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Abstract

Poincaré duality is a relationship of the structure of the homology
and cohomology groups of orientable manifolds. This paper discusses a
possible generalization of this relationship to a wider set of topological
spaces, deriving the so-called Verdier duality. To this end, we will
discuss chain complexes over a general abelian category, and derive
the homotopy category and the derived category thereof; the derived
category arises from a localization of the homotopy category. This
allows us to derive relationships that do not necessarily hold at the
level of chain complexes. We further show a way to induce functors
in the derived category.

We continue by introducing sheaves and study their properties as
a category. We discuss several ways in which continuous functions
induce functors between categories of sheaves. Further, we derive a
way to induce these functors in the derived category of sheaves, yield-
ing relationships at the level of complexes. We finish by presenting
Verider duality and show that Poincaré duality is a special case of this
relationship.

(Swedish) Poincaré duality är en relation av strukturen mellan de
homologiska och kohomologiska grupperna av en orienterbar mångfald.
Detta papper diskuterar möjlig generalisering av denna relation till
en större grupp av topologiska rum, en härledning av den s̊a kallade
Verdier duality. Till detta ändam̊al kommer vi diskutera kedjekom-
plex över en generell abelsk kategori, och härleda den homotopiska
kategorin och den härledda kategorin därav; den härledda kategorin
kommer fr̊an en lokalisering av den homotopiska kategorin. Detta
möjliggör härledningen av relationer som inte nödvändigtvis gäller för
kedjekomplex. Vi fortsätter att visa ett sätt att inducera funktorer i
den härledda kategorin.

Vi fortsätter med att introducera kärvar och studerar deras egen-
skaper som kategori. Vi diskuterar flertalet sätt att inducera kon-
tinuerliga funktioner i topologiska rum till funktorer över kategorier
av kärvar. Fortsättningsvis, vi härleder ett sätt att inducera dessa
funktorer till den härledda kategorin av kärvar, vilket ger relationer
p̊a niv̊an av komplex. Vi avslutar med att presentera Verdier duality,
och visar att Poincaré duality är ett specialfall av denna relation.
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1 Introduction

In algebraic topology one associates algebraic structures to topological spaces.
It can be seen as a bridge between ’continuous’ and ’discrete’ mathematics [1].
The algebraic structures are usually invariant under homeomorphisms, and
in many cases are invariant under homotopy equivalences. They can help
to determine which spaces are homeomorphic to each other and which are
genuinely different. Ideally, one wants to find algebraic structures that are
sophisticated enough to distinguish between spaces but are simple enough to
compute.

One of the first algebraic structures encountered associated with a topo-
logical space X is the fundamental group π1(X) [2]. If X is a CW-complex,
one can show that π1(X) only depends on the 2-skeleton of X [3]. Because
of this, we could say that there is a low-dimensional nature of π1(X); it can
not distinguish between spheres of dimension n ≥ 2. Thus, it is of interest
to define higher-dimensional analogs to 1-dimensional loops that can cap-
ture higher-dimensional structures. The homotopy groups πn(X), defined
via maps from the unit cube In into X, solve this problem. The drawback,
however, is that they are difficult to compute.

To the end of having easily computable algebraic structures that are in-
variant under homeomorphisms, the homology groups were created [3]. The
trick was to abelianize loops when studying the fundamental group and cre-
ate an appropriate relationship between different dimensional ’structures’ in
the topology. Given a cellular decomposition of a topological space, the ho-
mology groups are relatively easy to compute. However, it turns out that
they do not exhibit a lot of ’structure’; they are simple groups. To enrich the
theory, cohomological groups enjoy a canonical multiplication making them
into rings [3].

A canonical isomorphism exists of the homology groups and cohomology
groups given a topological space that is an orientable manifold [3]. This re-
lationship is called Poincaré duality. One consequence of this duality is that
if we have an n-dimensional manifold, the cohomology groups of higher di-
mensions than n vanish. Thus, relationships of different algebraic structures
are interesting; knowledge about a structure can be inferred from another.

Generalizing homology and cohomology groups can suitably be done with
category theory, which is one of the main topics in this document. We will
define the necessary properties of a category to be able to define a well-
behaved homology functor of a chain complex consisting of objects in that
category. Homological relationships can be derived by looking at quotients
and localization of the chain complex.

The main category of interest will be sheaves. These are abstractions of
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associating algebraic structures to open subsets in a given topological space.
We will look at different sheaves, and connect the theory thereof to the theory
of homological algebra. This connection allows us to derive rich relationships
at the level of topology.
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2 Limits

In this section, we will discuss limits of objects in a category. Informally, take
any commutative diagram that consists of objects and morphisms. The limit
(or colimit) of the diagram is an object that maps to (or from) the diagram
such that any other object mapping similarly will factor uniquely to the limit
(or colimit). Interestingly, this generalizes several common operations. For
example, disjoint union in Sets and direct sum in RMod can be described
by the same limit operation in their respective category.

The approach to defining limits will be by looking at several special cases.
The reason for this is twofold. First, this will make it easier to motivate the
definition of limits. Second, some of the special cases will be used explicitly
later.

The statements made and the proofs thereof come mostly from Rotman
[4]. When studying the direct limit, ideas from Tennison [5] are used.

2.1 Categorical constructions

We recall the following.

Definition 2.1. Let C be a category and let A ∈ Ob(C). A is called an initial
object if for every object X ∈ C, there exists a unique morphism A→X.

Lemma 2.1. If A and A′ are initial objects in a category C, they are iso-
morphic.

Proof. Since A is an initial object, there exists a unique morphism f ∶ A →
A′, and similarly, there exists a unique morphism g ∶ A′ → A. Further,
the morphism A → A is the identity morphism (since there is only one),
thus gf = idA ∶ A → A. Similarly, we find fg = idA′ , and so f and g are
isomorphisms.

Definition 2.2. Let C be a category and let Ω ∈ Ob(C). Ω is called a
terminal object if for every object X ∈ C, there exists a unique morphism
X → Ω.

Lemma 2.2. If Ω and Ω′ are terminal objects in a category C, then they are
isomorphic.

Proof. Consider the opposite category Cop. Then terminal objects become
initial objects, showing that Ω and Ω′ are isomorphic in Cop by Lemma 2.1,
and thus so in C.
Definition 2.3. Let C be a category and let A ∈ Ob(C). A is called a zero
object if it is both an initial object and a terminal object.

6



2.1.1 Coproducts and products

Definition 2.4. Let C be a category and let A and B be objects in C. The
coproduct of A and B is a triple (A ⊔ B,α,β), where A ⊔ B is an object
in C, α ∶ A → A ⊔ B, β ∶ B → A ⊔ B are morphisms, that is a solution to
the following universal mapping problem: for every object X ∈ Ob(C) with
morphisms f ∶ A → X and g ∶ B → X, there exists a unique morphism
θ ∶ A ⊔B →X making the following diagram commute:

A

A ⊔B X

B

α f

θ

β g

We call α and β the structure maps of the coproduct.
It should be noted that the coproduct does not necessarily exist in an

arbitrary category. However, we will later show that if it does exist, it is
unique up to isomorphism. We now look at examples.

Example 2.1. For two sets A and B in Sets, their coproduct is their disjoint
union A ⊔B, or to be more correct, (A ⊔B,pA, pB), where ⊔ is the disjoint
union operator for sets, pA ∶ A ⊔ B → A is the projection to the set A and
pB ∶ A ⊔B → B is the projection to the set B. Here, we define the disjoint
union to be given by A⊔B = (A× {1})∪ (B × {2}), where × is the Cartesian
product.

To see this, consider an arbitrary object X in C and any maps f ∶ A→X
and g ∶ B → X. Let θ ∶ A ⊔B → X be given by (a,1) ↦ f(a), (b,2) ↦ g(b),
which clearly is well-defined. It is also not hard to see that it makes the
diagram in the definition of coproduct commute.

Consider another mapping ψ ∶ A ⊔B → X such that ψα = f and ψβ = g.
But then ψ((a,1)) = f(a) = θ((a,1)) and ψ((b,2)) = g(b) = θ((b,2)), showing
ψ = θ. Hence, coproduct in Sets exists and is given by the disjoint union of
two sets.

Given objects A and B in a category, we will often not mention explicitly
the structure maps pA and pB.

Example 2.2. For two left R-modules in RMod, their coproduct exists and
is the direct sum A⊕B. The structure maps in the coproduct are given by
α ∶ a↦ (a,0) and β ∶ b↦ (0, b), which are clearly R-maps.
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Let X ∈ Ob(C), and let f ∶ A → X and g ∶ B → X be R-maps. Let
θ ∶ A⊕B →X be given by θ((a, b)) = f(a)+g(b). Now, we see that θ(α(a)) =
θ((a,0)) = f(a) for a ∈ A, and similarly θ(β(b)) = θ((b,0)) = g(b). Thus,
for a new R-map ψ ∶ A ⊕ B → X making the diagram commute, we have
ψ(α(a)) = f(a) and ψ((β(b)) = g(b) for a ∈ A, b ∈ B. Since ψ is an R-map,
we have ψ((a, b)) = ψ((a,0)) + ψ((0, b)) = f(a) + g(b), showing ψ = θ. Thus
θ is unique, and the coproduct in RMod is given by the direct sum.

We will now prove that coproduct is unique (up to canonical isomor-
phism).

Proposition 2.3. Let C be a category and let A,B be objects in C. Any two
coproducts of A and B, given that they exist, are isomorphic.

Proof. Consider a category D with objects

A X B,
γ δ

where γ ∶ A → X, δ ∶ B → X are morphisms, and X is an object in C. The
morphisms in D are given by a triple (1A, θ,1B), where θ is a morphism such
that the following diagram commutes.

A X B

A X ′ B

γ

1A θ

δ

1B

γ′ δ′

Composition of two morphisms (1A, θ,1B) and (1A, ψ,1B) is given by
(1A, θ,1B)(1A, ψ,1B) = (1A, θψ,1B). Proving that D is a category is routine.

Assume the coproduct of A and B exists, and let α ∶ A → A ⊔ B and
β ∶ B → A ⊔B be the morphisms of the coproduct. Consider the object

A A ⊔B B.,α β

Now, for any other object A X B,
f g

by the definition of

coproduct, there exists a unique morphism θ ∶ A ⊔ B → X, hence the mor-

phism (1A, θ,1B) from A A ⊔B Bα β
to A X B

f g

is unique. This shows A A ⊔B Bα β
is an initial object, and

hence by Lemma 2.1, this is unique up to isomorphism. Thus, if there are
two coproducts of A and B, their corresponding objects in D are isomorphic,
hence also isomorphic in C.

We now present the dual of coproduct.
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Definition 2.5. Let C be a category and let A and B be objects in C. The
product of A and B is a triple (A⊓B,p, q) such that A⊓B is an object in C,
and p ∶ A⊓B → A and q ∶ A⊓B → B are morphisms called projections, that
is a solution to the following universal mapping problem: for every object
X ∈ Ob(C) with morphisms f ∶ X → A and g ∶ X → B, there exists a unique
morphism θ ∶X → A ⊓B making the following diagram commute:

A

A ⊓B X

B

α

β

f

θ
g

Again, we exemplify with RMod.

Example 2.3. Let A and B be objects in RMod. Then their product exists
and is given by A ⊓B = A ⊕B. Let the morphisms in the product be given
by p ∶ (a, b) ↦ a and q ∶ (a, b) ↦ b. Let X be an object in C with morphisms
f ∶X → A and g ∶X → B. Let θ ∶X → A⊕B be given by θ(x) = (f(x), g(x)).
It is clear that this makes the diagram commute. We need to show that
θ is unique. Let ψ ∶ X → A ⊕ B be another map such that αψ = f and
βψ = g. Then, for any x ∈ X, α(ψ(x)) = f(x) and β(ψ(x)) = g(x), that is,
ψ(x) = (f(x), g(x)) = θ(x), which shows uniqueness.

Proposition 2.4. Let C be a category and let A,B be objects in C. Any two
products of A and B, given that they exist, are isomorphic.

Proof. The proof is analogous to the proof of Proposition 2.3; the product is
a terminal object in a suitable category.

We will now extend the definition of coproduct and product from two
objects to arbitrary many objects.

Definition 2.6. Let C be a category and let (Ai)i∈I be a family of objects in C,
where I is an index set. A coproduct is an ordered pair (C, (αi ∶ Ai → C)i∈I),
with C being an object in C, and (αi)i∈I is a family of morphisms, called
injections, that is a solution to the following universal mapping problem:
for every object X in C and morphisms (fi ∶ Ai →X)i∈I , there exists a unique
morphism θ ∶ C → X such that the following diagram commutes for each
i ∈ I.
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Ai

C X

αi fi

θ

The coproduct, should it exist, is typically denoted by ⊔i∈I Ai. Further-
more, the coproduct is unique up to isomorphism, which can be shown by
defining a suitable category and noting that the coproduct is an initial object.

Example 2.4. Let (Ai)i∈I be a family of objects in RMod. Then the coprod-
uct of (Ai)i∈I exists, and is given by⊕i∈I Ai. The morphisms αi ∶ Ai →⊕i∈I Ai
are given by sending ai to the element with ith coordinate being ai, and the
rest zero. It is clear that αi are R-maps.

Now, let X be a left R-module, and let fi ∶ Ai → X be an R-map for
each i ∈ I. Choose an element (ai) ∈ ⊕i∈I Ai, and since there are finitely
many non-zero elements, we have (ai) = ∑iαiai. We define θ to be given by
(ai) ↦ ∑i fiai. To see that the diagram commutes, we have ai ∈ Ai, then
θαiai = θ((αi)) = fiai.

Let ψ ∶ ⊕i∈I Ai → X be another R-map making the diagram commute.
Then,

ψ((ai)) = ψ(∑
i

αiai)

=∑
i

ψαiai

=∑
i

fi(ai)

= θ((ai)),

hence ψ = θ. This shows that θ is unique, and hence the coproduct of (Ai)i∈I
is given by ⊕i∈I Ai.

We also present an extension of the product.

Definition 2.7. Let C be a category and let (Ai)i∈I be a family of objects
in I, where I is an index set. A product is an ordered pair (C, (pi ∶ C →
Ai)i∈I), where C is an object in C, and (pi)i∈I is a family of morphisms, called
projections, that is a solution to the following universal mapping problem:
for every object X in C and morphisms (fi ∶X → Ai)i∈I , there exists a unique
morphism θ ∶X → C such that the following diagram commutes for each i.

Ai

C X

αi

θ

fi
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The product, should it exist, is typically denoted by ⊓i∈I Ai. Furthermore,
the product is unique up to isomorphism, which can be shown by defining a
suitable category and noting that the product is a terminal object. We now
provide an example.

Example 2.5. Let (Ai)i∈I be a family of objects in RMod. Then the product
of (Ai)i∈I exists and is given by ∏i∈I Ai. The projections pi ∶∏i∈I Ai → Ai are
given by (ai)↦ ai for all i. It is clear that the projections are R-maps.

Now, let X be a left R-module, and let fi ∶X → Ai be an R-map for each
i ∈ I. We define θ ∶ X → ∏i∈I Ai to be given by x ↦ (fi(x)). For x ∈ X, we
have piθ(x) = fi(x) showing that the diagram commutes.

Let ψ ∶ X → ∏i∈I Ai be another R-map making the diagram commute,
hence, piψ(x) = fi(x) for x ∈ X and all i ∈ I. This means that the ith coor-
dinate of ψ(x) is fi(x), the same as θ(x), hence ψ = θ, showing uniqueness.

2.1.2 Pullback and pushout

We will now give another pair of dual categorical constructions.

Definition 2.8. Let C be a category, A,B,C objects in C, and f ∶ B → A and
g ∶ C → A morphisms. A pullback is a triple (D,α,β), where D is an object
in C, α ∶D → C and β ∶D → B are morphisms, and gα = fβ, that is a solution
to the following universal mapping problem: for every triple (X,α′, β′), with
gα′ = fβ′, there exists a unique morphism θ ∶ X → D making the following
diagram commute.

C

B A

g

f

X

D C

B A

α′

β′

θ

α

β g

f

The pullback, should it exist, is unique up to isomorphism. This is shown
by defining a suitable category and noting that the pullback is the terminal
object in that category. We exemplify with pullbacks in RMod.

Example 2.6. Given three objects A,B, and C in RMod, and morphisms
f ∶ B → A, g ∶ C → A, the pullback exists, and is given by the set D = {(b, c) ∈
B ⊕ C ∶ f(b) = g(c)}. The morphisms of the pullback are the restrictions
α ∶ D → C, (b, c) ↦ c, and β ∶ D → B, (b, c) ↦ b. It is clear that these
morphisms make the diagram commute.
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Let the triple (X,α′, β′) be such that X is a left R-module, α′ ∶ X → C
and β′ ∶ X → B, and α′g = β′f . We define θ ∶ X → D to be given by
x↦ (β′(x), α′(x)). It is clear that θ makes the diagram commute.

Let ψ ∶ X → D be another R-map making the diagram commute. Then,
for x ∈ X, we have α(ψ(x)) = α′(x) and β(ψ(x)) = β′(x). This means
ψ(x) = (β′(x), α′(x)) and thus ψ = θ. This shows that θ is unique.

We now define the dual of pullback, namely pushout.

Definition 2.9. Let C be a category, A,B,C objects in C, and f ∶ A→ B and
g ∶ A→ C morphisms. A pushout is a triple (D,α,β), where D is an object
in C, α ∶ B →D and β ∶ C →D are morphisms, and βg = αf , that is a solution
to the following universal mapping problem: for every triple (X,α′, β′), with
α′f = β′g, there exists a unique morphism θ ∶ D → X making the following
diagram commute.

A C

B

g

f

A C

B D

X

g

f β

β′α

α′

θ

Pushout, should it exist, is unique up to isomorphism. This can be shown
by defining a suitable category and noting that a pushout is an initial object
therein.

Example 2.7. Given three objects A, B, and C in RMod and morphisms
f ∶ A→ B, g ∶ A→ C, the pushout exists, and is given by D = (B⊕C)/S, with
S = {(f(a),−g(a)) ∈ B ⊕C ∶ a ∈ A} (it is easy to show that S is a submodule
of B⊕C, hence the quotient D makes sense). The morphisms of the pushout
are given by α ∶ B → D, b ↦ (b,0) + S and β ∶ C → D, c ↦ (0, c) + S. For
a ∈ A, we have α(f(a)) = (f(a),0) + S and β(g(a)) = (0, g(a)) + S. Now,
(f(a),0) + S = (0, g(a)) + S since (f(a),0) − (0, g(a)) = (f(a),−g(a)) ∈ S,
showing that the diagram commute.

Consider another triple (X,α′, β′) such that α′f = β′g. We define θ ∶D →
X to be given by (b, c) + S ↦ α′(b) + β′(c). First, θ is well defined, which
can be seen in the following. If (b′, c′) is another representative of (b, c) + S,
then (b − b′, c − c′) ∈ C; that is, there exists an a ∈ A such that f(a) = b − b′
and −g(a) = c − c′. By commutativity, we have α′(f(a)) = β′(g(a)), hence
α′(b − b′) − β′(−(c − c′)) = 0. Since α′ and β′ are R-maps, it follows that
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α′(b) − α′(b′) + β′(c) − β′(c′) = 0, or α′(b) + β′(c) = α′(b′) + β′(b′). Second, θ
makes the diagram commute, which can easily be shown.

To prove that θ is unique, let ψ ∶ D → X be another R-map that makes
the diagram commute. By commutativity, let b ∈ B and c ∈ C, we have
ψ(α(b)) = ψ((b,0)+S) = α′(b) and ψ(β(c)) = ψ((0, c)+S) = β′(c). Since ψ is
anR-map, we have for (b, c)+S ∈D, ψ((b, c)+S) = ψ((b,0)+S)+ψ((0, c)+S) =
α′(b) + β′(c), hence ψ = θ.

2.1.3 Coequalizer and equalizer

We continue with the last pair of dual categorical constructions, before look-
ing at a generalization.

Definition 2.10. Let C be a category, B and C be objects in C, and f, g ∶
B → C be two morphisms. A coequalizer is an ordered pair (D,e), where
D is an object in C and e ∶ C → D is a morphism such that ef = eg, that
is a solution to the following universal mapping problem: for all objects X
in C with a morphism e′ ∶ C → X such that e′f = e′g, there exists a unique
morphism θ ∶D →X such that θe = e′.

B C D

X

f

g
e

e′
θ

Coequalizer, given that it exists, is unique up to isomorphism. This can
be shown by defining a suitable category and noting that it is an initial object
in that category. We continue with defining equalizer, the dual of coequalizer.

Definition 2.11. Let C be a category, B and C be objects in C, and f, g ∶
B → C be two morphisms. An equalizer is an ordered pair (A, e), where
A is an object in C and e ∶ A → B is a morphism such that fe = ge, that
is a solution to the following universal mapping problem: for all objects X
in C with a morphism e′ ∶ X → B such that fe′ = ge′, there exists a unique
morphism θ ∶X → A such that eθ = e′.

A B C

X

e

f

g

θ
e′

2.2 Generalization

We will now discuss two constructions that generalize the abovementioned
constructions; inverse limits and direct limits.
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2.2.1 Inverse limit

The inverse limit is a generalization of products, pullbacks, and equalizers.
We start with defining an inverse system.

Definition 2.12. Let C be a category and let I be a partially ordered set.
An inverse system in C over I is an ordered pair ((Mi)i∈I , (ψji )j⪰i), where
Mi are objects in C for all i ∈ I, and ψji ∶Mj →Mi are morphisms for i, j ∈ I
such that j ⪰ i, and ψii = idMi

for all i. Furthermore, the morphisms make
the following diagram commute whenever k ⪰ j ⪰ i.

Mk Mi

Mj

ψk
i

ψk
j ψj

i

We abbreviate an inverse system with {Mi, ψ
j
i }. We continue with defin-

ing inverse limits.

Definition 2.13. Let C be a category, I a partially ordered set, and {Mi, ψ
j
i }

an inverse system in C over I. The inverse limit is an object lim←ÐMi and a

family of projections (αi ∶ lim←ÐMi →Mi)i∈I such that

(i) ψjiαj = αi, whenever j ⪰ i,

(ii) it satisfies the following universal mapping problem: for every object
X in C and all morphisms fi ∶ X → Mi satisfying ψji fj = fi, j ⪰ i,
there exists a unique morphism θ ∶ X → lim←ÐMi, making the following
diagram commute.

lim←ÐMi X

Mi

Mj

αi

αj

θ

fi

fj

ψj
i

The inverse limit, given that it exists, is a terminal object in a suitable
category, hence it is unique up to isomorphism. We continue by exemplifying
how the inverse limit is a generalization of the product (for two objects). The
reader can think about how the inverse limit also generalizes pullbacks and
equalizers.
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Example 2.8. Let C be a category and let I = {1,2} be a partially ordered
set where each element only relates to itself. Thus, we have two objects M1

and M2, with identity morphisms, that give the following two diagrams.

lim←ÐMi X

M1

M1

α1

α1

θ

f1

f1
idM1

lim←ÐMi X

M2

M2

α2

α2

θ

f2

f2
idM2

Note that the problem is equivalent to the following two diagrams, as
given in the definition of the categorical product.

lim←ÐMi X

M1

α1

θ

f1

lim←ÐMi X

M2

α2

θ

f2

2.2.2 Direct limit

We continue with defining direct limit, which is a generalization of coprod-
ucts, pushouts, and coequalizers. We start with defining a direct system.

Definition 2.14. Let C be a category and let I be a partially ordered set.
A direct system in C over I is an ordered pair ((Mi)i∈I , (ψij)j⪰i), where Mi

are objects in C for all i ∈ I, and ψij ∶ Mi → Mj are morphisms for i, j ∈ I
such that j ⪰ i, and ψii = idMi

for all i. Furthermore, the morphisms make
the following diagram commute whenever k ⪰ j ⪰ i.

Mi Mk

Mj

ψi
k

ψi
j ψj

k

We abbreviate a direct system with {Mi, ψij}. Now, the definition of direct
limit.

Definition 2.15. Let C be a category, I a partially ordered set, and {Mi, ψij}
a direct system in C over I. The direct limit is an object limÐ→Mi and a family

of insertion morphisms (αi ∶Mi → limÐ→Mi)i∈I such that
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(i) αjψij = αi whenever j ⪰ i,

(ii) it satisfies the following universal mapping problem: for every object
X in C and all morphisms fi ∶Mi → X satisfying fjψij = fi, j ⪰ i, there
exists a unique morphism θ ∶ limÐ→Mi →X making the following diagram
commute.

limÐ→Mi X

Mi

Mj

θ

αi
fi

ψi
j

αj fj

Again, the direct limit, given that it exists, is unique up to isomorphism
since it is an initial object in a suitable category.

In our study, we are going to work with directed sets which makes the
study of direct limits a little bit easier.

Definition 2.16. A directed set ID is a partially ordered set that satisfies
the following: for all i, j ∈ ID, there exists a k ∈ ID such that k ⪰ i and k ⪰ j.

Before constructing the direct limit using a directed set, we need the
following proposition.

Proposition 2.5. Let C be a category, ID a directed set, and {Mi, ψij} a
direct system in C over ID. Assume M , (αi ∶Mi →M)i∈ID is a target for the
direct system; that is, the following diagram commutes.

M

Mi

Mj

αi

ψi
j

αj

Further, assume that the following two conditions hold:

(i) For all m ∈M , there exists an i ∈ ID such that m = αi(mi).

(ii) If i, j ∈ ID, mi ∈Mi, mj ∈Mj, then αi(mi) = αj(mj) if and only if there
exists a k ∈ ID such that k ⪰ i, k ⪰ j, and ψik(αi) = ψ

j
k(αj).
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Then M is a direct limit of the system.

Proof. Let M ′, (βi ∶ Mi → M ′)i∈ID be another target for the system. As-
sume there exists a morphism f ∶ M → M ′ such that the following diagram
commutes.

Mi M ′

M

βi

αi f

Then, for any m ∈ M , by (i) there exists an i ∈ ID such that αi(mi) = m.
Hence, f(m) = βi(mi); that is, f is unique given that it exists.

We now show that f is well-defined. Choose m ∈ M and let i, j ∈ ID be
such that m = αi(mi) and m = αj(mj), which exists by (i). By (ii) there
exists a k ∈ ID such that ψik(mi) = ψjk(mj). Then, we have

βi(mi) = βk(ψik(mi))
= βk(ψjk(mj))
= βj(mj),

and we conclude that f is well-defined and hence exists. This shows that M
is a direct limit of the system.

We will now give an explicit construction of the direct limit in the category
Group. Groups will be one of the main studies when we will discuss sheaves.
Let ID be a directed set and let {Mi, ψij} be a direct system in Group over
ID. Let

W = ⊔i∈IDMi

be the disjoint union of the groups Mi. We define the equivalence relation
∼ by the following. Let mi ∈ Mi and mj ∈ Mj. Then mi ∼ mj if and only if
there exists a k ∈ ID such that k ⪰ i, k ⪰ j and ψik(mi) = ψjk(mj).

To see that ∼ is an equivalence relation, it is clearly reflexive and sym-
metric. To show transitivity, let mk ∈Mk and assume mi ∼mj and mj ∼mk.
Then there exists an i′ and j′ such that ψii′(mi) = ψji′(mj) and ψjj′(mj) =
ψkj′(mk). By the definition of a directed set, there exists a k′ ∈ ID such that

k′ ⪰ i′ and k′ ⪰ j′. By the definition of a directed system, ψi
′

k′ψ
j
i′(mj) =

ψj
′

k′ψ
j
j′(mj); that is, ψik′(mi) = ψkk′(mk), which shows mi ∼mk.
Now, let M = W / ∼, and we let αi ∶ Mi → M be given by the map

Mi → W → W / ∼. It is not hard to show that M satisfies the conditions of
Proposition 2.5 and thus is a direct limit of the system. We get the following
proposition.
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Proposition 2.6. Let ID be a directed set and let {Mi, ψij} be a direct system
in Group over ID. Then the direct limit exists and is given by the direct limit
in Proposition 2.5.
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3 Abelian categories

In this section, we will define a special class of categories, namely abelian
categories. These will be the basic building blocks later when studying chain
complexes and homology thereof. The reason for this interest is because we
want to work with sequences of objects in a category. To do so, we need to
define what we mean by ’kernel’ and ’image’ of a morphism. The property
of being abelian is one way to do this.

Most of the ideas in this section can be found in [4]. However, we do not
use Rotman’s definition of an abelian category, but instead, the one used in
both Iversen [6] and Bredon [7], as I find this more intuitive when working
with sequences of objects in an abelian category.

We start with defining an additive category, a precursor of abelian cate-
gories.

Definition 3.1. Let C be a category. We say that C is additive if

(i) Hom(A,B) is equipped with the structure of an abelian group for all
A,B ∈ Ob(C),

(ii) the distributive law over the morphisms holds; that is, given X,Y ∈
Ob(C) and morphisms according to the diagram

X A B Y,a

f

g
b

then

b(f + g) = bf + bg and (f + g)a = fa + ga,

(iii) C has a zero object,

(iv) C has finite coproducts and finite products.

Example 3.1. I claim RMod, the category of left R-modules is an additive
category. First, it is clear that for A,B ∈ RMod, Hom(A,B) - the group
of R-maps - is an abelian group with addition as operator, and that the
distributive law holds. RMod has a zero object, explicitly {0}, since all
maps from this set has to map to {0} in another module (the maps are R-
maps), and clearly all maps into {0} can only map to one element. Lastly,
we have seen previously that coproducts and products exist and are finite,
which shows that RMod is an additive category.
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We continue with the definition of an additive functor.

Definition 3.2. Let C and D be additive categories, and let T ∶ C → D be a
functor (of either variance), then T is additive if for all A,B ∈ Ob(C) and
all morphisms f, g ∈ Hom(A,B), we have

T (f + g) = Tf + Tg.

We need some more data before we can define abelian categories.

Definition 3.3. Let C be a category, B and C objects in C, and u ∶ B → C
a morphism. We say that u is a monomorphism if u can be canceled from
the left; that is, for all A ∈ Ob(C) and morphisms f, g ∶ A → B, we have that
uf = ug implies f = g.

For additive categories, we get a simpler relationship.

Proposition 3.1. Let C be an additive category, A,B,C objects in C, and
f ∶ A → B and u ∶ B → C morphisms. Then u is a monomorphism if and
only if uf = 0 implies f = 0.

Proof. First, assume that u is a monomorphism. Then, consider the mapping
0 ∶ A → B, where 0 maps all elements to the zeroth element in B. The
equation uf = u0 = 0 implies f = 0 since u is a monomorphism.

For the other implication, assume uf = 0 implies f = 0. Consider two
other morphisms g1, g2 ∶ A → B and study the equation ug1 = ug2. Since
Hom(A,C) is an abelian group, this implies ug1−ug2 = 0. By the distributive
law, we get u(g1 − g2) = 0, which implies by the hypothesis g1 − g2 = 0, or
g1 = g2; that is, u is a monomorphism and we are done.

Now the dual of a monomorphism.

Definition 3.4. Let C be a category, B and C objects in C, and v ∶ B → C a
morphism. We say that v is a epimorphism if v can be canceled from the
right; that is, for all D ∈ Ob(C) with two morphisms f, g ∶ A → B, we have
that fv = gv implies f = g.

Similar to monomorphisms, a simpler relationship can be obtained when
studying epimorphisms in an additive category.

Proposition 3.2. Let C be an additive category, B,C,D objects in C, and
v ∶ B → C and f ∶ C →D morphisms. Then v is an epimorphism if and only
if fv = 0 implies f = 0.

Proof. Similar to the proof of Proposition 3.1.
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We continue with defining categorical kernels and categorical cokernels.

Definition 3.5. Let C be a (not necessarily additive) category and let u ∶
A → B be a morphism of two objects A and B. The kernel of u, denoted
Ker u, is an object K in Ob(C) and a morphism i ∶ K → A, that satisfy the
following universal mapping problem: ui = 0, and for every object X in C and
all morphisms g ∶ X → A such that ug = 0, there exists a unique morphism
θ ∶X →K such that iθ = g.

X

K A B

θ
g

0

i u

And here is the dual definition, that of the cokernel.

Definition 3.6. Let C be a category and let u ∶ A → B be a morphism of
two objects A and B. The cokernel of u, denoted Coker u, is an object
C in Ob(C) and a morphism π ∶ B → C, that satisfy the following universal
mapping problem: πu = 0, and for every object Y in C and all morphisms
h ∶ B → Y such that hu = 0, there exists a unique morphism θ ∶ C → Y such
that θπ = h.

A B C

Y

u

0

π

h
θ

The kernel and the cokernel might not always exist for a morphism, but
if it does, then they are unique up to isomorphism. In an additive category,
there is a simple relationship between monomorphisms and kernels, and epi-
morphisms and cokernels.

We continue with defining the image and the coimage of a morphism.

Definition 3.7. Let C be an additive category and let u ∶ A → B be a
morphism between two objects in C. The image of u, denoted Im u, is the
kernel of the cokernel of u, given that it exists. Dually, the coimage of u,
denoted Coim u, is the cokernel of the kernel of u. We get the following
diagram.

K A B C

CK KC

u
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Here, the A→ CK is the Coim u, and KC → B is the Im u.

Proposition 3.3. Let C be an additive category and let u ∶ A → B be a
morphism between two objects in C.

(i) u is a monomorphism if and only if Ker u = 0.

(ii) u is an epimorphism if and only if Coker u = 0.

Proof. We will only prove the first statement - the second one is similar.
Let Ker u be given by the morphism i ∶ K → A, where K is an object

in C, and assume first that u is a monomorphism. Consider the morphism
0 ∶K → A. Since ui = 0 = u0, we have i = 0 by Proposition 3.1.

Now, assume Ker u = i = 0. Let g ∶ X → A be a morphism, X an object,
such that ug = 0. By the definition of the kernel, we have g = iθ = 0, which
shows u is a monomorphism again using Proposition 3.1.

To make it more readable, we will simplify the notation such that if
i ∶ K → A is a kernel of u ∶ A → B, we will denote K by Ker u. Similarly
with Coker u, Coim u, and Im u.

We are now ready for the definition of an abelian category.

Definition 3.8. Let C be a category. C is an abelian category if it is an
additive category such that

(i) for every morphism u ∶ A → B for A,B ∈ Ob(C), Ker u and Coker u
exists, and

(ii) the canonical morphism Coim u→ Im u is an isomorphism.

In an abelian category, the categorial notion of image and coimage agree
with the usual notions.

Example 3.2. The category of free abelian groups is additive, but not
abelian, since cokernels might not exist.

Let us understand where the canonical morphism Coim u→ Im u comes
from. First, we show that Ker u → A is a monomorphism and B → Coker u
is an epimorphism in an additive category.

Lemma 3.4. Let C be an additive category and let u ∶ A→ B be a morphism
of objects A,B in C. Then Ker u → A is a monomorphism, given that it
exists. Dually, B → Coker u is an epimorphism, given that it exists.
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Proof. Consider an object D in Ob(C) such that the composed morphism
D → Keru→ A is zero. Then the morphism D → A→ B is zero; there exists
a unique morphism from D → Keru by the definition of a kernel. Since the
zero morphism 0 ∶D → Keru clearly makes the diagram commute, D → Keru
is the zero morphism and Keru is a monomorphism by Proposition 3.1.

Dually, it follows that B → Coker u is an epimorphism.

We will now derive the canonical morphism Coim u → Im u. Consider
the following diagram.

Keru A B Cokeru

Coimu Imu

u

Since Keru → A → B is zero, it follows that there exists a unique mor-
phism Coim u→ B, which gives the following commutative diagram.

Keru A B Cokeru

Coimu Imu

u

We have that A → B → Coker u is zero, hence, A → Coim u → B →
Coker u is zero. Since A→ Coim u(= CokerKeru) is an epimorphism, Coim
u → B → Coker u is zero. But then there is a unique morphism Coim u →
Im u. We get the following commutative diagram.

Keru A B Cokeru

Coimu Imu

u

In an abelian category, this unique morphism is an isomorphism, which
we will prove later.

From now on, we will denote an abelian category by A. The motivation
for defining abelian categories is that we can make a reasonable definition of
chain complexes, hence, viewing the objects in a chain complex as objects
from A, we retrieve a generalization from the common definition in algebraic
topology (where the objects are from Ab).
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3.1 Exact sequences

We are now ready for the definition of exactness.

Definition 3.9. Let A be an abelian category, A,B,C objects in A, f ∶ A→
B and g ∶ B → C morphisms. A sequence

A B C
f g

is exact if

1. the composition g ○ f is the zero morphism, and

2. the canonical morphism Im f → Ker g is an isomorphism.

To see the canonical morphism Ker g → Im f , consider the following
diagram.

Cokerf

A B C

Im f Ker g

f g

We have that A→ B → C is zero by assumption, hence there is a unique
morphism Coker f → C making the diagram commute. This shows that Im
f → B → C is zero since Im f → B → Coker f → C is. Therefore, there exists
a unique morphism Im f → Ker g by the universal mapping problem. We
get the following commutative diagram.

Cokerf

A B C

Im f Ker g

f g

Further, whenever g ○ f = 0, the canonical morphism Im f → Ker g is a
monomorphism.

Example 3.3. LetA be an abelian category and let u ∶ A→ B be a morphism
of objects in A. The sequence
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0 A Bu

is exact if and only if u is a monomorphism. Dually, the sequence

A B 0u

is exact if and only if u is an epimorphism.
We show the first statement; the other can be shown similarly. Assume

the sequence is exact, and let g ∶ D → A be any morphism such that ug = 0.
By exactness, Ker u is isomorphic to Im (0→ A), which is zero. Subsequently,
there exists a unique morphism from D → Keru, which has to be the zero
morphism. For clarity, we have the following commutative diagram.

0 A B

D Keru = 0

u

It follows that D → A is zero.
Now, assume that u is a monomorphism. It is clear that the composition

in the sequence is zero. Consider the morphism Keru→ A→ B. Since u is a
monomorphism, Keru → A is zero, and thus isomorphic to Im (0 → A), the
result follows.

Definition 3.10. Let A be an abelian category and let {Ai}i∈Z be objects
in A. We say that the sequence of morphisms

... Ai Ai+1 Ai+2 ...

is exact, if each sequence Ai Ai+1 Ai+2 is exact, for all i ∈ Z.

We now provide an example of an exact sequence.

Example 3.4. LetA be an abelian category and let u ∶ A→ B be a morphism
between objects in A. Then

0 Keru A Imu 0,

with the obvious morphisms, is exact.
First, it is clear that

0 Keru A

is exact, since Keru→ A is a monomorphism. To show that
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A Imu 0

is exact, note that the morphism A → Imu is given by A → Coimu → Imu.
The morphism A → Coimu is an epimorphism and the morphism Coimu →
Imu is an isomorphism, subsequently A→ Coimu→ Imu is an epimorphism,
hence

A Imu 0

is exact.
Lastly, we will show that

Keru A Imu

is exact. Call the morphisms Keru→ A and A→ Imu, f and g respectively.
We get the following commutative diagram.

Cokerf

Keru A Imu

Im f Ker g Coimu

f g

Since Imf → A → Cokerf → Imu is zero, there is a unique morphism
Im f → Ker g. Further, since Ker g → A → Imu is zero, there exists a unique
morphism Ker g → Keru. Similarly, there exists a unique morphism Keru→
Imu; combining the two, we have a unique morphism Ker g → Im f . Thus,
we get the following commutative diagram.

Cokerf

Keru A Imu

Im f Ker g Coimu

f g

But then, since the diagram commutes, the unique morphism Imf →
Ker g → Im f is the identity; so is Ker g → Im f → Ker g, showing that Im f
is isomorphic to Ker g.
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We finish this section with two examples. First, in an abelian category,
if a morphism is a monomorphism and an epimorphism then it is an isomor-
phism. Second, if we have an additive category that is not abelian, then a
morphism that is both a monomorphism and an epimorphism might not be
an isomorphism.

Example 3.5. Let A be an abelian category and let f ∶ X → Y be a mor-
phism of objects in A. If

0 X Y 0
f

is exact, then it is an isomorphism. By the above example, this is equivalent
to saying that if f is a monomorphism and an epimorphism, then it is an
isomorphism.

To see this, note that Coim f =X and Im f = Y , which follows from the
universal mapping problem. Subsequently, we get the following commutative
diagram.

0 X Y 0

X = Coim f Im f = Y

f

idX idY

Since A is abelian, X = Coim f → Im f = Y is an isomorphism.

Example 3.6. Consider the category of divisible abelian groups. Recall that
a divisible group G is a group such that for all positive integers n and all
g ∈ G, there exists a g′ ∈ G such that ng′ = g. It is not hard to show that it
is an additive category. It is not an abelian category, which can be seen by
the following.

Consider the divisible abelian group Q and its subgroup Z. The quotient
map Q → Q/Z is clearly an epimorphism. To show it is a monomorphism,
let G be a divisible abelian group and assume the morphism G → Q → Q/Z
vanishes. Since G is divisible, G→ Q vanish. Hence, G→ Q factors through
G → Z, so the image of the last morphism is a divisible subgroup of Z. But
there is only one divisible subgroup of Z, the trivial group, showing that it
is a monomorphism.

However, Q→ Q/Z is not injective thus not an isomorphism.
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4 Category of complexes

In this section, we will study the category of complexes. This is most likely
very familiar to the reader since the reader should’ve seen similar definitions
and propositions in the category Ab. Here, we are generalizing these ideas
to abelian categories.

Most of the theory and ideas come from Kachiwara and Shapira [8], [9],
but also Rotman [4]. We are going in a similar style as Kashiwara and
Schapira, as this makes the transition into defining triangulated and derived
categories more natural.

We will assume C to be an additive category.

Definition 4.1. The category of complexes of C, denoted by C(C), is given
by the following data.

An object X in C(C) is of the form {Xn, dnX}n∈Z such that for all n,

Xn ∈ C, dnX ∈ HomC(Xn,Xn+1) and dn+1X dnX = 0.

A morphism X → Y in C(C) is a sequence of morphisms {fn}n∈Z such
that fn ∶Xn → Y n and the following diagram commutes.

... Xn Xn+1 ...

... Y n Y n+1 ...

dnX

fn fn+1

dnX

The composition of morphisms is defined in an obvious way. It is easy to
check that C(C) is indeed a category.

There are three interesting full subcategories of C(C).

Definition 4.2. The full subcategory...

(i) Cb(C) has as objects complexes X such that Xn = 0 for ∣n∣≫ 0.

(ii) C+(C) has as objects complexes X such that Xn = 0 for n≪ 0.

(iii) C−(C) has as objects complexes X such that Xn = 0 for n≫ 0.

Definition 4.3. Let X be a complex in C(C). Let T ∶ C(C) → C(C) be a
functor given by the following. On objects X = {Xn, dnX}n∈Z ∈ Ob(C(C)),
we have T (X) = {T (Xn), T (dnX)}n∈Z = {Xn+1,−dn+1X }n∈Z. On morphisms
f ∶X → Y in C(C), we have fn ↦ fn+1.
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The functor T defined above is called the shift functor of degree 1. The
shift functor of degree k ∈ Z is given by T k(X); that is, iteratively applying
T , k times onX. We typically writeX[k] instead of T k(X), and f[k] instead
of T k(f).

Definition 4.4. Let X,Y be complexes in C(C). A map of degree k is a
morphism s of chain complexes from X to Y [k].

Definition 4.5. Let f, g ∶ X → Y be two morphisms in C(C). Then f and
g are said to be homotopic, denoted by f ≃ g, if there is a map s of degree
−1 from X to Y such that

fn − gn = dn+1Y sn + sn−1dnX ,

for all n ∈ Z.

If f ≃ 0, then we say f is null-homotopic.

Proposition 4.1. Let X,Y be complexes in C(C). Let Ht(X,Y ) be the
subset of HomC(C)(X,Y ) consisting of null-homotopic morphisms. Then
Ht(X,Y ) is a subgroup.

Proof. Clearly, Ht(X,Y ) is not empty, since the null morphism is null-
homotopic. We have two show that Ht(X,Y ) is closed under addition, and
for each f ∈ Ht(X,Y ), we have f−1 ∈ Ht(X,Y ).

Let f, g ∈ Ht(X,Y ), then there exists two maps s1, s2 ∶ X → Y [−1] such
that f = ds1+s1d and g = ds2+s2d (here we omit the scripts to make it easier
to read). Thus, f + g = d(s1 + s2) + (s1 + s2)d, since function composition
is distributive over addition. Hence, the map s1 + s2 shows f + g is null-
homotopic.

Note that f−1 = −f . Using the map −s1 with the above assumptions
shows −f ∈ Ht(X,Y ). This shows Ht(X,Y ) is a subgroup.

Definition 4.6. The homotopy category of chain complexes, denoted
by K(C), is given by

(i) Ob(K(C)) = Ob(C(C)),

(ii) HomK(C)(X,Y ) = HomC(C)(X,Y )/Ht(X,Y ).

That the homotopy category of chain complexes is a category requires
some justification. Note that Ht(X,Y )×HomC(C)(X,Y ) and HomC(C)(X,Y )×
Ht(X,Y ) are sent into Ht(X,Y ), thus, f, g ∈ HomC(C)(X,Y )/Ht(X,Y ) are
mapped to f ○ g ∈ HomC(C)(X,Y )/Ht(X,Y ), making composition well de-
fined.

29



4.1 Cohomology of a complex

In this section, we assume A is an abelian category, and use the notation A
instead of C.

Definition 4.7. Let X be a complex in C(A), and define Zk(X) = KerdkX ,
Bk(X) = Imdk−1X .

From the discussion of exact sequences, we recall that there exists a canon-
ical monomorphism Bk(X)→ Zk(X).

We define the kth comhology of the complex X to be given by

Hk(X) = coker(Bk(X)→ ZK(X)).

Remark 4.1. By the definition above, we have

Hk(X) = KerdkX/Imdk−1X .

This is some abuse of terminology since the kernel and image are ob-
jects associated with a morphism. Here we refer to the underlying object,
forgetting about the morphism.

Proposition 4.2. Let f, g ∶X → Y be two morphisms in C(A), and assume
f ≃ g. Then the induced morphisms f∗k, g∗k ∶Hk(X)→Hk(Y ) are equal, for
k ∈ Z.

Proof. Let z ∈ KerdkX , then d
k
X(z) = 0. Hence, we have

fk(z) − gk(z) = dk+1Y sk(z) + sk−1dkX(z) = dk+1Y sk(z),

that is, fk(z) − gk(z) = dk+1Y sk(z) ∈ Bk(Y ), and thus f∗k = g∗k.

We get this result.

Corollary 4.2.1. The functor Hk ∶K(A)→ A is well-defined.

Proof. Let f ∶ X ∈ Y be a null-homotopic morphism in C(A). Then Hk(f)
is the zero morphism by Proposition 4.2.

Theorem 4.3. Let

0 X Y Z 0
f g

be an exact sequence in C(A). Then there is a long exact sequence in A
given by

⋯ Hn(X) Hn(Y ) Hn(Z) Hn+1(X) ⋯f∗n g∗n δn
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with f∗ and g∗ being the induced maps in cohomology of f and g, and δn is
a morphism Hn(Z)→Hn+1(X) for all n ∈ Z.

Proof. See [9], page 33.

We finish this section by defining the truncated complexes.

Definition 4.8. Let X be an object in an abelian category A. We define
the truncated complexes of X, denoted τ≤n(X) and τ≥n(X), to be given
by

τ≤n(X) ∶ ⋯ Xn−2 Xn−1 KerdnX 0 ⋯

τ≥n(X) ∶ ⋯ 0 Cokerdn−1X Xn+1 Xn+2 ⋯

Proposition 4.4. Let X be an object in an abelian category A. The following
holds.

(i) For k ≤ n, Hk(τ≤n(X)) is isomorphic to Hk(X). For k > n, Hk(τ≤n(X)) =
0.

(ii) For k ≥ n, Hk(τ≥n(X)) is isomorphic to Hk(X). For k < n, Hk(τ≥n(X)) =
0.

Proof. The statement is obvious for all integers except n − 1 and n. First,
note that since X is a chain complex, the mapping Xn−1 → KerdnX is induced
naturally by dn−1X . We have ker (Xn−1 → kerdnX) = kerdn−1X showing that
Hn−1(τ≤n(X)) is isomorphic to Hn−1(X). For k = n, we have Hn(τ≤n(X)) =
KerdnX/Imdn−1X which is clearly isomorphic to Hn(X).

A similar argument shows the second statement.

Definition 4.9. Let f ∶ X → Y be a morphism of objects in K(A). We say
that f is a quasi-isomorphism if Hn(f) is an isomorphism of all n.
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5 Triangulated categories

We will now introduce triangulated categories which will be one of the main
objects of study. The usefulness comes in when we localize a category of
chain complexes. Localization can be seen by making some objects invert-
ible, similarly in commutative algebra; informally, localizing a ring/module
introduces ’denominators’.

The theory and idea of the proofs can be found in [8] and [9].
We will begin by motivating them with an example; triangulated cate-

gories arise as an abstraction thereof.

5.1 Mapping cones

Definition 5.1. Let C be an additive category and let f ∶ X → Y be a
morphism in C(C). The mapping cone of f , denoted by M(f), is an object
in C(C) given by the following data:

(i) M(f) =X[1]⊕ Y ; that is, the object at index n is given by Xn+1 ⊕ Y .

(ii) The morphisms dn
M(f) are given by (d

n
X[1] 0

fn+1 dnY
).

Consider the following morphisms. We define α(f) ∶ Y → M(f) to be

given by α(f)n = ( 0
idY n
), and we define β(f) ∶M(f) → X[1] to be given by

β(f)n = (idXn+1 0). It is routine to show that these are indeed morphisms
of complexes.

The next lemma shows some usefulness of the homotopy category of chain
complexes; the same lemma would not be true in the category of chain com-
plexes and all chain morphisms.

Lemma 5.1. Let C be an additive category and let f ∶X → Y be a morphism
in C(C). Then there exists a morphism ϕ ∶ X[1] → M(α(f)) such that the
following diagram commutes in K(C).

Y M(f) X[1] Y [1]

Y M(f) M(α(f)) Y [1]

idY

α(f)

idM(f)

β(f)

ϕ

−f[1]

idY [1]

α(f) α(α(f)) β(α(f))

Moreover, ϕ is an isomorphism in K(C).
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Proof. First, note that α(f) ∶ Y →M(f), henceM(α(f)) = Y [1]⊕X[1]⊕Y .
The morphisms of this complex are given by the following:

dnM(α(f)) = (
dn
Y [1] 0

α(f)n+1 dn
M(f)
) =
⎛
⎜⎜
⎝

dn
Y [1] 0 0

0 dn
X[1] 0

idY [1] fn+1 dnY

⎞
⎟⎟
⎠
.

Define ϕ ∶X[1]→M(α(f)) to be given by

ϕ =
⎛
⎜
⎝

−f[1]
idX[1]
0

⎞
⎟
⎠
,

and let ψ ∶M(α(f))→X[1] be a morphism given by

ψ = (0 idX[1] 0) .

From the explicit definition of the morphisms in the chain complexM(α(f)),
it is easy to show that ϕ and ψ are morphisms of complexes. Further, note
that ψ ○ϕ = idX[1]. Also, ϕ○ψ = idM(α(f)) in K(C); that is, ϕ○ψ is homotopic
to idM(α(f)). To see this, take the morphism sn ∶M(α(f))n →M(α(f))n−1,
given by

sn =
⎛
⎜
⎝

0 0 idY n

0 0 0
0 0 0

⎞
⎟
⎠
.

This morphism makes the following identity true:

idM(α(f)n − ϕn ○ ψn = sn+1 ○ dM(α(f))n + dn−1M(α(f) ○ sn;

showing they are chain homotopic.
That the diagram commutes is now easy; simply take the definition of

the morphisms and show equality in C(C), which gives equality in K(C) as
well.

Definition 5.2. Let C be an additive category, and let X,Y,Z ∈ Ob(K(C)).
We define a triangle in K(C) to be a sequence of morphisms of the form

X Y Z X[1] .

A morphism between two triangles X Y Z X[1] and

X ′ Y ′ Z ′ X ′[1] is given by commutative diagrams in

K(C) of the form:
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X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

ϕ ϕ[1]

Definition 5.3. We call a triangle (X,Y,Z) in K(C) distinguished, if it
isomorphic to a triangle of the form

X ′ Y ′ M(f) X ′[1],f α(f) β(f)

with f ∶X ′ → Y ′ being a morphism in C(C).

Proposition 5.2. Let C be an additive category. The distinguished triangles
in K(C) satisfy the following properties.

(TR 0): If a triangle is isomorphic to a distinguished triangle, then it is
distinguished.

(TR 1): For any X in Ob(K(C)) the triangle X X 0 X[1]idX

is distinguished.
(TR 2): For all morphisms f ∶ X → Y , there exists a Z such that

X Y Z X[1]f
is a distinguished triangle.

(TR 3): The triangle X Y Z X[1]f g h is distinguished

if and only if Y Z X[1] Y [1]g h −f[1]
is distinguished.

(TR 4): Let

X Y Z X[1],f

X ′ Y ′ Z ′ X ′[1]f ′

be two distinguished triangles. Then any commutative diagram of the follow-
ing form can be embedded in a morphism of triangles.

X Y

X ′ Y ′

f

u v

f ′

(TR 5): Let

X Y Z ′ X[1],f
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Y Z X ′ Y [1],g

X Z Y ′ X[1],g○f

be distinguished triangles. Then there exists a distinguished triangle

Z ′ Y ′ X ′ Z ′[1]

such that the following diagram commutes.

X Y Z ′ X[1]

X Z Y ′ X[1]

Y Z X ′ Y [1]

Z ′ Y ′ X ′ Z ′[1]

f

idX g idX[1]

g○f

f idZ f[1]
g

idX′

Proof. (TR 0) is clear, since composition of two isomorphisms is again an
isomorphism.

(TR 2) is also clear; take Z =M(f) and we have a distinguished triangle.
(TR 3) follows from Lemma 5.1. To see this, assume

X Y Z X[1]f g h

is a distinguished triangle; we may assume Z = M(f). Then, we have a
distinguished triangle

Y M(f) M(α(f)) Y [1],α(f) α(α(f)) β(α(f))

which by Lemma 5.1 is isomorphic to

Y M(f) X[1] Y [1],α(f) β(f) −f[1]

hence

Y Z X[1] Y [1]g h −f[1]
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is distinguished. The other way is similar.
(TR 1) can be seen by the following. Consider the map 0 → X and

construct the triangle 0 X X 0[1].idX Since the mapping

cone of f is X, this triangle is distinguished. Applying (TR 3), we get the
desired result.

(TR 4). Since the triangles are distinguished, we can assume that Z and
Z ′ are the mapping cones of f and f ′ respectively with the obvious mor-
phisms between; that is, we have the distinguished triangles

X Y M(f) X[1]f α(f) β(f)
and

X ′ Y ′ M(f ′) X ′[1]f ′ α(f ′) β(f ′)
. We want to show that the follow-

ing diagram commutes, for some morphism w ∶M(f)→M(f ′).

X Y M(f) X[1]

X ′ Y ′ M(f ′) X ′[1]

u

f

v

α(f)

w

β(f)

ϕ[1]

f ′ α(f ′) β(f ′)

Note that the diagram in the assumption is commutative in K(C), which
means there exists a morphism s ∶X → Y ′ with degree −1 such that vn ○fn −
f ′n ○ un = sn+1 ○ dnX + dn−1Y ′ ○ sn. From this, we define w to be given by

wn = (u
n+1 0
sn+1 vn

) .

That this is a morphism and makes the diagram commute can be shown by
calculations.

(TR 5). Again, we will consider the corresponding distinguished triangles
of the sequences. We let Z ′ =M(f), X ′ =M(g), and Y ′ =M(g ○ f). Define
the maps u ∶M(f)→M(g ○ f) and v ∶M(g ○ f)→M(g) to be given by

un = (idXn+1 0
0 gn

) ,

vn = (f
n+1 0
0 idZn

) .

Further, we define w ∶M(g)→M(f)[1] to be given by α(f)[1]○β(g) (i.e.,
the composite of M(g) Y [1] M(f)[1]β(g) α(f)[1]

). With the relevant

morphisms defined, it is now relatively straightforward to show that the
diagram of (TR 5) commutes. The last part is showing that the last row is
a distinguished triangle; that is, we want to show that
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M(f) M(g ○ f) M(g) M(f)[1]u v w

is a distinguished triangle. Thus, we define the morphism ϕ ∶M(u)→M(g)
and its inverse ψ ∶M(g)→M(u) to be given by

ϕn = (0 idY n+1 fn+1 0
0 0 0 idXn

) , ψn =
⎛
⎜⎜⎜
⎝

0 0
idY n+1 0

0 0
0 idXn+1

⎞
⎟⎟⎟
⎠
.

Again by calculation, one shows that ϕ and ψ are morphisms of complexes
and that these make into the commutative diagram

M(f) M(g ○ f) M(g) M(f)[1]

M(f) M(g ○ f) M(u) M(f)[1].

u

idM(f)

v

idM(g○f)

w

ψ idM(f)[1]

u α(u)

ϕ

β(u)

Notably, we can identify a morphism of triangles in the diagram. What is left
to show is that ψ is an isomorphism, because then we have an isomorphism
of triangles.

Consider s ∶M(u)→M(u)[−1] given by

sn =
⎛
⎜⎜⎜
⎝

0 0 idXn+1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

One can now show ψ ○ ϕ is equal to idM(u) in K(C). Further, ϕ ○ ψ = idM(u)
is true by calculation. This means we have an isomorphism of triangles and

that Z ′ Y ′ Z ′ Z ′[1] is distinguished.

5.2 Triangulated categories

We can abstract the properties of triangles in K(C).

Definition 5.4. Let C be an additive category. A triangulated category of
C, consists of an automorphism T ∶ C → C, and a family of triangles; that is, a

family of sequences of morphisms of the form X Y Z T (X) .
Moreover, the triangles satisfy the axioms of (TR 0) to (TR 5), letting
X[1] = T (X).
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To make it simpler, we will typically denote a triangulated category of
an additive category C by (C, T ), where T is the associated automorphism.
Sometimes we might use C to denote the triangulated category; what is meant
will be clear from the context.

Proposition 5.3. Let X Y Z T (X)f g
be a distinguished

triangle. Then g ○ f = 0.

Proof. Note that X X 0 X[1]idX is distinguished by (TR

1). Thus, by (TR 4), we get the following commutative diagram.

X X 0 T (X)

X Y Z T (X)

idX f ϕ

f g

We get in particular g ○ f = ϕ ○ 0 = 0.
Definition 5.5. Let (C, T ) and (C′, T ′) be a two triangulated categories,
and let F ∶ C → C′ be an additive functor. We say that F is a functor
of triangulated categories, if F ○ T is isomorphic to T ′ ○ F and F sends
distinguished triangles in (C, T ) to distinguished triangles in (C′, T ′).
Definition 5.6. Let C be a traingulated category, let A be an abelian cat-
egory, and let F ∶ C → A be an additive functor. We say that F is a cohomo-

logical functor if, for any distinguished triangle X Y Z T (X)

in (C, T ), the sequence F (X) F (Y ) F (Z) is exact in A.

Proposition 5.4. LetW be an object in C. Then HomC(W, ⋅) and HomC(⋅,W )
are cohomological functors.

Proof. Let X Y Z T (X)f g
be a distinguished triangle.

We want to show that the sequence

HomC(W,X) HomC(W,Y ) HomC(W,Z)
f∗ g∗

is exact (and similarly with HomC(⋅,W )).
We begin by showing that the image of f∗ is a subset of the kernel of g∗.

But this is clear by Proposition 5.3.
Next, we show the other way, that the kernel of g∗ is a subset of the image

of f∗. Let ϕ ∈ HomC(W,Y ) be such that g∗(ϕ) = g ○ϕ = 0. By (TR 1) we have

a distinguished triangle of the form W W 0 T (W ).idW

Combining (TR 3) and (TR 4) shows that the commutative diagram
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W 0

Y G

ϕ

can be completed from the left to a morphism of triangles; that is, there exists
a morphism ψ ∈ HomC(W,X) such that f∗(ψ) = ϕ. This shows exactness.
Similarly we can show that HomC(⋅,W ) is a cohomological functor.

Corollary 5.4.1. Let X Y Z T (X) and

X ′ Y ′ Z ′ T (X ′) be distinguished triangles. Assume

we have a commutative diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

ϕ ψ θ .

If ϕ and ψ are isomorphisms, then so is θ.

Proof. Applying HomC(W, ⋅) for some W ∈ Ob(C) gives a commutative dia-
gram with exact rows.

HomC(W,X) HomC(W,Y ) HomC(W,Z)

HomC(W,X ′) HomC(W,Y ′) HomC(W,Z ′)

HomC(W,T (X)) HomC(W,T (Y ))

HomC(W,T (X ′)) HomC(W,T (Y ′))

ϕ∗ ψ∗ θ

T (ϕ)∗ T (ψ)∗

Since the induced morphisms ϕ∗, ψ∗, T (ϕ)∗, T (ψ)∗ are isomorphisms, θ∗
is an isomorphism by the five lemma. But this means θ is an isomorphism.

We have another interesting cohomological functor.

Proposition 5.5. Let A be an abelian category. The 0th cohomology functor
of a complex, H0(⋅) ∶K(A)→ A, is a cohomological functor.
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Proof. Let X Y M(f) X[1]f
be a distinguished trian-

gle. Then in light of (TR 2), it suffices to show that

H0(Y ) H0(M(f)) H0(X[1])

is exact. But this follows from the fact that
0 Y M(f) X[1] 0 is exact in C(C), and by The-

orem 4.3.
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6 Derived categories and derived functors

We have seen that by working in K(C) over some additive category C, we
can derive interesting relationships that would not be true in the ’bigger’
category C(C). However, the category K(C) is still a bit too ’big’ for our
need; we want morphisms that induce isomorphisms in cohomology to be
invertible, which is not necessarily true in K(C).

Subsequently, this opens a larger set of relationships in the chain complex,
not only in the homology/cohomology.

The theory and most of the ideas of the proofs come from [9]. I comple-
ment with examples and some proofs of statements made without proof.

6.1 Categorical localization

We begin by discussing the localization of categories. In this section, let C
be (any) category.

Definition 6.1. Let S be a collection of morphisms in C. We say that S is
a multiplicative system if it satisfies the following axioms.

(S 1): For all objects X in C, idX ∈ S.
(S 2): For all pairs of morphisms f, g ∈ S, if g ○ f exists, then g ○ f ∈ S.
(S 3): Let g ∶ Z → Y ∈ S be a morphism. For all mapping f ∶ X → Y ,

there exists a commutative diagram

W Z

X Y

h g

f

,

with h ∈ S. A similar property hold with the arrows reversed.
(S 4): Let f, g ∶X → Y be morphisms. Then the following two conditions

are equivalent.

(i) There exists a t ∶ Y → Y ′ ∈ S such that t ○ f = t ○ g.

(ii) There exists a s ∶X ′ →X ∈ S such that f ○ s = g ○ s.

Definition 6.2. Let S be a multiplicative system in C. The localization
of C by S, denoted CS, is given by the following data:

(i) Ob(CS) = Ob(C),
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(ii) for all objects X,Y ∈ Ob(C),

HomCS(X,Y ) = {(Z, s, f) ∶ Z ∈ Ob(C), s ∶ Z →X,f ∶ Z → Y, s ∈ S}/ ∼,

where (X ′, s, f) ∼ (X ′′, s′, f ′) if there exists an objectX ′′′ in C equipped
with morphisms to X ′ and X ′′, such that the following diagram com-
mutes.

X

X ′ X ′′′ X ′′

Y

s

f

u
s′

f ′

Composition of two morphisms (X ′, s, f) ∈ HomCS(X,Y ) and (X ′′, s′, f ′) ∈
HomCS(Y,Z) is given by the following. By (S 3), we get a commutative
diagram

X ′′′

X ′ X ′′

X Y Z

s′′ f ′′

s f s′ f ′

.

From this, we let (X ′′, s′, f ′) ○ (X ′, s, f) = (X ′′′, s ○ s′′, f ′ ○ f ′′).
We need to show two things for the previous definition to make sense. The

first is that ∼ is an equivalence relation, and the second is that composition
is well-defined.

Let s ∶ X ′ → X, f ∶ X ′ → Y be two morphisms with s ∈ S, and X ′,X,Y
are objects in C. Then the diagram

X

X ′ X ′ X ′

Y

s

f

s

id′X id′X

s

f

commute, showing that ∼ is reflexive. ∼ is clearly symmetric. To show
transitivity, assume (X ′1, s1, f1) ∼ (X ′2, s2, f2) and (X ′2, s2, f2) ∼ (X ′3, s3, f3)
with obvious definitions. We get the following commutative diagram.
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X

X ′1 X ′′1 X ′2 X ′′2 X ′3

Y

s1

f1

s3

f3

Composing X ′′1 with X ′′2 yields the desired equivalence, showing (X ′1, s1, f1) ∼
(X ′3, s3, f3).

We continue by showing that composition is well-defined. To this end, let
(X ′′1 , s′′1 , f ′′1 ) and (X ′′2 , s′′2 , f ′′2 ) denote two possible extensions of (X ′, s, f) ○
(Y ′, t, g). This gives the following commutative diagram.

X ′

X ′′1 X ′′2 Y

Y ′

f

t

This can be extended by (S 3) to the following commutative diagram.

X ′

X ′′1 X ′′′ X ′′2 Y

Y ′

f

u

t

with u ∈ S. We get a morphism X ′′′ →X ′ by the composition of X ′′′ →X ′′2 →
X ′. That the diagram commutes below follows from (S 4).

Proposition 6.1. CS is a category.

Proof. That it contains the necessary data to be a category is clear. We
need to show that for each object X, there exists an identity morphism in
HomCS(X,X), and that composition of morphisms is associative.

The identity morphism is given by (X, idX , f), which is easy to see. Fur-
ther, that associativity holds is clear by the symmetry of the equivalence
relation.
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Definition 6.3. Let S be a multiplicative system in C. The localization
functor Q ∶ C → CS is given by Q(X) = X for X ∈ Ob(C), and Q(f) =
(X, idX , f) for a morphism f ∶X → Y .

Proposition 6.2. Let S be a multiplicative system in C.

(i) For all s ∈ S, Q(s) is an isomorphism in CS.

(ii) Let F ∶ C → C′ be a functor from C to another category. If F (s) is an
isomorphism for all s ∈ S, then F factors uniquely through Q.

Proof. (i) Let s ∶ X → Y ∈ S, we have Q(s) = (X, idX , s). Then, the mor-
phism (X,s, idX) is an inverse. To see this, it is clear that (X, idX , s)○
(X,s, idX) = (X, idX , idX). To show (X,s, idX)○(X, idX , s) = (Y, idY , idY ),
first note that we have a commutative diagram

X

X X

Y X Y

idX idX

s idX idX s

which means (X,s, idX) ○ (X, idX , s) = (X,s, s). This is equivalent to
(Y, idY , idY ) which is seen by the following commutative diagram.

Y

Y X X

Y

idY

idY

s

s idX

s

s

Hence, (X,s, idX) is an inverse to Q(s).

(ii) Consider a morphism f ∶ X → Y in C. Then Q(f) = (X, idX , f). Let
(X ′, s′, f ′) be another morphism equivalent to Q(f). Then there exists
another object Z and a morphism u ∈ S such that the following diagram
commutes.
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X

X Z X ′

Y

idX

f

u
s′

f ′

Applying F to the commutative diagram, using that F (s) is an iso-
morphism for each s ∈ S, we get that F (Z) ≅ F (X) ≅ F (X ′). It fol-
lows from commutativity that F (f) = F (f ′), hence F factors uniquely
through Q.

Proposition 6.3. Let C′ be a full subcategory of C and let S be a multi-
plicative system in C. Let S′ ⊆ S be a family of morphisms belonging to C′.
Assume S′ is a multiplicative system in C′ and assume that at least one of
the following conditions is true.

(i) If f ∶ X → Y ∈ S, with Y ∈ Ob(C′), then there exists a morphism
g ∶W →X, W ∈ Ob(C′) such that f ○ g ∈ S.

(ii) If f ∶ X → Y ∈ S, with Y ∈ Ob(C′), then there exists a morphism
g ∶ Y →W , W ∈ Ob(C′) such that g ○ f ∈ S.

Then C′S′ is a full subcategory of CS.

Proof. Since S′ is assumed to be a multiplicative system, it follows that C′S′
is a category. We need to show it is a full subcategory of CS.

Assume (i) in the Proposition is true. Let X and Y be objects in C′S′ .
Take an element (Z, s, f) ∈ HomCS(X,Y ) such that s ∶ Z → X, f ∶ Z → Y .
Then by (i), there exists an object W in C′S′ and a morphism t ∶W → Z such
that s ○ t ∈ S. By commutative diagram

X

Z W W

Y

s

f

s○t
t idW

s○t

f○t

it follows that (Z, s, f) ∼ (W,s ○ t, f ○ t). But since s ○ t ∈ S, we have s ○ t ∈ S′
by construction, and thus (Z, s, f) ∼ (W,s ○ t, f ○ t) ∈ HomC′

S′
(X,Y ).
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We will now see how we can construct a multiplicative system from a
family of objects in a triangulated category C; that is, we associate a multi-
plicative system to such a family.

Definition 6.4. Let C be a triangulated category and let N be a subfamily of
the objects of C. We say that N is a null system if it satisfies the following
axioms.

(N 1): 0 ∈ N .
(N 2): For an object X in C, X ∈ N if and only if T (X) ∈ N .

(N 3): If X Y Z T (X) is a distinguished triangle

with X,Y ∈ N , then Z ∈ N .

Proposition 6.4. Let C be a triangulated category and let N be a null system.
The collection of morphisms

S(N ) = {f ∶X → Y ∣ there exists a distinguished triangle

X Y Z T (X)f
such that Z ∈ N}

is a multiplicative system.

Proof. Since 0 ∈ N by (N 1), and by (TR 1) there exists a distinguished
triangle of the form

X X 0 T (X)idX ,

we conclude idX ∈ S(N ); (S 1) is satisfied.

For (S 2), let X Y Z ′ T (X)f
and

Y Z X ′ T (Y )g
be two distinguished triangles with Z ′,X ′ ∈

N . Such exists by the previous argument. By (TR 2), there exists a distin-

guished triangle X Z Y ′ T (X)g○f
, hence by (TR 5) we

have another distinguished triangle Z ′ Y ′ X ′ T (Z ′) .
Applying (TR 3) twice, we get the distinguished triangle

X ′ T (Z ′) T (Y ′) T (X ′) . Since X ′, Z ′ ∈ N by assump-

tion, it follows that Y ′ ∈ N after applying (N 2) and (N 3). Thus, g ○ f ∈ N .
Now we address (S 3). Let g ∈ S(N ); that is, there exists a distinguished

triangle Z Y X ′ T (Z)g k with X ′ ∈ N . Let f ∶ X → Y .

We can then construct a distinguished triangle

W X X ′ T (W )k○f
by combining (TR 2) and (TR 3). Ap-

plying (TR 3) and (TR 4), we get a morphism of distinguished triangles:
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W X X ′ T (W )

Z Y X ′ T (Z)

h

idX′

By assumptions X ′ ∈ N , hence by definition h ∈ S(N ). A similar argument
proves that the statement holds with reversed arrows, showing (S 3).

We now show that (S 4) is satisfied. Let f ∶ X → Y be a morphism, and
assume there exists a morphism t ∶ Y → Y ′, t ∈ S(N ), such that t ○ f = 0. By
assumption, there exists a distinguished triangle

Y Y ′ Z T (Y ),t

with Z ∈ N . By applying (TR 3), we get a distinguished triangle

Z Y Y ′ T (Z),t

with Z ∈ N . We denote the morphism Z → Y by g. By (TR 1) and (TR 4),
we get the commutative diagram

X X

Z Y.

idX

h f

g

This shows f = g ○ h. By (TR 2) and (TR 3), we can embed h into a
distinguished triangle,

X ′ X Z T (X ′).s h

But then, composing f with s, we have f ○s = (g ○h)○s = g ○(h○s) = 0, since
composition of consecutive morphisms in a distinguished triangle is zero.
Hence, s satisfies our needs. Analogously, we can show the other direction,
and (S 4) follows.

Further on, we will denote the localization of a triangulated category C
by the multiplicative system S(N ) by C/N , instead of the usual CS(N ).

Proposition 6.5. Let C be a triangulated category and let N be a null system.

(i) Say that a triangle in C/N is distinguished if it is isomorphic to the
image of a distinguished triangle in C. Then C/N is a trianguled cate-
gory.

(ii) If X ∈ N , then Q(X) ≅ 0, where Q is the localization functor.
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(iii) Let F ∶ C → C′ be a functor of triangulated categories. If for all X ∈ N
we have F (X) ≅ 0, then F factors uniquely through Q.

Proof. To show (i), one first shows T is well-defined in the quotient category,
which is an easy exercise. The rest is straight forward.

(ii) and (iii) are clear by Proposition 6.2.

The study later will be on truncated complexes. Subsequently, the follow-
ing proposition shows that null systems and localization ”are well behaved”
under the truncation operation. We start with a definition.

Definition 6.5. Let C be a triangulated category and let N be a null system
in C. We call a subcategory C′ of C a full triangulated subcategory if for
any distinguished triangle

X Y Z T (X)

in C such that X,Y ∈ Ob(C′), then it is a distinguished triangle in C′.

Proposition 6.6. Let C be a triangulated category, N a null system in C,
and C′ a full triangulated subcategory of C. Denote N ∩Ob(C′) by N ′. Then
the following holds.

(i) N ′ is a null system in C′.

(ii) If any morphism Y → Z in C, with Y ∈ C′ and Z ∈ N , factors through
an object in N ′, then C′/N ′ is a full subcategory of C/N .

Proof. (i) (N 1) and (N 2) follows immediately from C′ being a triangu-
lated category. (N 3) follows from the definition of a full triangulated
subcategory, showing that N ′ is a null system in C′.

(ii) We will show this with the help of Proposition 6.3. Let f ∈ S(N ) and
consider the associated distinguished triangle

X Y Z T (X)f

with Z ∈ N and Y ∈ Ob(C′). By the assumption, we have that the morphism
Y → Z factors through Y → Z ′ → Z, where Z ′ ∈ N ′. Subsequently, we get a
distinguished triangle

Y Z ′ W T (Y )

by applying (TR 5) to the morphisms Y → Z ′ and Z ′ → Z. It follows from

(TR 5) that T −1(W )→ Y factors to T −1(W )→X
f→ Y , and we are done.
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6.2 Derived category

In this section, we will define the derived category and look at some proper-
ties thereof. The motivation behind the derived category is to make quasi-
isomorphisms invertible, which allows for deeper relationships. In this sec-
tion, let A denote an abelian category, and let K(A) denote the homotopy
category of A.

Consider the set

N = {X ∈K(A);Hn(X) ≅ 0 for all n ∈ N}. (6.2.1)

Then N is clearly a null system, and thus S(N ) is a multiplicative system
consisting of quasi-isomorphisms. To see the last statement, note that H0 is
a cohomological functor, and by applying (TR 3), so is Hn. We have that
S(N ) consist of morphisms f ∶X → Y such that

X Y Z T (X)f

is a distinguished triangle with Z ∈ N . But then

Hn(X) Hn(Y ) 0
Hn(f)

is exact, and so is

0 Hn(X) Hn(Y )Hn(f)

after applying (TR 3); that is,

0 Hn(X) Hn(Y ) 0
Hn(f)

is exact. This meansHn(f) is an isomorphism, thus f is a quasi-isomorphism.
We are ready for the definition of the derived category.

Definition 6.6. The derived category of A is given by D(A) =K(A)/N .

Similar to the discussion of complexes, there are three interesting subcat-
egories:

(i) Db(A) =Kb(A)/(N ∩Kb(A)),

(ii) D+(A) =K+(A)/(N ∩K+(A)), and

(iii) D−(A) =K−(A)/(N ∩K−(A)).
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These definition makes sense since (N∩K∗(A)) is a null system by Propo-
sition 6.6 for ∗ ∈ {b,+,−}.

We ask if these are full subcategories, as was the case for the category
of complexes and the homotopy category. The answer is yes, and is given
by the following proposition. First, note that since S(N ) consists of quasi-
isomorphisms, Hn(f) is an isomorphism for all f ∈ S(N ). Applying Propo-
sition 6.2, the functor Hn ∶ K(A) → A factors uniquely through D(A); we
call this functor once again Hn.

Proposition 6.7. The categories Db(A), D+(A), and D−(A) are full sub-
categories of D(A). Moreover, they consists of objects X in the usual way;
that is, Db(A) has Hn(X) = 0 for ∣n∣ ≫ 0, and similarly with D+(A) and
D−(A).

Proof. It is clear that the prerequisites in Proposition 6.6 (ii) are satisfied,
hence the categories are full subcategories. Since Hn ∶D(A)→ A comes from
the unique factorization of Hn ∶K(A)→ A, we have the last of the statement
as well.

It can be difficult working with the derived category directly, and even
so when studying how to induce functors to this. The following proposition
shows an important equivalence, which will help in subsequent analysis.

Proposition 6.8. Let I be a full additive subcategory of A such that for any
object X in A, there exists an object X ′ in I and a monomorphism X →X ′.
Then for each object X ∈ Ob(K+(A)), there exists a quasi-isomorphism f ∶
X →X ′, where X ′ ∈ Ob(K+(I)).

Furthermore, let N be given as in 6.2.1 and let N ′ = N ∩K+(I). Then
the canonical functor

K+(I)/N ′ →D+(A)
is an equivalence of categories.

Proof. See Kashiwara and Schapira [8], page 325-326.

We remember the definition of an injective object.

Definition 6.7. Let C be a category, and let I be an object in C. I is said to
be injective, if for every monomorphism X → Y and every morphism X → I,
there exists a morphism Y → I such that the following diagram commutes.

X Y

I
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Definition 6.8. Let C be a category. We say that C has enough injectives if
for any X ∈ Ob(C), there exists an injective object X ′ in C and a monomor-
phism X →X ′.

Proposition 6.9. Let A be an abelian category with enough injectives, and
let I denote the full subcategory of A consisting of injective objects. Then,
the natural functor from K+(I)→D+(A) is an equivalence of categories.

Proof. Let N be as in 6.2.1. In light of Proposition 6.8, we only need to show
that

N ∩K+(I) = 0;
that is, for any X ∈ C+(I) such that Hn(X) for all n is homotopic to zero.

Consider an object

0 X0 X1 ⋯
in C+(I). Denote the morphisms by dnX . Then we have an short exact
sequences

0 X0 X1 Kerd2X

and

0 KerdnX Xn Kerdn+1X .in jn

It follows by induction that KerdnX is injective for all n. This means the
sequences

0 KerdnX Xn Kerdn+1X .in jn

split and we have morphisms fn ∶ Xn → KerdnX and gn ∶ Kerdn+1X → Xn such
that fn ○in = idKerdnX

, jn ○gn = idKerdn+1X
, fn ○gn = 0, and in○fn+gn○jn = idXn .

But then sn = gn−1 ○ fn ∶ Xn → Xn−1 gives the desired homotopy; we have
idXn = dn−1X ○ sn + sn+1 ○ dnX .

6.3 Derived functor

We will now define derived functors, which is a way to induce a functor
defined over an abelian category into the corresponding derived category.
The definition of the derived functor is technical and I will follow the one
given in Kashiwara and Schapira [9]. Note that there are alternatives, such
as those given in Rotman [4] and Iversen [6] respectively. After the technical
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definition, we will show how the definition in Rotman and Iversen naturally
falls out; this gives an easier tool for calculating the derived functor.

Let A and A′ be abelian categories, and let F ∶ C(A) → C(A′) be an
additive functor. Consider the induced functor K(F ) ∶ K(A) → K(A′)
between homotopy categories, given in an obvious way. To see that it is a
functor, we need to check that it is well-defined on morphisms and that it
follows the axioms of a functor. Given that it is well-defined, it is easy to see
the latter, so we only show it is well-defined.

Consider two homotopic morphisms f, g ∈ HomC(A)(X,Y ). We want to
show that F (f) and F (g) are homotopic in HomC(A′)(F (X), F (Y )). Let
dX and dY be the boundary morphisms in the chain complexes X and Y
respectively, and let s be a chain map such that

fn − gn = sn+1 ○ dnX + dn−1Y ○ sn,

which exists because f ∼ g. Applying F and using the additive property, we
get

F (fn) − F (gn) = F (sn+1) ○ F (dnX) + F (dn−1Y ) ○ F (sn);
that is, F (f) ∼ F (g).

Similarly, we are tempted to let F induce a functor in the natural way
in the derived category, but we immediately run into problems; this functor
does not necessarily preserve quasi-isomorphisms, and subsequently is not
well-defined.

Example 6.1. Consider the category of abelian groups, Ab, and the two
chain complexes in C(Ab)

⋯ 0 Z Z 0 ⋯×n ,

⋯ 0 0 Z/n 0 ⋯ .

We have the following quasi-isomorphism

⋯ 0 Z Z 0 ⋯

⋯ 0 0 Z/n 0 ⋯

×n

modn ,

However, applying the additive functor Hom(Z/n, ⋅) on the chain com-
plexes, noting that Hom(Z/n,Z) = 0, and Hom(Z/n,Z/n) = Z/n, we get the
following commutative diagram.
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⋯ 0 0 0 0 ⋯

⋯ 0 0 Z/n 0 ⋯

Clearly, we do not have a quasi-isomorphism anymore, so additive func-
tors do not necessarily preserve this property. Subsequently, the natural way
to induce a functor in the derived category may not be proper; it is not
necessarily well-defined.

To overcome this, we consider the ’best’ functor in the derived categories
to represent F ∶ A→ A′, and is given by the following definition.

Definition 6.9. Let F ∶ A→ A′ be an additive functor of abelian categories,
and let T ∶D+(A)→D+(A′) be a functor of triangulated categories. Let

s ∶ Q ○K+(F )→ T ○Q

be a morphism of functors, and assume that for any functor of triangulated
categories U ∶D+(A)→D+(A′), the morphism

Hom(U,T )→ Hom(Q ○K+(F ), U ○Q)

is an isomorphism. Then (T, s) is called the right derived functor of F
and is denoted by RF .

The condition of

Hom(U,T )→ Hom(Q ○K+(F ), U ○Q)

being an isomorphism makes (T, s) unique.
Note that T is the left Kan extension of Q(A′) ○K+(F ) along Q(A).
We will now give some easier-to-check criterium for when the right derived

functor exists. At the same time, we provide a tool for calculating the right
derived functor.

Definition 6.10. Let F ∶ A → A′ be a left exact additive functor of abelian
categories and let I be a full additive subcategory of A (not necessarily
consisting of injective objects). Then we say that I is injective with respect
to F , or F -injective if the following conditions hold.

(i) For all X ∈ Ob(A), there exists an X ′ ∈ I and a monomorphism X →
X ′.
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(ii) If 0 X ′ X X ′′ 0 is an exact sequence in A,
and if X ′,X ∈ Ob(I), then so is X ′′.

(iii) If 0 X ′ X X ′′ 0 is an exact sequence in A,
and if X ′,X,X ′′ ∈ Ob(I), then the sequence

0 F (X ′) F (X) F (X ′′) 0 is exact.

The definition of an F -injective subcategory is useful because it gives us
a way to compute the right derived functor of F , which will be clear by the
two following propositions.

Proposition 6.10. Let F ∶ A→ A′ be a left exact additive functor of abelian
categories and let I be a full additive subcategory of A that is F -injective.
Then the induced functor K+(F ) ∶K+(I)→K+(A′) transforms objects quasi-
isomorphic to zero to objects into objects quasi-isomorphic to zero.

Proof. See [8], page 356.

Consider the setting of the last proposition. Then, we have a composition
of morphisms

K+(I) K+(A′) D+(A′)K+(F ) Q

such that by Proposition 6.5, this factors through K+(I)/(N ∩Ob(K+(I))).
Moreover, by Proposition 6.8, K+(I)/(N ∩ Ob(K+(I))) is equivalent to
D+(A) and hence we have the following.

Proposition 6.11. Let F ∶ A→ A′ be a left exact additive functor of abelian
categories and let I be a full additive subcategory of A that is F -injective.
Then unique functor K+(I)/(N ∩Ob(K+(I))) → D+(A′) given above is the
right derived functor of F . In particular, the right derived functor exists.

Proposition 6.12. Let A, A′, A′′ be three abelian categories, and let F ∶
A → A′, F ′ ∶ A′ → A′′. Assume we have two full additive subcategories I, I ′
of A, A′ respectively, where I is F -injective and I ′ is F ′-injective. Further,
assume F maps objects in I into objects in I ′.

Then I is (F ′ ○ F )-injective and we have the following equality:

R(F ′ ○ F ) = RF ′ ○RF.

Proof. This is routine by Proposition 6.11.
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7 Sheaves

We will now look at sheaves, which informally can be seen as defining local
algebraic structures in a topological space. This can be seen as a way to
generalize singular homology of topological spaces. We will have two defi-
nitions of a sheaf: etale-sheaf of abelian groups and sheaf of abelian groups.
We will show that these are equivalent, but sheaves will be the more empha-
sized object going forward; etale-sheaves will serve as a way of ”sheafifying
close-to-be sheaves”.

The ideas presented here come from several sources that complement each
other. The beginning of looking at the definition of sheaves and etale-sheaves
of abelian groups is based mostly on Rotman [4]. The discussion on stalks
and sheafification is more detailed in Tennison [5], and I’ve chosen to take
this path as well.

7.1 Protosheaves and Etale-sheaves

Definition 7.1. Let E and X be topological spaces. A continuous map
p ∶ E → X is called a local homeomorphism if, for each e ∈ E, there is an
open neighborhood S of e such that p(S) is open and p∣S ∶ S → p(S) is a
homeomorphism. We call S a sheet.

If the local homeomorphism p is surjective, we call the triple (E,p,X) a
protosheaf.

We typically call E a sheaf space, p a projection, and X the base
space. Further, the fiber p−1(x) for x ∈ X is called the stalk over x and is
denoted by Ex. Here are some basic properties of protosheaves.

Proposition 7.1. Let (E,p,X) be a protosheaf.

(i) The sheets form a base for E.

(ii) p is an open map.

(iii) Each stalk is discrete.

Proof. (i) Consider the set of all sheets {S}S of the elements of E. This,
by definition, forms an open cover of E. Let U ⊆ E be an open set, and
note that U = ⋃S(U ∩ S). Since every open subset of a sheet is also a
sheet, U is a union of sheets.

(ii) By the previous, we have f(U) = f(⋃S(U ∩S)) = ⋃S f(U ∩S); that is,
we take a union of open sets which is open.
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(iii) Consider e ∈ Ex for some x and let S be a sheet over e. For another e′ ∈
Ex such that e′ ≠ e, then e′ ∉ S. This can be seen because p is injective
on S, and if both are in S then p(e) = x = p(e′), a contradiction. Thus,
we have S ∩Ex = {e}; E is discrete.

We continue with two properties of continuous maps.

Proposition 7.2. Let X be a space.

(i) Let {Ui}i∈I be an open cover of some open set U ⊆ X. If f, g ∶ U → Y
are two maps to some space Y , and if f and g agrees on Ui for i ∈ I,
then f = g.

(ii) Let {Ui}i∈I be an open cover of some open set U ⊆ X. let fi ∶ Ui → Y
be a continuous map for i ∈ I. If fi ∣Ui∩Uj

= fj ∣Ui∩Uj
, then there exists a

unique continuous map f ∶ U → Y such that f ∣Ui
= fi for all i ∈ I.

Proof. (i) If x ∈ U , then x ∈ Ui and we have f(x) = f ∣Ui
(x) = g∣Ui

(x) = g(x);
that is, f = g.

(ii) If x ∈ U , then x ∈ Ui for some i ∈ I. We define f ∶ U → Y to be given by
f(x) = fi(x). The assumption that fi and fj agree on Ui∩Uj shows that
f is well-defined, and it is clear that is the unique function satisfying
f ∣Ui
= fi. We need to show that it is continuous.

Let V ⊆ Y be an open subset We have

f−1(V ) = U ∩ f−1(V )
= (⋃

i

Ui) ∩ f−1(V )

=⋃
i

(Ui ∩ f−1(V ))

=⋂
i

f−1i (V ),

which is a union of open sets hence open. This shows that f is contin-
uous.

We will now define etale-sheaf.

Definition 7.2. Let S = (E,p,X) be a protosheaf. We say that S is an
etale-sheaf of abelian groups if

(i) the stalk Ex is an abelian group for each x ∈X, and
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(ii) inversion and addition are continuous.

The condition (ii) of an etale-sheaf of abelian groups needs some clarifi-
cation. What is meant with inversion e↦ −e for e ∈ E is clear. For addition,
define E +E = ⋃x∈X Ex ×Ex = {(e, e′) ∶ p(e) = p(e′)}. Addition α ∶ E +E → E
is defined by (e, e′)↦ e+e′. It is continuous if for every open neighborhood V
of e + e′, there exists an open neighborhood U of (e, e′) such that α(U) ⊆ V .

We are now ready to define the category of etale-sheaves.

Definition 7.3. Let S = (E,p,X) and S ′ = (E′, p′,X ′) be two etale-sheaves
over a space X. An etale-map ψ ∶ S → S ′ is a continuous map ψ ∶ E → E′

such that p′ ○ ψ = p, and ψ∣Ex is a homomorphism for each x ∈X.
We define the category of etale-sheaves of abelian groups over a topolog-

ical space X, denoted by Shet(X,Ab), to be given by the following:

(i) The objects of Shet(X,Ab) are etale-shaves of abelian groups.

(ii) The morphisms are given by the etale-maps.

We denote the set of etale-maps from two etale-sheaves S and S ′ by
Homet(S,S ′).

It is routine to show that Shet(X,Ab) is a category. We continue with
some properties of Homet(S,S ′).

Proposition 7.3. Let S = (E,p,X) and S ′ = (E′, p′,X ′) be two etale-sheaves
over a space X.

(i) Homet(S,S ′) is an additive abelian group, where addition is given by
ψ + ϕ ∶ E → E′, e↦ ψ(e) + ϕ(e) for ϕ,ψ ∈ Homet(S,S ′).

(ii) The distributive law holds; that is, given two etale-sheaves X and Y,
the etale-maps

X S S ′ Y,α

ψ

ϕ β

makes the following equalities hold:

β(ψ + ϕ) = βψ + βϕ and (ψ + ϕ)α = ψα + ϕα.

(iii) Every etale-map ψ ∶ S → S ′ is an open map ψ ∶ E → E′.

Proof. The first two statements are routine to prove. For the last, we note
that the sheets form a basis of the topology of E, and p′ψ = p.
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Let’s look at one example of an etale-sheaf, and a non-example.

Example 7.1. Let X be a topological space and let Y be an abelian group
with the discrete topology. Let E = X × Y be a space with the product
topology, and study the triple S = (E,p,X), with p ∶ (x, y) ↦ x being the
projection. This is an etale-sheaf which can be seen by the following.
S is a protosheaf: p is a local homeomorphism since for any open set U ⊆

X, U ×{y} is open in X×Y for y ∈ y, and p ∣U×{y} is clearly a homeomorphism
U × {y}→ p(U × {y}). Further, p is surjective since it is the projection.

For a given x ∈X, we have Ex = {x}×Y which is isomorphic to Y , hence
can be seen as an abelian group. Continuity of inversion and addition follows
immediately since Y is discrete and p is the projection. We conclude that S
is an etale-sheaf.

Example 7.2. A non-example is the protosheaf (R, p, S1), with S1 being the
circle and p ∶ R→ S1 is the map x↦ e2πix, which is a local homeomorphism.
It is not an abelian group, and hence not an etale-sheaf. To see this, note
that the stalk at S1 ∋ s ≠ 1 is not an abelian group.

Definition 7.4. Let S = (E,p,X) and S ′ = (E′, p′,X ′) be two etale-sheaves.
We call S ′ an subetale-sheaf of S if E′ ⊆ E and the inclusion E′ → E is an
etale-map.

7.2 Presheaves and Sheaves

We will now continue with presheaves and sheaves, which will be the main
objects we will work with when studying the cohomology of sheaves. We
begin with a ”categorification” of a topology.

Example 7.3. Consider a topological space X with topology U . View U as
a category by the following. Let Ob(U) = U , and let Hom(U,V ) be either
the empty set if U /⊆ V , or the set consisting of the inclusion U ↪ V if U ⊆ V .
The composition of morphisms is defined as expected. It is clear that U is a
category.

Definition 7.5. Let C be a category and let U be the category of a topology
of a topological space X. A presheaf is defined to be a contravariant functor
F ∶ U → C. Further, this gives a set of morphisms called restriction mor-
phisms. Whenever U ⊆ V for two open subsets U,V , there is a restriction
morphism ρVU ∶ F(V )→ F(U).

We denote a presheaf with {F , ρVU}, or simply F .
Sometimes we are only interested in a subset of X.
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Definition 7.6. Let U ⊆ X be an open subset and let F be a presheaf. We
define the restriction of F to U , denoted F ∣U , to be given by the presheaf

U ⊇ V ↦ F(U),

where V is open in U (and so in X).

We call a presheaf a presheaf of abelian groups if C =Ab. Let’s look
at an example of a presheaf.

Example 7.4. Let X be a topological space, x ∈X an element, U the topol-
ogy category, and A an abelian group. We define the skyscraper presheaf
x∗A ∶ U →Ab to be given by

x∗A(U) =
⎧⎪⎪⎨⎪⎪⎩

A if x ∈ U ,
{0} otherwise.

For U ⊆ V , with U and V ∈ U , then the inclusion map is mapped by x∗A to
either 1A or 0, depending on if x ∈ X. It is not hard to show that x∗A is a
contravariant functor, and thus, a presheaf.

We will later show, after providing with the definition, that x∗A is a sheaf.

Before defining a sheaf, we will define the so-called equalizer condition,
from which a sheaf is defined. For a given presheaf {F , ρVU}, and element
σ ∈ F(V ), we will sometimes abbreviate ρVU (σ) by σ∣U .

Definition 7.7. Let {F , ρVU} be a presheaf of abelian groups on a topolog-
ical space X with topology U . The presheaf {F , ρVU} satisfy the equalizer
condition if

(i) (Uniqueness) for every open set U ∈ U and open cover {Ui}i∈I , if
σ, τ ∈ F(U) satisfy σ∣Ui

= τ ∣Ui
for all i ∈ I, then σ = τ .

(ii) (Gluing) for every open set U ∈ U and open cover {Ui}i∈I , if σi ∈ F(Ui)
satisfy σi∣Ui∩Uj

= σj ∣Ui∩Uj
for all i, j ∈ I, then there exists a unique

σ ∈ F(U) such that σ∣Ui
= σi for all i ∈ I.

At first glance, it might seem like the equalizer condition is satisfied by all
presheaf, but this is not the case, which is illustrated by the next example.

Example 7.5. Let X be the 2D euclidean plane with regular topology, and
define the presheaf F by

F(U) = {f ∶ U → R∣ f is constant} for U ∈ U .
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Now, consider two disjoint open sets U1, U2 ∈ U , and let U = U1∪U2, hence
{U1, U2} is an open cover of U . Consider the mappings σ1 ∶ F(U1)→ R to be
given by σ1(u1) = 0 for u1 ∈ U1. Similarly, we define σ2(u2) = 1 for u2 ∈ U2.
Since U1 ∩U2 = ∅, we have σ1∣U1∩U2 = σ2∣U1∩U2 . However, it is easy to see that
there is no constant map σ ∈ F(U) such that σ∣U1 = 0 and σ∣U2 = 1, hence the
gluing condition is not satisfied.

We are now ready for the definition of a sheaf.

Definition 7.8. Let {F , ρVU} be a presheaf of abelian groups. Then {F , ρVU}
is called a sheaf of abelian groups if it satisfies the equalizer condition.

Sheaves are interesting as they describe some local properties of a space.
And by using sheaf cohomology, as we will do in a coming section, we will
”make this data global”. This is useful for generalizing Poincaré duality.

We bring up the example of the skyscraper presheaf again and show that
it is a sheaf.

Example 7.6. Let the skyscraper presheaf be as defined in Example 7.4. To
show it is a sheaf, we need to show it satisfies the equalizer condition.

(Uniqueness) Let U be an open set and let {Ui} be an open cover of U .
Consider two elements σ, τ ∈ x∗A(U) such that σ∣Ui

= τ ∣Ui
. Then, if x ∉ U ,

both elements are trivial and hence equal. If x ∈ U , then there exists some
Ui ∋ x where σ∣Ui

= τ ∣Ui
. But since the restriction map is the identity, σ = τ.

(Gluing) Let σi ∈ x∗A(Ui), σj ∈ x∗A(Uj) and assume σi∣Ui∩Uj
= σj ∣Ui∩Uj

for all i, j. If x ∉ U , then there clearly exists a unique element, 0, the trivial
element, which satisfy 0∣Ui

= σi. If x ∈ U , then we have two cases: either
no intersection of two open subsets in {Ui} contain x, or such exists. In the
former case, all restrictions to an intersection of open subsets is trivial, and we
arrive at the same situation as for the uniqueness condition. For the latter, if
some intersection Ui∩Uj contains x, the sections are mapped using an identity
thereto. This means that there exists a unique section in x∗A(Ui∪Uj) which
is mapped to σi and σj respectively. Continuing inductively gives the result.

Now, let us construct the category of presheaves. To do so, we need
morphisms.

Definition 7.9. Let {F , ρVU} and {G, ρ′VU} be presheaves of abelian groups
over a space X. A sheaf map, ϕ ∶ F → G is a natural transformation; that
is, we have a commutative diagram whenever U ⊆ V for U,V ∈ U :

F(V ) G(V )

F(U) G(U).

ϕV

ρVU ρ′VU

ϕU
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From this, we can define the category of presheaves. To be more correct,
we should have it as a proposition, but since the proof is routine, we keep it
as a definition.

Definition 7.10. We define the category of presheaves of abelian groups,
denoted by pSh(X,Ab), to consists of presheaves F ∶ U →Ab, with U being
the category of the topology of X, as objects, and Hom(F ,G) = Nat(F ,G)
as the morphisms.

We continue with defining the category of sheaves.

Definition 7.11. Define Sh(X,Ab) to be the full category of pSh(X,Ab)
generated by the sheaves over a space X.

Lastly, we define the support of a section.

Definition 7.12. Let F ∈ Ob(pSh(X,Ab)), U be open set in X, and σ ∈
F(U). The support of the section σ in U is defined to be the complementary
in U of the open sets V such that σ∣V = 0. The support of σ is denoted by
supp(σ).

7.3 Stalks

Before looking at the connection between etale-sheaves and sheaves, we will
define stalks. This will help us with the understanding of this connection.
Informally, we have seen how presheaves are only defined on open sets. Stalks
is a way to increase this domain, to assign an abelian group to each point in
the topological space. The reason for making this is that some propositions
and theorems of presheaves and sheaves can be transformed into questions
about stalks, which can potentially be easier to work with.

Definition 7.13. Let F ∈ pSh(X,Ab). The stalk Fx of F at x is given by

Fx = limÐ→
U∋x

F (U).

An element in Fx is called a germ.

Let σ ∈ F(U) with x ∈ U . We sometimes abbreviate the image of σ in Fx
by σx.

By Proposition 2.6, Fx exists for all x. We have the following useful
proposition.

Proposition 7.4. Let F ∈ pSh(X,Ab).
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(i) For each germ τ ∈ Fx, there exists an open neighborhood U of x and a
section σ ∈ F(U) such that τ = σx.

(ii) Let σx, τx ∈ Fx be two germs such that σ ∈ F(U), τ ∈ F(V ) for open
neighborhoods x ∈ U , x ∈ V . Then σx = τx if and only if there exists an
open neighborhood W ⊆ U ∩ V with ρUW (σ) = ρVW (τ).

Proof. This follows from Proposition 2.5 and 2.6.

Example 7.7. We will now give two examples of stalks.

(i) Let F ∈ pSh(X,Ab) such that F(U) = A for all open sets U , where A
is an abelian group. This is called the constant presheaf. It is clear
that for any x, A is a target of the system and satisfies the conditions
in Proposition 2.5. Hence, Fx = A for all x.

(ii) Let X be a topological space with more than one point having the
discrete topology and consider the presheaf P given by P(X) = Z, and
P(U) = 0 for U ≠ X, where 0 is the trivial abelian group. Then we
have Px = 0 for all x, but P ≠ 0. Thus we see that the local behavior
on elements is not enough to derive the global behavior for presheaves.

Let x ∈ X and consider two presheaves F ,G ∈ pSh(X,Ab) and a mor-
phism ϕ ∶ F → G. This map induces a map of stalks ϕx ∶ Fx → Gx such
that whenever we have another presheaf H ∈ pSh(X,Ab) and a morphism
ψ ∶ G → H, we have

(ψ ○ ϕ)x = ψx ○ ϕx.
We define ϕx as follows. Consider an element σx ∈ Fx with an open set

x ∈ U , and σ ∈ F(U). We define

ϕx(σx) = (ϕ(U)(σ))x

. We need to show that this is well-defined. Assume we have another open
set x ∈ V , an element τ ∈ F(V ) such that σx = τx. Then there exists an open
set x ∈W ⊆ U ∩ V and ρUW (s) = ρVW (t). But this means we have

ρUW (ϕ(U)(σ)) = ϕ(W )ρUW (σ)
= ϕ(W )ρVW (τ)
= ρVW (ϕ(V )(τ));

that is, (ϕ(U)(σ))x = (ϕ(V )(τ))x, hence ϕx is well-defined. It is routine to
check the functorial property (ψ ○ ϕ)x = ψx ○ ϕx.

We continue with a useful implication of morphisms of stalks.

62



Proposition 7.5. Let F ,G ∈ Sh(X,Ab) be two sheaves of abelian groups
and let ϕ,ψ ∶ F → G be two morphisms. If ϕx = ψx for all x ∈X, then ϕ = ψ.

Proof. Let U be an open neighborhood of X, and let σ ∈ F(U). By assump-
tion, we have that for all x, ϕx(σx) = ψx(σx), which means (ϕ(U)(σ))x =
(ψ(U)(σ))x. Then there exists an open neighborhood of x ∈ Ux ⊆ U such that
ρUUx
(ϕ(U)(σ)) = ρUUx

(ψ(U)(σ)). Applying the equalizer condition (unique-
ness), we get ϕ = ψ.

Remark 7.1. Note that in the proof of Proposition 7.5, we only used that G
satisfies the uniqueness condition.

Proposition 7.6. Let F ∈ Sh(X,Ab) and let σ,σ′ ∈ F(U) for an open set
U . Then σ = σ′ if and only if σx = σ′x for all x ∈ U .

Proof. The only if is clear. Assume σx = σ′x for all x ∈ X. Then there exists
an open neighborhood x ∈ Ux such that ρUUx

(σ) = ρUUx
(σ′) for all x. Applying

the uniqueness condition on the cover {Ux}x∈U we get σ = σ′.

7.4 Connecting etale-sheaves and sheaves

We are now ready to look at the connection between etale-sheaves and
sheaves.

Definition 7.14. Let S = (E,p,X) be an etale sheaf of abelian groups and
U ⊆ X be an open set. A section over U is a continuous map σ ∶ U → E
such that p ○ σ = idU . σ is called a global section if U =X.

We denote the set of sections over U with Γ(U,S), and we set Γ(∅,S) =
{0}.

Proposition 7.7. Let S = (E,p,X) be an etale-sheaf of abelian groups, and
let Γ(⋅,S) be the functor defined above.

(i) Γ(U,S) is an abelian group for all open sets U ⊆X.

(ii) Γ(⋅,S) is a presheaf of abelian groups.

(iii) The function z ∶X → E, x↦ 0x ∈ Ex is a global section.

We call the presheaf Γ(⋅,S) the sheaf of global sections. The function
z is called the zero section.
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Proof. (i) First, we need to show that Γ(U,S) ≠ ∅ for any open set U ⊆X.
For the empty set, U = ∅, we have by definition Γ(U,S) = {0}. If U
is not empty, let x ∈ U and take a sheet S of e ∈ Ex. By Proposition
7.1, p is an open map, and so p(S) ∩ U is an open neighborhood of
x. Since p is a homeomorphism, we have a section (p∣S)−1 ∶ p(S) → S;
define σS to be the restriction of this section to p(S) ∩ U . But this
construction can be done for all elements in U , hence, we have an open
cover of set p(S) ∩ U of U . All the sections agree on overlap, thus by
Proposition 7.1 again, there is a section U → E coming from ’gluing’
the constructed sections.

Now we show that it is an abelian group. Fix an open set U ⊆ X, and
let σ, τ ∈ Γ(U,S). The map (σ, τ) ∶ x ↦ (σ(x), τ(x)) is a continuous
map U → E + E. Composing with addition, which is continuous, we
get σ + τ ∶ x ↦ σ(x) + τ(x) ∈ Γ(U,S). Lastly, the inverse is continuous,
hence for σ ∈ Γ(U,S) we have −σ ∈ Γ(U,S).

(ii) By (i), it is clear that it maps to abelian groups, hence on objects
seems to be a contravariant functor. On morphisms, if U ⊆ V , we get
the restriction σ → σ∣U as the group homomorphism Γ(V,S)→ Γ(U,S).

(iii) Study Γ(X,S), which is an abelian group by (i), hence has an identity.
But this is the zero section, and we are done.

By Proposition 7.1, we see that the presheaf Γ(⋅,S) for an etale-sheaf S
satisfies the equalizer condition, thus it is a sheaf. This fact is important and
will be the bridge between etale-shaves and sheaves. We state it explicitly.

Proposition 7.8. Let S be an etale-sheaf of abelian groups and Γ(⋅,S) be
the sheaf of sections. Then Γ(⋅,S) is a sheaf.

Proof. Follows from Proposition 7.1.

Proposition 7.9. The sheaf of sections defines a functor Γ ∶ Shet(X,Ab)→
Sh(X,Ab).

Proof. Let S be an etale-sheaf. Then by Proposition 7.8, ΓS ∶ U ↦ Γ(U,S)
is a sheaf.

Let S ′ be another etale-sheaf, and let ψ ∶ S → S ′ be an etale-map. The
morphism Γψ is given by σ ↦ ψ ○ σ, for σ ∈ Γ(U,S). It is routine to check
that Γ satisfies the axioms of being a functor.
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This means we have a functorial way of associating a sheaf to an etale-
sheaf. We can also construct an etale-sheaf from a presheaf. Before doing
so, we need the following.

Lemma 7.10. Let S = (E,p,X) ∈ Ob(Shet(X,Ab)). If U is an open subset
in X, and σ ∈ ΓS(U) = Γ(U,S), then σ(U) ⊆ E is open.

Proof. Let e ∈ σ(U). Since p is a local homeomorphism, there exists an open
neighborhood W ⊆ E such that p∣W is a homeomorphism. Moreover, the
image V of p∣W is open by Proposition 7.1. This means p∣W maps W ∩σ(U)
bijectively to the open set U ∩ V . Thus, W ∩ σ(U) is an open neighborhood
of e, but since σ(U) ⊆ W ⊆ σ(U), we see that we can decompose U into
subsets which are sent to open sets; since a union of open sets is open, σ(U)
is open.

Proposition 7.11. Let S = (E,p,X) ∈ Ob(Shet(X,Ab)). The stalk of ΓS
at x ∈X is the fibre p−1(x), with the discrete topology.

Proof. Let U be an open neighborhood of x and consider the map ΓS(U)→
p−1(x), given by σ ↦ σ(x). It is clear that these maps make a commutative
diagram with the restriction morphisms. We will show that this is the direct
limit using Proposition 2.5.

First, let e ∈ p−1(x). Since p is a local homomorphism, there exists a
neighborhoodW of e such that p∣W is a homeomorphism; the inverse (p∣W )−1
exists and is an element of ΓS(U) such that (p∣W )−1(x) = e. This shows (i)
in Proposition 2.5.

Second, assume we have σ ∈ ΓS(U) and τ ∈ ΓS(U) such that σ(x) = τ(x).
By Lemma 7.10, we have that W = σ(U) ∩ τ(V ) is open in E. Further,
p(W ) is open by Proposition 7.1, and σ and τ agree on p(W ) since they are
inverses of p∣W . Thus, ρU

p(W )(σ) = ρVp(W )(τ) ∈ ΓS(p(W )), which shows (ii) in
Proposition 2.5. Thus, we get

p−1(x) ≅ limÐ→
U∋x

ΓS(U).

Lastly, p−1(x) is a discrete subspace of E. This can be seen by taking the
W defined above for e ∈ p−1(x), noting that W is open by Lemma 7.10, and
we have W ∩ p−1(x) = {e}.

We will now look at the construction of an etale-sheaf given a presheaf.
Let F ∈ Ob(pSh(X,Ab)), and we define the following functor L ∶ pSh(X,Ab)→
Shet(X,Ab).

We let E = ⊔x∈XFx, and define p ∶ E →X to be the natural projection. We
give E the following topology. Let U ⊆ X be an open set and let σ ∈ F(U).
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This gives a map σ̂ ∶ U → E such that x↦ σx, and we let σ̂(U) = {σx ∈ E;x ∈
U} be an open set in E.

Now, consider the topology generated by {σ̂(U);σ ∈ F(U)}. Then, the
intersection of two such sets σ̂(U) ∩ σ̂′(V ), for σ′ ∈ F(V ), is either empty
or an element of the same form. Choose an element e ∈ σ̂(U) ∩ σ̂′(V ). By
construction, σx = σ′x at p(e) = x, which means there exists a neighborhood
W ⊆ U ∩ V of x such that ρUW (σ) = ρVW (σ′). Thus, we get a neighborhood

ˆρUW (σ)(W ) = ˆρVW (σ′)(W ) of e which is contained in σ̂(U) ∩ σ̂′(V ). This
means {σ̂(U); s ∈ F(U)} forms a basis of the topology it generates.

We define L ∶ pSh(X,Ab) → Shet(X,Ab) to be given by F ↦ (E,p,X)
with the notations used above.

Proposition 7.12. Let F ∈ pSh(X,Ab) and let L be as defined above. Then
LF is an etale-sheaf.

Proof. Denote the created object by (E,p,X) = LF . It is clear that (E,p,X)
has the data of being a protosheaf. Further, p is surjective, so we need to
show that it is local homomorphism.

Take an element e ∈ E, then e = σx for some σ ∈ U and x ∈ X, where
x ∈ U ⊆ X is open. But then σ̂(U) = {σx ∈ E;x ∈ U} is open in E by
definition and thus is an open neighborhood of e. It is easy to see that p∣σ̂(U)
is a bijection, and it is continuous by definition. Further, the inverse is also
continuous, since the topology on E is generated by the sets σ̂(U) = {σx ∈
E;x ∈ U}; taking the inverse of these sets yields a union of open sets in X.
We conclude that p is a local homeomorphism.

Each stalk is an abelian group, since p−1(x) ≅ Fx. The proof that addition
and inversion are continuous can be found in [4], page 281-283.

In order for L to be a functor, we need to define what happens on mor-
phisms of presheaves. We start with a useful lemma.

Lemma 7.13. Let S = (E,p,X) and S ′ = (E′, p′,X) be two objects in
Shet(X,Ab) and let ψ ∶ S → S ′ be an etale-map. If the diagram

S S ′

X

ψ

p p′

commutes, then the following are equivalent.

(i) ψ is continuous.

(ii) ψ is open.
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(iii) ψ is a local homeomorphism.

Proof. By definition, if ψ is a local homeomorphism, then it is continuous.
Further, since p is open by Proposition 7.1, it follows that ψ is open by
commutativity (p′ is continuous). This shows (iii) Ô⇒ (i), (ii).

Next, we show (i) Ô⇒ (iii). Let e ∈ E, ψ(e) ∈ E′. Let S′ be a sheet
of ψ(e), hence p′∣S′ is a homeomorphism. Since ψ is continuous, e ∈ ψ−1(S′)
is open in E. Since p is a local homeomorphism, we can find a sheet S of e
such that S ⊆ ψ−1(S′). Thus, both p∣S and p′∣ψ(S)⊆S′ are homeomorphisms,
thus so is ψ∣S, and the result follows.

Lastly, for (ii) Ô⇒ (iii), we can do a similar analysis as above. We first
choose a sheet S of e, and we note that ψ(S) is open in E′. The rest is
routine.

We now define L on morphisms. Let ψ ∶ F → G be a morphism of
presheaves of abelian groups, and let LF = (E,p,X), LG = (E′, p′,X).
We have a stalk map ψx ∶ Fx → Gx for each x ∈ X, which gives a map
Lψ ∶ LF → LG such that the following diagram commutes.

LF LG

X

Lψ

p p′

Note that on stalks, we have Lψ∣Ex = Lψ∣Fx = ψx, which is a homomorphism.
The last thing we need to show is that Lψ is continuous. But this follows from

Lemma 7.13 since Lψ is an open map; we have Lψ(σ̂(U)) = ˆψ(U)(s)(U),
where ˆψ(U)(s)(U) is open in E′ by construction.

Theorem 7.14. The map L ∶ pSh(X,Ab)→ Shet(X,Ab) is a functor.

Proof. Clearly, L maps objects in pSh(X,Ab) to objects in Shet(X,Ab).
We need to show it satisfies the properties of a functor.

L(ψ ○ ϕ) = L(ψ) ○ L(ϕ): Let ϕ ∶ F → G and ψ ∶ G → H be two morphisms
in pSh(X,Ab). Choose an element e ∈ LF . Then there exists an x ∈X such
that e ∈ Fx, thus there exists an open neighborhood U ⊆ X of x such that
σ ∈ F(U) and σx = e. We have L(ψ ○ ϕ)(e) = (ψ ○ ϕ)x(σx) = ψx ○ ϕx(σx).
Further, we have L(ψ)○L(ϕ)(e) = L(ψ)○ϕx(σx). Since ϕx maps element into
Gx, we get L(ψ)○ϕx(σx) = ψx○ϕx(σx) and we conclude L(ψ○ϕ) = L(ψ)○L(ϕ).

L(id) = id: With the notations above, we have L(id)(e) = idx(σx) =
(id(U)(σ))x = σx = e, hence L(id) = id, and we are done.
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We have now constructed two functors, Γ ∶ Shet(X,Ab) → Sh(X,Ab)
and L ∶ pSh(X,Ab) → Shet(X,Ab), giving us a way to work with either
etale-sheaves or (pre)sheaves. But then it is interesting what happens if we
apply these functors after each other.

Theorem 7.15. Let S = (E,p,X) ∈ Shet(X,Ab). Then S is isomorphic to
LΓS in Shet(X,Ab).

Proof. We will construct an isomorphism ψ ∶ S → LΓS in the following way.
Let LΓS = (E′, p′,X). By Proposition 7.11, for x ∈ X, there is a bijection
between the fibre p−1(x) and the stalk of ΓS at x. By the same Proposition,
there is a bijection of p′−1(x) and the stalk of ΓS at x. Subsequently, this
gives a bijection ψ ∶ S → LΓS such that the following diagram commutes.

S LΓS

X

ψ

p p′

Now, ψ is open. This can be seen by taking an open set U in X, and a
section σ ∈ Γ(U,E), we have

ψ(σ(U)) = {σx ∈ E′;x ∈ U} = σ̂(U).

But then, by Lemma 7.13, ψ is also continuous, thus a homeomorphism.

We will finish this section by showing that if F ∈ Sh(X,Ab), then there
exists an isomorphism F → ΓLF . Before proving this, we have the following
useful proposition.

Proposition 7.16. Let ψ ∶ F → G be a morphism in pSh(X,Ab). Then ψ
is an isomorphism of preshaves if and only if for all open subsets U of X,
ψ(U) is bijective.

Proof. Only if: Assume ψ is an isomorphism, then there exists a morphism
g ∶ G → F such that ψ ○ g = idG and g ○ ψ = idF . By definition, this means
that for all open sets U of X, ψ(U)○g(U) = idG(U) and g(U)○ψ(U) = idF(U);
that is, ψ(U) is an isomorphism and hence bijective.

If: Assume that for all open sets U of X, ψ(U) is a bijection. Thus we
can find an inverse ψ−1(U), where we need to check this is compatible with
the restrictions. Let V ⊆ U be an open subset, and consider the commutative
diagram
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F(U) G(U)

F(V ) G(V )

ψ(U)

ψ(V )
.

Since ψ(U) and ψ(V ) are bijective, we get another commutative diagram,
showing that the inverses are compatible with the restrictions.

F(U) G(U)

F(V ) G(V )

ψ−1(U)

ψ−1(V )

Thus, we get that ψ−1 ∶ G → F is a morphism in pSh(X,Ab), and ψ ○ ψ−1 =
idG and ψ−1 ○ ψ = idF ; that is, ψ is an isomorphism.

Theorem 7.17. Let F ∈ Sh(X,Ab). Then F is isomorphic to ΓLF in
Sh(X,Ab).

Proof. By Proposition 7.16, it suffices to find a bijective map F(U)→ ΓLF(U)
on all open subsets U of X. Consider the map σ ↦ σ̂. We need to show it is
injective and surjective.

For injectivity, let σ,σ′ ∈ F and assume σ̂ = σ̂′. Then, for all x ∈ U ,
σx = σ′x. By Proposition 7.6, σ = σ′.

To show it is surjective, let τ ∈ ΓLF(U) = Γ(U,LF). Seen as a section,
τ(U) is open in LF by Lemma 7.10. Thus, for each x ∈ X, there exists an
open neighborhood σ̂x(Ux) ⊆ τ(U) of τ(x) for some open set Ux ⊆ U and
element σx ∈ F(Ux), since the collection of sets {σ̂}σ∈F(U) is a basis of the
topology of the sheaf space of LF .

Consider another point y ∈ U . Similarly, there exists an open neighbor-
hood of of τ(y) on the form σ̂y(Uy), with Uy open and σy ∈ F(Uy). Further,
on the set V = Ux ∩Uy, the elements ψUx

V (σx) and ψ
Uy

V (σy) are both mapped
to the germ τ(z) for z ∈ V , and thus are equal on V by Proposition 7.6. Ap-
plying the equalizer condition, there exists an element σ ∈ F(U) such that
σ̂ = {σx;x ∈ U} = {τ(x);x ∈ U} = τ , and we are done.

We finish this section by showing that the sheafification functor ΓL satisfy
a universal property, which will come to use when looking at the ’abelianess’
of pSh(X,Ab) and Sh(X,Ab).

Let F ∈ Ob(pSh(X,Ab)), we define the following morphism nF ∶ F →
ΓLF : Let U ⊆ X be an open set and let σ ∈ F(U). Then σ induces a
morphism

σ̂ ∶ U → LF
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given by x ↦ σx. By the above construction of the functors Γ and L, we
saw σ̂ ∈ Γ(U,LF), which gives the morphism nF(U) ∶ σ ↦ σ̂. We have the
following lemma.

Lemma 7.18. Let F ∈ Ob(pSh(X,Ab)). Then for all x ∈ X, the induced
morphism

nF ,x ∶ Fx → (ΓLF)x
is an isomorphism.

Proof. The stalk of ΓLF over x is by construction the fiber of LF over
x, which is Fx. The induced morphism nF ,x map sx to sx, hence is an
isomorphism.

We now look at the universal property.

Theorem 7.19. Let F ∈ Ob(pSh(X,Ab)), G ∈ Ob(Sh(X,Ab)), and ψ ∶
F → G be a morphism of presheaves. Then ψ factors uniquely through nF .

Proof. We will first show that there exists a morphism ΓLF making the
following triangle commute:

F G

ΓLF

ψ

nF

First, we apply ΓL to the morphism ψ ∶ F → G to get ΓLψ ∶ ΓLF → ΓLG. By
Theorem 7.17, there is an isomorphism ΓLG → G, and we get a morphism
ΓLF → ΓLG → G. From the construction of the isomorphism in Theorem
7.17, it is not hard to see that the diagram above commutes.

We now show that the morphism constructed is the only one making the
diagram commute. Let g ∶ ΓLF → G be any morphism making the triangle
above commute. By Lemma 7.18, nF ,x ∶ Fx → (ΓLF)x is an isomorphism,
hence the inverse exists. Thus, the stalk map gx is uniquely determined by

(ΓLF)x → Fx → Gx.

Since g is a map of sheaves, Proposition 7.5 implies g is unique.
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8 Functors of sheaves

We will now look at functors of sheaves that are induced by continuous maps
of topological spaces. The motivation is probably clear from algebraic topol-
ogy; inducing continuous maps as morphisms of algebraic structures can give
information about the underlying topological spaces. E.g., a homeomorphism
between topological spaces induces isomorphism in singular homology, given
that it exists.

There are several interesting sources here, see for example [7] and [6].
However, I have gone for a similar discussion as given in [9], and most proofs
stem from this source. An alternative was [5] as was used in the previous
chapter, and I highly recommend this source, but the arguments are more
concrete and longer. Also, since subsequent analysis will be more abstract,
introducing a more abstract thinking of sheaves can be beneficial, instead of
working with ’concrete’ sections. Therefore, [9] was a suitable source.

8.1 Sheaf of solutions and tensor product

We will now expand our view on sheaves. Some sheaves we typically use have
a richer structure than just being an abelian group.

Definition 8.1. A presheaf over a topological spaceX with values inRing is
called a presheaf of rings, and the category thereof is denoted by pSh(X,Ring).
If it is a sheaf, we call it a sheaf of rings and denote it by Sh(X,Ring).

Definition 8.2. Let R be an object in Sh(X,Ring). An R-module M is
a sheaf M such that for each open set U ⊆X, M(U) is a left R(U)-module.
Furthermore, the restriction morphisms are compatible with the structure of
the module; that is, if V ⊆ U , then for any r ∈ R(U) and σ ∈ M(U), we
have ρUV (rσ) = ρUV (r)ρUV (σ). We will denote the sheaf of left R-modules by
Mod(R).

Let Zx denote the constant sheaf U ↦ Z. Then Zx is a sheaf of rings, and
we have

Sh(X,Ab) =Mod(Zx).
Therefore, statements in Mod(R) also holds in Sh(X,Ab).

Definition 8.3. Let U ⊆ X be an open subset, F ,G ∈ Ob(Sh(X,Ab)) and
R ∈ Ob(Sh(X,Ring)). We define the sheaf of solutions of F in G over R
to be given by

U ↦ HomR∣U (F ∣U ,G∣U).
We denote this presheaf by HomR(F ,G).
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By construction, it is clear that Γ(X,HomR(F ,G)) = HomR(F ,G).
We now define tensor product.

Definition 8.4. Let R be a sheaf of rings on X, F a right R-module, and G
a left R-module. We define the tensor product of F and G over R, denoted
F ⊗R G, to be the sheafification of the presheaf

U ↦ F(U)⊗R(U) G(U).

We denote the presheaf U ↦ F(U)⊗R(U) G(U) by F ⊗∨R G.

Proposition 8.1. Let R be a sheaf of rings on X, F ,G ∈ Ob(Sh(X,Ab)),
and x ∈X. Then

(F ⊗R G)x ≅ Fx ⊗Rx Gx.

Proof. We start by constructing a map ϕ from Fx ⊗Rx Gx to (F ⊗R G)x. Let
σx ⊗ τx ∈ Fx ⊗Rx Gx. Then there exists open neighborhoods U,V ⊆ X of
x such that σ ∈ F(U) and τ ∈ G(V ). Since x ∈ W = U ∩ V is open, we
get ρUW (σ) ⊗ ρVW (τ) ∈ F(W ) ⊗R(W ) G(W ); we can view σ, τ as elements of
F(W ),G(W ) respectively. This is then mapped to (σ ⊗ τ)x.

We start by showing that ϕ is well-defined. Let σx⊗τx = σ′x⊗τ ′x such that
σ ⊗ τ ∈ F(W ) ⊗R(W ) G(W ) and σ′ ⊗ τ ′ ∈ F(W ′) ⊗R(W ′) G(W ′). Then there
exists an open neighborhood Ux such that ρWUx

(σ)⊗ρWUx
(τ) = ρW ′

Ux
(σ′)⊗ρW ′

Ux
(τ ′).

Then, we have

ϕ(σx ⊗ τx) = (σ ⊗ τ)x
= (ρWUx

(σ)⊗ ρWUx
(τ))x

= (ρWUx
(σ′)⊗ ρWUx

(τ ′))x
= (σ′ ⊗ τ ′)x.

Surjectivity is clear, since for any element (σ ⊗ τ)x ∈ (F ⊗R G)x, there
exists an open neighborhood W of x such that σ ⊗ τ ∈ F(W ) ⊗R(W ) G(W ),
and so ϕ(σx ⊗ τx) = (σ ⊗ τ)x.

For injectivity, let σx ⊗ τx and σ′x ⊗ τ ′x be such that (σ ⊗ τ)x = (σ′ ⊗ τ ′)x.
Then there exists an open neighborhood W of x such that σ ⊗ τ = σ′ ⊗ τ ′ ∈
F(W )⊗R(W ) G(W ), and so σx ⊗ τx = σ′x ⊗ τ ′x.

Corollary 8.1.1. Let R be a sheaf of rings on X. The functor ⋅ ⊗R ⋅ is right
exact in each of its arguments.

Proof. Let G be a left R-module. Let F ′,F ,F ′′ be right R-modules such
that the following sequence is exact.

0 F ′ F F ′′ 0
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Then

0 F ′x Fx F ′′x 0

is exact, and thus

Gx ⊗Rx F ′x Gx ⊗Rx Fx Gx ⊗Rx F ′′x 0

is exact since Gx ⊗Rx ⋅ is right exact in the category of Rx-modules.

Proposition 8.2. Let R be a sheaf of rings, I a sheaf of commutative rings,
and I → R a morphism of sheaves such that the image is contained in the
center of R. Let F and G be two R-modules and H an I-module. Then there
are canonical isomorphisms:

HomR(H ⊗I F ,G) ≅HomR(F ,Hom I(H,G)
≅Hom I(H,HomR(F ,G).

Proof. By the tensor-hom adjunction, we have for all open sets U ⊆X

HomR(U)(H(U)⊗I(U) F(U),G(U)) ≅ HomR(U)(F(U),HomI(U)(H(U),G(U))
≅ HomI(U)(H(U),HomR(U)(F(U),G(U)).

Subsequently, we get the following isomorphisms of presheaves.

HomR(H ⊗∨I F ,G) ≅ HomR(F ,HomI(H,G))
≅ HomI(H,HomR(F ,G)).

By applying sheafification, we getH⊗∨IF ≅ H⊗IF , and the result follows.

8.2 Direct and inverse image

Further on, we let X and Y denote topological spaces and f ∶ X → Y a
continuous map between them.

Definition 8.5. Let F be a presheaf in pSh(X,Ab). We define the direct
image of F by f ∶X → Y , denoted f∗F , to be given by

(f∗F)(U) = F(f−1(U)),

for an open set U ⊆ Y . The restriction morphisms are given in the obvious
way.

Note that the direct image of a presheaf changes the base space of the
sheaf; since F ∈ Ob(pSh(X,Ab)), we get f∗F ∈ Ob(pSh(Y,Ab)).
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Proposition 8.3. If F ∈ Ob(Sh(X,Ab)), then f∗F ∈ Ob(Sh(Y,Ab)).

Proof. Let U ⊆ Y be an open subset and let {Ui}i∈I be an open cover of U
with some indexing set I. Let σ, τ ∈ f∗F(U) be such that σ∣U−i = τ ∣Ui

for
some i ∈ I.

Now, let V = f−1(U), and note that f−1(Ui)i∈I is an open cover of V .
Thus, we have σ, τ ∈ V such that σ∣f−1(Ui) = τ ∣f−1(Ui) in V . Since F is a sheaf,
σ = τ , which shows the uniqueness condition. Similarly, we can show the
gluing condition, hence f∗F is a sheaf.

Let ϕ ∶ F → G be a morphism of presheaves. We define f∗ϕ in an obvious
way; that is, f∗ϕ(U) = ϕ(f−1(U)). Denote the direct image of the morphism
ϕ by ϕ∗. This makes f∗ ∶ Sh(X,Ab) → Sh(Y,Ab) into a functor, since for
two morphisms ϕ ∶ F → G and ψ ∶ G → H, we have (ψ ○ ϕ)∗ = ψ∗ ○ ϕ∗ and
(idF)∗ = idf∗F .

We can go the other way, that is, if we have a presheaf G ∈ Ob(pSh(Y,Ab)),
there exists a functor f∗ ∶ pSh(Y,Ab)→ pSh(X,Ab).

Definition 8.6. Let G be a presheaf in pSh(Y,Ab). We define the inverse
image of G by f , denoted f∗G, to be given by

V ↦ limÐ→
U⊇f(V )

G(U),

where V is an open set in X, and U are open in Y .

Again, if G is a sheaf, then so is f∗G. Let ϕ ∶ F → G be a morphism
of presheaves in pSh(Y,Ab), and let V ⊆ X be an open subset. Consider
an element σf(V ) ∈ f∗F(V ), and so there exists an open set U ∈ Y such
that σ ∈ F(U). From this, we map σ to ϕ(U)(σ), and further into f∗G(U).
Because ϕ is compatible with restrictions, this map is well-defined (to see this,
compare with the proof that the stalk map is well-defined). Subsequently,
f∗ ∶ Sh(Y,Ab)→ Sh(X,Ab) is a functor.

It is not hard to see that both f∗ and f∗ induce functors in Mod(R).
We conclude this in a proposition.

Proposition 8.4. Let R ∈ Ob(Sh(Y,Ring)) and I ∈ Ob(Sh(X,Ring)).
Then f∗R ∈ Ob(Sh(X,Ring)), f∗I ∈ Ob(Sh(Y,Ring)), and f∗ and f∗ in-
duces functors in Mod(R):

f∗ ∶Mod(R)→Mod(f∗R)
f∗ ∶Mod(I)→Mod(f∗I).

Proposition 8.5. Let G be a sheaf over Y (in either Sh(Y,Ab) or Mod(R))
and let x ∈X. Then (f∗G)x = Gf(x).
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Proof. See proof on page 12 in [7].

There are natural morphisms

f∗f∗ → id

and
id→ f∗f∗.

We begin by showing the first one. Consider a sheaf F over X. Let U ⊆ X
be an open set, and take a section σ ∈ f∗f∗F(U). Expanding σ ∈ f∗f∗F(U),
we get

f∗f∗F(U) = limÐ→
V ⊇f(U)

f∗F(V )

= limÐ→
V ⊇f(U)

F(f−1(V )).
(8.2.2)

Since V ⊇ f(U) if and only if f−1(V ) ⊇ U , we get

f∗f∗F(U) = limÐ→
f−1(V )⊇U

F(f−1(V )).

Subsequently, there exists a W ⊇ U in X and a σ′ ∈ F(W ) such that σ′ gets
mapped to σ in f∗f∗F(U). Thus, we get the map σ ↦ σ′∣U . It is not hard
to show that this is well-defined. A similar argument holds for id→ f∗f∗.

For example, a result that follows is that the functor f∗ ∶Mod(f∗R) →
Mod(f∗f∗R) induces a functor f∗ ∶Mod(f∗R)→Mod(R).

Using these results, we have the following proposition.

Proposition 8.6. Consider the functors f∗ ∶ Mod(R) → Mod(f∗R) and
f∗ ∶Mod(f∗R) →Mod(R). Then f∗ is a left adjoint to f∗. That is, if we
let F be a sheaf in Mod(R) and G be a sheaf in Mod(f∗R), then

HomR(F , f∗G) ≅ Homf∗R(f∗F ,G).

Proof. First, we have a morphism

α ∶ HomR(F , f∗G)→ Homf∗R(f∗F , f∗f∗G)

defined in the obvious way. Second, note that for an open set V ⊂ Y , f ○
f−1(V ) = V , which means f∗○f∗G(V ) = G(V ). It follows we have a morphism

β ∶ Homf∗R(f∗F , f∗f∗G)→ Homf∗R(f∗F ,G).
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On the other hand, we have an obvious morphism

γ ∶ Homf∗R(f∗F ,G)→ Homf∗f∗R(f∗f∗F , f∗G).
Further, note that for an open set U ⊆X, we have U ⊆ f−1○f(U). By the def-
inition of direct limit, this implies we have a unique morphism f∗f∗F(U)→
F (U), which induces the morphism

δ ∶ Homf∗f∗R(f∗f∗F , f∗G)→ HomR(F , f∗G).
It is straightforward to show they are inverses of each other.

Corollary 8.6.1. Let F ∈ Ob(Mod(R)) and G ∈ Ob(Mod(f∗R)). Then
HomR(F , f∗G) ≅ f∗Hom f∗R(f∗F ,G).

Proof. Let U ⊆ X be an open subset. First, note that from the definition
of direct limit, f∗Hom f∗R(f∗F ,G)(U) = Homf∗R∣f−1(U)(f∗F ∣f−1(U),G∣f−1(U)).
This gives

Γ(U, f∗Hom f∗R(f∗F ,G)) = Homf∗R∣f−1(U)(f
∗F ∣f−1(U),G∣f−1(U))

= HomR∣f(U)(F ∣f(U), f∗G∣f(U))
= Γ(U,HomR(F , f∗G)).

We finish this subsection by showing that the inverse image commutes
with the tensor product.

Proposition 8.7. Let F be a right R-module, and let G be a left R-module.
Then there is a canonical isomorphism:

f∗F ⊗f∗R f∗G ≅ f∗(F ⊗R G).
Proof. Let U ⊆X be an open set. The canonical morphism is induced by

F(U)⊗R(U) G(U)→ (F ⊗R G)(U).
Note that this morphism is given by the sheafification of the presheaf U ↦
F(U)⊗R(U) G(U).

Now, since f∗F ⊗f∗R f∗G and f∗(F ⊗R G) are both sheaves, it suffices to
show that they are isomorphic on stalks. Let x ∈ X, and set y = f(x). We
have

(f∗F ⊗f∗R f∗G)x ≅ (f∗F)x ⊗(f∗R)x (f∗G)x
≅ Fy ⊗Ry Gy
≅ (F ⊗R G)y.
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8.3 Sheaves on subsets

We will now look at how subsets Z of X give rise to new sheaves.

Definition 8.7. Let F be sheaf in Sh(X,Ab), and let Z ⊆ X be a sub-
set. Let j ∶ Z → X be the inclusion. We define the sheaf F ∣Z , called the
restriction of F to Z, to be given by

F ∣Z = j∗F .

Note that this is in agreement with the defined sheaf restricted to an open
subset Z of X. Further, we extend the domain of Γ, such that

Γ(Z,F) = Γ(Z,F ∣Z).

We have a natural morphism Γ(X,F) → Γ(Z,F) and we denote the image
of σ ∈ Γ(X,F) by σ∣Z .

When Z is locally closed, new sheaves can be defined. We remember the
definition of locally closed.

Definition 8.8. A subset Z of X is said to be locally closed if it can be
written as an intersection of an open and closed set of X.

Further on in this section, assume F is a sheaf in Sh(X,Ab) and Z ⊆X
is a locally closed set.

We will define a new sheaf on Z through a series of steps. Let Z = U ∩A
for some open set U ⊆ X and closed set A ⊆ X. Denote the inclusion for all
subsets by j. For the closed set A, we define

FA = j∗j∗F ,

and so FA is a sheaf. For open U , we define

FU = Ker(F → FX/U),

which also is a sheaf. Finally, we set

FZ = (FU)A.

We will later show this is well-defined.

Proposition 8.8. Take an open set U ⊆X and a closed set A ⊆X such that
Z = U ∩A. Then for any open set V ⊆ Z, FZ ∣Z(V ) = FZ(V ), and FZ ∣X/Z = 0.

Proof. Showing that FU and FA satisfy the equalities implies (FU)A does as
well. It is straightforward to prove the results for the two cases.
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Proposition 8.9. Let FZ be a sheaf satisfying FZ ∣Z(V ) = FZ(V ) for an open
set V ⊆ Z, and FZ ∣X/Z = 0. Then (FZ)x = Fx if x ∈ Z, and (FZ)x = Fx = 0
otherwise.

Proof. This is clear by Proposition 8.8.

By the next proposition, we see that FZ is well-defined; it does not depend
on the choice of U and A.

Corollary 8.9.1. Let FZ be a sheaf satisfying FZ ∣Z(V ) = FZ(V ) for an open
set V ⊆ Z, and FZ ∣X/Z = 0. Then FZ is unique up to isomorphism.

Proof. By Proposition 8.9, any two sheaves satisfying the equalities have the
same stalks, and so are isomorphic.

Proposition 8.10. The mapping (⋅)Z ∶ Sh(X,Ab) → Sh(Z,Ab) given by
F ↦ FZ on objects, and in the obvious way to morphisms, is a functor.
Further, (⋅)Z is exact.

Proof. Showing it is a functor is routine. To show it is exact, consider a set
of sheaves F ′,F ,F ′′ in Sh(X,Ab) such that we have a short exact sequence.

0 F ′ F F ′′ 0

Then, for x ∈ Z, we have an exact sequence

0 F ′x Fx F ′′x 0

and hence

0 (F ′Z)x (FZ)x (F ′′Z)x 0

is exact. For x ∈X/Z, we clearly have

0 (F ′Z)x (FZ)x (F ′′Z)x 0,

therefore

0 F ′Z FZ F ′′Z 0

is exact.

If Z ′ is another locally closed subset of X, it is easy to show that (FZ)Z′ =
FZ∩Z′ .

Proposition 8.11. Let Z ′ ⊆ Z be a locally closed subset. Then we have a
short exact sequence
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0 FZ/Z′ FZ FZ′ 0.

Proof. Since Z is locally closed in X, and Z ′ is locally closed in Z, it follows
Z/Z ′ is locally closed in X. Considering the stalks of elements x ∈ Z ′, x ∈
Z/Z ′, and x ∈X/Z respectively, we get short exact sequences, and the result
follows.

There is another sheaf on Z that is of interest.

Definition 8.9. Let U be an open subset of X such that Z is a closed subset
of U . We define the sheaf ΓZ(U,F) by

ΓZ(U,F) = Ker(F(U)→ F(U/Z)).

Note that ΓZ(U,F) is a subgroup of Γ(U,F), and it consists of sections
with support in Z.

Proposition 8.12. Let U ⊆ V be open subsets containing Z. The canonical
morphism

ΓZ(U,F)→ ΓZ(V,F)
is an isomorphism.

Proof. The morphism is given by the restriction. To see that it is well-defined,
we have a commutative diagram

F(U) F(U/Z)

F(V ) F(V /Z),

showing that a section σ ∈ ΓZ(U,F) is taken to an element ρUV (σ) such that
ρU
V /Z(σ) = 0.
Injectivity follows from the uniqueness condition of sheaves. To see this,

let σ, τ ∈ F , and assume ρUV (σ) = ρUV (τ). Further, both are zero in U/Z and
since V ∪ (U/Z) = U , σ = τ .

Surjectivity follows from the gluing condition. Let σ∣V ∈ ΓZ(V,F). Then
for 0 ∈ F(U/Z), we have ρV

V ∩(U/Z)(σ∣V ) = ρVV /Z)(σ∣V ) = 0, and ρVV ∩(U/Z)(0) = 0,
hence σ∣V and 0 agree on intersection. Therefore there exists a (unique)
section σ in F(U) such that ρUV (σ) = σ∣V and ρU

U/Z(σ) = 0; that is, σ ∈
ΓZ(U,F) and we are done.

Note that the presheaf U ↦ ΓZ∩U(U,F) is a sheaf. We define the follow-
ing.
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Definition 8.10. We define the sheaf of sections of F supported by Z,
denoted ΓZ(F), to be given by the sheaf

U ↦ ΓZ∩U(U,F).

Proposition 8.13. The functors ΓZ(X, ⋅) ∶ Sh(X,Ab) → Ab and ΓZ(⋅) ∶
Sh(X,Ab)→ Sh(X,Ab) are left exact. Moreover, we have

ΓZ(X, ⋅) = Γ(X, ⋅) ○ ΓZ(⋅).

Proof. That they are left exact follows Γ(X, ⋅) being left exact. It is easy to
see that the equality holds.

Let Z ′ be another locally closed subset of X. Then it is easy to see that
ΓZ′(⋅) ○ ΓZ(⋅) = ΓZ′∩Z(⋅). If Z is open, we get a nice view of ΓZ(⋅).

Proposition 8.14. Let Z ′ be another locally closed subset of X. Then the
following sequence is exact.

0 ΓZ′(F) ΓZ(F) ΓZ/Z′(F)

Proof. Straightforward by studying the stalks.

8.4 Direct image with proper support

We will now define a subsheaf of f∗F , where f ∶ X → Y is a continuous
map of topological spaces, and F is a sheaf on X. This will be one of
the main functors of interest since it can be used to derive several interesting
relationships in the category of sheaves. First, some topological prerequisites.

Definition 8.11. Let X be a topological space. X is said to be locally
compact if every point x ∈X admits a compact neighborhood.

In this subsection, we assume that X and Y are locally compact and
Hausdorff.

Definition 8.12. Let X be a topological space. X is said to be para-
compact, if for every open cover of X, there exists a locally finite open
refinement; that is, if {Ui}i∈I is an open cover of X, then there exists another
open cover {Vj}j∈J of X such that:

(i) For every Vj, there exists an Ui such that Vj ⊆ Ui, and

(ii) For every point x ∈ X, there exists a neighborhood W such that the
number of non-trivial intersections with elements in {Vj}j∈J is finite.
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Definition 8.13. Let f ∶X → Y be a continuous map of topological spaces.
We say that f is proper, if it is closed and the fibers are compact.

We also have that f is proper if the preimage of a compact set is compact.
We are now ready for the definition of the direct image with proper support.

Definition 8.14. Let f ∶X → Y be a continuous map and let G be a sheaf on
X. The direct image with proper supports of G, denoted f!G, is given
by

Γ(U, f!G) = {σ ∈ f∗G(U); f ∶ supp(σ)→ U is proper}.

Since being proper is a local property on X, it is not hard to see that
f!G is a subsheaf of f∗G. Subsequently, we get a functor f! ∶ Sh(X,Ab) →
Sh(Y,Ab) that maps G to f!G. For R-modules, where R is an object in
Sh(Y,Ring), we have a functor f! ∶Mod(f∗R)→Mod(R).

Definition 8.15. Let X be a topological space and let F be a sheaf on X.
We define the sections of F with compact support, denoted Γc(X,F),
to be given by

Γc(X,F) = {σ ∈ Γ(X,F); supp(σ) is compact and Hausdorff}.

Example 8.1. Let a ∶X → {pt} be a map mapping to a point, and let F be
a sheaf on X. Then, for U = {pt} we have

a!F(U) = {σ ∈ a∗F(U);a ∶ supp(σ)→ U is proper}
= {σ ∈ F(X);a ∶ supp(σ)→ {pt} is proper}.

Now, a is clearly closed, thus a ∶ supp(σ) → {pt} is proper if and only if the
preimage of {pt} is compact. Since X is assumed to be Hausdorff, and so
the support of every section is as well, we get a!F({pt}) ≅ Γc(X,F).

In the general case, we have Γc(X,f!G) ≅ Γc(Y,G). We have the following
proposition which is useful in the study of the direct image of proper support.

Proposition 8.15. Given the situation in the above paragraph. Consider
the morphism

ψ ∶ limÐ→
U⊇Z

Γ(U,F)→ Γ(Z,F).

We have:

(i) ψ is injective.

(ii) If Z is open, then ψ is an isomorphism.
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(iii) If X is Hausdorff and Z is compact, then ψ is an isomorphism.

(iv) If X is paracompact and Z is closed, then ψ is an isomorphism.

Proof. Consider an element σ ∈ Γ(U,F) such that the image of σ in Γ(Z,F)
is zero. Then σx = 0 for all x ∈ X, so there exists a open neighborhood V of
Z such that σ∣V = 0. This shows (i).

(ii) is obvious.
For (iii) and (iv), we need to show surjectivity. To this end, let σ ∈

Γ(Z,F). Then there exists an open cover {Ui}i∈I of Z and σi ∈ Ui such that
σ∣Ui∩Z = σi∣Ui∩Z . If Z is compact (in (iii)), we can assume I is finite, and if X
is paracompact (in (iv), we can assume {Ui}i∈I is a locally finite covering of
X. Thus, we can find another open cover {Vi}i∈I of Z, which is locally finite,
such that Z ∩ V i ⊆ Uj.

Now, for each x ∈ X, we define I(x) = {i ∈ I;x ∈ V i} and W = {x ∈
∪Vi;σi,x = σj,x, i, j ∈ I(x)}. It is clear that Z ⊆ W . Since {Vi}i∈I is locally
finite, I(x) is finite. Moreover, each x has an open neighborhood Wx such
that for all y ∈ Wx, we have I(y) ⊆ I(x), which implies W is open. By
construction, we have σi∣W∩Vi∩Vj = σj ∣W∩Vi∩Vj which means there exists a
section σ′ ∈ Γ(W,F) such that σ′∣W∩Vi = σi∣W∩Vi . But then ψ(σ′) = σ, and we
are done.

Proposition 8.16. Let F be a sheaf on X. Then, for all y ∈ Y , we have a
canonical isomorphism

(f!F)y ≅ Γc(f−1(y),F ∣f−1(y)).

Proof. We begin by showing that it is injective. Let τy ∈ (f!F)y and assume
the image of τy is zero in Γc(f−1(y),F ∣f−1(y)) under the canonical morphism.
Then there exists an open neighborhood U ⊆ Y of y such that τ ∈ f!F(U)
and τ is mapped to τy in (f!F)y. This means τ is defined by a section
σ ∈ F(f−1(U)) with f ∶ supp(σ) → U being proper. Further, since σ is
mapped to zero in Γc(f−1(y),F ∣f−1(y)), there exists an open neighborhood
of f−1(y) wherein σ is zero; it implies that supp(σ) and f−1(y) are disjoint.
But then y ∉ f(supp(σ)), and since f(supp(σ)) is closed (f is proper on
supp(σ)), there exists a neighborhood of y such that τ is zero therein. It
follows that τy = 0.

We now show it is surjective. Let σ ∈ Γc(f−1(y),F ∣f−1(y)). By defi-
nition, K = supp(σ) is compact, and since X is Hausdorff, we have that
limÐ→U⊇K Γ(U,F) → Γ(K,F) is an isomorphism by Proposition 8.15. This

means there exists an open set U and a section τ ∈ Γ(U,F) such that
τ ∣K = σ∣K . To continue, since Y is locally compact, there exists a rela-
tively compact open neighborhood V of K such that V ⊆ U . Hence, since
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y is not contained in f(V ∩ supp(τ)/V ), there exists an open neighborhood
W of y such that f−1(W ) ∩ V ∩ supp(τ) ⊆ V . Therefore, we can define
the following section σ̃ ∈ Γ(f−1(W ),F): on f−1(W )/(V ∩ supp(τ)) σ̃ is
zero, and on f−1(W ) ∩ V it is τ ∣f−1(W )∩V . Since supp(σ̃) is contained in

f−1(W ) ∩ V ∩ supp(τ), we have that f is proper on this domain, and thus,
σ̃∣f−1(y) = σ, and we are done.

Proposition 8.17. Let Z be a locally closed subset of Y and let j ∶ Z → Y
denote the inclusion. The functor j! is exact.

Proof. Let G be a sheaf on Y . Then we have (j!G)y ≅ Gy if y ∈ Z, else zero.
Hence, j! is exact.

8.5 Relationships of functors

We will now state some important relationships between the defined functors.
I will provide proof of three of them, for the others, see for example [7].

Proposition 8.18. Let F be an object in Mod(R), and let Z be a locally
closed subset of X. Then we have a natural isomorphism

RZ ⊗R F ≅ FZ

.

Proof. Restricting to Z, we have

(RZ ⊗R F)∣Z ≅ (RZ)∣Z ⊗R∣Z F ∣Z
≅R∣Z ⊗R∣Z F ∣Z
≅ F ∣Z .

Restricting the sheaf on X/Z, we note that (RZ)∣X/Z = 0, hence (RZ ⊗R
F)∣X/Z = 0. By the uniqueness of FZ , the isomorphism follows.

Proposition 8.19. Let F be an object in Mod(R), and let Z be a locally
closed subset of Y . Then

f∗FZ ≅ (f∗F)f−1(Z).

Proof. If Z is locally closed, then so is f−1(Z), hence the right-hand side is
defined.

Restricting to f−1(Z), we have (f∗FZ)∣f−1(Z) ≅ f∗FZ ∣Z ≅ f∗F ∣Z ≅ (f∗F)∣f−1(Z).
Similarly, restricting to f−1(X/Z), we get (f∗FZ)∣f−1(Z) = 0, hence by unique-
ness, we have f∗FZ ≅ (f∗F)f−1(Z).
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Proposition 8.20. Let G be an object in Sh(Y,Ab), and let Z be a locally
closed subset of Y , j ∶ Z → Y being the inclusion. Then

GZ ≅ j! ○ j∗(G).

Proof. This follows immediately from uniqueness: we have (j! ○ j∗G)∣Z ≅
j∗G(≅ G∣Z) and (j! ○ j∗G)∣Y /Z ≅ 0, and we are done.

I will now state more useful isomorphisms and morphisms. For the follow-
ing, let R be sheaf of rings, f ∶ X → Y a continuous map, Z a locally closed
subset of Y , j ∶ Z → Y the inclusion, F ,F1,F2 be sheaves of R-modules,
and G,G1,G2 be sheaves of f∗R-modules. Then we have isomorphisms or
morphisms (including the ones proved above):

RZ ⊗R F ≅ FZ (8.5.3)

HomR(RZ ,F) ≅ ΓZ(F) (8.5.4)

(F1 ⊗R F2)Z ≅ F1 ⊗R (F2)Z ≅ (F1)Z ⊗R F2 (8.5.5)

HomR((F1)Z ,F2) ≅HomR(F1,ΓZ(F2)) ≅ ΓZ(HomR(F1,F2)) (8.5.6)

f∗FZ ≅ (f∗F)f−1(Z) (8.5.7)

ΓZ(f∗G) ≅ f∗Γf−1(Z)(G) (8.5.8)

f∗G ⊗R F → f∗(G ⊗f∗R f∗F) (8.5.9)

f∗G1 ⊗R f∗G2 → f∗(G1 ⊗f∗R G2) (8.5.10)

f∗Hom f∗R(G1,G2)→HomR(f∗G1, f∗G2) (8.5.11)

f∗HomR(F1,F2)→Hom f∗R(f∗F1, f
∗F2) (8.5.12)

GZ ≅ j! ○ j∗G (8.5.13)
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9 Properties of sheaves

We recall that if we have a left-exact additive functor F and if there exists an
injective full subcategory with respect to F (Definition 6.10), then the derived
functor exist and can be calculated using an injective resolution (Proposition
6.11). Thus, the property of being F -injective - there exists an injective full
subcategory with respect to F - implies existence of the right derived functor
of F . Further, Proposition 6.12 allows us to induce relationships in the
derived category (with the derived functors) whenever we have a relationship
in the category of sheaves.

To the end of finding injective subcategories we will define different prop-
erties, namely injective, flabby, flat, and c-soft. These will construct injective
full subcategories to different functors, in turn giving us the results stated in
the previous paragraph.

In this section, we assume X,Y are topological spaces, f ∶ X → Y a
continuous map between them, and R is a sheaf of rings on X.

9.1 Injective sheaves

Definition 9.1. Let F be an R-module on Y . We say that F is R-injective
if F is injective in the category Mod(R).

Proposition 9.1. Let U ⊆X be an open subset and assume F is R-injective.
Then F ∣U is R∣U -injective.

Proof. Let j ∶ U → X denote the inclusion, and let G be an R∣U -module. By
Eq. 8.5.6, we have HomR∣U (G,F ∣U) ≅ HomR∣U ((j∗G)∣U ,F ∣U) ≅ HomR((j∗G)∣U ,F ∣U).
Since G ↦ (j∗G) is exact, so is G ↦ HomR∣U (G,F ∣U), hence F ∣U is R∣U -
injective.

Proposition 9.2. Let R be a sheaf of rings on Y , and let G be an f∗R-
injective sheaf on X. Then f∗G is R-injective.

Proof. Let F be an f∗R-module on X. By Proposition 8.6, we have

HomR(F , f∗G) ≅ Homf∗R(f∗F ,G).

Since f∗ is exact, the result follows.

Corollary 9.2.1. Let F be an R-injective sheaf. Then HomR(⋅,F) is exact.

We have the following important proposition.

Proposition 9.3. The category Mod(R) has enough injectives.
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Proof. Let X̂ be the set X with the discrete topology, and let f ∶ X̂ → X
be the natural map. Let F be an object in Mod(f∗R). Since the category
of modules have enough injectives, there exists for each x ∈ X an injective
module Ix such that the sequence

0 Fx Ix

is exact. Thus, ∏x∈X Ix is an injective sheaf of X̂, and we have that

0 F ∏x∈X Ix

is exact.
Now, let G be an object inMod(R). Then f∗G is an object inMod(f∗R)

and by above there exists an injective object I and a monomorphism f∗G → I.
Applying f∗ and using the morphism id→ f∗ ○ f∗, we get an exact sequence

0 G f∗I,

since f∗ is left exact. Since f∗I is injective by Proposition 9.2, the result
follows.

9.2 Flabby sheaves

We will now define the property of a flabby sheaf.

Definition 9.2. Let F be an R-module on Y . We say that F is flabby, for
any subset U ⊆ Y , the restriction morphism Γ(Y,F)→ Γ(U,F) is surjective.

Proposition 9.4. Let F be a flabby sheaf on Y .

(i) Let U ⊆ Y be an open subset. Then the sheaf F ∣U is flabby on U .

(ii) The sheaf f∗F is flabby.

(iii) Let Z be a locally closed subset of Y . Then ΓZ(F) is flabby.

(iv) Let Z be a locally closed subset of Y and Z ′ a closed subset of Z. Then
the following sequence is exact.

0 ΓZ′(F) ΓZ(F) ΓZ/Z′(F) 0.

Proof. (i) and (ii) are obvious.
For (iii), we may assume Z is closed in Y by replacing Y with an open set

U where Z is closed in U . We want to show that Γ(Y,ΓZ(F))→ Γ(U,ΓZ(F))
is surjective for an open subset U of Y ; that is, ΓZ(Y,F) → ΓZ∩U(U,F) is
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surjective. Let σ ∈ ΓZ∩U(U,F), then σ ∈ F(U) and σ∣U/Z = 0. Consider
the element 0 ∈ F(Y /Z). Then this element and σ agree on overlap, hence
there exist an element σ′ ∈ F(Y ) such that σ′∣Y /Z = 0 and σ′∣U = σ; that is,
σ′ ∈ Γ(Y,ΓZ(F)) and so ΓZ(F) is flabby.

Lastly, we show (iv). By Proposition 8.14, the sequence

0 ΓZ′(F) ΓZ(F) ΓZ/Z′(F)

is exact. Let U be an open set, then Γ(U,ΓZ/Z′(F) ≅ Γ(U/Z ′,ΓZ(F)), and so
Γ(U,ΓZ(F))→ Γ(U,ΓZ/Z′(F) is surjective by (iii), and the result follows.

Proposition 9.5. Let R be an object in Sh(Y,Ring), G an R-module, and
H an R-injective module. Then HomR(G,H) is flabby.
Proof. Let U ⊆ Y be an open set and consider the exact sequence

0 GU G GY /U 0.

By Corollary 9.2.1, HomR(⋅,H) is exact, so we have an exact sequence

0 HomR(GU ,H) HomR(G,H) HomR(GY /U ,H) 0.

Since HomR(⋅,H) is also exact, the result follows.

Proposition 9.6. Let F ′,F , and F ′′ be objects in Sh(X,Ab), and let

0 F ′ F F ′′ 0

be an exact sequence. If F ′ is flabby, then

0 Γ(X,F ′) Γ(X,F) Γ(X,F ′′) 0

is exact.

Proof. Since Γ(X, ⋅) is left exact, it suffices to show that Γ(X,F)→ Γ(X,F ′′)
is surjective. To this end, let σ′′ ∈ Γ(X,F ′′), and consider the set S consisting
of pairs (U,σ) such that σ ∈ Γ(U,F) and σ is mapped to σ′′∣U . We give S
a partial order by letting (U,σ) ≤ (V, τ), whenever u ⊆ V . This order is
inductive hence for every chain there exists a maximal element; let (U,σ) be
one such and assume U ≠X.

Now, let x ∈X/U . Then there exists an open neighborhood V of x and a
section τ ∈ Γ(V,F) such that τ is sent to σ′′∣V . We have σ − τ ∈ Γ(U ∩V,F ′),
and since F ′ is flabby, there exists a section σ′ ∈ Γ(X,F ′) such that σ′∣U∩V =
(σ − τ)∣V . If we replace τ with τ − σ′∣V , we get (σ − τ − σ′∣V )∣U∩V = 0, so we
may assume σ = τ on U ∩ V . But then σ can be extended on U ∪ V , which
contradicts the maximality of (U,σ), thus U =X, and the result follows.
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Proposition 9.7. Let F ′,F , and F ′′ be objects in Sh(X,Ab), and let

0 F ′ F F ′′ 0

be an exact sequence. Let Z be a locally closed subset of X. If F ′ is flabby,
then the following sequences are exact:

0 ΓZ(X,F ′) ΓZ(X,F) ΓZ(X,F ′′) 0

0 ΓZ(F ′) ΓZ(F) ΓZ(F ′′) 0

Proof. Let U be an open subset of X such that U ∩ Z is closed in U . By
Proposition 9.6, the two short-exact sequences

0 Γ(U,F ′) Γ(U,F) Γ(U,F ′′) 0,

and

0 Γ(U/Z,F ′) Γ(U/Z,F) Γ(U/Z,F ′′) 0

are exact. Further, we have an exact sequence

0 Ker(H(U)→ H(U/Z)) ≅ ΓZ∩U(U,H) Γ(U,H) Γ(U/Z,H) 0

for H = F ′,F ,F ′′. This fits into a larger commutative diagram, with the
second and third rows being exact, and the columns being exact:

0 0 0

0 ΓZ∩U(U,F ′) ΓZ∩U(U,F) ΓZ∩U(U,F ′′) 0

0 Γ(U,F ′) Γ(U,F) Γ(U,F ′′) 0

0 Γ(U/Z,F ′) Γ(U/Z,F) Γ(U/Z,F ′′) 0

0 0 0

It is easy to show that the top row is also exact given the others, and we are
done.

Corollary 9.7.1. Let F ′,F , and F ′′ be objects in Sh(X,Ab), and let
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0 F ′ F F ′′ 0

be an exact sequence. If F ′ and F are flabby, then so is F ′′.

Proof. By Proposition 9.7, the morphism Γ(U,F) → Γ(U,F ′′) is surjective
for any open set U of X. Since F is flabby, the morphism Γ(X,F)→ Γ(U,F)
is also surjective. Since the diagram

Γ(X,F) Γ(X,F ′′)

Γ(U,F) Γ(U,F ′′)

commutes, it follows that Γ(X,F ′′)→ Γ(U,F ′′) is surjective.

It turns out that being flabby and injective are local properties. That is,
if we have an open cover {Ui}i∈I of X such that F ∣Ui

is flabby or R∣Ui
-injective

for all i ∈ I, then F is flabby or R-injective. See proof in [9].

9.3 Flat sheaves

We will now define flat sheaves, which can be used to design an exact functor
by tensor product.

Definition 9.3. Let R be an object in Sh(X,Ring) and let F be an R-
module. F is called R-flat if the functor ⋅ ⊗R F ∶Mod(R) → Sh(X,Ab) is
exact.

By Proposition 8.1, we see that F is R-flat if and only if Fx is Rx-flat.
This shows the similarity between the definition in sheaves and the definition
in R-modules, where R is a ring.

Proposition 9.8. Let R be an object in Sh(X,Ring) and let F be an R-
module. Then there exists an R-flat module P such that P → F is an epi-
morphism.

Proof. Consider the followingR-module. Let S = {(U,σ);U is open in X,σ ∈
Γ(U,F)}, and define

P = ⊕
(U,σ)∈S

RU .

Now, consider the morphism RU → FU , 1 ↦ σ for some pair (U,σ) ∈ S.
Composing with the morphism FU → F , we get an epimorphism P → F .

Lastly, to see that P is flat, we note that Px is a free Rx-module, and so
is a flat Rx-module.
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Proposition 9.9. Let F ′,F ,F ′′ be R-modules for some object R ∈ Ob(Sh(X,Ring)),
and assume

0 F ′ F F ′′ 0

is exact. If F and F ′′ are R-flat, then so is F ′.

Proof. Let x ∈X, we have an exact sequence:

0 F ′x Fx F ′′x 0

Since Fx and F ′′x are flat Rx-modules, so is F ′x, and the result follows.

9.4 c-soft sheaves

We will now look at c-soft sheaves.
Before going into the definition, we have the following proposition. Let Z

be a subspace of a topological spaceX and let j ∶ Z →X denote the inclusion.
Consider a map aX ∶ X → {pt}, and let F be a sheaf on X. Then, the
morphism F → j∗j∗F gives a morphism aX∗F → aX∗j∗F , mapping sections
from Γ(X,F) to Γ(Z,F). Replacing X with some open subset, we get a
nautral morphism:

limÐ→
U⊇Z

Γ(U,F)→ Γ(Z,F).

This morphism is an isomorphism under some constrictions on the topological
space X.

Definition 9.4. Let F be an object in Sh(X,Ab). We say that F is c-
soft if for all compact subsets K of X, the morphism Γ(X,F) → Γ(K,F) is
surjective.

Proposition 9.10. Let F be an object in Sh(X,Ab). Then F is c-soft if and
only if for all closed subsets K of X, the morphism Γc(X,F) → Γc(K,F ∣K)
is surjective.

Proof. We start with sufficiency. Assume Γc(X,F) → Γc(K,F ∣K) is surjec-
tive for all closed subsets K. If we let K be compact, then Γc(K,F ∣K) =
Γ(K,F) since the support is closed in K, and hence compact. It follows that
Γ(X,F)→ Γ(K,F) is surjective since Γc(C,F) ⊆ Γ(X,F).

Now for necessity. Assume F is c-soft and take a section σ ∈ Γ(K,F ∣K)
with compact support Kσ. Take a relatively compact open neighborhood
U of K; that is, the closure of U is compact. Note that ∂U ∪ (K ∩ U) is
closed in X, and take an element σ′ such that σ′∣K∩U = σ, and σ′∣∂U = 0 (∂U
is the boundary of U). Thus, there exists a section τ ∈ Γ(X,F) such that
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τ ∣∂U∪(K∩U) = σ′. Since τ is zero on an open neighborhood of ∂U , we may

assume supp(τ) = U , and so τ ∈ Γc(X,F).

We have the following important proposition, allowing us to derive rela-
tionships in the derived category.

Proposition 9.11. Let Z ⊆ X be locally closed and let F be a c-soft sheaf
on X.

(i) f!F is c-soft.

(ii) F ∣Z is c-soft.

(iii) FZ is c-soft.

Proof. (i) Let K be a compact subset of Y . Since F is c-soft, it follows by
Proposition 9.10 that Γc(X,F) → Γc(f−1(K),F) is surjective. Noting
that Γc(X,F) = Γc(Y, f!F) and Γc(f−1(K),F) = Γ(K,f!F), the result
follows.

(ii) If Z is open, the result is trivial. If it is closed, it follows from Propo-
sition 9.10.

(iii) This is immediate from the two above because if we let j ∶ Z → X
denote the inclusion, we have FZ = j!(F ∣Z).

Proposition 9.12. Let F ′,F ,F ′′ be sheaves on X where F ′ c-soft, and as-
sume the sequence

0 F ′ F F ′′ 0

is exact. Then

0 f!F ′ f!F f!F ′′ 0

and

0 Γc(X,F ′) Γc(X,F) Γc(X,F ′′) 0

are exact.
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Proof. For all y ∈ Y , we have that F ′∣f−1(y) is c-soft on f−1(y). Hence,
by Proposition 8.16, it is enough to show the result in the particular case
f ∶X → {pt}

We begin by showing that Γc(X,F) → Γc(X,F ′′) is surjective. Let σ′′ ∈
Γc(X,F ′′) and thus supp(σ′′) is compact; let U be an open neighborhood
thereof that is relatively compact. If we replace F ′, F , and F ′′ by F ′U , FU ,
and F ′′U respectively, and X by U , we can assume X is compact. Thus,
let {Ki}ni=1 be a compact cover of X such that we have σi ∈ F(Ki) with
σi = σ′′∣Ki

. Now, the result follows by induction. To see this, let n ≥ 2. We
have that σ1 − σ2 ∈ Γ(K1 ∩K2,F ′) can be extended to σ′ ∈ Γ(X,F ′). This
means we can assume σ1∣K1∩K2 = σ2∣K1∩K2 by replacing σ2 by σ2 + σ′. This
means there exists a τ ∈ Γ(K1 ∪K2,F) such that τ ∣Ki

= σi for i = 1,2, and
the result follows by induction.

Corollary 9.12.1. Let F ′,F ,F ′′ be sheaves on X and assume the sequence

0 F ′ F F ′′ 0

is exact. If F ′ and F are c-soft, then so is F ′′.

Proof. Similar proof as done in Corollary 9.7.1.
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10 Verdier Duality

In this section, we will derive a right adjoint f ! to the functor Rf!, where
f ∶X → Y is a continuous map of topological spaces with suitable restrictions
to both the spaces and the map. Following the derivation in Kachiwara and
Schapira, we will study this over sheaves of AX-modules where A is a com-
mutative ring with finite global dimension. Remember that if A has a finite
global dimension, this means it has an injective/projective/flat resolution of
finite length.

We also assume X and Y are locally compact, and f! ∶ Mod(ZX) →
Mod(ZY ) has finite cohomological dimension; that is, there exists an integer
r ≥ 0 such that Rjf! = 0 for j > r. We have the following definition.

Definition 10.1. Let F be a sheaf on X. F is called f -soft if for any y ∈ Y ,
F ∣f−1(y) is c-soft.

Subsequently, we state without proof the following. If f! has a cohomo-
logical dimension of r, then for any F ∈ Sh(X,Ab), there exists an exact
sequence

0 F F0 ⋯ F r 0,

where the F j’s are f -soft. Furthermore, we also have: For any exact sequence

F0 ⋯ F r 0

in Sh(X,Ab) such that the F j’s are f -soft for j < r, then F r is f -soft.
Let ZX be the constant ring on X; that is, ZX(U) = Z for all open sets

U ⊆ X. Let K be a ZX-module and let G be a AY -module. For an open set
U ⊆X, we define the presheaf f !

KG to be given by

(f !
KG)(U) = HomMod(AY )(f!(AX ⊗ZX

KU),G).

For an open subset V ⊆ U , we have a natural morphism f!(AX ⊗ZX
KV ) →

f!(AX⊗ZX
KU) which gives the restriction morphism (f !

KG)(U)→ (f !
KG)(V ).

The reason for defining this is because this is the desired right-derived
functor of Rf! that we will soon show. To do so, we need to show that it is
exact under suitable restrictions on K (and thus can be seen as a functor in
the derived category) and that it is a sheaf. We have the following.

Lemma 10.1. Let K be a flat and f -soft ZX-module. Then the functor
f!(⋅ ⊗ZX

K) ∶Mod(ZX)→Mod(ZY ) is an exact functor.

93



Proof. We will prove this by showing that ⋅ ⊗ZX
K is f -soft, and thus, if F

is a sheaf in Mod(ZX), we have f!(F ⊗ZX
K)∣f−1(y) is c-soft for all y hence

f!(⋅ ⊗ZX
K) is exact.

Consider an arbitrary sheaf F in Mod(ZX). By the proof of Proposition
9.8, there exists a resolution of F consisting of the direct sum of sheaves ZU ,
where U is an open subset of X; that is, we have

⋯ F−r ⋯ F0 F 0,

with F−i consisting of the direct sum of ZU . Applying the exact functor
⋅ ⊗ZX

K, K is flat, we get an the exact sequence

⋯ F−r ⊗ZX
K ⋯ F0 ⊗ZX

K F ⊗ZX
K 0.

Since F−i⊗ZX
K is f -soft, so is F⊗ZX

K given that we take r large enough.

We now show f !
KG is a sheaf when G is injective.

Proposition 10.2. Let K be a flat and f -soft ZX-module and let G be an
injective AY -module. Then f !

KG is an injective sheaf in Mod(AX).

Proof. Let U be an open set in X and let {Ui}i∈I be an open cover of U .
Then, we have an exact sequence

⊕i,j∈I AUi∩Uj ⊕i∈I AUi
AU 0,

and since f!(⋅⊗ZX
K) is exact by Lemma 10.1, we get another exact sequence

f!(⊕i,j∈I AUi∩Uj
⊗ZX

K) f!(⊕i∈I AUi
⊗ZX

K) f!(AU ⊗ZX
K) 0.

Since G is injective, HomAY
(⋅,G) is exact and we have the exact sequence

0 HomAY
(f!(AU ⊗ZX

K),G) . . .

. . . HomAY
(f!(⊕i∈I AUi

⊗ZX
K),G) HomAY

(f!(⊕i,j∈I AUi∩Uj
⊗ZX

K),G).

This sequence is isomorphic to

0 (f !
KG)(U) ∏i∈I(f !

KG)(U) ∏i,j∈I(f !
KG)(Ui ∩Uj)

which shows f !
KG is a sheaf.

To see it is injective, we showed in the proof of Lemma 10.1 that f!(F⊗ZX

K)∣f−1(y) is c-soft for all y, hence it follows.
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We need the following lemma.

Lemma 10.3. Let K be a flat and f -soft ZX-module and let G be an injective
AY -module. Let F be an AX-module. We have a canonical isomorphism

HomAY
(f!(F ⊗ZX

K),G) ≅ HomAY
(F , f !

KG)

Proof. See Kasiwara and Schapira.

Lastly, we need the following.

Lemma 10.4. Let ZX be a sheaf. Then there ZX admits a finite resolution
of flat and f -soft ZX-modules; that is, we have

0 ZX K0 ⋯ Kr 0

where the Ki’s are flat and f -soft.

Proof. See Kasiwara and Schapira [9], page 143.

We are now ready for a variant of the Verdier duality. To state it, we
include all assumptions.

Theorem 10.5. Let f ∶ X → Y be a continuous map where X,Y are lo-
cally compact spaces, and f! has a finite cohomological dimension. Let F
be an AX-module and G an AY -module. Then there exists a functor f ! ∶
D+(Mod(AY ))→D+(Mod(AX)) that is a right adjoint to Rf!:

HomD+(Mod(AX))(F , f !G) ≅ HomD+(Mod(AY ))(Rf!F ,G).

Proof. Let K be a flat and f -soft resolution of ZX , as in Lemma 10.4. We
will show that the functor f !

K satisfies this property.
Let I(X) and I(Y ) be the full subcategories ofMod(AX) andMod(AY )

respectively consisting of injective objects. Let F ′ and G′ be injective reso-
lutions of F and G respectively. By Lemma 10.3, we have an isomorphism

HomK+(Mod(AY ))(f!(F ′ ⊗ZX
K),G′) ≅ HomK+(Mod(AX))(F ′, f !

KG′).

Further, note that F ′ ≅ F ′ ⊗ZX
ZX → F ′ ⊗ZX

K is a quasi-isomoprhism.
Since F ′ ⊗ZX

K is f -soft, we have R!F ′ ≅ f!(G′) ⊗ZX
K which gives the

isomorphism

HomK+(Mod(AY ))(f!(F ′ ⊗ZX
K),G′) ≅ HomK+(Mod(AY ))(Rf!F ′,G′).

Putting it together, we get the desired relationship.
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We finish this section by roughly showing that this is a generalization of
Poincaré duality.

Let X be an n-dimensional orientable manifold, Y be a point space,
A = Q, F = QX , and G = Qpt. It can be shown that f !Qpt ≅ QX[n], thus we
have

Hom(RΓc(X,QX)[n],Q) ≅ RΓ(X,QX).
Applying the cohomology functor, we get

Hn−i
c (X,QX))∗ ≅H i(X,QX)

for all i ∈ N, where ∗ means the dual vector space over Q, and we are done.
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