
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

P3-Hull Numbers and Infection Times of Unit Interval Graphs

av

Alrik Sandberg

2024 - No K8

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

P3-Hull Numbers and Infection Times of Unit Interval Graphs

Alrik Sandberg

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Per Alexandersson

2024

Abstract

It is well known that the P3-hull number and the infection time are difficult
to calculate for large graphs. We find that it is possible to calculate the P3-
hull number, and find at least one contagious set for certain, specific, types of
unit interval graphs. Furthermore we show that the number of unit interval
graphs with a possible maximal infection time of n − 2 is constant for n ≥ 4
vertices. These graphs with a maximal possible infection time also share a
specific structure. This means that it is possible to easily find all unit interval
graphs of this type for a given number of vertices. We also show that the
number of unit interval graphs of size n with a P3-hull number of n is given
by the (n + 1)th Fibonacci number. Lastly, we show how the number of unit
interval graphs consisting of n vertices that has P3-hull number equal to 2 is
equal to 2 times the (n − 2)th Catalan number.

Sammanfattning

Det är välkänt att P3-hull tal och infektionstiden är svårberäknade för stora
grafer. Vi visar att det är möjligt att beräkna P3-hull tal och att hitta minst
en smittsam mängd för vissa specifika typer av enhetsintervallgrafer. Vi visar
också att antalet enhetsintervallgrafer med en längsta möjliga infektionstid
n − 2 är konstant för grafer bestående av n ≥ 4 noder. Dessa grafer med
en längsta möjliga infektionstid har alla en specifik struktur. Detta gör det
möjligt att lätt hitta alla enhetsintervallgrafer av denna typ för ett givet antal
noder. Vi visar även att antalet enhetsintervallgrafer av storlek n med P3-hull
tal n fås från Fibonacci talen. Till sist visar vi att antalet enhetsintervallgrafer
bestående av n noder med ett P3-hull tal lika med 2 är två gånger det (n−2):a
Catalantalet.

Contents

1 Introduction 5

2 Background information 7
2.1 Infections in graphs . 7
2.2 Unit interval graphs . 10

3 Data 15
3.1 Infection times . 15
3.2 P3-hull number . 18

4 Conclusion 23

References 25

Appendix 27

3

1
Introduction
Infection spread in different types of graphs is something that has been extensively
studied (see for example [FPR18, GPT+21, GGS21]). Two properties of particular
interest are the P3-hull number of a graph as well as the associated infection time.

Unit interval graphs are a special type of undirected graphs. There does not
exist a general formula for computing the P3-hull number nor the longest or shortest
infection time for the P3-hull number for graphs within this family of graphs.

By using a program created in Python it is possible to find all possible contagious
sets for unit interval graphs consisting of a given number of vertices. From these
contagious sets it is then possible to calculate the P3-hull number as well as the
infection times for all of the unit interval graphs. By collecting all this data for all
unit interval graphs consisting of up to 10 vertices we want to investigate whether it is
possible to more accurately calculate and predict both the exact P3-hull number and
infection time. By analysing the data we also find some patterns that we generalise
and prove.

5

2
Background information
2.1 Infections in graphs

We begin by defining some basic concepts and terms to be used when discussing
infections in undirected graphs.

Definition 2.1 (Seed [FPR18]). A seed is an initially infected vertex in a graph G.
A set of seeds, A0, consists of some initially infected vertices of the graph.

Seeds are not the only concept required to describe how an infection spreads in a
graph. It is also important to describe how an infection spreads throughout a graph
from the initial infected vertices. To do this we first need to define the infection
number.

Definition 2.2 (Infection number [GPT+21, FPR18]). The infection number, r, is
the number of infected neighbouring vertices required for the infection to spread to a
new vertex.

Throughout this text we assume that we are working with an infection number
of r = 2 unless otherwise stated.

It is now possible to describe an infection in a graph. An infection always begins
with a set of seeds within a graph, as well as a stated infection number. The seeds
spread the infection to any non-infected vertex with at least r number of infected
neighbours. This process is then repeated until the infection has either spread to
every vertex in the graph, or there are no more vertices that can be infected.

1 2

3

4
→

1 2

3

4
→

1 2

3

4

Figure 1: This shows an infection spreading through a graph with 4 vertices and
r = 2, with A0 = {1, 4}.

7

If a set of seeds manages to spread an infection throughout the whole graph, as
in Figure 1, they form a contagious set.

Definition 2.3 (Contagious set [FPR18]). A contagious set, A0, of a graph G is a
set consisting of seeds at time 0 that eventually fully infects G.

It is easy to see that all graphs must have at least one contagious set, since the
set of all vertices of the graph always is a contagious set. However, as we can see in
Figure 1 the set of all vertices is not necessarily the only contagious set of a graph.
It is important to note that a graph can have contagious sets of different sizes. Most
importantly, for any contagious set C and set of seeds S it holds that if C ⊆ S then
S is also a contagious set.

A contagious set has a two interesting properties. These are the size of the set
as well as its infection time. We begin by defining the infection time.

Definition 2.4 (Infection time [FPR18, GGS21]). The infection time, τ(G), for a
contagious set A0 of a graph G is the time required for the contagious set A0 to infect
the whole of G. It is therefore the smallest t such that the set of infected vertices at
time t is

At = V (G).

Note that τ(G) depends on A0 and r, but these parameters are usually clear from
the context.

The infection time of a graph can be understood as the number of time steps
required for a contagious set to spread the infection through the whole graph. For
the graph and contagious set shown in Figure 1 therefore, the infection time is
τ(G) = 2.

a)

1 2

3

4
b)

1 2

3

4
c)

1 2

3

4

Figure 2: Three more contagious sets to the graph from Figure 1, all three of which
have different sizes and infection times.

This brings us to the next important concept, namely the P3-hull number.

8

Definition 2.5 (P3-Hull Number [GPT+21, FPR18]). The P3-hull number, m(G, r),
of a graph G is the cardinality of the smallest contagious set of G for the given
infection number r.

There exist some simple limitations to the P3-hull number and the infection time
of a given graph, G. We begin with the P3-hull number. If the number of vertices
of G is known then we have an upper limit to m(G, r) that is easily calculated.

Corollary 2.6. For a graph, G, its P3-hull number has to lie in the interval

r ≤ m(G, r) ≤ |V (G)|

assuming |V (G)| ≥ r.

For r = 2 this gives us an interval of

2 ≤ m(G, 2) ≤ |V (G)|

assuming that G has at least 2 vertices.
We can create a similar interval for the possible infection time of G.

Corollary 2.7. Assuming that |V (G)| ≥ r then the graph, G, has

τ(G) ≤ |V (G)| − r

and a contagious set, A0, of G has a maximum possible infection time, τmax(G), of

τmax(G) ≤ |V (G)| − |A0|.

For r = 2 we therefore have

τ(G) ≤ |V (G)| − 2

and a minimum size for |A0| ≥ 2, again assuming that G consists of at least 2
vertices.

Unfortunately the intervals from Corollary 2.6 and Corollary 2.7 are not very
useful as |V (G)| becomes large. The intervals then become too wide to provide
much useful information.

9

2.2 Unit interval graphs

The rest of this text is limited to looking at infections in a specific type of graphs
called unit interval graphs. Unit interval graphs is a sub-family of regular interval
graphs and we therefore begin by defining what these are.

Definition 2.8 (Interval graph [SZZ04]). An interval graph is an undirected graph
G(V, E) where each vertex, v, in G corresponds to an interval on the real number
line, i ⊂ R and (u, v) is an edge of G if and only if the intersection iu ∩ iv is
non-empty.

Figure 3: The interval realisation of the graph from Figures 1 and 2. Since there
exists an interval realisation the graph is an interval graph.

The intervals in Figure 3 are all of equal length, 1. This means that the graph
they represent is a special type of interval graph called a unit interval graph. Com-
pared to regular interval graphs, unit interval graphs are more simple to work with
since all distances are uniform within a graph.

Definition 2.9 (Unit interval graph [GGS21, SZZ04]). A unit interval graph is a
type of interval graph where every interval has length 1. We always assume that
vertices are labeled 1, . . . , n according to the order of the unit intervals, sorted from
leftmost to rightmost.

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

Figure 4: All possible unit interval graphs consisting of 3 vertices.

Definition 2.10. We denote the set composed of all unit interval graphs consisting
of n vertices as UIG(n).

This means that Figure 4 shows all graphs in the set UIG(3).
There are several different ways to represent unit interval graphs and some of

these are important to understand as they will be used in this text. Dyck paths
are the representations that we use the most. They give us an easy to understand,
visual way to show unit interval graphs.

10

Definition 2.11 (Dyck Path [Pon23]). A Dyck path is a walk in a n × n square
grid, starting from (0, 0) and ending in (n, n) using steps (1, 0) (East, E) and (0, 1)
(North, N), and weakly lying above the y = x diagonal.

Dyck paths can be visualised as a set of squares of equal size. To stay above
the diagonal y = x the first step of any Dyck path must be a North step, and the
last step must be East. These are not included as squares in the figures of Dyck
paths shown. Therefore, the squares go from (0, 1) to (n − 1, n) with each square
in a figure lying above the diagonal. Instead, the vertices are numbered from 1 to
n and shown lying on the y = x diagonal (see Figures 5 and 6 for examples). It is
also possible to represent a Dyck path as a sequence of numbers representing the
number of squares on each line. These sequences are also shown to the left of the
Dyck paths (see for example the sequence 0, 1, 2, 1 for Figure 5).

1 4
2 3
1 2
0 1

Figure 5: This shows the Dyck path of the unit interval graph from Figure 1. The
Dyck path is NNNEENEE.

4 8
3 7
3 6
2 5
2 4
2 3
1 2
0 1

Figure 6: This shows the Dyck path of a unit interval graph with 8 vertices. The
path is NNNENENNENNEEEEE.

The number of possible Dyck paths is given by the Catalan number (see A000108
in [Slo19]):

Cn = 1
n + 1

(
2n

n

)
(1)

11

http://oeis.org/A000108

where n is the size of the grid of the Dyck path [Pon23]. We also note that the
Catalan numbers for 0 ≤ n ≤ 8 are

1, 1, 2, 5, 14, 42, 132, 429, 1430.

2 3
1 2
0 1

2 3
1 2
0 1

2 3
1 2
0 1

2 3
1 2
0 1

2 3
1 2
0 1

Figure 7: This shows all possible unit interval graphs consisting of 3 vertices (see
Figure 4). The paths for the different graphs are NENENE, NNEENE, NNENEE,
NNNEEE and NENNEE respectively.

In a Dyck path, every square belongs to the column of one vertex and the row
of one vertex. When creating a graph from a Dyck path therefore, every square
represents an edge between the column vertex and the row vertex (see Figure 4 and
Figure 7). It is possible to prove (we omit the proof) that every such graph is a unit
interval graph. We shall now prove the converse statement.

Theorem 2.12 (See e.g. [AP18]). There exists a bijection between unit interval
graphs and Dyck paths, meaning that every unit interval graph can be represented by
a Dyck path. Therefore the number of unit interval graphs, UIG(n), consisting of n

vertices is the nth Catalan number Cn.

From now on we use the Dyck path representation of a unit interval graph and
the graph itself interchangeably.

Proof of Theorem 2.12. For any unit interval graph, G, consisting of n vertices it
is possible to construct its corresponding Dyck path by starting at the first vertex.
In order to stay above the diagonal y = x we note that we have to take a North
step to begin. Then there are two possibilities for vertex 1. It is either connected to
vertex 2 or not. If they are connected we take one step North, and check if vertex
1 is connected to the next vertex.

We repeat this process until we reach a vertex, v, that is not connected to vertex
1. Since G is a unit interval graph, there must exist intersections between the
intervals corresponding to all vertices {1, . . . , v − 1}. Therefore, all vertices in that
set are connected to all other vertices in the set. Then, at vertex v − 1 we instead
take a step East and check if vertex 2 is connected to vertex v. If it is we add another

12

North step and repeat the process from earlier, and if not we move one more step
East. This can be repeated until we either check if v is connected to itself, in which
case the answer always is yes, and we move North one step. We could also find that
vertex 2 is connected to all vertices up to and including vertex n. We then move
East until we have confirmed that no vertices are connected to vertex n + 1. It is
impossible for any connection to exist since vertex n + 1 does not exist.

This process produces a walk from (0, 0) consisting only of steps of type (1, 0) or
(0, 1) that ends at (n, n). It also never crosses below the diagonal y = x. This is the
definition of a Dyck path (see Definition 2.11), which means that all unit interval
graphs can be represented as Dyck paths. This means that any unit interval graph
can be obtained from some Dyck path.

This means that the number of unit interval graphs we have to consider increases
rapidly as the number of vertices increases.

Finally we introduce a theorem for calculating the P3-hull number for a very
specific type of unit interval graph that we will call group connected graphs, using
the Dyck path of the graph (see Figure 8 for an example).

Theorem 2.13. Consider a connected unit interval graph, G whose Dyck path
touches the diagonal, x = y + 1, c times. Assume also that every subgraph S ⊂ G,
consisting of the parts of G between two touches of the diagonal x = y + 1 are com-
plete with all vertices of S connected to each other. Then the minimum number of
seeds required to fully infect G is given by

m(G, 2) = 2 +
⌊

c

2

⌋
.

13

3 9
2 8
1 7
3 6
2 5
1 4
2 3
1 2
0 1

1

2

3

4

56

7

8

9

Figure 8: This shows a unit interval graph with c = 2 with all three components
being complete sub-graphs. It has m(G, 2) = 3 and one of its contagious sets of that
size is shown.

Proof of Theorem 2.13. We know that m(G, 2) ≥ 2 since r = 2. Any time the
Dyck path of G touches the line x = y + 1 it partitions the set of vertices into
two components K1, K2. Therefore, every time c is increased, another component is
added and we have that V (G) = K1 ∪ K2 ∪ . . . ∪ Kc+1 where every Kj is a complete
subgraph of G. Any two components, i and i + 1, are only connected at a single
vertex, Ki ∩ Ki+1 = {vi}. We call vi a connector between Ki and Ki+1. To fully
infect one of these components, Ki, it is required that 2 of the vertices of Ki are
infected.

The first and last components of G both only intersect one other component.
Therefore both need to contain at least one seed each that are not v1 or vn to
become infected. For the rest of the graph, if every component contains exactly one
seed, s, the infection will be able to spread. This means that if every other vi is a
seed then it forms a contagious set.

Assume now that the number of components, Ki (1 ≤ i ≤ n) is odd, i.e. c is
even. Then the number of connectors is even. Therefore the first or last component
of G, K1 or Kn, will have to contain a connector as a seed in order for every other
connector to be a seed. This means that K1 or Kn has to contain 2 seeds. It is then
possible to add another component Kn+1 without increasing the P3-hull number.
Therefore, we have that

m(G, 2) = 2 +
⌊

c

2

⌋
.

See Figure 8 for an example.

14

3
Data
In order to investigate how the distribution of the infection time and P3-hull number
of unit interval graphs of different number of vertices differ it is first required to
perform a lot of calculations. To do this in a reasonable amount of time we decided
to create and use a Python program (see Appendix 1).

This program allowed us to construct all possible unit interval graphs of a given
number of vertices and then calculate their respective P3-hull number. It also cal-
culated the infection time of each contagious set of the size of their P3-hull number
which allowed us to find both the longest and shortest infection time as well as the
P3-hull number of every unit interval graph up to size 10.

The data for UIG(n) for n ∈ {3, . . . , 10} vertices are presented in Tables 1, 2
and 3.

3.1 Infection times

n Time: 0 1 2 3 4 5 6 7 8
3 3 2 0 0 0 0 0 0 0
4 5 7 2 0 0 0 0 0 0
5 8 24 8 2 0 0 0 0 0
6 13 68 37 12 2 0 0 0 0
7 21 186 150 52 18 2 0 0 0
8 34 489 574 205 100 26 2 0 0
9 55 1271 2069 792 466 175 32 2 0
10 89 3274 7170 3054 1978 934 257 38 2

Table 1: Lists the shortest infection time possible for contagious sets the size of
P3-hull number of all unit interval graphs, G in UIG(n).

Looking at Table 1 there are exactly two unit interval graphs with a shortest infection
time equal to the longest possible infection time for the given G is

τ(G) = V (G) − 2 (Corollary 2.7) (2)

for n ≥ 3. This also holds for n = 2, however this is a special case. When we have
the infection number r = 2 then all graphs of size n = 2 must have an infection time,
τ = 0 and P3-hull number, m = 2. Since the number of possible unit interval graphs
consisting of two vertices is equal to 2 this gives us the 2 graphs with a shortest (and
longest) infection time of

τ(G) = 2 − 2 = 0. (3)

We can now formulate a theorem based on these observations.

Theorem 3.1. For any n ≥ 2 and infection number r = 2, any unit interval graph
G ∈ UIG(n) has a maximum possible infection time of τmax(G) = n − 2. Moreover,
there are exactly two graphs in UIG(n) with a minimum infection time equal to this
number.

The proof of Theorem 3.1 is shown later.

1

2 3

4

56

1

2 3

4

56

Figure 9: The only two unit interval graphs with τmin(G) = τmax(G) = 4 for n = 6
as mentioned in Theorem 3.1, along with one of their contagious sets.

There are similar patterns that occur when looking at the data in Table 2. There
exists exactly 3 unit interval graphs with a maximal infection time for any n, when
n ≥ 4, that satisfies equation (2). It is thus possible to formulate a theorem similar
to Theorem 3.1.

Theorem 3.2. For any n ≥ 4 and infection number r = 2, any unit interval graph
G ∈ UIG(n) has a maximum possible infection time of τmax(G) = n − 2. Moreover,
there are exactly 3 graphs with a maximum infection time equal to this number.

16

n Time: 0 1 2 3 4 5 6 7 8
3 3 2 0 0 0 0 0 0 0
4 5 6 3 0 0 0 0 0 0
5 8 16 15 3 0 0 0 0 0
6 13 40 50 26 3 0 0 0 0
7 21 96 152 121 36 3 0 0 0
8 34 224 445 454 224 46 3 0 0
9 55 514 1275 1555 1042 363 55 3 0
10 89 1166 3593 5107 4212 2043 519 64 3

Table 2: Lists the longest infection time possible for contagious sets the size of the
P3-hull number of all unit interval graphs, G in UIG(n).

1

2 3

4

56

1

2 3

4

56

Figure 10: The only unit interval graph with τmax(G) = 4 for n = 6 as mentioned in
Theorem 3.2 that does not have τmax(G) = τmin(G), along with two of its contagious
sets, one with τ(G) = 4 and the other with τ(G) = 2.

Graphs can have more than one contagious set of size m(G, 2). Therefore it is
not unexpected that some unit interval graphs with a contagious set with a maximal
possible infection time also have another contagious set of the same size with a
shorter infection time. This is something that is apparent from Theorem 3.1 and
Theorem 3.2, as one of the 3 graphs with a maximal infection time also has another
contagious set with a shorter infection time. This leads us to the proof of Theorem
3.1 and Theorem 3.2.

Proof of Theorem 3.1 and Theorem 3.2. In order to have a unit interval graph, G,
with τ = n − 2 the infection must spread to exactly one new vertex per time step.
This means that G needs to be connected with m(G, 2) = 2.

Since we have r = 2 this means that all vertices except the first and last of G are
required to have exactly 3 neighbours to spread the infection slowly enough. The
first and last vertex are required to have either 3 or 4 neighbours combined. In order

17

for the graph to be connected this means that they either both have 2 neighbours
or one has 1 neighbour and the other 2.

All of this leaves us with only three possible types of graphs. Firstly, we have
the single graph that exists for any n ≥ 3 where the first and last vertex both have
2 neighbours (see Figure 10 for an example). Secondly, we have graphs for n ≥ 4
where either the first or last vertex only has 1 neighbour, while the other has 2.
There exists exactly two of these graphs for any n. An example of these are shown
in Figure 11. In total this leaves us with three graphs for each n ≥ 4 that have a
contagious set with a maximal infection time of τ(G) = n − 2.

We can now easily see that the graph where both the first and last vertices have
2 neighbours can have a shorter infection time than τ = n − 2 if neither of the two
seeds are the first or last vertex of G. However, the other two graphs only have
contagious sets of size 2 with τ = n − 2. This is because it is required that the
vertex with only one neighbour is a seed in order to spread the infection throughout
the whole graph.

1

2 3

4

56

1

2 3

4

56

Figure 11: The two unit interval graph with τmax(G) = 4 for n = 6 as mentioned in
Theorem 3.2 that do have τmax(G) = τmin(G), along with a contagious set for each.

3.2 P3-hull number

For the distribution of the P3-hull number in Table 3 there is an immediate, fa-
miliar number sequence that also appears in both Table 1 and Table 2, namely
3, 5, 8, 13, 21, 34, 55, 89. This is the Fibonacci sequence, Fn, for 4 ≤ n ≤ 11 (see
A000045 in [Slo19]). Therefore we formulate the next theorem.

Theorem 3.3. Given the infection number, r = 2, the total number of graphs,
G ∈ UIG(n) with V (G) = n, that has a P3-hull number equal to n is equal to the

18

http://oeis.org/A000045

n P3-hull number: 2 3 4 5 6 7 8 9 10
3 2 3 0 0 0 0 0 0 0
4 4 5 5 0 0 0 0 0 0
5 10 12 12 8 0 0 0 0 0
6 28 33 33 25 13 0 0 0 0
7 84 98 98 78 50 21 0 0 0
8 264 306 306 250 174 96 34 0 0
9 858 989 991 822 598 369 180 55 0
10 2860 3279 3297 2763 2065 1355 757 331 89

Table 3: Lists the distribution of the P3-hull number of all unit interval graphs, G
in UIG(n).

(n + 1)th Fibonacci Number. That is

|{G ∈ UIG(n) : m(G, 2) = n}| = Fn+1.

This sequence appears in all three tables since all unit interval graphs with a
P3-hull number, m(G, 2) = V (G) must have a maximal and minimal infection time
τ(G) = 0 since all vertices are infected from the start. This observation helps with
the proof of Theorem 3.3.

Proof of Theorem 3.3. For any graph, G, to have a P3-hull number, m(G, r), equal
to its number of vertices, there cannot be any way for an infected vertex to spread
the infection to another vertex. Therefore, since r = 2, no vertex within G can have
more than one neighbour.

In order for G to have m(G, 2) = V (G) all vertices in G have to be partitioned
into blocks consisting of one or two vertices each where each vertex is connected
only to other vertices within the same block.

This means that in order to describe all possible graphs with n vertices we need
to look at all possible combinations of 1s and 2s that add up to n. The Fibonacci
number Fn can be used to describe the number of sequences consisting of 1s and
2s that add up to n − 1 (see A000045 in [Slo19]). Therefore the total number of
graphs with m(G, 2) = V (G) where V (G) = n is equal to the (n + 1)th Fibonacci
number.

The number of unit interval graphs with P3-hull number, m(G, 2) = 2, for a given
number of vertices shown in Table 3, column one, is twice the sequence of Catalan

19

http://oeis.org/A000045

numbers for 0 ≤ n ≤ 8 (see A068875 [Slo19]). This leads us to Theorem 3.4.

Theorem 3.4. For any set of unit interval graphs UIG(n) consisting of n number
of vertices, the number of graphs, G ∈ UIG(n), with m(G, 2) = 2 is equal to two
times the (n − 2)th Catalan number, that is

|{G ∈ UIG(n) : m(G, 2) = 2}| = 2 · Cn−2

for any n ≥ 2.

Before we show the proof of Theorem 3.4 we first introduce a new lemma.

Lemma 3.5. Any connected unit interval graph, G consisting of at least 2 vertices,
whose Dyck path touches the diagonal x = y + 1 at most once, has m(G, 2) = 2.

Lemma 3.5 differs from Theorem 2.13 for c = 1 by applying to graphs even where
one or both components is not complete.

2 6
1 5
2 4
2 3
1 2
0 1

1

2 3

4

56

Figure 12: Shows one example of a unit interval graph with c = 1. From the Dyck
path we can see that the yellow component is not complete. One example of a
contagious set of size 2 is {3, 5}.

Figure 12 shows one unit interval graph where Lemma 3.5 is applicable while
Theorem 2.13 is not. We now give the proof of the lemma.

Proof of Lemma 3.5. From Theorem 2.13 we know that if the two components that
G is divided into by the touching of the diagonal are both complete, then m(G, 2) =
2. Therefore we only need to show that this also holds if one or both components
are not complete.

Since we know that G is connected it is enough that each component has 2
infected vertices that share at least one neighbour for the infection to spread to all

20

http://oeis.org/A068875

vertices of the component. We also know that both components share one vertex,
k.

Therefore, if we place one seed in each component, where they both are connected
with vertex k, then k will become infected. This means that both components will
have 2 infected vertices that share at least one neighbour, a seed and k, which in
turn will spread the infection to all other vertices of G.

This leads us to the proof of Theorem 3.4.

Proof of Theorem 3.4. We begin by looking at what properties unit interval graphs
with m(G, 2) = 2 need to have. Since r = m(G, 2) the graphs all need to be
connected. Lemma 3.5, the number of times, c, the Dyck path of the graphs can
touch the diagonal x = y+1 is at most 1 since the removal of edges can only increase
the P3-hull number.

First, we calculate the number of connected unit interval graphs of size n with
c = 0. In order for a unit interval graph to not touch the diagonal at all, it is required
that it is possible to remove 2 East steps from the top right and 2 North steps from
the bottom left of the Dyck path. This is equivalent to taking all unit interval
graphs of size n − 2 and adding these steps. Therefore there are Cn−2 connected
unit interval graphs of size n with c = 0.

We then need to calculate the number of connected unit interval graphs with
c = 1. It is possible to construct all such unit interval graphs by taking all unit
interval graphs of size n − 2 and splitting their Dyck path representation into two
subgraphs. The first subgraph consists of the path of the unit interval graph until
the first time it touches the x = y + 1 diagonal, and the second subgraph consists
of the rest of the graph. We then raise the second subgraph as earlier, by adding 2
East steps to the top right and 2 North steps to the bottom left of the Dyck path
of the graph. This will give us all possible unit interval graphs with c = 1 and there
are exactly Cn−2 of these graphs.

All in all this leaves us with Cn−2 + Cn−2 = 2 · Cn−2 unit interval graphs of size
n with P3-hull number equal to 2.

21

1 4
2 3
1 2
0 1

→

1 6
1 5
1 4
2 3
1 2
0 1

Figure 13: Shows an example of the first type of Dyck path transformation, for
c = 0, mentioned in the Proof of Theorem 3.4 with the added parts coloured in red.

1 4
2 3
1 2
0 1

→

1 6
1 5
1 4
2 3
1 2
0 1

Figure 14: Shows an example of the second type of Dyck path transformation, for
c = 1, mentioned in the Proof of Theorem 3.4 with the added parts coloured in red.

22

4
Conclusion
We have studied how to calculate the P3-hull number for different types of unit inter-
val graphs. The distribution of the P3-hull number over the whole set of unit interval
graphs of size n has also been investigated, and several patterns have been discussed.
We have also examined the distribution of the infection times for contagious sets the
size of the P3-hull number of unit interval graphs.

There are several avenues for continuing this work. One of the most interesting is
to try to find a formula for calculating the P3-hull number of more general, connected,
unit interval graphs than those consisting only of complete components.

References
[AP18] Per Alexandersson and Greta Panova. LLT polynomials, chromatic

quasisymmetric functions and graphs with cycles. Discrete Math.,
341(12):3453–3482, December 2018.

[FPR18] Daniel Freund, Matthias Poloczek, and Daniel Reichman. Contagious
sets in dense graphs. Eur. J. Comb., 68:66–78, February 2018. URL:
https://doi.org/10.1016/j.ejc.2017.07.011.

[GGS21] Lucıa M González, Luciano N Grippo, and Martın D Safe. Formulas
in connection with parameters related to convexity of paths on three
vertices: caterpillars and unit interval graphs. Australasian Journal of
Combinatorics, 79(3):401–423, 2021.

[GPT+21] Luciano N. Grippo, Adrián Pastine, Pablo Torres, Mario Valencia-Pabon,
and Juan C. Vera. On the P3-hull number of Kneser graphs. The Elec-
tronic Journal of Combinatorics, 28(3), July 2021. doi:10.37236/9903.

[Pon23] Viviane Pons. A description of the Zeta map on Dyck paths area
sequences. working paper or preprint, March 2023. URL: https:
//hal.science/hal-04024002.

[Slo19] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. On-
line, 2019. URL: https://oeis.org.

[SZZ04] Sayyed Bashir Sadjad and Hamid Zarrabi-Zadeh. Unit interval graphs,
properties and algorithms. http://www.cs.haifa.ac.il/~golumbic/
courses/seminar-2013graph/sadjad-unit-interval04.pdf, 2004.
Accessed: 2023-12-10.

25

https://doi.org/10.1016/j.ejc.2017.07.011
https://doi.org/10.37236/9903
https://hal.science/hal-04024002
https://hal.science/hal-04024002
https://oeis.org
http://www.cs.haifa.ac.il/~golumbic/courses/seminar-2013graph/sadjad-unit-interval04.pdf
http://www.cs.haifa.ac.il/~golumbic/courses/seminar-2013graph/sadjad-unit-interval04.pdf

Appendix

Listing 1: Python Code
import i t e r t o o l s

de f v e r t i c e s (n) : # Creates an ordered l i s t o f v e r t i c e s from
1 to n .
re turn l i s t (range (1 , n+1))

de f ui_graph (connec to r_l i s t , v e r t e x _ l i s t) : # Creates a
graph from a so r t ed connect ion l i s t and a so r t ed l i s t o f
v e r t i c e s f o r a un i t i n t e r v a l graph . Returns a l i s t o f
edges o f the c rea ted graph .

graph = [] # Creates a l i s t o f edges o f the graph

f o r i in v e r t e x _ l i s t :
edges = connec to r_ l i s t [i − 1]

whi l e edges > 0 :
new_edge = (i − edges , i)
graph . append (new_edge)
edges −= 1

return graph

de f in f ec t i on_s im (graph , seeds , v e r t e x _ l i s t) : # Ca l cu l a t e s
the i n f e c t i o n spread in the g iven graph with the g iven
seeds . Returns the time i t takes f o r equ i l i b r i um to be
reached as we l l as the equ i l i b r i um graph .

time = 0
o ld_in f e c t ed = seeds

27

whi le True :
new_infected = []
new_infected += old_in f e c t ed

f o r i in v e r t e x _ l i s t :
in f ec ted_ne ighbours = []

i f i not in o ld_in f e c t ed :
ne ighbours = [edge f o r edge in graph i f i in

edge]

f o r j in o ld_in f e c t ed :
i n f e c t e d = [edge f o r edge in ne ighbours

i f j in edge]

i f i n f e c t e d :
in f ec ted_ne ighbours . append (i n f e c t e d)

i f l en (in f ec ted_ne ighbours) > 1 :
new_infected . append (i)

new_infected . s o r t ()

i f l en (new_infected) == len (o ld_in f e c t ed) :

i f o ld_in f e c t ed == v e r t e x _ l i s t : # Checks i f the
i n f e c t i o n has spread to the whole graph
spread = True

e l s e :
spread = False

re turn o ld_infected , time , spread

e l s e :

28

o ld_in f e c t ed = new_infected
time += 1

de f new_layer (l i s t s) : # Creates the next l a y e r o f the
connector l i s t o f the un i t i n t e r v a l graph .

next_layer = []

f o r i in range (0 , l i s t s [−1] + 2) :
new_list = []
new_list += l i s t s
new_list . append (i)
next_layer . append (new_list)

r e turn next_layer

de f connector_generator (n) : # Generates a l l p o s s i b l e
c onnec t o r_ l i s t f o r a unit−i n t e r v a l graph with the g iven
number o f v e r t i c e s .

i f n == 0 :
re turn []

e l s e :
connector s = [[0]]
c onne c to r_ l i s t = []

f o r i in range (0 , n) :
c onne c t o r_ l i s t = connector s
connector s = []

f o r j in range (0 , l en (connec to r_ l i s t)) :
new_connectors = new_layer (connec to r_ l i s t [j

]) # Creates the next l ay e r o f the
connector s .

connector s += new_connectors # Creates a

29

l i s t o f a l l p o s s i b l e c on ne c t o r_ l i s t s
i n c l ud ing the next l ay e r .

r e turn connec to r_ l i s t

de f seed_generator (v e r t ex_ l i s t , no_seeds) : # Generates a l l
p o s s i b l e combinat ions o f s eeds f o r a g iven number o f
s t a r t i n g seeds and re tu rn s them as a l i s t o f l i s t s .

tuple_seeds = l i s t (i t e r t o o l s . combinat ions (ve r t ex_ l i s t ,
no_seeds)) # Creates a l i s t o f t up l e s o f a l l
p o s s i b l e combinat ions o f s eeds o f the g iven number .

s e e d _ l i s t = [l i s t (seed) f o r seed in tuple_seeds] #
Transforms the tup l e l i s t o f s eeds in to a l i s t o f
l i s t s o f s eeds .

r e turn s e e d _ l i s t

de f run (no_vert i ce s) :
v e r t e x _ l i s t = v e r t i c e s (no_vert i ce s)
c onne c t o r_ l i s t = connector_generator (no_vert i ce s)
r e s u l t s = []

f o r connector in connec to r_ l i s t :
graph = ui_graph (connector , v e r t e x _ l i s t)

f o r i in range (2 , no_vert i ce s + 1) :
contag ious_set s = []
s e e d _ l i s t = seed_generator (v e r t ex_ l i s t , i)

f o r s eeds in s e e d _ l i s t :
spread , time , complet ion = in f ec t i on_s im (

graph , seeds , v e r t e x _ l i s t)

i f complet ion :
contag ious_set s += [seeds , time]

30

i f l en (contag ious_set s) > 0 :
data_point = (connector , contag ious_set s)
r e s u l t s += [data_point]
break

return r e s u l t s

de f connector_to_dyck_path (connec to r_ l i s t) : # Transforms a
connec t o r_ l i s t i n to i t s cor re spond ing binary dyck_path .

l ength = len (connec to r_ l i s t)
dyck_path = (2 ∗ l ength) ∗ [0]

f o r i in range (l ength) :
dyck_path [(2 ∗ i) − connec t o r_ l i s t [i]] = 1

return dyck_path

de f data_compiler (raw_data) : # Takes in raw data and
c a l c u l a t e s the h u l l number as we l l as the l ong e s t and
s h o r t e s t i n f e c t i o n t imes f o r each data po int .

compi led_data_l ist = []

f o r data_point in raw_data :
hull_number = len (data_point [1] [0])
sho r t e s t_ in f e c t i on_t ime = len (data_point [0])
l onges t_in f ec t i on_t ime = 0

f o r i in range (l en (data_point [1])) :

i f i % 2 == 1 :
time = data_point [1] [i]

i f time > longes t_in f ec t i on_t ime :

31

l onges t_in f ec t i on_t ime = time

i f time < shor t e s t_ in f e c t i on_t ime :
sho r t e s t_ in f e c t i on_t ime = time

compiled_data = (data_point [0] , [hull_number ,
shor te s t_in f ec t ion_t ime , l onges t_ in f ec t i on_t ime])

compi led_data_l ist . append (compiled_data)

re turn compi led_data_l ist

de f data_analys i s (data) : # Takes in a compiled data l i s t
and re tu rn s the time d i s t r i b u t i o n f o r the l ong e s t and
s h o r t e s t i n f e c t i o n time f o r the h u l l number .

v e r t i c e s = len (data [0] [0])
t ime_di s t r ibut ion_short = v e r t i c e s ∗ [0]
t ime_dis t r ibut ion_long = v e r t i c e s ∗ [0]
hul l_number_distr ibut ion = (v e r t i c e s + 1) ∗ [0]

f o r i in data :
t ime_di s t r ibut ion_short [i [1] [1]] += 1
t ime_dis t r ibut ion_long [i [1] [2]] += 1
hul l_number_distr ibut ion [i [1] [0]] += 1

return t ime_dist r ibut ion_short , t ime_distr ibut ion_long ,
hul l_number_distr ibut ion

32

	58430b7d-e7f9-46f6-b944-5e512fa16c33.pdf
	Introduction
	Background information
	Infections in graphs
	Unit interval graphs

	Data
	Infection times
	P3-hull number

	Conclusion
	References
	Appendix

