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Abstract

We present the theory on linear groups. These are defined as subgroups
of the general linear group and consists of invertible matrices. Once the
theory has been developed we derive several examples and the main topic
of study is the special unitary group of 2 × 2 - matrices. We provide a
proof that this group is isomorphic to the 3-sphere in R4 and define the
equator of this sphere. By constructing a map γ : SU2 −→ {f : E −→
E} we show that every matrix of SU2 can be represented as an element
of the special orthogonal group SO3. This representation is interpreted
geometrically as a rotation of the 3-sphere. We conclude by considering a
class of differentiable homomorphisms. We prove that the image of these
homomorphisms define the one parameter groups.
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Sammanfattning

Vi presenterar teorin om linjära grupper. Dessa definieras som delgrup-
per av den allmäna linjära gruppen och best̊ar av inverterbara matriser.
Varvid teorin har utecklats härleds ett antal exempel där huvudämnet
är den speciella linjära gruppen best̊aende av 2× 2-matriser. Vidare pre-
senterar vi ett bevis p̊a att den här gruppen och 3-sfären i R4 utgör en
gruppisomorfi. Varp̊a detta har redogjorts definierar vi ekvatorn av SU2.
Följaktligen definieras en funktion SU2 −→ {f : E −→ E} som används för
att beskriva hur SU2 kan representeras som ortogonalmatriser i den speci-
ella linjära gruppen SO3. Den här representationen beskriver en rotation
av 3-sfären. Avslutningsvis betraktas en klass av deriverbara homomor-
fismer. Vi bevisar att värdemängden för dessa homomorfismer definerar
de s̊a kallade enparametergrupperna.
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1 Introduction

What follows is a collection of definitions and results related to linear groups
(or matrix groups). It turns out that by combining matrices with the concept
of a group we can define the linear groups. A particularly important example
is the group of unitary 2 × 2 - matrices with determinant 1, denoted by SU2.
The reason why this group is so important to our case becomes apparent when
we discover that it can be represented as a unit-sphere in R4. Since SU2 has
the geometric interpretation of a sphere one might wonder whether or not this
sphere has any interesting properties. It does! In fact, we will show that the
action of conjugation of the matrices in SU2 can be described geometrically as a
rotation of the sphere. Once all of this is achieved we end with a brief section on
differentiable homomorphisms. The images of these homomorphisms constitute
a special class of matrix-valued functions called the one-parameter groups.

2 Preliminary

In this section we recall some results that will be referred to throughout the text.
The topics included are derived in group theory, topology and linear algebra.
Some of the proofs of the results presented here are left out given their elaborate
and rather tedious nature.

2.1 Group Theory

Definition 1 (Subgroup). A nonempty set H of a group G is a subgroup if H
is a group under the binary operation (∗) of G. We write H ⩽ G.

Proposition 1 (The subgroup test). Let G be a group and H a subset of G
that is nonempty. Then H is a subgroup of G if ab−1 ∈ H , for every a, b ∈ H.

Definition 2 (Normal subgroups). A subgroup N ⩽ G is normal if gNg−1 = N
for all g ∈ G.

Since it will come up when we discuss the latitudes of the group SU2, we include
the definition of a transitive group action.

Definition 3 (Transitive group action). Let G be a group acting on a nonempty
set A. The action of G on A is called transitive if there is only one orbit, that
is, given any pair of elements a, b ∈ A there exists a g ∈ G such that g · b = a

2.2 Linear Algebra

Theorem 1 (Product rule for determinants). If A,B ∈Mn(F), then

det(AB) = (detA)(detB)

where Mn(F) denotes the set of n× n - matrices.



Proof. See [FIS14, Ch.4, Thm.4.7]

Lemma 1. The matrix A is invertible if and only if AT is invertible. Where T
denotes the transpose operator.

Proof. We omit the proof.

Lemma 2. Suppose A ∈ GLn(F) (Definition 11), then

det(A) = det(AT )

Proof. Omitted.

Corollary 1. Let A ∈ GLn(F) then it holds that

(AT )−1 = (A−1)T

Proof. We know from Lemma 1 that the inverse property of a matrix implies
that det(AT ) ̸= 0 and hence that AT ∈ GLn(F). We show that AT behaves as
the inverse. Since the inverse of a matrix is unique the result will follow. We
simply compute

(A−1)TAT = (AA−1)T = ITn = In

and
AT (A−1)T = (A−1A)T = ITn = In

Definition 4 (Trace of a matrix). The trace of a matrix A, denoted tr(A) is
the sum

k∑
j=1

ajj = a11 + a22 + ...+ ann

where ajj denotes the element in the jth row and jth column of A.

Definition 5. A matrix A ∈Mn(C) is said to be skew-Hermitian if it satisfies
the equation

−A = A∗

where ∗ denotes complex conjugation.

Lemma 3. If A and B are square matrices of equal size, then

tr(AB) = tr(BA)

Proof. Omitted but follows from the formula for matrix multiplication.

If we replace B by BC in the previous Lemma we have that tr(ABC) =
tr(CAB) given the associativity property of matrix multiplication.

Lemma 4. For any matrix A ∈ GLn(F) it holds that

det(A−1) = det(A)−1 (1)
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Proof. For A ∈ GLn(F) we have have by Theorem 1 that

det(A) det(A−1) = det(AA−1) (2)

which reduces to the identity. Hence we multiply (1) on the right by the left
side of (2) and the result follows.

Lemma 5 (Determinant of orthogonal matrices). If M is an orthogonal matrix
then,

det(M) = ±1

.

Proof. Let M be an orthogonal matrix, then by Lemma 2 we have

det(I) = det(MTM) = det(M)2 = 1

The lemma follows by taking square roots.

2.3 Topology

Definition 6 (Homeomorphism). A continuous bijective map ϕ : X → Y is
called a homeomorphism if the inverse map ψ : Y → X is also continuous.

Roughly speaking, a homeomorphism is an injective map that preserves the
topological properties of the function on which it acts.

Definition 7 (Topological embedding). A map f : X → Y is called an embed-
ding between topological spaces if the map

f
′
: X → f(X)

is a homeomorphism where we obtain f(X) by restricting the space X.

A relevant example is the embedding of a subgroup into a group.

Definition 8 (Covering). Let X be a topological space. A cover of X is a
collection of sets Ui, i = 1, 2, 3, ... such that X ⊆ ∪∞

i=1Ui.

In other words, a topological cover for a space X is a collection of sets such that
X is completely contained in the union of these sets.

Definition 9 (Path-connected space). A topological space X is called a path-
connected space if for any pair of points (x0, x1) ∈ X there exists a continuous
map

f : [0, 1] → X

with f(0) = x0 and f(1) = x1.

Henceforth a topological space X is said to be path connected if there is a
continuous path connecting any two points x0, x1 ∈ X such that the path lies
entirely inside X.
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Example 1. The space

X = {z ∈ C | z ≥ 1 and z ≤ −1}

is not path-connected.
Pick z1 ≥ 1 and z2 ≤ −1, then there exists no path connecting z1 with z2
without intersecting the infinite strip which does not lie in X.

2.4 Stereographic projection

Before proceeding with the main material we intend to define the concept of
stereographic projection. In short, this provides a method for projecting an
n + 1 - dimensional sphere onto an n - dimensional surface. The geometric
interpretation changes for higher dimensions and becomes harder to vizualize.
Nevertheless, the approach is similar. We begin this endeavor by considering
the locus

{x20 + x21 + x22 + ...+ x2n = 1} ∈ Rn+1

commonly referred to as the n-dimensional unit sphere Sn. Hence, for example,
the unit sphere in R3 is given by S2. We shall consider x0 as the vertical vector
protruding from the origin. Initially we define stereographic projection for S2
(sitting in R3) onto the two-dimensional plane and then extend the definition
to S3.
Denote by V the plane determined by putting x0 = 0 and let p = (1, 0, 0) be
the north pole of the S2-sphere. If x is any point on the sphere we can define
the map

σ : S2 → V

as the stereographic projection from the S2-sphere onto V in the following way.
Consider the image σ(x) that we obtain by constructing a line l between p and
x. We define σ(x) as the point on V where it is intersected by l. Note that this
projection is a bijective correspondence at all points on the sphere except for p.
We justify this exclusion by the observation that if we let x tend to p on the
sphere this will map the image σ(x) further and further away on V. Hence we
say that p is sent to infinity as x approaches p on the sphere.
We now compute the coordinates for σ(x) on V represented by the point x on the
sphere. Since the x0-vector sits on top of the vertical axis in V = (x0, x1, x2) this
space is interpreted as R2. If a point in V has coordinates (v1, v2) the equation
for the line l intersecting p and x is given by

u = (0, v1, v2)− (1, 0, 0) = (−1, v1, v2) (3)

From (3) we can write down the parametric representation. This is given by
x0 = 1− t

x1 = tv1

x2 = tv2

(4)
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for σ(x) = (v1, v2) ∈ V. From (4) we have that t = 1 − x0. Solving for v1
and v2 in the other two equations and inserting the expression for t yields the
coordinates on the S2-sphere. Namely,

σ(x) = (v1, v2) =

(
x1

1− x0
,

x2
1− x0

)
Remark 1. If we put x0 = 1 in the preceding system the formula is clearly not
well defined.

When we later on define the special rotation group SO3 it will be of great
value to define the concepts of longitude and latitude which will assist us in
understanding the structure of this group. Hence we devote some time to define
these concepts here. To get a grasp on the geometry we begin by defining the
latitude and longitude for the S2 unit ball. Deriving these concepts for the S3
- sphere (which is what we really need them for) will then present no further
difficulty.

Definition 10 (Latitude and longitude). Consider the unit sphere S2 defined by
the point set {x20+x21+x22 = 1}. The horizontal circles x0 = c with −1 < c < 1
are called latitudes. Similarly, the vertical circles that intersect the poles of the
S2-sphere are called longitudes.

For S3 we define the latitudes to be the surfaces on which the x0-coordinate is
fixed. Geometrically these correspond to two-dimensional spheres in R4 satis-
fying

x0 = c, x21 + x22 + x23 = (1− c2), −1 < c < 1 (5)

If we fix x0 = 0 we obtain the intersection of S3 with V which is the plane
we obtained in the discussion on stereographic projection. However, this is the
S2-sphere {v21 + v22 + v23 = 1}. We shall refer to this particular latitude as the
equator of S3 and we use the notation E. The equator has important applica-
tions and we will devote an entire subsection to it later.
Similarly, we define the longitudes to be the vertical circles that intersect the
north pole p = (1, 0, 0, 0). These intersections are unit spheres of two dimen-
sions.
In particular, the latitudes on S3 are 2-spheres but the longitudes are ordinary
circles (1-spheres).
When we later in Section 6.2 establish a bijection between S3 and the group SU2

we shall return to these concepts. The projection of unit spheres of dimension
n+1 onto a surface of dimension n will present no additional difficulty to what
we have encountered here if one disregards the geometry.
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3 Linear groups

Linear groups are a special class of matrix groups that have important applica-
tions in many fields. The name of these groups suggests a connection between
linear algebra and group theory and it will become clear that knowledge from
both fields is required. To get a preview, consider the special unitary group of
complex valued 2×2 - matrices, denoted SU2. We will discover that conjugation
of the elements of this group describes the rotation of the S3-sphere. Although
these ideas might seem unclear now, we shall fully explain them in section 7.
Before that we say a few words on the structure of this thesis after which we
formally define linear groups.
The material covered in this paper follows closely the chapter on linear groups
presented in [Art10]. In addition some parts of the same chapter in [Art91] have
been implemented. Although we deviate somewhat in some sections to include
some additional topics that we wished to present. When we construct the ho-
momorphism γ in section 7 the older version of Artins book will be used more
frequently. Some of the subsequent results have been restated from how they
are presented in [Art10] and [Art91]. In addition many of the proofs that Artin
presents have been used as inspiration for how they are depicted in this thesis.
In regards to all of this credits are due to Artin for his wonderful depiction of
linear groups.
Definition 11 and 12 are the foundations for the rest of the subsequent material.

Definition 11 (General linear group). Let F be a field. The general linear
group is the set

GLn(F) = {P ∈Mn(F) | det(P) ̸= 0}

Definition 12 (Linear groups). Any subgroup H of GLn(F) is called a linear
group.

Extending these definitions permits us to list several examples of linear groups.
In the subsequent section we will make frequent use of the fact that linear groups
are subgroups of GLn(F).

3.1 Examples

Definition 13 (The special linear group). The special linear group is defined
by the set

SLn(F) = {P ∈ GLn(F) | det(P ) = 1}

As promised, we shall verify that this is a group.

Theorem 2. SLn(F) is a subgroup of GLn(F).

Proof. Let A,B ∈ SLn(F), then, by definition

det(A) = det(B) = 1
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By properties of the determinant we have that

det(AB) = det(A) det(B) (6)

Therefore, det(A) det(B) ∈ SLn(F). Next we need to verify that

det(A) det(B)−1 ∈ SLn(F)

Now let A,B ∈ SLn(F) then AB ∈ SLn(F) and by Theorem 1, it immediately
follows that AB−1 ∈ SLn(F).

Definition 14 (The orthogonal group). The orthogonal group is the set

On(R) = {P ∈ GLn(R) | P tP = In}

where In denotes the n× n identity matrix and t is the transpose operator.

Applying the contents of definition 1 we can now prove the following result.

Theorem 3. The set On(R) is a subgroup of GLn(R)

Proof. Let A ∈ On(R). Then ATA = I, det(A)2 = 1 and det(A) ̸= 0. It follows
that A ∈ GLn(R). Furthermore IT I = I · I = I. Henceforth I ∈ On(R).
Now if A ∈ On(R) we have that ATA = I, but then, AT = A−1. Hence
I = (A−1)TA−1 = ((A−1)TA−1)T and (A−1)TA−1 = I. So we conclude that
A−1 ∈ On(R).
We now invoke the subgroup test. Let A,B ∈ On(R) we obtain

(A−1B)T (A−1B) = BT (A−1)TA−1B = BT IB = BTB = I

Hence A−1B ∈ On(R). It follows that On(R) ⩽ GLn(R).

By considering the intersection of the orthogonal group with the special linear
group we define the special orthogonal group.

Definition 15 (The special orthogonal group). The special orthogonal group
is the set

SOn(R) = {P ∈ GLn(R) | P tP = In, det(P ) = 1}

where In denotes the n× n identity matrix.

Since this set is constructed by taking the intersection of two groups that are
subgroups of the general linear group it follows from [DF04, Ch.2.4, Prop.8]
that SOn(R) is a group.

Remark 2. The geometric interpretation of orthogonal matrices is that of a
rotation or a reflection. Since every orthogonal matrix has determinant ±1 it
preserves the length of the linear transformation.
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Definition 16 (The symplectic group). Given the matrix

S =

[
0 I
−I 0

]
the symplectic group is the set

SP2n(R) = {P ∈ GL2n(R) | PTSP = S}

where the In entries in S denote the identity matrix.

Theorem 4. The set SP2n(R) is a linear group.

Proof. Let P ∈ SP2n(R). Then, by definition, PTSP = S. By taking the
determinant on both sides of the last equality we have by Lemma 2 and the
product rule for determinants that

det(PT ) det(S) det(P ) = det(S)

Since det(S) = 1 it follows that det(P )2 = 1 and so P ∈ GL2n(R). Furthermore

ITSI = ISI = S

which proves that I ∈ SP2n(R). Now suppose A ∈ SP2n(R) then we have that

ATSA = S

which is equivalent to
S = (A−1)TSA−1

Hence we conclude that A−1 ∈ SP2n(R). Finally, suppose A,B ∈ SP2n(R).
Then

(A−1B)TS(A−1B) = BT (A−1)TSA−1B = BTSB

Therefore SP2n(R) ⩽ GLn(R).

4 The quaternions

We shall describe the quaternions algebraically using matrices. Quaternions
consist of four dimensional numbers of the form

a+ bi+ cj + dk (7)

where i, j and k are the unit vectors of the coordinate axis in R4. These are
subject to the quaternion relations given by

i2 = j2 = k2 = −1, ij = −ji = k

jk = −kj = i, ki = −ik = j, ijk = −1
(8)

Remark 3. The Hamilton relations were discovered by William Rowan Hamil-
ton (1805-1865). Hamilton was studying multiplication of three-dimensional
numbers in an attempting to extend the complex number system. He realized
that the four-dimensional quaternions was the key to his success. Pleased with
his discovery Hamilton carved the relations that he discovered i2 = j2 = k2 =
ijk = −1 into the bridge of Brougham.
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4.1 Matrix representation of the quaternions

Jumping ahead we shall prove in section 6.2 that there exists a bijection between
the elements of SU2 and S3. By applying the form (16) it can be derived that
the north pole of S3 is the identity matrix I2. Furthermore, since i = (0, 1, 0, 0),
j = (0, 0, 1, 0) and k = (0, 0, 0, 1) they are elements in S3 and, consequently, of
SU2. It follows from (16) that

i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, and k =

[
0 i
i 0

]
Hence we have established the matrix representation of the quaternions. We
now prove that these matrices constitute a four-dimensional real valued vector
space with entries in C.

Theorem 5. The set of matrices {i, j, k, I} with coefficients in C are R-linearly
independent.

Proof. The 2×2 - matrices with coefficients in C correspond to an 8-dimensional
vector space in R. We select the basis

β =

{[
1 0
0 0

]
,

[
i 0
0 0

]
,

[
0 1
0 0

]
,

[
0 i
0 0

]
,

[
0 0
1 0

]
,

[
0 0
i 0

]
,

[
0 0
0 1

]
,

[
0 0
0 i

]}
If we express the elements i, j, k and I in the basis β and put them as columns
of a matrix A, we obtain

A =



0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0


It can be verified by reducing the matrix to row echelon form that A has rank
4 and hence attains maximal rank. Therefore the columns are linearly indepen-
dent in R.

Remark 4. The basis vectors in β are not linearly independent over C. in fact,
β has dimension 4 in this case.

Since {i, j, k, I} are R-linearly independent they span a real vector space V
commonly denoted as the quaternion algebra.
When we later on construct a surjective homomorphism between SU2 and SO3

the basis elements of the quaternion algebra will display their usefulness. We
end this section by defining a nonabelian subgroup of GL2(C) which is obtained
by a natural extension of the quaternions.
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Definition 17 (The quaternion group). The quaternion group H is the set
consisting of the 8 matrices

Q8 = {±i,±j,±k,±I}

where

i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
, I =

[
1 0
0 1

]
We observe that

jk =

[
0 1
−1 0

] [
0 i
i 0

]
̸=

[
0 i
i 0

] [
0 1
−1 0

]
= kj

Hence Q8 is nonabelian.
The proof that H ⩽ GL2(C) is similar to that of the symplectic group hence
we shall omit the details and instead present an idea of the required steps in
conducting this proof.
Clearly I ∈ H and it is a matter of tedious, although simple matrix algebra to
verify that the set {±i,±j,±k,±I} is closed under the group operation (mul-
tiplication). Since these matrices all have determinant 1 they are contained in
GL2(C). Finally, proving that H is closed under the inversion map is just a
matter of finding the correct inverse. This is straightforward but tedious and
hence we omit the details. In either case, every element of H has an inverse that
is also contained in H and so H ⩽ GL2(C).

5 The rotation group SO2

In section 7 we construct a surjective map between SU2 and SO3. Since this
construction is important we shall illustrate the approach that is used by estab-
lishing a similar connection between the unit circle and the orthogonal matrices
of SO2. It turns our that there is a convenient way to represent these matrices
as elements on the unit circle (S1).

5.1 The bijection between the unit circle and SO2

Recall that the unit circle is formally defined by

S1 := x20 + x21 = 1 (9)

By a suitable choice of parameters we can express the unit circle as a group.
This is obtained by putting (x0, x1) = (cos θ, sin θ) in (9). In fact, there is a
natural embedding of the unit circle into R2×2 obtained by the map

(cos θ, sin θ) ↪→
[
cos θ − sin θ
sin θ cos θ

]
(10)

The unit circle is fundamentally connected with the rotation matrices of SO2.
This is the contents of the next lemma.
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Lemma 6. There exists a bijective map

Ψ : S1 −→ SO2(R)

Proof. Our goal is to construct a bijection between the unit sphere and the
special orthogonal group consisting of 2× 2 - matrices. Let

A =

[
a c
b d

]
∈ SO2(R)

Since A is an element of a special orthogonal group we require

AAT =

[
a c
b d

] [
a b
c d

]
= I2

together with det(A) = 1.
Carrying out this matrix multiplication and comparing the coefficients with the
identity matrix we obtain the system

a2 + c2 = 1

ab+ cd = 0

b2 + d2 = 1

By putting a = cos θ and c = sin θ we obtain the unit circle. Similarly b = sinϕ
and d = cosϕ, also transforms the third equation into the unit circle. Plugging
these values into the second equation we obtain

0 = ab+ cd = cos θ sinϕ+ sin θ cosϕ = sin(ϕ+ sin θ)

Hence we see that
sin(ϕ+ θ) = 0

which reduces to
ϕ = −θ + kπ (11)

Substituting (11) into the matrix A yields

A =

[
cos θ sin(kπ − θ)
sin θ cos(kπ − θ)

]
Now, if k is even we have that sin(kπ− θ) = −sin(θ) and cos(kπ− θ) = cos(θ).
Therefore the matrix becomes

A =

[
cos θ − sin(θ)
sin θ cos(θ)

]
, k ∈ Z2n

Conversely, if k is odd we obtain sin(kπ−θ) = sin(θ) and cos(kπ−θ) = − cos(θ).
Henceforth the matrix A reduces to

A =

[
cos θ sin(θ)
sin θ − cos(θ)

]
, k ∈ Z2n+1

But this matrix is not in SO2 since det(A) ̸= 1. Hence we have a bijective map
from the unit circle to SO2 when k ∈ Z2n.

With that out of the way we now turn our attention to the main topic of this
thesis, the special unitary groups.
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6 The special unitary group SU2

Definition 18 (The unitary group). The unitary group is defined to be

ULn(C) = {P ∈ GLn(C) | P ∗P = In}

where ∗ denotes the conjugate transpose of the matrix P .

Theorem 6. The set ULn(C) is a group.

Proof. Let A,B ∈ ULn(C). We make the observation that

(AB)(AB)∗ = In

and hence AB is unitary. Since A−1 = A∗ the result follows by copying the last
step of the proof of Theorem 3.

By taking the intersection of the unitary group with the special linear group we
obtain the special unitary group.

Definition 19 (The special unitary group). The set

SUn(C) = {P ∈ GLn(C) | P ∗P = In, det(P) = 1}

is called the special unitary group.

Since SUn(C) was constructed by taking the intersection of two subgroups of
the general linear group it follows from [DF04, Ch.2.4, Prop.8] that SU2(C) is
a subgroup of the general linear group.

It is worth investing some time to establish some properties of SU2(C). Since
it is clear from the context that we are working with the complex field we shall
simply write SU2 in place of SU2(C) going forward. In fact, this group can be
represented in several different ways.

6.1 Matrix representation

We propose the following.

Proposition 2. The elements of SU2 are matrices P of the form

P =

[
a b

−b a

]
, with aa+ bb = 1 (12)

Proof. We shall present a proof that follows closely the argument used in [Art10].
Let

P =

[
a b
c d

]
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Since P ∈ SU2 the equations P ∗ = P−1 and det(P ) = 1 must hold.
Furthermore, we have that

P ∗ =

[
a c

b d

]
(13)

Recall from linear algebra that the inverse of P is given by the formula

P−1 =
1

ad− bc

[
d −b
−c a

]
(14)

Now, P is an element of SU2 and so it’s determinant must be equal to 1. But
detP = ad− bc and hence (14) yields

P−1 =
1

ad− bc

[
d −b
−c a

]
=

[
d −b
−c a

]
(15)

But the matrices (13) and (15) have to be equal and therefore c = −b and d = a.
This proves the proposition.

6.2 Unit sphere representation

When we later on describe the properties of the special orthogonal group SO3 we
will make use of the unit sphere representation of SU2. Since SU2 has complex
entries we can put a = x0 + ix1 and b = x2 + ix3 in (12). We have that

P =

[
x0 + ix1 x2 + ix3
−x2 + ix3 x0 − ix1

]
(16)

but then
detP = x20 + x21 + x22 + x23

which we recognize as the S3-sphere embedded into R4. This alternative rep-
resentation of the special unitary group as points on the S3-sphere is clearly a
bijective map. Hence the group SU2 is isomorphic to the unit sphere S3 and
the north pole p = (1, 0, 0, 0) is mapped to I2 ∈ SU2

We require a few results from linear algebra before we develop the theory any
further. The first result establishes a strong classification which holds for all
unitary matrices.

Theorem 7. Suppose λ is an eigenvalue of a unitary matrix U , then

|λ| = 1

which denotes the modulus of the eigenvalue.

Proof. Suppose λ is an eigenvalue of the unitary matrix U with associated eigen-
vector v ̸= 0. Consistent with traditional notation we shall denote by ⟨, ., ⟩ the
inner product. Then by properties of inner product spaces we have that

⟨v, v⟩ = ⟨v, UU∗v⟩ = ⟨Uv,Uv⟩
⟨Uv,Uv⟩ = ⟨λv, λv⟩
⟨λv, λv⟩ = λ⟨v, λv⟩ = λλ⟨v, v⟩

(17)
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By assumption v ̸= 0 and so
(1− λλ) = 0

which reduces to
λλ = |λ|2 = 1

Since |λ|2 ≥ 0 we can proceed by taking square roots. This completes the
proof.

This is a very powerful result since it puts restrictions on every unitary matrix
and its associated eigenvalues. We now apply Theorem 7 to prove the following
lemma.

Lemma 7. ([Art10, Lem.9.3.4]).
The eigenvalues of P in (16) are complex conjugate numbers, except for the
matrices ±I. The eigenvalues of P ∈ SU2 have modulus 1.

We derive a proof which is inspired by the techniques used in [Art10].

Proof. The characteristic polynomial of P is given by

det

[
(x0 + ix1)− λ x2 + ix3
−x2 + ix3 (x0 − ix1)− λ

]
which reduces to

λ2 − 2x0λ+ (x20 + x21 + x22 + x23) (18)

Recall that SU2 is isomorphic to S3-sphere and hence (x20 + x21 + x22 + x23) = 1.
Therefore we have from (18) that the characteristic polynomial reduces to

λ2 − 2x0λ+ 1 = 0

or equivalently

λ = x0 ±
√
x20 − 1 (19)

Since (x0, x1, x2, x3) is on the S3-sphere it must hold that −1 ≤ x0 ≤ 1 and the
result follows.
Since SU2 ⩽ U2 it follows from 7 that every matrix of SU2 has eigenvalues of
modulus 1.

Hence we are permitted to alternate between the matrix and vector representa-
tions of SU2 which turns out to be quite useful. Our next objective is to admit
a relationship between diagonal matrices and the complex matrices of SU2. To
achieve this we need the following theorem.

Theorem 8 (Diagonalizability of SU2). Every matrix of SU2 is diagonalizable.
That is, for every P ∈ SU2 there exists a Q ∈ SU2 and a diagonal matrix A
such that P = QAQ∗.
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Proof. From Lemma 7 we know that the eigenvalues of every element P ∈ SU2

are complex conjugate numbers except for the special matrices ±I. Furthermore
Lemma 7 states that every matrix P ∈ SU2 has complex conjugate eigenvalues
except for ±I. The eigenvalues admit distinct linearly independent eigenvectors.
Then it follows from [FIS14, Ch.5, Thm.5.9] that P is indeed diagonalizable.
Finally, the matrices ±I are diagonal and hence diagonalizable for every Q ∈
SU2.

The next theorem along with Theorem 10 is central to the theory that shall be
developed in the subsequent sections.

Theorem 9. For any matrix P ∈ SU2, tr(P ) is equal to the sum of the eigen-
values. Furthermore, if the degree one term of the characteristic polynomial of
the matrix P is zero, then tr(P ) = 0.

Proof. For every P ∈ SU2 we know from Theorem 8 that there exists a matrix
Q ∈ SU2 and a diagonal matrix A such that

P = Q∗
[
λ1 0
0 λ2

]
Q, where A =

[
λ1 0
0 λ2

]
According to Lemma 7, λ1 = λ2. Then by Lemma 3 we have that

tr(P ) = tr(Q∗AQ) = tr(A) = λ1 + λ2

Furthermore, note that the characteristic polynomial of P is a degree-two poly-
nomial in C with roots λ1 and λ2. Hence we obtain

det(P − λI) = (λ− λ1)(λ− λ2)

= λ2 − (λ1 + λ2)λ+ λ1λ2

= λ2 − (tr(P ))λ+ det(A)

(20)

If the degree 1 term is zero then tr(P ) = 0. In particular, the trace of P is the
sum of the eigenvalues.

Note that the diagonal matrix A can be obtained by conjugation of any matrix
P ∈ SU2. This is obtained by

QPQ∗ = A

where Q and Q∗ in Theorem 9 have been interchanged.
We make some general observations regarding the matrix A before we proceed.
Now recall from Theorem 9 that

A =

[
λ1 0
0 λ2

]
, λ1λ2 = 1
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Then by Lemma 7, λ1 = λ2 and the notation in (16) we have that A is of the
form

T =

{[
x0 + ix1 0

0 x0 − ix1

] ∣∣∣∣ x20 + x21 = 1, x2 = x3 = 0

}
(21)

Recalling the definition we recognize the subset T as the particular longitude
described geometrically by unit circles intersecting the north and south pole of
S3.

Theorem 10. The subset T is a subgroup of SU2.

Proof. If we put x0 = 1 and x1 = 0 in (21) we obtain the identity matrix. Hence
I ∈ T . Futhermore, let A,B ∈ T , then

A =

[
x0 + ix1 0

0 x0 − ix1

]
, and B =

[
x2 + ix3 0

0 x2 − ix3

]
Now the condition invoked on T yields x20 +x21 = 1 and x22 +x23 = 1. We obtain

AB =

[
x0 + ix1 0

0 x0 − ix1

] [
x2 + ix3 0

0 x2 − ix3

]
=

[
(x0 + ix1)(x2 + ix3) 0

0 (x0 − ix1)(x2 − ix3)

] (22)

Taking the determinant of (22) yields

(x20 + x21)(x
2
2 + x23) = 1

So AB ∈ T and since the product AB is symmetric, it is commutative (in
particular, diagonal matrices commute). Therefore BA ∈ T and T is closed
under multiplication.
Let A be the matrix we defined above. It follows by applying the inverse formula
(14) that

A−1 =

[
x0 − ix1 0

0 x0 + ix1

]
Clearly A−1 ∈ T and if we replace B by A−1 in (22) the theorem follows.

6.3 The conjugacy classes of SU2

It will become apparent in the next section that the conjugacy classes of SU2 can
be used to identify the matrices of the special orthogonal group SO3. Henceforth
some time will be devoted to classify these latitudes. The next theorem contains
some of the contents of [Art10, Prop.9.3.5]. However we shall derive the center
of SU2 and the conjugacy classes of the matrices {±I} later.

Proposition 3. [Art10, Prop.9.3.5] The latitudes in SU2 are conjugacy classes.
In particular, for a given −1 < c < 1 the latitude defined by x0 = c are the
matrices P of SU2 with tr(P ) = 2c.
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Proof. By Lemma 7 we have that the characteristic polynomial of a matrix
P ∈ SU2 is given by

λ2 − 2x0λ+ 1 = 0 (23)

Furthermore, Theorem 9 tells us that the trace of P is the sum of the eigen-
values. In particular, for a given x0 = c, tr(P ) = 2x0 = 2c. We know that
the eigenvalues are complex conjugate numbers with modulus 1 and that the
trace is completely determined by the choice of latitude. By altering the value
of −1 < c < 1 we obtain a different pair of complex conjugate eigenvalues and,
consequently, a matrix that lies on a different latitude.
Hence any given latitude x0 = c contains the matrices P ∈ SU2 such that
tr(P ) = λ+ λ = 2c where λ and λ are the eigenvalues of P .
Furthermore, every matrix P ∈ SU2 is contained in exactly one such latitude.
To conclude the proof we need to verify that every latitude x0 = c contains
every P ∈ SU2 with tr(P ) = 2c. But this follows directly from Theorem 9 and
the following observation.
Recall that any matrix P ∈ SU2 with eigenvalues λ and λ can be written in the
form P = QAQ∗ where

A =

[
λ 0

0 λ

]
Since P is obtained via conjugation in this way, the matrices P and A lie in the
same conjugacy class of SU2, determined by x0 = c. In particular, the matrix
P was arbitrary, and hence every P ∈ SU2 with eigenvalues λ and λ can be
obtained by conjugating A with some Q ∈ SU2. This proves the theorem.

Remark 5. For the matrices {±I} the element A in Proposition 3 corresponds
to I and −I, respectively. Hence the north and south pole of S3, determined by
c = 1 and c = −1, contain only the matrices {I} and {−I}.
Remark 6. Given the form (5) we observe that the latitudes of SU2 correspond
to 2-dimensional spheres in R4.

Conjugation of matrices correspond to orbits which we denote by

SU2 · P = {QPQ−1 | Q ∈ SU2}

The orbits of SU2 are determined by its conjugacy classes. In particular, the
orbits of SU2 define a partition of the group where each subset of the partition
contains the matrices with the same trace. Since the orbits and conjugacy
classes are the same, conjugation defines a transitive group action operating on
the latitudes of SU2.

6.4 The equator

We recall that the equator of (16) is given by the set

E = {x0, x1, x2, x3 ∈ R4 | x21 + x22 + x23 = 1, x0 = 0} (24)
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We have established that every matrix of SU2 sits in a unique latitude on S3.
In particular, any point on the equator satisfies x0 = 0 and by inserting this
into (16) we obtain the matrix form of an element on the equator. Namely,

Q =

[
ix1 x2 + ix3

−x2 + ix3 −ix1

]
(25)

If we take the trace of Q we obtain

tr(Q) = ix1 + (−ix1) = 0 (26)

Hence a necessary condition for any matrix Q ∈ SU2 on the equator is that its
trace must be equal to zero. This result will turn out to be useful later when
we derive a representation of the special rotation group SO3. Before tending
to this we need the following proposition which contains some of the theory
presented in [Art10, Prop.9.3.8]. However we do not make use of the last part
of this proposition and given economy of space we will not include it.

Proposition 4. For a matrix P ∈ SU2 the following are equivalent.
(i) P is on the equator,
(ii) tr(P ) = 0,
(iii) The eigenvalues of P are i and −i.

Proof. We proved that (i) implies (ii) in the preceding section. For the reverse
implication note that if tr(P ) = 0 then the sum of the eigenvalues is zero by
Theorem 9. Let λ = a+ ib then by Lemma 7 it follows that

0 = a+ ib+ a− ib = 2Re(λ)

Hence the eigenvalues are purely imaginary and by (19) we have that x0 = 0.
Suppose that (iii) holds then the eigenvalues of P are ±i. Recall from Theorem
9 that the trace of P is the sum of the eigenvalues and hence tr(P ) = i+(−i) = 0
so (iii) implies (ii).
For (iii) let P ∈ SU2 and suppose that (ii) holds. Then again by Theorem 9
the characteristic polynomial is given by

λ2 + 1 (27)

which clearly has eigenvalues i and −i. So (ii) implies (iii).
Finally, suppose that (iii) holds, then the eigenvalues of P are ±i. Since P ∈
SU2 it is diagonalizable by Theorem 8. Hence we have that the characteristic
polynomial of P is a degree two polynomial. It follows that it is of the form

(λ+ i)(λ− i)

which clearly reduces to (27).

We end this section with the observation that the matrices contained in the
equator are completely determined by the conjugacy class x0 = 0.
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7 The rotation group SO3

Our goal in this section is to establish a connection between the elements of SU2

and the orthogonal matrices of SO3. Our strategy for achieving this goal will be
devoted to constructing a surjective homomorphism from SU2 to a morphism
(structure preserving map) on E to itself. As it turns out this map describes
the representation of elements in SU2 as real-valued orthogonal matrices with
determinant 1.
Now consider the conjugation action of a matrix on the equator 24 by a matrix
P ∈ SU2. As the theory of this section unfolds it will become apparent that
conjugation actually operates on the latitudes of S3 by rotating them.

7.1 The orthogonal representation

Let γ be the map
γ : SU2 −→ {f : E −→ E}

where
p 7→ γP

defined by
γP (U) = PUP ∗

with U ∈ E and f a morphism from the equator to itself.
We recall from section 6.4 that the equator of SU2 is S2, embedded into R4.
Note that if P ∈ E Proposition 4 tells us that tr(P ) = 0. In particular, every
matrix on the equator is skew-Hermitian and the map γ preserves this property.
This is the contents of the next lemma.

Lemma 8. Any matrix Q ∈ E is Skew-Hermitian. In particular, the matrix
QPQ∗ with P ∈ SU2 is skew-Hermitian.

Proof. if we take the conjugate transpose of (25) we obtain

Q∗ =

[
−ix1 −x2 − ix3

x2 − ix3 ix1

]
Henceforth Q∗ = −Q and we conclude that Q is skew-Hermitian.
Next we verify that (P ∗QP )∗ is skew-Hermitian. Since Q is skew-Hermitian we
have that

(P ∗QP )∗ = P ∗Q∗P = (P ∗(−Q)P ) = −(P ∗QP )

and hence (P ∗QP )∗ is also skew-hermitian.

Lemma 9. For any matrix P ∈ E it holds that

tr(QPQ∗) = 0
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Proof. Pick an element Q ∈ E. Then, by definition, tr(P ) = 0. Furthermore,
let P be any element in SU2 not necessarily on E. Then by Lemma 3 we obtain

tr(QPQ∗) = tr(Q∗QP ) = tr(P )

This completes the proof.

Lemma 10. The conjugation PUP ∗ preserves the determinant for every matrix
P ∈ SU2 and every U ∈ E.

Proof. Since we have that P ∈ SU2, det(U) = 1. By associativity and Theorem
1 we obtain

det(PUP ∗) = det(P ) det(U) det(P ∗) = 1

Before we prove one of the major results of this thesis we require the contents
of another theorem which states that the skew-Hermitian matrices of trace zero
form a real vector space. In fact, this vector space contains the three elements
that define the quaternion relations (8).

Theorem 11. The 2 × 2 skew-Hermitian matrices that have trace zero define
a vector space with dimension three over R.

Proof. Let P be the matrix with complex entries given by

P =

[
x0 + ix1 x4 + ix5
x2 + ix3 x6 + ix7

]
Now tr(P ) = 0 implies that x0 = −x6 and ix1 = −ix7. Inserting this into the
above expression for P yields

P =

[
x0 + ix1 x4 + ix5
x2 + ix3 −x0 − ix1

]
By conjugation we obtain

P ∗ =

[
x0 − ix1 x2 − ix3
x4 − ix5 −x0 + ix1

]
On the other hand, P is skew-Hermitian and hence

P ∗ =

[
x0 − ix1 x2 − ix3
x4 − ix5 −x0 + ix1

]
=

[
−x0 − ix1 −x4 − ix5
−x2 − ix3 x0 + ix1

]
= −P

For this equation to hold we must have that x0 = 0, x2 = −x4 and x3 = x5.
Putting all of this together we conclude that

P =

[
ix1 −x2 + ix3

x2 + ix3 −ix1

]
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from which it is clear that P ∈ E.
If we now let x1 = 1, x2 = 1 and x3 = 1 in P and recall the quaternion relations
(8) we obtain

S =

[
i −1 + i

1 + i −i

]
= i− j + k

Note that we have expressed the matrix S as a linear combination of the vectors
i, j and k. We conclude that S (and consequently, P ) are contained in the vector
space defined by the basis

B =

{[
i 0
0 −i

]
,

[
0 1
−1 0

]
,

[
0 i
i 0

]}
We established above that these matrices are R-linearly independent. Hence
the set of skew-Hermitian, trace-zero matrices span a vector space of dimension
3 over R.

Remark 7. These matrices are actually linearly independent over C . However,
we are attempting to construct a map whose image is R and hence this fact will
be of little use.

We denote by V′ the three-dimensional vector space of skew-Hermitian, trace-
zero matrices. It will become clear that the equator E is the unit sphere con-
tained in this space. Clearly, γ operates on the whole of the vector space V′

by the results of Lemma 8 and Lemma 9 and it maps matrices in V′ to other
matrices in V′.
Denote by γP (U) the image of the matrix U obtained by applying the map γ
by means of conjugation. We proved that V′ has dimension 3 above and there-
fore it is isomorphic to R3 (the basis elements in B are the unit vectors of R3).
Moreover, the map γ is a linear operator (we shall prove this shortly) from V′ to
itself. From all of these deliberations we conclude that the image γP (U) must
be a matrix of dimension 3 with entries in C.
Remark 8. It is possible to write down the matrix of γ explicitly which is a
more efficient way of verifying that it represents a rotation in R3. However, this
calculation is neither particularly enlightening or necessary for our cause and
therefore we will not give it.

The classifications that we have established concerning skew-Hermitian, trace-
zero matrices will now be applied when we state one of the major results of this
thesis. In Theorem 12 we apply the results above to prove the existence of a
surjective homomorphism between SU2 and the set of isomorphisms from the
vector space V′ to itself, denoted Isom(V′,V′).

Remark 9. The vector space V′ is not a group under multiplication. Hence we
have to be careful about how we construct the homomorphism γ. The necessary
adjustment is made in the following theorem.

Theorem 12. The map

γ : SU2 −→ GL3(V′)

is a surjective homomorphism with kernel {±I}.
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Proof. Let P ∈ SU2 and let U, V ∈ V′. Our goal is to prove that γ : SU2 −→
Isom(V′,V′) is a group homomorphism. We begin by verifying that γP is linear.
We obtain

γP (U + V ) = P (U + V )P ∗

= PUP ∗ + PV P ∗

= γP (U) + γP (V )

and
γP (c(U)) = P (c(U))P ∗ = cPUP ∗ = cγP (U)

for some constant c.
Next we need to check that γP is injective. Suppose that

PUP ∗ = PU ′P ∗

for some U,U∗ ∈ V′. Then we find that

P ∗PUP ∗ = P ∗PU ′P ∗

which yields
UP ∗P = U ′P ∗P

so U = U ′. Moreover, we know that γP acts transitively on the elements of V′.
Hence for every pair of matrices U, V ∈ V′ there exists a matrix P ∈ SU2 such
that PV P ∗ = U therefore γP is surjective and hence it is an isomorphism.
Now let P, P ′ ∈ SU2 then we have that

γP γP ′(U) = PP ′U(P ′)∗(P )∗
= (PP ′)U(PP ′)∗ = γPP ′U

(28)

This proves that γ is a group homomorphism.
For the second part of the theorem we apply a technique used in the proof
of [Art91, Ch.8, Lem 3.15] to verify that the kernel contains nothing but the
identity matrix and its negative counterpart.
Recall the kernel of a homomorphism, denoted ker(γ). For γ this is given by
the set

ker(γ) = {P ∈ SU2 | PUP ∗ = U, for all U ∈ V′}

This condition is equivalent to PU = UP . Hence the kernel consists of all
elements in SU2 that commute with every skew-Hermitian, trace zero matrix.
We established in Theorem 11 that these matrices are given by the basis

B =

{[
i 0
0 −i

]
,

[
0 1
−1 0

]
,

[
0 i
i 0

]}
Recalling the general form (12) of an element in SU2 we conjugate the basis
for V′ to determine the kernel of the homomorphism γ. Carrying out these
calculations establishes that the only possible entries for P are a = a and b = 0.
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Hence the matrices P ∈ SU2 that commute with every element of V′ are the
diagonal matrices

P =

{[
a 0
0 a

]
, a ∈ R

}
Since we must have a = a, the only options for the kernel are the matrices {±I}
and given that the kernel is a subgroup of SU2, we must have that ±I ∈ ker(γ).
In particular, ker(γ) = {±I} for these matrices were the only possibilities.
Hence the theorem has been proved.

Remark 10. The matrices of the kernel are precisely those matrices of SU2 that
commute with every other matrix of SU2. This set is the center of SU2 defined
by

Z(SU2) = {P ∈ SU2 | PQ = QP, |for all Q ∈ SU2}

Hence the kernel of the homomorphism γ is the center of SU2.

Since we have obtained the kernel of the homomorphism we may write down its
cosets, explicity. Recall that the action of taking cosets partitions the elements
of a group into disjoint subsets. In particular, since ker(γ) = {±I} the associ-
ated cosets are given by {±P}. Hence the map γ associates every matrix in V′

with a pair of matrices ±P in SU2.
These pairs of matrices {±P} are called antipodal points of the equator. For any
given conjugacy class (x0 = c) they can be identified by placing a line segment
at the center of the latitude (a sphere) and identifying the points of intersection
with its boundary. In topology, this construction is called a double covering.
Before we close out this section with two final theorems let us summarize what
we have learned so far.
We have a map γ : SU2 −→ Isom(V′,V′) which operates on the matrices of V′

by conjugation. We proved that this map is a surjective homomorphism and
that its kernel is given by Z(SU2).
Now recall the contents of Theorem 11 which tells us that V′ is a real-valued
vector space of dimension 3. Since the equator is the unit sphere in this space
γ preserves vectors of length 1 by Lemma 10. Furthermore, Theorem 12 estab-
lished that the map

γP : V′ −→ V′

U −→ PUP ∗ (29)

is linear. In particular, the vector space V′ is isomorphic to R3 and hence
SU2 −→ GL3(R) is a group homomorphism by Theorem 12. We are now ready
to prove that the image of this map is contained in the special orthogonal group.

Theorem 13. [Art91, Ch.8, Lem.3.13] For P ∈ SU2 and U ∈ V′ the image
γP (U) ∈ SO3. Therefore P 7→ γP (U) defines a homomorphism SU2 −→ SO3.

Proof. We will adopt the techniques used [Art91]. In addition, some steps of
the proof for [Art10, Lem.9.4.4] have also been included.
Our strategy will be to invoke the properties of the ordinary dot product on
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the vector space R3 (since V′ is isomorphic to R3, this is perfectly viable).
Note that any element V ∈ V′ can be written as a linear combination of the
basis vectors i, j and k. That is if V = (v1, v2, v3) ∈ V′ then it has the form
V = iv1 + jv2 + kv3. Now let U = u1i+u2j+u3k be some other element in V′.
We define ⟨U, V ⟩ as the bilinear form (linear in each component)

⟨U, V ⟩ = u1v1 + u2v2 + u3v3 (30)

We compute UV in R3 and together with the quaternion relations (8) we obtain

UV = (iu1 + ju2 + ku3)(iv1 + jv2 + kv3)

= −(u1v1 + u2v2 + u3v3)I + U × V
(31)

The notation U × V defines the cross product for vectors in R3 which is given
by the formula

U × V = (u2v3 − u3v2)i+ (u3v1 − u1v3)j + (u1v2 − u2v1)k

But then from Theorem 11 we have that i, j and k all have trace zero (they are
elements of V′) and so

tr(U × V ) = 0

Now since tr(I) = 2 we have from (31) that

⟨U, V ⟩ = −1

2
tr(UV ) = −2(u1v1 + u2v2 + u3v3) (32)

Hence given any matrices Q,U ∈ V′ we find from (32) that

⟨PQP ∗, PUP ∗⟩ = −1

2
tr(PQP ∗PUP ∗)

= −1

2
tr(PQUP ∗) = −1

2
tr(QU) = ⟨Q,U⟩

Therefore the dot product in R3 is invariant under the linear transformation γP
and hence γp(U) ∈ O3.
To complete the proof we need to verify that the image γP (U) has determinant
1. We know that every orthogonal matrix has determinant −1 or 1 by Lemma
4. So all we have to do is rule out the value −1.
Given that SU2 is a sphere a theorem from topology asserts that it is path-
connected (any curve lying entirely on S3 can be continuously contracted into a
point contained in S3). Moreover, the determinant is a continuous function and
hence can only attain one of the values ±1. Clearly γp(I2) = I3 ∈ O3 which has
determinant 1 and we conclude that every matrix P ∈ O3 has determinant 1.
It follows that γp(U) ∈ SO3.

Our final theorem of this section verifies that the image of the map γ contains
nothing more than the matrices of SO3.
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Theorem 14. [Art91, Ch.8, Lem.3.16]
The image γP (U) of the homomorphism γ is equal to SO3.

Proof. We shall follow the proof of [Art91].
Recall the subgroup T of diagonal matrices that we defined in Theorem 10. Let
P ∈ T with diagonal entries λ and λ and let U ∈ V′ (z = x3+ix4). Then PUP

∗

is given by [
a 0
0 a

] [
ix2 z
−z −ix2

] [
a 0
0 a

]
=

[
ix2 a2z
−a2z −ix2

] (33)

We note that conjugation of elements of T fixes the first coordinate in the first
vector. Moreover, P was assumed to be an element of T and hence |a| = 1. But
then we can make the substitution a = eiθ which yields a2 = e2iθ. The matrix
γP (U) then becomes [

ix2 (e2iθ)z
−(e2iθ)z −ix2

]
which we identify as a rotation of the z-plane by an angle of 2θ. The set
consisting of these rotations about the origin is a subgroup of SU2. This is
obvious by the form of the matrix γp(U) in (33).
In fact, these rotations are about the point (1, 0, 0) which is the unit sphere in
V′. This is realized by expressing γP (U) as an element of SO3. We apply the
basis B of V′ to the matrix γP (U) and obtain

γP (U) =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ


From this depiction it is clear that γP (U) ∈ SO3 contains the subgroup of all
these rotations. We shall denote this subgroup of rotations about (1, 0, 0) by K.
Observe that the point (1, 0, 0) in the basis for V′ is given by matrix

i = E =

[
i 0
0 −i

]
Since this matrix represents the equator in V′ by Proposition 4 it corresponds
to a conjugacy class. We know that SU2 acts on it transitively. In particular,
there exists a matrix Q ∈ SU2 such that QEQ∗ = U since U ∈ V′.
Note that the subgroup γp(U)Kγp(U)∗ is in the image of the map γ by Lemma
8. Furthermore, every element of SO3 is a rotation and hence the conjugation
action contains every element in the image γP (U). So there is nothing else in
the image of γ and hence Im(γ) = SO3.

We have successfully constructed a map that describes the complex matrices of
SU2 as rotations about the point (1, 0, 0) in R3. In defining the vector space

29



V′ we have inadvertently shown (Theorem 11) that the group SU2 is contained
inside the quaternions (Section 4).
By explicitly writing down the coordinate representation of i, j and k in R3 we
see that the basis vectors of V′ are the set of unit vectors contained in three-
dimensional space.

8 The one parameter groups

8.1 Differentiable homomorphisms

We now turn to a special class of linear groups called the one-paramter groups.
These consist of differentiable homomorphisms defined to be matrix valued func-
tions. For A ∈Mn(C) consider the series

etA = I +
tA

1!
+
t2A2

2!
+
t3A3

3!
+ ... (34)

which converges to a matrix in Mn(C).
Remark 11. One should verify that the series (34) converges. This is proved in
introductory courses on differential equations. We will not pursue the theory of
differential equations any further. The only thing we need to recall is that the
derivative of a power series can be obtained by means of differentiating term by
term. The details are presented in [AB19, Ch.2.1, Lem.3].

As it turns out the series (34) can be used to define a special type of of linear
groups called the one-parameter groups. Before we derive some general facts
regarding these groups we do have to define them properly.

Definition 20. A one-parameter group is a differentiable homomorphism de-
fined for one of the following two maps

R −→ GLn(R)
R −→ GLn(C)

(35)

Since (34) is a convergent power series we obtain its derivative by differentiating
term-wise hence obtaining the series

0 +A+A2t+
t2A3

2!
+ ... = AetA (36)

Theorem 15. ([Art10, Thm.9.5.2]).
(a) Let A be any real or complex matrix and consider GLn(F) where F is R or
C. Then the map ψ : R+ → GLn(F) defined by ψ(t) = etA is a homomorphism.

(b) Let ψ : R+ → GLn(F) be a differentiable map that is a homomorphism
and denote by A its derivatives ψ′(0) centered at the origin. Then ψ(t) = etA

for all t.
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Proof. We present a proof which is similar to that of [Art10].
When s, r ∈ R it is certainly true that

e(r+s)A = erAesA

which proves that ψ(t) is a homomorphism.
Let ψ : R+ −→ GLn(F) be a differentiable homomorphism. Then we have that

ψ(∆t+ t) = ψ(∆t)ψ(t)

and if we let ∆t→ 0 we obtain ψ(t) = ψ(0)ψ(t). From this we have that

ψ(∆t+ t)− ψ(t)

∆t
=
ψ(∆t)ψ(t)− ψ(0)ψ(t)

∆t
=
ψ(∆t)− ψ(0)

∆t
ψ(t)

Given the definition this last limit is equal to A and hence the above equation
reduces to

ψ′(t) = ψ′(0)ψ(t) = Aψ(t)

if we let ∆t→ 0. Therefore ψ(t) solves the equation ψ′ = Aψ. In particular, the
function etA solves the differential equation and both of these solutions equal
the identity matrix I for t = 0. A result obtained by putting t = 0 in (34).
To derive that ψ(t) = etA for all values of t we have to invoke a result from
the theory of differential equations. We will not pursue this any further since
we wish to maintain an algebraic standpoint. Nevertheless, the details can be
found in [AB19, Ch.1, Thm.1].
By this theorem we know that a first-order, linear differential equation with an
initial condition has a unique solution. But then etA is the only solution to the
equation ψ′ = Aψ.

Example 2. Recall the bijective map Ψ : S1 −→ SO2 that was constructed in
Lemma 6. Using the matrix (10) we shall verify that SO2 is a one-parameter
subgroup of GL2(R). We define the map ψ in the following way;

ψ(θ) = eθA, θ ∈ R

Our goal is to construct a differentiable homomorphism ψ : R −→ SO2. We
assign

eθA =

[
cos θ − sin θ
sin θ cos θ

]
∈ GL2(R)

and recall the derivative of a matrix M which is obtained by differentiating the
elements of M term by term. Applying this to etA yields

d

dθ
[eθA] = AeθA =

[
− sin θ − cos θ
cos θ − sin θ

]
By the notation of Theorem 15, we have that A = ψ′(0) and so

A =
d

dθ

[
eθA(0)

]
=

[
0 −1
1 0

]
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Furthermore, note that[
0 −1
1 0

] [
cos θ − sin θ
sin θ cos θ

]
=

[
− sin θ − cos θ
cos θ − sin θ

]
Hence the matrix eθA is as solution of the differential equation ψ′(θ) = Aψ(θ).
By Theorem 15 it is the only solution.
It is immediately clear that the two matrices θA, ρA ∈ SO2 commute and we
verify directly that our assigned map defines a homomorphism. Being familiar
with the rules of matrix multiplication we find that

ψ(θ)ψ(ρ) =

[
cos θ − sin θ
sin θ cos θ

] [
cos ρ − sin ρ
sin ρ cos ρ

]
=

[
cos θ cos ρ− sin θ sin ρ −(cos θ sin ρ+ sin θ cos ρ)
sin θ cos ρ+ cos θ sin ρ cos θ cos ρ− sin θ sin ρ

]
But this matrix can be rewritten using the addition and subtraction formulas
for the sine and cosine functions. This reduces the matrix to the form

ψ(θ)ψ(ρ) =

[
cos(θ + ρ) − sin(θ + ρ)
sin(θ + ρ) cos(θ + ρ)

]
Hence ψ(θ)ψ(ρ) = ψ(θ + ρ) and so the image of the map

ψ : R −→ SO2

R ∋ θ 7→ eθA ∈ SO2

is a one-parameter subgroup of GL2(R)

We proved in Theorem 15 that the one-parameter groups contained in GLn(F)
are matrix valued functions of the form ψ(t) = etA.
In fact, every one-parameter group contained in the general linear group is a
matrix valued functions of the form etA. To put it differently, it is the unique
solution to the differential equation ψ(t) = etA.
We end this thesis by classifying the one-parameter subgroups of On and Un.
The proof of these two results are identical and hence we only derive the one
for the orthogonal case. Artin presents the classification of the Un and On

one-parameter groups in a single proposition [Art10, Prop.9.5.8]. Although the
material we present is similar we shall state it as two separate propositions.

Proposition 5. Let ψ(s) = esA denote the one-parameter groups of GLn(R).
Then ψ(s) ∈ On if and only if A is skew-symmetric. .

Proof. The proof is inspired by [Art10, Prop.9.5.8] in the case that A is skew-
symmetric.
Suppose that ψ(s) ∈ On. Then we have that (esA)t = (esA)−1 from which

it follows that (esA
t

) = (e−sA) The implication follows by differentiating and
putting s = 0.
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Conversely, if A is skew-symmetric then At = −A and sAt = −sA which implies
that

(esA)t = (esA)−1

so esA ∈ On. Hence the proof is complete.

Proposition 6. For the one-parameter groups of GLn(C), ψ(t) ∈ Un if A is
skew-Hermitian.

Proof. By replacing At by A∗ in the proof above the proposition follows.
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