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Abstract

In this thesis, we study rational scalar-valued Herglotz functions. Properties of the class of general Herglotz
functions are discussed with examples. Rational scalar-valued Herglotz functions will then be characterised
either by the their poles or by the corresponding measures in the integral representation. Lastly, the result
from the scalar-valued case is used to extend the result to matrix-valued Herglotz functions.

Sammanfattning

I denna uppsats studerar vi skälarvärda Heglotz funktioner. Egenskaper hos klassen av generella Herglotz
funktioner diskuteras med exempl. Rationella skälarvärda Herglotz funktioner karaktäriseras sedan antingen
genom deras poler eller genom egenskaper hos motsvarande m̊att i integral representationen. Avslutningsvis
utvidgas resultatet till matrisvärda Herlotz funktioner.
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1 Introduction

The class of Herglotz functions consists of analytic functions that map the closed upper half-plane into the
open upper half-plane. Herglotz functions are important for many reasons, they appear in the study of
the spectral theory of Schrödinger operators [14], the modeling of passive systems and circuit synthesis [10,
4]. In this thesis, we will review properties of scalar- and matrix-valued Herglotz functions and provide a
characterisation of rational Herglotz functions.
A fundamental characterisation of (scalar-valued) Herglotz functions is their integral representation. Any
Herglotz function admits an integral representation which depends on two scalar parameters and a positive
Borel measure on R. Similarly, matrix-valued Herglotz function have an integral representation that depends
on two constant matrices and a matrix-valued measure defined on Borel sets of R. In both cases the measure
and the two constant parameters are uniquely determined by the function.
An important subclass of Herglotz functions are rational Herglotz functions. Rational Herglotz functions are
important for many reasons: general Herglotz function can be approximated by rational Herglotz functions
with only real poles and in applications they play a central role in passive network synthesis [4]. It is therefore
natural to characterise them.
The idea of the characterisations is to divide up the poles of the function in poles on the real line and poles
in the lower half-plane. The parts of the function with poles on the real line and in the lower half-plane
are respectively Herglotz function. This is shown by decomposing the corresponding measure into different
parts which are in turn Herglotz measures that correspond to the different part of the function with poles
on the real line and in the lower half-plane. The goal then is to characterise Herglotz functions with poles
only on the real line and in the lower half-plane. Herglotz functions with poles only on the real line are
characterised by their poles being simple and having negative residue and Herglotz functions with poles
in the lower half-plane are characterised by their corresponding measure. The same procedure is repeated
verbatim for matrix-valued Herglotz functions.



2 Preliminaries

2.1 Basic Facts About Herglotz Functions

In this section, we introduce some notation and provide some classical results about Herglotz functions. The
results and their proofs are based on [14, Chapter 3.4], [6, Chapter 2.], [10, Chapter 1.2.] and [2, Chapter
1].

Definition 1. Let C± := {z ∈ C : Im[z] ≷ 0} denote the open upper and lower half-planes. A function
h : C+ → C is called a Herglotz function if h is analytic and Im[h(z)] ≥ 0 for all z ∈ C+.

Im[z]

Re[z]

Im

Re

h(z)

Figure 1: Herglotz Function

Example 2. Examples of Herglotz functions are

a+ ib, a+ bz, a ∈ R, b ≥ 0, (1)

log(z) = ln(|z|) + i arg(z), arg(z) ∈ (−π, π], (2)

zr := er log(z), 0 ≤ r ≤ 1, (3)

tan(z), since Im[tan(x+ iy)] =
sinh(2y)

cos(2x) + cosh(2y)
> 0 for y > 0, (4)

1

w − z
, Im[w] ≤ 0. (5)

♢

We can construct more examples by composition and linear combinations. To be more specific, any positive
linear combination of Herglotz functions is a Herglotz function. In addition, if h1 is Herglotz function that
does not attain any real value, then for any other Herglotz function h2 we have that h2(h1) is a Herglotz
function.

Example 3. More examples of Herglotz functions

− 1

tan(z)
= − cot(z), (6)

− 1

z − 3
z + 4i

. (7)

A less trivial example is Γ′(z)
Γ(z) where Γ(z) is Euler’s Gamma function, see [1, Chapter 6.] for more results.

To see this, we note that

Γ(z) := e−γz 1

z

∞∏
n=1

1

1 + z
n

e
z
n (8)



where γ := limn→∞
(∑n

m=1
1
m − log(n)

)
. It can be shown that Γ(z) is a non-vanishing meromorphic function

with poles at the non-positive integers and no other poles. Viewing Γ as function on the upper half-plane,
we have that log(Γ(z)) is well-defined and it can be calculated

d log(Γ(z))

dz
=

Γ′(z)

Γ(z)
=− γ − 1

z
+

∞∑
n=1

(
1

n
−

1
n

1 + z
n

)
(9)

=− γ − 1

z
+

∞∑
n=1

(
1

n
− 1

n+ z

)
which is a Herglotz function since it analytic on C+ and maps it into itself. Note that in the sum appearing
when we take the logarithm, we can interchange the order of differentiation and summation since the sequence
of partial sums converges uniformly on compact subsets of the upper half-plane, see [9, Theorem 11.11, page
184, Theorem 4.29]. ♢

Example 4. In this example we mention a class of functions related to Herglotz function that are useful in
passive network synthesis. To be more specific, we will consider positive-real functions.

Definition 5. Let C± := {z ∈ C : Re[z] ≷ 0}. We define p : C+ → C to be a real function if p(x) = Re[p(x)]
for x ∈ R+.

Definition 6. A real function p(z) is positive-real (PR) if Re[p(z)] ≥ 0 for Re[z] > 0 and p is analytic in
C+.

One of the most significant result in circuit theory is the following

The driving point impedance (admittance) of an RLC circuit is a rational positive-real function.

For a much more detailed discussion on the topic, see [16, Chapter 2, Chapter 5.2].

Remark 7. Note that for a PR function we have that the following symmetry holds since h is analytic across
the real line and fixes the real line

p(z) = p(z)

for z ∈ C+. In addition, note that given a PR function p(z), the function h(z) := ei
π
2 p(e

−iπ
2 z) is a Herglotz

function that maps the upper part of the imaginary axis, {iy : y > 0}, to {iy : y ≥ 0}. In addition, we have
the following symmetry:

h(−z) = ei
π
2 p(e

−iπ
2 (−z)) = ei

π
2 p(e

iπ
2 z) = e

iπ
2 p
(
e

−iπ
2 z
)
= e

iπ
2 p(e

−iπ
2 z) = −e

iπ
2 p(e

−iπ
2 z) = −h(z).

♢

A central characterisation of Herglotz functions is the classical integral representation. We present the
theorem here and provide a proof in the appendix.

Theorem 8. A function h : C+ → C is a Herglotz function if and only if it admits a representation:

h(z) = a+ bz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ) = a+ bz +

∫
R

1 + zλ

(λ− z)(1 + λ2)
dµ(λ) (10)

where µ is a positive Borel measure that satisfies∫
R

1

1 + λ2
dµ(λ) < ∞ (11)

and a ∈ R, b ≥ 0 are constants.

We now provide some examples of Herglotz functions and their corresponding measure.



Example 9. 1. The function 1
λ−z for λ ∈ R is a Herglotz function with constants a = b = 0 and measure

µ = δλ where δλ is the point mass measure at λ,

2. The function log(z) is Herglotz function with constants a = b = 0 and measure being the Lebesgue
measure restricted to the negative part of the real line, that is,

log(z) =

∫ 0

−∞

(
1

λ− z
− λ

1 + λ2

)
dλ

for z ∈ C+. ♢

We will now show that there exists a one-to-one correspondence between Herglotz functions and the triples
(a, b, µ) satisfying Theorem 8.

Lemma 10. Let h be a Herglotz function with a representation given in Theorem 8. Then we have:

1. a = Re[h(i)],

2. b = limz→̂∞
h(z)
z , where z→̂∞ denotes non-tangential limit, that is, the limit within some domain

{z ∈ C+ : θ ≤ arg(z) ≤ π − θ} with θ ∈ (0, π
2 ], see Figure 2.

3. The measure µ can be reconstructed via the Stieltjes inversion formula

1

2
µ({λ1}) +

1

2
µ({λ2}) + µ((λ1, λ2)) = lim

ϵ→0+

1

π

∫ λ2

λ1

Im[h(λ+ iϵ)]dλ (12)

Proof. The first claim is clear.

For the second statement we note

h(z)

z
=

a

z
+ b+

∫
R

1 + zλ

z(λ− z)(1 + λ2)
dµ(λ).

The result then follows if we can apply the dominated convergence theorem since

1

|z||λ− z|(1 + λ2)
≤ 1

|z|| Im[z]|(1 + λ2)
→ 0

as z → ∞ in any sector in the upper half plane; and similarly

|λ|
|λ− z|(1 + λ2)

≤ |λ|
| Im[z]|(1 + λ2)

→ 0

as z → ∞ in any sector in the upper half-plane. We justify applying the dominated convergence theorem by
showing ∣∣∣∣ 1 + zλ

z(λ− z)(1 + λ2)

∣∣∣∣ ≤ 1

1 + λ2

1 + |z|2

| Im[z]|
(13)

for z ∈ C. To see this we maximise the function

λ 7→ |λ|
|λ− z|

.

The function attains its maximum value at λ = |z|2
Re[z] (this can be found by differentiating with respect to

λ). It follows that the maximum value is

|λ|
|λ− z|

≤ |z|2

||z|2 − zRe[z]|
=

|z|2

|z||z − Re[z]|
=

|z|
| Im[z]|

.



We can now apply the dominated convergence theorem since∣∣∣∣ 1

λ− z
− λ

1 + λ2

∣∣∣∣ = ∣∣∣∣ 1 + λz

(λ− z)(1 + λ2)

∣∣∣∣ ≤ 1

Im[z](1 + λ2)
+

|λz|
|(λ− z)|(1 + λ2)

≤ 1

1 + λ2

1 + |z|2

| Im[z]|
.

For proof of the last claim, let I := [λ1, λ2]. Then∫
I

1

π
Im[h(x+ iy)]dx =

∫
I

1

π

∫
R

y

(λ− x)2 + y2
dµ(λ)dx. (14)

We now use Fubini’s theorem to interchange the order of integration:∫
I

1

π

∫
R

y

(λ− x)2 + y2
dµ(λ)dx =

∫
R

1

π

∫
I

y

(λ− x)2 + y2
dxdµ(λ) =

∫
R

1

π
arctan

(
x− λ

y

) ∣∣∣λ2

λ1

dµ(λ). (15)

We have that

1

π

[
arctan

(
λ2 − λ

y

)
− arctan

(
λ1 − λ

y

)]
→ 1

2

[
χ[λ1,λ2](λ) + χ(λ1,λ2)(λ)

]
pointwise as y → 0+. To see this, we consider the different cases

• if λ > λ2 then

lim
y→0+

[
arctan

(
λ2 − λ

y

)
− arctan

(
λ1 − λ

y

)]
= arctan(−∞)− arctan(−∞) = 0;

• if λ < λ1 then

lim
y→0+

[
arctan

(
λ2 − λ

y

)
− arctan

(
λ1 − λ

y

)]
= arctan(+∞)− arctan(+∞) = 0;

• if λ1 < λ < λ2 then

lim
y→0+

1

π

[
arctan

(
λ2 − λ

y

)
− arctan

(
λ1 − λ

y

)]
=

1

π
[arctan(+∞)− arctan(−∞)] = 1;

• if λ1 = λ then

lim
y→0+

1

π

[
arctan

(
λ2 − λ

y

)
− arctan

(
λ1 − λ1

y

)]
=

1

π
arctan(+∞) =

1

2
;

• if λ2 = λ then

lim
y→0+

1

π

[
arctan

(
λ2 − λ2

y

)
− arctan

(
λ− λ1

y

)]
= − 1

π
arctan(−∞) =

1

2
.

Moreover since

0 ≤ 1

π

[
arctan

(
λ2 − λ

y

)
− arctan

(
λ1 − λ

y

)]
≤ 1

we have that that
1

π

[
arctan

(
λ2 − λ

y

)
− arctan

(
λ1 − λ

y

)]
→ 0+



monotonically as y → 0+ for every λ /∈ [λ1, λ2] and, similarly,

1

π

[
arctan

(
λ2 − λ

y

)
− arctan

(
λ1 − λ

y

)]
→ 1

2

[
χ[λ1,λ2](λ) + χ(λ1,λ2)(λ)

]
monotonically as y → 0+ for every λ ∈ [λ1, λ2].

It follows therefore by the montone convergence theorem that

lim
y→0+

∫
I

1

π
Im[h(x+ iy)]dx =

∫
R

1

2

[
χ[λ1,λ2](λ) + χ(λ1,λ2)(λ)

]
dµ(λ) =

1

2
µ(s{λ1}) +

1

2
µ({λ2}) + µ((λ1, λ2)).

The third part of Lemma 10 is particularly useful when finding information about the corresponding mea-
sure.

Example 11. Consider the function h(z) = zr for 0 ≤ r < 1 as defined in Example 2. We note that for
z = x+ iy and for x > 0 it follows that

Im[h(x+ iy)] = log(|x+ iy|r) sin(r arg(x+ iy)) → 0

as y → 0+ for x > 0. Hence, the measure vanishes on the positive part of the real axis. On the negative real
axis, we have that

lim
y→0+

Im[h(x+ iy)] = (−x)r sin(rπ), x < 0. (16)

It follows that for the integral representation, of Theorem 8, for h we have that a = cos(πr2 ) and µ is
absolutely continuous with respect to the Lebesgue measure with dµ = 1

π (−λ)r sin(πr)χ(−∞,0)(r)dλ where χ
is the characteristic function. ♢

We strengthen the content of Lemma 10 slightly.

Lemma 12. Let h be a Herglotz function with integral representation given in Theorem 8. Then for any

C1(R) function φ : R → R which satisfies the inequality |φ(x)| ≤ C
(
1 + x2

)−1
for some C ≥ 0 and all

x ∈ R, we have that

lim
y→0+

1

π

∫
R
φ(x) Im[h(x+ iy)]dx =

∫
R
φ(λ)dµ(λ).

Proof. Assume, without loss of generality, that b = 0 then

1

π

∫
R
φ(x) Im[h(x+ iy)]dx =

1

π

∫
R
φ(x)

(∫
R

y

(λ− x)2 + y2
dµ(λ)

)
dx (17)

By Fubini’s theorem we can interchange the integration limit to find

lim
y→0+

1

π

∫
R
φ(x) Im[h(x+ iy)]dx = lim

y→0+

1

π

∫
R

∫
R
φ(x)

y

(λ− x)2 + y2
dxdµ(λ).

We then apply the dominated convergence theorem to change the order of the limit and the first integral

lim
y→0+

1

π

∫
R

∫
R
φ(x)

y

(λ− x)2 + y2
dxdµ(λ) =

1

π

∫
R

lim
y→0+

∫
R
φ(x)

y

(λ− x)2 + y2
dxdµ(λ) (18)

Appearing in the inner integral is the Poisson kernel for the upper half-plane and by properties of the Poisson
kernel it follows that

lim
y→0+

∫
R
φ(x)

1

π

y

(λ− x)2 + y2
dx = φ(λ)

which completes the proof.



The next result considers the case when a Herglotz function maps to an point on the real line. It turns out,
such functions are trivial.

Lemma 13. If a Herglotz function h attains a real value in the open upper half-plane, then it is a real-
constant function.

Proof. Assume that h(z0 = x0 + iy0) = α for some α ∈ R then it follows that

Im[h(z0)] = by0 +

∫
R

y0
(λ− x0)2 + y20

dµ(λ) = 0,

but since the integrand is positive, it follows that µ(R) = 0 and b = 0. In total, h(z) ≡ α.

The next result deals with the non-tangential limit. It is particularly useful when considering Herglotz
functions with simple poles on the real line.

Lemma 14. The measure µ in the integral representation of Theorem 8 has a point mass at the point λ0 ∈ R
if and only if the limit

lim
z→̂λ0

(λ0 − z)h(z)

is positive. In this case, µ ({λ0}) = limz→̂λ0
(λ0 − z)h(z). Here, z→̂∞ defines the limit within some domain

{z ∈ C+ : θ ≤ arg(z − λ0) ≤ π − θ} with θ ∈ (0, π
2 ] as indicated in Figure 2.

Proof. We assume that a = b = 0 in the integral representation. It follows

(λ0 − z)h(z) =

∫
R

(λ0 − z)(1 + zλ)

(λ− z)(1 + λ2)
dµ(λ). (19)

By relation 13 we have ∣∣∣∣ 1 + zλ

(λ− z)(1 + λ2)

∣∣∣∣ ≤ 1

1 + λ2

1 + |z|2

| Im[z]|

for each z ∈ C+ and we are then able to apply the dominated convergence theorem to find

(λ0 − z)h(z) =

∫
R

(λ0 − z)(1 + zλ)

(λ− z)(1 + λ2)
dµ(λ) =

∫
R\{λ0}

(λ0 − z)(1 + zλ)

(λ− z)(1 + λ2)
dµ(λ)+ (20)∫

{λ0}

(λ0 − z)(1 + zλ)

(λ− z)(1 + λ2)
dµ(λ) =

∫
R\{λ0}

(λ0 − z)(1 + zλ)

(λ− z)(1 + λ2)
dµ(λ) + µ({λ0})

1 + zλ0

1 + λ2
0

→ µ({λ0}) (21)

as z → λ0 in any sector of the upper half plane.

Re(z)

Im(z)

λ0

Figure 2: Non-tangential limit



Remark 15. Note that if the limit is taken with z = λ0 + iy then the lemma above implies

µ({λ0}) = lim
y→0+

y Im[h(λ0 + iy)]

and
0 = lim

y→0+
yRe[h(λ0 + iy)].

The integral representation simplifies if we add more conditions on the function.

Example 16. Let h be a Herglotz function satisfying

h(−z) = −h(z). (22)

We have that the function h is Herglotz if and only if it has an integral representation

h(z) = a+ bz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ).

Since h(i) = iα for some α ∈ R, we have that a = 0. The symmetry of h implies

Im[h(−(x+ iy)] = Im[h(−x+ iy)] = Im[−h(x+ iy)] = Im[h(x+ iy)], (23)

which implies by Lemma 12 that the corresponding measure µ is even. This gives

h(z) = bz + lim
R→+∞

∫ R

−R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ) = bz + lim

R→+∞

∫ R

−R

1

λ− z
dµ(λ) = (24)

= bz − µ({0})
z

+ lim
R→+∞

∫ R

0

1

λ− z
− 1

λ+ z
dµ(λ) = bz − µ({0})

z
+

∫
(0,∞)

2z

λ2 − z2
dµ(λ). (25)

♢

We finish this section by briefly commenting on the extension of Herglotz functions across the real line. By
the proof of Theorem 8 the integral representation which we define

g(z) := a+ bz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ), z ∈ C \ R

is analytic and well-defined on any compact subset of C \ R. Moreover, g satisfies the symmetry prop-
erty

g(z) = g(z).

It follows that g(z) has a symmetric extension across the real line. Hence, if we are able to analytically
extend a Herglotz function across the real line, the extension would have to be symmetric for it to coincide
with the extension provided by the integral. This may not always be the case. Indeed, consider the Herglotz
function h(z) = i which is trivially continued across the real line. On the other hand, we have∫

R

(
1

λ− z
− λ

λ2 + 1

)
1

π
dλ =

{
i, z ∈ C+,

−i, z ∈ C−.
(26)

where the integral is calculated using residue theorem applied to the semi circle in the upper half-plane
with radius R tending to ∞. Hence, the analytic extension of a Herglotz function does not always coincide
with the symmetric extension given by the integral. It is then worth asking when it is possible to extend a



Herglotz function through an interval on the real line by symmetry. We note that if the measure is 0 on the
interval (λ1, λ2) ⊂ R then the integral representation simplifies to

h(z) = a+ bz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dλ = a+ bz +

∫
R\(λ1,λ2)

(
1

λ− z
− λ

1 + λ2

)
dλ. (27)

It follows that the function h(z) is analytic on C+, well-defined and real-valued on (λ1, λ2) and can, therefore,
be continued by symmetry

f(z) = f(z)

across (λ1, λ2). The need to continue Herglotz functions turns out to be useful in the study of the complex
spectra of certain non-self-adjoint operators, see [5]. A more general result is provided in [7, Chapter 1,
Theorem 1.1 & 1.2].

Theorem 17. If h(z) is a Herglotz function with integral representation given by Theorem 8, then h(z) can
be analytically continued across (λ1, λ2) ⊂ R into a subset D of the lower half plane if and only if µ is purely
absolutely continuous on (λ1, λ2) with associated density function µ′ which is real-analytic on (λ1, λ2). In
this case, the continuation of h(z) across (λ1, λ2) is given by

h(z) = h(z) + 2πiµ′(z), z ∈ D, (28)

where µ′(z) denotes the complex–analytic extension of µ′(z).

Note, in particular, that an extension is provided by reflection if and only if µ′(λ) = 0 for all λ ∈ (λ1, λ2).
The proof of the theorem is based on the inversion formula provided in Lemma 10 property 3.



2.2 Support of the Measure

As seen in the last section, property 3 from Lemma 10 was extremely useful since it shows that the measure
can be recovered by studying the imaginary part of the corresponding Herglotz function along the real line.
It is, therefore, relevant to study the boundary values of a Herglotz function and its relation to the measure.
The purpose of this section is to glean out more information about the measure by developing the support
theory for the measure. This section is based on [6, Chapter 3.], [14, Appendix A.10, Chapter 3.4] and [13,
Chapter 1.1].

Let µ be a Borel measure on R. We require in the definition of Borel measures that µ(K) < ∞ on compact
sets K ⊂ R. The latter requirement is not an issue since the measures we will be working with will be
satisfying it. We denote by

µ = µac + µs = µac + µsc + µpp (29)

the decomposition of µ into into its absolutely continuous (ac), singularly continuous (sc), pure point (pp),
and singular (s) parts with respect to Lebesgue measure on R. We recall some necessary definitions. Given
two Borel measures µ, ω on R, we call a set Sµ a support of µ if µ(R \ Sµ) = 0. Moreover, the support Sµ

of µ is called minimal relative to ω if for any support A ⊆ Sµ we have that ω(Sµ \A) = 0. We will consider
minimal supports where ω is the Lebesgue measure.

We let Ir(x) := (x− r, x+ r), the interval of length 2r centred around x. We define

(Dµ)(x) := lim
r→0+

µ(Ir(x))

2r
(30)

to be the derivative of µ at x ∈ R when the limit exists. We further define the upper and lower derivatives
as

(Dµ)(x) := lim sup
ϵ→0+

µ(Ir(x))

2r
, (31)

(Dµ)(x) := lim inf
ϵ→0+

µ(Ir(x))

2r
(32)

where

lim sup
x→a

f(x) := lim
ϵ→0

(sup{f(x) : x ∈ Iϵ(a) \ a}), (33)

lim inf
x→a

f(x) := lim
ϵ→0

(inf{f(x) : x ∈ Iϵ(a) \ a}) (34)

We have the following result which relates the upper derivatives to µ and the Lebesgue measure.

Lemma 18. Let α > 0. For every Borel set A we have

ω({x ∈ A | (D̄µ)(x) > α}) ≤ 3n
µ(A)

α
(35)

and

ω({x ∈ A | (D̄µ)(x) > 0}) = 0, whenever µ(A) = 0. (36)

We recall Lebesgue’s differentiation theorem

Theorem 19 (Lebesgue’s Differentiation Theorem). Let f be locally integrable with respect to the Lebesgue
measure. Then for a.e. x ∈ R it holds that

lim
r→0+

1

2r

∫
Ir(x)

|f(y)− f(x)|dω(y) = 0. (37)



An immediate consequence of Lebesgue’s differentiation theorem and Lebesgue’s decomposition theorem is
the following theorem.

Theorem 20. Let µ be a Borel measure on R. Then Dµ exists a.e. with respect to the Lebesgue measure and
is the Radon-Nikodym derivative of the absolutely continuous part of µ with respect to the Lebesgue measure.

Proof. By Lebesgue’s decomposition theorem we have

µ = µac + µs

where µs and the Lebesgue measure are mutually singular, that is, there exist disjoint Borel sets A and B
such that

R = A ∪B, A ∩B = ∅,

and
µs(A) = 0, ω(B) = 0.

By Lemma 18, we have that Dµs = 0 for all x ∈ A. This implies that Dµs = 0 a.e. and it, therefore, suffices
to show that Dµac exists a.e. with respect to the Lebesgue measure since Dµ = Dµac + Dµs when both
values exist. We have that there exists a locally integrable function f : R → R such that

µac(X) =

∫
X

fdω(x)

for Borel sets X ⊂ R. That f is locally integrable follows by the definition of Borel measures given at the
start of this section. We have then by Lebesgue’s Differentiation theorem

(Dµac)(x) = lim
r→0+

µac(Ir(x))

2r
= lim

r→0+

1

2r

∫
Ir(x)

f(y)dω(y) = f(x) (38)

for almost every x ∈ R. Hence, (Dµac)(x) exists a.e. with respect to the Lebesgue measure.

We find supports for the absolutely continuous and singularly continuous parts using the lower and upper
derivatives.

Theorem 21. The set Mac := {x ∈ R : 0 < (Dµ)(x) < ∞} is a support for the absolutely continuous part.

Proof. The result follows immediately from the previous theorem since on the set (Mac)
C := R \ {x ∈ R :

0 < (Dµ)(x) < ∞} we have

µac(D) =

∫
D

Dµdx = 0.

Theorem 22. The set Ms := {x ∈ R : (Dµ)(x) = ∞} is a support for the singular part.

Proof. See [14, Chapter A.10, Theorem A.46.]

The following theorem strengthens the content of the last theorems and shows that the supports are minimal
supports.

Lemma 23. The set Mac is a minimal support of µac

Proof. See [14, Chapter A.10, Lemma A.47.].



ThatMs is a minimal support for µs follows immediately from the Lebesgue decomposition and the definition
of a support. Indeed, any support of the absolutely singular part is minimal.
We are now ready to state the support theorem for measures corresponding to Herglotz functions. The
following result shows that boundary value correspond to the Radon-Nikodym derivative of the absolutely
continuous part.

Theorem 24. Let h be a Herglotz function with associated measure µ. Then for λ ∈ R

(Dµ)(λ) ≤ lim inf
ε→0+

1

π
Im(h(λ+ iϵ)) ≤ lim sup

ε→0+

1

π
Im(h(λ+ iϵ)) ≤ (D̄µ)(λ). (39)

Proof. See [13, Chapter 1.1, Theorem 1.6. (iv)] or [14, Chapter 3.4, Theorem 3.26.].

It follows by Theorem 20 that Im(F (λ + i0)) exists a.e. and whenever it exists it is equal to the Radon-
Nikodym derivative of the absolutely continuous part of the measure µ corresponding to h. In addition, by
Lemma 23 and the previous discussion we have that the sets Mac and Ms are minimal supports for the µac

and µs. We collect this information in the following theorem.

Theorem 25. Let h be a Herglotz function with associated measure µ. Then for λ ∈ R the limit

Im[h(λ)] := lim
ϵ→0+

Im[h(λ+ iϵ)]

exists a.e. with respect to both µ and Lebesgue measure (finite or infinite) and

(Dµ)(λ) =
1

π
Im(h(λ))

whenever (Dµ)(λ) exists. In addition, the set

Sµac
:=

{
λ ∈ R : 0 < lim

y→0+
Im[h(λ+ iy)] < ∞

}
(40)

is a minimal support for the absolutely continuous part and

Sµs
:=

{
λ ∈ R : lim

y→0+
Im[h(λ+ iy)] = +∞

}
(41)

is a minimal support for the singular part.

Using this result, it can also be shown that real part of the boundary value also exists almost every-
where.

Theorem 26. Let h be a Herglotz function with associated measure µ. Then

lim
ϵ→0+

h(λ+ iϵ)

exists a.e. with respect to both µ and Lebesgue measure.

Proof. We note that
√
h(z) is a Herglotz function and by definition it maps the upper half-plane into the

first quadrant which implies that i
√
h(z) is also a Herglotz function. We apply Theorem 25 to find that

limϵ→0+ Im[
√
h(λ+ iϵ)] and limϵ→0+ Im[i

√
h(λ+ iϵ)] = Re[

√
h(λ+ iϵ)] exist almost everywhere with respect

to µ and the Lebesgue measure. Finally, taking squares proves the theorem.



Note that this naturally implies that

S̃µac :=

{
λ ∈ R : lim

y→0+
h(λ+ iy) exists and 0 < lim

y→0+
Im[h(λ+ iy)] < ∞

}
(42)

is a minimal support for the absolutely continuous part.
The singular part can be further decomposed using Lemma 14 where it was noted that the measure has a
point mass at λ0 ∈ R if and only if limz→̂λ0

(λ0 − z)h(z) > 0. We therefore get the following theorem.

Theorem 27. Let h be a Herglotz function with associated measure µ. Then the set

Sµpp :=

{
λ ∈ Sµs : lim

z→̂λ0

(λ0 − z)h(z) > 0

}
(43)

is a minimal support for the pure point part and

Sµsc
:=

{
λ ∈ Sµs

: lim
z→̂λ0

(λ0 − z)h(z) = 0

}
(44)

is a minimal support for the singular continuous part.

Remark 15 provides an alternative formulation of the above theorem.

Theorem 28. Let h be a Herglotz function with associated measure µ. Then the set{
λ ∈ Sµs : lim

y→0+
y Im[h(λ0 + iy)] > 0

}
(45)

is a minimal support for the pure point part and{
λ ∈ Sµs : lim

y→0+
y Im[h(λ0 + iy)] = 0

}
(46)

is a minimal support for the singular continuous part.

To highlight the results developed in this section, we consider the following example.

Example 29. Consider the function h(z) = tan(z) from Example 2. We have

Re[tan(i)] = 0

and

lim
y→0+

tan(iy)

iy
= lim

y→0+

i tanh(y)

iy
= 0.

In addition we have

lim
y→0+

Im[h(λ+ iy)] = lim
y→0+

sinh(2y)

cos(2λ) + cosh(2y)
=

{
∞, if λ = n

2π for odd integer,

0, else.
(47)

By Theorem 25 it follows that the corresponding measure satisfies µac = 0 and the singular part is supported
on {n

2π : n is an odd integer}. Moreover, we have by Taylor expanding around y = 0 that for any odd integer
n

y Im[h(
n

2
π + iy)] = 1 + y2/3− y4/45 +O(y5) (48)



which converges to 1 as y → 0. Theorem 28 implies that the measure corresponding to tan(z) is a discrete
measure with point mass at n

2π for odd integers n. In total we have by Theorem 8 that

tan(z) = a+ bz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ) =

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ) (49)

=

∞∑
k=−∞

(
1

(k + 1
2 )π − z

−
(k + 1

2 )π

1 + (k + 1
2 )

2π2

)
(50)

We also have that h(z) satisfies the symmetry condition 22 and it can be concluded by Example 22

tan(z) =

∞∑
n=0

8z

(2k + 1)2π2 − 4z2
. (51)

♢



2.3 Different Representations

The integral representation in Theorem 8 is among the many characterisations of Herglotz functions. In this
section we mention some other representations.

2.3.1 Exponential Herglotz representation

Assume that F is a Herglotz function. We have then that log(F (z)) is a Herglotz function with representa-
tion

log(F (z)) = a+ bz +

∫
R

1

λ− z
− λ

1 + λ2
dµ(λ).

This implies

F (z) = exp(a) exp(bz) exp(

∫
R

1

λ− z
− λ

1 + λ2
dµ(λ)).

We have that
a = Re(log(F (i))) = ln(|F (i)|)

and

b = lim
z→̂∞

log(F (z))

z
= 0.

Lastly, we note that log(F (z)) has bounded imaginary part which by results from the previous section
implies that the corresponding measure is absolutely continuous with respect to the Lebesgue measure. The
Radon-Nikodym derivative exists almost everywhere and is given by

ν(x) = lim
y→0+

1

π
Im(log(F (x+ iy))) = lim

y→0+

1

π
arg(F (x+ iy))

and bounded by 0 ≤ ν(x) ≤ 1. The exponential representation is useful in spectral theory problems. This
extensive paper [2] contains many results on the topic.

2.3.2 Operator Representation

Let H be a Hilbert space with scalar product (., .) which is linear in the second factor. Consider a self-adjoint
operator A in H. Let s ∈ R and u ∈ H, then

h(z) := s+ (u, (A− z)−1u) (52)

is a Herglotz function. Indeed, analyticity of h(z) follows by the resolvent identity for operators

(A− w)−1 − (A− z0)
−1 = (w − z0)(A− w)−1(A− z0)

−1 (53)

and

h(w)− h(z0)

w − z0
=

(u, [(A− w)−1 − (A− z0)
−1]u)

w − z0
= (54)

(w − z0)(u, (A− w)−1(A− z0)
−1u)

w − z0
→ (u, ((A− z0)

−1)2u) (55)

as w → z0 ∈ C+. Lastly, we note that for self-adjoint operators we have that adjoint of (A−z)−1 is (A−z)−1

which implies

h(z)− h(z)

2i
=

(u, (A− z)−1u)− ((A− z)−1u, u)

2i
=

(u, [(A− z)−1 − (A− z)−1]u)

2i
= (56)

(u, (z − z)(A− z)−1(A− z)−1u)

2i
= Im[z]((A− z)−1u, (A− z)−1u) ≥ 0. (57)

for z ∈ C+. The result above is generalised in the following theorem



Theorem 30. A function h is a Herglotz-Nevanlinna function if and only if there exist a Hilbert space H,
a self-adjoint linear relation A in H, a point z0 ∈ C+and an element u ∈ H such that

h(z) = h (z0) + (z − z0)
(
u,
(
I + (z − z0) (A− z)−1

)
u
)
. (58)

Note that the operator is replaced by a self-adjoint relation and such can be multi-valued. For more one
self-adjoint relations, consider [3].

Remark 31. We note that the form 52 does not allow for linear functions and is therefore not as general
as the one in the theorem above. In regards to the uniqueness of the relation A and the Hilbert space H,
we have that if H = span

{(
I + (z − z0) (A− z)−1

)
v : z ∈ ρ(A)

}
where span denotes closed the closed linear

span and ρ denotes the resolvent set then the relation A and H are unique up to unitary equivalence, i.e. if
there exists another Hilbert space H1 and self-adjoint relation B such that 58 is satisfied then there exists an
unitary relation U : H1 → H such that A = UBU−1.



3 Characterisation of Rational Herglotz Functions

The goal in this section will be to characterise rational Herglotz functions. By a rational Herglotz function, we
mean a Herglotz function which is a quotient of two polynomials over the field of complex numbers. Generally,

given a rational function h(z) := r(z)
t(z) where r, t ∈ C[z], for h to be a Herglotz function, it is necessary that

t(z) ̸= 0 for all z ∈ C+. But what other conditions must the polynomials r and t satisfy?

A sketch of the idea that will be used in this section

• We first characterise rational Herglotz functions with an integral representation that extends symmet-
rically to a rational function on C \ R. We note that such functions can only have poles on the real
line. Examples of such functions are

− 1

z
(59)

− 1

z − 1
. (60)

By 26 we see that the function
z 7→ i, z ∈ C+

is a non-example. The function

z 7→ − 1

z + i
, z ∈ C+ (61)

is also a non-example since it has a pole in the lower half-plane.

• We then characterise Herglotz functions whose integral representation when restricted to the upper
half-plane gives a rational function with poles possibly only in the lower half-plane. Example of such
functions is 61. The functions in 60 are non-examples.

• We characterise an arbitrary rational Herglotz function by decomposing it into two parts, a part with
poles on the real line and a part one with poles in the lower half-plane.

We begin by noting that Lemma 10 property 2 is equivalent to

Corollary 32. Let h be a Herglotz function. Then it follows that

h(z) = bz + o(z)

as z → ∞ in any sector in the upper half-plane.

We have that if h(z) is a Herglotz function which does not attain 0, then − 1
h(z) is Herglotz function which

by the above corollary satisfies 1
|h(z)| ≥ C 1

|z| for some constant C ≥ 0 as z → ∞ in any sector of the upper

half plane. The following lemma then holds.

Lemma 33. Let h be a rational Herglotz function with h(z) = r(z)
t(z) . It follows

|deg(r(z))− deg(t(z))| ≤ 1. (62)

3.1 Rational Herglotz Functions with Real Poles

In this section we focus on rational Herglotz functions with an integral representation that extends symmet-
rically to a rational function on C \ R. Herglotz functions assuming real values are dismissed since such are
constant. We have the following characterisation.



Theorem 34. An analytic function h : C+ → C is a rational Herglotz functions with an integral represen-
tation that extends symmetrically to a rational function on C \ R if and only if it admits a representation

h(z) = a+ bz +

n∑
j=1

aj

(
1

τj − z
− τj

1 + τ2j

)
, z ∈ C+,

where n ∈ N, a ∈ R, b ≥ 0, aj ≥ 0 and τj ∈ R for 1 ≤ j ≤ n.

Proof. That this is a sufficient condition is clear. To see that this is a necessary condition, we decompose
h(z) into

h(z) = s(z) +
r1

t1 − z
+

r2
t2 − z

+ · · ·+ rn
tn − z

(63)

By Lemma 33 we have that s(z) = ã + bz for some complex constants ã and b. Since h(z) is Herglotz, it
follows that ã ∈ R and b ≥ 0. If any constant ri ̸= 0 then it is determined by Lemma 14 to be ri = µ({ti}) > 0
for 1 ≤ i ≤ n. By the uniqueness of the integral representation, it follows that the corresponding measure is
a discrete measure with isolated masses of size µ({τi}) at τj for 1 ≤ j ≤ n. The result then follows.

We can find more information about such functions. We have that p(z) must have real coefficients. Assume
now that the roots of p(z) are not real then they come in pairs of the form (a + ib, a − ib) which implies
h maps a point of C+ to the real line and hence is a constant function. We may, therefore, assume the

roots are real. Moreover, since −1
h(z) = − q(z)

p(z) is also a Herglotz function it follows (by repeating the analysis

above) that the p(z) has simple roots. We gain more information on the structure of the poles and roots by
considering the function h(z = x) for x ∈ R where x is not a pole. Taking the derivative gives

h′(x) = b+

n∑
i=1

µ(ti)

(ti − x)2

and the function is strictly increasing, where it is defined. Hence, between any two zeros there must be a
pole. Similarly between any two poles there must exist a zero. We state this result as a theorem.

Theorem 35. Let h be a Herglotz function with a corresponding measure in the integral representation in
Theorem 8 being a discrete measure with finitely many point masses. Then h has only first order zeros and
poles on the real line which are interlacing.



3.2 Rational Herglotz Functions with Poles in the Lower Half-Plane

In this section we will focus on rational Herglotz functions with poles only in the lower half-plane. Let h(z)
be a rational Herglotz function with poles in the lower half-plane. We have by partial fraction decomposition
and Lemma 33 that

h(z) = a+ bz +

N∑
i=1

nj∑
k=1

Ak,j

(z − zj)k

where b ≥ 0, Ak,j and a are constants. We note that there are no restrictions on the order of the poles and
that the constants Ak,j and a are allowed to be complex. It is not possible to characterise the function by
simply considering each part in the partial fraction decomposition separately since individual parts may not
be Herglotz functions. For example the function

− 1

z − 3
z + 4i

= − z

(z − (−i)) · (z − (−3 i))
= − 3

2(z + 3i)
+

1

2(z + i)

is a Herglotz function but the terms after the second equality the are not both Herglotz functions. To be
more specific, the function −3

2(z+3i) is Herglotz, but 1
2(z+i) is not. To study the problem we will consider the

density function associated with the measure corresponding to h(z).

Theorem 36. Let h : C+ → C be an analytic function. Then h is a rational Herglotz function with poles
only in the lower half-plane if and only if it admits a representation of the form

h(z) = a+ bz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
ν(λ)dλ, z ∈ C+, (64)

where a ∈ R, b ≥ 0 are constants and ν(x) satisfies (if ν(x) = p(x)
q(x) )

1. ν(x) ≥ 0 for all x ∈ R;

2. 0 ≤ deg(q)− deg(p);

3. q(x) has only non-real roots.

Proof. Assume h(z) is a rational Herglotz function with poles only in the lower half-plane and integral
representation given in Theorem 8. Since the poles are in the lower half-plane, the corresponding measure
in the integral representation given in Theorem 8 is absolutely continuous with respect to the Lebesgue
measure. In this case, the density function exists and is simply given by the imaginary part of the boundary
values of h. The density function is calculated

lim
y→0+

1

π
Im(h(x+ iy)) = Im(h(x)) =

1

π
Im(a) +

N∑
i=1

nj∑
k=1

Im

(
Ak,j

(x− zj)k

)
= (65)

Im(a) +

N∑
i=1

nj∑
k=1

k∑
r=1

arx
r

((x− xj)2 + y2j )
k

(66)

for some real constants ar. The density function is also positive since h is a Herglotz function.

Conversely, assume that h given by 64. First note that h in 64 is guaranteed to be a Herglotz function since
ν(x) is positive and since ∫

R

1

1 + x2
ν(x)dx < ∞.



We now show that the function is rational. Note that the second condition implies that after partial fraction
decomposition, one should have

ν(x) = a+

M∑
j=1

mj∑
k=1

Bk,j

(x− zj)k
(67)

for constants zj , Bk,j . The third condition implies that if zj0 = xj0 + iyj0 then its conjugate is also a root,
that is zl0 = xl0 − iyl0 for some l0 ̸= j0 and 1 ≤ l0, j0 ≤ M . This gives that the form in ν(x) can be rewritten

ν(x) = c+

MN∑
j=1

lj∑
k=1

Ck,j

((x− xj)2 + y2j )
k
. (68)

To show that it is a rational Herglotz function, we compute the integral∫
R

(
1

λ− z
− λ

1 + λ2

)
λr

((λ− a)2 + b2)k
dλ, (69)

where a, b ∈ R with b ̸= 0 and 0 ≤ r ≤ k are integers. We consider the case k = r = 0 first. If z = i then the
integrand becomes

i

λ2 + 1

and ∫
R

i

λ2 + 1
dλ = iπ.

We assume therefore z ̸= i and define

L(w) :=
(1 + wz)

(w − z)(1 + w2)

which has simple poles at w = z, w = ±i. We assume z ∈ C+ and use the contour from Figure 3 to evaluate
the integral. By the residue theorem we have that for large enough R > 0∫ R

−R

L(w)dw +

∫
CR

L(w)dw = 2πi [Resz(L(w)) + Resi(L(w))] . (70)

We have that

Resz(L(w)) =
(1 + z2)

(1 + z2)
= 1; (71)

Resi(L(w)) =
(1 + zi)

(i− z)(2i)
=

−1

2
. (72)

We note that the integral along CR vanishes when R → ∞ since∣∣∣∣∫
CR

L(w)dw

∣∣∣∣ ≤ ∫ π

0

(1 +R|z|)
(R− |z|)(R2 − 1)

Rdθ → 0

as R → ∞. Hence, we have that∫
R

(
1

λ− z
− λ

1 + λ2

)
dλ = 2πi [Resz(L(w)) + Resi(L(w))] = πi. (73)

Hence the theorem is satisfied if r = k = 0.



We note that for k ̸= 0 the integral ∫
R

λ

1 + λ2
ν(λ)dλ, (74)

is convergent. We focus therefore on the remaining part of the integral, that is, we consider the integral∫
R

1

λ− z
· λr

((λ− a)2 + b2)k
dλ. (75)

Re(z)

Im(z)

R−R

CRa+ ib

a− ib

−i

z
i

Figure 3: Semi-circle contour

By partial fraction decomposition we have

λr

((λ− a)2 + b2)k
= d+

k∑
j=1

D1,j

(λ− (a+ ib))j
+

k∑
j=1

D2,j

(λ− (a− ib))j
,

where d and D1,j and D2,j for ≤ j ≤ k are constants. The goal then is to calculate the integrals∫
R

1

λ− z

1

((λ− (a+ ib))j
dλ; (76)∫

R

1

λ− z

1

((λ− (a− ib))j
dλ. (77)

For the first integral, we assume z ̸= a+ bi and define

N(w) :=
1

(w − z)((w − (a+ ib))j
. (78)

which has a simple pole at w = z and a pole of order j at w = a + bi. We consider the case when z ∈ C+

and b > 0 and use the contour from Figure 3 to evaluate the integral. By the residue theorem we have that∫ R

−R

N(w)dw +

∫
CR

N(w)dw = 2πi [Resz(N(w)) + Resa+bi(N(w))] . (79)



We have that

Resz(N(w)) =
1

((z − (a+ ib))j
; (80)

Resw=a+ib(N(w)) =
1

(j − 1)!
lim

w→a+ib

dj−1

dwj−1

1

(w − z)
. (81)

We note that the integral along CR vanishes when R → ∞ since∣∣∣∣∫
CR

N(w)dw

∣∣∣∣ ≤ ∫ π

0

1

(R− |z|)(R− |a− ib|)k
Rdθ → 0

as R → ∞. Hence, we have that∫
R

1

λ− z

1

(λ− (a+ ib))j
dλ = 2πi [Resz(N(w)) + Resa+bi(N(w))] = (82)

2πi

[
1

((z − (a− ib))j
+

1

(j − 1)!
lim

w→a+ib

dj−1

dwj−1

1

(w − z)

]
. (83)

Since the integral representation is well-defined and analytic on C\R it follows (we assume when solving the
integral finding the integral above that z ∈ C+) that the term above has to be well-defined. Hence, there is
no worry about the integrals for terms in the partial fraction decomposition where the pole is in the upper
half-plane (we have also assumed that b > 0). Most importantly though, we have an expression which is
rational in z. In the case where z = a+ bi we have that the integral becomes∫

R

1

((λ− (a− ib))j+1
dλ = 2πi

[
1

j!
lim

w→a+ib

dj

dwj

1

(w − z)

]
which is rational in z.
For the second integral, we find by a similar calculation (again, we assume here that b > 0) that the integral
becomes ∫

R

1

(λ− z)(λ− (a− ib))j
dλ = 2πi

1

(z − (a− ib))j

which is a rational function with poles in the lower half-plane.

3.3 General Rational Herglotz Functions

We consider now a general rational Herglotz function. We let

h(z) =
p(z)

q(z)

be an arbitrary rational Herglotz function. We then divide the function into two rational functions, one with
real poles and the other with poles in the lower half-plane using partial fraction decomposition

h(z) = c(z) +
p1(z)

q1(z)
+

p2(z)

q2(z)

where c(z) is a linear function with possibly a complex constant term.

Proposition 37. The functions p1(z)
q1(z)

and p2(z)
q2(z)

are Herglotz functions.

Proof. We consider the Lebesgue decomposition of the measure µ associated with the Herglotz function h.

µ = µac + µs = µac + µsc + µpp. (84)



By Theorem 25

Sµs =

{
λ ∈ R

∣∣∣ lim
y→0+

Imh(λ+ iy) = +∞
}

(85)

is a support for the singular part and in particular we have by Theorem 25 that

Sµsc =

{
λ ∈ Sµs

∣∣∣ lim
y→0+

y Imh(λ+ iy) = 0

}
(86)

is a support for µsc. In the case of a rational Herglotz we have that a support for the singular part given
by (85) is the set of all real poles. In particular note that if λ0 ∈ R is a pole then after partial fraction
decomposition, we will have that:

lim
y→0+

y Im

(
1

λ− (λ0 + iy)

)
= lim

y→0+
y

y

(λ− λ0)2 + y2
=

{
0, if λ ̸= λ0

1, if λ = λ0

but of course since λ0 is a pole this means that after partial fraction decomposition the value limy→0+ Im(h(λ0+
iy)) = 1, that is, the support for the singular continuous part will be empty. Hence, for a rational Herglotz
function, the decomposition of the corresponding measure is

µ = µac + µs = µac + µpp. (87)

We note that poles in the lower half plane correspond to absolutely continuous measures and that poles on
the real line correspond to point measures. Hence, we can conclude that both, the part with poles on the
real line and the part with poles in the lower half-plane, are both Herglotz functions with corresponding
measures in the integral representations being µac and µpp.

For a general Herglotz function we obtain the following characterization.

Theorem 38. Let h : C+ → C be an analytic function. Then h is a Herglotz function if and only it admits
a representation as in Theorem 8 with corresponding measure µ in the integral representation. Moreover, let
the Lebesgue decomposition of µ be

µ = µac + µs = µac + µsc + µpp. (88)

Then, it follows that h is rational if and only if µsc = 0, µpp is supported on at most finitely many points
and µac has a corresponding density function ν(x) which satisfies the the conditions in Theorem 36.

The following is a characterisation of PR functions

Corollary 39. Let h(s) : C+ → C be a real-rational function. Then h is positive-real if and only if

1. h(z) is analytic in Re[z] > 0;

2. Re[h(iω)] ≥ 0 for all ω with iω not a pole of h(z);

3. Poles on the imaginary axis and infinity are simple and have non-negative residues.

Remark 40. The requirement that h be analytic is not needed since we have defined PR and Herglotz
functions to be analytic. Analyticity does, however, follow from positive realness and there is no loss of
generality in assuming h is analytic.

Proof. We consider the corresponding rational Herglotz function f , defined as in Remark 7. The equivalent
statement for f is: f is Herglotz if and only if:

1´. f(z) is analytic in Im[z] > 0;



2´. Im[f(x)] ≥ 0 for all x ∈ R with x not a pole of f(z);

3´. Poles on the real line are simple and have non-positive residues and satisfy

lim
z→̂τ0

(τ0 − z)f(z) ≥ 0

where the limit is valid in any sector of the upper half-plane (non-tangential limit), while poles at
infinity are simple and have non-negative residues.

The result follows then from the Theorems 34 and 36.

The result above does indeed characterise positive real function. It is, however, difficult to apply since one
has to perform residue calculations. The article [4] provdides a modified test for positive-realness of lower
order real-rational functions that avoids the need to test residue conditions.



4 Rational Matrix-valued Herglotz Functions

4.1 Definition and Basic properties

The purpose of this section is to define matrix-valued Herglotz functions and present some basic properties.
The material is based on [6, Chapter 5, 6].

We briefly discuss positive definite matrices.

Definition 41. Let Mn(C) be the set of n×n matrices with entries in C. We denote by (., .)Cn the standard
Euclidean norm on Cn which is linear in the second factor and anti-linear in the first factor. Let M ∈ Mn(C).
We denote by M∗ the conjugate transpose of M . We define the imaginary and real parts of M as

Im[M ] :=
M −M∗

2i
, (89)

Re[M ] :=
M +M∗

2
. (90)

We define a Hermitian matrix M ∈ Mn(C), i.e. M = M∗, to be nonnegative (respectively, nonpositive) if
(x,Mx) ≥ 0 for x ∈ Cn (respectively, (x,Mx) ≤ 0)). We also call M positive (respectively, negative) if
(x,Mx) > 0 for all x ∈ Cn (respectively, (x,Mx) < 0).

We mention some useful results about nonnegative matrices.

Lemma 42. Let A ∈ Mn(C). We define the principal submatrices of a matrix as the submatrices obtained
from repeatedly removing out a row and the column of the same index. The determinant of principal subma-
trices are called principal minors. The matrix A is nonnegative, A ≥ 0, if and only if all principal minoros
are nonnegative.

Proof. See [8, Observation 7.1.2.].

Corollary 43. Let A ∈ Mn(C) be any nonnegative matrix. For any fixed pairs 1 ≤ j, k ≤ n

|Aj,k| ≤ A
1/2
j,j A

1/2
k,k ≤ 1

2
(Aj,j +Ak,k). (91)

Proof. Assume, without loss of generality, that j ≤ k. Repeatedly delete the column and row of index n for
n ̸= j, k. One then ends with the following principal submatrix[

Aj,j Aj,k

Ak,j Ak,k

]
which has determinant

Aj,jAk,k − |Aj,k|2 ≥ 0.

Lastly, by the previous lemma we have that Aj,j , Ak,k ≥ 0 and the theorem follows.

Definition 44. A function M : C+ → Mn(C), where Mn(C) is the set n× n matrices with entries in C, is
a matrix-valued Herglotz function if M is analytic on C+ and for any z ∈ C+, Im[M(z)] is non-negative.

Remark 45. Analyticity of the matrix here is understood as analyticity for each individual matrix element.

Example 46. Let fi(z) scalar-valued Herglotz functions for 1 ≤ i ≤ n. The function

M(z) :=


f1(z) 0 0 · · · 0
0 f2(z) 0 · · · 0
0 0 f3(z) · · · 0
...

...
...

. . .
...

0 0 0 0 fn(z)

 (92)



is a matrix-valued Herglotz function since it is analytic and

Im[M(z)] =


Im[f1(z)] 0 0 · · · 0

0 Im[f2(z)] 0 · · · 0
0 0 Im[f3(z)] · · · 0
...

...
...

. . .
...

0 0 0 0 Im[fn(z)]

 ≥ 0 (93)

for Im[z] > 0.

We note that all entries need not be scalar-valued Herglotz functions for an analytic matrix-valued function
K(z) : C+ → Mn(C) to be a matrix-valued Herglotz function. Consider

K(z) :=

[
z −i
i 0

]
(94)

which is a matrix-valued Herglotz function since

Im[K(z)] :=

[
Im[z] 0
0 0

]
. (95)

♢

The next theorem is a useful when matrix-valued Herglotz functions.

Theorem 47. Let M(z) : C+ → Mn(C) be a matrix-valued Herglotz function. Then it follows that
(x,M(z)x) is a scalar-valued Herglotz function for each x ∈ Cn.

Proof. By assumption Im[M(z)] = 1
2i (M(z)−M(z)∗) ≥ 0 which is equivalent to

(x,
1

2i
(M(z)−M(z)∗)x) =

1

2i
((x,M(z)x)− (x,M(z)∗x)) ≥ 0,

for any x ∈ Cn. We note that (x,M(z)x) = (M(z)x, x) = (x,M(z)∗x) and therefore the Herglotz criterion
is equivalent to

1

2i
[(x,M(z)x)− (x,M(z)∗x)] =

1

2i
[(x,M(z)x)− (x,M(z)x)] = Im[(x,M(z)x)] ≥ 0,

which yields the result.

We now state the main representation for matrix-valued Herglotz functions, cf. Theorem 8.

Theorem 48. Let M : C+ → Mn(C) be an analytic matrix–valued function. Then M is a matrix-valued
Herglotz function if and only if there exists a matrix-valued measure Ω on the Borel subsets of R satisfying∫

R

1

1 + λ2
(x, dΩ(λ)x)Cn < ∞ for all x ∈ Cn

such that the representation

M(z) = C +Dz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dΩ(λ), z ∈ C+,

C = Re[M(i)], D = lim
y→∞+

(
1

iy
M(iy)

)
≥ 0

holds.



Proof. See [6, Theorem 5.4.].

An introduction to matrix-valued measures is available at [12, 3. Matricial Integrals].

As in the scalar-valued case, the measure can be recovered via a Stieltjes inversion formula.

Lemma 49. The measure Ω can be reconstructed via the Stieltjes inversion formula

1

2
Ω({λ1}) +

1

2
Ω({λ2}) + Ω((λ1, λ2)) = lim

ϵ→0+

1

π

∫ λ2

λ1

Im[M(λ+ iϵ)]dλ. (96)

A result similar to Lemma 14 also holds.

Lemma 50. The measure µ in the integral representation of Theorem 48 has a point mass at the point
λ0 ∈ R if and only if the limit

Ω ({λ0}) = lim
z→̂λ0

(λ0 − z)M(z)

is non-negative.

Proof. The result follows by applying Lemma 14 to (x,M(z)x) for x ∈ Cn and later using the polarisation
identity.

The result from Theorem 17 holds.

Theorem 51. If M(z) is a matrix-valued Herglotz function with integral representation given by Theorem
48, then M(z) can be analytically continued across (a, b) ⊂ R into a subset D in the lower half plane if
and only if Ω is purely absolutely continuous on (a, b) with associated matrix-valued density function Ω′ ≥ 0
which is real-analytic on (a, b). In this case, the continuation of M(z) across (a, b) is given by

M(z) = M(z) + 2πiΩ′(z), z ∈ D, (97)

where Ω′(z) denotes the complex–analytic extension of Ω′(z).

We end the section by highlighting some properties of the matrix-valued measure in the representation
theorem.

Remark 52. • By the inversion formula we have that for any bounded Borel set X ⊂ R, Ω(X) ≥ 0, it
is a nonnegative matrix.

• We define

wtr := tr(Ω) := Ω1,1 +Ω2,2 + · · ·+Ωn,n (98)

the trace measure of Ω. We note, again by the inversion formula and Lemma 42 that Ω is absolutely
continuous with respect to wtr, that is, if wtr(X) = 0 for any Borel set X ⊂ R then Ω(X) = 0.



4.2 Support of the Measure

In this section we include the support theory for the measure as in section 1.2.

Theorem 53. Let M be a matrix-valued Herglotz function with corresponding matrix-valued measure Ω.
The absolutely continuous part, Ωac, of Ω with respect to the Lebesgue measure is given by

dΩac =
1

π
lim

ϵ→0+
Im[M(λ+ iϵ)]dλ (99)

where the limit in the right-hand side exists almost everywhere with respect to the Lebesgue measure. In
addition, we have that if

SΩac,r :=

{
λ ∈ R | lim

ϵ→0+
M(λ+ iϵ) exists finitely, rank(Im[M(λ+ i0)]) = r

}
, (100)

SΩac
:=

n⋃
r=1

SΩac,r, (101)

then SΩac
is a minimal support of Ωac.

Proof. Let x ∈ Cn and consider the scalar-valued Herglotz function (x,M(z)x). We have by Theorem 25
that the limit

lim
ϵ→0+

Im[(x,M(λ+ iϵ)x)]

exists almost everywhere with respect to the Lebesgue measure and is equal to the absolutely continuous part
of the measure corresponding to (x,M(z)x). Choosing x = xj := (xj,1, xj,2, · · · , xj,n)

T such that xj,l = δj,l
shows that the result holds for the diagonal entries of Ω. For any general element of Ω, we apply the the
polarisation identity

(x,M(z)y) =
1

4

[
((x+ y),M(z)(x+ y))− ((x− y),M(z)(x− y))+

i((x− iy),M(z)(x− iy))− i((x+ iy),M(z)(x+ iy))
]

The second part of the theorem follows by considering the trace measure of Ωac. We note note that the
diagonal elements of M(λ + iϵ) exist as we take ϵ → 0+ and, in addition, if rank(Im[M(λ + i0)]) = r for
r ≥ 1 then r diagonal elements of Im[M(λ+ i0)] are non-zero by Theorem 47. It follows by Theorem 25 that
SΩac

is a minimal support for the trace measure of Ωac, which in turn implies, by Remark 52, that this is a
minimal support for Ωac

In the same spirit, the following results can be shown.

Theorem 54. Let M be a matrix-valued Herglotz function with corresponding matrix-valued measure Ω.
Define

SΩs
:=

{
λ ∈ R | lim

ε↓0
Im (tr(M(λ+ iε))) = +∞

}
(102)

SΩpp,r :=

{
λ ∈ R | rank

(
lim
ε↓0

εM(λ+ iε)

)
= r

}
, 1 ≤ r ≤ n, (103)

SΩpp :=

n⋃
r=1

SΩpp,r, (104)

SΩsc
:=

{
λ ∈ SΩs

| lim
ε↓0

ε tr(M(λ+ iε)) = 0

}
. (105)

Then



1. SΩs is a minimal support for the singular part of Ωs,

2. SΩsc
is a minimal support for the singular continuous part of Ωsc.

3. SΩpp
is the smallest support of point

4. SΩs
is a minimal support of Ω.



4.3 Characterisation of Rational Herglotz Functions

We recall that the goal is to characterise the measure in the integral representation. We would like to
repeat the same procedure from the scalar-valued case. We let M(z) be a rational Herglotz function with
corresponding measure matrix valued measure Ω. We split M(z) in two parts, one in which the elements
have poles (a point in C is a pole of a matrix valued function if it is a pole of any of the matrix entries) in
C− and one where the elements have poles on the real line

M(z) = E + Fz +ML(z) +MR(z),

where ML consists of poles in C− and MR consists of poles on R, F ≥ 0 and E ∈ Mn(C). Note that in
the case of a rational matrix-valued Herglotz function, we have that only the poles on the real line in the
diagonal elements exist in SΩs and for such we have that

lim
ε→0+

εtr(M(λ+ iε)) ̸= 0.

Hence, SΩsc = ∅ and there exists only a point spectrum and an absolutely continuous part. As the point
spectrum consists only of poles on the real line, we have that ML and MR are each matrix-valued Herglotz
functions with corresponding measure being Ωac, the absolutely continuous part of Ω and Ωpp, the singular
part of Ω which in this case is discrete matrix valued measure. We have just proven

Proposition 55. The matrix-valued functions MR and ML are Herglotz functions.

We begin by analysing MR. Since (x,M(z)x) is scalar valued Herglotzz function for each x ∈ Cn, we have
that

lim
z→τ0

(τ0 − z)(x,M(z)x) = lim
ϵ→0+

ε(x, Im(M(λ+ iε))x) = (x,Ω({λ})x).

This implies that the residue of any potential pole of (x,MR(z), x) at τ0 is non-positive and simple. For
general x, y ∈ Cn we conclude by the polarisation identity that the function (x,MR(z)y) has simple poles
at τ0 ∈ R, but that the residue is not necessarily non-positive. However, we can conclude from the above
identity that the residue of the entire matrixMR(z) at τ0 (here the residue is understood as the residue at each
element) is given by −Ω({λ}) ≤ 0. We divide MR(z) in different parts (using partial fraction decomposition
on each element)

MR(z) = C +Dz +M1(z) + · · ·+MN (z)

where each part consists of elements with only a pole at τj . The following example is useful.

Example 56. Letting Ω = (δτ0 = Ωij) be the matrix-valued measure with each entry being a point measure
with point mass at τ0 ∈ R gives the following function in the integral representation(∫

R

(
1

λ− z
− λ

1 + λ2

)
dΩ

)
ij

=

(
1

τ0 − z
− τ0

1 + τ20

)
♢

We let Ωi be the matrix-valued measure where each non-zero element is the point measure with mass equal
to minus the residue at τi. By the uniqueness of the measure in the integral representation, we find that the
measure corresponding to MR(z) is a discrete matrix-valued measure. We have thus proven the following
theorem, cf. Theorem 34.

Theorem 57. Let H : C+ → Mn(C) be a matrix-valued function. Then H is a rational matrix-valued
Herglotz function with poles only in R if and only if it admits a representation

H(z) = C +Dz +

N∑
j=1

Aj

(
1

τj − z
− τj

1 + τ2j

)
,

where τj ∈ R, N ∈ N, C = C∗, D ≥ 0 and Aj is a non-negative matrix for 1 ≤ j ≤ N .



Proof. We have shown that this is a necessary condition in the preceding theorem. To see that it is sufficient,
we note that the function is analytic and

(x, Im(H(z))x) =
(x,H(z)x)− (x,H(z)∗x)

2i
= (106)

(x,Dx)(z − z)

2i
+

(x,
∑N

j=1 Aj

(
1

τj−z − τj
1+τ2

j

)
x)− (x,

∑N
j=1 A

∗
j

(
1

τj−z − τj
1+τ2

j

)
x)

2i
= (107)

(x,Dx) Im(z) +
(x,
[∑N

j=1 Aj

(
1

τj−z − τj
1+τ2

j

)
−
∑N

j=1 Aj

(
1

τj−z − τj
1+τ2

j

)]
x)

2i
= (108)

(x,Dx) Im(z) + (x,Ajx)
Im(z)

|τj − z|2
≥ 0. (109)

We attempt now to characterise matrix-valued Herglotz with poles in the lower half plane, i.e. the function
ML. We claim now the following theorem.

Theorem 58. Let Q(z) be a matrix-valued Herglotz function. Then Q(z) is a rational matrix value Herglotz
function with poles in the lower half-plane if and only if the corresponding measure is absolutely continuous
with density matrix satisfying (if dΩ = P (λ)dλ)

1´. P (λ) ≥ 0, for every λ ∈ R;

2´. (x, P (λ)x) is a rational function that satisfies properties (2) and (3) in Theorem 36 for every x ∈ Cn.

Proof. ( =⇒ ) If Q(z) is a matrix-valued Herglotz function with poles only in the lower half-plane then
the corresponding measure is absolutely continuous by Theorem 53 and we have that dΩ = P (λ)dλ and
P (λ) = 1

π Im(Q(λ+ i0)) ≥ 0. In addition, since Q(z) is a rational matrix-valued Herglotz function, we have
that (x,Q(z)x), for x ∈ Cn, is a a rational Herglotz function with corresponding density function (x, P (λ)x).
Hence by Theorem 3, (x, P (λ)x) satisfies criteria 1-3.
( ⇐= ) The goal is to show that any component of Q(z) is rational with poles in the lower half plane. We
have that the result holds for each each function (x,Q(z)x) for x ∈ Cn; in fact these functions are rational
Herglotz functions. We have that the result holds for (x,Q(z)y) for x, y ∈ Cn by the polarisation identity:

(x,Q(z)y) = (110)

1

4
[((x+ y) , Q(z) (x+ y))− ((x− y) , Q(z) (x− y)) (111)

+i ((x− iy) , Q(z) (x− iy))− i ((x+ iy) , Q(z) (x+ iy))] . (112)

Since x and y are arbitrary the result follows for any element of Q(z).

The above theorem implies that there is no obvious difference between scalar-valued rational Herglotz func-
tions and matrix-valued rational Herglotz functions. In fact, most of the theorems available for scalar-valued
Herglotz function had an equivalent formulation for matrix-valued Herglotz functions. Indeed, the theorems
described in this section and the previous one show that the it is enough to usually consider each element
of the matrix or in some cases just the diagonal elements. The matrix structure was rarely taken into ac-
count. The following example shows that this is not always the case and that matrix structure has to be
considered.

Example 59. Let

M(z) :=

[
z 1
1 − 1

z

]



which is Herglotz. We also have that

−M(z)−1 =
1

2

[
− 1

z −1
−1 z

]
is a matrix-valued Herglotz function. We note that for M(z), the point z = 0 is a pole and a zero- a zero of
a matrix function M(z) is defined as any pole of M(z)−1. A consequence is that the interlacing property in
Theorem 35 does not have an similar form for matrix-valued Herglotz functions. An interlacing property for
matrix-valued meromorphic Herglotz functions is discussed in [11].



5 Appendix- The Herglotz Representation Theorems

In this section we prove the integral representation, Theorem 8.

We will first consider a class of functions that are related to Herglotz functions. An analytic function
c : D → C+ = {z ∈ C : Re[z] ≥ 0} is called a Carathéodory function. Carathéodory functions are related to
Herglotz functions by the Cayley transform

C : z 7→ z − i

i+ z

which maps to upper half-plane conformally onto the unit disk and has inverse

C−1 : z 7→ i
1 + z

1− z
.

Indeed, given a Carathéodory function c we have that

f(z) := ic(C(z))

is a Herglotz function. Conversley, given a Herglotz function f , we have that

c(z) := −if(C−1(z))

is a Carathéodory function. We define the Herglotz kernel by

K(w, z) :=
w + z

w − z
(113)

where w ∈ ∂D and z ∈ D.

Im[z]

1 Re[z]

Im

Re

c(z)

Figure 4: Carathéodory Function

The next theorem shows how to recapture an analytic function from the boundary values of its real
part.

Theorem 60. Let f be analytic in a neighbourhood of D. Then

f(z) = i Im[f(0)] +
1

2π

∫
[0,2π)

K(eit, z)Re[f(eit)]dt. (114)

The result holds in the more general context where Re[f(it)] is replaced by u(it), where u is harmonic on D
and continuous on D. In this case the integral is an analytic function on D with real part u. For a proof, see
[9, Chapter 7, Corollary 7.7]. We have the following characterisation of Carathéodory functions.



Theorem 61 (Herglotz Representation.). Every Carathéodory functions is of the form

c(z) = i Im[c(0)] +

∫
[0,2π)

K(eit, z)dν (115)

where dν is a finite Borel measure on [0, 2π).

Proof. We note that the right hand-side of 115 gives a Carathéodory function. Indeed, we have

Re[i Im[c(0)] +

∫
[0,2π)

K(eit, z)dν] =

∫
[0,2π)

Re[K(eit, z)]dν =

∫
[0,2π)

1− |z|2

|eit − z|2
dν ≥ 0.

Analyticity follows by the dominated convergence theorem since∣∣∣∣ 2eit

(−w + eit)(−z + eit)

∣∣∣∣ ≤ 2

(1− |w|)(1− |z|)

and

f(z)− f(w)

z − w
=

1

z − w

∫
[0,2π)

eit + z

eit − z
− eit + w

eit − w
dν =

1

z − w

∫
[0,2π)

2(z − w)eit

(−w + eit)(−z + eit)
dν (116)

=

∫
[0,2π)

2eit

(−w + eit)(−z + eit)
dν →

∫
[0,2π)

2eit

(eit − w)2
dν (117)

as z → w, for z, w ∈ D.
Conversely, suppose we are given a Carathéodory function c(z). We define the functions cr(z) := c(rz) for
0 < r < 1, which are analytic in a neighbourhood of D. We have by Theorem 60. that

cr(z) = i Im[cr(0)] +
1

2π

∫
[0,2π)

K(eit, z)Re[cr(it)]dt.

Define then the family of measures dνr(t) := Re[cr(it)]
dt
2π . As Re[cr(z)] is harmonic we have that

νr([0, 2π)) =
1

2π

∫
[0,2π)

Re[cr(it)]dt = cr(0) = c(0)

which is bounded and independent of r. Let rn := 1 − 1
n and consider the sequence of bounded measures

(νrn). We have by Helly’s Selection Theorem (theorem below) that there exists a subsequence (νrnj
) that

converges weakly to a positive, bounded measure ν defined on Borel sets of [0, 2π). Hence, it follows that

1

2π

∫
[0,2π)

K(eit, z)Re[crn(it)]dt →
∫
[0,2π)

K(eit, z)dν.

We note that crn(z) → c(z) for z ∈ D and therefore

c(z) = i Im[c(0)] +

∫
[0,2π)

K(eit, z)dν. (118)

We recall that for a locally compact metric space X, a sequence of Borel measures {µn} on X is said to
converge vaguely to a Borel measure µ if∫

X

fdµn →
∫
X

fdµ, ∀f ∈ Cc(X).



Theorem 62 (Helly’s Selection Theorem). Let X be a locally compact metric space. Then every bounded
sequence νn of regular complex measures, that is |νn| (X) ≤ M , has a vaguely convergent subsequence whose
limit is regular. If all νn are positive, every limit of a convergent subsequence is again positive.

For a proof of the theorem, see [15, Chapter 6, Theorem 6.11]. We now turn to the proof of theorem 8.

Proof Theorem 1. We begin by showing that every function of the form

a+ bz +

∫
R

(
1

t− z
− t

1 + t2

)
dµ(t) = a+ bz +

∫
R

1 + zt

(t− z)(1 + t2)
dµ(t)

is Herglotz. We begin by showing that the integral is well-defined in C+. Let z ∈ C+, then we have the
estimate ∣∣∣∣1 + tz

t− z

∣∣∣∣ ≤ 1 + |z|(|Re[λ− z]|+ |Re[z]|)√
Re[λ− z]2 + Im[z]2

≤ |z|+ 1 + |zRe[z]|
|z − λ|

≤ |z|+ 1 + |zRe[z]|
dist(z,R)

which gives well-definitness. We also have that the integral is continuous since for z ∈ C+

1 + (z + h)t

(t− (z + h))(1 + t2)
− 1 + zt

(t− z)(1 + t2)
=

1 + t(h+ z)

(t2 + 1)(t− (h+ z))
− 1 + tz

(t2 + 1)(t− z)

where each part can be bounded by an integrable function as done above. Continuity then follows by the
dominated convergence theorem. To see analyticity, let K be any compact subset of C+ and let Γ be any
closed rectangle contained in K. By the above estimate we have that the function

1 + tz

t− z

is bounded for (t, z) ∈ R×K. We can, therefore, apply Fubini’s theorem to find∫
Γ

∫
R

1 + zt

(t− z)(1 + t2)
dµ(t)dz =

∫
R

∫
Γ

1 + zt

(t− z)(1 + t2)
dzdµ(t) = 0. (119)

It follows by Morera’s theorem that the integral is analytic in K and hence in C+. Lastly we note that the
imaginary part of f is

Im[f(z)] = b Im[z] +

∫
R
Im

[
1

t− z
− t

1 + t2

]
dµ(t) = b Im[z] +

∫
R

Im[z]

|t− z|2
dµ(t) ≥ 0

for z ∈ C+.
Conversely, given a Herglotz function f(z), we have that c(z) := −if(C−1(z)) is Carathéodory function and
Theorem 115 gives

c(z) = i Im[c(0)] +

∫
[0,2π)

K(eit, z)dν(t) (120)

for some finite Borel measure ν on [0, 2π). This gives

f(z) = ic(C(z)) = − Im[c(0)] + i

∫
[0,2π)

K(eit, C(z))dν(t) (121)

= − Im[c(0)] + iK(1, C(z))︸ ︷︷ ︸
−iz

ν({0}) + i

∫
(0,2π)

K(eit, C(z))dν(t) = (122)

− Im[c(0)] + zν({0}) + i

∫
(0,2π)

eit + C(z)

eit − C(z)
dν(t) (123)



We have that the Cayley transform is a homeomorphism from the real-line into ∂D. In particular, we have
that

φ :(0, 2π) → R (124)

t 7→ C−1(eit) = i
1 + eit

1− eit
= − cot

(
t

2

)
(125)

is a homeomorphism. We use this map to define a a pushforward measure on R, φ∗ν, defined by φ∗ν(B) :=
ν(φ−1(B)) for every Borel set in R. Note that this is a finite Borel measure on R. It follows that∫

R
K(eiφ

−1(t), C(z))d(φ∗ν) =

∫
(0,2π)

K(eit, C(z))dν (126)

We have that φ−1(t) = (eit)−1(C(t)) = arg(C(t)) which gives

f(z) =− Im[c(0)] + zν({0}) + i

∫
R
K(eiφ

−1(t), C(z))d(φ∗ν) (127)

− Im[c(0)] + zν({0}) + i

∫
R
K(ei arg(C(t)), C(z))d(φ∗ν) (128)

− Im[c(0)] + zν({0}) + i

∫
R
K(C(t), C(z))d(φ∗ν) (129)

− Im[c(0)] + zν({0}) +
∫
R

tz + 1

t− z
d(φ∗ν). (130)

We define a measure dµ(t) := (1 + t2)d(φ∗ν)(t) and find

f(z) = − Im[c(0)] + zν({0}) +
∫
R

tz + 1

t− z

1

1 + t2
dµ(t) (131)

with ∫
R

1

1 + t2
dµ(t) =

∫
R
d(φ∗ν) < ∞
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[3] Péter Berkics. “On Self-Adjoint Linear Relations”. In:Mathematica Pannonica 27/NS1.1 (2021), pp. 1–
7. doi: 10.1556/314.2020.00001. url: https://akjournals.com/view/journals/314/27_NS1/1/
article-p1.xml.

[4] Michael Z. Q. Chen and Malcolm C. Smith. “A Note on Tests for Positive-Real Functions”. In: IEEE
Transactions on Automatic Control 54.2 (2009), pp. 390–393. doi: 10.1109/TAC.2008.2008351.

[5] C. L. Dolph and F. Penzlin. On the theory of a class of non-self-adjoint operators and its applications
to quantum scattering theory. eng. Suomalaisen tiedeakatemian toimituksia. Sarja A I, Mathematica ;
263. Helsinki: Suomalainen tiedeakatemia, 1959.

[6] Fritz Gesztesy and Eduard Tsekanovskii. “On Matrix–Valued Herglotz Functions”. In: Mathematische
Nachrichten 218.1 (2000), pp. 61–138. doi: https://doi.org/10.1002/1522-2616(200010)218:
1<61::AID-MANA61>3.0.CO;2-D. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
1522- 2616%28200010%29218%3A1%3C61%3A%3AAID- MANA61%3E3.0.CO%3B2- D. url: https://
onlinelibrary.wiley.com/doi/abs/10.1002/1522-2616%28200010%29218%3A1%3C61%3A%3AAID-

MANA61%3E3.0.CO%3B2-D.

[7] David S Greenstein. “On the analytic continuation of functions which map the upper half plane into
itself”. In: Journal of Mathematical Analysis and Applications 1.3 (1960), pp. 355–362. issn: 0022-247X.
doi: https://doi.org/10.1016/0022-247X(60)90009-3. url: https://www.sciencedirect.com/
science/article/pii/0022247X60900093.

[8] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Second. Cambridge University Press, 2013.

[9] D.E. Marshall. Complex Analysis. Cambridge Mathematical Textbooks. Cambridge University Press,
2019. isbn: 9781107134829. url: https://books.google.se/books?id=mVqHDwAAQBAJ.

[10] Mitja Nedic et al. “Herglotz functions and applications in electromagnetics”. In: Institution of Engi-
neering and Technology. Electromagnetic Waves (2020), pp. 491–514. doi: 10.1049/SBEW528E_ch20.
url: https://digital-library.theiet.org/content/books/10.1049/sbew528e_ch20.

[11] Jakob Reiffenstein. “Higher-order interlacing for matrix-valued meromorphic Herglotz functions”. In:
Journal of Mathematical Analysis and Applications 514.1 (2022), p. 126260. issn: 0022-247X. doi:
https://doi.org/10.1016/j.jmaa.2022.126260. url: https://www.sciencedirect.com/
science/article/pii/S0022247X22002748.

[12] James B. Robertson and Milton Rosenberg. “The decomposition of matrix-valued measures.” In:Michi-
gan Mathematical Journal 15.3 (1968), pp. 353–368. doi: 10.1307/mmj/1029000039. url: https:
//doi.org/10.1307/mmj/1029000039.

[13] Barry Simon. “Spectral Analysis Of Rank One Perturbations And Applications”. In: CRM Proceedings
and Lecture Notes 8 (May 1997).

[14] Gerald Teschl. Mathematical Methods in Quantum Mechanics. Second. Graduate Studies in Mathe-
matics Volume 157. American Mathematical Society, 2014.

[15] Gerald Teschl. Topics in Real Analysis. Cambridge Mathematical Textbooks. American Mathematical
Society, 2014. url: https://books.google.se/books?id=mVqHDwAAQBAJ.

[16] Omar Wing. Classical Circuit Theory. First. Vol. 773. Springer New York, 2008.

https://doi.org/https://doi.org/10.1007/BF02937349
https://doi.org/10.1556/314.2020.00001
https://akjournals.com/view/journals/314/27_NS1/1/article-p1.xml
https://akjournals.com/view/journals/314/27_NS1/1/article-p1.xml
https://doi.org/10.1109/TAC.2008.2008351
https://doi.org/https://doi.org/10.1002/1522-2616(200010)218:1<61::AID-MANA61>3.0.CO;2-D
https://doi.org/https://doi.org/10.1002/1522-2616(200010)218:1<61::AID-MANA61>3.0.CO;2-D
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1522-2616%28200010%29218%3A1%3C61%3A%3AAID-MANA61%3E3.0.CO%3B2-D
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1522-2616%28200010%29218%3A1%3C61%3A%3AAID-MANA61%3E3.0.CO%3B2-D
https://onlinelibrary.wiley.com/doi/abs/10.1002/1522-2616%28200010%29218%3A1%3C61%3A%3AAID-MANA61%3E3.0.CO%3B2-D
https://onlinelibrary.wiley.com/doi/abs/10.1002/1522-2616%28200010%29218%3A1%3C61%3A%3AAID-MANA61%3E3.0.CO%3B2-D
https://onlinelibrary.wiley.com/doi/abs/10.1002/1522-2616%28200010%29218%3A1%3C61%3A%3AAID-MANA61%3E3.0.CO%3B2-D
https://doi.org/https://doi.org/10.1016/0022-247X(60)90009-3
https://www.sciencedirect.com/science/article/pii/0022247X60900093
https://www.sciencedirect.com/science/article/pii/0022247X60900093
https://books.google.se/books?id=mVqHDwAAQBAJ
https://doi.org/10.1049/SBEW528E_ch20
https://digital-library.theiet.org/content/books/10.1049/sbew528e_ch20
https://doi.org/https://doi.org/10.1016/j.jmaa.2022.126260
https://www.sciencedirect.com/science/article/pii/S0022247X22002748
https://www.sciencedirect.com/science/article/pii/S0022247X22002748
https://doi.org/10.1307/mmj/1029000039
https://doi.org/10.1307/mmj/1029000039
https://doi.org/10.1307/mmj/1029000039
https://books.google.se/books?id=mVqHDwAAQBAJ

	Introduction
	Preliminaries
	Basic Facts About Herglotz Functions
	Support of the Measure
	Different Representations
	Exponential Herglotz representation
	Operator Representation


	Characterisation of Rational Herglotz Functions
	Rational Herglotz Functions with Real Poles
	Rational Herglotz Functions with Poles in the Lower Half-Plane
	General Rational Herglotz Functions

	Rational Matrix-valued Herglotz Functions
	Definition and Basic properties
	Support of the Measure
	Characterisation of Rational Herglotz Functions

	Appendix- The Herglotz Representation Theorems
	References

