never proved it himself; writing in a letter to
a fellow mathematician “I would send you a demon-
stration of it, if I did not fear going on for too long”
[23, p. 295]. The first proof of Fermat’s little theorem
was made by Leonhard Euler [27, p. 22]. The proof we
choose to demonstrate is inspired by that of Ivory [19].
Let us start by introducing three necessary lemmas.

Lemma 4.10 (Euclid’s lemma). Let n | αβ where
n ∈ P and α, β ∈ Z. Then, n | α or n | β.

Proof. Assume that n ∤ α and thus gcd(α, n) = 1.
Then, using Bézout’s identity;

αx+ ny = 1,

for some x, y ∈ Z. Multiplying by β results in

αβx+ βny = β.

It is clear that n divides both terms in the left-hand
side. Thus, n must also divide their sum, i.e. n | β.

The other case follows by symmetry.

Lemma 4.11. Let a, x, y ∈ Z and n ∈ P such that
gcd(a, n) = 1. Then,

x ≡ y (mod n) ⇐⇒ ax ≡ ay (mod n). (4.17)

Proof. =⇒ : We know x − y = kn, for some k ∈ Z.
Then,

ax− ay = a(x− y) = akn ≡ 0 (mod n),

or equivalently ax ≡ ay (mod n).
⇐= : From Lemma 4.10, we know that n must divide

a or x − y. But gcd(a, n) = 1 so n cannot divide a.
Therefore, n must divide x − y which is the same as
x ≡ y (mod n).

Lemma 4.12. Let a ∈ Z≥1 and n ∈ P such that
gcd(a, n) = 1. Then, the set of remainders when divid-
ing a, 2a, . . . , (n− 1)a by n equals {1, 2, . . . , (n− 1)}.

Proof. First, we know that none of a, 2a, . . . , (n − 1)a
can be congruent to zero modulo n as per our assump-
tions and Lemma 4.10. This means all remainders have
to be in [1, n − 1]. Now, we show that all remainders
are distinct. Let

ka ≡ ℓa (mod n),

for some k, ℓ ∈ [1, n− 1]. Then, by Lemma 4.11;

k ≡ ℓ (mod n),

which can only be true if k = ℓ.

We now possess the necessary components to com-
plete the proof of Fermat’s little theorem.

Proof of Theorem 4.8. Using Lemma 4.12 and the
variables as defined in it, we get

a · 2a · · · (n− 1)a ≡ 1 · 2 · · · (n− 1) (mod n),

which is equivalent to

an−1(n− 1)! ≡ (n− 1)! (mod n).

Now, by conjuring Lemma 4.11, we have

an−1 ≡ 1 (mod n);

the theorem.

5 Great Internet Mersenne
Prime Search

The Great Internet Mersenne Prime Search, more com-
monly known as simply GIMPS, is the leading platform
for discovering new Mersenne primes. Founded in 1996
by George Woltman, it has been responsible for finding
all new Mersenne primes since then; a total of 18 as of
writing this thesis.

The idea behind GIMPS is that users download
a free piece of software called Prime95 or mprime.
The user then chooses what test to perform and is
assigned an appropriate PEMN. For example, users
can search for factors, verify previous tests using the
Lucas–Lehmer primality test, or test completely new
PEMNs using the Fermat primality test. The Fermat
primality test was implemented in 2018 to replace the
Lucas–Lehmer test which had been used since the start.
The reason behind this is that the Fermat test is faster,
more reliable, and has a lower chance of missing a new
prime. Six years later, the first Mersenne prime using
Fermat’s primality test was discovered. Note, however,
GIMPS classifies the official date of discovery for when
the test was confirmed using a Lucas–Lehmer test, as
the Fermat test technically only discovered a probable
prime.

In 2024, GIMPS had more than 270,000 users work-
ing on close to 3 million computers. To incentiv-
ise people to use their programme, GIMPS offers a
cash reward of $3,000 for each new Mersenne prime
discovered. For primes with more than 100 mil-
lion digits (the smallest such Mersenne number being
M332,192,857) the reward is $150,000. For more inform-
ation on the Great Internet Mersenne Prime Search, we
refer to their website: https://www.mersenne.org/.

6 Personal Contributions
Alongside writing this thesis, I have myself used
GIMPS on two computers to contribute to finding

https://www.mersenne.org/download/
https://www.mersenne.org/download/
https://www.mersenne.org/
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new Mersenne primes. The type of test I focused
on was verifying previously made Lucas–Lehmer prim-
ality tests. The reason for opting to verify—rather
than undertaking the more glamorous task of testing
unknown Mersenne numbers—is mainly because it is
much faster. When verifying, we work with numbers
Mn where n ≈ 75, 000, 000 (which takes 1–2 weeks),
while for new numbers we must go to n > 125, 000, 000
(which usually takes over a month). Not only can we
test more numbers this way, but we also decrease the
potential loss of a computer failure which is not negli-
gible.

I completed 12 Lucas–Lehmer tests. All results re-
turned the same conclusion as in the first attempt,
i.e. negative for new Mersenne primes. The findings
are summarised in Table B.1. There, we find a hy-
perlink to the number’s page on GIMPS’s website for
further details. The pages can also be accessed at
https://www.mersenne.ca/exponent/n where n is re-
placed with the prime exponent of the Mersenne num-
ber in question.

While performing the Lucas–Lehmer tests (which
were supposed to be the main focus of this section),
I was assigned a total of 188 certifications of re-
cently completed Fermat primality tests. This usu-
ally happened several times a day, the most of which
was ten tests in 24 hours. These certifications require
approximately 150–500,000 iterations (compare this to
n ≈ 75, 000, 000 for Lucas–Lehmer) and were usually
completed in an hour. The results are presented in
Table B.2. Thanks to this, I was able to complete
many more tests than originally planned. However, as
with the previous tests, all Mersenne numbers checked
were determined to be composite.

The “probability” of finding a Mersenne prime among
those listed in Tables B.1 and B.2 can be estimated us-
ing Equation (2.30) (assuming that Wagstaff’s conjec-
ture holds). Let N be the set of exponents for the 200
Mersenne numbers we tested. Assuming we obtain no
further information knowing the initial tests were un-
successful, the probability of discovering at least one
prime is the complement to all Mersenne numbers be-
ing composite, i.e.

1−
∏
n∈N

(
1− eγ

log 2
· log ann

n

)
≈ 0.0092 %. (6.1)

Therefore, it should not come as a surprise that I did
not discover a new prime. (In reality, the probability
is much, much smaller as there is a slim chance any of
the original tests failed to begin with.)

Finally, I was also assigned 28 Fermat primality tests
on already proven composite PEMNs. These tests
were not performed on the number itself, but on its
cofactor. Let δ1, δ2, . . . , δN be the known prime factors
for the composite Mn. Then, Mn/(

∏N
k=1 δk) is known

as the cofactor for Mn. It is of interest to determine if

the cofactor is prime, as this would mean the number
is fully factorised. Otherwise, further factorisation is
needed (cf. the discussion to Theorem 3.16). The res-
ults of these certifications were that all of the tested
cofactors were composite, which aligned with the ori-
ginal results. They can be seen in Table B.3.

Although I have not discovered any new primes, I
have at least contributed to adding knowledge about
what Mersenne numbers are not prime. Moreover, as
shown in Table C.1, the ranks of the 49th, 50th, 51st,
and 52nd Mersenne primes are not certain. This means
that there could be Mersenne primes that are missed
between them. And by doing these verifications in
Table B.1, I have taken some small steps to find out
if this is the case. However, the journey towards this
is far from over and GIMPS [17] predicts that at this
current rate, it will take until the year 3200 to settle
whether the 52nd Mersenne prime is indeed the 52nd.

A Notes on Quadratic Residues
The following material is not central to the thesis but is
necessary to complete some of the proofs, which serves
as motivation for this appendix.

Definition A.1. Let p ∈ P≥3 and a, b ∈ Z such that
gcd(a, p) = 1 and a ≡ b2 (mod p). Then, a is called a
quadratic residue modulo p.

In his study of quadratic residues, Adrien-Marie Le-
gendre introduced the following notation:(

a

p

)
:=

{
1 if a is a quadratic residue modulo p,
−1 else.

(A.1)

A general formula for (a/p) was derived by Leonhard
Euler.

Theorem A.2 (Euler’s criterion). Let p ∈ P≥3 and
a ∈ Z such that gcd(a, p) = 1. Then,(

a

p

)
= a

p−1
2 (mod p). (A.2)

Interesting cases for us is a = 2 and a = 3 which has
certain useful properties.

Lemma A.3. Let p ∈ P≥3. Then,(
2

p

)
=

{
1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8), (A.3)

Lemma A.4. Let p ∈ P≥5. Then,(
3

p

)
=

{
1 if p ≡ ±1 (mod 12),
−1 if p ≡ ±5 (mod 12), (A.4)

As it is out of the objective for this thesis, we refrain
from proving Theorem A.2 and Lemmas A.3–A.4. In-
stead, for proofs and further reading on the subject,
we refer to [6, Ch. 9] for the interested reader.
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B Results from Primality Tests

Table B.1: Results from verifying Lucas–Lehmer primality tests.

Mn Result Original test Completion date URL
M70,849,997 Composite Anonymous (2017) 2024-10-09 1
M70,984,063 Composite Curtis Cooper (2015) 2024-10-22 2
M70,977,163 Composite “Templar” (2015) 2024-10-16 3
M71,315,693 Composite “arnaud” (2017) 2024-09-26 4
M71,342,833 Composite “Xolotl” (2017) 2024-10-02 5
M73,574,629 Composite Dave Ward (2016) 2024-05-26 6
M75,631,121 Composite Curtis Cooper (2017) 2024-08-29 7
M75,646,411 Composite Åke Tilander (2017) 2024-09-01 8
M75,672,353 Composite “Chappy” (2016) 2024-08-25 9
M76,640,953 Composite Steppen Herring (2017) 2024-09-09 10
M77,038,583 Composite Anonymous (2016) 2024-10-09 11
M77,940,739 Composite Anonymous (2018) 2024-09-18 12

Table B.2: Results from certifying Fermat primality tests.

Mn Result Original test Completion date URL
M70,980,863 Composite “k0r3” (2024) 2024-10-12 1
M71,192,861 Composite Luke Durant (2024) 2024-10-20 2
M71,261,831 Composite Luke Durant (2024) 2024-10-20 3
M71,274,971 Composite Luke Durant (2024) 2024-10-20 4
M71,566,249 Composite Luke Durant (2024) 2024-10-20 5
M71,628,451 Composite Luke Durant (2024) 2024-10-21 6
M72,194,839 Composite Luke Durant (2024) 2024-10-22 7
M74,332,933 Composite Luke Durant (2024) 2024-10-16 8
M74,301,631 Composite Luke Durant (2024) 2024-10-17 9
M74,601,587 Composite Luke Durant (2024) 2024-10-22 10
M74,900,873 Composite Luke Durant (2024) 2024-10-15 11
M75,203,741 Composite Luke Durant (2024) 2024-10-15 12
M75,221,383 Composite Luke Durant (2024) 2024-10-19 13
M75,318,011 Composite Luke Durant (2024) 2024-10-15 14
M75,718,961 Composite Luke Durant (2024) 2024-10-16 15
M75,770,621 Composite Luke Durant (2024) 2024-10-19 16
M75,836,963 Composite Luke Durant (2024) 2024-10-16 17
M75,914,281 Composite Luke Durant (2024) 2024-10-20 18
M75,942,821 Composite Luke Durant (2024) 2024-10-16 19
M75,936,437 Composite Luke Durant (2024) 2024-10-17 20
M76,057,483 Composite Luke Durant (2024) 2024-10-16 21
M76,072,049 Composite Luke Durant (2024) 2024-10-18 22
M76,101,283 Composite Luke Durant (2024) 2024-10-19 23
M76,303,001 Composite Luke Durant (2024) 2024-10-16 24
M76,350,871 Composite Luke Durant (2024) 2024-10-18 25
M76,501,081 Composite Luke Durant (2024) 2024-10-18 26
M76,501,493 Composite Luke Durant (2024) 2024-10-18 27
M76,533,241 Composite Luke Durant (2024) 2024-10-16 28
M76,567,147 Composite Luke Durant (2024) 2024-10-17 29
M76,668,169 Composite Luke Durant (2024) 2024-10-20 30
M76,694,557 Composite Luke Durant (2024) 2024-10-19 31
M76,830,959 Composite Luke Durant (2024) 2024-10-17 32
M76,979,527 Composite Luke Durant (2024) 2024-10-19 33
M77,029,679 Composite Luke Durant (2024) 2024-10-19 34

https://www.mersenne.ca/exponent/70849997
https://www.mersenne.ca/exponent/70984063
https://www.mersenne.ca/exponent/70977163
https://www.mersenne.ca/exponent/71315693
https://www.mersenne.ca/exponent/71342833
https://www.mersenne.ca/exponent/73574629
https://www.mersenne.ca/exponent/75631121
https://www.mersenne.ca/exponent/75646411
https://www.mersenne.ca/exponent/75672353
https://www.mersenne.ca/exponent/76640953
https://www.mersenne.ca/exponent/77038583
https://www.mersenne.ca/exponent/77940739
https://www.mersenne.ca/exponent/70980863
https://www.mersenne.ca/exponent/71192861
https://www.mersenne.ca/exponent/71261831
https://www.mersenne.ca/exponent/71274971
https://www.mersenne.ca/exponent/71566249
https://www.mersenne.ca/exponent/71628451
https://www.mersenne.ca/exponent/72194839
https://www.mersenne.ca/exponent/74332933
https://www.mersenne.ca/exponent/74301631
https://www.mersenne.ca/exponent/74601587
https://www.mersenne.ca/exponent/74900873
https://www.mersenne.ca/exponent/75203741
https://www.mersenne.ca/exponent/75221383
https://www.mersenne.ca/exponent/75318011
https://www.mersenne.ca/exponent/75718961
https://www.mersenne.ca/exponent/75770621
https://www.mersenne.ca/exponent/75836963
https://www.mersenne.ca/exponent/75914281
https://www.mersenne.ca/exponent/75942821
https://www.mersenne.ca/exponent/75936437
https://www.mersenne.ca/exponent/76057483
https://www.mersenne.ca/exponent/76072049
https://www.mersenne.ca/exponent/76101283
https://www.mersenne.ca/exponent/76303001
https://www.mersenne.ca/exponent/76350871
https://www.mersenne.ca/exponent/76501081
https://www.mersenne.ca/exponent/76501493
https://www.mersenne.ca/exponent/76533241
https://www.mersenne.ca/exponent/76567147
https://www.mersenne.ca/exponent/76668169
https://www.mersenne.ca/exponent/76694557
https://www.mersenne.ca/exponent/76830959
https://www.mersenne.ca/exponent/76979527
https://www.mersenne.ca/exponent/77029679
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Table B.2: Results from certifying Fermat primality tests.

Mn Result Original test Completion date URL
M77,117,951 Composite Luke Durant (2024) 2024-10-17 35
M77,953,229 Composite Luke Durant (2024) 2024-10-22 36
M78,234,451 Composite Luke Durant (2024) 2024-10-19 37
M78,380,779 Composite Luke Durant (2024) 2024-10-20 38
M78,452,119 Composite Luke Durant (2024) 2024-10-20 39
M82,799,723 Composite Luke Durant (2024) 2024-10-18 40
M82,813,337 Composite Luke Durant (2024) 2024-10-16 41
M82,862,837 Composite Luke Durant (2024) 2024-10-14 42
M82,922,911 Composite Luke Durant (2024) 2024-10-15 43
M82,993,739 Composite Luke Durant (2024) 2024-10-16 44
M126,494,129 Composite Luke Durant (2024) 2024-08-28 45
M126,863,981 Composite Luke Durant (2024) 2024-09-10 46
M127,780,021 Composite Luke Durant (2024) 2024-08-28 47
M128,089,867 Composite Luke Durant (2024) 2024-08-30 48
M129,126,157 Composite Luke Durant (2024) 2024-08-29 49
M129,548,869 Composite Luke Durant (2024) 2024-09-03 50
M129,568,757 Composite Luke Durant (2024) 2024-08-27 51
M129,599,797 Composite Luke Durant (2024) 2024-08-28 52
M129,604,373 Composite Luke Durant (2024) 2024-08-27 53
M129,616,681 Composite Luke Durant (2024) 2024-08-27 54
M129,653,527 Composite Luke Durant (2024) 2024-08-28 55
M129,785,627 Composite Luke Durant (2024) 2024-08-29 56
M129,796,697 Composite Luke Durant (2024) 2024-08-30 57
M129,816,509 Composite Luke Durant (2024) 2024-08-30 58
M129,907,249 Composite Luke Durant (2024) 2024-08-31 59
M129,929,717 Composite Luke Durant (2024) 2024-09-20 60
M130,029,443 Composite Luke Durant (2024) 2024-09-24 61
M130,264,033 Composite Luke Durant (2024) 2024-09-03 62
M130,285,031 Composite Luke Durant (2024) 2024-09-04 63
M130,365,329 Composite Luke Durant (2024) 2024-09-04 64
M130,414,589 Composite Luke Durant (2024) 2024-09-06 65
M130,432,649 Composite Luke Durant (2024) 2024-09-24 66
M130,449,691 Composite Luke Durant (2024) 2024-09-05 67
M130,487,899 Composite Luke Durant (2024) 2024-09-05 68
M130,512,461 Composite Luke Durant (2024) 2024-09-05 69
M130,572,653 Composite Luke Durant (2024) 2024-09-07 70
M130,577,581 Composite Luke Durant (2024) 2024-09-06 71
M130,598,003 Composite Luke Durant (2024) 2024-09-06 72
M130,606,639 Composite Luke Durant (2024) 2024-09-08 73
M130,689,719 Composite Luke Durant (2024) 2024-09-07 74
M130,725,653 Composite Luke Durant (2024) 2024-09-07 75
M130,742,107 Composite Luke Durant (2024) 2024-09-26 76
M130,770,421 Composite Luke Durant (2024) 2024-09-08 77
M130,792,213 Composite Luke Durant (2024) 2024-09-26 78
M130,824,983 Composite Luke Durant (2024) 2024-09-07 79
M130,912,729 Composite Luke Durant (2024) 2024-09-30 80
M130,961,717 Composite Luke Durant (2024) 2024-09-08 81
M131,255,837 Composite Luke Durant (2024) 2024-09-09 82
M131,430,197 Composite Luke Durant (2024) 2024-09-10 83
M131,503,037 Composite Luke Durant (2024) 2024-09-10 84
M131,566,867 Composite Luke Durant (2024) 2024-09-28 85
M131,708,729 Composite Luke Durant (2024) 2024-09-23 86
M131,810,827 Composite Luke Durant (2024) 2024-09-20 87
M131,877,539 Composite Luke Durant (2024) 2024-10-01 88

https://www.mersenne.ca/exponent/77117951
https://www.mersenne.ca/exponent/77953229
https://www.mersenne.ca/exponent/78234451
https://www.mersenne.ca/exponent/78380779
https://www.mersenne.ca/exponent/78452119
https://www.mersenne.ca/exponent/82799723
https://www.mersenne.ca/exponent/82813337
https://www.mersenne.ca/exponent/82862837
https://www.mersenne.ca/exponent/82922911
https://www.mersenne.ca/exponent/82993739
https://www.mersenne.ca/exponent/126494129
https://www.mersenne.ca/exponent/126863981
https://www.mersenne.ca/exponent/127780021
https://www.mersenne.ca/exponent/128089867
https://www.mersenne.ca/exponent/129126157
https://www.mersenne.ca/exponent/129548869
https://www.mersenne.ca/exponent/129568757
https://www.mersenne.ca/exponent/129599797
https://www.mersenne.ca/exponent/129604373
https://www.mersenne.ca/exponent/129616681
https://www.mersenne.ca/exponent/129653527
https://www.mersenne.ca/exponent/129785627
https://www.mersenne.ca/exponent/129796697
https://www.mersenne.ca/exponent/129816509
https://www.mersenne.ca/exponent/129907249
https://www.mersenne.ca/exponent/129929717
https://www.mersenne.ca/exponent/130029443
https://www.mersenne.ca/exponent/130264033
https://www.mersenne.ca/exponent/130285031
https://www.mersenne.ca/exponent/130365329
https://www.mersenne.ca/exponent/130414589
https://www.mersenne.ca/exponent/130432649
https://www.mersenne.ca/exponent/130487899
https://www.mersenne.ca/exponent/130487899
https://www.mersenne.ca/exponent/130512461
https://www.mersenne.ca/exponent/130572653
https://www.mersenne.ca/exponent/130577581
https://www.mersenne.ca/exponent/130598003
https://www.mersenne.ca/exponent/130606639
https://www.mersenne.ca/exponent/130689719
https://www.mersenne.ca/exponent/130725653
https://www.mersenne.ca/exponent/130742107
https://www.mersenne.ca/exponent/130770421
https://www.mersenne.ca/exponent/130792213
https://www.mersenne.ca/exponent/130824983
https://www.mersenne.ca/exponent/130912729
https://www.mersenne.ca/exponent/130961717
https://www.mersenne.ca/exponent/131255837
https://www.mersenne.ca/exponent/131430197
https://www.mersenne.ca/exponent/131503037
https://www.mersenne.ca/exponent/131566867
https://www.mersenne.ca/exponent/131708729
https://www.mersenne.ca/exponent/131810827
https://www.mersenne.ca/exponent/131877539
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Table B.2: Results from certifying Fermat primality tests.

Mn Result Original test Completion date URL
M131,922,559 Composite Luke Durant (2024) 2024-09-16 89
M131,946,743 Composite Chun Sung Soo (2024) 2024-09-24 90
M132,043,151 Composite Luke Durant (2024) 2024-10-06 91
M132,043,151 Composite Luke Durant (2024) 2024-10-06 92
M132,061,961 Composite Luke Durant (2024) 2024-10-14 93
M132,131,723 Composite Luke Durant (2024) 2024-09-19 94
M132,350,521 Composite Luke Durant (2024) 2024-09-21 95
M132,369,703 Composite Luke Durant (2024) 2024-09-20 96
M132,417,871 Composite Luke Durant (2024) 2024-09-23 97
M132,501,671 Composite Luke Durant (2024) 2024-09-22 98
M132,507,281 Composite Luke Durant (2024) 2024-09-21 99
M132,507,667 Composite Luke Durant (2024) 2024-10-04 100
M132,532,627 Composite Luke Durant (2024) 2024-09-21 101
M132,539,339 Composite Luke Durant (2024) 2024-09-22 102
M132,584,981 Composite Luke Durant (2024) 2024-09-22 103
M132,628,393 Composite Luke Durant (2024) 2024-09-22 104
M132,633,569 Composite Luke Durant (2024) 2024-09-22 105
M132,645,281 Composite Luke Durant (2024) 2024-09-22 106
M132,723,229 Composite Luke Durant (2024) 2024-09-22 107
M132,743,761 Composite Luke Durant (2024) 2024-09-22 108
M132,761,723 Composite Luke Durant (2024) 2024-09-23 109
M133,079,203 Composite Luke Durant (2024) 2024-09-24 110
M133,080,173 Composite Luke Durant (2024) 2024-09-24 111
M133,128,461 Composite Luke Durant (2024) 2024-09-25 112
M133,175,489 Composite Luke Durant (2024) 2024-09-25 113
M133,273,883 Composite Luke Durant (2024) 2024-09-26 114
M133,382,191 Composite Luke Durant (2024) 2024-09-26 115
M133,422,803 Composite Luke Durant (2024) 2024-10-11 116
M133,430,887 Composite Luke Durant (2024) 2024-10-08 117
M133,487,477 Composite Luke Durant (2024) 2024-09-29 118
M133,554,143 Composite Luke Durant (2024) 2024-09-27 119
M133,583,033 Composite Luke Durant (2024) 2024-09-27 120
M133,586,581 Composite Luke Durant (2024) 2024-09-27 121
M133,622,561 Composite Luke Durant (2024) 2024-10-11 122
M133,628,153 Composite Luke Durant (2024) 2024-09-27 123
M133,664,413 Composite Luke Durant (2024) 2024-09-27 124
M133,737,077 Composite Luke Durant (2024) 2024-09-27 125
M133,769,021 Composite Luke Durant (2024) 2024-09-28 126
M133,818,779 Composite Luke Durant (2024) 2024-09-28 127
M133,852,181 Composite Luke Durant (2024) 2024-09-29 128
M133,864,327 Composite Luke Durant (2024) 2024-09-25 129
M133,894,517 Composite Luke Durant (2024) 2024-09-28 130
M133,918,633 Composite Luke Durant (2024) 2024-10-09 131
M134,035,589 Composite Luke Durant (2024) 2024-10-04 132
M134,045,189 Composite Luke Durant (2024) 2024-10-04 133
M134,056,877 Composite Luke Durant (2024) 2024-10-04 134
M134,155,919 Composite Luke Durant (2024) 2024-10-05 135
M134,168,953 Composite Luke Durant (2024) 2024-10-04 136
M134,210,327 Composite Luke Durant (2024) 2024-09-29 137
M134,218,289 Composite Luke Durant (2024) 2024-09-29 138
M134,218,307 Composite Luke Durant (2024) 2024-09-29 139
M134,295,737 Composite Luke Durant (2024) 2024-09-30 140
M134,377,993 Composite Luke Durant (2024) 2024-09-30 141
M134,440,547 Composite Luke Durant (2024) 2024-09-30 142

https://www.mersenne.ca/exponent/131922559
https://www.mersenne.ca/exponent/131946743
https://www.mersenne.ca/exponent/132043151
https://www.mersenne.ca/exponent/132043151
https://www.mersenne.ca/exponent/132061961
https://www.mersenne.ca/exponent/132131723
https://www.mersenne.ca/exponent/132350521
https://www.mersenne.ca/exponent/132369703
https://www.mersenne.ca/exponent/132417871
https://www.mersenne.ca/exponent/132501671
https://www.mersenne.ca/exponent/132507281
https://www.mersenne.ca/exponent/132507667
https://www.mersenne.ca/exponent/132532627
https://www.mersenne.ca/exponent/132539339
https://www.mersenne.ca/exponent/132584981
https://www.mersenne.ca/exponent/132628393
https://www.mersenne.ca/exponent/132633569
https://www.mersenne.ca/exponent/132645281
https://www.mersenne.ca/exponent/132723229
https://www.mersenne.ca/exponent/132743761
https://www.mersenne.ca/exponent/132761723
https://www.mersenne.ca/exponent/133079203
https://www.mersenne.ca/exponent/133080173
https://www.mersenne.ca/exponent/133128461
https://www.mersenne.ca/exponent/133175489
https://www.mersenne.ca/exponent/133273883
https://www.mersenne.ca/exponent/133382191
https://www.mersenne.ca/exponent/133422803
https://www.mersenne.ca/exponent/133430887
https://www.mersenne.ca/exponent/133487477
https://www.mersenne.ca/exponent/133554143
https://www.mersenne.ca/exponent/133583033
https://www.mersenne.ca/exponent/133586581
https://www.mersenne.ca/exponent/133622561
https://www.mersenne.ca/exponent/133628153
https://www.mersenne.ca/exponent/133664413
https://www.mersenne.ca/exponent/133737077
https://www.mersenne.ca/exponent/133769021
https://www.mersenne.ca/exponent/133818779
https://www.mersenne.ca/exponent/133852181
https://www.mersenne.ca/exponent/133864327
https://www.mersenne.ca/exponent/133894517
https://www.mersenne.ca/exponent/133918633
https://www.mersenne.ca/exponent/134035589
https://www.mersenne.ca/exponent/134045189
https://www.mersenne.ca/exponent/134056877
https://www.mersenne.ca/exponent/134155919
https://www.mersenne.ca/exponent/134168953
https://www.mersenne.ca/exponent/134210327
https://www.mersenne.ca/exponent/134218289
https://www.mersenne.ca/exponent/134218307
https://www.mersenne.ca/exponent/134466799
https://www.mersenne.ca/exponent/134377993
https://www.mersenne.ca/exponent/134440547
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Table B.2: Results from certifying Fermat primality tests.

Mn Result Original test Completion date URL
M134,466,799 Composite Luke Durant (2024) 2024-09-30 143
M134,642,953 Composite Luke Durant (2024) 2024-10-01 144
M134,689,171 Composite Luke Durant (2024) 2024-10-02 145
M134,726,833 Composite Luke Durant (2024) 2024-10-02 146
M134,760,097 Composite Luke Durant (2024) 2024-10-15 147
M134,783,273 Composite Luke Durant (2024) 2024-10-13 148
M134,786,837 Composite Luke Durant (2024) 2024-10-05 149
M134,797,511 Composite Luke Durant (2024) 2024-10-02 150
M134,802,419 Composite Luke Durant (2024) 2024-10-02 151
M134,859,343 Composite Luke Durant (2024) 2024-10-03 152
M134,901,719 Composite Luke Durant (2024) 2024-10-03 153
M134,937,787 Composite Luke Durant (2024) 2024-10-03 154
M134,960,717 Composite Luke Durant (2024) 2024-10-03 155
M135,014,069 Composite Luke Durant (2024) 2024-10-05 156
M135,029,537 Composite Luke Durant (2024) 2024-10-05 157
M135,189,493 Composite Luke Durant (2024) 2024-10-06 158
M135,319,417 Composite Luke Durant (2024) 2024-10-06 159
M135,391,049 Composite Luke Durant (2024) 2024-10-07 160
M135,471,733 Composite Luke Durant (2024) 2024-10-07 161
M135,547,891 Composite Luke Durant (2024) 2024-10-07 162
M135,616,483 Composite Luke Durant (2024) 2024-10-08 163
M135,643,639 Composite Luke Durant (2024) 2024-10-08 164
M135,819,797 Composite Luke Durant (2024) 2024-10-09 165
M135,826,547 Composite Luke Durant (2024) 2024-10-09 166
M135,948,559 Composite Luke Durant (2024) 2024-10-09 167
M136,056,077 Composite Luke Durant (2024) 2024-10-10 168
M136,134,931 Composite Luke Durant (2024) 2024-10-10 169
M136,154,167 Composite Luke Durant (2024) 2024-10-10 170
M136,172,809 Composite Luke Durant (2024) 2024-10-12 171
M136,215,689 Composite Luke Durant (2024) 2024-10-10 172
M136,283,041 Composite Luke Durant (2024) 2024-10-11 173
M136,462,691 Composite Luke Durant (2024) 2024-10-12 174
M136,476,127 Composite Luke Durant (2024) 2024-10-12 175
M136,545,407 Composite Luke Durant (2024) 2024-10-12 176
M136,582,769 Composite Luke Durant (2024) 2024-10-12 177
M136,625,527 Composite Luke Durant (2024) 2024-10-14 178
M136,655,557 Composite Luke Durant (2024) 2024-10-12 179
M136,795,517 Composite Luke Durant (2024) 2024-10-13 180
M136,802,629 Composite Luke Durant (2024) 2024-10-13 181
M136,893,787 Composite Luke Durant (2024) 2024-10-13 182
M136,966,409 Composite Luke Durant (2024) 2024-10-14 183
M137,025,289 Composite Luke Durant (2024) 2024-10-14 184
M137,148,071 Composite Luke Durant (2024) 2024-10-17 185
M146,794,913 Composite “MathEnthousiast” (2024) 2024-09-25 186
M148,364,323 Composite Curtis Cooper (2024) 2024-09-29 187
M164,353,429 Composite Curtis Cooper (2024) 2024-09-23 188

https://www.mersenne.ca/exponent/134466799
https://www.mersenne.ca/exponent/134642953
https://www.mersenne.ca/exponent/134689171
https://www.mersenne.ca/exponent/134726833
https://www.mersenne.ca/exponent/134760097
https://www.mersenne.ca/exponent/134783273
https://www.mersenne.ca/exponent/134786837
https://www.mersenne.ca/exponent/134797511
https://www.mersenne.ca/exponent/134802419
https://www.mersenne.ca/exponent/134859343
https://www.mersenne.ca/exponent/134901719
https://www.mersenne.ca/exponent/134937787
https://www.mersenne.ca/exponent/134960717
https://www.mersenne.ca/exponent/135014069
https://www.mersenne.ca/exponent/135029537
https://www.mersenne.ca/exponent/135189493
https://www.mersenne.ca/exponent/135319417
https://www.mersenne.ca/exponent/135391049
https://www.mersenne.ca/exponent/135471733
https://www.mersenne.ca/exponent/135547891
https://www.mersenne.ca/exponent/135616483
https://www.mersenne.ca/exponent/135643639
https://www.mersenne.ca/exponent/135819797
https://www.mersenne.ca/exponent/135826547
https://www.mersenne.ca/exponent/135948559
https://www.mersenne.ca/exponent/136056077
https://www.mersenne.ca/exponent/136134931
https://www.mersenne.ca/exponent/136154167
https://www.mersenne.ca/exponent/136172809
https://www.mersenne.ca/exponent/136215689
https://www.mersenne.ca/exponent/136283041
https://www.mersenne.ca/exponent/136462691
https://www.mersenne.ca/exponent/136476127
https://www.mersenne.ca/exponent/136545407
https://www.mersenne.ca/exponent/136582769
https://www.mersenne.ca/exponent/136625527
https://www.mersenne.ca/exponent/136655557
https://www.mersenne.ca/exponent/136795517
https://www.mersenne.ca/exponent/136802629
https://www.mersenne.ca/exponent/136893787
https://www.mersenne.ca/exponent/136966409
https://www.mersenne.ca/exponent/137025289
https://www.mersenne.ca/exponent/137148071
https://www.mersenne.ca/exponent/146794913
https://www.mersenne.ca/exponent/148364323
https://www.mersenne.ca/exponent/164353429
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Table B.3: Results from certifying Fermat primality tests on cofactors. The number of known prime factors for Mn

is denoted by N .

Mn N Result Original test Completion date URL
M311,539 1 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-08-28 1
M311,561 1 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-08-28 2
M311,569 4 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-08-28 3
M311,609 1 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-08-28 4
M315,899 2 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-08-30 5
M379,177 1 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-10-01 6
M379,273 3 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-10-01 7
M379,277 2 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-10-01 8
M379,283 2 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-10-01 9
M405,719 2 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-10-01 10
M405,731 4 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-10-01 11
M405,749 1 Composite cofactor “kkmrkkblmbrbk” (2024) 2024-10-01 12
M699,719 3 Composite cofactor “timc995” (2024) 2024-09-24 13

M4,687,919 1 Composite cofactor “feather” (2024) 2024-10-12 14
M16,895,609 3 Composite cofactor “Feritin” (2024) 2024-10-11 15
M17,017,727 1 Composite cofactor Luke Durant (2024) 2024-08-27 16
M17,024,587 1 Composite cofactor Luke Durant (2024) 2024-08-27 17
M17,034,103 1 Composite cofactor Luke Durant (2024) 2024-08-28 18
M17,042,539 2 Composite cofactor Luke Durant (2024) 2024-08-30 19
M17,090,699 2 Composite cofactor Luke Durant (2024) 2024-09-06 20
M17,124,911 1 Composite cofactor “XZT” (2024) 2024-09-08 21
M17,152,781 1 Composite cofactor “Perig” (2024) 2024-09-11 22
M17,212,991 1 Composite cofactor Luke Durant (2024) 2024-09-19 23
M17,261,029 1 Composite cofactor “dnova” (2024) 2024-10-03 24
M17,311,391 3 Composite cofactor Luke Durant (2024) 2024-10-19 25
M17,319,329 4 Composite cofactor Luke Durant (2024) 2024-10-22 26
M17,322,233 2 Composite cofactor Alvin Bunk (2024) 2024-10-19 27
M18,937,241 2 Composite cofactor Jason Lynch (2024) 2024-09-02 28

C List of Known Mersenne Primes

Table C.1: The 52 known Mersenne prime numbers [18]. The rank after 48 is not verified as denoted by *. The
lowest unverified Mersenne number is M70,578,077 and the lowest untested Mersenne number is M124,817,431 as of 20
November 2024 [17].

Rank Mn Digits Discovered Discoverer
1 M2 1 c. 500 BC Unkown
2 M3 1 c. 500 BC Unkown
3 M5 2 c. 275 BC Unkown
4 M7 3 c. 275 BC Unkown
5 M13 4 1456 Unkown
6 M17 6 1588 Pietro Cataldi
7 M19 6 1588 Pietro Cataldi
8 M31 10 1772 Leonhard Euler
9 M61 19 1883 Ivan Mikheevich Pervushin
10 M89 27 1911 R. E. Powers
11 M107 33 1914 R. E. Powers
12 M127 39 1876 Édouard Lucas
13 M521 157 1952 Raphael M. Robinson
14 M607 183 1952 Raphael M. Robinson

https://www.mersenne.ca/exponent/311539
https://www.mersenne.ca/exponent/311561
https://www.mersenne.ca/exponent/311569
https://www.mersenne.ca/exponent/311609
https://www.mersenne.ca/exponent/315899
https://www.mersenne.ca/exponent/379177
https://www.mersenne.ca/exponent/379273
https://www.mersenne.ca/exponent/379277
https://www.mersenne.ca/exponent/379283
https://www.mersenne.ca/exponent/405719
https://www.mersenne.ca/exponent/405731
https://www.mersenne.ca/exponent/405749
https://www.mersenne.ca/exponent/699719
https://www.mersenne.ca/exponent/4687919
https://www.mersenne.ca/exponent/16895609
https://www.mersenne.ca/exponent/17017727
https://www.mersenne.ca/exponent/17024587
https://www.mersenne.ca/exponent/17034103
https://www.mersenne.ca/exponent/17042539
https://www.mersenne.ca/exponent/17090699
https://www.mersenne.ca/exponent/17124911
https://www.mersenne.ca/exponent/17152781
https://www.mersenne.ca/exponent/17212991
https://www.mersenne.ca/exponent/17261029
https://www.mersenne.ca/exponent/17311391
https://www.mersenne.ca/exponent/17319329
https://www.mersenne.ca/exponent/17322233
https://www.mersenne.ca/exponent/18937241


Mersenne Primes and the Quest to Find Them 22

Table C.1: The 52 known Mersenne prime numbers [18]. The rank after 48 is not verified as denoted by *. The
lowest unverified Mersenne number is M70,578,077 and the lowest untested Mersenne number is M124,817,431 as of 20
November 2024 [17].

Rank Mn Digits Discovered Discoverer
15 M1,279 386 1952 Raphael M. Robinson
16 M2,203 664 1952 Raphael M. Robinson
17 M2,281 687 1952 Raphael M. Robinson
18 M3,217 969 1957 Hans Riesel
19 M4,253 1,281 1961 Alexander Hurwitz
20 M4,423 1,332 1961 Alexander Hurwitz
21 M9,689 2,917 1963 Donald B. Gillies
22 M9,941 2,993 1963 Donald B. Gillies
23 M11,213 3,376 1963 Donald B. Gillies
24 M19,937 6,002 1971 Bryant Tuckerman
25 M21,701 6,533 1978 Landon Curt Noll & Laura Nickel
26 M23,209 6,987 1979 Landon Curt Noll
27 M44,497 13,395 1979 Harry Lewis Nelson & David Slowinski
28 M86,243 25,962 1982 David Slowinski
29 M110,503 33,265 1988 Walter Colquitt & Luke Welsh
30 M132,049 39,751 1983 David Slowinski
31 M216,091 60,050 1985 David Slowinski
32 M756,839 227,832 1992 David Slowinski & Paul Gage
33 M859,433 258,716 1994 David Slowinski & Paul Gage
34 M1,257,787 378,632 1996 David Slowinski & Paul Gage
35 M1,398,269 420,921 1996 Joel Armengaud / GIMPS
36 M2,976,221 895,932 1997 Gordon Spence / GIMPS
37 M3,021,377 909,526 1998 Roland Clarkson / GIMPS
38 M6,972,593 2,098,960 1999 Nayan Hajratwala / GIMPS
39 M13,466,917 4,053,946 2001 Michael Cameron / GIMPS
40 M20,996,011 6,320,430 2003 Michael Shafer / GIMPS
41 M24,036,583 7,235,733 2004 Josh Findley / GIMPS
42 M25,964,951 7,816,230 2005 Martin Nowak / GIMPS
43 M30,402,457 9,152,052 2005 Curtis Cooper & Steven Boone / GIMPS
44 M32,582,657 9,808,358 2006 Curtis Cooper & Steven Boone / GIMPS
45 M37,156,667 11,185,272 2008 Hans-Michael Elvenich / GIMPS
46 M42,643,801 12,837,064 2009 Odd M. Strindmo / GIMPS
47 M43,112,609 12,978,189 2008 Edson Smith / GIMPS
48 M57,885,161 17,425,170 2013 Curtis Cooper / GIMPS
49* M74,207,281 22,338,618 2016 Curtis Cooper / GIMPS
50* M77,232,917 23,249,425 2017 Jon Pace / GIMPS
51* M82,589,933 24,862,048 2018 Patrick Laroche / GIMPS
52* M136,279,841 41,024,320 2024 Luke Durant / GIMPS
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Incomplete Proof of Theorem 3.8
On page 10, the proof of Equation (3.2) is only presented for prime divisors, while no such restriction is made in
the theorem. For the proof to be thorough, the following must be added.

Proof of Theorem 3.8 (continuation). In order to show that (3.2) holds for δ ∈ Pc, let δ = δ1δ2 where δ1, δ2 ∈ P≥7

(iterate if there are more prime factors). Assuming that δ divides Mn, it thus follows that δ1 | Mn and δ2 | Mn.
Then, we know

δ1 = 2nk1 + 1 and δ2 = 2nk2 + 1,

where ki ≡ 0 or ki ≡ −n (mod 4) for i ∈ {1, 2}. Therefore,

δ = δ1δ2 = (2nk1 + 1)(2nk2 + 1) = 4n2k1k2 + 2nk1 + 2nk2 + 1 = 2n(2nk1k2 + k1 + k2) + 1.

Now, let k = 2nk1k2 + k1 + k2 and we get the sought after formula. To show that k fulfils the desired condition,
we need to consider a few scenarios: If k1 ≡ k2 ≡ 0 (mod 4) we trivially get k ≡ 0 (mod 4). If ki ≡ 0 and kj ≡ −n
(mod 4) for i, j ∈ {1, 2} where i ̸= j, then k ≡ −n (mod 4). For the final case k1 ≡ k2 ≡ −n (mod 4), observe that
n is odd and therefore n = 2m+ 1 for some m ∈ Z≥1. Hence,

k = 2nk1k2 + k1 + k2 ≡ 2n3 − 2n = 2n(n+ 1)(n− 1) = 4(2m+ 1)(2m+ 2)m ≡ 0 (mod 4).

Thus, k ≡ 0 or k ≡ −n (mod 4) and we are done.


