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Abstract

In this thesis, I define, for each positive integer d, an operad in the category of schemes over some base field
k, whose objects are the moduli spaces of stable n-pointed rooted trees of d-dimensional projective spaces,
Td,n. I then define log structures on these spaces and extend the morphisms of this operad to define an op-
erad of log schemes without unit. Finally, I show that the Kato-Nakayama analytification of this non-unital
operad is isomorphic to the operadic semidirect product K2d ⋊ S1 of the Kontsevich operad (without unit)
in dimension 2d and the S1 topological group.

I detta examensarbete definierar jag, för varje positivt heltal d, en operad i kategorin av scheman över en
kropp k vars objekt är moduli rummen för stabila träd av d-dimensionella projektiva rum med rot med n

markerade punkter, Td,n. Sedan definierar jag log strukturer på dessa rum och förlänger morfierna i operaden
till morfier av log-scheman för att definiera en operad av log-scheman utan enhet. Slutligen visar jag att
Kato-Nakayama analytifieringen av denna operad utan enhet av log-scheman är isomorf med den operadiska
semidirekta produkten K2d ⋊ S1 av den topologiska Kontsevich operaden i dimension 2d (utan enhet) och
den topologiska gruppen S1.
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1 Introduction

One of the many reasons to study algebraic geometry is its utility in examining the properties of complex
analytic spaces. A significant and well-known example is the close relationship between various cohomology
theories on a smooth scheme X over C and corresponding cohomology theories on the analytification of X.
Due to these relationships, it is often of great interest to determine whether a topological space, or a map of
topological spaces, is, up to isomorphism, the analytification of a variety or a morphism of varieties over C.
In 1999, Kato and Nakayama published the article "Log betti cohomology, log étale cohomology, and log de
rham cohomology of log schemes over C" [KN99]. In this article they define an analytification of a so called
"log scheme" over C and relate various cohomology theories for log schemes to cohomology theories on their
analytifications. I will define what a log scheme is in this thesis, but for now it is sufficient to just think of it
as a scheme with some extra structure. Because of the results by Kato and Nakayama, it is also interesting
to know if a topological space or a map of topological spaces is, up to isomorphism, the analytification of log
scheme or a morphism of schemes over C.

In 2021, Dmitry Vaintrob published the article "Formality of little disks and algebraic geometry" [Vai21], in
which he proves that the (non-unital) framed little 2 dimensional disks operad is weakly equivalent to the
analytification of an operad of log-schemes and uses this result to prove some properties of the framed little
disks operad. The underlying schemes in this operad are M0,n+1, the moduli spaces of stable (n + 1)-pointed
rational curves of genus 0, which were introduced in 1983 by Knudsen [Knu83]. The goal of this thesis is to
generalize this result to any even dimension 2d. Specifically I will, for each positive integer d, define a non-unital
operad of log schemes whose analytification is isomorphic to the operadic semidirect product K2d ⋊ S1 of the
Kontsevich operad K2d and the S1 group. It is well known that the Kontsevich operad is weakly equivalent to
the little disks operad, and in dimension 2 this semidirect product is weakly equivalent to the operad of framed
little disks. The underlying schemes of this operad will be Td,n, the moduli spaces of stable n pointed rooted
trees of d-dimensional projective spaces, introduced by Chen, Gibney, and Krashen in their article "Pointed
trees of projective spaces" in 2006. These spaces are a natural generalization of the moduli spaces of stable
pointed curves of genus 0 and Chen, Gibney, and Krashen show that T1,n

∼= M0,n+1.

1.1 Notation

This section contains a list of some notation appearing in this thesis. All this notation is introduced at some point
in the thesis but you can see this section for a quick remainder. Here n is a positive integer and m = (m1, . . . ,mn)
is a list of positive integers.

• [n] ..= {1, 2, . . . , n}

• P (n) ..= {S| S ⊆ [n], |S| ≥ 2}

• Bn is (some fixed) sequence containing all elements of P (n) exactly once

• X[n] is the Fulton-MacPherson configuration space

• Td,n is the moduli space of stable n-pointed rooted trees of d-dimensional projective spaces

• FMn(M) is the topological Fulton-MacPherson configuration space for a smooth manifold M

• Kd,n is the d, n Kontsevich space
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• Kd is the Kontsevich operad in dimension d

• pn,m : a 7→



1 0 < a ≤ m1

2 m1 < a ≤ m2
...

n
∑

i<n mi < a ≤
∑

i≤n mi

• qn,m
r : a 7→ a−

∑
i<r mi

1.2 Summary of Results

In this section I list the most notable results of the thesis.

Kato-Nakayama Analytifications
The main theorem of the thesis is:

Theorem 7.35. The analytification of the log-geometric Kontsevich operad without unit, Td, is isomorphic to
the S1-framed Kontsevich Operad in dimension 2d, K2d ⋊ S1, without unit.

In addition to this there are some other noteworthy results relating to the Kato-Nakayama analytification
functor. Specifically I show the following:

Proposition 7.15. There is an isomorphism of manifolds with corners over (Xan)n

(X[n])KN → FMn(Xan).

Proposition 7.32. Let X = (Pn−1, (0 : O → L1, 0: O → L2) where L1 = OPn−1 and L2 = OPn−1(−1), and let
Y = (Pn−1, (0 : O → M) where M = OPn−1(−1). Finally, let f : X → Y be the map given by the identity on
underlying schemes and M

∼=−→ L1 ⊗ L2. The analytification of f , fKN : S1 × S2n−1 → S2n−1 is the S1 action
on S2n−1 induced by the diagonal inclusion SO(2) ↪→ SO(2n).

Blow-Ups
I also prove some results relating to real oriented blow ups of smooth manifolds in sections of line bundles. It
should be noted that some, if not all, of these results are likely not new but I do not know any reference for
them.

Theorem 3.16. Let Y be a smooth complete intersection in an analytic complex variety X. Let Ỹ be the
exceptional divisor of Y in the complex blow-up BlCY X. There is a canonical isomorphism of blow-ups

BlRỸ BlCY X → BlRY X.

Furthermore, for a complex analytic subvariety Z ⊆ X this diffeomorphism maps the (real) total transform of
the (complex) dominant transform of Z in BlRỸ BlCY X to the dominant transform of Z in BlRY X.

Corollary 3.15. Let X be a complex analytic space and let Z be a closed complex analytic subspace. Let
Y1, . . . , Yn be smooth divisors of X cut out by sections sn : X → Ln of a complex line bundles on X. Additionally,
assume that Z has the property that the intersection of Z and any intersection of Y1, . . . , Yi−1 is either empty
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or not contained in Yi for each i. Then the strict and total transform of Z in

BlRỸn
BlRỸn−1

. . .BlRỸ1
X

are equal where Ỹi is the total transform of Yi under the previous blow ups.

Proposition 3.24. Let L1, L2, . . . , Ln be complex line bundles on a space X and let L =
⊗n

i=1 L
⊗ei
i where ei

are integers and ⊗ is the complex tensor product. Let σ1, . . . , σn be sections σi : X → Li. Then, there is an
isomorphism

BlRσ̃0
BlRσ̃n

. . .BlRσ̃1
X

∼=−→
(

BlRσ̃n
. . .BlRσ̃1

X
)

× S1

where σ̃i denotes the pullback of σi through all previous morphisms and σ0 : X → L is the 0 section.

Properties of Td,n

Finally, I also show that the Td,n spaces defined by Chen, Gibney, Krashen in [CGK06] satisfy some interesting
properties which may have applications unrelated to the operad constructed in this thesis. Specifically I prove
a more general version of theorem 3.3.1 in [CGK06]

Proposition 6.21. For any collection of positive integers n,m1, . . . ,mn there is an isomorphism

Td,n × Td,m1 ,× · · · × Td,mn
∼= Td,m(M ′

1, . . . ,M
′
n)

where m =
∑

r mr and
M ′

r = {1 +
∑
i<r

mi, . . . ,mr +
∑
i<r

mi}.

Corollary 6.22. For any S ⊊ [n], |S| ≥ 2, the isomorphism of the proposition restricts to an isomorphism of
closed subschemes

Td,n(S) × Td,m1 ,× · · · × Td,mn
∼= Td,m(M ′

1, . . . ,M
′
n, S

′),

where S′ = (pn,m)−1(S) Similarly, for any Sr ⊊ [mr], |Sr| ≥ 2, the isomorphism of the proposition restricts to
an isomorphism of closed subschemes

Td,n × Td,m1 ,× · · · × Td,mr
(S) × · · · × Td,mn

∼= Td,m(M ′
1, . . . ,M

′
n, S

′
r),

where S′
r = (qn,m

r )−1(Sr).

2 Operads

In this chapter I will give a brief introduction to operads and some related constructions. The purpose of this
chapter is not to explain what an operad is to a reader encountering them for the first time, but rather to
serve as a remainder about the precise statements of the operad axioms as well as introduce notation used in
the thesis. Therefore, I will not provide any context regarding what this definition comes from or why we are
interested in operads, nor will I give any examples of operads. Any readers who have not encountered operads
before are thus strongly encouraged to look up some motivating examples in any standard textbook on the
subject such as "Operads in algebra, topology and physics" by Markl, Shnider, and Stasheff [MSS02].
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2.1 Definition

In this section I will define an operad in a symmetric monoidal category. Although some notation and some
formulations deviate slightly this section is essentially a shortened version of section 1.2 in chapter 2 of [MSS02].
Note that what I refer to as an "operad" in this thesis sometimes called a "symmetric operad".

In what follows let (C,⊗) be a symmetric monoidal category. An operad A in C is a sequence of objects in C,
{A(n)}n∈N together with the following data:

• A morphism
η : 1 → A(1).

• For each positive integer n ∈ N, a group action of the symmetric group of n elements on A(n), i.e. a
functor from the group category Σn to C sending the only object to A(n).

• For each set of positive integers n and m = (m1, . . . ,mn) a morphism

γn,m : A(n) ⊗A(m1) ⊗ · · · ⊗A(mn) → A(m)

where m =
∑

i mi.

such that the following three axioms are satisfied. In what follows, let

A[v] ..= A(v1) ⊗ · · · ⊗A(vk),

for a vector of integers v = (v1, . . . , vk).

1. Associativity. Let n, (m1, . . . ,mn), m =
∑

i mi, and (l1, . . . , lm) be positive integers. Define l =
∑

k lk,

m = (m1, . . . ,mn), l = (l1, . . . , lm), li,j = lj+
∑

k<i
mi
, li = (li,1, . . . , li,mi), l′i =

∑
1≤j≤mi

li,j , and l′ =
(l′1, . . . , l′n). Then the following diagram commutes

A(n) ⊗A[m] ⊗A[l] A(n) ⊗ (Am1 ⊗A[l1]) ⊗ · · · ⊗ (A(mn) ⊗A[ln])

A(n) ⊗A[l′]

A(m) ⊗A[l] A(l)

ρ

γn,m⊗id

id⊗γm1,l1 ⊗···⊗γmn,ln

γn,l′

γm,l

where ρ denotes the corresponding product permutation morphism in the symmetric category.

2. Equivariance. Let n, m = (m1, . . . ,mn), m =
∑

i mi be positive integers. Given σ ∈ Σn let

σm = (mσ−1(1), . . . ,mσ−1(n))

and define the block permutation σm ∈ Σm as the permutation which sends

j +
∑
t<i

mt 7→ j +
∑

t<σ−1(i)

mσ(t)

for any 1 ≤ i ≤ n and 1 ≤ j ≤ mi. Then the following diagram commutes
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A(n) ⊗A[m] A(n) ⊗A[σm]

A(m)

A(n) ⊗A[m] A(m)

σ⊗id

id×σ

γn,σm

σm

γn,m

where σ is the corresponding permutation morphism in the monoidal category.

3. Unit. For any positive integer n the following diagrams commute where the lower arrows are the corre-
sponding unit object isomosphisms in the category

A(n) ⊗A(1)⊗n

A(n) ⊗ 1
⊗n A(n)

γ1,(1,...,1)id×η⊗n

A(1) ⊗A(n)

1⊗A(n) A(n)

γ1,(n)η⊗id

An operad without unit is an operad without the morphism η : 1 → A(1) which consequently does not satisfy
the unit axiom.

The collection of operads in a monoidal category (C,⊗) is itself a category where a morphism between two
operads A → B is a collection of morphisms A(n) → B(n) which commute with the unit, symmetry, and
composition maps of the operads. It is easy to see that if a morphism of operads A → B consists of isomorphism
A(n) → B(n) for each n ∈ N then it is an isomorphism. A morphism of operads without unit is defined in a
similar way.

Sometimes it is also (mostly for convenience of notation) useful to introduce the "one object composition mor-
phisms". In an operad A we define the map

◦n,m
i : A(n) ⊗A(m) → A(n+m− 1)

or just ◦i when n,m are clear from context, as the composition

A(n) ⊗A(m)

A(n) ⊗ 1
⊗i−1 ⊗A(m) ⊗ 1⊗n−i

A(n) ⊗A(1)⊗i−1 ⊗A(m) ⊗A(1)⊗n−i

A(n+m− 1)

∼=

id⊗η⊗i−1⊗id⊗η⊗n−i

γ

2.2 Operadic Semidirect Product

In this section I will define the "operadic semidirect product". To do this we need to introduce an extra criteria
and require that the symmetric monoidal category (C,⊗) in which we define our operad is a category with finite
products, i.e. C has a terminal object 1 and any two objects have a cartesian product, and that ⊗ is the cartesian
product in the category. For example C = Top, the category of topological spaces, is the case relevant for this
thesis. In this case Salvatore and Wahl give a more in depth explanation of the operadic semidirect product in
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"Framed discs operads and the equivariant recognition principle" [SW01] in which they also exemplify why this
type of construction is interesting.

Definition 2.1. A group object G ∈ C acts on an operad A if G there is an action an : G × A(n) → A(n) for
every object in the operad such that the G and Σn actions commute for each n and such that the following
diagram commutes.

G×A(n) ×A[m] Gn+1 ×A(n) ×A[m]

G×A(n) × (G×A[m1]) × · · · × (G×A(mn))

A(n) ×A[m]

G×A(m) A(m)

id×γn,m

∆×id×id

∼=

ρn×ρm1 ×···×ρmn

γn,m

ρm

Here ∆: G → Gn+1 denotes the diagonal inclusion.

The goal of this section is to, given an operad A and a group object G which acts on A, define a new operad
whose objects are B(n) ..= Gn ×A(n).

The symmetry action on B(n) is defined as follows. For a permutation σ ∈ Σn the corresponding isomorphism
Gn ×A(n) → Gn ×A(n) is defined as σG ×σA(n) where σG is the permutation of factors Gn → Gn corresponding
to σ and σA(n) is the isomorphism A(n) → A(n) corresponding to σ.

Defining the composition morphisms is a bit trickier. Recall that the goal is to define morphisms

γn,m
G : Gn ×A(n) × (Gm1 ×A(m1)) × · · · × (Gmn ×A(mn)) → Gm ×A(m)

where m =
∑
mr such that the operad axioms are satisfied. To make it easier to see "which G is which" in the

following computations I will write Gn×A(n) = G0
1×· · ·×G0

n×A(n) and Gmr ×A(mr) = Gr
1×· · ·×Gr

mr
×A(mr),

i.e. Gr
i denotes the i:th G component of Gmr × A(mr). In what follows ∆l : G → Gl denotes the diagonal

inclusion. First, let gl : G×Gl → Gl denote the group action given by the composition

G×G1 × · · · ×Gl
∆l×idl

−−−−→ Gl ×G1 × · · · ×Gl

∼=−→ (G×G1) × · · · × (G×Gl)
gl

−→ Gl

where g : G×G → G is the group object multiplication morphism. The definition of γn,m
G is now the following

composition of morphisms

14



G0
1 × · · · ×G0

n ×A(n) × (Gm1
1 × · · · ×Gm1

m1
×A(m1)) × · · · × (Gmn

1 × · · · ×Gmn
mn

×A(mn))

(G0
1)2 × · · · × (G0

n)2 ×A(n) × (Gm1
1 × · · · ×Gm1

m1
×A(m1)) × · · · × (Gmn

1 × · · · ×Gmn
mn

×A(mn))

(G0
1 ×Gm1

1 × · · · ×Gm1
m1

) × · · · × (G0
n ×Gmn

1 × · · · ×Gmn
mn

) ×A(n) × (G0
1 ×A(m1)) × · · · × (G0

n ×A(mn))

G× · · · ×G×A(n) × (G0
1 ×A(m1)) × · · · × (G0

n ×A(mn))

Gm ×A(n) ×A(m1) × · · · ×A(mn)

Gm ×A(m).

∆n
2 ×id

rearrange

gm1 ×···×gmn ×id

id×am1 ×···×amn

id×γn,m

Lastly, let e : 1 → G be the identity element for the group object. Then the unit map 1 → G1 ×A(1) is defined
as e× η where η is the unit map for the A operad.

Definition 2.2. Let A be an operad acted on by some group object G. The semidirect product of A and G,
denoted A⋊G is defined as the operad with objects Gn ×A(n) and with the unit, symmetry, and composition
maps described above.

Remark. For this definition to make sense we must of course prove that the operad axioms are satisfied for these
maps. This is true but I leave the proof as an exercise.

Example 2.3. SO(d) acts on the operad of n little d-dimensional disks, Dd by rotation of the positions of the
disks. The semidirect product Dd ⋊ SO(d) is the operad of framed little disks. See Salvatore and Wahl [SW01]
for more details.

2.3 Reduced Operad

I will introduce one additional concept relating to operads, the reduced operad. Given an operad A we define
its reduced operad, denoted Ared, as the operad with objects

Ared(n) ..=

1 n = 1

A(n) else
.

The unit map in this operad is the identity 1 → Ared(1) and the symmetry maps are the identity for Ared(1)
and the same as for A(n) for all other n. To define the composition maps first let an : Ared(n) → A(n) be
given by a1 = η the unit map for A and an = id for n ≥ 2. Then we define the composition maps in Ared,
Ared(n) ⊗Ared[m] → Ared(m) as the identity isomorphism

1⊗A(m) → A(m)

in the case n = 1 and the composition

Ared(n) ⊗Ared(m1) ⊗ · · · ⊗Ared(mn)
id⊗am1 ⊗···⊗amn−−−−−−−−−−−→ A(n) ⊗A(m1) ⊗ · · · ⊗A(mn) γ−→ A(m).

15



It is easy to verify that these maps satisfy the operad axioms.

3 Blow-Ups

In this chapter I will define the blow up of a topological space in the section of a vector bundle. In section
3.1 I will give some definitions and then section 3.2 will be dedicated to stating and proving a bunch of results
about blow ups and sequences of blow ups which will be important in this thesis. I will assume here that the
reader is already familiar with the scheme theoretic blow up. If you are not then this chapter might provide
enough intuitive understanding for the applications relevant in this thesis but for a more thorough review see
some standard textbook on algebraic geometry such as [Har13] or [Vak].

3.1 Motivation and Definition

In this section the definition of the blow-up of a topological space in a section of a vector bundle is given. The
notion of a real oriented blow up is standard but notation and precise definitions, especially in "ill behaved"
cases, may vary. The notation and definitions used here are taken directly from [BDPW23].

First, recall that the blow-up of a smooth variety X in a smooth complete intersection Y can be explicitly
computed as follows.

Proposition 3.1. Let X be a smooth variety and let Y be a smooth complete intersection of codimension k,
cut out by equations f = (f1, . . . , fn). Then the blow-up BlY X is the closed subscheme of X × Pk−1 defined by
equations wjfi(x) = wifj(x), where wj is the j:th projective coordinate function. The blow-up morphism is the
restriction of the projection X × Pk−1 → X to this subscheme.

Proof. This is a standard result. See any standard textbook on algebraic geometry, such as [Vak], for a proof
(or in this case an exercise which shows you how to prove it yourself).

Inspired by this we can define the real oriented blow-up for smooth manifolds in smooth submanifolds. In order
to make the way these two concepts are related to each other clearer I will first give the following definitions.

Definition 3.2. Let X be a topological space and let f = (f1, f2, . . . , fk) be a continuous function f : X → Ck.
Then the complex blow up of X in f , denoted BlRf X, is defined as the space

BlCf X = {(x, [w1 : · · · : wk]) ∈ X × CPk−1| fi(x)wj = fj(x)wi ∀ i, j}

together with the surjective function ρ : BlCf X → X given by the restriction of the projection X × Sk−1 → X.

Notice that the condition fi(x)wj = fj(x)wi ∀i, j is equivalent to there existing an α ∈ C such that fi(x) =
αwi ∀i. With this equivalent condition in mind we can define the real oriented blow up as follows.

Definition 3.3. Let X be a topological space and let f = (f1, . . . , fk) be a continuous function f : X → Rk.
Then the real oriented blow up of X in f , denoted BlRf X, is defined as the space

BlRf X = {(x,w1, . . . , wk) ∈ X × Sk−1| ∃ α ≥ 0 s.t. fi(x) = αwi ∀ 1 ≤ i ≤ k}

together with the blow-up map ρ : BlRf X → X given by the restriction of the projection X × Sk−1 → X.

16



Remark. Keep in mind that the blow-up map ρ : BlRf X → X is part of the definition of the real oriented blow up
in the same way that the blow-up map is part of the definition of the blow-up of a scheme in a closed subscheme.

You can loosely think of this as "replacing" all points in the zero locus of f with k − 1 spheres. The topology
of this new space is defined in a way such that if f(x) = 0 and {xi}n

i=1 is a sequence in X with f(xi) ̸= 0 such
that limi→∞ xi = x then, in BlRf X the limit limi→∞ xi is the point

lim
i→∞

( f1(xi)
|f(xi)|

, . . . ,
fk(xi)
|f(xi)|

)

on the k − 1-sphere we have replaced x with, provided of course that this limit exists.

Example 3.4. Let X be a topological space and let f : X → Rk be the 0 map, x 7→ 0. Then BlRf X ∼= X ×Sk−1.

Example 3.5. If f : X → Rk does not send any point in X to the origin then the morphism BlRf X → X is an
isomorphism.

We can extend the definition of real oriented blow-ups from maps X → Rk to sections of arbitrary vector
bundles of X.

Definition 3.6. Let E → X be a k dimensional real vector bundle on X with a section σ : X → E. Then
the real oriented blow-up of X in σ, denoted BlRσ X and the morphism BlRσ X → S are defined as follows. Let
Uii∈I be an open cover of X of trivializing neighbourhoods for E. On each Ui, σ restricts to give a continuous
function σi : Ui → Rk which has a real oriented blow-up BlRσi

Ui and morphism BlRσi
Ui → Ui. The real oriented

blow-up BlRσ X is now defined as the space we get by gluing together BlRσi
Ui using the gluing maps induced by

the gluing maps for the open cover {σ−1(Ui)}i∈I of E. The morphism BlRσ X → X is similarly defined as the
morphism which restricts to BlRσi

Ui → Ui on each component of the open cover.

Remark. Notice that this construction gives a canonical embedding of the real oriented blow-up into the unit
bundle of E.

There are some natural examples of this.

Example 3.7 (Unit tangent bundle). Let X be a smooth manifold, let T → X be the tangent bundle for X, and
let σ : X → T be the 0 section. Then BlRσ X → X is just the tangent unit circle bundle for X with its projection
to X.

Example 3.8 (Divisors on complex varieties). Let X be an analytic complex variety and let D ⊆ X be a
smooth normal crossings divisor. Let sD : OX → O(D) be the associated (complex) line bundle with section.
Then BlRsD

X is homeomorphic to the complement of a (sufficiently small) tubular neighbourhood of D in X.
Furthermore, the function

f : BlRsD
X → X

restricts to an isomorphism
f−1(X \D)

∼=−→ X \D.

Remark. In this example I have abused notation by not distinguishing between the vector bundle sheaf with
section and the associated vector bundle space with section. This will happen again.

A closely related concept is the blow-up of a smooth manifold in a closed submanifold. This can be defined in
more general situations but I will stick with this somewhat simpler and sufficient definition for this thesis.

17



Definition 3.9. Let X be a smooth manifold and let Y ↪→ X be a closed submanifold such that Y has
codimension k and is cut out by some smooth section σ of a k-dimensional vector bundle E → X, i.e. Y is the
fiber of σ of the 0-section of E. Then we define BlRY X ..= BlRσ X with the corresponding blow-up morphism
ρ : BlRY X → X. Furthermore, we define the "exceptional divisor" of the blow-up as EY

..= ρ−1(Y ).

Remark. For this to make sense one must of course show that BlRY X is, up to isomorphism, independent of
the choice of vector bundle E with section. One way to prove this is to show that the blow-up of X in Y is
diffeomorphic to a sufficiently small tubular neighbourhood of Y . Any interested readers are encouraged to try
to prove this.

Example 3.10 (Blowing up the origin). Let X = Rd and Y = {0}, the origin. Then BlRY X ∼= X \B(1), X with
the (open) unit ball removed. Furthermore, EY

∼= Sd−1. The easiest way to show this is by noting that Y is
cut out by the section x 7→ (x, x) in the trivial bundle Rd × Rd and applying the above definition.

Finally, let us define the total, strict, and dominant transforms of a blow-up.

Definition 3.11. Let X be a smooth manifold with a subspace Z ↪→ X. Then, for a closed submanifold Y

with blow-up ρ : BlRY X → X we define

• the total transform of Z as ρ−1(Z).

• the strict/proper transform of Z as the closure of ρ−1(Z \ Y )

• the dominant transform of Z as the total transform of Z if Z ⊆ X and the strict transform of Z otherwise.

For the blow-up in some section σ in a vector bundle of X we define each of the above transforms in the same
way but with Y replaced with the inverse image of the 0-section, Y = σ−1(0).

The methods used to extended the real oriented blow up for a map f : X → Rk, first to a the real oriented
blow up of any section σ of a real vector bundle and then to the blow up of a manifold in a smooth complete
intersection can be applied in the exact same way to define the complex blow up in the section of a complex
vector bundle and the blow up of a complex analytic space in a complex analytic subspace that is given by a
complete intersection. Furthermore, notice that by definition, if X is a smooth complex variety and Y ↪→ X is
a smooth complete intersection, then we have BlCY an Xan ∼= (BlY X)an, i.e. "analytifications and complex blow
ups commute".

3.2 Important Results

In this thesis many situations will arise where we want to identify two blow ups, or two sequences of blow ups,
with each other. Therefore, the remainder of this section will be dedicated to stating and proving some results
of this nature. In each of the following statements where I claim that there is an isomorphism of two sequences
of blow ups A → B of some manifold X what I mean is that there is a diffeomorphism of spaces A → B such
that the diagram

A B

X

commutes where the downward arrows are the corresponding blow up maps. In other words this is a diffeomor-
phism of manifolds over X.
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Lemma 3.12. Let Y,Z be smooth locally complete intersections in some smooth manifold X. Let Ỹ denote the
total transform of Y in BlRZ X and Z̃ denote the total transform of Z in BlRY X. Then there is an isomorphism
of blow ups and BlRZ̃ BlRY X → BlRỸ BlRZ X.

Furthermore, this isomorphism maps the strict transform of the strict transform of any set W ⊆ X in BlRZ̃ BlRY X

to the strict transform of the strict transform of W in BlRỸ BlRZ X.

Proof. I will prove this in the case where Y,Z are both cut out by equations f = (f1, . . . , fk) : X → Rk

and g = (g1, . . . , gr) : X → Rr respectively. The general case follows from gluing these isomorphisms along a
trivializing open cover for the line bundles with sections cutting out Y and Z. By definition BlRY X = {(x, s) ∈
X × Sk−1)|f(x) = αs, α ≥ 0}. Furthermore, the total transform of Z in BlRY X is cut out by

g̃ : BlRY X → Rr, (x, s) 7→ g(x).

Therefore
BlRZ̃ BlRY X = {(x, s, t) ∈ X × Sk × Sr|f(x) = αs, g(x) = βt, α, β ≥ 0}.

Similarly we find that

BlRỸ BlRZ X = {(x, t, s) ∈ X × Sr × Sk|f(x) = αs, g(x) = βt, α, β ≥ 0}.

Clearly these two spaces are isomorphic with isomorphism ϕ : (x, s, t) 7→ (x, t, s).

For the second part of the statement note that this statement is local so we may assume that Y, Z are cut out
by equations f : X → Rk and g : X → Rr. Let WY denote the strict transform of W in BlRY X. Then the strict
transform of WY in BlRZ̃ BlRY X is the set of all points (x, s, t) ∈ BlRZ̃ BlRY X such that there exists a sequence
(xn, sn) ∈ WY \ Ỹ such that lim xn = x, lim sn = s, and lim g(xn)

|g(xn)| = t. Since Z̃ is closed each point (xn, sn)
has a neighbourhood that does not intersect Z̃. Since WY \ Y is dense in WY , and thus in particular on U and
g is continuous we may choose this sequence such that xn /∈ Y . In this case we must have sn = f(xn)

|f(xn)| Hence,
(x, s, t) lies in the strict transform of the strict transform of W in BlRZ̃ BlRY X if and only if there is a sequence
xn ∈ W \ (Y ∪ Z) such that lim xn = x, lim f(xn)

|f(xn)| = s, and lim g(xn)
|g(xn)| = t. By symmetry the same conditions

determine the points in the strict transform of the strict transform of W in BlRỸ BlRZ X. This completes the
proof.

Remark. It may (and often does) happen that Ỹ or Z̃ is not a complete intersection of codimension k/r and
thus, to be precise, we are not in general blowing up Ỹ or Z̃ here but rather we are taking the blow up of the
pullback of the vector bundle with section cutting out Y to BlRZ X and vice versa. This perspective also extends
the result of the lemma to blow ups in arbitrary line bundles with sections.

Lemma 3.13. Let X be a smooth manifold, let {σi : X → Ei}1≤i≤n, be a set of smooth sections of vector
bundles of X, and let Yi ⊆ X be the space cut out by σi, i.e. zero locus of σi. If Z ⊆ X is a closed subspace
such that for each blow up ρi : BlRσi

X the strict and total transform are equal for Z and for any combination
of intersections between Z and the subspaces Y1, . . . , Yi−1 then the strict and total transforms of Z are equal in
the sequence of blow ups

BlRσ̃n
BlRσ̃n−1

. . .BlRσ̃1
X
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where σ̃i is the pullback, i.e. total transform, of the section σi via all previous blow ups.

Proof. Since the result can be checked locally we can assume that the line bundles Ei are trivial and thus
replace σi with functions fi : X → Rki . In this case we can use induction. In what follows let Z̃i, Ỹj,i denote
the total transforms of Z and Yj in the blow up BlRσ̃i

BlRσ̃i−1
. . .BlRσ̃1

X, and let ρ̃i denote the blow up map
BlRσ̃i

BlRσ̃i−1
. . .BlRσ̃1

X → BlRσ̃i−1
. . .BlRσ̃1

X.

The base case n = 1 is clear by hypothesis.

For the induction step suppose the strict and total transform of Z are the same in BlRσ̃i−1
. . .BlRσ̃1

X. By
definition,

BlRσ̃i
BlRσ̃i−1

. . .BlRσ̃1
X = {(x, s1, . . . , si) ∈ X × Sk1−1 × · · · × Ski−1| fj(x) = |fj(x)|sj ∀ 1 ≤ j ≤ i},

and the total transform of Z is

Z̃i = {(x, s1, . . . , si) ∈ Z × Sk1−1 × · · · × Ski−1| fj(x) = |fj(x)|sj ∀ 1 ≤ j ≤ i}.

Since the total and proper transforms of Z are equal in BlRσ̃i
. . .BlRσ̃1

X the strict transform of Z in BlRσ̃i−1
. . .BlRσ̃1

X

is the closure of the inverse image ρ̃−1
i (Z̃i−1 \ Ỹi,i−1) by lemma 3.12.

Clearly, Z̃i \ Ỹi,i = ρ̃−1
i (Z̃i−1 \ Ỹi,i−1) so what we must show is that every point (x, s1, . . . , si) ∈ Z̃i ∩ Ỹi,i is the

limit of a sequence of points (xn, sn
1 , . . . , s

n
i−1,

fi(x)
|fi(x)| ) ∈ ρ̃−1

i (Z̃i−1 \ Ỹi,i−1). To find such a sequence let I be the
set of indexes I = {j| x ∈ Yj and 1 ≤ j < i}. Since the total and proper transform of Z ∩

⋂
j∈I Yj are equal in

BlRσi
X there is a sequence xn ∈ Z ∩

⋂
j∈I Yj \ Yi such that lim xn = x and lim fi(xn)

|fi(xn)| = si. Since each Yk is
closed and x /∈ Yk whenever k /∈ I we may without loss of generality assume xn /∈ Yk for every k /∈ I. Now, for
each xn in this sequence the point (xn, s

n
1 , . . . , s

n
i−1,

fi(xn)
|fi(xn)| ) where sn

j = sj for every j ∈ I and sn
k = fk(xn)

|fk(xn)| lies
in Z̃i−1 by definition. Clearly,

lim(xn, s
n
1 , . . . , s

n
i−1,

fi(xn)
|fi(xn)| ) = (x, s1, . . . , si)

and thus we are done.

Proposition 3.14. Let X be a complex analytic space and let Z be a closed complex analytic subspace. Let Y
be a smooth divisor of X cut out by some section s : X → L of a complex line bundle on X. Then the total and
dominant transforms of Z under for the blow up ρ : BlRY X → X are equal.

Proof. In the case Z ⊆ Y or Z ∩ Y = this is clear so we assume Z ∩ Y ̸= and Z ̸⊆ Y . Furthermore, the result
can be proven locally so we may assume that L is trivial, i.e. Y is cut out by a single holomorphic function
f : X → C. Now, let Z̃ denote the dominant transform of Z and let Ỹ denote the exceptional divisor. It is clear
by definition that Z̃ \ Ỹ = ρ−1(Z) \ Ỹ so we must only show that Z̃ ∩ Ỹ = ρ−1(Z ∩ Y ). In this case note that,
f is holomorphic on Z and, since Z ̸⊆ Y , Z ∩ Y ̸= there are points on Z that are mapped to 0 by f and points
that are not mapped to 0 by f , i.e. f is not constant. Since f is holomorphic but not constant it is an open
map. Now, let x ∈ Z ∩ Y , i.e. f(x) = 0. Since f is open, every open neighbourhood U ⊆ Z of x is mapped
to an open neighbourhood of the origin in C. In particular, every open neighbourhood of x contains a point
x′ with f(x′)/|f(x′)| = eiθ for every 0 ≤ θ < 2π. Thus we can find a sequence in Z \ Y , such that lim xn = x
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and f(xn)/|f(xn)| = eiθ. Hence, for every θ the point (x, θ) ∈ BlRY X is in the closure of ρ−1(Z \ Y ). Thus
Z̃ ∩ Ỹ = ρ−1(Z ∩ Y ) and the proof is complete.

Corollary 3.15. Let X be a complex analytic space and let Z be a closed complex analytic subspace. Let
Y1, . . . , Yn be smooth divisors of X cut out by sections sn : X → Ln of a complex line bundles on X. Additionally,
assume that Z has the property that the intersection of Z and any intersection of Y1, . . . , Yi−1 is either empty
or not contained in Yi for each i. Then the strict and total transform of Z in

BlRỸn
BlRỸn−1

. . .BlRỸ1
X

are equal where Ỹi is the total transform of Yi under the previous blow ups.

Proof. By the proposition the dominant transform of Z intersected with any combination of the Yj divisors
for 1 ≤ j < i will have equal dominant and total transforms for the blow up BlRYi

X → X (this is trivially
true in the case when the intersections are empty). Since the intersections are either empty or contained in Yi

the dominant transform is the strict transform for these subspaces and thus the corollary follows from lemma
3.13.

Theorem 3.16. Let Y be a smooth complete intersection in an analytic complex variety X. Let Ỹ be the
exceptional divisor of Y in the complex blow-up BlCY X. There is a canonical isomorphism of blow-ups

BlRỸ BlCY X → BlRY X.

Furthermore, for a complex analytic subvariety Z ⊆ X this diffeomorphism maps the (real) total transform of
the (complex) dominant transform of Z in BlRỸ BlCY X to the dominant transform of Z in BlRY X.

Proof. First, let us prove this in the special case where Y is a complete intersection of holomorphic functions
fj : X → C ∼= R2, for 1 ≤ j ≤ k. Define uj , vj to be the real and imaginary components of fj (i.e. fj(x) =
uj(x) + ivj(x)). Then BlRY X is the space

{(x, (s1, t1, s2, t2, . . . , sk, tk)) ∈ X × S2k−1| ∃ α ≥ 0 s.t uj(x) = αsj , vj(x) = αtj ∀j}

and BlCY X is the space

{(x, [w1 : . . . : wk]) ∈ X × CPk−1| fl(x)wj = fj(x)wl ∀j, l}.

Now, let Uj ⊆ BlCY X be the subspace defined by wj ̸= 0. On this subspace the exceptional divisor Ỹ of the
complex blow-up is given by the single complex equation fj(x) = 0, or equivalently by the two real equations
uj(x) = 0 and vj(x) = 0. Thus, we have

BlRỸ ∩Uj
Uj = {(x, [w1 : . . . : wk], (pj , qj)) ∈ X × CPk−1 × S1|

fl(x)wj = fj(x)wl ∀j, l and ∃α ≥ 0: uj(x) = αpj , vj(x) = αqj}.
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Now we can define the function ϕj : BlRỸ ∩Uj
Uj → BlRY X by sending (x, [w1 : . . . : wk], (pj , qj)) 7→ (x, (s1, t1, s2, t2, . . . , sk, tk))

where
sl + itl = λ

wl

wj
(pj + iqj),

and λ > 0 is some normalization constant. It is clear that this is a diffeomorphism onto its image. Furthermore,
it is also easy to see that each point in BlRY X lies in the image of ϕj for some j. Thus, all that remains to show
is that these maps ϕj glue together to a map ϕ : BlRỸ BlCY X → BlRY X. To see this, note that on the intersection
Uj ∩Ul we have that gl(x) = wl

wj
gj(x). Thus, the gluing map gjl : BlRỸ ∩Uj

Uj ∩BlRỸ ∩Ul
Ul → BlRỸ ∩Ul

Ul∩BlRỸ ∩Uj
Uj

sends (x, [w1 : . . . : wk], (pj , qj)) 7→ (x, [w1 : . . . : wk], (pl, ql)) where

pl + iql = wl/wj

|wl/wj |
(pj + iqj).

Thus, ϕl(gjl(x, [w1 : . . . : wk], (pj , qj))) = (x, (s1, t1, s2, t2, . . . , sk, tk)) where

sm + itm = λ
wm

wl
gij(pj + iqj) = λ

wm

wl

wl/wj

|wl/wj |
(pj + iqj) = λ

|wl/wj |
wm

wj
(pj + iqj).

Thus ϕl ◦ gjl = ϕj and therefore the maps glue to an isomorphism BlRỸ BlCY X → BlRY X. Commutativity of
the diagram

BlRỸ BlCY X BlRY X

X

also follows from construction. For the general case note that we can cover X in analytic subspaces Ui such
that Y is locally cut out by functions fj : X → C ∼= R2 on each subspace Ui. To complete the proof we can
glue the corresponding isomorphisms for each component Ui together. It is easy to verify that these maps "glue
well" so I omit the details.

Finally, let Z ⊆ X be an analytic subvariety. Clearly ϕ maps the (real) dominant transform of the (complex)
dominant transform of any Z to to the dominant transform of Z. By lemma 3.14 the dominant and real
transform of a complex subvariety are the same for the blow-up BlRỸ BlCY X → BlCY X. From this the result
follows.

Remark. Note that we know from Algebraic Geometry that the exceptional divisor (by definition of the blow
up) is a codimension one effective Cartier divisor and thus a complete intersection. Thus talking about the blow
up in the exceptional divisor makes sense.

This result has many interesting applications. One immediate application is that this gives a simple proof for
the following result.

Corollary 3.17. Let E → CPn−1 be the O(−1) complex line bundle and let s0 : CPn → E be the 0 section.
There is a diffeomorphism

BlRs0
CPn ∼=−→ S2n−1.

Proof. Let p ∈ An
C be the origin (or any point in An

C) which is clearly a codimension n, smooth complete
intersection. It a standard result that the exceptional divisor p̃ ∈ BlCp An

C is diffeomorphic to CPn−1 and that p̃
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is cut out by a section of a line bundle s : BlCp An
C → E such that the restriction of E to p̃ is the O(−1) complex

line bundle. Now, by the theorem
BlRp̃ BlCp An

C
∼= BlRp An

C.

Restricting this diffeomorphic to the real oriented blow up of the exceptional divisor p̃ we find that BlR0∈O(−1) CPn−1

is diffeomorphic to the exceptional divisor in BlRp An
C

∼= BlRp R2n which is of course S2n−1.

Definition 3.18. A k-dimensional vector bundle E → X is glued by positive scalar multiplication if there is
some trivializing open cover {Ui}i∈I of X such that for each i, j ∈ I the gluing map of E, ϕij : (Ui ∩Uj) ×Rk →
(Uj ∩ Ui) × Rk is given by (x,v) 7→ (x, λij(x)v where λij(x) is a positive, real, scalar.

Lemma 3.19. Let g : E → X be a k-dimensional vector bundle on X, glued by positive scalar multiplication.
Then, there is an isomorphism BlRσ0

X
∼=−→ X × Sk−1, where σ0 : X → E denotes the 0-section.

Proof. Let {Ui}i∈I be some trivializing open cover of X such that the gluing morphisms ϕij : (Ui ∩Uj) ×Rk →
(Uj ∩Ui) ×Rk are all given by multiplication by a positive scalar function of x, i.e. (x,v) 7→ (x, λij(x)v) where
λij(x) > 0. Let ρ : BlRσ0

X → X denote the blow up map and let Vi = ρ−1(Ui) We have Ui × Sk−1 = Vi by
definition of the real oriented blow up. The gluing morphism gij : Vi ∩ Vj → Vi ∩ Vj is given by gij(x, s) 7→
(x, ϕij(x,s)

|ϕij(x,s)| ). Since ϕij(x, s) = λij(x) · s where λij(x) > 0 we have ϕij(x,s)
|ϕij(x,s)| = s and therefore gij is the identity

function. Hence, the local isomorphisms Ui × Sk−1 ∼=−→ Vi glue to give an isomorphism X × Sk−1 ∼=−→ BlRσ0
X.

Lemma 3.20. If E → X is a real or complex bundle glued by positive scalar multiplication then so is the dual
bundle E∨.

Proof. I will prove this in the real case. The complex is analogous. Let {Ui}i∈I be some trivializing open cover
of X such that the gluing morphisms of E, ϕij : (Ui ∩Uj) ×Rk → (Uj ∩Ui) ×Rk are all given by multiplication
by a positive scalar function of x, i.e. (x,v) 7→ (x, λij(x)v) where λij(x) > 0. By construction the gluing maps
of the dual bundle send

ϕ∨
ij : (Ui ∩ Uj) × homRk,R → (Uj ∩ Ui) × homRk,R, (x, f) 7→ (x, f ◦ ϕ−1

ij (x,−)).

Since f ◦ ϕ−1
ij (x,−) = 1

λij(x)f , E∨ is also glued by positive scalar multiplication.

Lemma 3.21. Let gk : Ek → X, 1 ≤ k ≤ n be a collection of complex line bundles all of which are glued by
positive scalar multiplication and let e1, . . . , en be integers. Then the complex tensor product

⊗
E⊗ek

k also has
the property that the gluing morphisms are all given by multiplication by a real, positive, scalar function of x,
i.e. (x, z) 7→ (x, λk

ij(x)z) where λk
ij(x) ∈ R>0.

Proof. First note that by lemma 3.20 we may without loss of generality assume that ei ≥ 0. If this is true for
n = 2, e1 = e2 = 1, then the general case follows by induction. For this case let E1, E2 be complex line bundles
glued by positive scalar multiplication. Let {Ui}i∈I be an open cover of X trivializing both bundles such that
the gluing morphisms for each Ek, ϕk

ij : (Ui ∩ Uj) × C → (Uj ∩ Ui) × C are both given by multiplication by a
real, positive, scalar function of x.
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Then, E1 ⊗E2 will, by definition, also be trivial on Ui and the gluing maps will, again by definition of the tensor
product, be given by (x, z) 7→ (x, λ1

ij(x)λ2
ij(x)z). Clearly λ1

ij(x)λ2
ij(x) ∈ R>0 and thus we are done.

Remark. Here E⊗(−m) is taken to mean (E∨)⊗m.

Lemma 3.22. Let π : E → X be a vector bundle glued by positive scalar multiplication and let f : Y → X be
any continuous function. Then the pullback bundle f∗π : f∗E → Y is also glued by positive scalar multiplication.

Proof. Let {Ui}i∈I be an open cover of X such that for each i, j ∈ I the gluing map of E, ϕij : (Ui ∩Uj) ×Rk →
(Uj ∩ Ui) × Rk is given by (x,v) 7→ (x, λij(x)v where λij(x) is a positive, real, scalar. Let Vi = f−1(Ui). By
definition of the pullback, (f∗π)−1(Vi) ∼= Vi × Rk and the gluing maps are given by

f∗ϕij : (y,v) 7→ (y, ϕij(f(y),v) = (y, λij(f(y))v).

Since λij(f(y)) > 0 we are done.

Lemma 3.23. Let σ : X → E be a section of a complex line bundle on a space X. Then the pullback bundle of
E on the blow-up ρ : BlRσ X → X, ρ∗E, is (isomorphic to a bundle) glued by positive scalar multiplication.

Proof. Let {Ui}i∈I be a trivializing open cover of E with gluing morphisms ϕij : (Ui ∩Uj) ×C → (Uj ∩Ui) ×C
and let σi : Ui → C be the restriction of σ to Ui (composed with the projection to C). Notice that since E is a
complex line bundle ϕij must send (x, z) 7→ λij(x)z where λij(x) ∈ C∗. Then, if we let Vi = ρ−1(Ui), there are
isomorphisms

fi : Vi → {(x, eiθ) ∈ X × S1|σi(x) = |σi(x)|eiθ}

and the gluing morphisms gij = fj ◦ f−1
i are given by (x, eiθ) 7→ (x, λij(x)

|λij(x)|e
iθ). By definition of the pullback

bundle, ρ∗E is trivial on Vi and the gluing morphisms of ρ∗E are given by

ϕ∗
ij : (Vi ∩ Vj) × C → (Vi ∩ Vj) × C, (p, z) 7→ (p, ϕij(ρ(p), z))

by definition of the pullback bundle. Now, we can define new trivializing homeomorphisms of ρ∗E by composing
the ones we have with

hi : Vi × C → Vi × C, (p, z) 7→ (p, ze−iθ)

where θ is defined by fi(p) = (ρ(p), eiθ). With these trivializing homeomorphisms the gluing maps become
hj ◦ ϕ∗

ij ◦ h−1
i . Since gij = fj ◦ f−1

i : (x, eiθ) 7→ (x, λij(x)
|λij(x)|e

iθ) we have

hj ◦ ϕ∗
ij ◦ h−1

i : (p, z′) 7→ (p, λij(ρ(p))z′eiθ · |λij(ρ(p))|
λij(ρ(p))eiθ

) = (p, |λij(ρ(p))|z′).

Since |λij(ρ(p))| ∈ R>0 we are done.

Proposition 3.24. Let L1, L2, . . . , Ln be complex line bundles on a space X and let L =
⊗n

i=1 L
⊗ei
i where ei

are integers and ⊗ is the complex tensor product. Let σ1, . . . , σn be sections σi : X → Li. Then, there is an
isomorphism

BlRσ̃0
BlRσ̃n

. . .BlRσ̃1
X

∼=−→
(

BlRσ̃n
. . .BlRσ̃1

X
)

× S1

where σ̃i denotes the pullback of σi through all previous morphisms and σ0 : X → L is the 0 section.
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Proof. By lemma 3.23 and lemma 3.22 the pullbacks of the bundles Li to BlRσ̃n
. . .BlRσ̃1

are glued by positive
scalar multiplication. Since L is a tensor product of these bundles the pullback of L is also glued by positive
scalar multiplication by lemma 3.21. Now the proposition immediately follows from lemma 3.19.

4 Fulton-MacPherson and Kontsevich Spaces

In this chapter I will introduce the topological Fulton-MacPherson spaces, FMn(Rd), and the closely related
Kontsevich spaces, Kd,n. The Fulton-MacPherson spaces are compactifications of the configuration spaces
Confn(Rd) or more accurately they are spaces with a dense open embedding from Confn(Rd) such that the closure
of any bounded set in Confn(Rd) is compact. The Kontsevich spaces compactify the quotients Confn(Rd)/Hd

where Hd is the group of homotheties and translations in Rd. Although this chapter treats the manifold theoretic
version of the Fulton-MacPherson spaces it is worth mentioning that this type of construction first appeared in
an algebro-geometric context in the now famous article "A compactification of configuration spaces" by Fulton
and MacPherson [FM94]. After defining these spaces I will define an operad with objects {Kd,n}n∈N, for every
d. Finally, I will define a group action by the SO(d) group on this operad and, when d is even, also an action
by the S1 group. The main goal of this thesis is to show that, in even dimensions, the semidirect product of
this operad with the S1 topological group isomorphic to the Kato-Nakayama analytification of an operad of log
schemes.

4.1 The Fulton-MacPherson Compactification

In this section I will construct the Fulton-MacPherson configuration spaces. The Kontsevich spaces will then
be constructed as subspaces of these. These constructions are well known and appear in several different
contexts. Much of the theory regarding these spaces was developed by Sinha in the article "Manifold-theoretic
compactifications of configuration spaces" [Sin04] who in particular introduced type the pictorial notation seen
in this section. In what follows I will assume d, n to be fixed positive integers so that I may omit them from the
notation when convenient.

The first part of the construction is to define maps αS : Confn(Rd) → S(|S|−1)d−1 for every S ⊆ [n] with |S| ≥ 2.
To do this, first let ∼ be the equivalence relation on (Rd)m \ ∆m given by x ∼ y if there is a λ > 0 such that
x − λy ∈ ∆m. Here ∆m denotes the small diagonal in (Rd)m, i.e. the set of points (x1, . . . , xm) such that
x1 = x2 = · · · = xm. From the definition of the N -sphere it is easy to see that the quotient ((Rd)m \ ∆m)/ ∼ is
homeomorphic to S(m−1)d−1. This gives a continuous function αm : Confm(Rd) → S(m−1)d−1 by composing

Confm(Rd) ↪→ (Rd)m \ ∆m ↠ ((Rd)m \ ∆m)/ ∼
∼=−→ S(m−1)d−1.

Next, for a subset S ⊆ [n] let pS : Xn → X |S| denote the projection map onto the coordinates indexed by S,
i.e. if S = {i1, i2, . . . , im} where i1 < i2 < · · · < im then pS(x1, x2, . . . , xn) = (xi1 , xi2 , . . . , xim). Restricting
to Confn(Rd) ⊆ (Rd)n this gives a function pS : Confn(Rd) → Conf|S|(Rd). We define αS as the composition
αS = α|S| ◦ pS . A subtle but important thing to note here is that while S is just a set, pS actually depends on
the order of S since we are projecting to X |S| and not Sym|S|X. As indicated above pS is the projection given
by the set S with elements appearing in increasing order.

Let P (n), or just P when n is clear from context, denote the set of subsets of [n] with at lest 2 elements, e.g.
P (3) = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} and let i : Confn(Rd) → (Rd)n denote the canonical inclusion.
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Figure 1: Configuration corresponding to a point in FM9(Rd)

Definition 4.1. The Fulton-MacPherson configuration space, FMn(Rd) is the closure of the image of the map

i×
∏

S∈P

αS : Confn(Rd) → (Rd)n ×
∏

S∈P

S(|S|−1)d−1.

Let ρ : FMn(Rd) → (Rd)n denote the restriction of the projection map (Rd)n ×
∏

S∈P S(|S|−1)d−1 → (Rd)n and
similarly let πS : FMn(Rd) → S(|S|−1)d−1 denote the restriction of the projection to the S(|S|−1)d−1-component
corresponding to the set S ∈ P . Finally, let j : Confn(Rd) ↪→ FMn(Rd) denote the dense embedding of
Confn(Rd).

Remark. For an arbitrary manifold with an embedding M ↪→ Rd one can define FMn(M) as the closure of
the image of Confn(M) ⊆ Confn(Rd). If M is compact this image will also be compact which is why this
construction is often called the Fulton-MacPherson compactification. See Sinha [Sin04] for more details.

There is an oftentimes useful, intuitive, way to think of the points in this space. The picture you should have
in mind is that a point in FMn(Rd) is a configuration of n (labeled) points in Rd such that two or more points
are allowed to be equal but if a collection of k points "meet" then we must also give k points in Rd, up to
scaling and translation, specifying the positions of these k-points "relative to each other" such that not all of
them are equal. If the relative positions of some of the k-points are also equal then we must furthermore specify
their relative position up to translation and positive scaling and so on. Picture 1 illustrates an example of this
picture of a point in FM9(Rd). In the point illustrated to this picture the points indexed by 1, 3, 4, 5 meet in
the "bottom layer" and so do the points indexed by 6, 7, 9. Therefore, the relative positions of these groups of
points are specified in a second layer of the figure. Furthermore, in the space of relative positions of the points
indexed by 1, 3, 4, 5 the points indexed by 3, 4, 5 meet so we add an additional "layer" specifying their relative
positions.

Definition 4.2. The Kontsevich space of n points in d dimensions, Kd,n, is defined as the fiber ρ−1((0, 0, . . . , 0)) ⊆
FMn(Rd).

Remark. I choose the origin here for convenience but the fiber over any point on the small diagonal in (Rd)n
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yields the same space.

Intuitively one should think of a point in Kd,n the same way we think of points in FMn(Rd) but this time the
positions of the n points in the "bottom layer" are also only specified up to positive scaling and translation.

Even though the restriction of ρ to Kd,n is not particularly interesting the restrictions of the maps πS are still
non-trivial. I will use πS to denote these restrictions too by abuse of notation.

The Fulton-MacPherson configuration spaces can also be expressed as a sequence of real oriented blow-ups of
(Rd)n. Furthermore, although the order of the blow ups cannot be performed arbitrarily, there are several
different orders in which the blow-ups can be performed. More details on which orders are allowed and why can
be found in the 2003 article "Models for real subspace arrangements and stratified manifolds" by Gaiffi [Gai03].

Let Bn be a sequence whose elements are the subsets of [n] of size ≥ 2, such that |Bn(i)| ≥ |Bn(j)| whenever
i ≤ j. That is Bn is any sequence which starts with [n] and then the next elements in the sequence are the
subsets of [n] of size n− 1, and so on, then we have.

Proposition 4.3. There is an isomorphism between FMn(Rd) and the space

BlR∆(Bn(2n−(n+1))) . . .BlR∆(Bn(2)) BlR∆(Bn(1)) (Rd)n

where, in each blow-up ∆(Bn(i)) denotes the strict transform of the diagonal ∆(B(i)) under all previous blow-
ups. Furthermore, under this isomorphism the map ρ : FMn(Rd) → (Rd)n is identified with the composition of
all blow-up morphisms and furthermore the closed subspace FMn(Rd)(S) is identified with the space we get by
taking the dominant transform of the ∆(S) diagonal in each blow-up.

Proof. See [Gai03].

Before I end this section I will state and prove one last result. This will not seem particularly interesting at the
moment but it will be very important in the last parts of the thesis. First, note that the blow up of (Rd)m in
the small diagonal ∆m is a closed subset BlR∆m

(Rd)m ⊆ (Rd)m × S(m−1)d−1. This is clear from definition of the
real oriented Blow-Up in a complete intersection. Next, note that the image of the function

fS = (pS ◦ ρ) × πS : FMn(Rd) → (Rd)|S| × S(|S|−1)d−1

is contained in BlR∆m
(Rd)m. This is clear since this is obviously true for fS ◦j and the image of j : Confn(Rd) ↪→

FMn(Rd) is dense.

Lemma 4.4. The following diagram commutes if and only if f ′
S = fS and π′

S = πS.
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Confn(Rd) FMn(Rd) Kd,n

BlR∆|S|
(Rd)|S| S(|S|−1)d−1

(Rd)|S|

j

pS

f ′
S π′

S

ρ|S|

g

0

Here g is the inclusion of the fiber over the origin of the blow up ρ|S| : BlR∆|S|
(Rd)|S| → (Rd)|S|.

Proof. It is clear by definitions that the diagram commutes for f ′
S = fS and π′

S = πS . Furthermore, since
Kd,n → FMn(Rd) and g : S(|S|−1)d−1 → BlR∆|S|

(Rd)|S| are embeddings it is also clear that f ′
S uniquely determines

π′
S . Finally, ρ|S| is a homeomorphism when restricted to the inverse image of (Rd)|S| \ ∆|S|. Since the image of
pS is contained in (Rd)|S| \ ∆|S| this means that f ′

S ◦ j is uniquely determined, i.e. f ′
S ◦ j = fS ◦ j. Since the

image of j is dense in FMn(Rd) it follows that fS = f ′
S .

4.2 The Kontsevich Operad

For a fixed dimension d the collection {Kd,n}n∈N can be given the structure of a topological operad as follows.

First, let
({(uS)}S∈P (n)) ∈

∏
S∈P (n)

((Rd)S \ ∆S)/ ∼

denote a point in Kd,n ⊆
∏

S∈P (n)((Rd)S \ ∆S)/ ∼, where, for each S = {i1, . . . , i|S|} ordered such that
i1 < · · · < i|S|, we write

uS = (uS
i1
, uS

i2
, . . . , uS

i|S|
) ∈ ((Rd)S \ ∆S)/ ∼ .

A permutation σ ∈ Σn acts on FMn(Rd) by sending ({(uS)}S∈P (n)) 7→ ({(vS)}S∈P (n)) where

vS = (uσ−1(S)
σ−1(i1), u

σ−1(S)
σ−1(i2), . . . , u

σ−1(S)
σ−1(i|S|)

).

Note that this is not the same as vS = vσ−1(S) since the coordinates appear in a different order if σ−1 does
not preserve the order of S. An important remark here is that this is actually the restriction of an action on
FMn(Rd). Specifically, this is the restriction of the action where σ ∈ Σn acts on FMn(Rd) by sending the point

(x1, x2, . . . , xn, ({(uS)}S∈P (n))) ∈ (Rd)n ×
∏

S∈P (n)

((Rd)S \ ∆S)/ ∼

to
(xσ−1(1), xσ−1(2), . . . , xσ−1(n), ({(uS)}S∈P (n))) ∈ (Rd)n ×

∏
S∈P (n)

((Rd)S \ ∆S)/ ∼ .

Furthermore, we have that the following holds.
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Lemma 4.5. For any σ ∈ Σn the following diagram commutes if and only if f, g are the permutation maps
described above when the leftmost arrow is the permutation of coordinates on Confn(Rd) corresponding to σ.

Confn(Rd) FMn(Rd) Kd,n

Confn(Rd) FMn(Rd) Kd,n

f g

Proof. The proof is analogous to the proof of lemma 4.4.

Next, to define the composition maps we first define, for a positive integer n and a collection of n positive
integers m = (m1, . . . ,mn), the two functions of integers

pn,m : a 7→



1 0 < a ≤ m1

2 m1 < a ≤ m2
...

n
∑

i<n mi < a ≤
∑

i≤n mi

and, for 1 ≤ r ≤ n

qn,m
r : a 7→ a−

∑
i<r

mi.

When n,m are clear from context I just use p, qr to denote these. The composition maps

γn,m : Kd,n × Kd,m1 × · · · × Kd,mn
→ Kd,m

are defined by sending

({(u0
S)}S∈P (n)), ({(u1

S)}S∈P (m1)), . . . , ({(un
S)}S∈P (mn)) 7→ ({(vS)}S∈P (m))

where, if S = {i1, i2, . . . , i|S|} ⊆ [m], we set

vS =

ur
qr(S) p(S) = {r}

(xp(S)
p(i1), x

p(S)
p(i2), . . . , x

p(S)
p(i|S|)) else

.

Here xp(S)
j are the coordinates of u0

p(S). It is easy to verify that this map is well defined, i.e. maps equivalence
classes to each other and has image contained in Kd,m. We will later need one more lemma here in the style of
4.5 and lemma 4.4.

Lemma 4.6. Let S = (s1, s2, . . . , sk) ⊆ [m] be such that R = pn,m(S) = (r1, r2, . . . , rl) has two or more ele-
ments., then there is exactly one function gS : S(|R|−1)d−1 → S(|S|−1)d−1 making the following diagram commute.
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S(|R|−1)d−1 S(|S|−1)d−1

BlR∆|R|
(Rd)R BlR∆R

(Rd)|R|

(Rd)R (Rd)S

gS

iR iS

ρS ρS

dS

Where iR, iS are inclusions over the origin and dS is the map given by

(xr1 , . . . , xrl
) 7→ (xpn,m(s1), xpn,m(s2), . . . , xpn,m(sk)).

Furthermore, if AS : Kd,n × Kd,m1 × · · · × Kd,mn → S(|R|−1)d−1 is the function composition of the projection
Kd,n × Kd,m1 × · · · × Kd,mn → Kd,n with πR then the above function gS (and only this function) makes the
following diagram commute.

Kd,n × Kd,m1 × · · · × Kd,mn
Kd,m

S(|R|−1)d−1 S(|S|−1)d−1

AS

γn,m

πS

gS

Proof. By the same argument as in the proof of lemma 4.4 there is only one gS making the first diagram commute.
It is easy to see that this also makes the second diagram commute through explicit computations.

Finally, note that Kd,1 by construction is just the one point space so there is only one possible choice for the
identity map, η : ∗ → Kd,1, namely the identity function.

Proposition/Definition 4.7. {Kd,n} with the above composition, symmetry, and identity maps is an operad.
I will refer to this as the Kontsevich operad, or the topological Kontsevich operad, of dimension d, denoted Kd.

Proof. This follows from tedious direct computations. I will leave the details as an exercise.

There is of course also an intuitive way to think of this operad. The symmetry action maps a configuration of
labeled points to the same configuration of points but with their labels permuted. Figure 2 illustrates the way a
point in Kd,9 is mapped by the 3-cycle (123) ∈ Σ9. The composition maps Kd,n × Kd,m1 × · · · × Kd,mn → Kd,m

"attach" the collections of points in Kd,mr to the point indexed by r in a collection of points in Kd,n. Figure 3
illustrates an example of how three "collections of points" are mapped by the composition map Kd,2 × Kd,3 ×
Kd,4 → Kd,7.
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(a) Point in Kd,9 (b) Point in Kd,9 permuted by (123)

Figure 2: Example of the symmetry action

Figure 3: Example of the composition map

For some context regarding why this is an interesting operad it is well known that the Kontsevich operad is
weakly equivalent to the operad of little d dimensional disks. See for example [Sal99, proposition 3.9], for a
proof.

Now, let am : SO(d) × ((Rd)m \ ∆m)/ ∼→ ((Rd)m \ ∆m)/ ∼ be the action of SO(d) sending

(R, (x1, x2, . . . , xm)) 7→ (R(x1), . . . , R(xm)).

These actions induce an action on
∏

S∈P S(|S|−1)d−1 by taking the following composition
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SO(d) ×
∏

S∈P S(|S|−1)d−1

(SO(d))|P | ×
∏

S∈P S(|S|−1)d−1

∏
S∈P (SO(d) × S(|S|−1)d−1)

∏
S∈P S(|S|−1)d−1

∆|P |×id

rearrange

∏
S∈P

a|S|

where ∆|P | : SO(d) → SO(d)|P | is the diagonal inclusion.

Proposition 4.8. The above action restricts to an action on Kd,n ⊆
∏

S∈P S(|S|−1)d−1 and furthermore this
gives an SO(d) action on the Kontsevich operad.

Proof. This also follows from tedious direct computations.

While the semidirect product of the Kontsevich operad Kd with SO(d) is arguably more interesting this is not
the operad studied in this thesis. Instead we are interested in the following construction. When d is an even
number d = 2m there is a canonical embedding of topological groups S1 ∼= SO(2) ↪→ SO(d) which sends

R 7→ R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
m times

.

This induces an action of SO(2) on the K2m operad and thus we can form the semidirect product Kd ⋊ S1.

Definition 4.9. The S1-framed Kontsevich Operad in dimension 2m is the semidirect product K2m ⋊ S1.

The main goal of this thesis is to construct a non-unital operad of log schemes whose Kato-Nakayama analyti-
fication is K2m ⋊ S1 for each positive integer m.

It is worth noting here that the weak equivalence between the Kontsevich operad, Kd and the framed little disks
operad Dd constructed in [Sal99] "commutes" with the group action by SO(d) on the respective operads. This
implies that K2m ⋊ S1 is weakly equivalent to D2m ⋊ S1 which means that the isomorphism in theorem 7.35
also implies that the semidirect product Dd ⋊ S1 (without unit) is weakly equivalent to the Kato-Nakayama
analytification of the operad without unit of log schemes defined in this thesis. While commutativity with the
SO(d) action is straight forward to verify directly from Salvatores proof of the weak equivalence I do not know
of any references for this. As such, I have decided not to include this result as a theorem in the thesis but it is
still worth mentioning.

5 Logarithmic Algebraic Geometry

In this chapter I will give an introduction to logarithmic algebraic geometry and to the Kato-Nakayama ana-
lytification functor which was introduced by Kato and Nakayama in their article "Log Betti cohomology, log
étale cohomology, and log de Rham cohomology of log schemes over C"[KN99]. Those already familiar with
logarithmic algebraic geometry might find this introduction unsatisfactory as I will give a simplified definition
of a log-scheme is. In actuality I will be defining a so called Deligne-Faltings log scheme or a DF log scheme.
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Furthermore, the definition of a DF log scheme I give here might look different from, but hopefully be equiv-
alent to, definitions of a DF log scheme found in other sources. Large parts of this chapter are more or less
a reformulation of sections 8.2 − 8.4 in the article "Hyperelliptic Curves, the Scanning Map, and Moments of
Families of Quadratic L-Functions" by Bergström, Diaconu, Petersen, Westerland [BDPW23].

5.1 The Category of Log-Schemes

We begin by defining the category of log structures on a scheme X and then move on to defining the category
of log-schemes.

Definition 5.1. A log-structure on a scheme X is a finite tuple L = (si : OX → Li)1≤i≤n of invertible sheaves
with sections. A morphism of log-structures on X,

(si : OX → Li)1≤i≤n → (tj : OX → Mj)1≤j≤m

is a collection of n isomorphisms of sheaves

Li

∼=−→
⊗

1≤j≤m

M⊗eij

j

which also identify the sections si to the corresponding sections
⊗

1≤j≤m t
⊗eij

j and where {e}ij is some collection
of non-negative integers.

Remark. In this definition we are using the convention that for any invertible sheaf with section s : OX → L we
have that L⊗0 is the structure sheaf OX and the corresponding section s⊗0 : OX → OX is the identity section.
Although this may seem a bit strange it is natural since the structure sheaf with the identity section is the
identity object in the monoidal category of sheaves of modules with sections on X.

For those who prefer a categorical language there is also a different, equivalent, definition of a log-structure.
Namely that a log structure is a functor between monoidal categories

Nn → C

where C is the monoidal category of invertible sheaves with sections where the product of two objects is their
tensor product and where the identity is the structure sheaf with the identity section. A morphism between the
log structures Nn → C and Nm → C is then a functor Nn → Nm such that the following diagram commutes up
to a defined isomorphism

Nn Nm

C

.

Although this is arguably a better definition I will stick to the language of the first definition.

Definition 5.2. An inclusion of log structures on X is a morphism of log-structures on X, (si : OX →
Li)1≤i≤n → (tj : OX → Mj)1≤j≤m defined by sending Li

∼= Mf(i) where f : [n] → [m] is an injective function.

Definition 5.3. The direct sum of two log structures L = (si : OX → Li)1≤i≤n and M = (tj : OX → Mj)1≤j≤m
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on X, denoted L ⊕ M, is the log structure

((s1 : OX → L1), . . . , (sn : OX → Ln), (t1 : OX → M1), . . . , (tm : OX → Mm)).

Before we go on to define what a morphism of log-schemes is let us first give some simple examples and properties
of log structures on schemes.

Example 5.4 (Log structures on fields). Let X = Spec k where k is any field. There is only one invertible sheaf
on X, namely its structure sheaf OX = k̃. Furthermore, up to isomorphism, there are only two possible sections
of this sheaf, the 0 section and the identity section. Thus any log structure on X is of the form

(OX
id−→ OX , . . . ,OX

id−→ OX︸ ︷︷ ︸
n times

,OX
0−→ OX , . . . ,OX

0−→ OX︸ ︷︷ ︸
m times

),

for some non negative integers n,m which uniquely determine the log structure. Notice that rearranging the
sheaves with sections gives a canonically isomorphic log structure on X so these really are all possible log
structures on X. I have one final remark to make regarding this example which the uninterested reader may
safely skip. This remark is that we could have made the classification result above neater by altering the
definition of what a log structure is a little bit. Specifically, the result would be a lot nicer if we could identify
two log structures which are isomorphic except for the fact that one of them has a bunch of extra OX

id−→ OX

elements included. This can be achieved in many ways. Out of those I could come up with within the very
limited amount of time I have spent thinking about this the easiest is probably to simply redefine a log structure
as an infinite tuple (si : OX → Li)i∈Z where all but finitely many of the invertible sheaves with sections are the
structure sheaf with the identity section. This would make the category of log structures on the spectrum of a
field equivalent to the category N0 and it would also make the classification of log structures on other schemes
a little bit nicer. Alternatively we could simply not allow sections that are non vanishing in the definition of a
log structure. However, these definition are, to my knowledge, not standard and since redefining concepts that
are over 40 years old in a master’s thesis would probably have a negative impact on readability we are stuck
with this slightly uglier looking classification result.

Example 5.5 (Effective Cartier Divisors). Let X be an arbitrary scheme, let {Di}1≤i≤n be a set of effective
Cartier divisors on X and let D =

⋃n
i=1 Di. Then there is a canonical morphism of log-structures

(sD : Ox → OX(D)) → (sDi
: Ox → OX(Di))1≤i≤n

given by the canonical isomorphism

OX(D) ∼=
n⊗

i=1
OX(Di).

The "idea" behind this example also provides some insight into morphisms of log schemes in general. For
example, there can be no morphisms of log structures

(si : OX → Li)1≤i≤n → (tj : OX → Mj)1≤j≤m

if the (scheme theoretic) union of closed subschemes cut out by the sections (si)n
i=1 is not a closed subscheme of

the (scheme theoretic) union of the closed subschemes cut out by the sections (si)n
i=1. Similarly, there can also
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not be any such morphisms if there is an si such that the subscheme cut out by si is not the scheme theoretic
union of subschemes cut out by powers of some of the sections tj .

Example 5.6 (Pullback of log structures). Let f : X → Y be a morphism of schemes. Then a section of an
invertible sheaf on Y , s : OY → L pulls back to a section of an invertible sheaf on X,

f∗s : OX → f∗L.

This means that a log structure L on Y pulls back to a log structure f∗L on X. Similarly a morphism of
log structures on Y also pulls back to a morphism of log structures on X since pullback commutes with tensor
product. Therefore f induces a functor from the category of log structures on Y to the category of log structures
on X.

Motivated by example 5.4 we can introduce the following notion of equivalence of log structures.

Definition 5.7. Let L = (si : OX → Li)1≤i≤n be a log structure on X. A map ϕ : L → L is said to be essentially
the identity, denoted ϕ ∼ 1, if ϕ sends each Li with section either to itself via the identity map id : Li → Li or
to the "empty tensor product" Li →

⊗
1≤i≤n L⊗0

i = OX (where si 7→ 1).

Remark. Note that the latter case is only possible if Li is isomorphic to the trivial sheaf with the trivial section.

Definition 5.8. Two maps of log structures f, f ′ : L → M are said to be essentially equivalent, denoted f ∼ f ′,
if there are maps g : L → L and h : M → M, both of which are essentially the identity such that h◦f ′◦g = h◦f◦g.
A map of log structures f : L → M is said to be an essential isomorphism if there is a map g : L → M such that
g ◦ f and f ◦ g are essentially the identity.

With this last example we are now ready to define a log scheme and a morphism of log schemes

Definition 5.9. A log scheme X is a scheme X together with a log structure L on X. A morphism of log
schemes X = (X,L) → Y = (Y,M) is a morphism of schemes f : X → Y and a morphism of log structures on
X f∗M → L. A morphism of log-schemes is said to be strict if f∗M → L is an isomorphism of log structures
and it is said to be essentially strict if f∗M → L is an essential isomorphism.

Remark. We can of course also define the category of log S-schemes where the underlying schemes are S-schemes.

Definition 5.10. A morphism of log schemes, X → Y, is an essential isomorphism or essentially the identity if
the underlying map of schemes, is an isomorphism or the identity respectively and the morphism of log structures
is essentially an isomorphism or essentially the identity respectively. A morphism of log schemes is essentially
strict if the induced map of log structures is an essential isomorphism. Finally, two maps f, f ′ : X → Y, are
essentially equivalent, denoted f ∼ f ′, if their underlying maps of schemes are equal and their maps of log
structures are essentially equivalent.

Example 5.11. If f : X → Y is a function of schemes, X is any log scheme with underlying scheme X and Y is
the log scheme with underlying scheme Y and no line bundles then f uniquely induces a map of log schemes
f : X → Y since there are no isomorphisms of line bundles to define in this case. Note that it is not true in
general that a morphism of underlying schemes always induces a morphism of log schemes and if there is a
morphism of log schemes induced by a map of underlying schemes this morphism is in general not unique.

Definition 5.12. Let S be a scheme and, by abuse of notation, also a log scheme with no line bundles and
let X = (X,L) and Y = (Y,M) be log schemes with morphisms X → S and Y → S. Then the fibered product,
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denoted X×S Y, is the log scheme with underlying scheme X×SY and with line bundles with sections π∗
1L⊕π∗

2M

where π1, π2 are the projections from X ×S Y to X and Y respectively.

It is easy to verify that this indeed satisfies the universal property of the fibered product. Understanding the
fibered product in the category of log schemes in general is trickier but luckily we will not need this.

5.2 Kato-Nakayama Analytification

In this section I will define the so called Kato-Nakyama analytification functor from the category of DF log
varieties over C to the category of topological spaces.

Definition 5.13. Let X = (X, (si : OX → Li)1≤i≤n) be a log variety over C. Then we define the Kato-Nakayama
analytification of X, denoted XKN, as the space

BlRsn
BlRsn−1

. . .BlRs1
Xan

where Xan is the analytification of X and si is the section si of the vector bundle Li pulled back via all previous
blow-ups. We let ρX : XKN → Xan denote the corresponding blow up map.

Remark. It is very important to note that since Li is a one dimensional complex vector bundle it is a two
dimensional real vector bundle.

Example 5.14 (Trivial Sections). The Kato-Nakayama analytification of X = (X, (0 : OX → L)) is the unit circle
bundle of (the analytification of) L. In particular, if L is the trivial line bundle this space is just Xan × S1.

Example 5.15 (Non-Vanishing Sections). Let s : OX → L is such that the closed subscheme cut out by s, {x ∈
X| s(x) = 0}, is empty. Then the Kato-Nakayama analytification of X = (X, (s : OX → L)) is homeomorphic
to Xan, i.e. the blow-up "does nothing".

Example 5.16 (Kato-Nakayama Analytification of a Blow Up). If X is a smooth variety and Y ↪→ X is a smooth
locally complete intersection, then, by theorem 3.16 the Kato-Nakayama analytification of the log scheme given
by blow up of X in Y with the associated line bundle, (BlY X, (sỸ : O → O(Ỹ ))), is just the real oriented
blow-up BlRY an Xan.

I will not explicitly provide a definition of what the Kato-Nakayama analytification of a morphism is. This is
not too difficult to do but I will not use the explicit definition of the analytification of a morphism of log schemes
anywhere in this thesis and so I omit it. I will however need some important special cases. Specifically,

• Let X be a complex variety, let L = (si : OX → Li)1≤i≤n, let L′ = (si : OX → Li)1≤i≤N where n ≤ N and
let i : L ↪→ L′ be the corresponding inclusion of log structures. Then, the Kato-Nakayama analytification
of the map (X,L) → (X,L′) given by the identity id : X → X and the inclusion i : id∗L = L′ is the blow
up map

ρ : (X,L′)KN = BlRsN
BlRsN−1

. . .BlRsn+1
BlRsn

. . .BlRs1
Xan → BlRsn

. . .BlRs1
Xan = (X,L′)KN.

• For a strict morphism X → Y the following is a Cartesian diagram
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XKN YKN

Xan Y an

ρX ρY

where the top arrow is the analytification of the morphism and the bottom is the analytification of the
morphism of underlying schemes.

For a precise definition of these morphisms for general log-schemes see [KN99]. See [BDPW23, 8.4.3] for an
argument regarding why the construction of the Kato-Nakayama analytification of a general log scheme is
equivalent to the construction by blow-ups given here.

Lemma 5.17. The analytification of an essential identity is the identity.

Proof. Let L = (si : OX → Li)1≤i≤n and let f : (X,L) → (X,L) be an essential identity such that, without loss
of generality, i gives isomorphisms

Li

∼=−→

Li 1 ≤ i ≤ k

k ≤ i ≤ n
,

for some integer 1 ≤ k ≤ n. Let L′ = (si : OX → Li)1≤i≤n, let X′ = (X,L′) and let p : X → X′ be the map
given by the identity X → X and the inclusion L′ → L. From definitions it is clear that the following diagram
commutes.

X X

X′

f

p

p

Thus, it is enough to show that pKN is an isomorphism. By definition pKN is the blow-up map

ρ : BlRsN
BlRsN−1

. . .BlRsn+1
BlRsn

. . .BlRs1
Xan → BlRsn

. . .BlRs1
Xan.

However, each of the line bundles with sections si : OX → Li are isomorphic to the trivial line bundle with the
identity section. Thus the blow up maps in each of these line bundles are all isomorphisms and hence their
composition ρ = pKN is an isomoprhism. This completes the proof.

Proposition 5.18. The analytification of two essentially equivalent morphisms are equal and in particular the
analytification of an essential isomorphism is an isomorphism. Furthermore, if F : X → Y with underlying map
of schemes f : X → Y is essentially strict then the following diagram is Cartesian.

XKN YKN

Xan Y an

ρX

F KN

ρY

fan

Proof. If f, f ′ : X → Y are essentially equivalent then, by definition, there are essential identities g, h such that
g ◦f ◦h = g ◦f ′ ◦h. The analytifications of g and h are the identity by lemma 5.17 and thus the analytifications
of g ◦ f ◦ h and g ◦ f ′ ◦ h are just f, f ′ respectively. From this the result follows.
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For the second part, let X = (X,L), Y = (Y,M) and X′ = (X, f∗M). Since X → Y is essentially strict this
morphism factors as X → X′ → Y where X′ → Y is strict and X → X′ is an essential isomorphism. Hence the
left and right squares in the following diagram are Cartesian.

XKN X′KN YKN

Xan X Y

∼=

id

Since both squares are Cartesian the outer square is also Cartesian. This completes the proof.

6 Moduli Spaces of Stable n-Pointed Rooted Trees of d-Dimensional
Projective Spaces

In this part of the thesis I will introduce the moduli spaces of stable n-pointed rooted trees of d-dimensional
projective spaces, which we denote Td,n. These spaces were introduced by Chen, Gibney, and Krashen in their
article "Pointed Trees of Projective Spaces" [CGK06] in which they also describe many of their properties. The
construction of these spaces is closely related to the Fulton-MacPherson compactification of a d-dimensional
smooth variety which was introduced by Fulton and MacPherson in their now famous article "A Compactification
of Configuration Spaces" [FM94]. After defining the spaces Td,n I will describe an operad in which they are the
objects. This operad is essentially an algebro-geometric version of the Kontsevich operad introduced in section
4. In what follows all constructions are over some fixed base field k and "scheme", and "variety" will be taken
to mean k-scheme and k-variety respectively. Many of the subsequent constructions are well defined over other
base schemes as well but I will restrict my work here to only considering base fields to avoid having to specify
restrictions on the base schemes when such restrictions exist.

6.1 Rooted Trees of d-Dimensional Projective Spaces

Understanding the next couple of sections is going to be very difficult without the proper intuition. Therefore I
will begin this chapter by describing a way to think of the closed points in the spaces we are about to encounter.
We begin with a few definitions.

Definition 6.1. A rooted tree (T, r) is an acyclic, connected, graph T together with a distinguished node, r ∈ T ,
called the root. A rooted tree has a canonical partial ordering defined by u ≤ v if the unique path from r to v
passes through u. If u and v are neighbours and u ≤ v we say that u is a parent of v and v is a child of u. The
set of all children of u is denoted C(u). Finally, if u has no children we say that u is a leaf.

We will now use a tree along with some data associated with each edge and vertex to define a "tree of d-
dimensional projective spaces". We proceed as follows. First, let (T, r) be a rooted tree and associate to it the
following data:

• To each vertex u ∈ T (including the root) we associate a hyperplane in d-dimensional projective space
K(v) ⊆ Pd.

• To each child v ∈ C(u) of a node u we associate a point in projective space that does not lie in K(u),
p(v) ∈ Pd \K(u) such that no two children of u are associated to the same point.
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We will also need one more set of data but before I can describe this we will need to do some work. For every
u ∈ T , we define the scheme X(u) by a sequence of blow ups of Pd in each of the points associated to the
children of u separately. Notice that this is a well defined notion since the points are all disjoint so the order
in which we blow up in does not matter. For each v ∈ C(u), let E(v) denote the exceptional divisor of p(v) in
X(u) and let H(u) denote the pullback of the hyperplane K(u) in X(u). Notice that clearly H(u) ∼= Pd−1 since
none of the points p(v) lie in K(u). With this we are ready to describe all the data associated to a rooted tree
(T, r) needed to define a d-dimensional rooted tree of projective spaces.

• To each vertex u ∈ T (including the root) we associate a hyperplane in d-dimensional projective space
K(v) ⊆ Pd.

• To each child v ∈ C(u) of a node u we associate a point in projective space that does not lie in K(u),
p(v) ∈ Pd \K(u) such that no two children of u are associated to the same point.

• To each child v ∈ C(u) of a node u an isomorphism f(v) : E(v) → H(v) from the exceptional divisor of
p(v), E(v) ⊆ X(u) to the hyperplane associated to v H(v) ⊆ X(v).

With this data we can form a scheme X(T, r,H, p, f) by gluing together the schemes {X(u)}u∈T along closed
subschemes as follows. For every parent/child pair u, v glue together the schemes X(u) and X(v) along E(v) ⊆
X(u) and H(u) ⊆ X(v) via the isomorphism f(v). Notice that this process is well defined without having to
check any cocycle conditions since none of the closed subschemes we glue together overlap.

Remark. Even though we have not formulated it this way it is somewhat more accurate to think of p and f as
functions from the set of edges in T to the respective data. That is, it would be better to write p(uv) and f(uv)
for the point and function corresponding to the child v of u. I will ignore this.

Definition 6.2. A rooted tree of d-dimensional projective spaces, or d-RTPS for short, (X,H0), is a scheme X
and a closed subscheme Pd−1 ↪→ X, which can be generated by a rooted (T, r) along with the data (H, p, f)
according to the process described above such that Pd−1 ↪→ X identifies Pd−1 with the root hyperplane H(r)
described above. We call (T, r) the structure tree of X and we call H0 the root hyperplane. We let Xv denote
the image of X(v) in X and we call this the branch of X associated to v. We let Hv denote the image of
H(v) ⊆ X(v) in X and we call this the hyperplane associated to v. If v is a child of u we will say that Xv is a
child branch of Xu.

Remark. Note that the singular locus of a d-RTPS is precisely the union of the (disjoint) associated hyperplanes
for all non-root nodes in the structure tree. This is obvious from construction.

The spaces we will define in the next section do not parameterize rooted trees of d-dimensional projective spaces,
but rather collections of n disjoint points on rooted tree of d-dimensional projective spaces for some n ≥ 1. This
motivates the following definition.

Definition 6.3. An n-pointed rooted tree of d-dimensional projective spaces, (Pd−1 ↪→ X, p1, . . . , pn), is a d-
RTPS, Pd−1 ↪→ X, with n disjoint marked closed points, (p1, . . . , pn), all of which lie outside the any of the
associated hyperplanes of X (including the root hyperplane). An n-pointed d-RTPS is said to be stable there
are at least two child branches or marked points on each branch.

Remark. To clarify, an n-pointed d-RTPS is stable if the set of all child branches and marked points in a given
branch contains at least two elements. In other words if a branch has one child branch and one marked point
it is stable.
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An n-pointed d-RTPS, (Pd−1 ↪→ X, p1, . . . , pn), also has an associated rooted tree structure defined as follows.
First let (T, r) be the rooted tree associated to Pd−1 ↪→ X. Then, for each point pi add a vertex i to T and add
the edge ui if pi is in the associated branch Xu.

Definition 6.4. The tree associated to an n-pointed d-RTPS is the tree defined according to the process
described above.

It is easy, and important, to see that an n-pointed d-RTPS is stable if and only if the only leaves of this tree
are the vertices added for the points p1, . . . , pn and each non-leaf vertex, including the root, has at least two
daughters.

Definition 6.5. A morphism between n-pointed d-RTPSs

(Pd−1 ↪→ X, p1, . . . , pn) → (Pd−1 ↪→ Y, q1, . . . , qn)

is a morphism f : X → Y such that f(pi) = qi and such that the following diagram commutes.

Pd−1 X

Y

f

Such a morphism is an isomorphism if f is an isomorphism.

It is easy to check that an n-pointed d-RTPS is stable if and only if its only automorphism is the identity
automorphism.

6.2 Definition of Td,n and its Functor of Points

In this section I will introduce the moduli spaces of stable n-pointed rooted trees of d-dimensional projective
spaces, Td,n. I will not cover the precise meaning of Td,n being a moduli space but for intuitions sake the space
Td,n should be thought of as "parameterizing" the stable n-pointed d-RTPSs up to isomorphism such that each
k-valued point in Td,n corresponds to a unique isomorphism class of stable n-pointed d-RTPSs. The moduli
space properties of Td,n will not be relevant for this article but the interested reader can see Chen, Gibney,
and Krashen [CGK06] for more details on this. An easier intuitive picture to keep in mind is to think of the
points in these spaces in the exact same way as we think of the points in the Kontsevich spaces in section 4
but replacing R with C and instead of identifying configurations that are identified by translation and positive
scaling we identify configurations that are identified by translation and C∗-scaling. This picture of course only
works when k = C and is not rigorous in any way but it is still the picture I often have in mind when trying to
visualize these spaces.

An important first step in the construction of Td,n is to define and describe the algebraic Fulton-MacPherson
compactifications of a separated scheme X which was introduced by Fulton and MacPherson in "A compact-
ification of configuration spaces" [FM94]. I will only give a brief description of the construction and refer to
other texts for proofs of important results. In order to better understand what is to come, I think it is help-
ful to first describe what the "goal" of defining Fulton-MacPherson compactifications is and how one should
intuitively think of these spaces. This is unsurprisingly very similar to the intuition behind the topological
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Fulton-MacPherson compactification. Suppose X is a separated scheme. Then we have that

Confn(X) ..= Xn \
⋃

1≤i<j≤n

∆i,j

is an open subscheme of Xn where ∆ij denotes the i, j-diagonal in Xn. The Fulton-MacPherson compactifica-
tion is a scheme X[n] with an open embedding Confn(X) ↪→ X[n] and a surjective morphism πn : X[n] ↠ Xn

such that the following diagram commutes.

Confn(X) X[n]

Xn

Intuitively one can, for k = C, think of the (reduced) closed subscheme X[n] \ Confn(X), which I will refer to
as the "boundary" of X[n], as parameterizing the ways or "directions" in which points in Confn(X), i.e. sets
of n disjoint points in Xn, can "approach" each other such that at least two of these points meet. This should
remind you of the topological Fulton-MacPherson compactification. When constructing X[n], one also defines a
set of effective Cartier divisors, one for each subset S ⊆ {1, 2, . . . , n} with at least two elements. We will denote
these divisors by X[n](S). These will all lie in the boundary of X[n] and their union is the entire boundary of
X[n]. Intuitively, you should think of X[n](S) as parameterizing the ways in which n disjoint points, p1, . . . , pn,
in X can approach each other such that all points corresponding to the indexes in S "meet", i.e. approach the
same point in X and furthermore if any other point pi with i /∈ S also approaches the same point in X then
the points corresponding to indexes in S approach each other "faster" than they approach pi.

One way to construct the Fulton-MacPherson configuration spaces of a separated scheme X is as follows.
For every subset S ⊆ [n] define the S-diagonal in Xn as the closed subscheme given by the relations ∆S =
{(x1, . . . , xn) ∈ Xn| xi = xj ∀i, j ∈ S}. Let

Bn = {1, . . . , n}, {1, . . . , n− 1}, . . . , {n, n− 3}, {n, n− 2}, {n, n− 1}

be the sequence described in section 4.

Definition 6.6. The Fulton-MacPherson configuration spaces for a separated scheme X, denoted X[n], are
defined as the iterated blow-ups

Bl∆̃(Bn(2n−(n+1)) . . .Bl∆̃(Bn(2)) Bl∆̃(Bn(1)) X
n

where, ∆̃(S) denotes the dominant transform of the diagonal ∆(S) in all previous blow-ups. The map πn : X[n] →
Xn is the composition of all blow-up maps. The divisor X[n](S) ⊆ X[n] mentioned above is the diagonal ∆̃(S)
in X[n].

Also define the scheme X[n, i] for 0 ≤ i ≤ 2n − (n+ 1) as the iterated blow up

Bl∆̃(Bn(i)) . . .Bl∆̃(Bn(2)) Bl∆̃(Bn(1)) X
n

and the map πn,i : X[n, i] → Xn as the composition of blow-up morphisms.

Remark. This is not the same sequence of blow-ups as the one which appeared in Fulton and MacPhersons
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original article [FM94]. However, for their sequence lemma 6.11 does not hold. See [Li09] for a proof of
equivalence between the two sequences of blow-ups.

Note that each of the blow-up maps, by definition, is an isomorphism when restricted to Confn(X) ⊆ Xn. This
gives an embedding Confn(X) ↪→ X[n] such that the following diagram commutes.

Confn(X) X[n]

Xn.

πn

To simplify notation I will let X[n](S1, . . . , Sr) denote the intersection
⋂r

i=1 X[n](Si). The following is a
summary of results by Fulton and MacPherson regarding important properties of X[n].

Proposition 6.7. The Fulton-MacPherson varieties have the following properties

• X[n] is smooth

• Any set of the divisors X[n](S) meet transversally (if they meet).

• The closed subscheme X[n](S1, . . . , Sr) is empty if and only if any two of the sets Si, Sj have the property
Si ∩ Sj ̸= and Si ̸⊆ Sj and Sj ̸⊆ Si.

Proof. See [FM94].

I will take these properties to be "obvious" for the remainder of the thesis and therefore not reference this
proposition in proofs where it is important that X[n] and its divisors are "nice" in the ways listed above.

Fulton and MacPherson also describe a functor of points for X[n] which will prove to be of great use for us. To
describe this we need a few definitions. Later in the thesis I will almost exclusively use the common notation
[n] = {1, 2, . . . , n}. However, in this part I will let N = {1, . . . , n} to avoid confusion with X[n]. For any subset
S ⊆ N let

pS : X |N | → X |S|

denote the projection morphism onto components with corresponding indexes in S. If S1 ⊆ S2 ⊆ N let

pS2,S1 : X |S2| → X |S1|

denote the projection morphism onto components corresponding to indexes in S2, i.e. the morphism which
makes the following diagram commute.

X |N | X |S2|

X |S2|

pS2

p
S

1
pS2,S1

Next, let IS denote the closed ideal sheaf for the small diagonal in X |S|. For S1 ⊆ S2, pS1,S2 induces a closed
embedding of the corresponding small diagonals and thus induces a morphism of pullback sheaves

p∗
S1

IS1 → p∗
S2

IS2 .

42



Notice that if X = Ad = Spec k[x1, . . . , xd], and consequently Xn ∼= k[{xk
i }i∈N,1≤k,≤d], then p∗

sIS is the ideal
generated by all elements of the form tkij = xk

i −xk
j where 1 ≤ k ≤ d and i, j ∈ S and for S1 ⊆ S2 the morphism

p∗
S1

IS1 → p∗
S2

IS2 is the inclusion of ideals given by mapping tkij 7→ tkij .

Lastly, for a map h : H → Xn let hS = pS ◦ h and for S1 ⊆ S2 note that the morphism p∗
S1

IS1 → p∗
S2

IS2 pulls
back to a morphism

h∗
S1

IS1 → h∗
S2

IS2 .

Definition 6.8. Given a morphism h : H → Xn a screen for h and S ⊆ N is a quotient map h∗
SIS → L where

L is some invertible sheaf. A R-collection of compatible screens for h is a screen ϕS : h∗
SIS → LS for some

collection of sets R such that every S ∈ P satisfies S ⊆ N , |S| ≥ 2 and for every S1 ⊆ S2 in the collection a
morphism LS1 → LS2 making the following diagram commute.

h∗
S1

IS1 LS1

h∗
S2

IS2 LS2

Such a collection of screens is called complete if it contains a screen for each S ⊆ N of size ≥ 2.

In what follows we let P (n), or just P when n is clear from context, be the set of sets S such that S ⊆ N ,
|S| ≥ 2. Additionally, let Pi ⊆ P be the subset with the additional condition that each S ∈ Pi appears before
or at position i in the sequence Bn.

Definition 6.9. For a scheme X, the contravariant functor χX [n, i], or just χ[n, i] when X is clear from context,
from the category of schemes to the category of sets is defined as the functor sending H to the set of pairs

((h : H → Xn), {ϕS : h∗
SIS → LS}S∈Pi

)

of morphisms (h : H → Xn) and Pi-collections of compatible screens {ϕS : h∗
SIS → LS}S∈Pi up to isomorphism

of the screen data. The subfunctor χX [n, i](S1, . . . , Sr) sends H to the pairs of morphisms and compatible
screens

((h : H → Xn), {ϕS : h∗
SIS → LS}S∈Pi)

such that the following holds

• for any Si ∈ {S1, . . . , Sr} and any j, k ∈ Si we have prj ◦ h = prk ◦ h where prm : Xn → X denotes the
mth projection morphism.

• for any Si ∈ {S1, . . . , Sr} and any T ∈ Pi where T ̸⊆ Si and |T ∩ Si| ∈ Pi the morphism LT ∩Sj
→ LT is

trivial.

Furthermore, define χX [n] ..= χX [n, |Bn|] and χX [n](S1, . . . , Sr) ..= χX [n, |Bn|](S1, . . . , Sr)

Remark. Note that for the definition of X[n] we can also just replace "Pi-collection" with "complete collection"
in the definition of X[n, i].

One key result of Fulton and MacPherson [FM94] is that these functors are representable and their representa-
tions are the Fulton-MacPherson spaces.

Theorem 6.10. The functor χ[n] is represented by the scheme X[n] and the subfunctors χ[n](S1, . . . , Sr) are
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represented by the closed subschemes X[n](S1, . . . , Sr). Similarly, χ[n, i] is represented by the scheme X[n, i]
and the subfunctors χ[n, i](S1, . . . , Sr) are represented by the closed subschemes
∆̃(S1) ∩ · · · ∩ ∆̃(Sr) ⊆ X[n, i]. Furthermore, the blow up map X[n, i + 1] → X[n, i] induces the natural
transformation of functors which sends

(
(h : H → Xn), {ϕS : h∗

SIS → LS}S∈Pi+1

)
∈ χ[X, i+ 1](H)

to
((h : H → Xn), {ϕS : h∗

SIS → LS}S∈Pi) ∈ χ[X, i](H)

where {ϕS : h∗
SIS → LS}S∈Pi is the restriction of the collection of compatible Pi+1-screens to only those screens

corresponding to sets in Pi.

Proof. See [FM94].

Remark. Fulton and MacPherson do not prove this statement exactly since they use a different order of blow-ups
than I use in this thesis. However, the same arguments as they use can be applied to this order of blowing up
too. For a more general discussion on why these two orders of blowing up are equivalent see [Li09].

Finally, we will need one more result regarding the construction of X[n]. This result will not be used until
section 7.2.

Lemma 6.11. For every T ∈ Pi, the dominant, strict, and total transforms of ∆̃(T ) are equal for the blow-up
map X[n, i+ 1] = Bl∆(B(i+1)) X[n, i] → X[n, i].

Proof. To avoid confusion I will let ∆̃(S) denote the (dominant transforms of) the diagonals in X[n, i] and
∆̃′(S) to denote the proper transform of this, i.e. the corresponding diagonal in X[n, i + 1]. The dominant
transform is always contained in the total transform. Thus all we need to prove is that ∆̃′(T ) contains the
inverse image of ∆̃(T ). Equivalently we can show that the natural transformation of functors in theorem 6.10
only sends elements in the image of the subfunctor χ[n, i + 1](T ) to elements in the image of χ[n, i](T ). Let(
(h : H → Xn), {ϕS : h∗

SIS → LS}S∈Pi+1

)
∈ χ[n, i+1](H) and suppose the natural transformation χ[n, i+1] →

χ[n, i] sends this element to an element in χ[n, i](T ). Then, for every j, k ∈ T we have prj ◦ h = prk ◦ h and for
any S ∈ Pi where S ̸⊆ T and |S ∩ T | ∈ Pi the morphism LT ∩Sj → LT is trivial. Finally, since the size of the
sets in Bn appear in decreasing order there are no sets T ∈ Pi with |T ∩Bn(i+ 1)| ∈ Pi+1, Bn(i+ 1) ̸⊆ T and so
these are the only conditions which need to be satisfied to show that

(
(h : H → X), {ϕS : h∗

SIS → LS}S∈Pi+1

)
∈

χ[X, i+ 1](T )(H).

With this result we have everything we need regarding the Fulton MacPherson compactification and we are thus
ready to define the Td,n varieties.

Definition 6.12. Let X be a variety and let τn denote the composition morphism

X[n](N) ↪→ X[n] πn−−→ Xn pri−−→ X.

Where pri is one of the projection morphisms. Then TX,x
d,n is defined as the fiber τ−1

n (x) ⊆ X[n](N) where x
is some k-valued point in X. For a collection of sets Si ⊊ N , 1 ≤ i ≤ r, we also define the closed subschemes
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TX,x
d,n (S1, . . . , Sr) ↪→ TX,x

d,n to be the fiber of x for the morphism

X[n](N,S1, . . . , Sr) ↪→ X[n](N) → [τn]X.

Equivalently TX,x
d,n (S1, . . . , Sr) ↪→ TX,x

d,n is the pullback of X[n](N,S1, . . . , Sr) ↪→ X[n](N). For both these
functors the functor applied to morphisms is defined in the obvious way by composing with h and taking the
pullback of the screens.

Remark. This definition is independent of which projection pri we choose to define τn. See [CGK06] for further
details.

Notice that proposition 6.7 implies that the closed subscheme TX,x
d,n (S1, . . . , Sr) is empty if any two of the sets

Si, Sj have the property Si ∩ Sj ̸= and Si ̸⊆ Sj and Sj ̸⊆ Si. This construction is essentially only interesting
when X is a smooth variety of dimension d. In this case we have the following proposition.

Proposition 6.13. For any smooth d-dimensional variety X and any point x ∈ X there is an isomorphism
TX,x

d,n
∼= TAd,0

d,n and furthermore there are isomorphisms TX,x
d,n (S1, . . . , Sr) ∼= TAd,0

d,n (S1, . . . , Sr) making the follow-
ing diagram commute.

TX,x
d,n (S1, . . . , Sr) TX,x

d,n

TAd,0
d,n (S1, . . . , Sr) TAd,0

d,n

Proof. See Chen, Gibney, Krashen [CGK06].

Because of this we can simply let Td,n denote the variety TX,x
d,n for any smooth, d-dimensional, variety X and

similarly Td,n(S1, . . . , Sr) denotes the corresponding closed subschemes.

Definition 6.14. The moduli space for stable n pointed rooted trees of d-dimensional projective spaces, denoted
Td,n, is the variety described above and the closed subschemes Td,n(S1, . . . , Sr) =

⋂
i Td,n(Si) are also as above

for Si ⊊ N, |S| ≥ 2. Additionally, let Td,n({l}) = Td,n(N) = Td,n for every l ∈ N .

Remark. The notation Td,n({l}) = Td,n(N) = Td,n is introduced to make the notation cleaner for some results
in later sections.

Chen, Gibney, and Krashen show that the spaces Td,n satisfy some important properties analogous to those of
X[n] listed in proposition 6.7.

Proposition 6.15. The moduli spaces of stable n pointed trees of d-dimensional projective spaces have the
following properties

• Td,n is smooth

• Any set of the divisors Td,n(S) meet transversally (if they meet).

• The closed subscheme Td,n(S1, . . . , Sr) is empty if and only if any two of the sets Si, Sj have the property
Si ∩ Sj ̸= and Si ̸⊆ Sj and Sj ̸⊆ Si.

• Td,2 ∼= Pd−1 for every d and the restriction of the line bundle OX[2](X[2]({1, 2})) to Td,2 is OPd−1(−1).

• T1,n
∼= M0,n+1, the moduli space of stable n+ 1 pointed rational curves of genus 0.
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Proof. See [CGK06].

Just like the properties of X[n] in proposition 6.7 I will take these properties to be "obvious" for the remainder
of the thesis and therefore I will usually not reference this proposition in proofs where it is important that Td,n

and its divisors Td,n(S) are "nice" in the ways listed above.

Now we are ready to describe a functor of points for Td,n. This functor is similar to the functor of points of
X[n] but it is in fact much simpler.

Definition 6.16. For a scheme X, a positive integer d and a set of positive integers S, the difference sheaf
FX,d

S is the free, rank (|S| − 1)d sheaf of modules,

FX,d
S =

 ⊕
1≤k≤d

⊕
i,j∈S

OXt
k
ij

 /
GS ,

where GS is the submodule of generated by all elements of the form tkil − tkij − tkjl . If X and/or d are clear from
context we omit these from the notation. For any S1 ⊆ S2 the canonical injective morphism

iS1S2 : FS1 → FS2 , t
k
ij 7→ tkij

is called the difference sheaf inclusion map corresponding to S1 ⊆ S2.

Remark. Notice that all elements of the form tkii and tkij + tkji lie in GS .

For a morphism X → Y the difference sheaves FY,d
S pull back to FX,d

S and the difference sheaf inclusions
FY,d

S1
→ FY,d

S2
pull back to FX,d

S1
→ FX,d

S2
.

Definition 6.17. A simple d-screen for a set S on a variety H is a quotient map of sheaves Fd
S ↠ L where s

is some positive integer and L is an invertible sheaf. A collection of compatible simple d-screens is a collection
of simple screens

ϕS : Fd
S → LS ,

for some collection of sets S and, for every inclusion of sets S1 ⊆ S2 a morphism of invertible sheaves LS1 → LS2

such that the following diagram commutes.

Fd
S1

LS1

Fd
S2

LS2

A collection of simple d-screens is said to be complete if the collection contains a screen for every S ⊆ N with
|S| ≥ 2, i.e. for every S ∈ P .

To simplify the notation, a "collection of simple screens" will always be assumed to refer to a complete collection
of simple screens unless I specify otherwise.

Definition 6.18. The contravariant functor τd,n from the category of schemes to the category of sets is defined
as the functor sending H to the set

{ϕS : FH,d
S → LS}S∈P
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of complete collections of simple compatible d-screens up to isomorphism of the screen data. The subfunctor
τd,n(S1, . . . , Sr) sends H to the set of complete collections of simple compatible d-screens,

{ϕS : FH,d
S → LS}S∈P ,

such that for any Si ∈ {S1, . . . , Sr} and any T ̸⊆ Si with |T ∩ Si| ≥ 2 the morphism LT ∩Si
→ LT is trivial.

These functors send a morphisms f to the map sending a complete collection of simple d-screens to its pullback
via f .

Proposition 6.19. The functor τd,n is represented by Td,n and similarly the subfunctor τd,n(S1, . . . , Sr) is
represented by Td,n(S1, . . . , Sr).

Proof. By proposition 6.13, Td,n is the fiber Ad[n](N) ×Ad o where O denotes the origin point in (Ad)n. Fur-
thermore, Ad[n](N) represents the functor χAd [n](N). Therefore, the fiber product Ad[n](N) ×Ad O represents
the functor

χ[n](N) ×hom(·,Ad) hom(·,Spec k).

By the definition of χ[n](N) this functor sends a scheme H to the set of pairs

(
(h : H → (Ad)n), {ϕS : h∗

SIS → LS}S∈P

)
of morphisms (h : H → X) and collections of compatible screens {ϕS : h∗

SIS → LS}S∈P such that h◦pri = h◦prj

for all indexes i, j and such that h ◦ pri factors via the origin in Ad. This is equivalent to saying that h factors
via the origin in (Ad)n, i.e. there is a map h̃ : H → Spec k making the following diagram commute.

H Spec k

(Ad)n

h̃

h
O

Since Spec k is the base scheme in the category there is only one such morphism h̃ of k-schemes. Therefore
this functor sends H to the set of collections of compatible screens {ϕS : g∗

SIS → LS}S∈P where gS denotes the
composition ps ◦O ◦ h̃. Now, the sheaf p∗

SIS is the ideal sheaf generated by all elements of the form xk
i − xk

j for
i, j ∈ S and 1 ≤ k ≤ n where we have used the notation

(Ad)n = Spec k[xk
i ]i∈N,1≤k≤d.

It is easy to see that the pullback of this ideal to Spec k via the origin morphism is isomorphic to the sheaf
FSpec k,d

S on Spec k via an isomorphism which sends the pullback of the section xk
i −xk

j to tkij . Furthermore, for
S1 ⊆ S2 the pullback the map p∗

S1
IS1 → p∗

S2
IS2 is the map FS1 → FS2 . Now, the sheaves FSpec k,d

S pull back to
the sheaves FH,d

S and similarly the compatibility morphisms pull back as well. Therefore the set of collections of
compatible screens {ϕS : h∗

SIS → LS}S∈P is just the set of complete collections of compatible simple d-screens
over H. Furthermore, it is clear that this functor applied to a morphism of schemes f sends each complete
collection of compatible simple d-screens to its pullback via f since the functor χAd [n](N) sends a map and a
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collection of compatible screens to their pullback via f . Thus Td,n represents τd,n. Since

Td,n(S1, . . . , Sr) = Ad[n](N,S1, . . . , Sr) ×Ad O,

by proposition 6.13 this scheme represents the subfunctor of τd,n which sends H to the set of collections of
compatible screens {ϕS : g∗

SIS → LS}S∈P with the property that, for any Sj and any T ⊆ N with T ̸⊆ Sj

and |T ∩ Sj | ≥ 2 we have that LS1 → LS2 is the zero morphism. Since we have already seen that the set of
compatible screens {ϕS : g∗

SIS → LS}T ⊆N is just the set of collections of compatible simple d-screens on H this
is precisely the definition of the functor τd,n(S1, . . . , Sr). This completes the proof.

This functor of points for of Td,n will prove to be extremely useful in proving a lot of the important results
throughout the remainder of the thesis.

6.3 The Geometric Kontsevich Operad

In this section I define an operad with objects Td,n for n ∈ N and fixed dimension d. In dimension d = 1 Chen,
Gibney, and Krashen show that there are isomorphisms Td,n

∼= M0,n+1 [CGK06]. In this case the operad I am
about to describe is canonically isomorphic to to the "Deligne-Mumford"-operad on the moduli spaces of stable
n + 1-pointed curves of genus 0, M0,n+1 which was defined by Ginzburg and Kapranov in section 1.4 of their
article "Kozul duality for operads" [GK94]. In this section, and throughout the remainder of the thesis, I use
the notation

[n] = {1, 2, . . . , n}

for every positive integer n.

In the cartesian monoidal category of k-schemes the unit object is Spec k. Furthermore, it is clear, both from
the explicit construction and the functor of points, that Td,1 ∼= Spec k. Hence, the unit morphism of the operad

η : 1 → Td,1

is just the identity morphism Spec k → Spec k. To define the composition morphisms we will need to state and
prove proposition 6.21 which is a slight generalization of Theorem 3.3.1 (4) in [CGK06]. In the proof of this
proposition as well as several other results later the notation is greatly simplified by introducing the following
functions. For a positive integer n and a collection of n positive integers m = (m1, . . . ,mn) define the functions
of integers

pn,m : a 7→



1 0 < a ≤ m1

2 m1 < a ≤ m2
...

n
∑

i<n mi < a ≤
∑

i≤n mi

and, for 1 ≤ r ≤ n

qn,m
r : a 7→ a−

∑
i<r

mi.

These same functions also appeared in section 4.
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In addition to this, we also need a set of functions of difference sheaves for some scheme X,

αn,m
V : Fd

V → Fd
pn,m(V ), t

k
ij 7→ tkpn,m(i)pn,m(j)

and, for 1 ≤ r ≤ n

βn,m
V,r : Fd

V → Fd
qn,m

r (V ), t
k
ij 7→ tkqn,m

r (i)qn,m
r (j).

I will usually omit the index V here to simplify the notation since it is almost always clear from context except
for in the discussion below. These functions are of course not well defined for every set V so the next step is
to specify for which sets V they are well defined, or perhaps more accurately when they are well defined and
interesting. In what follows we let

M ′
i = {1 +

∑
j<i

mj , 2 +
∑
j<i

mj . . . ,mi +
∑
j<i

mj} = (qn,m
i )−1([mi]).

Notice that pn,m is a surjective function [m] → [n] and that qn,m
i is bijective M ′

i → [mi]. Now, αn,m
V is defined

for V ⊆ [m] and V ̸⊆ M ′
r for any r ∈ [m] and βn,m

V,r is defined for V ⊆ M ′
r, |V | ≥ 2.

Lemma 6.20. On the domains specified above, the maps αn,m and βn,m commute with the difference sheaf
inclusion maps. That is, if V1 ⊆ V2 ⊆ M then

ipn,m(V1)pn,m(V2) ◦ αn,m
V1

= αn,m
V2

◦ iV1V2

and
iqn,m

r (V1)qn,m
r (V2) ◦ βn,m

V1,r = βn,m
V2,r ◦ iV1V2

provided that αn,m or βn,m
r are well defined for both V1 and V2.

Proof. Using direct computation it is trivial to verify that both of these maps send tkij 7→ tkpn,m(i)pn,m(j) or
tk
qn,m

r (i)qn,m
r (j) respectively. Thus both equalities of maps hold.

Proposition 6.21. For any collection of positive integers n,m1, . . . ,mn there is an isomorphism

Td,n × Td,m1 ,× · · · × Td,mn
∼= Td,m(M ′

1, . . . ,M
′
n)

where m =
∑

r mr and
M ′

r = {1 +
∑
i<r

mi, . . . ,mr +
∑
i<r

mi}.

Proof. We will prove that the functors represented by the left hand side and the right hand side are naturally
isomorphic. We proceed as follows. Let

CSS = {ϕT }T ∈P (n) × {ψ1
S1}S1∈P (m1) × · · · × {ψn

Sn}Sn∈P (mn) ∈ (τd,n × τd,m1 × · · · × τd,mn
) (H)

for some scheme H. We denote the image of ϕT by L0
T and the image of ψr

Sr
by Lr

Sr
. We define a natural

transformation
f : τd,n × τd,m1 × · · · × τd,mn → τd,m(M ′

1, . . . ,M
′
n)
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by sending CSS to the m-collection of simple d-screens {ρV : Fd
V → LV }V ∈P (m) defined by

ρV =

ψr
qn,m

r (V ) ◦ βn,m
r V ⊆ M ′

r some r

ϕpn,m(V ) ◦ αn,m else
.

Note that implicit in this is that we have defined the line bundles LV as

LV =

Lr
qn,m

r (V ) V ⊆ M ′
r some r

L0
pn,m(V ) else

.

Here we define the maps LV1 → LV2 , for V1 ⊆ V2, in the simple screen structure as the maps
Lr

qn,m
r (V1) → Lr

qn,m
r (V2) V2 ⊆ M ′

r some r

L0
pn,m(V1) → L0

pn,m(V2) V1 ̸⊆ M ′
r any r

0 else

.

By lemma 6.20 it is clear that {ρV } with the maps LV1 → LV2 is a compatible complete collection simple
d-screen. Furthermore, we have defined LV1 → LV2 to be the zero morphism if V1 ⊆ M ′

r and V2 ̸⊆ M ′
r. This

implies that {ρV }V ⊆[m] ∈ τd,m(M ′
1, . . . ,M

′
n)(H). This map

f : τd,n × τd,m1 × · · · × τd,mn → τd,m(M ′
1, . . . ,M

′
n)

is clearly natural and so we have defined a natural transformation.

The next step is find an inverse g of f . Let

{ρV : Fd
V → LV }V ∈P (m) ∈ τd,m(M ′

1, . . . ,M
′
n)(H).

Then we define

g({ρV }V ∈P (m)) = {ϕT }T ∈P (n) × {ψ1
S1}S1∈P (m1) × · · · × {ψn

Sn}Sn∈P (mn) ∈ (τd,n × τd,m1 × · · · × τd,mn
) (H)

in the following way. In what follows we again denote the image of ϕT by L0
T and the image of ψr

Sr
by Lr

Sr
.

First define
ϕr

Sr
= ρ(qn,m

r )−1(Sr) ◦ (βn,m
r )−1 : FSr

→ Lr
Sr

where Lr
Sr

= Lρ(q
n,m
r )−1(Sr)

and where the maps Lr
Sr,1

→ Lr
Sr,2

are just the maps
Lr

(qn,m
r )−1(Sr,1) → Lr

(qn,m
r )−1(Sr,2). This is clearly well defined and compatible since qn,m

r is bijective and βn,m
r is

an isomorphism. Defining ϕT is somewhat trickier. Let L0
T = L(pn,m)−1(T ) and let the morphisms L0

T1
→ L0

T2

be the morphisms L(pn,m)−1(T1) → L(pn,m)−1(T2). The map

αn,m : FV → Fpn,m(V )

is a quotient map with kernel generated by all elements of the form tkij , i, j ∈ M ′
r, some r. Furthermore, since

{ρV }V ∈P (m) ∈ τd,m(M ′
1, . . . ,M

′
n)(H) we have that for any T ⊆ [n], the morphism ρ(pn,m)−1(T ) sends any element

of the form tkij , i, j ∈ M ′
r to 0. By the universal property of the quotient there is a unique morphism, which we
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define ϕT to be, making the following diagram commute.

F(pn,m)−1(T ) FT

L0
T = L(pn,m)−1(T )

ρ(pn,m)−1(T )

αn,m

ϕT

Using lemma 6.20 again it is clear that the maps we have defined here are again compatible. Verifying that g
is the inverse of f is a simple bookkeeping exercise which is left as an exercise to the reader. Since g = f−1 it
is natural and so we have found natural isomorphisms between the functors.

Remark. Since we defined Td,n({i}) = Td,n([n]) = Td,n this statement is true even in the case n = 1 or mr = 1.

There is a natural generalization of this statement which will be important in the next section. I will not state
this in its full generality because the amount of indexes required to keep track of this is simply not worth the
effort.

Corollary 6.22. For any S ⊊ [n], |S| ≥ 2, the isomorphism of the proposition restricts to an isomorphism of
closed subschemes

Td,n(S) × Td,m1 ,× · · · × Td,mn
∼= Td,m(M ′

1, . . . ,M
′
n, S

′),

where S′ = (pn,m)−1(S) Similarly, for any Sr ⊊ [mr], |Sr| ≥ 2, the isomorphism of the proposition restricts to
an isomorphism of closed subschemes

Td,n × Td,m1 ,× · · · × Td,mr (S) × · · · × Td,mn
∼= Td,m(M ′

1, . . . ,M
′
n, S

′
r),

where S′
r = (qn,m

r )−1(Sr).

Proof. Let
f : τd,n × τd,m1 × · · · × τd,mn

→ τd,m(M ′
1, . . . ,M

′
n)

be as in the proof of proposition 6.21 and let

{ϕT }T ∈P (n) × {ψ1
S1}S1∈P (m1) × · · · × {ψn

Sn}Sn∈P (mn) ∈ (τd,n × τd,m1 × · · · × τd,mn
) (H)

and
f

(
{ϕT }T ∈P (n) × {ψ1

S1}S1∈P (m1) × · · · × {ψn
Sn}Sn∈P (mn)

)
= {ρV }V ∈P (m).

Also, let the invertible sheaves LV ,L0
T ,Lr

Sr
be as in the proof of 6.21.

For the first part we want to show that {ϕT }T ∈P (n) ∈ τd,n(S) if and only if {ρV }V ∈P (m) ∈ τd,m((pn,m)−1(S)).
First suppose {ϕT }T ∈P (n ∈ τd,n(S) and let V ⊆ [m], such that V ̸⊆ S′ and |V ∩ S′| ≥ 2. Note that this implies
that V ̸⊆ M ′

r for any r. If V ∩ S′ ⊆ M ′
r then LV ∩S′ → LV is the 0 morphism by definition of these maps. If

this is not the case then the morphism LV ∩S′ → LV is just the map L0
pn,m(V )∩S → L0

pn,m(V ).

Since S′ is the inverse image of S and V is not a subset of S′ we have that pn,m(V ) ̸⊆ S. Thus L0
pn,m(V )∩S →

L0
pn,m(V ) is the 0 map and therefore {ρV }V ⊆[m] ∈ τd,m(S′).
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For the converse assume that {ρV }V ⊆[m] ∈ τd,m(pn,m)−1(S)). Then let T ⊆ [n], such that T ̸⊆ S and |T∩S| ≥ 2.
Then the map L0

S∩T → L0
T is the map

LS′∩(pn,m)−1(T ) → L(pn,m)−1(T )

which is the 0 morphism since {ρV }V ∈P (m) ∈ τd,m(S′). This implies that {ϕT }T ∈P (n) ∈ τd,n(S) and so the
proof of the first statement is done. The proof of the second part is analogous.

Proposition 6.21 allows us to define the operad composition maps

γn,m : Td,n × Td,m1 ,× · · · × Td,mn → Td,m

by composing the isomporphism Td,n × Td,m1 ,× · · · × Td,mn
∼= Td,m(M ′

1, . . . ,M
′
n) with the inclusion map

Td,m(M ′
1, . . . ,M

′
n) ↪→ Td,m.

Finally, we need to define a group action by Σn on Td,n. To do this we first define permutation maps of simple
screens. For each set S ∈ P (n) a permutation σ ∈ Σn induces a map

σX,d
S : FX,d

S → FX,d
σ(S),

or just σS when X, d are clear from context, by sending tkij 7→ tkσ(i)σ(j). These maps clearly commute with the
inclusions of difference sheaves, i.e.

iσ(S1),σ(S2) ◦ σS1 = σS2 ◦ iS1,S2 .

It is also clear that for any morphism f : X → Y the pullback of σY
S is just σX

S . Lastly, it is clear from the
definition that for any µ, σ ∈ Σn,

µσ(S) ◦ σS = (µσ)S .

For σ ∈ Σn the isomorphism σ : Td,n → Td,n is now defined as the morphism induced by the natural transfor-
mation of functors σ : τd,n → τd,n which sends

{ϕS : FS ↠ LS}S∈P (n) ∈ τd,n(H) 7→ {ψS : FS ↠ L′
S}S∈P (n) ∈ τd,n(H),

where L′
S = Lσ−1(S), ψS = ϕσ−1(S) ◦ σ−1

S , and L′
S1

→ L′
S2

is the map Lσ−1(S1) → Lσ−1(S2).

Since the inclusions of difference sheaves commute with σ−1
S it is clear that {ψS}S∈P (n) is a complete collection

of simple screens and since the permutation maps σY
S pull back to the maps σX

S for any map X → Y the map
σ : τd,n → τd,n is natural. Finally, the relationship

σ−1
µ−1(S) ◦ µ−1

S = (µσ)S

implies that
µ ◦ σ : τd,n → τd,n = µσ : τd,n → τd,n.

Thus this defines an action by isomorphisms. The following property will be important in the next section.

Proposition 6.23. For every σ ∈ Σn and every S ⊊ [n], |S| ≥ 2, the isomorphism σ : Td,n → Td,n restricts to
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an isomorphism of closed subschemes
σn : Td,n(S) → Td,n(σ(S)).

Proof. We have that σ maps {ϕS : FS ↠ LS}S∈P (n) ∈ τd,n(H) 7→ {ψS : FS ↠ L′
S}S∈P (n) ∈ τd,n(H) where

L′
S = Lσ−1(S), ψS = ϕσ−1(S) ◦σ−1

S , and L′
S1

→ L′
S2

is the map Lσ−1(S1) → Lσ−1(S2). If {ϕS : FS ↠ LS}S∈P (n) ∈
τd,n(S)(H) then for every T ⊆ [n] T ̸⊆ S, |T ∩ S| ≥ 2 we have that LT ∩S → LT . This implies that whenever
T ′ ⊆ [n], T ′ ̸⊆ σ(S), |T ′ ∩ σ(S)| ≥ 2 the morphism

Lσ−1(T ′)∩S = L′
T ′∩σ(S) → L′

T ′ = Lσ−1(T ′)

is trivial which implies that
{ψS : FS ↠ L′

S}S∈P (n) ∈ τd,n(σ(S))(H).

The converse is similar.

Proposition/Definition 6.24. The schemes Td,n with n ∈ N form an operad, which I call the "dimension d

geometric Kontsevich operad", with unit morphism η : Spec k → Td,1, composition maps γn,m, and action by
Σn as described above.

Proof. Using the natural transformations of functors of points defining these maps verifying the operad axioms
is a very tedious but straight forward bookkeeping exercise. I will omit the details to avoid spending several
pages doing trivial calculations.

7 Log Structures on Td,n

In this chapter I will define the log schemes Td,n whose underlying schemes are Td,n. After defining these
log varieties the composition and symmetry morphisms of the geometric Kontsevich operad from the previous
section will be extended to morphisms of log varieties which still satisfy the associativity and equivariance
operad axioms. Unfortunately, the unit morphism will not extend to a map of log schemes meaning that the
structure I define is in fact an operad without unit. Although this operad without unit will be well defined
over any base field k the main motivation behind the construction is that the S1-framed Kontsevich Operad in
dimension 2d, K2d ⋊ S1, without unit, which was described in section 4, is isomorphic to the Kato-Nakayama
analytification of this operad without unit over C.

7.1 The Log Geometric Kontsevich Operad

In this section I will extend the operad structure of the previous section to an operad of log-schemes. These
operads of log schemes are the main structures of interest of this paper. This section will feature many expressions
with a large number of indexes in various different ways. To simplify the notation somewhat I will, in this section
specifically, let d be some fixed positive integer and therefore omit this from the notation when I can, writing
Tn for Td,n for example. While using a slightly different notation for one section only may be a bit confusing I
hope that this still positively affects the readability. In what follows we will make frequent use of the following
result. This result is almost definitively standard and I would have preferred to reference some textbook for the
proof but I could not find it in either of my two favourite books on Algebraic Geometry and therefore I have
included a proof in the appendix.
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Proposition 7.1. Let D ↪→ Y be an effective Cartier divisor and let s : OY → OY (D) be the corresponding line
bundle with section. Furthermore, let X be an irreducible scheme and let f : X → Y be a morphism of schemes
such that there is an isomorphism of X-schemes

D ×Y X ∼= D′
1 ∪ · · · ∪D′

n

where D′
i are all (disjoint) effective Cartier divisors with corresponding sections s′

i : OX → OX(D′
i). Then there

is a unique isomorphism of OX-modules,

ϕ : f∗OY (D) →
n⊗

i=1
OX(D′

i)

such that ϕ(f∗s) =
⊗

i s
′
i.

Proof. See appendix A.

Using this we will define a DF log structure on the schemes Tn and extend the operad morphisms to morphisms
of log-schemes. Recall that this just means we want to define a bunch of invertible sheaves with sections on
each Tn. For every n we will add one line bundle with section for every non empty subset S ⊆ [n] which will be
denoted sn

S : OTS
→ OTn

(S) or just sS : O → O(S) when n is clear from context. Most of these line bundles we
have essentially already encountered since for |S| ≥ 2 and S ̸= [n] we define

OTn
(S) ..= OTn

(Tn(S))

with the canonical sections sn
S (or just sS) which cut out the effective Cartier divisors Tn(S).

The remaining line bundles are trickier to define since they do not correspond to any divisors of Td,n. However,
before we get there I think it is natural to first discuss some properties of the line bundles we have already
defined. In doing this we will see that with these line bundles alone we cannot extend the operad structure of
the previous section to an operad of log schemes. This then motivates why we would want to to introduce some
extra line bundles with sections that do not correspond to any divisors of Tn.

Lemma 7.2. Let n and m = (m1,m2, . . . ,mn) be positive integers and let

π0 : Tn × Tm1 × · · · × Tmn
→ Tn

and
πr : Tn × Tm1 × · · · × Tmn

→ Tmr

denote the corresponding projection maps. Let M ′
r = {

∑
i<r mi + 1,

∑
i<r mi + 2, . . . ,

∑
i≤r mi} and let S ⊆ [m]

where m =
∑n

i=1 mi.

• If S ⊊M ′
r for some r then there is a unique isomorphism

γ∗
n,mOTm

(S) ∼= π∗
r OTmr

((qn,m
r )−1(S))

which sends (γn,m)∗sS 7→ π∗
rs(qn,m

r )−1(S).
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• If S =
⋃

i∈I M
′
ri

for some set I ⊆ [n] of at least two elements then there is a unique isomorphism

(γn,m)∗OTm(S) ∼= π∗
0OTn(I) = π∗

0OTn((pn,m)−1(S))

which sends (γn,m)∗sS 7→ π∗
0sI .

• If S ̸⊆ Mr for any r and S is not of the form S =
⋃

i∈I M
′
ri

, then there is a unique isomorphism

(γn,m)∗OTm
(S) ∼= O,

where O is the structure sheaf of Tn × Tm1 × · · · × Tmn which sends (γn,m)∗sS 7→ 1.

Proof. The last case, S ̸⊆ Mr for any r and S is not of the form S =
⋃

i∈I M
′
ri

, is obvious since the image of γn,m

is Tm(M ′
1, . . . ,M

′
n) which is disjoint from the closed subscheme Tm(S) which is cut out by sS : OTm → OTm(S).

On the complement of Tm(S) OTm(S) is trivial and the section is a unit and thus the same result for the pullback
follows.

For S ⊊ M ′
r note that corollary 6.22 implies that the subscheme cut out by π∗

rs(qn,m
r )−1(S) is the pullback of

Tm(S), the subscheme cut out by sS and thus, by proposition 7.1 there is a unique isomorphism

γ∗
n,mOTm

(S) ∼= π∗
r OTmr

((qn,m
r )−1(S))

which sends (γn,m)∗sS 7→ π∗
rs(qn,m

r )−1(S).

Similarly, if S =
⋃

i∈I M
′
ri

for some set I ⊆ [n] of at least two elements then corollary 6.22 and proposition 7.1
again imply there is a unique isomorphism

(γn,m)∗OTm
(S) ∼= π∗

0OTn
(I) = π∗

0OTn
((pn,m)−1(S))

which sends (γn,m)∗sS 7→ π∗
0sI by the exact same argument.

This result is not sufficient to define a morphism of log schemes since we are yet to describe the pullbacks of the
line bundles OTm

(M ′
r) with sections. In fact, with the data we have so far it is impossible to find an expression

for these pullbacks with sections terms of tensor products of the line bundles we have defined so far. This is
why we need to introduce more line bundles to make this operad structure well defined.

To define the last line bundles with sections in our log structure we first need to introduce a few morphisms of
varieties. We first define the "add one" morphisms an

l : Tn → Tn+1 for each 1 ≤ l ≤ n+ 1. It is easier to define
an

l from its induced natural transformation of functors τn → τn+1. These functors send complete collections of
simple screens

τn(H) ∋ {ϕS : FS → LS}S∈P (n) → {ψT : FT → L′
T }T ∈P (n+1) ∈ τn+1(H).

When 1 ≤ l ≤ n we define

L′
T

..=

OH if T = {l, n+ 1}

Ls(T ) else
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where we define

sl(x) =

x x ̸= n+ 1

l x = n+ 1
.

The quotients ψT are defined by
ψ{l,n+1} : tkl,n+1 7→ 1

and for T ̸= {l, n+ 1} we define
fT,l : FT → Fs(T ), t

k
ij 7→ tks(i)s(j)

and
ψT = ϕs(T ) ◦ fT,l.

When l = n+ 1 we instead define

L′
T

..=

OH if n+ 1 ∈ T

LT else

The quotients ψT are defined by
ψT = ϕT

if n+ 1 /∈ T and for n+ 1 ∈ T we define

ψT : tkij 7→

1 i ̸= n+ 1, j = n+ 1

0 i ̸= n+ 1, j ̸= n+ 1
.

Definition 7.3. For each i ∈ S, the morphism an
l described above is called the l:th add one morphism an

l : Tn →
Tn+1.

For 1 ≤ l ≤ n the add one morphisms should be intuitively thought of as sending each n-pointed d-RTPS to
itself but with the i:th point replaced by a specific new branch with the i:th and the n+ 1:th point on it. For
l = n+ 1 the add one morphism should be thought of as attaching the entire tree to a specific new base branch
with only one other marked point on it.

There is another way to describe an
l which, especially for d = 1, helps to provide some insight in why these

morphisms are useful for us to define. First let Spec k → T2 ∼= Pd−1 be the point with homogeneous coordinates
[1 : 1 : · · · : 1]. Then, for 1 ≤ l ≤ n, an

l is just the composition

Tn

∼=−→ Tn × Spec k → Tn × T2
◦l−→ Tn+1

σ−→ Tn+1

where σ ∈ Σn+1 is the cycle σ = (n+ 1, n, . . . , l + 2, l + 1). Similarly, an
n+1 is the composition

Tn

∼=−→ Spec k× Tn → T2 × Tn
◦1−→ Tn+1.

These definitions are a bit unsatisfactory since they are not canonical in the sense that we made a choice of
point Spec k → T2. For dimension d = 1 things are a lot nicer since T1,2 ∼= Spec k which means that there was
only one possible choice of such a point and thus the add one morphisms are canonical in this case. For n = 2
these sheaves can be computed explicitly. We have
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Lemma 7.4. There are isomorphisms of sheaves

OT2({1}) ∼= OT2({2}) ∼= OPd−1(1)

and
OT2({1, 2}) ∼= OPd−1(−1).

Proof. This proof relies heavily on explicit computations. I will omit the actual calculations from the text
here and just state the results. We have that Td,3 ∼= BlI3 BlI2 BlI1 P2d−1 where, if we write P2d−1 =
Proj k[s1, . . . , sd, t1, . . . , td], the ideal sheaves are projectivisations of the ideals I1 = (s1, . . . , sd), I2 = (t1, . . . , td),
and I3 = (s1 − t1, . . . , sd − td). The closed subschemes Y1, Y2, Y3 corresponding to the ideals I1, I2, I3 are disjoint
and thus the order of the blow ups do not matter and the exceptional divisor for each of the blow ups are
unaffected by the other two blow ups. Each of the closed subschemes Y1, Y2, Y3 is isomorphic to Pd−1 and the
corresponding exceptional divisors Ỹ1, Ỹ2, Ỹ3 are all isomorphic to Pd−1 × Pd−1 where the projective morphism
Ỹi → Yi is given by projection onto the first component Pd−1 × Pd−1 → Pd−1. The normal bundle for Ỹi is
the OPd−1×Pd−1(1,−1) bundle. The permutation (3, 2) sends Ỹ2 → Ỹ3 and the restriction of the permutation
morphism to Ỹ2 is given by the identity Pd−1 × Pd−1 → Pd−1 × Pd−1.

The isomorphism
Pd−1 × Pd−1 ∼= T2 × T2

◦1−→ T3({1, 2}) ∼= Pd−1 × Pd−1

is also just the identity map on Pd−1 × Pd−1. Thus,

◦∗
1OT3({1, 2}) ∼= ◦∗

2OT3({2, 3}) ∼= ◦∗
1(2, 3)∗OT3({1, 3}) ∼= OPd−1×Pd−1(1,−1).

By definition of the add one morphisms this means that, OT2({1}) = a∗
1OT3({1, 3}) is the pullback of

OPd−1×Pd−1(1,−1) via the closed embedding i : Pd−1 ↪→ Pd−1 × Pd−1 given by

Pd−1 ∼= Pd−1 × Spec k ↪→ Pd−1 × Pd−1.

Clearly this is i∗OPd−1×Pd−1(1,−1) ∼= OPd−1(1). By symmetry the same is true for OT2({2}).

Finally, again by definition of the add one morphisms this means that a∗
3OT3({1, 2}) is the pullback of

OPd−1×Pd−1(1,−1) via the closed embedding j : Pd−1 ↪→ Pd−1 × Pd−1 given by

Pd−1 ∼= Spec k× Pd−1 ↪→ Pd−1 × Pd−1.

Clearly this is j∗OPd−1×Pd−1(1,−1) ∼= OPd−1(−1).

Remark. In the d = 1 case one can show that OT1,n
({i}) ∼= OT1,n

([n]). Without going into too much detail
this is because T1,n

∼= M0,n+1 which is acted on by Σn+1 and using these permutations we can show that such
isomorphisms must exist. With this in mind it might seem as if a mistake has been made here since O(−1)
and O(1) are seemingly not the same line bundle. However, no mistake has been made since for d = 1 we have
T1,2 ∼= Spec k and thus all line bundles on T1,2 are isomorphic.

There are also "remove one" morphisms rn
l : Tn → Tn−1. These are defined by the functions corresponding to
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natural transformations

τn(H) ∋ {ϕS : FS → LS}S∈P (n) 7→ {ψT : FT → L′
T }T ∈P (n−1) ∈ τn−1(H),

where L′
T

..= Ldl(T ) and ψT : tkij 7→ ϕdl(T )(tkdl(i)dl(j)), where

dl : x 7→

x x < l

x+ 1 x ≥ l
.

Notice that by this definition we have rn
l = rn

n ◦ σ where σ is the morphism corresponding to the permutation
(n, n− 1, . . . , i+ 1, i).

Definition 7.5. The morphism rn
l described above is called the l:th remove one morphism rn

l : Tn → Tn−1.

Remark. Notice that unlike the add one morphisms the remove one morphisms are canonical for every dimension.

The remove one morphisms also has an intuitive interpretations. For 1 ≤ l ≤ n the remove one morphisms
should be intuitively thought of as sending each n-pointed d-RTPS to itself but with the l:th point removed if
the resulting tree is still stable. If the resulting tree is not stable there are two cases to consider. If the tree
has one other marked point on the branch of the l:th point then remove this branch and add the other point
to the intersection point of the removed branch and the parent branch. If the branch of the l:th point has a
daughter branch then the branch of the l:th point is removed and the associated hyperplane of daughter branch
is "attached" to the exceptional divisor which previously attached the now removed branch. Both of these cases
can be thought of as "collapsing" the branch of the l:th point, especially in the d = 1 case.

The "add one" and "remove one" morphisms are related to each other in the obvious way

Lemma 7.6. The composition
rn+1

n+1 ◦ an
l : Tn → Tn

is the identity isomorphism.

Proof. This follows immediately from the definition of the natural transformations of functors since dn+1(x) =
al(x) = x for every x ∈ [n].

With this we are ready to define the remaining line bundles LS . For n > 1 we define

OTn({l}) ..= (an
l )∗OTn+1(Tn+1({l, n+ 1}))

and
OTn

([n]) ..= (an
n+1)∗OTn+1(Tn+1([n])).

The sections s{l} and s[n] are the pullbacks of the corresponding canonical sections via the morphisms above.
It is easy to see that these pullbacks must be identically 0 so s{l} = 0 and s[n] = 0. For n = 1 we define

OT1({1}) = OT1

with section s{1} = 0.
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There is also one non-canonical choice we will eventually have to make in the construction of the operad of log
schemes. I include it here to get it over with. For the remainder of this thesis we choose two isomorphisms

e1 : (a1
1)∗OT2({1, 2}) → OT1({1}),

and
e2 : (a1

2)∗OT2({1, 2}) → OT1({1}).

Such isomorphisms exist since all line bundles are trivial on T1 ∼= Spec k.

Now that all of the relevant line bundles with sections are defined we can give the following definition.

Definition 7.7. Tn denotes the log scheme

Tn
..=

(
Tn, {sS : OTn → OTn(S)}S⊆[n]

)
.

Because it is easier, and also needed in some of the proofs to come, I will describe the symmetry group action
on these log schemes before I finish defining the log scheme composition morphisms.

Proposition 7.8. For every S ⊆ [n] and every σ ∈ Σn there is a canonical morphism

σ∗OTn
(S)

∼=−→ OTn
(σ−1(S))

which sends σ∗sSmapstosσ−1(S).

Proof. In the case n = 1 the action by Σ1 is trivial. Thus there is nothing to prove in this case and we may
assume n ≥ 2. For S ⊊ [n] with |S| ≥ 2 this follows immediately from proposition 6.23 and proposition 7.1.

Next, it is easy to verify that the following diagram commutes for every i ∈ [n].

Tn Tn

Tn+1 Tn+1

aσ−1(i)

σ

ai

σ+

where σ+ ∈ Σn+1 is the permutation of n+ 1 elements which fixes n+ 1 and sends all other j ∈ [n+ 1] to σ(j).
Thus,

σ∗OTn
({i}) = σ∗a∗

i OTn+1({i, n+ 1}) ∼= a∗
σ−1(i)σ

∗
+OTn+1({i, n+ 1}).

Since n+ 1 ≥ 3 the first part of the proof shows us that there is a unique isomorphism of sheaves with sections

OTn+1({σ−1(i), n+ 1})
∼=−→ σ∗

+OTn+1({i, n+ 1}).

This isomorphism pulls back to a canonical morphism of sheaves

OTn
(σ−1(i)) = a∗

σ−1(i)OTn+1({σ−1(i), n+ 1})
∼=−→ a∗

σ−1(i)σ
∗
+OTn+1({i, n+ 1})

∼=−→ σ∗OTn
({i}).
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This proposition implies that the symmetry action of Σn on Tn extends to a symmetry action on the log-scheme
Tn.

Next, we need a few more results until we are ready to go on defining the composition maps for the log schemes
Tn.

Lemma 7.9. For every S ⊊ [n+ 1] and |S| ≥ 2 there is a canonical isomorphism of sheaves

(an+1)∗OTn+1(S) ∼=

OTn
n+ 1 ∈ S

OTn+1(S \ {n+ 1}) else

which sends

a∗
n+1s

n+1
S 7→

1 n+ 1 ∈ S and S ̸= [n+ 1]

sn
S else

.

Similarly, for l ̸= n+ 1, there is a canonical isomorphism of sheaves

(al)∗OTn+1(S) ∼=

OTn
{i, n+ 1} ̸⊆ S, and {i, n+ 1} ∩ S ̸= ∅,

OTn+1(S \ {n+ 1}) else

which sends

a∗
n+1s

n+1
S 7→

1 {i, n+ 1} ̸⊆ S, and {i, n+ 1} ∩ S ̸= ∅

sn
S else

.

Proof. I will do the proof for an+1. The proof in the other case is analogous. First note that the image of an+1

is contained in Tn+1([n]). By proposition 6.15 this means that im (an+1) ∩ Tn+1(S) = ∅ for every S ⊊ [n + 1]
with n + 1 ∈ S. Therefore, an+1 factors via an open set on which OTn(S) is trivial with the identity section.
Thus, there is an isomorphism (an+1)∗OTn+1(S) → OTd,n

sending a∗
n+1s

n+1
S 7→ 1 in this case.

Next, by definition of an+1 it is easy to verify that the scheme theoretic inverse image of Tn+1(S) is Tn(S) for
every S ⊊ [n] and so the result follows from proposition 7.1.

Finally, if S = [n] this result is the definition of OTn
([n]).

Lemma 7.10. For every n and S ⊆ [n] there is a canonical isomorphism of sheaves

(rn+1)∗OTn
(S) ∼= OTn+1(S) ⊗ OTn+1(S ∪ {n+ 1})

which sends
r∗

n+1s
n
S 7→ sn+1

S ⊗ sn+1
S∪{n+1}.

Proof. We will need to divide this into two cases, n = 1 and n ≥ 1. First assume n = 1. In this case r∗
2OT1({1})

is clearly the trivial sheaf and since lemma 7.4 implies that OT2({1}) ⊗ OT2({1, 2}) is trivial too we are done.
Strictly speaking we do need to make a choice of morphism here so this is not really canonical but as long as
we make one choice for any isomorphism of this form and use that every time in the thesis an isomorphism of
this form comes up in the thesis we have nothing to worry about.
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For n ≥ 2 we begin with the case S ̸= [n] and |S| ≥ 2. First I claim that the scheme theoretic pullback,
r−1

n+1(Tn(S)) = Tn(S)×Tn
Tn+1, is the scheme theoretic union of closed subschemes Tn+1(S)∪Tn+1(S∪{n+1}).

To show this we use the functors of points. Let

{ϕS : FS → LS}S∈P (n+1) ∈ τn(H)

and
rn+1 : {ϕS : FS → LS}S∈P (n+1) 7→ {ψT : FT → L′

T }T ∈P (n) ∈ τn(H).

We want to show that
r−1

n+1(τn(S)(H)) = τn+1(S)(H) ∪ τn+1(S ∪ {n+ 1})(H).

Suppose
{ϕS : FS → LS}S∈P (n+1) ∈ τn+1(S)(H)

and let T ⊆ [n] such that |T ∩ S| ≥ 2, T ̸⊆ S. Then, for every i, j ∈ T ∩ S we have

ψT (tki,j) = ϕT (tki,j) = 0

since |T ∩ S| ≥ 2 and T ̸⊆ S implies ϕT (tki,j) = 0. Hence, {ψT : FT → L′
T }T ⊆[n] ∈ τn(S)(H). Similarly, suppose

{ϕS : FS → LS}S∈P (n+1) ∈ τn+1(S ∪ {n+ 1})(H)

and let T ⊆ [n] such that |T ∩ S| ≥ 2, T ̸⊆ S. Then, for every i, j ∈ T ∩ S we have

ψT (tki,j) = ϕT (tki,j) = 0

since T ⊆ [n], T ̸⊆ S implies that T ̸⊆ S ∪ {n + 1} and thus, ϕT (tki,j) = 0. Again this means that {ψT : FT →
L′

T }T ∈P (n) ∈ τn(S)(H). Thus

r−1
n+1(τn(S)(H)) ⊆ τn+1(S)(H) ∪ τn+1(S ∪ {n+ 1})(H).

For the other inclusion suppose {ψT : FT → L′
T }T ⊆[n] ∈ τn(S)(H). Then, for any T ⊆ [n] with |T ∩ S| ≥ 2 and

T ̸⊆ S we have
ψT (tki,j) = ψT (tki,j) = 0

for every i, j ∈ S ∩ T . Now, suppose there is some T ⊆ [n], T ̸⊆ S, with |S ∩ T | ≥ 2 and some i ∈ S ∩ T such
that ϕT ∪{n+1}(tki,n+1) ̸= 0. This means that the morphism

L(T ∩S)∪{n+1} → LT ∪{n+1}

is non-trivial, since the kernel of a non-trivial morphism of line bundles is trivial (for irreducible schemes), we
must have that

ϕV ∪{n+1}(tki,j) = 0

for any V ⊆ S ∩ T and any i, j ∈ V . Next, notice that for any V ⊆ S we have that ϕT ∪V (tki,j) = 0 for every
i, j ∈ (T ∪ V ) ∩ S. Therefore, ϕT ∪V ∪{n+1}(tki,j) = 0 for all i, j ∈ (T ∪ V ) ∩ S. Since, ϕT ∪V ∪{n+1} is surjective
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there must be some l,m ∈ T ∪ {n+ 1} such that ϕT ∪V ∪{n+1}(tkl,m) ̸= 0 and thus LT ∪{n+1} → LT ∪V ∪{n+1} has
trivial kernel and in particular ϕT ∪V ∪{n+1}(tki,n+1) ̸= 0. Repeating the argument from before we find that for
any V ⊆ S and any i, j ∈ V we have that

ϕV ∪{n+1}(tki,j) = 0.

From this it then follows that for any T ′ ⊆ [n+1] with T ′ ̸⊆ S and any i, j ∈ T ′ ∩S we have ϕT ′(tki,j) = 0. Thus

{ϕS : FS → LS}S∈P (n+1) ∈ τn+1(S)(H).

Now, suppose no T ⊆ [n], T ̸⊆ S, with |S ∩ T | ≥ 2 and i ∈ S ∩ T such that ϕT ∪{n+1}(tki,n+1) ̸= 0 exist. Then, I
claim that

{ϕS : FS → LS}S⊆P (n+1) ∈ τn+1(S ∪ {n+ 1})(H).

By assumption the only thing we must verify is that if T ∩ (S ∪ {n + 1}) = {i, n + 1} for some i ∈ S then
ϕT (tki,n+1) = 0. To do this notice that, for any j ∈ S \ {i} we have that ϕT ∪{j}(tki,n+1) = 0 by assumption. By
the same argument as before the morphism LT → LT ∪{j} has trivial kernel and thus ϕT (tki,n+1) = 0. Thus

r−1
n+1(τn(S)(H)) = τn+1(S)(H) ∪ τn+1(S ∪ {n+ 1})(H).

With this the result follows from proposition 7.1.

Next, for the case S = [n] I claim that the following diagram commutes.

Tn+1 Tn+2

Tn Tn+1

an+1
n+2

rn+1
n+1 rn+2

n+1
an

n+1

This is easy to verify using the definitions. Since OTn([n]) ..= (an
n+1)∗OTn+1([n]) there are canonical isomorphisms

(rn+1
n+1)∗OTn

([n])
∼=−→ (rn+1

n+1)∗(an
n+1)∗OTn+1([n])

∼=−→ (an+1
n+2)∗(rn+1

n+2)∗OTn+1([n]).

Recall that rn+2
n+1 = rn+2

n+2 ◦ σ where σ is the morphism induced by the permutation (n + 1, n + 2). Thus,
by the first part of the lemma, and proposition 7.8, there is a canonical isomorphism (rn+1

n+2)∗OTn+1([n])
∼=−→

OTn+2([n]) ⊗ OTn+2([n+ 1]). Lastly, by lemma 7.9, there is a canonical isomorphism

(an+1
n+2)∗ (

OTn+2([n]) ⊗ OTn+2([n+ 1])
) ∼=−→ OTn+1([n]) ⊗ OTn+1([n+ 1]).

This completes the proof in this case.

Finally, the case S = {l} follows by the same argument as in the S = [n] case but with al instead of an+1.

With this out of the way we can move on to finally prove the last results needed to define the composition maps
for the log schemes Tn.

In the next couple of proofs there will on several occasions be a lot of indexes to keep track of. To make things
a little bit more compact, and hopefully a bit clearer, I will use the following notation. Let n be a positive
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integer, m = (m1, . . . ,mn) be a list of positive integers, and m =
∑

i mi. Define

• m′
r

..=
∑

i<r mi for every r ∈ [n].

• M ′
r

..= {m′
r + 1,m′

r + 2, . . . ,m′
r +mr} for every r ∈ [n].

• mr+ = (m1, . . . ,mr−1,mr + 1,mr+1, . . . ,mn) for every r ∈ [n].

• m∗ = (m1, . . . ,mr−1,mr,mr+1, . . . ,mn, 1).

• T [v] ..= Tv1 × · · · × Tvk
for every list of integers v = (v1, . . . , vk)

• Ar
i

..= id × idr−1 × amr
i × idn−r : Tn × T [m] → Tn × T [mr+] for every r ∈ [n] and i ∈ [mr].

• A0
i : Tn ×T [m] → Tn+1 ×T [m∗] as the composition of the morphism an

i × idn : Tn ×T [m] → Tn+1 ×T [m]
and the isomorphism Tn+1 × T [m] ∼= Tn+1 × T [m] × Spec k for each i ∈ [n]. Note that by definition
T [m∗] = T [m] × T1 and T1 = Spec k.

• πn,m
0 : Tn × T [m] → Tn as the projection onto the first component.

• πn,m
r : Tn × T [m] → Tmr

as the projection onto the (r + 1)th component.

• σi = (i, i+ 1, . . . ,m+ 1) ∈ Σm+1 for every i ∈ [m+ 1].

Lemma 7.11. There is a canonical isomorphism of line bundles

(γn,m)∗OTm
(M ′

r) ∼= π∗
0OTn

({r}) ⊗ π∗
r OTmr

([mr])

which sends (γn,m)∗sM ′
r

7→ π∗
0s{r} ⊗ πr ∗ s[mr].

Proof. First note that given the first part of the statement the mapping of sections is clear since (γn,m)∗sM ′
r
,

π∗
0s{r}, and πr ∗ s[mr] are all the zero sections of the respective sheaves.

Next, e will need to divide this into 3 cases. For n = r = 1 we have mr = m1 = m and

γn,m : T1 × Tm → Tm

is just the projection morphism γ1,m = π1. Thus it is clear that there is a canonical isomorphism.

(γ1,m) ∗ OTm([m]) ∼= π∗
1OTm([m]) ∼= π∗

1OTm
([m]) ⊗ π0OT1({1}).

The last isomorphism here is the canonical isomorphism between a sheaf and its tensor product with the structure
sheaf.

Next, let n > 1 and mr > 1. I claim that the following is a commutative diagram.

Tn+1 × T [m∗] Tm+1

Tn × T [m] Tm

Tn × T [mr+] Tm+1

γn+1,m∗

σm′
r+mr+1

rm+1
m+1

A0
r

Ar
mr+1

γn,m

γn,m+

rm+1
l
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This follows from tedious computations using the definitions of the respective maps. Proving this rigorously is
a boring and not very rewarding exercise but you should be able to intuitively see why this is the case using the
intuition behind each of these maps. From this diagram we conclude that there is a canonical isomorphism

(A0
r)∗(γn+1,m)∗(rm+1

m+1)∗OTm(M ′
r)

∼=−→ (γn,m)∗OTm(M ′
r).

By lemma 7.10 there is a canonical isomorphism

OTm+1(M ′
r) ⊗ OTm+1(M ′

r ∪ {m+ 1}) ∼= (rm+1
m+1)∗OTm

(M ′
r).

Now, by lemma 7.2 there is a unique isomorphism of sheaves with sections

(πn+1,m∗
0 )∗OTn+1(r, n+ 1)

∼=−→ (γn+1,m∗)∗OTm+1(M ′
r ∪ {m+ 1}).

Since
πn+1,m∗

0 ◦A0
r = an

r ◦ πn,m
0

this morphism pulls back to give a canonical isomorphism

(πn+1,m
0 )∗(an

r )∗OTn+1(r, n+ 1) = (πn+1,m
0 )∗OTn

(r)
∼=−→ (A0

r)∗(γn+1,m∗)∗OTm+1(M ′
r ∪ {m+ 1}).

Similarly, lemma 7.2, together with proposition 7.8 applied to the lower part of the diagram gives a canonical
isomorphism

(πn,m
r )∗OTmr

([mr]) ∼= (Ar
mr+1)∗(γn,m+)∗(σ−1

m′
r+mr+1)∗OTm+1(M ′

r).

By commutativity of the diagram

γn+1,m∗ ◦A0
r = σ−1

m′
r+mr+1 ◦ γn,m+ ◦Ar

mr+1

and thus this isomorphism canonically induces an isomorphism

(πn,m
r )∗OTmr

([mr]) ∼= (A0
r)∗(γn+1,m)∗OTm+1(M ′

r).

This gives a canonical isomorphism

(πn+1,m
0 )∗OTn(r) ⊗ (πn,m

r )∗OTmr
([mr])

∼=−→ (A0
r)∗(γn+1,m)∗ (

OTm+1(M ′
r) ⊗ OTm+1(M ′

r ∪ {m+ 1})
)
.

Composed, with the isomorphism

OTm+1(M ′
r) ⊗ OTm+1(M ′

r ∪ {m+ 1}) ∼= (rm+1
m+1)∗OTm

(M ′
r)

this gives an isomorphism

(πn+1,m
0 )∗OTn

(r) ⊗ (πn,m
r )∗OTmr

([mr])
∼=−→ (A0

r)∗(γn+1,m∗)∗(rm+1
m+1)∗OTm

(M ′
r).

Finally, since
γn,m = rm+1

m+1 ◦ γn+1,m∗ ◦A0
r
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this canonically induces an isomorphism

(πn+1,m
0 )∗OTn(r) ⊗ (πn,m

r )∗OTmr
([mr])

∼=−→ (γn,m)∗OTm(M ′
r).

Finally, let n > 1, mr = 1. For this case we will use the fact that the following diagram commutes.

Tn × T [m] Tm

Tm+1

Tn × T [mr+] Tm+1

Ar
1

γn,m

am
m′

r

σm′
r+1

γn,m+

Using the definition of the add one morphisms this follows directly from the fact that the composition morphisms
satisfy the compatibility axioms for an operad. By definition

OTm
(M ′

r) = OTm
({m′

r}) = (am
m′

r
)∗OTm+1({m′

r,m+ 1}).

By proposition 7.8 there is a canonical isomorphism

σ∗
m′

r+1OTm+1(m′
r,m

′
r + 1)

∼=−→ OTm+1({m′
r,m+ 1}),

which pulls back to an isomorphism

(γn,m)∗(am
m′

r
)∗σ∗

m′
r+1OTm+1({m′

r,m
′
r + 1})

∼=−→ (γn,m)∗(am
m′

r
)∗OTm+1({m′

r,m+ 1}).

Since there are canonical isomorphisms

(Ar
1)∗(γn,m+)∗OTm+1({m′

r,m
′
r + 1}) ∼= (γn,m)∗(am

m′
r
)∗σ∗

m′
r+1OTm+1({m′

r,m
′
r + 1})

and
(γn,m)∗(am

m′
r
)∗OTm+1({m′

r,m+ 1}) ∼= (γn,m)∗OTm({m′
r})

this induces a canonical isomorphism

(Ar
1)∗(γn,m+)∗OTm+1({m′

r,m
′
r + 1})

∼=−→ (γn,m)∗OTm
({m′

r}).

By the previous part there is a unique isomorphism of sheaves with sections

(γn,m+)∗OTm+1({m′
r,m+ 1}) ∼= (πn,m+

0 )∗OTn
({r}) ⊗ (πn,m+

r )∗OT2({1, 2}).

By taking the pullback of this and composing with the above we get a canonical isomorphism

(A1
r)∗ (

(πn,m+
0 )∗OTn

({r}) ⊗ (πn,m+
r )∗OT2({1, 2})

) ∼=−→ (γn,m)∗OTm
({m′

r}),
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which of course induces an isomorphism

(A1
r)∗(πn,m+

0 )∗OTn({r}) ⊗ (A1
r)∗(πn,m+

r )∗OT2({1, 2})
∼=−→ (γn,m)∗OTm({m′

r})

Finally, it is easy to see from definitions that

π
n,m+
0 ◦A1

r = πn,m
0

and that
πn,m+

r ◦A1
r = a1 ◦ πn,m

r .

Thus, there is a canonically induced isomorphism

(πn,m
0 )∗OTn({r}) ∼= (A1

r)∗(πn,m+
0 )∗OTn({r}).

Furthermore, e1 : (a1
1)∗OT2({1, 2}) → OT1({1}) pulls back to a canonical isomorphism

(πn,m
r )∗OT1({1}) ∼= (A1

r)∗(πn,m+
r )∗OT2({1, 2}).

Composed with the above this finally gives us a canonical isomorphism

(πn,m
0 )∗OTn({r}) ⊗ (πn,m

r )∗OT1({1})
∼=−→ (γn,m)∗OTm({m′

r}).

This completes the proof.

Now, let us also show that show that the introduction of these sheaves with sections does not cause any new
problems in defining our desired morphisms of log schemes.

Lemma 7.12. For each l ∈ M ′
r there is a canonical isomorphism

(γn,m)∗OTm({l}) ∼= π∗
r OTmr

({qn,m
r (l)})

if mr > 1 and a canonical isomorphism

(γn,m)∗OTm
({l}) ∼= π∗

0OTn
({r}) ⊗ π∗

r OT1({1})

if mr = 1.

Proof. We split this into two cases. First consider mr > 1. I claim that the following diagram commutes

Tn × T [m] Tm

Tm+1

Tn × T [mr+] Tm+1

γn,m

Ar

q
n,m
r (l)

am
l

σm′
r+mr+1

γn,m+

Through tedious computation this follows directly from the definitions of the morphisms.
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From the definition of OTm
({l}) it follows that there is a canonical isomorphisms

(γn,m)∗OTm({l}) ∼= (γn,m)∗(am
l )∗σ∗

m′
r+1OTm+1({l,m′

r +mr +1}) ∼= (Ar
qn,m

r (l))
∗(γn,m+)∗OTm+1({l,m′

r +mr +1})

Lemma 7.2 implies that there is a unique isomorphism of sheaves with sections

(πn,m+
r )∗OTmr+1({qn,m

r (l),mr + 1}) ∼= (γn,m+)∗OTm+1({l,m′
r +mr + 1}).

As in the proof of the previous lemma, taking the pullback of this isomorphism via Aqn,m
r (l) induces a canonical

isomorphism of sheaves
(πn,m

r )∗OTmr
({qn,m

r (l)}) ∼= (γn,m)∗OTm
({l}).

The mr = 1 case is just lemma 7.11 in the special case mr = 1.

Lemma 7.13. There is a canonical isomorphism

(γn,m)∗OTm([m]) ∼= π∗
r OTn

([n])

if n > 1 and a canonical isomorphism

(γn,m)∗OTm
([m]) ∼= π∗

0OT1({1}) ⊗ π∗
r OTm1

([m1])

if n = 1.

Proof. The proof is analogous to the proof of lemma 7.12.

The isomorphisms of line bundles with sections from lemmas 7.2, 7.11, 7.12, and 7.13 define extensions of the
composition maps γn,m of the geometric Kontsevich operad to maps of log schemes

γn,m : Tn × Tm1 × · · · × Tmn → Tm.

Proposition/Definition 7.14. The log schemes Tn with n ∈ N form an operad without unit with composition
maps γn,m, and action by Σn as described above. I call this the "log-geometric Kontsevich operad without unit",
denoted Td.

Proof. We already know that the underlying maps of schemes satisfy the operad axioms so we must only verify
that the isomorphisms of line bundles with sections satisfy the various commutativity relations. This follows
from the fact that we have made canonical choices for these isomorphisms. I will prove this in one set of cases
and leave the rest as a (very) tedious exercise. Let n, m = (m1, . . . ,mn), (l1, . . . , lm) be positive integers where
m =

∑
i mi. Define

• l =
∑

k lk.

• l = (l1, . . . , lm).

• li,j ..= lj+
∑

k<imi
.

• li
..= (li,1, . . . , li,mi).
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• l′i =
∑

1≤j≤mi
li,j .

• l′ = (l′1, . . . , l′n).

• T[v] ..= Tv1 × · · · × Tvk
for every list of integers v = (v1, . . . , vk).

Then, for the associativity axiom we want to verify that

Tn × T[m] × T[l] Tn × (Tm1 × T[l1]) × · · · × (Tmn
× T[ln])

Tn × T[l′]

Tm × T[l] Tl

ρ

γn,m×id

id×γm1,l1 ×···×γmn,ln

γn,l′

γm,l

where ρ is the corresponding permutation of factors in the product. Let S ⊆ [l] be such that

S ⊊ L′
r = {1 +

∑
k<r

lk, . . . , lr +
∑
k<r

lk}

and |S| ≥ 2 for some 1 ≤ r ≤ m. By definition γm,l gives the unique isomorphism of sheaves

(γm,l)∗OTl
(S) → π∗OTlr

(qm,l(S))

which sends
(γm,l)∗sS 7→ π∗sqm,l(S)

where π is the projection map
Tm × T [l] → Tlr .

Thus, γm,l ◦ (γn,m × id) gives the isomorphism of sheaves

(
γm,l ◦ (γn,m × id)

)∗ OTl
(S) → π∗OTlr

(qm,l(S))

which sends (
γm,l ◦ (γn,m × id)

)∗
sS 7→ π∗sqm,l(S)

where π is now the projection map
Tn × T [m] × T [l] → Tlr

.

By similar computations
γn,l′

◦ (id × γm1,l1 × · · · × γmn,ln) ◦ ρ

also gives the isomorphism of sheaves which sends(
γn,l′

◦ (id × γm1,l1 × · · · × γmn,ln) ◦ ρ
)∗

OTl
(S) =

(
γm,l ◦ (γn,m × id)

)∗ OTl
(S) → π∗OTlr

(qm,l(S))

which sends (
γm,l ◦ (γn,m × id)

)∗
sS 7→ π∗sqm,l(S).
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Since the section π∗sqm,l(S) is non-trivial these must be the same morphism.

For the remaining S ⊆ [l] the proofs are similar. In every case we end up with two isomorphisms that are equal
either because they send a nontrivial section to the same nontrivial section or because they are the pullbacks
(via some add one morphism) of two morphisms of sheaves of sections both of which send the same nontrivial
section to the same nontrivial section. The same proof strategy can be used to verify that the equivariance
axiom holds.

Remark. A comment regarding why we need to make this an operad without unit is in order. For every d we
have T1 = (Spec k, 0: O → O) while the unit object in the category of log schemes is Spec k with no line
bundles. Since there is no automorphism of O which identifies the 0 section with the unit section this means
that we cannot define any morphism Spec k → T1 and so it is simply not possible to define a unit morphism.

7.2 Kato-Nakayama Analytifications

In this section I will show that the Kato-Nakayama analytification of the smooth log varieties Td,n with base
field C is diffeomorphic to (S1)n × K2d,n. To do this I will first compute the Kato-Nakayama analytifiction of
the smooth log varieties

X[n] ..= (X[n], (sS : OX[n] → OX[n](S))S∈P (n))

for any smooth complex variety X, where sS : OX[n] → OX[n](S) is the line bundle with section corresponding
to the effective Cartier divisor X[n](S).

Proposition 7.15. There is an isomorphism of manifolds with corners over (Xan)n

(X[n])KN → FMn(Xan).

Proof. I will use induction to show that

X[n]KN ∼= BlR∆̃(2n−(n+1) . . .BlR∆̃(1) BlC∆̃(i) BlC∆̃(i−1) . . .BlC∆̃(1) (Xan)n

for each 2n −(n+1) ≥ i ≥ 1. Where we in each intermediate blow up we define ∆̃(S) as the dominant transform
of ∆̃(S) from the previous step and ∆̃(j) ..= ∆̃(Bn(j)), where in (Xan)n we let ∆̃(S) = ∆(S), the S-diagonal.
For the induction base note that this is almost clear by definition since, by definition

(X[n])KN → FMn(Xan) = BlR∆̃(2n−(n+1) . . .BlR∆̃(1) BlC∆̃(2n−(n+1) . . .BlC∆̃(1) (Xan)n,

but where we define ∆̃(S) as the total and not dominant transform of ∆̃(S) from the previous blow up in each
of the real oriented blow ups. However, since it is easy to verify that the conditions of corollary 3.15 are satisfied
for each X[n](S) = ∆̃(S) so the total and dominant transforms are the same and thus the base case follows.
For the induction step first note that in X[n, i]an = BlC∆̃(i) BlC∆̃(i−1) . . .BlC∆̃(1) (Xan)n the subvarieties ∆̃(j) are
effective Cartier divisors for each 1 ≤ j ≤ i. Using the functor of points for each diagonal ∆̃(S) in this variety
(see theorem 6.10) it is easy to verify that these divisors, in any order, still satisfy the conditions in corollary
3.15 for Z = ∆̃(j), 1 ≤ j ≤ i. Hence, the strict and total transform of ∆(j) in BlR∆(k1) BlR∆(k2)...BlR∆(kr)

X[n, i]an

are the same for any distinct j, k1, . . . , kr ≤ i. Thus, by lemma 3.12 there is an isomorphism from

BlR∆̃(2n−(n+1) . . .BlR∆̃(1) BlC∆̃(i) BlC∆̃(i−1) . . .BlC∆̃(1) (Xan)n
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to the reordering of blow ups

BlR∆̃(2n−(n+1) . . .BlR∆̃(i+1) BlR∆̃(i−1) BlR∆̃(1) BlR∆̃(i) BlC∆̃(i) BlC∆̃(i−1) . . .BlC∆̃(1) (Xan)n

where ∆̃(S) are still defined as strict transforms in each blow up. By theorem 3.16 this is isomorphic to

BlR∆̃(2n−(n+1) . . .BlR∆̃(i+1) BlR∆̃(i−1) . . .BlR∆̃(1) BlR∆̃(i) BlC∆̃(i−1) . . .BlC∆̃(1) (Xan)n.

Finally, by lemma 6.11 strict, dominant, and total transforms of the diagonals ∆̃(1) . . . ∆̃(i−1) are equal for the
blow up mapX[n, i] → X[n, i−1] and thus the same is true for the blow up BlR∆(i) X[n, i] → X[n, i]. Furthermore,
using lemma 3.15 again the strict and total transforms of ∆̃(i) are equal for the blow up BlR∆(k) . . .BlR∆̃(1) X[n, i−
1]an → X[n, i−1]an for any 1 ≤ k ≤ i−1. Thus, by applying lemma 3.12 one more time there is an isomorphism
from

BlR∆̃(2n−(n+1) . . .BlR∆̃(i+1) BlR∆̃(i−1) . . .BlR∆̃(1) BlR∆̃(i) BlC∆̃(i−1) . . .BlC∆̃(1) (Xan)n

to
BlR∆̃(2n−(n+1) . . .BlR∆̃(i+1) BlR∆̃(i) BlR∆̃(i−1) . . .BlR∆̃(1) BlC∆̃(i−1) . . .BlC∆̃(1) (Xan)n.

By induction this means that X[n]KN is isomorphic to

BlR∆̃(2n−(n+1)) . . .BlR∆̃(1) (Xan)n.

By proposition 4.3 this is FMn(Xan) and thus we are done.

Remark. In the interest of accuracy, I should mention that proposition 4.3 only shows that the Fulton-MacPherson
configuration space FMn(M) is a sequence of blow ups in this way in the specific case M = Rd. As mentioned
previously, Li shows this in much more general situations in the algebraic case in [Li09] but even though this
seems to be well known among experts I am unaware of any articles which show that the Fulton-MacPherson
configuration spaces can be written as a sequence of blow ups in this way for an arbitrary smooth manifold M .
Considering my lack of references for this statement it is of course understandable if you do not consider this
proof to be adequate. If so note that the only cases which are actually of importance for the main results of
this thesis are when we have X = Ad.

Before we can apply this result to find the Kato-Nakayama analytifications of the log schemes Td,n we will first
need to do some work.

Definition 7.16. Let the "remove one" morphism Rn+1 : X[n + 1] → X[n] be defined as the map induced by
the natural transformation of functors which sends

(
(h : H → Xn+1), {ϕS : h∗

SIS → LS}S∈P (n+1)
)

∈ χ[n+ 1](H)

to (
(h[n] : H → Xn), {ϕS : h∗

SIS → LS}S∈P (n)
)

∈ χ[n](H).

Lemma 7.17. There is a unique isomorphism of line bundles

R∗
n+1OX[n](S)

∼=−→ OX[n+1](S) ⊗OX[n+1](S ∪ {n+ 1})
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sending R∗
n+1sS 7→ sS ⊗ ss∪{n+1} where sS : OX[n] → OX[n](S) is the sheaf with section corresponding to the

divisor X[n](S).

Proof. The results follows from the exact same arguments as used in the proof of lemma 7.10.

Lemma 7.18. Let i denote the embedding i : Td,n ↪→ Ad[n]. For every n ≥ 2 there is a canonical isomorphism
i∗OAd[n](Ad[n])(S)) → OTd,n

(S) for every S ⊆ [n], |S| ≥ 2, sending sections i∗nsS 7→ sS.

Proof. This is clear using proposition 7.1 whenever S ̸= [n]. For S = [n] we will use induction on n. For n = 2
such an isomorphism exists since proposition 6.15 and lemma 7.4 identify both of these line bundles as the
OPd−1(−1) line bundle. Of course there is a choice of isomorphism to be made here which cannot really be said
to be canonical. However, with this choice made the rest of the isomorphisms will have canonical choices.

For the induction case we use that the following diagram commutes.

X[n+ 1] X[n]

Td,n+1 Td,n

Rn+1

rn+1

Thus, there is a canonical isomorphism

r∗
n+1i

∗
nOAd[n]([n]) ∼= i∗n+1R

∗
n+1OAd[n]([n]).

By induction there is an isomorphism i∗nOAd[n]([n]) → OTd,n
([n]) so by lemma 7.10 the left hand side is canoni-

cally isomorphic to OTd,n+1([n])⊗OTd,n+1([n+1]). Furthermore, by lemma 7.17 the right hand side is canonically
isomorphic to i∗n+1

(
OAd[n+1]([n+ 1]) ⊗ OAd[n+1]([n])

)
which is isomorphic to i∗n+1OAd[n+1]([n+1])⊗OTd,n+1([n])

by this lemma applied to [n] ⊊ [n+ 1]. Hence, the isomorphism i∗nOAd[n]([n]) → OTd,n
([n]) induces an isomor-

phism
OTd,n+1([n+ 1]) ⊗ OTd,n+1([n])

∼=−→ i∗n+1OAd[n+1]([n+ 1]) ⊗ OTd,n+1([n]).

By tensoring both sides with the dual of OTd,n+1([n]) we get our desired isomorphism.

By this lemma the closed embedding in : Td,n ↪→ Ad[n] induces a strict morphism of log schemes in : Vd,n →
Ad[n] where Ad[n] is the log scheme (Ad[n], (sS : OAd[n] → O(D(S)))S∈P (n)) and Vd,n is the log scheme
(Td,n, (sS : OTd,n

→ OTd,n
(S))S∈P (n)).

Proposition 7.19. There is a diffeomorphism, VKN
d,n → K2d,n such that the following diagram commutes

VKN
d,n Ad[n]KN

K2d,n FMn(Xan)

Proof. Since the closed embedding Td,n ↪→ Ad[n] induces a strict morphism of log varieties Vd,n → Ad[n] the
following must be a cartesian diagram
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VKN
d,n Ad[n]KN

T an
d,n X[n]an

Since T an
d,n ↪→ X[n]an identifies Td,n with the fiber over the origin of the map X[n] → Xn and since the diagram

Ad[n]KN FMn(Xan)

(Xan)n

∼=

commutes this implies that VKN
d,n → Ad[n]KN ∼=−→ FMn(Ad

C) identifies VKN
d,n with the fiber over the origin for

the map FMn(Ad
C) → (Ad

C)n. Since AC ∼= R2 this is isomorphic to the fiber over the origin for the map
FMn(R2d) → (R2d)n. This is K2d,n by definition. Commutativity of the diagram follows from construction.

With this result we are almost ready to find the analytification of Td,n but we need one more lemma first.

Lemma 7.20. For every 1 ≤ i ≤ n there is a canonical isomorphism of line bundles

OTd,n
({i})

∼=−→
⊗

S∈P (n),i∈S

OTd,n
(S)∨.

Proof. We prove this by induction. In the case n = 1 this is obvious but this case will not work as a base for
the induction. For n = 2 such isomorphisms clearly exist by lemma 7.4. As mentioned several times earlier we
have made a choice that is not really canonical for an isomorphism

OTd,2({1}) ⊗ OTd,2({1, 2})
∼=−→ OTd,2 .

However, since there are canonical isomorphisms (1, 2)∗OTd,2({1}) ∼= OTd,2({2}) and (1, 2)∗OTd,2({1, 2}) ∼=
OTd,2({1, 2}) the pullback of this morphism of line bundles via the (1, 2) permutation gives a morphism

OTd,2({2}) ⊗ OTd,2({1, 2})
∼=−→ OTd,2

so at least there is only one choice to be made here.

Suppose now that there is an isomorphism

OTd,n
({i})

∼=−→
⊗

S⊆[n],i∈S,|S|≥2

OTd,n
(S)∨.

By lemma 7.10 the pullback of this isomorphism via the remove one morphism rn+1 : Td,n+1 → Td,n gives an
isomorphism

OTd,n+1({l}) ⊗ OTd,n+1({l, n+ 1})
∼=−→

⊗
S∈P (n),l∈S

OTd,n+1(S)∨ ⊗OTd,n+1(S ∪ {n+ 1})∨.
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Taking the tensor product of both sides with OTd,n+1({i, n+ 1})∨ gives an isomorphism

OTd,n+1({l})
∼=−→ OTd,n+1({l, n+ 1}) ⊗

⊗
S∈P (n),l∈S

OTd,n+1(S)∨ ⊗OTd,n+1(S ∪ {n+ 1})∨.

The right hand side here is isomorphic to
⊗

S∈P (n+1),l∈S OTd,n
(S)∨ via permutations of the terms. Finally,

taking the pullback of this isomorphism via the permutation (l, n+ 1) gives the desired isomorphism in the case
i = n+ 1

Theorem 7.21. The Kato-Nakayama analytification of Td,n is diffeomorphic to K2d,n × (S1)n.

Proof. By definition
TKN

d,n
∼= BlRs{1}

BlRs{2}
. . .BlRs[n]

T an
d,n

where the blow-ups are (in any order) taken over all sections of line bundles sS : OTd,n
→ OTd,n

(S). Since the
blowing up can be done in any order (by lemma 3.12) we can blow up in the line bundles corresponding to sets
of one element, {l}, last. By lemma 7.20 OTd,n

({l}) is a tensor product of the duals of the other line bundles.
Hence, by proposition 3.24 blowing up in the zero section of each of the bundles OTd,n

({l}) is equivalent to
taking the product with S1 (with blow up map equal to the projection). Thus

BlRs{1}
BlRs{2}

. . .BlRs[n]
TKN

d,n
∼= (S1)n × BlRs{n,n−1}

. . .BlRs[n]
T an

d,n.

By proposition 7.19 BlRs{n,n−1}
. . .BlRs[n]

T an
d,n

∼= K2d,n and thus

TKN
d,n

∼= (S1)n × K2d,n.

7.3 Equivalence with K2d ⋊ S1

In this section I will show that the analytification of the Td operad without unit over C is isomorphic to the
S1-framed Kontsevich Operad in dimension 2d, S1 ⋊K2d, without unit. However, this isomorphism is not given
by the diffeomorphisms TKN

d,n
∼= (S1)n ×K2d,n seen in the previous section. Thus, the first step will be to describe

the correct diffeomorphisms.

Definition 7.22. Let Kd,n denote the log scheme with base scheme Td,n and sheaves with sections

(0 : OTd,n
→ Li)i∈[n] ⊕ (sS : OTd,n

→ OTd,n
(S))S∈P (n),

where Li
..= OTd,n

.

Remark. The reason I call these line bundles Li even though they are all trivial is to be able to differentiate
them when defining morphisms to Kd,n.

A more intuitive way to see this is that Kd,n is Td,n but with each of the sheaves O({l}) replaced by the trivial
line bundle with the 0 section. Note that by the same argument as in theorem 7.21 the analytification of Kd,n

is also canonically isomorphic to (S1)n × K2d,n.
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Lemma 7.23. Let kn : Td,n → Kd,n be the map of log schemes given by the identity on the underlying map of
schemes and the isomorphisms

OTd,n
(S) id−→ OTd,n

(S)

and
Li

∼=−→
⊗
i∈S

OTd,n
(S).

The Kato-Nakayama analytification of kn is a homeomorphism.

Proof. First note that the line bundle
⊗

i∈S OTd,n
(S) is canonically isomorphic to the trivial line bundle by

lemma 7.20 and so kn is a well defined morphism of log schemes. It is easy to check that the analytification is
a bijection so I skip the details. Since, TKN

d,n
∼= KKN

d,n
∼= (S1)n × K2d,n is compact this means that the function is

a homoemorphism and so we are done.

Remark. This function is in fact a diffeomorphism too. One way to prove this is to guess what the analytification
of this map is, prove that the guess is correct using the methods found in the proofs of this section, and finally
explicitly define a map of topological spaces that is an inverse to this map. This proof would however be
significantly longer and therefore I will leave it out.

The rest of this section will be dedicated to proving that the analytification of the maps kn (composed with
the isomorphism KKN

d,n → (S1)n × K2d,n) induces an isomorphism of topological operads without unit. In what
follows I will abuse notation somewhat by identifying the analytifications of the log varieties with the spaces
I have proven them to be homeomorphic with. For example I will say that the analytification of the diagram
Td,n

kn−→ Kd,n is the diagram (S1)n × K2d,n
kKN

n−−−→ (S1)n × K2d,n. This is of course not strictly speaking true since
in actuality the arrow in this diagram is the composition

(S1)n × K2d,n

∼=−→ TKN
d,n

kKN
n−−−→ KKN

d,n

∼=−→ (S1)n × K2d,n

but I will ignore this. The following lemma is the foundation for all remaining proofs.

Lemma 7.24. There is an essentially strict map of log schemes i : Confn(X) → X[n], where Confn(X) is the
log scheme with underlying scheme Confn(X) and no line bundles with sections. The analytification of this map
is the dense inclusion Confn(Xan) ↪→ FMn(Xan).

Proof. The image of the inclusion i : Confn(X) ↪→ X[n] does not intersect any of the divisors X [n](S) and so
there are isomorphisms of line bundles i∗OX[n]

∼=−→ OConfn(X) which sends i∗sS 7→ 1. This isomorphisms give
the desired map i : Confn(X) → X[n]. From definition it is clear that the following diagram commutes

Confn(X) X[n]

Xn.

i

πn

Where Xn is the scheme Xn with no line bundles and Confn(X) ↪→ Xn is the canonical inclusion. The
analytification of this diagram is
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Confn(Xan) FMn(Xan)

(Xan)n.

iKN

ρ

Where Confn(Xan) ↪→ (Xan)n is the canonical inclusion. Since ρ restricts to a diffeomorphism on Confn(Xan) ⊆
(Xan)n, iKN must be the inclusion Confn(Xan) ↪→ FMn(Xan).

Now we are ready to start proving that the maps kKN
n give an isomorphism of operads without unit. We begin

with showing commutativity of the symmetry maps. First note that similar to how we defined the symmetry
action on Td,n using its functor of points and then extended it to a symmetry action on Td,n we can define a
symmetry action on X[n] for any smooth variety X and then extend it to X[n]. Since we have seen this type
of construction many times in this thesis already I omit the details. Similarly we can also define an action on
Kd,n in the same way.

Proposition 7.25. Let σ ∈ Σn. The analytifications of the corresponding symmetry maps σX : X[n] → X[n]
and σV : Vd,n → Vd,n are the corresponding symmetry maps FMn(Xan) → FMn(Xan) and K2d,n → K2d,n.

Proof. Let σC : Confn(X) → Confn(X) be the permutation of components Xn → Xn corresponding to σ

restricted to Confn(X). It is easy to verify directly from definitions that the following diagrams commutes.

Confn(X) X[n] Vd,n

Confn(X) X[n] Vd,n

σC σX σV

It is clear that the analytification of σC is the corresponding permutation of components σKN
C : Confn(Xan) →

Confn(Xan). Thus the Kato-Nakayama analytification of this diagram is

Confn(Xan) FMn(Xan) K2d,n

Confn(Xan) FMn(Xan) K2d,n

σan
C σKN

X σKN
V

By lemma 4.5 this diagram can only commute if σKN
X and σKN

V are the corresponding permutation maps.

Remark. Strictly speaking lemma 4.5 only treats the case X = Ad. The case of a general smooth variety X is
a simple generalization of this but since X = Ad is the only case we need I will not elaborate.

Corollary 7.26. For every σ ∈ Σn the following diagram commutes

TKN
d,n TKN

d,n

(S1)n × K2d,n (S1)n × K2d,n

kKN
n

σKN
T

kKN
n

σ0

where σT is the symmetry action on Td,n and σO is the symmetry action of the Kd ⋊ S1 operad.
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Proof. First I claim that σO is the analytification of σK , the symmetry morphism Kd,n → Kd,n. To see this let
Pn be the log scheme with underlying space Spec C and with line bundles (0 : OSpec C → Mi)i∈[n] where, by
necessity, each Mi is trivial. Let σP be the morphism P → P defined by Mi

∼=−→ Mσ−1(i). Then, the following
is a commutative diagram of log schemes.

Pn Kd,n Vd,n

Pn Kd,n Vd,n

σP σk σV

It is easy to see that the analytification of σP is the permutation of factors σF : (S1)n → (S1)n and hence the
analytification of this diagram is

(S1)n (S1)n × K2d,n K2d,n

(S1)n (S1)n × K2d,n K2d,n

σF σKN
k σKN

V

By the corollary σKN
V is the permutation homeomorphism on K2d,n and therefore this diagram also commutes

if we replace the middle homeomorphism with σO. By the universal property of the product this means that
σKN

K = σO. Thus the desired commutative square is the analytification of the (clearly commutative) square

Td,n Td,n

Kd,n Kd,n

kn

σT

kn

σK

This completes the proof.

Remark. By the exact same argument the analytification of σT is also σO which is interesting but not the result
we needed.

With this corollary we have shown that the homeomorphisms kKN
n commute with the symmetry action. Now

all that remains to show is that the maps kKN
n also commute with the composition maps. This will be a bit

trickier but not too difficult. As usual we first need to define some new maps. In what follows recall that, if ∆m

denotes the small diagonal in Xm and Im denotes its ideal sheaf, for some smooth variety X, then Bl∆m
Xm

represents the functor
Fm : H 7→ {(f : H → Xm, q : f∗Im ↠ L}

where L is a line bundle on H, up to isomorphism of the quotient q : f∗Im ↠ L. Also recall that Pm−1 represents
the functor

Pm : H 7→ {q : O⊕m
H ↠ L},

where L is a line bundle, up to isomorphism of the invertible quotient.

Definition 7.27. Let ΠS : X[n] → Bl∆|S| X
n be the map defined by the natural transformation of functors

χ[n] → F|S| which maps

((h : H → Xn), {ϕS : h∗
SIS → LS}S∈P ) ∈ χ[X, i+ 1](H)
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to
(hS : H → X |S|, ϕS : h∗

SIS → LS).

Furthermore, define πS : Td,n → P(|S|−1)d−1 as the map induced by the natural transformation of functors
τd,n → Pn

τd,n(H) ∋ {ϕS : FH,d
S → LS}S⊊[n],|S|≥2 7→ (ϕS : O⊕(|S|−1)d

H
∼= FH,d

S → LS).

Lemma 7.28. There are unique isomorphisms of sheaves

Π∗
SOBl∆|S| X|S|(∆̃)

∼=−→
⊗

S⊆S′

OX[n](S′),

sending s∆̃ 7→
⊗

S⊆S′ sS′ , where ∆̃ is the exceptional divisor in Bl∆|S| X
|S|. Similarly, there are canonical

isomorphisms
π∗

SOP(|S|−1)d−1(−1)
∼=−→

⊗
S⊆S′

OTd,n
(S′).

Proof. The first part follows from proposition 7.1 using the same argument we have seen many times in this
thesis. For the second part note that if j : P(|S|−1)d−1 ↪→ Bl∆|S| X

|S| is the inclusion of the fiber over the origin
for the blow up map Bl∆|S| X

|S| then j∗OBl∆|S|
(∆̃) is isomorphic to OP(|S|−1)d−1(−1). Now, it is easy to see

that the following diagram commutes

Td,n X[n]

P(|S|−1)d−1 Bl∆|S| X
|S|

i

πS ΠS

j

Thus, we have canonical isomorphisms

π∗
SOP(|S|−1)d−1(−1) ∼= π∗

Sj
∗OBl∆|S| X|S|(∆̃) ∼= i∗Π∗OBl∆|S| X|S|(∆̃) ∼= i∗

⊗
S⊆S′

OX[n](S′)

by lemma 7.18 this is isomorphic to
⊗

S⊆S′ OTd,n
(S′).

Remark. If you do not know why i∗OBl∆|S|
(∆̃) ∼= OP(|S|−1)d−1(−1) and are unwilling to take my word for it

then note that it is not important that the resulting line bundle here is specifically O(−1).

By this lemma the morphisms ΠS and πS induce maps of log schemes

ΠS : X[n] → (Bl∆|S| X
|S|,O(∆̃))

and
πs : Vd,n → (P(|S|−1)d−1,O(−1))

via the isomorphisms of sheaves from the lemma. For the next lemma, recall that by theorem 3.16 the Kato-
Nakayama analytification of (Bl∆|S| X

|S|,O(∆̃)) is BlR∆|S|
(Xan)|S| and the analytification of (P(|S|−1)d−1,O(−1))

is S(|S|−1)2d−1.
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Lemma 7.29. The Kato-Nakayama analytification of πS : Vd,n → (P(|S|−1)d−1,O(−1)) is the projection map
πS : K2d,n → S(|S|−1)2d−1 defined in section 4.

Proof. First note that it is easy to verify that the following diagram commutes

Confn(X) X[n] Vd,n

(Bl∆|S| (X)|S|,O(∆̃)) (P(|S|−1)d−1,O(−1))

X |S|

pS

ΠS πS

ρ
0

where pS is the inclusion Confn(X) ↪→ X composed with the projection onto coordinates corresponding to
elements in S Xn → X |S|. For X = Ad

C, the analytification of this diagram is

Confn(Rd) FMn(Rd) Kd,n

BlR∆|S|
(Rd)|S| S(|S|−1)d−1

(Rd)|S|

pS

ΠKN
S πKN

S

ρ|S| 0

By lemma 4.4 the commutativity of this diagram implies that πKN
S is πS from section 4 (and furthermore that

ΠKN
S = fS).

With this we are ready to prove that the maps kKN
n commute with the composition maps. To avoid making the

proof too long I have divided it into 3 lemmas. Before stating them I will introduce some notation. In what
follows let n be a positive integer, m = (m1, . . . ,mn) be a list of positive integers, and m =

∑
i mi. Define

• A(n) ..= (S1)n × K2d,n

• A[m] ..= A(m1) ×A(m2) × · · · ×A(mn)

• δn,m : A(n) ×A[m] → A(m) to be the composition map in the K2d ⋊ S1 operad

• T(n) ..= Td,n

• T[m] ..= T(m1) × · · · × T(mn)
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• γn,m : T(n) × T[m] → T(m) to be the composition maps for the Td,n

• K(n) ..= Kd,n

• K[m] ..= K(m1) × · · · × K(mn)

• km ..= km1 × · · · × kmn
: T[m] → K[m]

• V(n) ..= Vd,n

• V[m] ..= V(m1) × · · · × V(mn)

• Pn
..= (P(n−1)d−1, (0 : O → O(−1)))

• C ..= (Spec C, (0 : O → O))

• hS : K(n) → P|S| to be the composition K(n) → V(n) πS−−→ P|S| for S ⊆ [n], |S| ≥ 2

• hi : K(n) → C to be the map given by (the only possible) f : Td,n → Spec C and f∗O
∼=−→ Li.

• HS : K(n) × K[m] → P|pn,m(S)| for S ⊆ [m], |pn,m(S)| ≥ 2 as the composition

K(n) × K[m] → K(n)
apn,m(S)−−−−−−→ P|pn,m(S)|.

• HS : K(n) × K[m] → P|qn,m
r (S)| × C for S ⊆ [m], pn,m(S) = {r}, |S| ≥ 2 as the composition

K(n) × K[m] → K(n) ×K(mr)
ar×a

q
n,m
r (s)−−−−−−−−→ C × P|pn,m(S)|.

• Hi : K(n) × K[m] → C × C for i ∈ [m], pn,m(i) = r, as the composition

K(n) × K[m] → K(n) ×K(mr)
a{r}×a{q

n,m
r (i)}−−−−−−−−−−→ C × C.

Lemma 7.30. For every i ∈ [m] here is a morphism g : C × C → C such that the following diagram commutes

T(n) × T[m] T(m)

K(n) × K[m] K(m)

C × C C

kn×km

γn,m

km

Hi hi

g

Furthermore, the analytification of the bottom half of this diagram commutes with δn,m, i.e. the following
diagram commutes

A(n) ×A[m] A(m)

S1 × S1 S1

Hi

δn,m

hi

gKN

Proof. First note that C × C ∼= (Spec C, (0 : O → L1, 0: O → L2)). By applying lemma 7.20 is easy to verify
that the diagram commutes when g is the identity on the underlying map of schemes and the isomorphism of
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line bundles is O
∼=−→ L1 ⊗ L2. From the definition of the analytification of a map of log schemes the induced

map gKN : S1 × S1 → S1 is the product morphism for the topological group S1. The analytification of Ai is the
product of the projection from A(n) ×A[m] to the rth S1 component of A(n) and the qn,m

r (i)th S1 component
of A(mr) and the analytification of ai is the projection to the ith S1 component of A(m). By definition or the
composition maps δn,m the diagram

A(n) ×A[m] A(m)

S1 × S1 S1

Hi

δn,m

hi

gKN

commutes if (and only if) gKN is the multiplication map which, as stated previously, it is.

Lemma 7.31. For every S ⊆ [m] with pn,m(S) ≥ 2 there is a morphism bS : P|pn,m(S)| → P|S| such that the
following diagram commutes

T(n) × T[m] T(m)

K(n) × K[m] K(m)

P|pn,m(S)| P|S|

kn×km

γn,m

km

HS hS

bS

Furthermore, the analytification of the bottom half of this diagram commutes with δn,m, i.e. the following
diagram commutes

A(n) ×A[m] A(m)

S(|pn,m(S)|−1)d−1 S(|S|−1)d−1

HS

δn,m

hS

bKN
S

Proof. To make the notation a little bit simpler let R = pn,m(S). We start by defining the map bS for the
underlying schemes P(|R|−1)d−1 → P(|S|−1)d−1. Since FH,d

S is naturally isomorphic to O⊕(|S|−1)d
H for any scheme

H, we have that P(|R|−1)d−1 represents the functor

H → {ϕ : FH,d
R ↠ L}

and P(|S|−1)d−1 represents the functor
H → {Φ: FH,d

S ↠ L}.

The desired morphism of schemes is the one induced by the natural transformation

(ϕ : FH,d
R ↠ L) 7→ (ϕ ◦ αn,m : FH,d

R ↠ L)

where αn,m is as in section 6.3. This is the restriction to fibers over the origin of a map BS : Bl∆|R| A|R| →
Bl∆|R| A|R| which is defined in the obvious way. Since this type of construction has appeared many times
I will now omit the details. The inverse image of the exceptional divisor in Bl∆|R| A|R| via this map is the
exceptional divisor in Bl∆|R| A|R| so by applying proposition 7.1 and restricting to P(|S|−1)d−1 we find that
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there is a canonical isomorphism b∗
SO(−1) ∼= O(−1). This gives a morphism of log schemes bS : P|R| → P|S|. It

is a trivial exercise to verify that the resulting diagram of morphisms of log schemes commutes. Finally, it is
also easy to use this construction to make a commutative diagram

P|R| P|S|

(Bl∆|R| (Ad)|R|, (s : O → O(∆̃|R|)) (Bl∆|S| (Ad)|S|, (s : O → O(∆̃|S|))

(Ad)|R| (Ad)|S|

bS

iR iS

ρR ρS

dS

where the analytification of dS is the map dS in lemma4.6. Thus, by lemma 4.6 the diagram

A(n) ×A[m] A(m)

S(|pn,m(S)|−1)d−1 S(|S|−1)d−1

HS

δn,m

hS

bKN
S

commutes.

The last result we need follows from a result that is interesting on its own. Therefore I will state it as a
proposition.

Proposition 7.32. Let X = (Pn−1, (0 : O → L1, 0: O → L2) where L1 = OPn−1 and L2 = OPn−1(−1), and let
Y = (Pn−1, (0 : O → M) where M = OPn−1(−1). Finally, let f : X → Y be the map given by the identity on
underlying schemes and M

∼=−→ L1 ⊗ L2. The analytification of f , fKN : S1 × S2n−1 → S2n−1 is the S1 action
on S2n−1 induced by the diagonal inclusion SO(2) ↪→ SO(2n).

Proof. First, let g : A1 × An → An be the map (z, (x1, . . . , xn)) 7→ (zx1, . . . , zxn). By the universal property of
the blow up this induces a map g̃ : A1 × Blp An → Blp An, where p denotes the origin in An. Now, let p̃ be
the exceptional divisor in Blp An, let s : OBlp An → M be the corresponding line bundle with section and let
t : OA1 → L be the line bundle with section corresponding to the origin in A1. By abuse of notation denote the
pullbacks of these two sheaves with sections to the product A1 × Blp An in the same way. It is clear that g−1(p̃)
is the scheme theoretic union A1 × p̃ ∪ o× Blp An, where o denotes the origin in A1. Hence by proposition 7.1
there is a unique isomorphism of line bundles

g̃∗M
∼=−→ L ⊗ M

sending g̃∗s 7→ s⊗ t. This extends g̃ to a morphism of log schemes

(A1 × Blp An, (s : O → L, t : O → M)) → (Blp An, t : O → M).

It is easy to verify that the following diagram of log schemes commutes.
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X Y

(A1 × Blp An, (s : O → L, t : O → M)) (Blp An, t : O → M)

A1 × An An

i

f

j

g̃

id×ρ ρ

g

Where i, j are the strict morphisms induced by the inclusions of fibers over the origin for the underlying schemes,
and A1 × An and An are the corresponding schemes with no line bundles. The analytification of this diagram
is the following,

S1 × S2n−1 S2n−1

BlRo R2 × BlRp R2n BlRp R2n

R2 × R2n R2n

iKN

f ′

jKN

g̃′

id×ρKN ρKN

gan

where g̃′ = g̃KN and f ′ = fKN. Since (a+ bi)(c+ di) = (ac− bd) + (ad+ bc) the analytification gan is given by

((a, b), (x1, y1, . . . , xn, yn)) 7→ (Ra,b(x1, y1), . . . , Ra,b(xn, yn))

where Ra,b : R2 → R2 is the linear transformation

Ra,b =
[
a −b
b a

]
.

Now, it is easy to construct a function g̃′ such that the diagram commutes with f ′ equal to the group action
morphism. Since ρ is a homeomorphism on a dense subset there is only one g̃′ that can make the diagram
commute and since iKN, jKN the function f ′ is uniquely determined by g̃′. Hence the group action function is
the only possible function which can make the diagram commute and so fKN must be this function.

Lemma 7.33. For every S ⊆ [m] with pn,m(S) = {r} and |S| ≥ 2 there is a morphism bS : C×P|qn,m
r (S)| → P|S|

such that the following diagram commutes

T(n) × T[m] T(m)

K(n) × K[m] K(m)

C × P|qn,m
r (S)| P|S|

kn×km

γn,m

km

HS hS

bS

Furthermore, the analytification of the bottom half of this diagram commutes with δn,m, i.e. the following
diagram commutes
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A(n) ×A[m] A(m)

S1 × S(|qn,m
r (S)|−1)d−1 S(|S|−1)d−1

HS

δn,m

hS

bKN
S

Proof. C × P|qn,m
r (S)| is isomorphic to the log scheme (P(|S|−1)d−1, (0 : O → L1, 0: O → L2)) where L1 = O and

L2 = O(−1), and P|S| is the log variety (P(|S|−1)d−1, (0 : O → M)) where M = O(−1). Now, it is easy to verify
that the first diagram is commutative when bS is the map of log schemes given by the identity on the underlying
schemes and the isomorphism of line bundles M ∼= L1 ⊗ L2. By propositon 7.32 the analytification of this map
is the group action function S1 × S(|S−1|)2d−1 → S(|S−1|)2d−1. By definition of the composition functions δn,m

it is clear that the second diagram commutes for this map.

Lemma 7.34. The following diagram commutes for every n,m.

T(n)KN × T(m1)KN × · · · × T(mn)KN T(m)KN

A(n) ×A(m1) × · · · ×A(mn) A(m)

(γn,m)KN

kKN
n ×kKN

m1 ×···×kKN
mn kKN

m

δn,m

Proof. From lemmas 7.30, 7.31, and 7.33 it is evident that

aS ◦ kKN
m ◦ (γn,m)KN = aS ◦ δn,m ◦ kKN

n × kKN
m

for every S ⊆ [m]. Since the maps aS are the inclusion

A(m) ↪→ (S1)m ×
∏

S∈P (m)

S(|S|−1)d−1

composed with the projection maps to each of the components the result immediately follows from the universal
property of the product.

Theorem 7.35. The analytification of the log-geometric Kontsevich operad without unit, Td, is isomorphic to
the S1-framed Kontsevich Operad in dimension 2d, K2d ⋊ S1, without unit.

Proof. Since the maps kKN
n are homeomorphisms by lemma 7.23 they give the desired isomorphism of operads

without unit by corollary 7.26 and lemma 7.34.

Remark. While we cannot extend this to an isomorphism of operads with units there is a somewhat stronger
version of this result. Namely, even though there is no unit in our operad of log schemes the "one object compo-
sition morphisms" ◦i : Td,n ×Td,m → Td,n+m−1 can still be defined in the obvious way and their analytifications
are identified with the "one object composition morphisms" of Kd ⋊ S1 by the isomorphisms kn.

As a final remark to end this thesis I will suggest two solutions to the problem of defining a unit morphism for
this operad. These "solutions" should be seen as suggestions for further research rather than theories I have
actually fully developed.

1. The perhaps most obvious way to get around this problem is by redefining Td,1 as Spec k without any
line bundles. We can still isomorphisms of line bundles in the same way as we did in section 7.1 by just
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removing ⊗OT1({1}) from any of the tensor products in which this appears. This operad of log schemes
has a unit and the analytification of this operad is the reduced S1-framed Kontsevich Operad in dimension
2d.

2. Another thing we could do is to change categories to the category of log schemes over (Spec k, 0: O → O).
In this category Td,1 is the unit object so the unit morphism would certainly be well defined. For this
to work we would have to define morphisms Td,n → (Spec k, 0: O → O) making Td,n log schemes over
(Spec k, 0: O → O). There is only one candidate for the map of underlying schemes so this is equivalent
to expressing OTd,n

as a tensor product of the other sheaves with sections. The most natural candidate
for this is

O ∼=
⊗

S⊆[n]

O⊗|S|
Td,n

.

There are some details to work out here since the Cartesian product in this category is not the same as
that in the category of log schemes over Spec k. However, I think (with emphasis on think) that one will
still be able to define the composition maps in this category.
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A Pullbacks of Effective Cartier Divisors

This appendix is dedicated to giving a proof of proposition 7.1.

Lemma A.1. Let s : OY → L be a section of a line bundle on a scheme Y and let f : X → Y be a morphism
of schemes. Furthermore, let S ↪→ Y denote the closed subscheme cut out by s and let S∗ ↪→ X denote the
subscheme cut out by the pullback of s, f∗s. Then there is an isomorphism of X-schemes,

S ×Y X ∼= S∗.

Proof. First notice that if we can find an open cover of
⋃

i Ui = X such that for each Ui there is an isomorphism of
Ui-schemes gi : S×Y X ∩Ui → S∗ ∩Ui then these maps glue to an isomorphism of X-schemes, g : S×Y X → S∗.
This follows from the fact that since gi, gj are X-morphisms the outer cycle of the following diagram must
commute. Since S∗ ∩ Uij → X is a monomorphism this implies that the inner cycle is commutative too, i.e.
gi, gj satisfy the cocycle condition.

S∗ ∩ Uij Uij

S ×Y X ∩ Uij X

S∗ ∩ Uij Uij

id id

gi

gj

This statement reduces the proof to the case where X,Y are affine and L is the trivial line bundle since we
can choose an affine open cover of Y which trivializes L,

⋃
i Vi = Y , and an affine open cover of X,

⋃
i,j Uij ,

Uij = Spec Bij such that Uij ⊆ f−1(Vi).

In the case X = Spec B, Y = Spec A and s ∈ Γ(Y,OY ) = A we have that S = Spec A/(s) ↪→ Spec A = Y .
Furthermore, if f : X → Y is induced by ϕ : A → B we have that f∗s ∈ Γ(X,OX) = B is the section, ϕ(s) and
thus S∗ = Spec B/(ϕ(s)) ↪→ Spec B = X. Hence, the desired result is, in the affine, trivial L, case, equivalent
to claiming that there is a B-algebra isomorphism σ : A/(s) ⊗A B → B/(ϕ(s)). This is a standard result from
commutative algebra and thus we are done.

Lemma A.2. Let s : OX → L and t : OX → M be non zero sections of line bundles on an irreducible scheme X
such that s, t both cut out the same closed subscheme of X. Then there is a unique isomorphism of OX-modules

ϕ : L → M

sending s 7→ t.

Proof. Let
⋃

i Ui be a cover of trivializing open affines, Ui = Spec Ai, for both L and M and let µi : OUi → L|Ui

and σi : OUi → M|Ui be the corresponding trivializing isomorphisms. Furthermore, define ai, bi ∈ Ai to be
the elements such that µi(ai) = s|Ui and σi(bi) = t|Ui . Finally, let li,j and mi,j denote the Ui ∩ Uj connecting
homomorphisms for L and M respectively. Now, since ai, bi are non-zero divisors which cut out isomorphic
closed subschemes of Spec Ai there is a unique automorphism, ρi : A → A (seen as an A-module) sending ai 7→ bi
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given by a 7→ ria. This implies that there is a unique isomorphism ϕi : L|Ui
→ M|Ui

of OUi
-modules sending

s|Ui
→ t|Ui

; namely,
ϕi = σi ◦ ρi ◦ µ−1

i .

Lastly notice that
ϕj ◦ li,j(si) = ϕj(sj) = tj = mi,j(ti) = mi,j(ϕi(si)).

Since ai is not a zero divisor and µi(ai) = si this implies that ϕj ◦ li,j = mi,j ◦ ϕi. Since the isomorphisms
ϕi commute with the structure morphisms for the respective line bundles they glue to give an isomorphism
of sheaves ϕ : L → M sending s 7→ t. This isomorphism is unique since the restriction of ϕ to each Ui was
unique.

Remark. We could have allowed X to be reducible and instead required that s, t do not restrict to 0 on any
irreducible component of X but this would have made the proof slightly more tedious so I decided against
including this.

Finally, we are now ready for the proof of proposition 7.1. I will restate it for clarity.

Proposition. Let D ↪→ Y be an effective Cartier divisor and let s : OY → OY (D) be the corresponding line
bundle with section. Furthermore, let X be an irreducible scheme and let f : X → Y be a morphism of schemes
such that there is an isomorphism of X-schemes

D ×Y X ∼= D′
1 ∪ · · · ∪D′

n

where D′
i are all (distinct) effective Cartier divisors with corresponding sections s′

i : OX → OX(D′
i). Then there

is a unique isomorphism of OX-modules,

ϕ : f∗OY (D) →
n⊗

i=1
OX(D′

i)

such that ϕ(s∗) =
⊗

i s
′
i.

Proof. By lemmas A.1 and A.2 we must only check that the zero locus of
⊗

i s
′
i is the scheme theoretic union

D′
1 ∪ · · · ∪ D′

n. Using a gluing argument similar to that in the proof of lemma A.1 we can reduce to the case
when X is affine, X = Spec A, and the sheaves OX(D′

i) are trivial with sections s′
i ∈ A respectively. Here we

abuse notation somewhat by considering s′
i to be elements of A rather than global sections of a quasi coherent

sheaf. In this case the ideal for the closed subscheme corresponding to the scheme theoretic union of closed
subschemes

⋃
i Spec A/(s′

i) is the intersection of ideals
⋂

i(s′
i). Furthermore, the section

s′
1 ⊗ · · · ⊗ s′

n ∈ A⊗ · · · ⊗A ∼= A

is just the element s1s2 . . . sn and therefore The closed subscheme cut out by
⊗

i s
′
i corresponds to the ideal

(s1s2 . . . sn). Finally, since D′
i is irreducible for every i the ideals (s′

i) are disjoint prime ideals which implies
that ⋂

i

(si) = (
∏

i

si).

Thus, the two closed subschemes we have defined are the same and the proof is complete.
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Remark. Notice that we could have made this statement more general by only requiring D to be cut out by a
single equation in some line bundle L and similarly only requiring each D′

i to be cut out by a single equation
in L′

i such that none of them share any irreducible components. However, since we do not need this in full
generality I decided to only include this weaker result.
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