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Abstract

The Steinberg module is a certain homology group of the curve com-
plex of a surface considered as a module over the mapping class group of
the surface. In this paper we will define the Steinberg module and exam-
ine some of its properties. Most notably we will look at a presentation for
the Steinberg module and at a proof that it is cyclic.

Sammanfattning

Steinbergmodulen av en yta är en viss homologigrupp av ytans kurv-
komplex sedd som modul över ytans avbildningsklassgrupp. I den här
uppsatsen kommer vi definiera Steinbergmodulen och undersöka vissa av
dess egenskaper. Framför allt kommer vi att se en presentation av Stein-
bergmodulen samt att den är cyklisk.
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1 Introduction

The mapping class group is an important object of study in geometric and
algebraic topology and related fields. It is an algebraic invariant of a topological
space which contains information about the different kinds of automorphisms
of the space. It was first studied by Max Dehn and Jakob Nielsen in the first
part of the twentieth century.

This paper will focus on connections between the mapping class group of
surfaces and a certain simplicial complex associated to a surface called the curve
complex. The simplices in the curve complex are collections of curves in the
surface which are non-trivial and, in a certain sense, different from each other.
John L. Harer established in [7] that the curve complex is homotopy equivalent
to a wedge sum of spheres.

The interplay between the mapping class group and the curve complex comes
from the fact that there is a natural action of the mapping class group on the
complex of curves. This turns the homology groups of the curve complex into
a module over the mapping class group. The Steinberg module is defined as a
certain homology group of the curve complex.

In this paper we will give a definition of the curve complex and the Steinberg
module. We will also look at another simplicial complex associated to a surface
with a marked point, which is constructed in a similar way to the curve complex
but using loops based at the marked point instead of general curves, this is called
the arc complex. A certain subcomplex of the arc complex which is called the arc
complex at infinity turns out to be homotopy equivalent to the curve complex,
as shown by Harer in [7].

The arc complex is in many ways easier to deal with than the curve complex,
one reason for this is that arc systems (the simplices in the arc complex) can be
pictorially represented by chord diagrams, which makes calculations easier.

Figure 1: An example of a chord diagram representing a simplex in the arc
complex.

We will look at results from Nathan Broaddus in [2] concerning the Steinberg
module of closed surfaces and surfaces with one marked point. Most notably
we will look at a presentation of the Steinberg module, and we will see that it is
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cyclic as a module over the mapping class group by giving an explicit generator
for it.

We are also going to look at Harer’s homotopy equivalence between the curve
complex and the arc complex at infinity, and how it can be used to exhibit
explicit non-trivial spheres in the curve complex using the generator for the
Steinberg module.

Finally we will see how Church, Farb and Putman used Broaddus’ work in [4]
to deduce a result about the rational cohomology of the mapping class group.
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2 Preliminaries

This section will cover notation and some important definitions that will be
used throughout the paper. The unit interval [0, 1] will be denoted by I. The
notation A ⊂ B does not exclude the possibility that A = B.

Definition 2.1. Let f, g : X → Y be embeddings. An isotopy between f and
g is a map H : X × I → Y such that H(−, 0) = f , H(−, 1) = g and H(−, t)
is an embedding for each t ∈ I. If such a map exists we say that f and g are
isotopic.

Note the similarity between isotopy and homotopy, the difference is that
an isotopy requires each member of the family of maps to be an embedding.
Obviously isotopic maps are also homotopic, but the converse does not need to
be true.

2.1 Surfaces

A surface is a topological space which locally looks like the Euclidean plane or
half-plane. Formally we define a surface as follows.

Definition 2.2. Let S be a Hausdorff and second-countable manifold (possibly
with boundary) of dimension 2. Then we say that S is a surface. If the
boundary ∂S is empty we say that S is a closed surface.

An important operation on surfaces is the connected sum. If S and S′ are
surfaces their connected sum S#S′ is constructed by deleting a small disk from
both S and S′ and then attaching the surfaces together along the boundary of
the respective discs. It turns out that the resulting surface is independent of
which disks we choose (up to homeomorphism, of course).

There is a well-known theorem called the classification theorem for closed
surfaces which states that any closed, connected surface is homeomorphic to
either a sphere, a connected sum of some number of tori, or a connected sum of
a number of projective planes. In the first two cases the surface is orientable,
in the third case it is not.

In this paper we will mostly consider surfaces that are connected sums of
tori. We will denote the closed surface which is the connected sum of g tori by
Σg, and Σn

g will denote the same surface but with n marked points.

2.1.1 Genus and Euler characteristic

In this section we will define the genus and Euler characteristic of a surface, and
recall some important basic results about these.

Definition 2.3. Let X be a finite cell complex and let Xn be the set of n-cells.
Then the Euler characteristic of X is defined as the number

χ(X) = |X0| − |X1|+ |X2| − |X3|+ ...
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and if X is a surface (i.e. only has cells of dimension 0, 1 and 2) this just reduces
to χ(X) = |X0| − |X1|+ |X2|. The Euler characteristic of a simplicial complex
is defined similarly (with the number of n-simplices instead of the number of
n-cells).

Remark 2.4. The Euler characteristic can be defined for a general topological
space as the alternating sum of the ranks of the homology groups of the space,
and if the space has a simplicial decomposition or a cell decomposition the
general definition will agree with the previous definition. Also note that since
it can be defined using the homology groups it is a topological invariant.

The genus of an orientable surface can be defined in terms of the Euler
characteristic.

Definition 2.5. The genus g of an orientable surface S is defined by the
equation

χ = 2− 2g

where χ is the Euler characteristic of S.

Example 2.6. The sphere Σ0 = S2 has a cell decomposition given by starting
with a point, attaching an interval to it to get a circle and then attach two disks
to the circle. This gives a cell decomposition with one 0-cell, one 1-cell and two
2-cells, so we have χ(S2) = 1 − 1 + 2 = 2 and by the formula χ = 2 − 2g this
shows that the genus of S2 is 0.

Example 2.7. Consider the torus Σ1 = T 2. If we cut the torus along the
two curves going once around the longitude and once around the meridian we
obtain a disk. This gives a cell decomposition of the surface with one 0-cell (the
intersection of the two curves), two 1-cells (the curves themselves) and a single
2-cell. We can then compute the Euler characteristic to be χ(T 2) = 1−2+1 = 0
and the genus g = 1

2 (2− χ) = 1
2 (2− 0) = 1.

More generally it is true that Σn
g has genus g.

2.1.2 The mapping class group of a surface

Let S be a surface. The mapping class group of a surface is an important
algebraic invariant that encodes information about the automorphisms of the
surface.

To define the mapping class group, first let Aut+(S) be the set of all home-
omorphisms from S to itself that preserve the orientation of S and fixes the
boundary of S. Then Aut+(S) has a natural group structure given by compo-
sition.

Furthermore, let Aut+0 (S) denote the subgroup of homeomorphisms that are
isotopic to the identity.

Definition 2.8. We define the mapping class group of S to be the quotient
group

Mod(S) = Aut+(S)/Aut+0 (S).
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Note that Mod(S) is in fact a group since if g is isotopic to the identity by
the isotopy H and f ∈ Aut+(S) then f ◦H ◦ (f−1, idI) gives an isotopy between
fgf−1 and the identity, so Aut+0 (S) is a normal subgroup of Aut+(S).

There is an important exact sequence called the Birman exact sequence
which relates Mod(Σn+1

g ) with Mod(Σn
g ) if g ≥ 2. A proof of this can be found

in for example [5].

Theorem 2.9. Let x denote the additional marked point in Σn+1
g and let g ≥ 2.

Then there is an exact sequence of groups

1 → π1(Σ
n
g , x) → Mod(Σn+1

g ) → Mod(Σn
g ) → 1.

The map Mod(Σn+1
g ) → Mod(Σn

g ) in the Birman exact sequence is given by
simply forgetting the additional marked point.

The map from π1(Σ
n
g , x) to Mod(Σn+1

g ) is a bit more complicated, but essen-
tially it takes a loop α ∈ π1(Σ

n
g , x) and considers it as an isotopy from the point

x to itself (or more explicitly an isotopy from f to itself where f : {∗} → Σn
g

is defined by f(∗) = x), and then we extend this isotopy to the whole surface
and define the image of α to be the homeomorphism of Σ1

g at the end of this
isotopy.

Definition 2.10. The subgroup of Mod(Σn+1
g ) which is the image of the in-

clusion π1(Σ
n
g , x) → Mod(Σn+1

g ) from the Birman exact sequence (or the triv-
ial group in the case of g = 1) is called the point-pushing subgroup of
Mod(Σn+1

g ).

2.2 Group (co)homology and duality groups

2.2.1 Group modules

Here we will define modules over a group and recall some of their properties.

Definition 2.11. Let G be a group. A (left) G-module is an abelian group
M together with a group action · : G×M → M such that

g · (x+ y) = g · x+ g · y

for all g ∈ G and x, y ∈ M . Or equivalently an abelian group M together with
a group homomorphism G → End(M).

Example 2.12. Let M be any abelian group and G any group. Then M is a
G-module with the G-module structure defined by g · x = x for all g ∈ G and
x ∈ M , this is called the trivial G-module structure.

There is a certain ring denoted Z[G] such that modules over that ring cor-
respond exactly to G-modules. When we write A⊗GB for G-modules A and B
it will mean A⊗Z[G] B. The ring ZG is defined as follows.

Definition 2.13. Let G be a group. Define Z[G] as the set of formal linear
combinations of elements in G over Z, addition is defined in the obvious way
and the multiplication is defined so that the distributive laws hold.
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Example 2.14. Let G be the infinite cyclic group generated by an element x,
so G ∼= Z. Then the group ring Z[G] is isomorphic to Z[x, x−1].

Morphisms between G-modules are called G-equivariant maps, and are de-
fined as follows.

Definition 2.15. Let M and N be G-modules. A function f : M → N is called
a G-equivariant map if

f(g ·m) = g · f(m)

for all g ∈ G and m ∈ M .

2.2.2 Group homology and cohomology

There are many different ways to define homology and cohomology of a group,
for our purposes it will be easiest to define it in terms of the Tor and Ext
functors.

Definition 2.16. LetG be a group andM aG-module. We define the homology
groups of G with coefficients in M by

Hn(G;M) = TorZGn (Z,M)

and similarly we define the cohomology groups by

Hn(G;M) = ExtnZG(Z,M)

where in both cases we view Z as a G-module with the trivial G-module struc-
ture.

To be a bit more explicit, to compute Hn(G;M) and Hn(G,M) we would
start with a projective resolution of Z with the trivial G-module structure, in
other words an exact sequence of the form

· · · → P1 → P0 → Z → 0

where the Pi are projective G-modules, and then we remove Z to get the chain
complex

· · · → P1 → P0 → 0.

Now to compute Hn(G;M) we would tensor the chain complex above with M
to get

· · · → P1 ⊗G M → P0 ⊗G M → 0

and then Hn(G;M) would be the n:th homology of this chain complex. If we
apply Hom(−,M) instead of −⊗G M to the chain complex we get

0 → HomG(P0,M) → HomG(P1,M) → · · ·

and the n:th cohomology of this chain complex would be Hn(G;M).
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2.2.3 Duality groups

There is a generalisation of Poincaré duality defined by Bieri and Eckmann
in [1]. The usual Poincaré duality for groups is defined so that G is a Poincaré
duality group if there is an integer n and a G-module structure on Z such that

Hk(G;A) ∼= Hn−k(G;Z⊗Z A)

for all G-modules A, where the G-module structure on Z ⊗Z A is defined by
g(z ⊗ a) = gz ⊗ ga. This can be generalised by replacing Z with an arbitrary
module.

Definition 2.17. Let G be a group. We say that G is a Bieri-Eckmann
duality group if there is a G-module D and an integer n such that

Hk(G;A) ∼= Hn−k(G;D ⊗Z A)

for all G-modules A, where again the G-module structure on D⊗Z A is defined
by g(d⊗ a) = gd⊗ ga. The module D is called the dualizing module for G.

2.3 The long exact sequence of a triple

Consider a triple of spaces (X,Y, Z), where Z ⊂ Y ⊂ X. Then we have the
following long exact sequence of their relative homology groups.

Lemma 2.18. For a triple of spaces (X,Y, Z) the sequence

· · · → Hn(Y,Z;Z) → Hn(X,Z;Z) → Hn(X,Y ;Z) → Hn−1(Y,Z;Z) → · · ·

is exact.

Proof. There is an exact sequence of relative chain complexes

0 → C•(Y, Z) → C•(X,Z) → C•(X,Y ) → 0

where the map C•(Y, Z) → C•(X,Z) is induced by the inclusion Y ↪→ X and
the map C•(X,Z) → C•(X,Y ) is the quotient map (which makes sense since
we can view C•(X,Y ) as C•(X,Z)/C•(Y, Z)). A short exact sequence of chain
complexes induces a long exact sequence in homology, which in this case gives
the long exact sequence above.

We will later make use of the following special case.

Corollary 2.19. For a pair of spaces (X,Y ) the sequence

· · · → H̃n(Y ;Z) → H̃n(X;Z) → Hn(X,Y ;Z) → H̃n−1(Y ;Z) → · · ·

is exact.
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Proof. Let x ∈ Y ⊂ X. If we consider the triple (X,Y, {x}) we get from the
above lemma the long exact sequence

· · · → Hn(Y, {x};Z) → Hn(X, {x};Z) → Hn(X,Y ;Z) → Hn−1(Y, {x};Z) → · · ·

which since H̃n(X;Z) ∼= Hn(X, {x};Z) and H̃n(Y ;Z) ∼= Hn(Y, {x};Z) gives
that

· · · → H̃n(Y ;Z) → H̃n(X;Z) → Hn(X,Y ;Z) → H̃n−1(Y ;Z) → · · ·

is exact.

Remark 2.20. In the case where (X,Y ) is a good pair we have the isomorphism
Hn(X,Y ;Z) ∼= H̃n(X/Y ;Z), so the long exact sequence above becomes the
following long exact sequence in reduced homology

· · · → H̃n(Y ;Z) → H̃n(X;Z) → H̃n(X/Y ;Z) → H̃n−1(Y ;Z) → · · · .
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3 The Steinberg module

The Steinberg module of Σ1
g and Σg will be defined as a certain homology group

of a simplicial complex associated to the surface. In this section we will define
this simplicial complex and then the Steinberg module, and we will also discuss
some properties of the Steinberg module.

3.1 The curve complex and the arc complex

Here we will define some important simplicial complexes associated with Σ1
g and

Σg, which will then be used to define and to study the Steinberg modules of the
two surfaces. The simplices in the complexes will be certain collection of curves
and arcs as defined below.

Definition 3.1. Let ∗ be the marked point in Σ1
g. A curve in Σ1

g will be defined
as an isotopy class of embedded loops in Σ1

g − {∗}, and similarly in Σg it will
be defined as an isotopy class of embedded loops in Σg.

An arc in Σ1
g will be defined as an isotopy class of embedded loops in Σ1

g

based at ∗. We will exclude curves and arcs that bound a disk or a once
punctured disk from the definition.

We can now define the curve complex and the arc complex as in [2].

Definition 3.2. A curve system is a set of curves such that we can choose
isotopy representatives of each of the curves that are disjoint.

The curve complex of Σ1
g, which will be denoted by C(Σ1

g), is defined as
the simplicial complex with n-simplices consisting of curve systems with n + 1
curves and inclusion as face relation. The curve complex of Σg, denoted C(Σg),
is defined in the same way.

Definition 3.3. An arc system is a set of arcs such that we can choose isotopy
representatives of each of the arcs that only intersect at the marked point.

The arc complex of Σ1
g, denoted A(Σ1

g), is defined as the simplicial complex
with n-simplices given by arc systems with n + 1 arcs and inclusion as face
relation.

There is also an important subcomplex of A(Σ1
g). We first need to define

the notion of a filling arc system.

Definition 3.4. Let a ∈ A(Σ1
g). We say that a fills Σ1

g if all the connected
components of Σ1

g − ∪a are disks.
We will call an arc system a a k-filling system if a is a filling system with

2g + k arcs.

The reason for the terminology “k-filling system” is that a k-filling system
cuts the surface into exactly k+1 disks, and in particular a 0-filling system cuts
the surface into a single disk.

This can be seen by a computation using Euler characteristic, if we have a
k-filling system it gives a cell decomposition of the surface where the number of
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0-cells is one, the number of 1-cells is 2g+ k (the number of arcs) and where we
let d be the number of 2-cells (the number of disks the arcs cut the surface into).
Then this cell decomposition gives that the Euler characteristic of the surface
is d − 2g − k + 1 but on the other hand we know that the Euler characteristic
of Σ1

g is 2− 2g, so d = k + 1 and thus if we have a k-filling system it has to cut
the surface into k + 1 disks.

We now define the subcomplex of the arc complex called the arc complex at
infinity.

Definition 3.5. Let A∞(Σ1
g) be the subcomplex of A(Σ1

g) consisting of all arc
systems that do not fill Σ1

g.

Remark 3.6. To simplify notation we will often denote A(Σ1
g) and A∞(Σ1

g) by
simply A and A∞, respectively.

3.2 The Steinberg module

We can now give the definition of the Steinberg module.

Definition 3.7. Let S be either Σg or Σ1
g. We define the Steinberg module

St(S) by
St(S) = H̃2g−2(C(S);Z).

We have that St(S) is a Mod(S)-module since f ∈ Mod(S) acts on C(S) (a
homeomorphism will map a curve system to a curve system), and thus we get
an action of Mod(S) on St(S) as well. Furthermore, St(Σg) is also a Mod(Σ1

g)-
module since any homeomorphism of Σ1

g is also a homeomorphism of Σg. Harer
shows in [7] that there is a homotopy equivalence C(Σ1

g) ≃ C(Σg) which is
Mod(Σ1

g)-equivariant, and thus we have the following lemma.

Lemma 3.8. As Mod(Σ1
g)-modules, St(Σ1

g)
∼= St(Σg).

Note that a consequence of this is that the action of Mod(Σ1
g) on St(Σ1

g)
factors through Mod(Σg) since Mod(Σg) is isomorphic to a quotient of Mod(Σ1

g)
by the Birman exact sequence, so we also have

Lemma 3.9. As Mod(Σg)-modules, St(Σ1
g)

∼= St(Σg).

Another characterisation of St(Σ1
g) which will be useful later is the following,

which follows from the homotopy equivalence between C(Σ1
g) and A∞(Σ1

g) given
by Harer in [7]. We will later give an overview of what this homotopy equivalence
looks like.

Lemma 3.10. We have an isomorphism St(Σ1
g)

∼= H̃2g−2(A∞(Σ1
g);Z).

3.3 The Steinberg module is a dualizing module

Let Σ be either Σg or Σ1
g. Harer showed in [7] that any finite index subgroup

of Mod(Σ) is a Bieri-Eckmann duality group and that St(Σ) is the dualizing
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module, or in other words, that for a finite index subgroup Γ ⊂ Mod(Σ) we
have

Hk(Γ;A) ∼= Hd−k(Γ; St(Σ)⊗Z A)

for all Γ-modules A and natural numbers k, where d is 4g− 3 for Σ1
g and 4g− 5

for Σg.

3.4 A presentation of the Steinberg module

We will now exhibit presentations for St(Σ1
g) and St(Σg). To do this we will

first give a resolution of St(Σ1
g) as a Mod(Σ1

g)-module as in [2]. We will use the
following two results which were established by Harer in [7] and [6].

Theorem 3.11. The arc complex A(Σ1
g) is contractible.

Theorem 3.12. The arc complex at infinity A∞(Σ1
g) is homotopy equivalent

to a wedge sum of spheres of dimension 2g − 2.

We will first use this to prove the following lemma which gives yet another
characterisation of the Steinberg module.

Lemma 3.13. We have an isomorphism St(Σ1
g)

∼= H2g−1(A/A∞;Z).

Proof. Consider the long exact sequence in reduced homology for the pair of
spaces (A,A∞) from corollary 2.19, in particular we have that the sequence

H̃k+1(A;Z) → Hk+1(A,A∞;Z) → H̃k(A∞;Z) → H̃k(A;Z)

is exact for all k ≥ 0. But by 3.11 and since Hk+1(A,A∞;Z) ∼= H̃k+1(A/A∞;Z)
this just becomes

0 → H̃k+1(A/A∞;Z) → H̃k(A∞;Z) → 0

and thus we get the isomorphism

H̃k(A∞;Z) ∼= H̃k+1(A/A∞;Z)

for all k ≥ 0, and therefore

St(Σ1
g)

∼= H̃2g−2(A∞;Z) ∼= H̃2g−1(A/A∞;Z) = H2g−1(A/A∞;Z).

Now we can give the resolution. Let

Ck = C2g−1+k(A/A∞;Z)

and consider the chain complex C• with the same boundary maps as the chain
complex for A/A∞.
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Lemma 3.14. Let C• be the chain complex as defined above, then there is a
resolution

0 → C4g−3
∂→ · · · ∂→ C1

∂→ C0
q→ St(Σ1

g) → 0.

Proof. We follow the general idea of the proof from [2]. By definition C• is the
cellular chain complex for A/A∞ with shifted indices, so we can calculate it’s
homology by

Hk(C•) = H2g−1+k(A/A∞;Z) ∼= H̃2g−2+k(A∞;Z)

so H0(C•) ∼= St(Σ1
g) by 3.13 and by 3.12 all other homology is trivial. Now since

H0(C•) = C0/im(∂) we can let q be the projection map, then the sequence

· · · → C4g−2 → C4g−3
∂→ · · · ∂→ C1

∂→ C0
q→ St(Σ1

g) → 0

is exact since by definition of q we have ker(q) = im(∂) and q is surjective, and
we already know that all higher homology of the sequence is trivial.

Finally, an arc system with as many arcs as possible would be a one-vertex
triangulation of the surface since otherwise we could add another arc to the arc
system, and if a is the number of arcs in a one-vertex triangulation then the
number of triangles would be 2

3a since each edge meets two of the triangles, thus
by the Euler characteristic we get a = 6g − 3 which means that an arc system
can have at most 6g − 3 arcs, and thus A has dimension 6g − 4 which means
that A/A∞ also has dimension 6g−4 and thus Ck = 0 when 2g−1+k > 6g−4
which is equivalent to k > 4g − 3, this completes the proof since setting Ck = 0
for k > 4g − 3 in the sequence above gives the resolution.

Since Ck = Ck(A/A∞;Z) the elements of Ck will be Z-linear combinations
of cells of dimension 2g − 1 in A/A∞, but such a cell is by definition a k-filling
arc system. Furthermore, Ck is actually finitely generated if we consider it as a
Mod(Σ1

g)-module, as the following lemma shows.

Lemma 3.15. The Mod(Σ1
g)-module Ck is generated by finitely many of k-filling

systems.

Proof. A k-filling system in Σ1
g gives a one-vertex cell decomposition of Σ1

g, but
there’s only finitely many topologically distinct (and by this we mean that two
such decompositions would not be distinct if a mapping class maps one to the
other), and for all such decompositions which are topologically the same type
there has to exist an element of Mod(Σ1

g) taking one to the other, so we only
need a single representative from each of these classes of arc systems. This
implies that Ck has to be finitely generated as a Mod(Σ1

g)-module.

Before giving the presentations we need one more lemma concerning the
stabilizers of 0-filling arc systems.

Lemma 3.16. For a 0-filling arc system α in Σ1
g its stabilizer is finite and

cyclic.
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Proof. A 0-filling system cuts the surface into a single 4g-gon, so the stabilizer of
the 0-filling system has to be a subgroup of the group of rotational symmetries
of a regular 4g-gon.

There is another definition we need to look at before we can give the pre-
sentations.

Definition 3.17. Let M be a G-module and let H ⊂ G be a subgroup. We
define the H -co-invariants of M , denoted MH , as the quotient

M/{hm−m : h ∈ H,m ∈ M}.

Note that if H ⊂ G is a normal subgroup and M is a G-module then MH

will also be a G/H-module, since if g, g′ ∈ G are in the same coset of H, i.e.
g = g′h for h ∈ G, then

gm = g′hm = g′(hm− (hm−m)) = g′m

for all m ∈ M , so the action of G on MH respects the equivalence relation which
we quotient G by to get G/H.

We can now give presentations for St(Σ1
g) and St(Σg). The proof will follow

[2] closely.

Theorem 3.18. Let g ≥ 1. By 3.15 we can choose oriented representatives
ϕ0, ..., ϕn for each of the orbits of 0-filling systems. Let hi ∈ Mod(Σ1

g) be a
generator for the stabilizer of the arc system ϕi and let ei be the sign of the
permutation that hi induces on the set of arcs in ϕi. Similarly choose oriented
representatives ρ0, ...ρm for each of the orbits of 1-filling systems. Then St(Σ1

g)
has a presentation

⟨ϕ0, ..., ϕn|∂ρ0, ..., ∂ρm, (1− e0h0)ϕ0, ..., (1− enhn)ϕn⟩

and if we send the coefficients in this presentation to their images in ZMod(Σg)
under the homomorphism Z[Mod(Σ1

g)] → Z[Mod(Σg)] defined by forgetting the
marked point we get a presentation for St(Σg).

Proof. By lemma 3.14 we have the isomorphism

St(Σ1
g)

∼= C0/∂C1

and we know that every (oriented) 0-filling system in Σ1
g has to be of the form

±hϕi for some h ∈ Mod(Σ1
g), so {ϕ0, ..., ϕn} spans C0 as a Mod(Σ1

g)-module.
The only linear dependencies in C0 are those that arise from stabilizers (which
we know from lemma 3.16 are finite cyclic), so for instance we should have that
e0h0ϕ0 = ϕ0. Consequently, we have that

C0 = ⟨ϕ0, ..., ϕn|(1− e0h0)ϕ0, ..., (1− enhn)ϕn⟩

and similarly that C1 is generated by ρ0, ..., ρm, therefore it follows that

⟨ϕ0, ..., ϕn|∂ρ0, ..., ∂ρm, (1− e0h0)ϕ0, ..., (1− enhn)ϕn⟩.
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For St(Σg) it’s not quite as simple since we don’t have a resolution of St(Σg)
as a Mod(Σg)-module, but to show that the presentation holds in this case as
well we start by considering the Birman exact sequence which was described in
theorem 2.9. In the case where g > 1 we get that the sequence

1 → π1(Σg, ∗) → Mod(Σ1
g) → Mod(Σg) → 1

is exact, where ∗ is the marked point in Σ1
g. Now let P be the point-pushing

subgroup of Mod(Σ1
g), i.e. the kernel of the map Mod(Σ1

g) → Mod(Σg) in the
exact sequence for g > 1 or the trivial group in the case where g = 1.

Now recall the exact sequence

C1 → C0 → St(Σ1
g) → 0

and take P -co-invariants to get the sequence

(C1)P → (C0)P → St(Σ1
g)P → 0

which will still be exact since taking co-invariants is right exact (this is shown
for example in II.2 of [3]).

Now we can use lemma 3.9 to conclude that

St(Σ1
g)P

∼= St(Σ1
g)

∼= St(Σg)

as Mod(Σg)-modules, so we have from the exact sequence that

St(Σg) ∼= (C0)P /(∂(C1))P .

The presentation for St(Σg) then follows since taking P -co-invariants of C0 and
C1 will send the coefficients in the presentation for St(Σ1

g) to their equivalence
classes in the quotient Mod(Σg) ∼= Mod(Σ1

g)/P .

3.5 Chord diagrams

A filling arc system can be represented by a chord diagram, and this makes it
easier to work with them and describe them. We will now define chord diagrams
and explain their connection to arc systems, and later we will be able to use
this to show that St(Σ1

g) is a cyclic Mod(Σ1
g)-module as in [2].

Definition 3.19. Let ∗ be the marked point in Σ1
g. A chord diagram is a

regular 2n-gon with the vertices paired up in a way such that no two adjacent
vertices are paired.

We will draw the 2n-gon as a circle, and two paired vertices will be connected
by a chord. Each chord will be labelled with an element of π1(Σg, ∗) representing
an arc in a filling arc system.

Given a filling arc system in Σ1
g with n arcs we construct its chord diagram

by choosing a neighborhood of ∗ in the shape of a 2n-gon so that each arc leaves
and reenters the neighborhood at a vertex of the 2n-gon. For each arc we then

17



Figure 2: Two chord diagrams representing arc systems.

draw a chord between the vertices where it leaves and reenters the neighborhood
and label the chord by the corresponding element of π1(Σg, ∗).

For example, the left chord diagram in figure 2 corresponds to the 0-filling
arc system in Σ1

1 consisting of one arc going once around the longitude of the
torus and one arc going around a meridian, and the right chord diagram in
figure 2 corresponds to a 0-filling arc system in Σ1

2.
We will now define what a cycle in a chord diagram is. Choose a point just

inside the outer edge of the diagram, and start walking in a clockwise direction
so that the edge is on the left side until you encounter a chord, turn right and
then walk along the chord until you get back to the outer edge (again always
keeping the line on the left side), continue until you get back to the point where
you started, this is a cycle.

More formally, we will define a cycle as follows.

Definition 3.20. Consider a chord diagram. A cycle in the chord diagram
is an alternating sequence of chords and outer edges obtained by the process
described above.

Figure 3: A cycle in a chord diagram.
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Definition 3.21. If two chords in a chord diagram bound a rectangular cycle
together with two outer edges, we say that the chords are parallel.

We can also recover a surface from a given chord diagram. If we take a
chord diagram with n chords and glue a disk along each of its cycles, we obtain
a surface which has the arc system corresponding to the chord diagram as a
filling arc system. This also gives a cell decomposition of the surface with one
0-cell, one 1-cell for each chord, and if c is the number of cycles in the chord
diagrams it will also be the number of 2-cells in the cell decomposition. Thus
the Euler characteristic of the surface is 1− n+ b and the genus

g =
2− (1− n+ b)

2
=

n− 1 + b

2
.

From this we can see that a chord diagram with 2g chords corresponds to a
0-filling system in a surface of genus g if and only if the chord diagram has a
single cycle.

More generally, we can identify k-filling systems in Σ1
g with chord diagrams

which have 2g+ k chords, k+1 cycles and no parallel chords (since arc systems
can’t have parallel arcs).

3.6 The Steinberg module is cyclic

We know from lemma 3.14 that

St(Σ1
g)

∼= C0/∂C1.

Surprisingly, it turns out that St(Σ1
g) is in fact cyclic, meaning that it will

be generated by the class of a certain 0-filling arc system whose chord diagram
(with 2g chords) is pictured to the left in figure 4, and to the right we can see
how it would look for g = 2.

Figure 4: A generator for St(Σ1
g), and the special case where g=2.

To prove this we will first need to prove a few lemmas about chord diagrams.
The proof of the theorem and the lemmas are based on the proofs in [2]. We will
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define a certain type of chord diagram where each of its connected components
has the same form as a part of the chord diagram in figure 4, then we will show
that the set of all such chord diagrams generate St(Σ1

g) and that the one in figure
4 is the only such chord diagram which represents a non-trivial equivalence class
in the quotient C0/∂C1.

Definition 3.22. A chord diagram such that each of its connected components
look like a part of the chord diagram in figure 4 will be called a salient chord
diagram. If only a part of the chord diagram looks like that, and this part
consists of n chords, we will say that the chord diagram has a salient tail of
length n.

Now we will prove that disconnected chord diagrams represent the trivial
class in St(Σ1

g), from which is follows that St(Σ1
g) is generated by all the con-

nected chord diagrams.

Lemma 3.23. Let α be a chord diagram representing a 0-filling system in Σ1
g

and assume that α is disconnected. Then [α] = 0 in St(Σ1
g).

Proof. We need to show that α is in ∂C1. Let αc be the chord system obtained
by adding a chord c to α which does not cross any other chords (which exists
since α is disconnected). Note that αc will be a 1-filling system as long as c is
not parallel to any chord in α, but if there was a chord c′ in α parallel to c then
c′ would not cross any of the other chords in α, so α would have at least two
different cycles, contradicting that α is a 0-filling system. Therefore αc has to
be a 1-filling system.

Furthermore, the only way to obtain a 0-filling system by removing a chord
from αc is to remove c, since by the same argument removing any other chord
would give a chord diagram with two different cycles so it can’t be a 0-filling
system. We thus have that ∂αc = ±α and consequently α = ∂(±αc) ∈ ∂C1
showing that [α] = 0 in St(Σ1

g).

Lemma 3.24. The Steinberg module St(Σ1
g) is generated by the equivalence

classes of all the salient 0-filling systems.

Proof. Let α be a chord diagram representing a 0-filling system. There’s some
n ≥ 0 such that α has a salient tail of length n, and if we add a chord c we can
extend the salient tail of length n to one of length n+1, let αc be the resulting
chord diagram.

Then we have that ∂αc is the sum of ±α and other terms which are obtained
by removing a chord from αc, but removing a chord other than c from the salient
tail in αc would give a disconnected chord diagram, so these other terms will
either be trivial (by the previous lemma) or have a salient tail of length n+ 1.
It thus follows that

[∂αc] = 0 = ±[α]± [β1]± ...± [βm]

so that
[α] = ±[β1]± ...± [βm]
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where each βi has a salient tail of length n+1. A 0-filling system has 2g chords,
so if we iterate this process at the most 2g times we will have written the class
of α as linear combinations of chord diagrams with salient tails of length 2g,
i.e. salient chord diagrams. Thus all 0-filling systems is generated by salient
ones.

Now that we have established these two lemmas the fact that St(Σ1
g) follows

almost directly.

Theorem 3.25. Let ϕ0 be the generator in figure 4. Then St(Σ1
g) is generated

by [ϕ0].

Proof. We know by lemma 3.24 that St(Σ1
g) is generated by salient 0-filling

systems, but by lemma 3.23 all of these are trivial in St(Σ1
g) except [ϕ0] since ϕ0

is the unique connected salient 0-filling system, so St(Σ1
g) is generated by just

[ϕ0].

Corollary 3.26. The class of ϕ0 is nontrivial in St(Σ1
g) for all g ≥ 1.

Proof. If [ϕ0] = 0 we would have St(Σ1
g) = 0 by theorem 3.25, but this is not

possible since St(Σ1
g) is the dualizing module for any finite-index subgroup of

Mod(Σ1
g).

To be explicit, if we let G ⊂ Mod(Σ1
g) be a finite-index subgroup and we

assume that St(Σ1
g) = 0 we would have

Hk(G;M) = H4g−3−k(G; 0⊗G M) = H4g−3−k(G; 0) = TorZG4g−3−k(Z; 0) = 0

for any G-module M . But on the other hand, letting M = Z with the trivial
G-module structure we get

H0(G;Z) = Ext0ZG(Z,Z) ∼= HomG(Z,Z) = 0

which clearly can’t be true, for example f : Z → Z with f(x) = x for all x ∈ Z
is a nonzero map which is G-equivariant since f(g · x) = f(x) = g · f(x) due to
both copies of Z having the trivial G-module structure.

Remark 3.27. Note that from the proof of theorem 3.4 we see that St(Σg)
is also cyclic, and is generated by the class of ϕ0, since we had that St(Σg) ∼=
St(Σ1

g)P .
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4 Some consequences

4.1 Spheres in the curve complex

Recall from 3.12 that the arc complex at infinityA∞(Σ1
g) is homotopy equivalent

to a wedge sum of spheres of dimension 2g − 2. In this section we will see that
the curve complex C(Σ1

g) is homotopy equivalent to A∞(Σ1
g), and thus in turn

also homotopy equivalent to a wedge sum of spheres of dimension 2g − 2.
The homotopy equivalence between them can then be used to find explicit

examples of spheres in C(Σ1
g).

4.1.1 The homotopy equivalence between C(Σ1
g) and A∞(Σ1

g)

In this section we will give an overview of Harer’s homotopy equivalence between
the arc complex at infinity and the curve complex. Instead of defining the
homotopy equivalences directly between them we will define it as a map

Ψ : A◦◦
∞(Σ1

g) → C◦(Σ1
g)

where S◦ denoted the barycentric subdivision of S (which is always homotopy
equivalent to S).

To construct Ψ we need to consider the details of how the barycentric sub-
division is defined formally, so we will start by recalling a precise definition of
the barycentric subdivision.

Definition 4.1. Let S be a simplicial complex. The barycentric subdivision
of S, denoted S◦ is a simplicial complex where the n-simplices are chains of
simplices is S ordered by inclusion and of length n + 1, and the face maps are
given by removing one of the elements of a chain.

To illustrate why this definition actually gives a barycentric subdivision, we
will look at an example.

Example 4.2. Let S be the simplicial complex consisting of three 0-simplices
{x, y, z}, three 1-simplices {a, b, c} and one 2-simplex {A}, arranged as a trian-
gle. Then the set of 0-simplices in S◦ is chains of just a single simplex in S,
so the vertex set of S◦ is {x, y, z, a, b, c, A}. If we think of a, b and c as adding
vertices to S in the middle of the respective 1-simplices, and A as a point in the
barycenter of the triangle, we can see that S◦ looks like in figure 5. For example
each 2-simplex will be a chain with a 0-simplex, a 1-simplex and a 2-simplex,
there are six chains of this form, each corresponding to one of the small triangles
in the figure.

Now consider A◦◦
∞(Σ1

g). A vertex in A◦◦
∞(Σ1

g) is a simplex in A◦
∞(Σ1

g), which
is a chain of non-filling arc systems, and a simplex in A◦◦

∞(Σ1
g) is a sequence of

such chains so that going one step down the sequence corresponds to removing
one of the arc systems in the chain, for example if we have non-filling arc systems
α0 ⊂ α1 ⊂ α2 then

(α0) ⊂ (α0 ⊂ α2) ⊂ (α0 ⊂ α1 ⊂ α2)
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Figure 5: The barycentric subdivision of S from example 4.2.

is an example of a 2-simplex if A◦◦
∞(Σ1

g).
For a vertex v in A◦◦

∞(Σ1
g), say

α0 ⊂ α1 ⊂ ... ⊂ αn

where the αi are non-filling arc systems. If we remove a small regular neighbor-
hood of the arcs in αi we get a surface Σ(i) with boundary, and the boundary
components give a curve system in Σ1

g if we omit duplicates and trivial curves,
let ci be the curve system obtained in this way from αi.

Harer defines Ψ(v) as
⋃n

i=0 ci where we again omit any redundancies. Note
that the union is in fact still a curve system, because if αi ⊂ αj we have
Σ(j) ⊂ Σ(i) which means that we can choose the representatives such that the
curves in ci are disjoint from the curves in cj . Thus

⋃n
i=0 ci is a curve system,

and the curve systems are the vertices in C◦(Σ1
g). We can then extend Ψ to

all of A◦◦
∞(Σ1

g) simplicially, meaning that a simplex with vertices v1, ..., vn gets
mapped to a simplex with vertices Ψ(v1), ...,Ψ(vn), respecting the simplicial
structure.

The 0-filling system ϕ0 from before is nontrivial as we saw before, and recall
from lemma 3.13 that

St(Σ1
g)

∼= H2g−1(A/A∞;Z).

Also recall from the proof of lemma 3.13 that we had an isomorphism of homol-
ogy groups

H2g−1(A/A∞;Z) ∼= H̃2g−2(A∞;Z).

What this means is that ϕ0 represents a non-trivial simplex of dimension 2g−1 in
A and that ∂[ϕ0] is an element of H2g−2(A∞;Z) ∼= St(Σ1

g) which is represented
by the boundary of a simplex of dimension 2g − 1, which means that it is a
sphere of dimension 2g − 2 in A∞.

In this way the generator ϕ0 for the Steinberg module together with Harer’s
homotopy equivalence Ψ can be used to find explicit spheres of dimension 2g−2
in C◦(Σ1

g) and also in C◦(Σg). If we take the image of the sphere ∂ϕ0 under Ψ
we obtain an explicit sphere of dimension 2g − 2 in C◦(Σ1

g), and from there we
can get a sphere in C◦(Σg) by forgetting the marked point. We can then use
this to find spheres in the unbarycentrically subdivided curve complexes C(Σ1

g)
and C(Σg).
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In [2] Broaddus gives an explicit picture of a sphere in C(Σ1
2) and also in

C(Σ2) which he constructs by the method outlined above.

4.2 Rational cohomology of the mapping class group

Finally we will look at a proof of the following theorem which is from Church,
Farb and Putman in [4].

Theorem 4.3. For all g ≥ 2

H4g−5(Mod(Σg);Q) = 0.

They prove this using chord diagrams and results from Broaddus. First we
will recall that

(St(Σg))Mod(Σg)
∼= (C0/∂C1)Mod(Σg).

Now, the co-invariants of the chain complex C• form a chain complex U• which
can be described as follows: Uk is the free abelian group generated by Mod(Σg)-
orbits of k-filling systems thought of as a 2g+ k-tuple of arcs. We also quotient
by the relation s · α = sgn(s)α where s ∈ S2g+k acts on a k-filling system α by
permuting the arcs, this sign is added to make the boundary map work. For a
k-filling system α = (α1, ..., α2g+k) we let ∂iα be (α1, ..., α̂i, ..., α2g+k) if this is
a k − 1-filling system and 0 otherwise, and then

∂α =

2g+k∑
i=0

(−1)i+1∂iα.

With this description of the chain complex of the co-invariants, we can prove
the theorem.

Proof of theorem 4.3. Recall the generator ϕ0 = (x1, ..., x2g) for the Steinberg
module. Since (St(Σg))Mod(Σg) is a quotient of St(Σg) the class of ϕ0 in the
quotient must also generate (St(Σg))Mod(Σg), so showing that [ϕ0] = 0 in U0/∂U1

would imply that

(St(Σg))Mod(Σg)
∼= H0(Mod(Σg); St(Σg)) = 0.

Let y be the arc corresponding to the shorter dashed line in figure 6 and z be
the arc corresponding to the other dashed line, so y intersects only x2g and z
intersects both x1 and x2g. Let ϕ

y
0 = (x1, ..., x2g, y) and ϕz

0 = (x1, ..., x2g, z).
If we compute ∂iϕ

y
0 we see that for 1 < i < 2g + 1 the arc system we get

by removing xi is disconnected, and if we remove either x1 or y we get an arc
system which is in the same orbit as ϕ0 itself, so we get ∂ϕy

0 = 2ϕ0 and thus
2[ϕ0] = 0 in U0/∂U1.

Next we compute ∂1ϕ
z
0 we again get an arc system in the same orbit as ϕ0,

so ∂1ϕ
z
0 = ϕ0, and then we get ∂2ϕ

z
0 = −ϕ0, ∂3ϕ

z
0 = ϕ0, and so on. Taken

together we get that ∂ϕz
0 = (2g + 1)ϕ0, so (2g + 1)[ϕ0] = 0 in U0/∂U1.
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Figure 6: The new arcs y and z.

Lastly we can compute that [ϕ0] = g(2[ϕ0])+[ϕ0] = (2g+1)[ϕ0] = 0, showing
that

H0(Mod(Σg); St(Σg)) = 0

and therefore

H0(Mod(Σg); St(Σg)⊗Q) ∼= H4g−5(Mod(Σg);Q) = 0

where the isomorphism above follows from St(Σg) being the dualizing module
for Mod(Σg) and the connection between Mod(Σg) and Mg, the moduli space
of genus g surfaces, see [4] for a more thorough explanation of this isomorphism.

Remark 4.4. The same argument would also work for Mod(Σ1
g) since it also

has the Steinberg module as its dualizing module and is generated by ϕ0 as well,
the only difference is that we would have 4g − 3 instead of 4g − 5.
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