
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Integer Factorization

av

Rasmus Persson

2024 - No K6

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Integer Factorization

Rasmus Persson

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Gregory Arone

2024





Abstract: Integer factorization is crucial for understanding the
security of the most widely known cryptosystems. These systems
rely on the difficulty of factoring large integers. Therefore, it is im-
portant to understand the current methods for factoring integers,
in order to know if the currently used encryption methods are still
secure. In the first part of this thesis we present the idea of public
key cryptography. In the second part we review some necessary the-
oretical background from abstract algebra. In the third and main
part we present a selection of four methods for factoring integers.
The simplest one is Pollard’s p − 1 algorithm. It works for some
numbers, and highlights that for an integer N = pq to be difficult
to factor, we need to ensure that p− 1 or q− 1 does not factor into
small primes. The other algorithms are based on trying to find a
pair of numbers a and b so that N divides a2 − b2, but does not
divide a − b or a + b. If we find such a pair, we can factor N by
finding gcd(a − b,N). The most sophisticated algorithm that we
discuss is the number field sieve. It is currently the fastest method
for factoring integers larger than 2450. The details of the number
field sieve are very complicated, and we only outline the main ideas
behind this algorithm.

Contents

1. Introduction 5
2. Problem Formulation 6
3. Motivation - Applications to Cryptography 6
3.1. Private- and Public-Key cryptosystems 6
3.2. Finding Large Primes 7
3.3. RSA 7
3.4. The reasons why it is easy for Bob to solve xe ≡ c mod N 8
3.5. Factoring N = pq 8
4. Theoretical Background 8
4.1. The Euclidean Algorithm 8
4.2. The Chinese Remainder Theorem 9
4.3. Modular Inverse and the Fermat-Euler Theorem 11
4.4. Number of roots to a quadratic residue 14
4.5. Rings and Ideals 15
5. Factorization Methods 21
5.1. Pollard’s p− 1 Factorization Algorithm 21
5.2. Factorization via Difference of Squares 22
5.3. Quadratic Sieve and Smooth Numbers 24
5.4. The Number Field Sieve 27
6. Discussion 30
6.1. Comparison of Algorithms 30
6.2. Conclusions 31
Acknowledgments 31
References 31

1. Introduction

The internet is used by billions of people every day to communicate and send
information to each other. The information is sent all around the world through



6

cables that are owned by companies and states. This means that everyone with
access to the cable can see what information is being sent through them. However,
there is a need to communicate and send information without anyone being able to
read and tamper with the information. Some examples include bank transactions
or state and business secrets. However, there are currently no good alternatives
to the cables that run through all of the major countries of the world. They are
either under constant surveillance, or they are controlled by states that do not have
friendly relations with each other.

A part of the solution to this problem is to use cryptography to encrypt the
messages and information to prevent any third parties from understanding the
contents of the communication. However, even with this technology, there are often
security and reliability issues that need to be considered when using cryptography
to protect confidential communications. One of the most widely used and well-
known cryptosystems is the RSA public-key cryptosystem, which is named after its
public inventors. RSA relies on the fact that factoring large integers is much more
time-consuming than finding large primes and performing arithmetic modulo for
a large integer. However, computers are becoming faster and processing power is
getting cheaper to rent or otherwise acquire. Therefore we still need to be aware
of the methods of integer factorization for large numbers. We also need to know in
what situations they are most efficient and useful. Then we can make sure that we
still can rely on our current cryptosystems. The mathematics behind factoring large
numbers relies for some methods on clever insights in the properties of the factors,
like in Pollard’s p − 1 method (5.1). Surprisingly, some of the most powerful and
useful methods for factoring large numbers rely on basic mathematical identities.
However, those methods also need to be supplemented by methods for finding
numbers with certain relationships like the quadratic (5.3) and number field sieve
(5.4).

The thesis is outlined as follows. The first section is this introduction. The
second section states the problem formulation. Afterward comes the motivation
section. We will there briefly present the RSA public-key cryptosystem. We do
this to give the necessary context to understand why we need to understand factor-
ization algorithms. After that, we describe the necessary background theory that
underlines the motivation as well as helps us to describe the factorization methods
for example some of the properties of rings and quotient rings. We then proceed by
describing four different factorization methods. This thesis is then concluded by a
discussion and comparison of the four methods with their respective strengths and
weaknesses.

2. Problem Formulation

We will present four different factorization methods for large integers. We will
also list their respective advantages and disadvantages to compare them and discuss
when they are appropriate to use in practice. To explain the factorization methods
satisfactorily we will also give some theory of the mathematical concepts that are
used in the different techniques.

3. Motivation - Applications to Cryptography

3.1. Private- and Public-Key cryptosystems. If two persons want to commu-
nicate without anyone else finding out what they are talking about; they can use
cryptography to keep their messages secret. Historically this was achieved with
private-key cryptography. This form of cryptography requires that the two per-
sons, Bob and Alice, first meet and exchange the private key before they can begin
to communicate. However, in the 1970s, public-key cryptography was born. In a



7

public-key system, Bob has two keys, KPublic and KPrivate. Bob can then give ev-
eryone access to the public key used for encryption. Alice can encrypt the messages
with the public key and send them to Bob, which Bob can easily decrypt with the
help of the private key [HPS16, p. xiii]. This method relies on the fact that the
mathematical problem the cryptosystem uses is very easy to solve for Bob because
Bob has an extra bit of information. Conversely, the problem is very hard to solve
without this extra bit of information. Thus an eavesdropper, Eve, will have a hard
time finding out the contents of the messages that Alice and Bob are sending each
other.

3.2. Finding Large Primes. If we want to use a public-key cryptosystem, like
for example the RSA cryptosystem, then Bob needs to find some very large prime
numbers. This is possible for Bob to do since there exist several efficient methods
that can give us a good indication of whether or not a number is prime or not. An
example of a really simple method for checking primality is using Fermat’s little
theorem 4.6. It says that if n > 2 is a prime then we will have:

2n−1 ≡ 1 mod n.

If n > 2 is a prime then it has to fulfill this condition. However, it is not a sufficient
condition to determine primality. But in practice, this test can determine primality
with a very high probability. There of course exist more sophisticated methods for
primality testings. We also note that we can calculate:

an−1 mod n

in 2 log2 n− 1 steps by squaring a mod n repeatedly and using the binary expan-
sion of n − 1. This is sometimes called the fast powering algorithm [HPS16, p.
24].

3.3. RSA. One public-key cryptosystem is the RSA cryptosystem. It is the first
invented public-key cryptosystem and also the most widely known. It is named
after its public inventors: Ron Rivest, Adi Shamir, and Leonard Adleman. They
described the cryptosystem in 1977 but the mathematician Clifford Cocks had
developed an equivalent system in secret within the British intelligence unit GCHQ
already in 1973.

In the RSA public key cryptosystem, Bob will have a secret key that is the primes
p and q. His public key will be the numbers N and e. Bob can give his public key
to anyone he wants to be able to receive encrypted messages from. The public key
consists of the N = pq and the encryption exponent e which is an integer that is
relatively prime to (p − 1)(q − 1). Let us say that Alice wants to send a message
to Bob. She will take her plain text, or any sort of message, and convert it to an
integer m between 1 and N . Then she encrypts it by calculating:

c ≡ xe mod N.

The integer c is called a ciphertext, which is what she will send to Bob. Bob can
then just solve the congruence xe ≡ c mod N for x and will then have recovered
Alice’s message m.

The RSA outlies as follows:

• Bob will take two large primes p and q, which will be known only to him.
• He then calculates N = pq and creates an encryption exponent e with
gcd(e, (p− 1)(q − 1)) = 1. Bob has now created his public key (N, e) that
he gives to everyone, both Alice and Eve will know it.

• Alice can now use Bob’s public key to encrypt her message x by calculating
xe mod N . We call the integer c ≡ xe mod N the ciphertext. Alice then
sends the ciphertext c to Bob.



8

• Bob can now decrypt the ciphertext by calculating d with

ed ≡ 1 mod (p− 1)(q − 1).

• He can then calculate:

x′ ≡ cd mod N.

He will then have recovered the unencrypted message x since x′ = x.
• To summarize, it is very easy for one person who has a bit of extra infor-
mation to solve the problem xe ≡ c mod N for x but hard for everyone
else, like Eve. This means that we can use this dichotomy to send someone
messages only they can read. We will show that this is truly the case later
with proposition 4.9.

3.4. The reasons why it is easy for Bob to solve xe ≡ c mod N . We have
seen that Bob just needs to find the integer d such that de ≡ 1 mod (p− 1)(q− 1).
This is something we will show how to do in proposition 4.8. The reason why it is
enough for Bob to find d is described in proposition 4.9, which says that xed = x
mod pq for all x.

3.5. Factoring N = pq. We know that it is easy for Bob, who knows the factoring
of N = pq, to solve the congruence xe ≡ c mod N . But why can’t Eve just factor
N and solve it easily as well? If Eve tries to factor N by trying to divide it with ev-
ery number starting from 2 then Eve will have to divide N a total of O(

√
N) times.

Eve can of course divide by only primes instead and will then have to divide ap-

proximately O
( √

N
log(

√
N)

)
times, as per the famous prime-counting approximation.

This is clearly way slower for large N than performing the Euclidean algorithm for
finding the modular inverse which will take a maximum of 2 log2((p− 1)(q− 1))+2
times to perform, as described by Hoffstein et al. ([HPS16, p. 13]). We will now
continue this thesis by presenting and studying some algorithms that might bridge
this gap and make factoring N significantly faster than the naive ways. To do that
we will now first present the necessary theoretical background that the factorization
methods rely on.

4. Theoretical Background

In this section, we will present some of the key theorems, propositions, and
definitions that are used in the factorization algorithms.

4.1. The Euclidean Algorithm. We first begin by describing the Euclidean al-
gorithm. This is because it is one of the key reasons why it is easier for Bob to solve
xe ≡ c mod N as previously described. We also need the Euclidean algorithm to
help us show Bézout’s identity later.

Theorem 4.1 (The Euclidean Algorithm [HPS16, p. 13]). The Euclidean algorithm
calculates the greatest common divisor (gcd) of two integers a and b with a ≥ b. It
will do this in a finite number of steps. The algorithm has the following steps:

(1) Let r0 = a and r1 = b.
(2) Begin with letting i = 1 and calculate:

ri−1 = ri · qi + ri+1,

with 0 ≤ ri+1 < ri. This is of course the same as dividing ri−1 by ri and
calculating the quotient and remainder. Here qi is known as the quotient
and ri+1 the remainder.

(3) If ri+1 = 0 then gcd(a, b) = ri.
(4) Otherwise we will increment i by 1 and repeat the step of calculating the

quotient and remainder.



9

The division in step 2 is repeated at most:

2 log2(b) + 2

times, according to Hoffstein.

4.2. The Chinese Remainder Theorem. The Chinese remainder theorem is
needed for us to show that the number d exists that Bob uses to decipher messages,
as we mentioned in the motivation section. However, before that, we show Bézout’s
identity as that will make the task of showing the Chinese remainder theorem
significantly easier.

Theorem 4.2 (Bézout’s identity). If we have integers a and b with a ≥ b and let
c = gcd(a, b) then there exists integers x and u such that:

ax+ by = c

.

Proof. Since we assumed that there exists a greatest common divisor c we must
according to the Euclidean algorithm (4.1) have been able to do the following
calculations where a = r0 and b = r1:

r0 = r1q1 + r2

r1 = r2q2 + r3

...

ri−4 = ri−3qi−3 + ri−2

ri−3 = ri−2qi−2 + ri−1

ri−2 = ri−1qi−1 + ri

ri−1 = riqi + ri+1

where ri+1 = 0 and ri = c. We can then perform these steps backward and
substitute all ri−a until we get back to our original integers a = r0 and b = r1 while
keeping track of the remainders and get:

ri = ri−2 + (−qi−1)ri−1

= ri−2 + (−qi−1)(ri−3 − ri−2qi−2)

= ri−2 + (qi−1qi−2)ri−2 + (−qi−1)ri−3

= (ri−4 − qi−3ri−3) + (qi−1qi−2)(ri−4 − qi−3ri−3) + (−qi−1)ri−3

= ri−4 − qi−3ri−3 + qi−1qi−2ri−4 − qi−1qi−2qi−3ri−3 − qi−1ri−3

= (1 + qi−1qi−2)ri−4 + (−qi−3 − qi−1qi−2qi−3 − qi−1)ri−3

= ...

= (qi−1qi−2 + ...)r0 + (−qi−3 − qi−1qi−2qi−3 − qi−1 − ...)r1.

With that, we have found our x and y and thereby the proof is complete. □

We are now ready to describe the Chinese remainder theorem.

Theorem 4.3 (Chinese Remainder Theorem [HPS16, p. 83]). If we have multiple
linear congruences:

x ≡ ai mod mi

where m1,m2, ...mk are integers and mi is pairwise relatively prime with all mj

where i ̸= j. Meaning:

gcd(mi,mj) = 1 where i ̸= j.



10

Also let a1, a2, ...ak be integers. Then all the linear congruences will have a solution
x = c and if it has another solution x = c′ then:

c ≡ c′ mod

k∏
i=1

mi.

Proof. For a system with only one congruence, we can select a1 as a solution.
Systems with more than one congruence require a bit to solve. We will begin by
looking at systems with two congruences. We know that Diophantine equations on
the form:

ax+ by = c

have a solution if the greatest common divisor of a and b divides c (4.2). This
means that we are able to find two integers n1, n2 such that:

n1m1 + n2m2 = 1

because we know from our assumptions that m1 and m2 are coprime. With this,
we can create solutions to a system with two linear congruences:

x ≡ a1 mod m1

x ≡ a2 mod m2

A solution is given by:

x = a1n2m2 + a2n1m1

since

x = a1n2m2 + a2n1m1

we now use the fact that n1m1 + n2m2 = 1 and get:

= a1(1− n1m1) + a2n1m1

= a1 − a1n1m1 + a2n1m1

= a1 + (a2 − a1)n1m1.

Here we clearly see that x− a1 is divisible by m1 and that we can repeat the steps
but with a2 instead of a1 to show that it is a solution to the second congruence.
Now let our particular solution be noted by c and assume that there exists another
solution c′. We have that:

m1 | c′ − c

m2 | c′ − c

since m1 and m2 are coprime we have that

m1m2 | c′ − c

thereby we have

c ≡ c′ mod m1m2.

This means that a system of k systems can be reduced to solve one less congruence
because any pair of them will always have a solution. Furthermore, since all mi are
coprime, it is also coprime to mj ·mk where i ̸= j, k. Therefore by iteration, we
will get the solution to the whole system and also get:

c ≡ c′ mod

k∏
i=1

mi..

Thereby have we proven the Chinese remainder theorem. □



11

4.3. Modular Inverse and the Fermat-Euler Theorem.

Definition 4.1 (Euler’s Totient Function [HPS16, p. 22]). The function φ(n)
counts the number of positive integers that are relatively prime to n and less than
the integer n. This function is known as Euler’s totient function or sometimes
Euler’s phi function.

Theorem 4.4 (Multiplicativity of Euler’s Totient Function [, p.]). Euler’s totient
function is multiplicative with φ(pq) = φ(p)φ(q) if p and q are relatively prime.

Proof. We will only show the case when p and q are primes. Let Spq be the set of
positive integers that are less than pq. We have:

Spq = {1, 2, ..., pq − 1}.
The set of numbers that are not relatively prime to pq is the set of numbers:

Sp = {p, 2p, ..., (q − 1)p}
and

Sq = {q, 2q, ..., (p− 1)q}.
These sets do not overlap. Because if p and q are relatively prime they can not be
equal to each other. So we have p ̸= q. Therefore Sp ∩ Sq = ∅ . This means that:

φ(pq) = the number of elements in the set Spq − Sp − Sq

= pq − 1− (q − 1)− (p− 1)

= pq − q − p+ 1

= (p− 1)(q − 1)

With that, the proof is complete since φ(p) = p− 1 if p is a prime. □

Theorem 4.5 (Fermat-Euler Theorem [, p. ]). Let a and n be positive integers
with gcd(a, n) = 1 and let φ(n) be Euler’s totient function (4.1). Then:

aφ(n) ≡ 1 mod n.

Proof. LetRx = {x1, x2, ..., xφ(n)} be all integers where 1 ≤ xi < n and gcd(xi, n) =
1, meaning all positive integers that are coprime with n. Furthermore, let aRx =
{ax1, ax2, ..., axφ(n)} with 1 ≤ xi < n and gcd(xi, n) = 1. We have that gcd(a, n) =
1 and gcd(xi, n) = 1. This means that both a and xi are coprime with n and have
no common factors with n. If we multiply the integers they still will not have any
common factors with n so we have that gcd(axi, n) = 1. If we reduce aRx by
mod n to the least residue we would have that the elements of aRx mod n would
all be between 1 and less than n. Furthermore, all elements would be coprime to n
and the number of elements is exactly the same as Rx. We also know that all the
elements are unique since if we had, for i ̸= j that:

axi ≡ axj mod n

we arrive at a contradiction that

a(xi − xj) ≡ 0 mod n

which can not be true since a is coprime n and both xi and xj are less than n they
can not be a multiple of n. This implies that:

φ(n)∏
1

xi ≡
φ(n)∏
1

axi = aφ(n)

φ(n)∏
1

xi mod n

since the products are coprime to n we can divide both sides with it and get

1 ≡ aφ(n) mod n.



12

With that the proof is complete.
□

Theorem 4.6 (Fermat’s Little Theorem [HPS16, p. 30]). Let p be a prime and a
an integer with gcd(p, a) = 1. Then:

ap−1 ≡ 1 mod p

Proof. This is a special case of the Fermat-Euler theorem (4.5) since φ(p) = p− 1
if p is a prime. This is because all other integers are coprime to a prime. □

Theorem 4.7 (Euler’s Formula for pq [HPS16, p. 118]). Let n = pq with p and q
as two different primes and let a be an integer with:

gcd(a, n) = 1.

Then:
a(p−1)(q−1) ≡ 1 mod pq.

Proof. This also follows from the Fermat-Euler theorem (4.5) as φ(pq) = (p−1)(q−
1), like we showed in theorem 4.4. With that the proof is complete. □

Proposition 4.8 ([HPS16, p. 20]). For the integers a and m ≥ 1, there exists an
integer b such that:

ab ≡ 1 mod m

if and only if:
gcd(a,m) = 1.

Proof. We know from Bezout’s identity (4.2) that if gcd(a,m) = 1 then there exist
integers u and v such that:

au+mv = 1.

To find u and v we just have to perform the Euclidean algorithm in reverse. There-
fore au− 1 = −mv. Since −mv is obviously divisible by m then au− 1 must also
be divisible by m. By the definition of congruence, we now have that:

au ≡ 1 mod m.

We now let u = b, which completes the first direction of the proof.
Let us now assume that there exists a modular inverse b such that:

ab ≡ 1 mod m

. Then, by the definition of congruence, we have that:

ab− 1 = cm

for some integer c. gcd(a,m) must obviously divide both a and m and because:

ab− cm = 1

it must also divide the right-hand side of the equation. The right-hand side of the
equation is 1 in this case so the only possible gcd(a,m) is 1. We have now proved
the proposition.

□

Proposition 4.9 ([HPS16, p. 120]). If p and q are distinct primes and let e satisfy:

gcd(e, (p− 1)(q − 1)) = 1.

Proposition 4.8 says that e will have an inverse d so that:

de ≡ 1 mod (p− 1)(q − 1).

Then for any integer c the congruence:

xe ≡ c mod pq



13

has the solution:

x ≡ cd mod pq.

Proof. Since c ≡ xe mod pq, we are able to restate cd ≡ x mod pq as:

(xe)
d ≡ x mod pq ⇐⇒

xde ≡ x mod pq.

We can now let g = gcd(x, pq). There are four possible values for g. This is because
p and q are distinct primes so our values for g are:

1, p, q, pq.

We begin by studying the case where g = 1. Euler’s formula for pq 4.7 then tells
us that:

x(p−1)(q−1) ≡ 1 mod pq.

We also know that since:

de ≡ 1 mod (p− 1)(q − 1),

there must exist an integer k such that:

de = 1 + k(p− 1)(q − 1).

We now have:

xde ≡ x1+k(p−1)(q−1) mod pq

≡ x ·
(
x(p−1)(q−1)

)
mod pq

≡ x · 1 mod pq.

Thereby the proof for the case where g = 1 is complete. Now let us assume that
g = gcd(x, pq) = p. This means that:

x ≡ 0 mod p

and

x ̸≡ 0 mod q.

The Chinese remainder theorem 4.3 means that we can show that:

xed ≡ x mod pq

by showing that:

xed ≡ x mod p

and

xed ≡ x mod q.

Since:

x ≡ 0 mod p

we can quickly see that

xed ≡ x ≡ 0 mod p.

Since:

de ≡ 1 mod (p− 1)(q − 1)

the Chinese remainder theorem 4.3 implies that:

de ≡ 1 mod (q − 1).

We can now apply the same arguments as with g = 1, and there must exist an
integer k such that:

de = 1 + k(q − 1).



14

We now, thanks to Fermat’s little theorem 4.6, have:

xde ≡ x1+k(q−1) mod q

≡ x · x(q−1) mod q

≡ x · 1 mod q.

The case where g = q is shown the same way. Thereby we have shown this proposi-
tion for the case where g = p and g = q. The case where g = pq is straightforward
since if:

x ≡ 0 mod pq

we can quickly see that

xed ≡ x ≡ 0 mod pq.

Therefore the proof is complete. □

We can now clearly see that because of proposition 4.9, it will truly be very easy
for Bob solve the congruence since it will be straightforward for Bob to use Euler’s
algorithm and get the modular inverse d.

4.4. Number of roots to a quadratic residue.

Definition 4.2 (Quadratic residue [Kyl17, p. 1]). A number a is called a quadratic
residue mod p if it is a square of another number b mod p. If on the other hand,
a is not a square mod p then it is called a quadratic nonresidue.

Proposition 4.10 (Number of roots to a quadratic residue [Kyl17, p. 1]). If a
number a is a quadratic residue mod p and gcd(a, p) = 1. Then it will have two
roots if p is an odd prime. If p is even it will have one solution.

Proof. We begin by looking at the case where p is odd. If there exists a solution
to the quadratic residue x2 ≡ a mod p then an equivalent statement is that x2− a
has roots modulo p. If we assume that there exist a square root b to a in modulo
p then we have:

x2 − a ≡ (x+ b)(x− b) mod p.

Since p is a prime we know that the equation

(x+ b)(x− b) ≡ 0 mod p

is equivalent to

x+ b ≡ 0 mod p

or

x− b ≡ 0 mod p.

If p was not prime then we would not be able to split the equation like this. This
means that the only roots to:

x2 − a mod p

are

x ≡ ±b mod p.

We can also deduce that b ̸≡ −b mod p since if:

b ≡ −b mod p

then it would imply that

2b ≡ 0 mod p.



15

If p is an odd prime we obviously have that

2 ̸= p.

Therefore we have that

b ≡ 0 mod p.

But this leads to a contradiction since we assumed that

b2 ≡ a mod p.

However, if p is an even prime then we would have that

p = 2.

Then all b satisfy the congruence and the argument does not hold for that particular
case.

Let us now try to understand how many solutions there exist to the congruence
when p = 2. We have assumed that:

gcd(a, p) = 1.

This implies that:

a ̸= 0

for every p and

a ̸= 2

when p = 2. It also implies that x2 is not divisible by 2 since if it were then a
would have to equal 0. Then a must be an odd number and we know that an odd
number subtracted by another odd number is even. In the least residue system, we
only use one representative for each residue class modulo n. Therefore 1 is the only
odd number that is an eligible solution. Therefore the solution to the congruence

x2 ≡ a mod 2,

is

x2 ≡ a ≡ 1 mod 2

which is to say that

x ≡ 1.

We have thereby proved that there only exist two solutions to:

x2 ≡ a mod p

for odd primes and one for when p = 2. □

4.5. Rings and Ideals. The number field sieve is the factorization method that
uses a ring that is larger than integers. Since this factorization method relies
substantially on rings we will begin this section by covering the necessary theory
on rings and quotient rings. The number field sieve is the fastest factorization
method as long as N is large enough and p and q are roughly the same size.

Definition 4.3 (Ring [HPS16, p. 95]). A ring is a set with two operations, usually
denoted by + for the additive operation and ⋆ for the multiplicative operation. The
operation + will have the following properties:

• The ring contains an additive identity element 0 such that:

0 + a = a+ 0

for every a in the ring.



16

• The ring contains an additive inverse element b such that:

b+ a = a+ b = 0

for every a in the ring.
• The associative property.
• The commutative property.

The operation ⋆ only needs the associative property for the definition of a ring.
However, we will only work with commutative rings with multiplicative identity.
To be less verbose, everything referred to as a ring henceforth in this thesis will
be a ring with those properties as well. Therefore our rings have the following
properties:

• The ring contains a multiplicative identity element 1 such that:

1 ⋆ a = a ⋆ 1 = a

for every a in the ring.
• The associative property.
• The commutative property.

Instead of writing a ⋆ b we will note it as ab for the multiplicative operation.

Definition 4.4 (Field [HPS16, p. 96]). A field is a ring (a commutative ring with
multiplicative identity) where for every nonzero element a there exists a multiplica-
tive inverse for the operation ⋆ such that:

a ⋆
1

a
= 1

and
1

a
⋆ a = 1.

Definition 4.5 (Unit [HPS16, p. 97]). If we let R be a ring then an element u in
the ring is called a unit if there exists another element v in the ring such that:

u ⋆ v = 1.

If some element a in R is not a unit and for every factorization of

a = b ⋆ c

either b or c is a unit, then a is said to be irreducible.

Example 4.1. An example of units, if we look at the ring of integers Z, is 1 and −1
as 1⋆1 = 1 and −1⋆−1 = 1. They are the only units in Z. In Z the prime numbers
are irreducible elements as they can only be factored as themselves multiplied by
1. For example:

7 = 7 ⋆ 1.

Definition 4.6 (Ideal [Wal01, p. 168]). Let I be an additive subgroup of the ring
R. We call the additive subgroup I an ideal if it has the properties described below.

For all

x ∈ R

and all

a ∈ I

we have that

ax, xa ∈ I.



17

This means that R itself is an ideal to R. The subgroup 0 consisting only of the
additive element 0 in R is also an ideal. We call an Ideal proper if we have that:

I ̸= R

Example 4.2. We can note that for the ring of integers Z, all sub-rings mZ will
be an ideal of Z. Clearly, if we take some number m and multiply it with another
integer that number will still be a multiple of m.

Definition 4.7 (Congruence in rings [Hun13, p. 145]). Let I be an ideal in a ring
R and let a, b ∈ R. Then a is congruent to b modulo I if a− b ∈ I.

Theorem 4.11 (The relation of congruence modulo I [Hun13, p. 146]). Let I be
an ideal in a ring R. Then the relation of congruence modulo I is:

(1) reflexive, meaning a ≡ a mod I for every a ∈ R
(2) symmetric, meaning if a ≡ b mod I then b ≡ a mod I
(3) transitive, meaning if a ≡ b mod I and b ≡ c mod I then a ≡ c mod I

Proof. We will now show the 3 different cases.

(1) Since a − a = 0 and 0 would always be in the ideal due to the definition
ideal. An additive subgroup would always contain the identity element
which for addition is 0. So we have 0 ∈ I. Since a− a ∈ I and per 4.7 we
have proven that a ≡ a mod I.

(2) Since a ≡ b mod I then there exists an element a− b = i ∈ I per 4.7. Per
the definition of ideals, −i would also be in the ring. Therefore b − a =
−i ∈ I which per the definition of congruence for rings means that b ≡ a
mod I and we have proven symmetry.

(3) By the definition of congruence there exists elements i, j ∈ I such that
a− b = i and b− c = j. Conveniently if we study i+ j we get:

i+ j = a− b+ b− c = a− c

Since a group is closed under addition we know that i + j ∈ I. Per the
definition of congruence in rings, we know that a ≡ c mod I. With that,
the proof is complete.

□

Theorem 4.12 (Ideal cosets [Hun13, p. 147]). Let I be an ideal in a ring R and
let a, c ∈ R. Then a ≡ c mod I if and only if a+ I = c+ I

Proof. There are two cases we need to show to prove this theorem. The first
one is where we first assume that a ≡ c mod I and show that this implies that
a+I = c+I. The second case is the other way around where we assume a+I = c+I
and show that this implies that a ≡ c mod I. We begin by proving the first case.
To prove this we are going to first show that a+ I ⊆ c+ I and via symmetry that
c + I ⊆ a + I. Let us begin by assuming that a ≡ c mod I. Since a + I is the
congruence class of a modulo I that is, a subset of I. We can choose an element
b that belongs to the same congruence class. So that b ∈ a + I. By definition, we
have:

b ≡ a mod I.

Due to transitivity 4.11 we then have:

b ≡ c mod I.

This implies that b ∈ c+ I which means that a+ I ⊆ c+ I. If we reverse the roles
a and c we also have that c+ I ⊆ a+ I which means that:

a+ I = c+ I.



18

Now we will show the second case where we begin by assuming that a+ I = c+ I.
By reflexivity, we know that the element a is congruent to itself modulo I, a ≡ a
mod I. We have that a ∈ a+ I but since a+ I = c+ I we also have a ∈ c+ I. This
means that a ≡ c mod I and the proof is complete. □

Definition 4.8 (Quotient Rings [Wal01, p. 173]). Let R have an ideal I. We say
that R/I is the set of cosets of I in R. We define two binary operations for R/I as:

(x+ I) + (y + I) = x+ y + I

for the additive operation and

(x+ I)(y + I) = xy + I

for the multiplicative operation.

That means that R/I is a ring and this type of ring is known as a factor ring or
quotient ring.

Example 4.3. For example, if the ring R = Z and ideal I = mZ. Then R/I would
be the congruence classes modulo m. This means we would have:

R/I = Z/mZ = {0m, 1m, ...,m− 1m}.

Example 4.4. We will show an example of multiplication and addition for the ring
Z[x]/(f(x)). Let f(x) = 1 + 3x − 2x3 + x4. We now want to add the elements u
and v in the ring. Let:

u = 2− 4x+ 7x2 + 3x3

and

v = 1 + 2x− 4x2 − 2x3.

To add them we just add the coefficients since the degree of the elements is lower
than f(x). We get:

u+ v = 3− 2x+ 3x2 + x3.

To multiply we first multiply u and v outside of the quotient ring so we get:

uv = 2− 9x2 + 29x3 − 14x4 − 26x5 − 6x6.

Then we perform a polynomial division of uv by f(x) = 1+3x− 2x3+x4 and only
keep the remainder. This is because uv before the division will have a higher degree
than f(x) and thus we need to find what congruence class it actually belongs to.
We then finally get:

uv = 92 + 308x+ 111x2 − 133x3.

Theorem 4.13 (Congruence modulo p(x) in F [x][Hun13, p. 127]). Let F be a
field and p(x),g(x) and f(x) be polynomials in F [x] and p(x) be nonzero. Then
f(x) ≡ g(x) mod p(x) if and only if they belong to the same congruence class that is
f(x)+I = g(x)+I or using brackets to symbolize congruence classes [f(x)] = [g(x)].

Proof. This proof is identical in method to the proof in 4.12. □

Theorem 4.14 (Distinctness of congruence classes modulo p(x) in F [x][Hun13, p.
128]). Let F be a field and p(x) be a polynomial in F [x] with degree n. Let r(x)
be the reminder when a polynomial in F [x] is divided by p(x). Let S be the set
consisting of the zero polynomial and all the polynomials of degree less than n in
F [x]. Then every congruence class modulo p(x) is the class of some polynomial in
S, and the congruence classes of different polynomials in S are distinct.



19

Proof. Let r(x) be the reminder when dividing a polynomial in F [x] with p(x).
r(x) will be the zero polynomial or a nonzero polynomial with degree less than n.

There are multiple ways of reaching this conclusion, for example taking a close
look at the division algorithm for polynomials. Another way is to consider that the
reminders will be in the ring F[x]/p(x). The ideal of this rings are all multiples of
p(x), of course including multiples of other non stationary polynomials. Therefore,
the elements in the ring consists of the zero polynomial and polynomials with a
degree less than n. Therefore we know that r(x) ∈ S. Two remainders r1(x) and
r2(x) will not be congruent modulo p(x) as the degree of r1(x)− r2(x) will also be
less than n and therefore not divisible by p(x). Theorem 4.13 then tells us that all
polynomials in S belong to distinct congruence classes. □

Example 4.5. Let’s take a look at an interesting example that will highlight a
property that will come in handy later in this thesis. The ring R[x]/(x2+1) consist
of all congruence classes modulo x2+1 for all polynomials with real coefficients. This
equivalent with saying that the ring consist of all polynomials that are reminders
after division with x2 + 1. The reminders after division will be on the form (rx+
s) + I, where r, s ∈ R. This is because, as shown above, the degree of the reminder
will be lower than x2+1. Now for the interesting insight: Theorem 4.13 shows that
all congruence classes can be uniquely stated on the form (rx+ s) + I.

Definition 4.9 (Homomorphism [Hun13, p. 75]). A ring R is homomorphic to a
ring S if there is a function f : R→ S with the property:

f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R

A homomorphism is an unital homomorphism if the identity element in a ring R is
mapped to the ring S by the function f .

Definition 4.10 (Isomorphism [Hun13, p. 72]). A ring R is isomorphic to a ring
S if there is a homomorphism f : R→ S with the extra properties that:

(1) f is injective.
(2) f is surjective.

Definition 4.11 (Kernel [Hun13, p. 154]). Let f : R→ S be a homomorphism of
rings. Then the kernel of f is the set K that is defined by:

K = {r ∈ R|f(r) = 0}

Theorem 4.15 (The Natural Homomorphism [Hun13, p. 156]). Let I be an ideal
in a ring R. Then the map π : R → R/I given by π(r) = r + I is a surjective
homomorphism with kernel I.

Proof. We know that the map is surjective as for every r ∈ R we of course have a
corresponding coset r+ I since r is on both sides of the equal sign. In other words,
for any given coset r+I in R/I we have have π(r) = r+I. We can also quite easily
show that it is a homomorphism, beginning with addition:

π(r + s) = (r + s) + I = (r + I) + (s+ I) = π(r) + π(s)

Continuing with multiplication:

π(rs) = rs+ I = (r + I)(s+ I) = π(r)π(s)

and with that the proof is complete. □

Theorem 4.16 (First Isomorphism Theorem [Hun13, p. 157]). Let f : R → S be
a surjective homomorphism of rings with kernel K. then the quotient ring R/K is
isomorphic to S.



20

Proof. Our strategy to prove this is by defining a function φ from R/K to S and
show that it’s an isomorphism based on what we know of rings and f . Let’s define
φ as:

φ(r +K) = f(r)

where r ∈ R. We could potentially have many different representatives for the
congruence class r +K. So we now need to show that this function only depend
on the congruence class and not the representative for the congruence class. If the
function φ does depend on the representative then φ would not define a function
as one element in R/K would be mapped to more than one element in S.

Let t be different representatives for the congruence class r + K. This means
that:

r +K = t+K.

Theorem 4.12 tells us that:
r ≡ t mod K.

Which by the definition of congruence means that:

r − t ∈ K.

Also, since f is a homomorphism we also have that:

f(r)− f(t) = f(r − t)

and together with we fact that r − t ∈ K have

f(r − t) = 0.

Which means that we now know that:

r +K = t+K =⇒ f(r) = f(t).

Therefore the function φ is well defined. We will now proceed to show that φ is
surjective (1), injective (2) and a homomorphism (3).

(1) Let s ∈ S, this implies that s = f(r) for some r ∈ R since f is surjective.
Per the definition of φ we have:

s = f(r) = φ(r +K).

This means that φ is surjective.
(2) To show that φ is injective we must show that if we assume that φ(r+K) =

φ(c + K) then r + K = c + K. This is since injective means that there
cannot be more than one distinct element for which φ has the same value.
We have:

φ(r +K) = φ(c+K).

The definition of φ implies that:

f(r) = f(c) =⇒
f(r)− f(c) = 0.

Since f is a homomorphism and just as when we showed that φ is well
defined we have that:

f(r − c) = 0 =⇒
r − c ∈ K =⇒
r ≡ c mod K.

Then theorem 4.12 gives us r ≡ c mod K ⇐⇒ r +K = c +K. Which
means that:

φ(r +K) = φ(c+K) =⇒ r +K = c+K

and φ is injective.



21

(3) The fact that f is a homomorphism let’s us easily show that φ is. With
c, d ∈ R for multiplication we have:

φ((c+K)(d+K)) = φ(cd+K)

= f(cd)

= f(c)f(d)

= φ(c+K)φ(d+K)

For addition we have:

φ((c+K) + (d+K)) = φ((c+ d) +K)

= f(c+ d)

= f(c) + f(d)

= φ(c+K) + φ(d+K)

Thereby φ is a homomorphism and the proof is complete.

□

5. Factorization Methods

5.1. Pollard’s p−1 Factorization Algorithm. One algorithm for factoring some
large numbers is the Pollard’s p− 1 method. It does not work for all large numbers
but it demonstrates that not all large numbers are suitable to use for the RSA
cryptosystem. This method works when p − 1 is a product of many small primes.
Let N = pq and let L have the property:

p− 1 divides L and

q − 1 does not divide L.

Then we know that for some integers i, j,, k ̸= 0 and k < (q − 1):

L = i(p− 1)

and

L = j(q − 1) + k.

If we now take the random integer a and study aL with Fermat’s little theorem
(4.6) we see that:

aL = ai(p−1) = (ap−1)i ≡ 1i ≡ 1 mod p

aL = aj(q−1)+k = ak(aq−1)j ≡ ak · 1j ≡ ak mod q.

This means that p divides aL−1, it is also very unlikely that for some k ̸= 0 that
ak ≡ 1 mod q. This means that it is very unlikely that q divides aL−1. Therefore
we can get p by calculating the greatest common denominator:

p = gcd(aL − 1, N).

We can find a number L with the stated properties by using Pollard’s observation
that if p− 1 is a product of small primes it will divide n! for some n that is not so
large that we won’t be able to reasonably calculate it. That is because as long as we
choose n to be larger than p− 1 it will include at least the same primes and prime
powers as p− 1. This means that if we choose a random integer a and calculate:

gdc(an! − 1, N)

we will have found our p if the greatest common denominator equals something
other than 1 or N . In practice, the number aj!−1 would quickly become extremely



22

large. But since we are interested in gcd(aj! − 1, N) we can work with aj! − 1
mod N instead as the gcd will be the same. To summarize, do the following steps
in Pollard’s p− 1 factorization algorithm:

(1) Set a to some value that makes it easy to do the rest of the calculations.
In practice, a = 2 is often used.

(2) Calculate d = gcd(aj! − 1, N), where j is an integer which is greater or
equal to 2. In practice, d = gcd(aj! − 1 mod N,N) is calculated instead.

(3) If d is greater than 1 and less than N , a factor of N is found and the process
can be stopped.

(4) Go trough j = 2, 3, 4, ... to some upper bound so that you either find a
factor to N or run out of time you want to spend to try and find a factor.

Example 5.1. For this example, we will factor the number 97 · 101 = 9797. We
will use a = 2 for the calculations.

22! − 1 ≡ 3 mod 9797, gcd(3, 9797) = 1

23! − 1 ≡ 63 mod 9797, gcd(63, 9797) = 1

24! − 1 ≡ 4751 mod 9797, gcd(4751, 9797) = 1

25! − 1 ≡ 7467 mod 9797, gcd(7467, 9797) = 1

26! − 1 ≡ 2619 mod 9797, gcd(2619, 9797) = 97

Success! Since gcd(2619, 9797) = 97 satisfy 1 < 97 < 9797 we have found a factor
of 9797.

5.2. Factorization via Difference of Squares. Factorization via the difference
of squares relies on the basic identity:

x2 − y2 = (x+ y)(x− y)

We can use this identity for factoring a number N by finding an integer b such that:

N + b2 = a2

therefore

N = a2 − b2 = (a+ b)(a− b).

In practice, it is hard to find a b so that N + b2 is a square. One technique that
can help us is by looking at multiples kN instead of N . This is because if:

kN = a2 − b2 = (a+ b)(a− b),

then it is not unlikely that N has a factor in common with both (a+ b) and (a− b).
We now only need to calculate the greatest common divisor of N and each of (a+b)
and (a− b) to find those factors. We know that for integers A, B, C the statement:

A ≡ B mod C

is equivalent to the statement that for some K

A = B +K · C.

Therefore searching for numbers that satisfy:

a2 ≡ b2 mod N



23

is an equivalent problem formulation as the previous one. However, we do not care
about the case when

b ≡ −a mod N

since that would imply that

b+ a ≡ 0 mod N

which implies that

gcd(N, b+ a) = N

which in turn makes it quite likely that

gcd(N, b− a) = 1.

To utilize this method for factoring large numbers in practice we have to employ
some smart methods for finding numbers that satisfy

a2 ≡ b2 mod N,

because testing numbers randomly will be very slow. A common three-step method
for finding these numbers is:

(1) Find integers a1, ..., ar where ai >
√
N with the property that ci ≡ a2i

mod N factors with small primes. The reason why we want ci to factor
into a product of small primes is so that we easily can find ci factorization
quite quickly instead of having to use one of the algorithms in this thesis if
ci is somewhat large.

(2) Multiply some of the ci numbers found in the first step so that every prime
appears to an even power. Then we will have a square ci1 ...cis = b2.

(3) Then let a = ai1 ...ais and compute the greatest common divisor d =
gcd(N, a− b).

Because of the fact that:

a2 = (ai1 ...ais)
2

≡ a2i1 ...a
2
is

≡ ci1 ...cis

≡ b2 mod N,

there is a good chance that d is a factor of N with 1 < d < N .
We can elaborate more as to why there is a good chance that d is a proper factor

of N . Suppose we have the numbers a, b such that:

(a− b)(a+ b) = kN = kpq.

To make the argument easier to follow we also assume that gcd(k,N) = 1. In this
expression we can see that there are four different possibilities:

(1) p divides a− b and q divides a+ b
(2) p divides a− b and q divides a− b
(3) p divides a+ b and q divides a+ b
(4) p divides a+ b and q divides a− b

Based on this let us assume probability of each possibility is equal and independent
of each other. In that case there is a 1

2 probability that p and q divide a different
factor of (a− b)(a+ b). This correspond to possibility 1 and 4 above. This means
that if we have pairs (a1, b1), ..., (an, bn). Then the probability that p and q belong
to different factors (ai − bi)(ai + bi) for at least one of the pairs (ai, bi) is 1 − 1

2n

which will quickly approaches 1 when n increases.



24

5.3. Quadratic Sieve and Smooth Numbers. To use factorization via the dif-
ference of squares we need a way to find numbers that factor into small primes, as
described in step one of the three-step method in the previous section about the
factorization via the difference of squares 5.2. We will begin by giving a formal
definition of the numbers we want to find and then present what a sieve is and give
a simple method that we will then modify to be able to find numbers we can use
for the factorization via the difference of squares.

The numbers we are looking for that factor into primes smaller than some number
B are called smooth numbers. Let us give the definition.

Definition 5.1 (Smooth Numbers [HPS16, p. 150]). An integer n is B − smooth
if all of its prime factors are less than or equal to B.

An efficient way of finding these numbers is Pomerance’s quadratic sieve. Pomer-
ance’s quadratic sieve will help us find B − smooth numbers that also fulfill the
quality c ≡ a2 mod N . To explain the quadratic sieve we can start by looking at
a sieve for finding primes and then one for finding B − smooth numbers without
worrying about the additional quality. One sieving method for finding B-smooth
numbers is a modification of the Sieve of Eratosthenes.

The Sieve of Eratosthenes is a method of finding primes by successively going
through a list of numbers and crossing out numbers that are divisible by the current
one.

Example 5.2 (Sieve of Eratosthenes). If we have a list of numbers of for example 2
to 20 then we start by looking at 2 and then cross out every number which have the
number as a factor. Then we go to the next number that is not crossed out, which
must be a prime, and repeat the process. After we have repeated this process
enough times we will no longer find numbers to cross out or we have reached a
prime that is larger than the root of the largest number. Then we know that the
remaining uncrossed numbers are all prime. For this example, we get:

2 3 4/ 5 6// 7 8/ 9/ 10/ 11
12// 13 14/ 15/ 16/ 17 18// 19 20/

We can now modify the sieve of Eratosthenes to suit our needs. The goal is to
find enough numbers on the form a≡b2 where b2 is a product of small primes so that
we can use the factorization via the difference of squares. The quadratic sieve finds
B − smooth numbers that are congruent to some number a2 mod N . It is similar
to the sieve of Eratosthenes we saw in example 5.2. But instead of crossing out
the numbers we divide by the prime we currently use to sieve our list of numbers.
Meaning for our example 6 would be divided by both 2 and 3. This means all the
numbers that are divided down to 1 would be B − smooth, where B is the largest
prime we used to sieve. However, with this strategy, we will miss the B − smooth
numbers that are divisible by powers of small primes. So the key difference with
the quadratic sieve is instead of just sieving the numbers by primes we will also
sieve with powers of primes. Meaning when we get to the number 4 in example 5.2
we would sieve all eligible numbers by 2 again since the prime factorization of 4 is
22. Another example is if we have the interval 2 to 16 we will have to divide 16 by
2 each time when we sieve with 2, 4, 8 and 16 for a grand total of 4 times. With
this, we have found that 16 is 2− smooth.

We do not want just B − smooth numbers, we want to find numbers that are
B − smooth and are congruent to some number a2 mod N . To do this we use the
polynomial:

F (T ) = T 2 −N



25

We use this particular polynomial since it will let us find numbers that are squares
modulo N , which is what we need. Then we let:

a =
⌊√

N
⌋
+ 1

which is the smallest integer that is larger than the square root of N . Here the
brackets denote rounding down to the integer less than the number within the
brackets. After that, we create the sequence of numbers:

F (a), F (a+ 1), ..., F (b).

We decide b based on how many B − smooth numbers that are congruent with a2

mod N that we need. We need enough B − smooth numbers to be able to factor
N .

Definition 5.2 (factor base [HPS16, p. 157]). The set of primes and powers of
primes less than B is called the factor base.

Let’s say we have the prime p in our factor base, meaning it is the prime we
currently want to sieve with. Then the problem we need to solve is which of the
numbers in our sequence of numbers are divisible by p? A completely equivalent
statement is, which numbers T between a and b have the property:

T 2 ≡ N mod p.

This is an equivalent statement as T 2 ≡ N mod p because it means that there is
some k such that T 2−N = kp. F (T ) = T 2−N is how we generated the numbers for
our sequence so if there exists a k such that T 2 −N = kp then that number in the
sequence would be divisible by p. If there are no solutions to the congruence, then
the prime p divides no numbers in our sequence of numbers and is not a candidate
to sieve with. Otherwise, if p is greater than 2 then the congruence will have two
solutions modulo p. As per proposition 4.10 We call the solutions, if they exists:

T1 = αp

T2 = βp.

T2 = p− αp

It then follows that all the numbers in our sequence on the form:

F (αp), F (αp + p), F (αp + 2p), ...

and

F (βp), F (βp + p), F (βp + 2p), ...

are divisible by p. Thereby we can sieve all the numbers on that form by p from
our original list.

Now that we have explained what we need to do we will explain how we go about
doing this. We need to find for which a ≤ T ≤ B, T 2 −N is B − smooth. As we
mentioned above, we need to solve the congruence T 2 ≡ N mod p for each prime
and power of primes in the factor base of B. When p is odd, the congruence has
either 0 or 2 solutions 4.10. If there are two solutions then they are:

αp

and

p− αp

The values of T for which T 2 −N are divisible by p is on the form:

T1 = pn+ αp

T2 = pn+ p− αp



26

for n ∈ Z. For each a ≤ T ≤ b on this form we can then divide T 2 − N by p.
The numbers that reach 1 after repeating this process for every p in our chosen
factor base B are B-smooth. With this method, we are able to find enough to be
able to use the factorization via the difference of squares method. We can do this
process much more efficiently by sieving the numbers systematically, which we will
now illustrate with an example:

Example 5.3. We will now show the quadratic sieve in action for the number
N = 9797. We begin by calculating our a and get a = 99 since:

a =
⌊√

9797
⌋
+ 1

= 98 + 1

= 99.

For this number, we will use the polynomial:

F (T ) = T 2 − 9797

and calculate F (99) to F (114) to get a handful of numbers to have a good chance
of finding enough B-smooth numbers on the form a2 mod N . As we saw in section
5.2 we do not have to find that many B-smooth numbers to have a good chance of
factoring N . We get our list of numbers to be:

4 203 404 607 812 1019 1228 1439
1652 1867 2084 2303 2524 2747 2972 3199

We can now begin the sieving process from 2 to 29. One thing to note is that we
will also sieve the numbers that are prime powers within this interval. Meaning we
will sieve by 2 again when we arrive at 22. We start with p = 2. We check that:

t2 ≡ 9797 mod 2

have a solution, which it does. Every number on the form 2n + 1 is a solution,
meaning every odd number. Thereby we can divide every other number from our
list by 2. This is because the first value of t that we used to create our list is 99,
an odd number. We get:

2 203 202 607 406 1019 614 1439
826 1867 1042 2303 1262 2747 1486 3199

We now continue with 3. Since:

t2 ≡ 9797 ≡ 2 mod 3

does not have any solution no numbers in the list are divisible by 3. Now for 22

Since:

t2 ≡ 9797 ≡ 1 mod 4

has solutions we will sieve away 2 again from every other number in the list and
get:

1 203 101 607 203 1019 307 1439
413 1867 521 2303 631 2747 743 3199

We now repeat the process for p = 5. The congruence:

t2 ≡ 9797 ≡ 2 mod 5

has no solutions. We will now test if we can sieve with 7. We see that:

t2 ≡ 9797 ≡ 4 mod 7

has two solutions:

t = 7n+ 2



27

and

t = 7n+ 5.

This means we can sieve F (100) since t = 7·14+2 = 100 and every seventh number.
We can of course also sieve F (103) by the same argument for the second solution
to the congruence. We then get:

1 29 101 607 29 1019 307 1439
59 1867 521 329 631 2747 743 457

We can now repeat the process for p = 11, 13, 17, 19, 23, 29. For those primes only
p = 29 have the solutions:

t = 29n+ 13

and

t = 29n+ 16.

That means we can sieve F (100) and F (103) again and get:

1 1 101 607 1 1019 307 1439
59 1867 521 329 631 2747 743 457

We can now see which numbers has been sieved to 1. The input values of t squared
for those numbers are therefore products of small primes in modulo N = 9797. We
have:

992 ≡ 22 mod 9797

1002 ≡ 7 · 29 mod 9797

1032 ≡ 22 · 7 · 29 mod 9797.

We can now combine these congruences so that we get a congruence a2 ≡ b2 mod N
which we need for the actual factorization. We can for example use:

(100 · 103)2 ≡ (2 · 7 · 29)2 mod 9797

so that we can then calculate:

gcd(N, a− b)

to have a high chance for a factor of N . We get:

gcd(9797, 100 · 103− 2 · 5 · 7) = gcd(9797, 9894) = 97.

Since N = 9797 = 97 · 101 we have successfully factored N using the quadratic
sieve.

5.4. The Number Field Sieve. We have now covered the necessary theory on
rings and quotient rings to be able to explain the number field sieve. However,
the complete method is very complicated so we will only explain the key aspects
regarding how we can use rings to find some very useful homomorphisms. These
homomorphisms enables us to find pairs of numbers a2 ≡ b2 mod N that we can
use to have a good chance of factoring N . The rings we will be using primarily are.
Z[x]/(f(x)) and Z[β], where β is a complex root of f(x)

To find numbers for factoring N with the number field sieve we first choose an
integerm withm ̸= 0. We also need to choose an irreducible monic polynomial f(x),
in the polynomial ring. That means that the polynomial satisfies the properties of
irreducibility in definition 4.5. Another way of thinking about this is to find a prime
function in the ring. A monic polynomial is a polynomial where the coefficient of the
term with the highest degree is 1. The polynomial should also have the property:

f(m) ≡ 0 mod N.



28

Let β be a complex root of f(x) and let d be the degree of f(x). According to
Lenstra et al. [LL, p. 11], the method works best for N that are on the form
N = re − s where r and s are small and e is large.

Now let Z[x] be the ring of polynomials with integer coefficients. There exists a
unital homomorphism φ : Z[x] → C that is determined by φ(x) = β. This means
that it maps every polynomial to a combination of powers of β. The reason why
there is a homomorphism between these rings is because we can very easily construct
a unital homomorphism from a polynomial ring to another ring by mapping all
integers to the same integer and then choose to map the element x in Z[x] to a
specific element in the other ring.

Since f(β) = 0 it follows that f(x) is in the kernel of φ, and therefore the ideal
(f(x)) is contained in the kernel of φ. Furthermore, since f(x) is irreducible, it is the
minimal polynomial of β. It follows that every polynomial g(x) in the kernel of φ
is a multiple of f . Therefore (f(x)) = ker(φ). Let ψ be the natural homomorphism
4.15 between Z[x] and Z[x]/(f(x)) given by ψ(x) = x+(f(x)). From this it follows
that φ factors through ψ and an injective ring homomorphism:

π : Z[x]/(f(x)) → C
that satisfies π(x+(f(x))) = β. Let Z[β] be the image of φ and π. Now thanks to

the first isomorphism theorem 4.16 we know that π defines an isomorphism between
Z[x]/f(x) and Z[β]. Clearly, Z[β] is the subring of C generated by Z and β.

Next, we have to find a large number of pairs of integers:

(a1, b1), ..., (ak, bk)

that have the property:

k∏
i=1

(ai − bim) = A2

and

k∏
i=1

(ai − biβ) = α2

where

A ∈ Z

and

α ∈ Z[β].

For this sieve we look for numbers that are B − smooth on the form a − bm and
also numbers that are B − smooth in the quotient ring Z[β] = Z[x]/(f(x)). From
our definition of Z[β] we can create an expression α on the form:

α = c0 + c1β + c2β
2 + ...+ cd−1β

d−1(1)

with

c0, c1, ..., cd−1 ∈ Z.(2)

Since f(m) ≡ 0 mod N there is a homomorphism ϕ : Z[x]/(f(x)) → Z/N . Sat-
isfying ϕ(x) = m. Since Z[x]/(f(x)) is isomorphic to Z[β] we are able to think of
ϕ as a homomorphism from Z[β] to Z/N satisfying ϕ(β) = m. The kernel of this
homomorphism will be all the polynomials where β is a root.



29

This means that elements on the form:

k∏
i=1

(ai − biβ)

will be mapped by ϕ to elements on the form:

k∏
i=1

(ai − bim)

The idea of the number field sieve is to find pairs of numbers (ai, bi) that are
B − smooth in Z[β] and Z. In the quadratic sieve we aimed to find numbers on
the form a2 mod N that are B − smooth. This time we will look for numbers on
the form ai − biβ whose products are B − smooth in Z[β] and then we will know
that independently products of ai − bim will be B − smooth in Z. We will now
demonstrate this relation.

Since a ring homomorphism preserves multiplication we know that if:

k∏
i=1

(ai − biβ)

is a square in Z[β] then:

k∏
i=1

(ai − bim)

will be a square in Z/N .

Since we now know that the element β can be substituted by m mod n we can find
an element A2 ≡ B2 by the following relation:

B2 ≡ ϕ(α)2 = ϕ(α2)

= ϕ(

k∏
i=1

(ai − biβ))

by the definition of our homomorphism ϕ we know that this will be congruent to a
number on the following form:

≡
k∏

i=1

(ai − bim) = A2 mod N.

With that, we have created a congruence A2 ≡ B2 mod N . Like with our other
factorization methods, there is a high probability that gcd(A − B,N) will be a
factor of N . To find the pairs of numbers (ai, bi) that we need for our factorization
we can use a similar method to the quadratic sieve. But instead of numbers on the
form a2 mod N that is B − smooth we will look for numbers on the form ai − biβ
and ai − bim which products are B − smooth.



30

6. Discussion

6.1. Comparison of Algorithms. We have in this thesis presented four different
ways to factor large integers. Three of the methods: the quadratic sieve, the rational
sieve, and the number field sieve, can be used for factoring most numbers. They
use the same algorithm for the last step of actually factoring the numbers. They
use the factorization via difference of squares. The difference between them is how
they find the relationships between pairs of numbers that are needed for factoring
via the difference of squares. These four methods are good in different situations.
We will now analyze and compare them with each other.

6.1.1. Pollard’s p−1 Factorization Algorithm. We begin by itemizing Pollard’s p−1
methods strengths and weaknesses.

Strengths: It is the simplest factorization method of the ones presented in this
thesis. This is because factorization with the difference of squares method requires
us to also build relations of number pairs. For example with the help of the qua-
dratic sieve, we can find numbers on the form c ≡ a2 mod N with c being a product
of small primes. Likewise, with the number field sieve, we have to first find numbers
on the form a− bm that are B - smooth in addition to then also find numbers that
are on the form A2 ≡ B2 mod N . This method highlights the fact that we have
to consider how p − 1 and q − 1 factors. It is not directly obvious that we would
need to be careful how those numbers factor when we select N = pq for the RSA
cryptosystem. But thanks to this method we just have to check that p − 1 q − 1
does not factor into small primes. Because just as we saw in example 5.1, Pollard’s
p − 1 factorization algorithm only gives us a meaningful result when aj! mod N
factors into a product of small primes. It also gives us a good reason to continue
to study factorization methods since there might exist other non-obvious cases like
this where a number that might seem completely secure to use for encryption might
actually be really easy to factor.

Weaknesses: The most obvious limitation of Pollard’s p − 1 factorization algo-
rithm is the fact that it only works for numbers N = pq where it is true that one
and only one of the numbers p − 1 and q − 1 is a product of small primes. This
means that Pollard’s algorithm is not very useful if we are tasked with the problem
of factoring a random N = pq.

6.1.2. Factorization via Difference of Squares. Now we will list some of the strengths
and weaknesses of the factorization via the difference of squares method of factoring
large integers.

Strengths: This is the factorization method is the most powerful method that we
currently know of for factoring large numbers. according to Hoffstein et al. [HPS16,
p. 98]. Factorization via difference of squares is able to factor any number N = pq
as opposed to Pollard’s p−1 factorization algorithm. This means that this method
is versatile for the task of finding nontrivial factors.

Weaknesses: This method requires that you find a couple of number pairs a2 ≡
b2 mod N to actually be useful. The process of finding those numbers is not
straightforward. The method requires the use of one of the sieving methods that
were discussed in this thesis to be able to be used in practice.

6.1.3. The Quadratic Sieve. Now we will list some of the strengths and weaknesses
of the quadratic sieve method of factoring large integers.

Strengths: The quadratic sieve, in combination with factorization via difference
of squares, is the quickest way of factoring numbers up to about 2350 [HPS16, p.
156].



31

Weaknesses: The method takes many operations to sieve the numbers which
means that it can be quite computationally intensive to run in practice.

6.1.4. The Number Field Sieve. Lastly, we will now list some of the strengths and
weaknesses of the number field sieve method of factoring large integers.

Strengths: This is the fastest method for factoring integers for numbers that are
a fair bit larger than 2350 like 2450 and above [HPS16, p. 156].

Weaknesses: The method is complicated and there are numerous challenges in
implementing it in practice.

6.2. Conclusions. To summarize the strengths and weaknesses, the best factor-
ization method of course depends on the specific characteristics of the integer and
what computational resources we have available if we want to put the methods into
practice. Pollard’s p − 1 factorization is great for certain numbers where p − 1 is
a product of many small primes. The Quadratic Sieve in combination with factor-
ization via difference of squares is more versatile and quite easy to understand and
would be straightforward to implement. For the largest integers then the Number
Field Sieve stands out as the fastest method, although its implementation com-
plexity and resource requirements would make it a lot harder to put into practice.
Luckily for our ability to communicate secrets to each other with the RSA cryp-
tosystem, no method still provides an easy way of quickly factoring large integers
based on this summary of some of the most well known methods of factoring inte-
gers. In conclusion, we can still feel safe knowing that our RSA encrypted messages
will remain only readable for their intended audience.

Acknowledgments

I can’t thank Gregory Arone enough for his helpfulness and patience during the
long process of completing this thesis.

References

[HPS16] J. Hoffstein, J. Pipher, and J.H. Silverman, An introduction to mathematical cryptogra-
phy, Undergraduate Texts in Mathematics, Springer New York, 2016.

[Hun13] T. Hungerford, Abstract algebra: An introduction, third ed., Cengage Learning, 2013.

[Kyl17] Kyle Miller, Quadratic residues and quadratic nonresidues, https://math.berkeley.edu/

~kmill/math55sp17/qnr.pdf, 2017, Accessed: 2021-12-28.

[LL] A.K. Lenstra and H.W.J. Lenstra, The development of the number field sieve, Lecture

Notes in Mathematics.
[Wal01] D.A.R. Wallace, Groups, rings and fields, Springer Undergraduate Mathematics Series,

Springer London, 2001.

Department of Mathematics, Stockholm University
Email address: rasmus@persson.io

https://math.berkeley.edu/~kmill/math55sp17/qnr.pdf
https://math.berkeley.edu/~kmill/math55sp17/qnr.pdf

	1. Introduction
	2. Problem Formulation
	3. Motivation - Applications to Cryptography
	3.1. Private- and Public-Key cryptosystems
	3.2. Finding Large Primes
	3.3. RSA
	3.4. The reasons why it is easy for Bob to solve xe c 12mumodN
	3.5. Factoring N=pq

	4. Theoretical Background
	4.1. The Euclidean Algorithm
	4.2. The Chinese Remainder Theorem
	4.3. Modular Inverse and the Fermat-Euler Theorem
	4.4. Number of roots to a quadratic residue
	4.5. Rings and Ideals

	5. Factorization Methods
	5.1. Pollard's p - 1 Factorization Algorithm
	5.2. Factorization via Difference of Squares
	5.3. Quadratic Sieve and Smooth Numbers
	5.4. The Number Field Sieve

	6. Discussion
	6.1. Comparison of Algorithms
	6.2. Conclusions

	Acknowledgments
	References

