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Abstract

In this thesis, we lay the groundwork for non-standard analysis and derive some classic results from
real analysis, through alternative methods. Non-standard analysis extends the real number line to the
hyperreal number line, which we construct by introducing ultrafilters. The hyperreal number-line includes
infinitesimal numbers, whose absolute value is less than any positive real number, and unlimited numbers,
whose absolute value is greater than any real number. A fundamental result we prove is the transfer
principle, which allows first-order statements about one structure, to be transferred to a corresponding
statement about the other structure. Using transfer, we establish a basic theory of non-standard analysis,
including proofs of classic theorems such as the Squeeze Theorem, the Intermediate Value Theorem, the
Chain Rule, and the Fundamental Theorem of Calculus. We do this using infinitesimals — akin to the
original methods of Leibniz — instead of the standard limit-based formulations. The thesis shows how
non-standard methods can offer a more intuitive alternative for analysis.

Sammanfattning

I denna avhandling lägger vi grunden för icke-standardanalys och härleder några klassiska resultat från
reell analys med hjälp av alternativa metoder. Icke-standardanalysen utvidgar den reella tallinjen till
den hyperreella tallinjen, som vi konstruerar genom att introducera ultrafilter. Den hyperreella tallinjen
innehåller infinitesimala tal, vars absolutbelopp är mindre än varje positivt reellt tal, samt obegränsade
tal, vars absolutbelopp är större än varje reellt tal. Ett centralt resultat vi bevisar är överföringsprincipen,
som möjliggör att första ordningens utsagor om den ena strukturen kan överföras till motsvarande utsagor
om den annan struktur. Med hjälp av överföringsprincipen etablerar vi en grundläggande teori för icke-
standardanalys, inklusive bevis för klassiska satser såsom instängningssatsen, satsen om mellanliggande
värden, kedjeregeln och integralkalkylens fundamentalsats. Detta gör vi med hjälp av infinitesimaler –
i Leibniz anda – snarare än genom standardmetoder baserade på gränsvärden. Avhandlingen visar hur
icke-standardmetoder kan erbjuda ett mer intuitivt alternativ i analysens tjänst.
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1 Introduction
Our modern conceptions of the derivative and integral trace back to Newton and Leibniz, but if a modern
math student went back to their seventeenth century writings, she would be very confused. Not only because of
notational differences, but also because their methods differ fundamentally. In the seventeenth century, when
Newton and Leibniz worked, our modern notion of limits - which we nowadays base analysis on - was still two
hundred years away. Newton and Leibniz instead made use of non-zero infinitesimals, numbers that are infinitely
small yet distinct from zero. Newton’s view of infinitesimals was ambiguous because he was more interested
in the physical applications of calculus; Leibniz by contrast tried to base calculus in a formal system which
included infinitesimals [3]. For example, the derivative of a function f(x), in modern notation, was defined as
the ratio

f(x+∆x)− f(x)

∆x

where ∆x is a non-zero infinitesimals. To demonstrate, the derivative of a function f(x) = xn would be
computed as

(x+∆x)n − xn

∆x
=
xn + nxn−1∆x+

(
n
2

)
xn−2∆x2 + . . .+∆xn − xn

∆x
= nxn−1+

(
n

2

)
xn−2∆x+. . .+∆xn−1 = nxn−1

In the final step, since ∆x is infinitesimal, any multiple of ∆x would also be infinitesimal, hence all terms except
nxn−1 are disregarded. This reasoning reaches the correct conclusion but the methods seem questionable. The
first steps crucially uses that ∆x is non-zero since it is in the denominator, yet in final step, all its multiples are
disregarded, as if it were zero. Problems like this (and philosophical worries about the existence of infinitely
small quantities) led to the eventual replacement of infinitesimals when the foundation of calculus was formalized
in the early 19th century [3].

The infinitesimals were then largely abandoned, only to be used as pedagogical tools ... until Abraham Robinson
introduced non-standard analysis in 1960 [1]. Robinson demonstrated that, with modern developments in
mathematical logic, the real number line could be rigorously extended to the hyperreal number line, which
includes infinitesimals (among other non-standard entities). Robinson also showed that within the hyperreals
one can develop a theory of real-analysis, alternative to the standard way, hence the title.

In this paper, we present the construction of hyperreal numbers and show how the foundations of calculus can
be developed with this framework. We begin by constructing the hyperreals via equivalence classes of infinite
real-valued sequences, making crucial use of non-principal ultrafilters. We then develop the formal language and
a natural translation form the reals to the hyperreals, in order to prove the Transfer Principle, a central result
that ensures certain properties of the real numbers are preserved in the hyperreals and vice versa. Following
this, we investigate the arithmetic and algebraic properties of the hyperreal number-line and its non-standard
elements, to familiarize us with the structure we are working in. Finally, we apply these ideas to classical topics
in analysis including convergence, continuity, differentiation, and integration, demonstrating how non-standard
methods can be used to give alternative, and sometimes, more intuitive version of classic results in analysis.



2 Construction of The Hyperreals
In this section we provide a construction of the hyperreal numbers from the real numbers, based on the ma-
terial in chapter 2 and 3 from [1] and chapter. We construct the hyperreals rather than simply postulating
infinitesimals, because, as noted in the introduction, there is a risk that the concept of infinitesimals could
be inconsistent. In that case, defining a structure containing infinitesimals might lead to contradictions, like
defining N to be “the greatest integer” and deducing that N ≥ N + 1. If we however construct the hyperreals
from structure we already “know” 1 are non-contradictory, we can be sure that it does not lead us to falsehood.

Robinson proved the existence of the hyperreals via the compactness theorem. A sketch of the construction goes
as follows [1]. According to the compactness theorem, if for a set of (appropriately formalized) sentences Σ, for
every finite subset Γ ⊆ Σ there exists a structure which makes all the sentences in Γ true - a so called model
of Γ - then the entirety of Σ has a model. Considered the set of true sentences about the real number ΣR, and
the infinite set of sentences {0 < ε} ∪ {ε < 1

n : n ∈ N}. Every finite subset of ΣR ∪ {0 < ε} ∪ {ε < 1
n : n ∈ N}

can be modeled by the real numbers, interpreting ε as 1
k+1 where k is the largest n such that ε < 1

n is in the
finite subset. Hence by the compactness theorem ΣR ∪ {0 < ε} ∪ {ε < 1

n : n ∈ N} has a model which satisfies
the same sentences as the reals but also contains an infinitesimal ε.

If this is ones first interaction with the compactness theorem, this line of reasoning might seem like a trick;
we are not shown this hyperreal structure, just ensured that it exists. We therefore opt for a more algebraic
construction, based on equivalence classes of countably infinite sequences of real numbers, defined using a
formalized notion of a property holding for ’most’ indices in the sequence. Although this is more complicated
than Robinson’s’ method, it provides an explicit construction of the hyperreals, giving us more insight into their
structure. For the curious, this entire section is just a particular case of a broader topic called Ultraproducts in
which one generalizes this to any structure over any index set. For more on the topic, see [2].

2.1 Filters
The goal of this and the next sub-section is to formalize an notion when a subset X ⊆ I contains ’most’ of I.
The concept of a filters on sets is a beginning of formalizing this notion.

Definition 2.1 (Filter). A filter F on a set I, is a subset of P(I) that is closed under finite intersections and
supersets, i.e.

(i) If X,Y ∈ F , then X ∩ Y ∈ F ;

(ii) If X ∈ F and X ⊆ Y ⊆ I, then Y ∈ F .

Additionally a filter F on I is called a proper filter if it’s a proper subset of P(I)

Closure under supersets is a desirable property: if a set contains most elements of a given set, then so should
any of its supersets. The closure under finite intersection isn’t quite as intuitive, but we see further on that it
proves very useful.

Some trivial but useful properties of filters include

Proposition 2.2. For every filter F , on a set I

(a) ∅ ∈ F iff F = P(I),

(b) I ∈ F iff F ̸= ∅,

(c) if X ∩ Y ∈ F , then X,Y ∈ F .

Proof. The ’only if’-part of (a) follows from the fact that every set is a superset of the empty set, while the
’if’-part of (b) follows from the fact that every set in P(I) is a subset of I, by definition. For (c), it follows from
X ∩ Y ⊆ X,Y for every X,Y . The converses of (a),(b) are trivial.

Let’s consider some examples of of filters on a set I to get a better grasp of filters
1We use quotation marks because, by Gödel’s second incompleteness theorem, no system containing elementary arithmetic can

prove its own consistency. Therefore, we can never be sure that the system in which we are working — ZFC, in this case — is
consistent. However, by general consensus, it is assumed to be.



Example. 1. P(I) and ∅ are filters, all though degenerate cases.

2. Given an i ∈ I let F i = {X ⊆ I : i ∈ X}. If X,Y ∈ F i, then i ∈ X ∩ Y so X ∩ Y ∈ F i. Also if X ⊆ Z,
then i ∈ Z so Z ∈ F i. Ergo F i is a filter. Note that for any proper filter H, if i ∈ H, then F i ⊆ H.
Moreover if H contains a subset not contain i, then by being closed under intersection, it would contain
∅ hence not proper by propostion 2.1. Therefore i ∈ H iff H = F i.

3. Let Fco = {X ⊆ I : X is finite}, where X is the complement of X, i.e. I − X,. If X,Y ∈ Fco, then
X ∩ Y = X ∪Y is finite so X ∪Y ∈ Fco. In addition if X ⊆ Z, then Z ⊆ X, hence Z is finite so Z ∈ Fco.
Ergo Fco is a filter. Note that Fco is only interesting on infinite sets; if I is finite, then Fco = P(I).

4. Given A ⊆ P(I) let FA = {X ⊆ I :
⋂

A∈A′ A ⊆ X for some finite A′ ⊆ A} which is the closure of A
under finite intersection and supersets, and is therefore a filter.

The idea behind FA is that for any A ⊆ I, we can construct a minimal filter containing A. To determine when
FA is a proper filter we define the following

Definition 2.3 (Finite Intersection Property). For A ⊆ P(I) we say A has the finite intersection property (fip
for short) if for every finite A′ ⊆ A, the intersection

⋂
A∈A′ A is non-empty.

Proposition 2.4. FA is proper if and only if A has the fip

Proof. For the ’only if’-part, assume FA is proper. If A doesn’t have the fip, then for some finite A′ ⊆ A we
have

⋂
A∈A′ A = ∅ ∈ FA. Therefore FA isn’t proper by proposition 2.1, contradicting our origin assumption,

so by reductio ad absurdum FA has the fip.

For the ’if’-part, assume A has the fip. Then
⋂

A∈A′ A ̸= ∅ for all finite A′ ⊆ A, in particular every A ∈ A is
thus non-empty. Therefore, since the empty set is the only superset of the empty set, FA never contains ∅. So,
by proposition 2.1, FA must be proper.

2.2 Ultrafilters
Further refining our notion of ’most’ we consider a special kind of filters.

Definition 2.5 (Ultrafilter). An ultrafilter U on I is an proper filter on I such that for every X ⊆ I, either
X ∈ U or X ∈ U .

Remark. The ’or’ is exclusive because if X,X ∈ U , then X ∩ X = ∅ ∈ U which would contradict U being
proper by proportion 2.1.

That ultrafilters are proper ensures that not every subset of I is considered to contain ’most’ of the elements
— that would render the notion meaningless. That either X ∈ U or X ∈ U also aligns with our intuitions since
one of them must contain most.

The following propositions we prove about ultrafilters correspond to logical inferences. We only note this here
but there’s a deep connection between ultrafilters and logic; for more see [2].

Proposition 2.6. Given an ultrafilter U the union X ∪ Y ∈ U if and only if X ∈ U or Y ∈ U .

Proof. For ’if’-part of assume X ∈ U or Y ∈ U . Since both X ⊆ X ∪ Y and Y ⊆ X ∪ Y , in both cases we have
X ∪ Y ∈ U .

For the ’only if’-part assume X ∪ Y ∈ U and assume, for the case of contradiction, that neither X ∈ U nor
Y ∈ U . Then X,Y ∈ U which implies X ∩ Y = X ∪ Y ∈ U . But then (X ∪ Y ) ∩ (X ∪ Y ) = ∅ ∈ U which
contradicts U being proper so, X ∈ U or Y ∈ U .

Proposition 2.7. Given an ultrafilter U on I and some pairwise disjoint sets X1, X2, . . . , Xn ⊆ I the following
holds: X1 ∪X2 ∪ · · · ∪Xn ∈ U iff exactly one Xi ∈ U .

Proof. For ’if’-part, assume exactly one Xi ∈ U . Then since for each i, Xi ⊆ X1 ∪ X2 ∪ · · · ∪ Xn, we have
X1 ∪X2 ∪ · · · ∪Xn ∈ U in every case.

For the ’only if’-part assume X1 ∪X2 ∪ · · · ∪Xn ∈ U . By induction on the number of sets and proposition
2.3 it follows that X1 ∈ U or X2 ∈ U or . . . or Xn ∈ U , so at least one Xi ∈ U . If Xi, Xj ∈ U with i ̸= j, then
Xi ∩ Xj = ∅ ∈ U contradicting U being proper. Therefore at least 1 and at most 1 i.e. exactly one Xi is in
U .



Let’s return to our examples of filters on a set I to see if they are ultrafilters on I.

Example. 1. Both ∅ and P(I) are never ultrafilters.

2. F i = {X ⊆ I : i ∈ X} is always an ultrafilter since for every X ∈ I either i ∈ X or i ∈ X.

3. Fco = {X ⊆ I : X is finite} is not necessarily an ultrafilter since X and X may both be infinite e.g. the
even and odd numbers in the integers.

4. FA is also not necessarily an ultrafilter. Take for example A = {A} it’s not always the case that A ⊆ X
or A ⊆ X for every X ⊆ I.

An equivalent definition for ultrafilters is that they’re maximal proper filters. This makes intuitive sense since
the X ∈ U or X ∈ U can be seen as ’stuffing a proper filter up to just bellow it’s breaking point’. We formally
prove this equivalence as follows.

Theorem 2.8. A filter U is an ultrafilter if and only if U is a maximal proper filter with respect to ⊆.

Proof. For the ’only if’-part assume U is an ultrafilter, and for the sake of contradiction that U ⊂ F ⊂ P(N)
such that F is a proper filter. Then for some X ⊆ I we have X ∈ F and X /∈ U . It follows that X ∈ U so by
U ⊂ F we get X ∈ F . But then X ∩X = ∅ ∈ F , contradicting it being proper. Ergo U is a maximal proper
filter with respect to ⊆.

For the ’if’-part assume U ̸⊂ F for every proper filter F and for the sake of contradiction, that U isn’t an
ultrafilter i.e. X,X ̸∈ U for some X ⊆ I. Consider U ∪ {X}, every finite intersection of U ∪ {X} is either a
finite intersection of U so non-empty by U being a proper filter, or X ∩ Y for some Y ∈ U . If X ∩ Y = ∅, then
Y ⊆ X which implies X ∈ U contradicting our assumption, so U ∪{X} must have the fip. Then U ⊂ FU∪{X} is
a proper filter by proposition 2 contradicting our assumption that U is maximal. Ergo U is an ultrafilter

Although we have shown that every maximal proper filter is an ultrafilter, it is not obvious that every proper
filter is contained in one. To establish this, we assume Zorn’s Lemma.

Lemma 2.9 (Zorn’s Lemma). For any partially order set P, If every totally order subset (a so called chain) of
P has an upper bound in P , then P has a maximal element.

With Zorn’s lemma we can prove

Proposition 2.10. Every proper filter F over I is contained in some ultrafilter U .

Proof. Let P be the set of proper filters on I and consider PF = {H ∈ P : F ⊆ H} which is a po-set under
⊆. Let {Hn}n∈N ⊆ PF , where N is an index set, be a chain. Consider the union

⋃
n∈N Hn. It’s clearly an

upper bound since Hk ⊆
⋃

n∈N Hn for every k ∈ N . If X,Y ∈
⋃

n∈N Hn, then X ∈ Hk, Y ∈ Hℓ for some
k, ℓ ∈ N . By {Hn}n∈N being totally ordered we know Hk ⊆ Hℓ in which case X,Y ∈ Hℓ, or Hℓ ⊆ Hk in
which case X,Y ∈ Hk. In either case X ∩ Y is in some Hi so X ∩ Y ∈

⋃
n∈N Hn. So

⋃
n∈N Hn is closed under

union. If X ∈
⋃

n∈N Hn and X ⊆ Y ⊆ I, then X ∈ Hk and consequently Y ∈ Hk for some k ∈ N . It then
follows that Y ∈

⋃
n∈N Hn so

⋃
n∈N Hn is closed under finite intersection and superset, hence a filter. It’s also

a proper filter since if ∅ ∈
⋃

n∈N Hn, then ∅ ∈ Hk for some k ∈ N , contradicting Hk being proper. Because
F ∈ Hk ⊆

⋃
n∈N Hn we then have

⋃
n∈N Hn ∈ PF . Applying Zorn’s lemma, there is a maximal proper filter

U ∈ PF , which by the definition of PF contains F , and by theorem 2.1 is an ultrafilter.

For the final refinement of our ’most’ formalization, we consider a special case of ultrafilters, namely non-
principal ones. This is for their following properties

Theorem 2.11. An ultrafilter U is principal if and only if it contains a finite set.

Proof. For the ’if’-part, assume a finite set {a1, . . . , an} is in U , then since {a1, . . . , an} = {a1} ∪ · · · ∪ {an} is a
finite disjoint union, by proposition 4, {ai} ∈ U , for exactly one ai. Since U is proper, {ai} ∈ U then implies
U = F i.

The ’only if’-part follows from {i} ∈ F i.

Corollary 2.12. An ultrafilter U is non-principal if and only if Fco ⊆ U
Proof. For the ’if’-part, if Fco ⊆ U , then U contains all compliments of finite sets. Therefore U contains no
finite sets, so by theorem 2.2, U is non principal.

For the ’only if’-part, assume an ultrafilter U is non-principal. If X ∈ Fco, then X is finite so by theorem 2
X /∈ U which implies X ∈ U . Ergo Fco ⊆ U .

That every co-finite set contains ’most’ elements is very sensible property. We thus arrive at non-principal
ultrafilter formalizing our notion of ’most’.



2.3 The Ring of Infinite Sequences Modulo U
Let RN denote the set of functions N → R, or as we view it, the set of infinite sequences of real numbers writing
r = (rn) = (r1, r2, r3, . . .) ∈ RN. We also use bold font to denote constants sequence, so for every real r, r
denotes the sequence (r, r, r, . . .) ∈ RN

Remark. In this paper we do not consider 0 to be a natural number so N = {1, 2, 3, . . .}.
Defining addition and multiplication component wise as

(r1, r2, r3, . . .)⊕ (s1, s2, s3, . . .) = (r1 + s1, r2 + s2, r3 + s3, . . .) and
(r1, r2, r3, . . .)⊗ (s1, s2, s3, . . .) = (r1 · s1, r2 · s2, r3 · s3, . . .),

makes (RN,⊕,⊗) a ring with zero 0, one 1 and −(r1, r2, r3, . . .) = (−r1,−r2,−r3, . . .). Note that (RN,⊕,⊗) is
not a field since there are zero-divisors e.g (0, 1, 0, . . .)⊗ (1, 0, 0, . . .) = 0 but neither (0, 1, 0, . . .) or (1, 0, 0, . . .)
are 0.

By theorem 2.5 Fco on N is contained in some ultrafilter U which, by corollary 2.1 is non-principal. We
define the relation ≡U on RN as

r ≡U s if and only if {n ∈ N : rn = sn} ∈ U .

Since the subsets of U contain most natural numbers, r ≡U s holds iff r and s are equal in most components.
For ease of notation we introduce [[r = s]] = {n ∈ N : rn = sn}. One should think of equality between sequences
as not binary, but rather measured on a spectrum from [[r = s]] = ∅ (equal in no components) to [[r = s]] = N
(equal in all components).

Proposition 2.13. The relation ≡U is an equivalence relation.

Proof. The relation reflexive since [[r = r]] = N ∈ U , so r ≡U r for all r ∈ RN.

The relation is symmetric since [[s = r]] = [[r = s]], so if s ≡U r, then r ≡U s for any r, s ∈ RN.

Finally for transitivity, assume r ≡U s and s ≡U t, then [[r = s]], [[s = t]] ∈ U . Because [[r = s]]∩ [[s = t]] ⊆ [[r = t]],
it follows that [[r = t]] ∈ U , so r ≡U t.

Denoting the equivalence class of r as [r] = {s ∈ RN : r ≡U s} we consider the quotient ring

RN/≡U= {[r] : r ∈ RN}

which we denote by ∗R. We define the operations + and · on ∗R as

[r] + [s] = [r ⊕ s] and [r] · [s] = [r ⊗ s].

Remark. These operations are well-defined. Let r ≡U r
′, s ≡U s

′, then [[r = r′]], [[s = s′]] ∈ U and consequently
[[r = r′]] ∩ [[s = s′]] ∈ U . The intersection is both a subset of [[r ⊕ s = r′ ⊕ s′]] and [[r ⊗ s = r′ ⊗ s′]], it follows
that [[r ⊕ s = r′ ⊕ s′]], [[r ⊗ s = r′ ⊗ s′]] ∈ U . Thus [r] + [s] = [r′] + [s′] and [r] · [s] = [r′] · [s′], so addition and
multiplication don’t depend on equivalence class representative

We define an order on ∗R as

[r] < [s] if and only if [[r < s]] := {n ∈ N : rn < sn} ∈ U .

Reusing the [[·]] notation we again get intuition that [r] is less than [s] iff r is s for most indices. With this
ordering we get

Proposition 2.14. The structure (∗R,+ , · , <) is an order field

Proof. Since ∗R is a quotient ring of RN by a congruent equivalence, it’s also a ring with zero [0], one [1] and
−[r] = [−r]. To show ∗R is field suppose [r] ̸= [0] and let

sn =

{
1
rn

if n ∈ [[r ̸= 0]]

0 otherwise.

Then [[r ⊗ s = 1]] = [[r ̸= 0]] ∈ U so [r] · [s] = [r ⊗ s] = [1], ergo [s] = [r]−1.

The order < induced on ∗R is linear since for any r, s ∈ RN, the union [[r < s]] ∪ [[r = s]] ∪ [[r > s]] = N is
finite and disjoint, so by proposition 2.4 exactly one of them must be in U . Thus [r] < [s] or [r] = [s] or
[r] > [s] for all [r], [s] ∈ ∗R so the order is linear. Finally the positive Hyperreals are closed under addition and
multiplication since [[0 < r]] ∩ [[0 < s]] is a subset of [[0 < r + s]] and [[0 < r · s]] so if [r] and [s] are positive, then
[r] + [s] and [r] · [s] are positive.

We call this ordered filed the hyperreal numbers.



2.4 Hyperreals Numbers
There’s a natural inclusion of R in ∗R by identifying x with ∗x = [x]. We call the map x 7→∗x the natural
translation. Note that

∗(x+ y) = [(x+ y, x+ y, x+ y, . . .)]

= [(x, x, x, . . .)] + [(y, y, y, . . .)]

=∗x+∗y and
∗(x · y) = [(x · y, x · y, x · y, . . .)]

= [(x, x, x, . . .)] + [(y, y, y, . . .)]

=∗x ·∗y.

Furthermore if x < y, then [[x < y]] = N ∈ U so ∗x < ∗y. Finally if ∗x = ∗y, then their equal for some
component. Since both ∗x and ∗y are equivalence classes of constants sequences, it follows that they’re equal
for all components. Hence x = y so the map is injective. We’ve thereby proven

Proposition 2.15. The map x 7→∗x is a field embedding of R into ∗R.

It follows that there is a isomorphic copy of R in ∗R. The question arises if ∗R is proper extension of R or if
just we’ve reinvented the reals. Here our assumption that U is non-principal becomes crucial.

Proposition 2.16. The quotient ring RN/≡U is isomorphic to R if and only if the ultrafilter U is principal.

Proof. For the ’if’-part, assume is U principal so U = {X ⊆ N : k ∈ X} for some k ∈ N. Then for any sequence
r = (r1, r2, r3 . . .) ∈ RN we have k ∈ [[(r1, . . . , rk, . . .) = (rk, rk, rk, . . .)]] = [[r = rk]], so [[r = ∗rk]] ∈ U by U being
principally generated by k. Consequently every [r] ∈ ∗R equals ∗rk. Hence x 7→∗x is surjective and thereby an
isomorphism between R and RN/≡U .

For the ’only if’-part, assume by contraposition that U is non principal. Consider the sequence ( 1n ) =
(1, 12 ,

1
3 , . . .) ∈ RN. The set [[( 1n ) > 0]] = N ∈ U so [0] < [( 1n )], but for every x ∈ R+ there is a natural

number m such that x > 1
m so [[ 1n ≥ x]] is always finite. So [[( 1n ) ≥ x]] = [[( 1n ) < x]] ∈ Fco for every x ∈ R+. By

corollary 2.12, Fco ⊆ U , we thus have an element ε = [( 1n )] such that 0 < ε <∗x for every x ∈ R+. This isn’t
the case any real number, so an isomorphism between RN/≡U and R cannot exist.

By analogous argument, ε−1 = [(n)] is greater than every x ∈ R, so in addition to the standard real numbers,
the hyperreals also contain numbers greater than zero but lesser than every positive, and numbers greater than
every real number. We explore these non-standard numbers in section 4.

Remark. An attentive reader might have noticed that we’ve been sloppy by saying the hyperreal numbers
when we haven’t specified our non-principal ultrafilter U . The quotient ring might be different depending on
which U we chose. To guarantee that every hyperreal number-line is isomorphic we would need to assume
the Continuum Hypothesis according to [1] section 3.16. However, we show in section 3.4 that, for practical
purposes, the choice of non-principal ultrafilter doesn’t matter.

3 Transfer
Now that we’ve constructed the hyperreal number-line, one might ask: “Who cares about hyperreal numbers?!
I only care about the real real numbers”. At first glance, the hyperreals might appear to be just a neat
demonstration that infinitesimals are not contradictory — but they are much more than that.

The goal of this section is to, based on material from chapter 3 of [1] and chapter 5 of [2], prove the transfer
principle. The transfer principle allows one to transfer any (appropriately formalized) statement about the
structure of the real numbers, to a corresponding statement about structure of the hyperreals, and vice versa;
results in the hyperreals are therefore directly relevant to the real numbers. The transfer principle allows us
to set aside the talk of ultrafilters, in place of a more natural way to talk about the hyperreals - analogous
to how the supremum axiom let’s one avoid talking about the real numbers in terms of Dedekind cuts. To
get there we first need a formal notion of what a ’structure of the reals/hyperreals’ and a ’sentence about the
reals/hyperreals’ means, which we get through a quick detour through first-order logic. We then extend the
natural translation to apply to more than just numbers, before proving the transfer principle.



3.1 The Relational Structure and First-Order Language of the Reals
We begin by defining relation structures, within which sentences can be true or false.

Definition 3.1 (Relational Structure). A relational structure A is a pair (A,RelA) where A is a non-empty
set, called the domain or universe of A, and RelA is a set of k-ary relations on A. By a k-ary relation on A we
mean a subset of Ak.

For our relational structure of the reals, denoted by R, we take R as the domain, and the crude approach of
taking RelR =

⋃
n∈N P(Rn), including all possible n-ary relations, for every n ∈ N. This way we include all

interesting relations, like the binary identity relation IdR = {(x, x) : x ∈ R}, all subset of R as unary relations,
and for any real-valued k-ary function f , its graph Gf = {(x1, . . . , xk, f(x1, . . . , xk)) : x1, . . . , xk ∈ Df}. We
also have a lot ’junk’ in RelR, for example the relation {(π, 42), ( 35 , 100

100)} but too much is better then too
little.

Based on R we inductively define the set of LR-formulas in the following way

Definition 3.2 (LR-formulas).

• For every k-ary R ∈ RelR, the expression Rt1 . . . tk ∈ LR-formulas where t1, . . . , tk are either real numbers
or variables x, y, z, . . .. We call formulas of this form atomic.

• If φ ∈ LR-formulas, then ¬φ ∈ LR-formulas

• If φ,ψ ∈ LR-formulas, then (φ ∧ ψ) ∈ LR-formulas.

• If φ ∈ LR-formulas and x is a variable, then ∃xφ ∈ LR-formulas.

Throughout this section we use φ,ψ, χ, . . . as variables for formulas.

Remark. Induction on LR-formulas is possible by proving that a property P holds for all atomic formulas and
proving that, if P holds for φ and ψ, then P holds for ¬φ, (φ ∧ ψ) and ∃xφ.

To give interpenetration rules we must first distinguish between free and bound variables. A variable x occurs
bounded in φ if it’s under the scope of a quantifier and free if it isn’t bounded. If a formula contains free
variables we cannot assign a truth-value to it since free variables do not refer to anything. Formally we can
define the set of free variables occurring in a formula as follows

For any constant c, Fv(c) = ∅,
for any variable x, Fv(x) = {x},

for any atomic formula Rt1 . . . tk Fv(Rt1 . . . tk) = Fv(t1) ∪ · · · ∪ Fv(tk),
for any negation ¬φ Fv(¬φ) = Fv(φ),

for any conjunction φ ∧ ψ Fv(φ ∧ ψ) = Fv(φ) ∪ Fv(ψ),
for any existential formula ∃xφ Fv(∃xφ) = Fv(φ)− {x}.

We call a formula with no free variables a sentence and denote the set of sentences by LR-sentences. Given
a formula φ, we write φ(x1, . . . , xp) to indicate that at most the variables x1, . . . , xp occur free in φ. We use
φ(t1, . . . , tp) to denote the resulting formula of simultaneously substituting each free occurrence of xi in φ with
the corresponding term ti, for i = 1, . . . , p.
We define the truth of a sentence in a structure inductively in the following way.

Definition 3.3 (Truth of LA-sentences in A).

• An atomic formula Rt1 . . . tk is true in a structure A iff (t1, . . . , tk) ∈ R.

• A negation ¬φ is true in A iff φ is not true, i.e. false, in A.

• A conjunction (φ ∧ ψ) is true in A iff φ is true in A and ψ is true in A.

• An existential sentence ∃xφ(x) is true in A iff φ(a) is true in A for some a ∈ A.



By convention the other logical connectives are defined as

(φ ∨ ψ) := ¬(¬φ ∧ ¬ψ),
(φ→ ψ) := ¬φ ∨ ψ,
(φ↔ ψ) := (φ→ ψ) ∧ (ψ → φ),

∀xφ := ¬∃x¬φ.

We also define expressions containing k-ary function-symbols φ(f(t1, . . . , tk)), where (t1, . . . , tk) ∈ Df , as
∃x(Gf t1 . . . tkx∧φ(x)). We also define bounded quantification as (∀φ(x1, . . . xp))ψ := ∀x1 . . . ∀xp(φ(x1, . . . xp) →
ψ) and ∃φ(x1, . . . xp)ψ = ∃x1 . . . ∃xp(φ(x1, . . . xp) ∧ ψ).

We drop the parentheses when there’s no risk of misunderstanding e.g. writing φ∧ψ∧χ instead of ((φ∧ψ)∧χ).
Since unary relations are just subsets of R, we write t ∈ R instead of Rt. When appropriate we use infix notation
and familiar symbols for some relations e.g. writing t = s instead of IdRst.

3.2 Extending the Natural Translation
To get from R to the relational structure of the hyperreals, denoted by ∗R, we first extend our natural translation
function from proposition 2.8 to apply to real relations as-well.

Definition 3.4 (Translations of Relations). Given a k-ary relation on R we define the its natural translation
∗R, as the k-ary relation on ∗R defined by

([r1], . . . , [rk]) ∈ ∗R if and only if [[(r1, . . . , rk) ∈ R]] := {n ∈ N : (r1n, . . . , r
k
n) ∈ R} ∈ U .

where U is the non-principal ultrafilter on N from section 2.3. Note that this definition is consistent with how
we previously defined equality and less the ordering in the hyperreals and generalizes the ’true for most indecies’-
intuition to any relation. It is well-defined since, if ([r1], . . . , [rk]) ∈ ∗R and ([r1], . . . , [rk]) = ([s1], . . . , [sk]), then
[[r1 = s1]], . . . , [[rk = sk]], [[(r1, . . . , rk) ∈ R]] ∈ U and because [[(r1, . . . , rk) ∈ R]] ∩ [[r1 = s1]] ∩ . . . ∩ [[rk = sk]] ⊆
[[(s1, . . . , sk) ∈ R]] it follows that [[(s1, . . . , sk) ∈ R]] ∈ U so ([s1], . . . , [sk]) ∈ ∗R.

We shall now investigate the translation of unary relations, i.e real sets X ⊆ R, but these results can be
generalized to relation of an arbitrary arity. If x ∈ X, then [[x ∈ X]] = N so ∗x ∈ ∗X while if x /∈ X, then
[[x ∈ X]] = ∅ so ∗x /∈ ∗X. Identifying x with ∗x, we get ∗X ∩ R = X and X ⊆ ∗X. This does not rule out the
possibility that ∗X is a strict superset of X - non-standard elements could be introduced during the translation.
In fact, we know precisely for which subsets that is the case.

Proposition 3.5. For any X ⊆ R, X = ∗X if and only if X is finite

Proof. For the ’if’-part assume X = {x1, . . . , xn} and assume [r] ∈ ∗X. Then finite union [[r = x1]] ∪ · · · ∪ [[r =
xn]] = [[r ∈ X]] ∈ U but [[r = xi]]∩ [[r = xj ]] = ∅ for every xi ̸= xj , so proposition 2.7, [[r = xi]] ∈ U for exactly
one xi ∈ X. Thus ∗X ⊆ X and since the converse always holds, X = ∗X.

For the ’only if’-part assume by contraposition that X is an infinite set {x1, x2, x3, . . .}. Since X is infinite we
may construct a never repeating real sequence s, where each sn ∈ X. It follows that [[s ∈ X]] = N ∈ U so
[sn] ∈ X however, for any x ∈ R, the set [[s = x]] is either singleton, or empty, since s is non-repeating. In
either case, [[x = s]] is finite so [[x = s]] = [[x ̸= s]] ∈ U , for every x ∈ R. Therefore [sn] ∈ ∗X is non-standard, so
X ⊂ ∗X and X ̸= ∗X.

The natural translation preserve most set theoretic operations.

Proposition 3.6. Let X,Y ⊆ R, then

1. X ⊆ Y iff ∗X ⊆ ∗Y

2. X = Y iff ∗X = ∗Y

3. ∗(X ∪ Y ) =∗X ∪ ∗Y

4. ∗(X ∩ Y ) =∗X ∩ ∗Y

5. ∗(X − Y ) = ∗X − ∗Y , in particular ∗(X) = ∗(R −X) = ∗R − ∗X = (∗X), so we may write ∗X without
risk of confusion



6. ∗(X+) = (∗X)+ where X+ = {x ∈ X : x > 0}, so we may write ∗X+ without risk of confusion

7. ∗(X1 × · · · ×Xk) =
∗X1 × · · · × ∗Xk, in particular ∗(Xk) = (∗X)k, so we may write ∗Xk without risk of

confusion.

Proof.

1. For the if-part assume ∗X ⊆ ∗Y . If x ∈ X, then x ∈ ∗X so by assumption x ∈ ∗Y which implies
x ∈ R ∩ ∗Y = Y . For only-if part, if X ⊆ Y , then [[r ∈ ∗X]] ⊆ [[r ∈ ∗Y ]] so if x ∈ ∗X, then x ∈ ∗Y .

2. Since X = Y iff X ⊆ Y and Y ⊆ X this follows from 1.

3. Follows from the fact that [[r ∈ X ∪ Y ]] = [[r ∈ X]] ∪ [[r ∈ Y ]] and proposition 2.7.

4. Follows from the fact that [[r ∈ X ∩ Y ]] = [[r ∈ X]] ∩ [[r ∈ Y ]] and proposition 2.2 (c).

5. Follows from the fact that [[r ∈ X − Y ]] = [[r ∈ X]] ∩ [[r /∈ Y ]] = [[r ∈ X]] ∩ [[r ∈ Y ]] and proposition 2.2
(c).

6. Follows from the fact that [[r ∈ X+]] = [[r ∈ X]] ∩ [[r > 0]] and proposition 2.2 (c).

7. Follows from [[(r1, . . . , rk) ∈ X1 × · · · ×Xk]] = [[r1 ∈ X1]] ∩ · · · ∩ [[rk ∈ Xk]] and induction on proposition
2.2 (c).

Remark. It follows from 3 and induction on the number of sets that ∗(
⋃N

n=1Xn) =
⋃N

n=1
∗Xn for any N ∈ N

but this doesn’t hold in the infinite case. Take for example
⋃∞

n=1
∗{n} =

⋃∞
n=1{n} = N but ∗(

⋃∞
n=1{n}) = ∗N

which is distinct by proposition 3.1.

Definition 3.7 (Translation of Total Functions). Given a total k-ary function f : Rk → R, we define its natural
translation as the function

∗f : ∗Rk → ∗R,
([x1], . . . , [xk]) 7→ [

(
(f(x1n, . . . , x

k
n)
)
] = [(f(x11, . . . , x

k
1), f(x

1
2, . . . , x

k
2), . . .)].

This definition aligns with our way of identifying functions with their graph.

Proposition 3.8. For any function f : Rk → R and any [x1], . . . , [xk], [y] ∈ ∗R we have

([x1], . . . , [xk], [y]) ∈f if and only if ∗f([x1], . . . , [xk]) = [y],

or put more succinctly, ∗Gf = G∗f .

Proof. It’s follows form the definition of Gf that [[(x1, . . . , xk, y) ∈ Gf ]] = [[f(x1, . . . xk) = y]] so the left and
right side coincide.

Definition 3.7 is thus well-defined since it’s equivalent with definition 3.4, which we’ve already proven
well-defined.

Much like how the translation of a set preserves its standard elements, the translation of a function agrees with
the original function on all real numbers.

Proposition 3.9. Given f : Rk → R and its natural translation ∗f : ∗Rk → ∗R, then for all (x1, . . . , xk) ∈ Rk

we have ∗f(∗x1, . . . ,
∗xk) =

∗(f(x1, . . . , xk)).

Proof. By definition we have ∗f(∗x1, . . . ,
∗xk) = [(f(x1, . . . , xk), f(x1, . . . , xk), . . .)] and since f(x1, . . . , xk) ∈ R

this equals ∗(f(x1, . . . , xk)) = [(f(x1, . . . , xk), f(x1, . . . , xk), . . .)].

This proposition shows that ∗f is an extension of f to ∗R so for convenience we denote both the real and
hyperreal functions with the same symbol, unless we want to make the difference explicit.

The natural translation also preserve important function properties

Proposition 3.10. If f : Rk → R is injective, then ∗f is also injective. The same holds for surjectivity.



Proof. Assume f : Rk → R is injective and let ∗f([x1], . . . , [xk]) = ∗f([y1], . . . , [yk]) for [x1], . . . [xk], [y1], . . . , [yk] ∈
∗R. Then [[f(x1, . . . xk) = f(y1, . . . , yk)]] ∈ U and by f being injective [[f(x1, . . . xk) = f(y1, . . . , yk)]] ⊆
[[(x1, . . . , xk) = (y1, . . . , yk)]] so ([x1], . . . , [xk]) = ([y1], . . . , [yk]), ergo ∗f is injective.

Assume f : Rk → R is surjective and consider a general hyperreal [y] ∈ ∗R. By f being surjective we
know [y] = [(y1, y2, . . .)] = [(f(x11, . . . , x

k
1), f(x

1
2, . . . , x

k
2), . . .] for some (x11, . . . x

k
1), (x

1
2, . . . x

k
2), . . . ∈ Rk. Then

([(x11, x
1
2, . . .], . . . , [(x

k
1 , x

k
2 , . . .]) = ([x1], . . . , [xk]) ∈ ∗Rk is such that ∗f([x1], . . . , [xk]) = [y], ergo ∗f is surjec-

tive.

Translating partial k-ary functions whose domain isX = X1×· · ·×Xk ⊆ Rk is possible but requires some finesse.
Consider for example the function f(x) =

√
x whose domain is R≥0. Since [(−1, 0, 0, 0, . . .)] = 0 we should have

f([(−1, 0, 0, 0, . . .)]) = f(0) = 0 but [(f(−1), f(1), f(1), f(1), . . .)]) is undefined in the first component. We
circumvent this in the same way we defined the multiplicative inverse.

Definition 3.11 (Translation of a Partial Function). Given a k-ary function f : X → R, with X ⊆ Rk, we
define its natural translation as the function

∗f : ∗X → ∗R,

([x1], . . . , [xk]) 7→ [(sn)] where sn =

{
f(x1n, . . . , x

k
n) if n ∈ [[(x1, . . . , xk) ∈ X]],

0 if n /∈ [[(x1, . . . , xk) ∈ X]].

3.3 The Relational Structure and First-Order Languages of the Hyperreals
Using our extended translation function we define the relational structure of the hyperreals, which we denote
∗R, as (∗R, {∗R : R ∈ RelR}).

We extend natural translation map for the final time, to apply to any LR-formula by inductive definition.

Definition 3.12 (The Translation of a LR-formula).

• For atomic formulas∗(Rt1 . . . tk) = ∗R∗t1 . . .
∗tk where variables are unaffected i.e. ∗x = x.

• For negations negation ∗(¬φ) = ¬∗φ.

• The conjunctions ∗(φ ∧ ψ) is (∗φ ∧ ∗ψ).

• For existential formulas ∗(∃xφ) = ∃x∗φ.

It follows that these definitions also define translations for the rest of the connectives since, given any φ,ψ ∈ LR-
formulas

• ∗(φ ∨ ψ) := ∗(¬(¬φ ∧ ¬ψ)
)
= ¬(¬∗φ ∧ ¬∗ψ) =: ∗φ ∨ ∗ψ

• ∗(φ→ ψ) := ∗(¬φ ∨ ψ) = (¬∗φ ∨ ∗ψ) =: ∗φ→ ∗ψ

• ∗(φ↔ ψ) := ∗((φ→ ψ) ∧ (ψ → φ)
)
= (∗φ→ ∗ψ) ∧ (∗ψ → ∗φ) =: ∗φ↔ ∗ψ

• ∗(∀xφ) := ∗(¬∃x¬φ) = ¬∃x¬∗φ =: ∀x∗φ

• ∗(φ(f(t1, . . . , tk))) := ∗(∃x(Gf t1 . . . tk ∧ φ(x)
)
= ∃x

(∗Gf
∗t1 . . .

∗tk ∧ ∗φ(x)
)
= ∗φ(∗f(t1, . . . , tk))

by propositions 3.8 and 3.9.

• ∗((∀φ(x1, . . . xp))ψ) := ∗(∀x1 . . . ∀xp(φ(x1, . . . xp) → ψ
)
= ∀x1 . . . ∀xp(∗φ(x1, . . . xp) → ∗ψ) =:

(
∀∗φ(x1, . . . xp)

) ∗ψ
• ∗((∃φ(x1, . . . xp))ψ) := ∗(∃x1 . . . ∃xp(φ(x1, . . . xp)∧ψ)= ∃x1 . . . ∃xp(∗φ(x1, . . . xp)∧∗ψ) =: (∃∗φ(x1, . . . xp)) ∗ψ

In effect, the translation of a formula changes all relations, functions and real numbers to their hyperreal
counterpart but leaves all other logical symbols unaffected.

Example. The LR-sentence
(∀θ ∈ R)

(
sin θ = 0 ↔ (∃k ∈ Z)(θ = k · π))

)
express that the sinus functions is 0 iff the argument is a integer multiple of π. Its natural translation is then
the L∗R-sentence

(∀θ ∈ ∗R)
(∗sin θ = ∗0 ↔ (∃k ∈ ∗Z)(θ = k ∗· ∗π))

)
which says the hyperreal extension of sinus is 0 iff its argument is a hyper-integer multiple of π. We use the ∗

for sin, ·, 0 and π to show that they are affected by the translation but per our discussion of proposition 3.9,
there is no risk of confusion, so we will omit the notation for functions and real numbers from now on.



We define the hyperreal languages as L∗R-formulas = {∗φ : φ ∈ L∗R-formulas}. Note that this language is
weak, it only has terms for standard elements and, because of proposition 3.5, no infinite subsets of R like
N,Z,Q,R can be referred to. In addition none of the interesting subsets of ∗R we introduce in the next section
section, can be referred to either. Despite theses weaknesses the language is interesting because of its natural
correspondence to the language of the reals, which lays the groundwork for the transfer principle.

3.4 The Transfer Principle
The transfer principle actually follows from of a more powerful theorem, called Łos Theorem, which applies
to the more general topic of ultraproducts we mentioned in the beginning of section 2. What we prove here is
only a special case.

Theorem 3.13 (Łos Theorem). For every LR-formula φ(x1, . . . , xp) and every [s1], . . . [sp] ∈ ∗R

φ([s1], . . . [sp]) is true in ∗R iff [[φ(s1, . . . , sp)]] := {n ∈ N : φ(s1n, . . . s
p
n) is true in R} ∈ U .

This theorem states that the definition of truth for atomic sentences in definition 3.4, permeates throughout
all sentences in L∗R-sentences. Although it may seem trivial, we actually need to make use of Axiom of
Choice for the ’if’-part [2].

Proof. We prove this by induction on the length of φ.

Base case: If φ is atomic then it follows immediately from definition 3.4.

Induction step: Assume that the property holds for all formulas shorter than φ(x1, . . . , xp).
If φ(x1, . . . , xp) is a negation of the form ¬ψ(x1, . . . , xp), then

¬ψ([s1], . . . [sp]) is true in ∗R iff ψ([s1], . . . [sp]) is false in ∗R [¬ definition]

iff [[ψ(s1, . . . sp)]] /∈ U [induction hypothesis]

iff [[ψ(s1, . . . sp)]] ∈ U . [U being an ultrafilter]

iff [[¬ψ(s1, . . . sp)]] ∈ U . [[[ψ]] = [[¬ψ]]]

If φ(x1, . . . , xp) is a conjunction of the form (ψ ∧ χ)(x1, . . . , xp), then

(ψ ∧ χ)([s1], . . . , [sp]) is true in ∗R iff ψ([s1], . . . , [sp]) and χ([s1], . . . , [sp]) are true in ∗R [∧ definition]

iff [[ψ(s1, . . . , sp)]], [[χ(s1, . . . , sp)]] ∈ U [induction hypothesis]

iff [[ψ(s1, . . . , sp)]] ∩ [[χ(s1, . . . , sp)]] ∈ U . [proposition 2.2 (c)]

iff [[(ψ ∧ χ)(s1, . . . , sp)]] ∈ U . [[[ψ]] ∩ [[χ]] = [[ψ ∧ χ]]]

If φ(x1, . . . , xp) is a existential formula of the form ∃xψ(x1, . . . , xp, x), then

∃xψ([s1], . . . , [sp], x) is true in ∗R iff there exists a [r] ∈ ∗R s.t ψ([s1], . . . , [sp], [r]) is true in ∗R [∃ definition]

iff there exists a r ∈ RN s.t [[ψ(s1, . . . , sp, r)]] ∈ U . [induction hypothesis]

If [[ψ(s1, . . . , sp, r)]] ∈ U for some r ∈ RN, then since [[ψ(s1, . . . , sp, r)]] ⊆ [[∃xψ(s1, . . . , sp, x)]], it follows that
[[(∃xψ)(s1, . . . , sp, x)]] ∈ U .

Conversely, suppose [[∃xψ(s1, . . . , sp, x)]] ∈ U , then for each index n ∈ [[∃xψ(s1, . . . , sp, x)]] there exists a rn ∈ R
s.t ψ(s1n, . . . , spn, rn) is true in R. With axiom of choice, which we assume implicitly with Zorn’s lemma, we

may construct the sequence q defined as qn =

{
rn if n ∈ [[∃xψ(s1, . . . , sp, x)]]
0 if n /∈ [[∃xψ(s1, . . . , sp, x)]]

. By the construction of q, we

have [[∃xψ(s1, . . . , sp, x)]] ⊆ [[ψ(s1, . . . , sp, q)]], ergo there exists a r ∈ RN s.t [[ψ(s1, . . . , sp, r)]] ∈ U .

Before proving the transfer principle, we establish one final lemma.

Lemma 3.14. For all φ ∈ LR-sentence, if φ is true in R, then [[∗φ]] = N. If φ is false in R, then [[∗φ]] = ∅.

Proof. This follows from the fact that for all φ ∈ LR-sentences, all the terms of ∗φ are equivalence classes of
constant sequences. Hence it’s the same in each index, so if it’s true in one, it’s true in all.



Theorem 3.15 (The Transfer Principle). For any sentence φ ∈ LR-sentences

φ is true in R if and only if ∗φ is true in ∗R.

Proof. If φ is true in R, then by lemma 3.14 [[φ]] = N ∈ U so by Łos Theorem ∗φ is true in ∗R. If φ is false
in R, then by lemma 3.14 [[φ]] = ∅ /∈ U so by Łos Theorem ∗φ is false in ∗R.

The transfer principle also solve our problem at the end of section 2.4 where we worried that the choice of
non-principal ultrafilter might effect ∗R. By transfer, if a ∗φ ∈ L∗R-sentence was true in a hyperreal structure,
then φ would be true in R, and then by transfer φ would be true in any hyperreal structure. The same holds
if ∗φ would be false. Thus all hyperreal structure make the same set of L∗R-sentence true, which makes them
equivalent for the purposes of real analysis.

Example. To demonstrate the usefulness of the transfer principle let’s investigate the structure of the
hypernatural numbers. With transfer we can avoid the tedious talk of infinite sequences and ultrafilter. Applying
transfer on the following true LR-sentences

(∀x ∈ N)(1 ≤ x), (∀n ∈ N)¬(∃m ∈ N)(n < m < n+ 1) and (∀x ∈ R)(∃n ∈ N)(x < n)

yields

(∀x ∈ ∗N)(1 ≤ x), (∀n ∈ ∗N)¬(∃m ∈ ∗N)(n < m < n+ 1) and (∀x ∈ ∗R)(∃n ∈ ∗N)(x < n)

which tells us that hypernatural are also all greater than 1, that they’re still discretely distributed, each one 1
step apart, and that they occur infinitely often along the hyperreal number-line. Furthermore, the LR-sentence

(∀m ∈ N)(m ≤ n→
(
m = 1 ∨m = 2 ∨ . . . ∨m = n)

)
is true in R for any fixed n ∈ N, so by transfer

(∀m ∈ ∗N)(m ≤ n→
(
m = 1 ∨m = 2 ∨ . . . ∨m = n)

)
is true in ∗R, for every n ∈ N. This means all non standard hypernatural are greater than every standard
natural.

Remark. Transferring an infinite set sentences, one for each element in some real set, is a clever way to get
around the fact that L∗R-sentences can’t quantify over infinite real sets.

4 The Non-standard Elements of the Hyperreals
As we saw in section 2.4, the hyperreals contain non-standard numbers — some smaller than every standard
real number, others larger than any standard real number. In this section, based on chapter 5 of [1], we use the
transfer principle to develop a theory of arithmetic in the hyperreals, examining how addition, multiplication,
and division behave when involving non-standard numbers. This naturally lead into the Algebraic structure of
the hyperreals, which lays the ground works for non-standard analysis.

4.1 Hyperreal Arithmetic
To introduce some terminology, we call a x ∈ ∗R

• infinitesimal if |x| < r for all r ∈ R+,

• limited if r < x < s for some r, s ∈ R,

• unlimited if r < |x| for all r ∈ R.

We shall denote the set of infinitesimals with I, the set of limited numbers with L and, for any X ⊆ ∗R we let
X∞ = {x ∈ X : x is unlimited} = X − L. Note that I and R are subsets of L. By convention, we use Greek
letters for infinitesimals, lowercase Latin letters for limited numbers and uppercase Latin letters for unlimited
numbers - although ε will also be used for small positive real number when we reason in standard analysis.

One might already have some intuitions about the arithmetic properties of infinitesimals, limited and unlimited
numbers. For example, the sum of an unlimited and limited number should still be unlimited. We prove that
these intuitions hold in ∗R.



Proposition 4.1. Let α, β be infinitesimals, a, b be limited, but not infinitesimal and A,B be unlimited. Then

Sums:
α+ β is infinitesimal,
a+ b is limited, possibly infinitesimal,
α+ a is limited, never infinitesimal,
α+A and a+A are unlimited,

Products:
α · β and α · a are infinitesimal,
b · c is limited, never infinitesimal,
A · a and A ·B are unlimited,

Quotients:
α

a
,
α

A
and

a

A
are infinitesimal,

a

b
is limited, never infinitesimal,

a

α
,
A

α
and

A

a
are unlimited,

Undetermined:
α

β
,
A

B
,α · β and A+B can be infinitesimal, limited or unlimited.

By transfer,
|x+ y| ≤ |x|+ |y|,

∣∣|x| − |y|
∣∣ ≤ |x+ y| and |xy| = |x||y|

hold for all x, y ∈ ∗R. We do not prove all of the statements above but the proofs for the ones omitted use the
same ideas.

Proof. Let α, β be infinitesimal, a, b be limited but not infinteismal and A,B be unlimited.

By the triangle inequality we have |α+ β| ≤ |α|+ |β|. Because α and β are infinitesimals |α|+ |β| must be less
then every positive real, hence α+ β is also infinitesimals.

By the reverse triangle inequality we have
∣∣|A|− |a|

∣∣ ≤ |A+a|. Since a is limited we have
∣∣|A|− |a|

∣∣ ≥ ∣∣|A|− r∣∣,
and because A is unlimited ||A| − r

∣∣ = |A| − r for some r ∈ R. Because
∣∣|A| − |a|

∣∣ = |A| − r is greater than
every real, it follows that |A+ a| is as-well, which means A+ a is unlimited.

The product |α · a| = |α| · |a| ≤ r · s for some positive real s and every positive real r, hence less then every
positive real, so α · a is infinitesimal.

By transfer we can rewrite the quotient a
A = 1

A · a. Since A is unlimited 1
A = A−1 must infinitesimal since

inverting both sides of a difference by ∗R being an ordered field. So a
A = 1

A ·a is an infinitesimal times a limited
number so, by our previous proof, infinitesimal.

In the case α
β if α = β2, then α

β = β thus infinitesimal. If α = β, then α
β = 1 which is limited but not

infinitesimal. If β = α2, then α
β = 1

α which is unlimited. So α
β is undetermined.

Given a hyperreal x and an a non-zero infinitesimal ε, the sum x+ ε is an infinitesimal distance from x on the
number-line, yet distinct from x. From a real perspective they are indistinguishable since the difference between
them is less than every real number. We therefore define the following relation on ∗R.

Definition 4.2. We say two hyperreals x and y, are infinitely close, denoted x ≃ y, if x− y ∈ I.

This relation is reflexive, since 0 ∈ I, and symmetric because if x − y ∈ I, then y − x = (−1)(x − y) ∈ I by
proposition 4.1. If x ≃ y and y ≃ z, then x− z = x− (y− y)− z = (x− y) + (y− z) is a sum of infinitesimal
so by proposition 4.1 also an infinitesimal, so x ≃ z; being infinitely close is thus transitive, and thereby an



equivalence. We denoted the equivalence class of x as µ(x) = {y ∈ ∗R : y ≃ x}, calling it the monad of x. It
follows that µ(x) = {x+ ε : ε ∈ I} and in particular µ(0) = I.

If x ≃ y, then x + z ≃ y + z for any z ∈ ∗R by x + z − (y + z) = x − y so being infinitely close is a
congruence relation with respect to addition. As for multiplication, x ≃ y implies a · x ≃ a · y if a is limited
since a · x − a · y = a(x − y) is then infinitesimal. This, however, fails if a is unlimited. Consider for example
an infinitesimal ε. By proposition 4.1 ε ≃ ε2 but 1

ε2 · ε2 = 1 ̸≃ 1
ε = 1

ε2 · ε.

Any function defined on a subset of the real numbers can be extended to a function on the subset’s natural trans-
lation. These real functions are also well-defined for non-standard elements (except in the case of finite domains,
but those are uninteresting). To demonstrate, we consider the extensions of the trigonometric functions.

Example.

1. Since the sine function is defined for all real numbers, its natural extension is also defined for all hyperreal
numbers. We investigate how it behaves for infinitesimal inputs. In introductory analysis courses, one
proves that cosx ≤ sin x

x ≤ 1 for all 0 < x < π
2 using a geometric argument involving the areas of a

triangle and a circular sector. It follows that all terms are positive, so the second inequality implies
| sinx| ≤ |x| for all x ∈ ]0, π2 [, so by transfer, it holds for all x ∈ ∗]0, π2 [ which includes I+. Therefore,
sin ε is infinitesimal for all positive infinitesimal ε. By transfer, sine is also odd for hyperreal numbers,
consequentiality sin(−ε) = − sin ε is

2. The cosine function is also defined for all hyperreal numbers. We also investigate its behavior for infinites-
imal arguments. The trigonometric identity cosx = 1− 2 sin2 x

2 holds for all real x, so by transfer it holds
for all hyperreal x. Thus by our previous result, cos ε = 1− 2 sin2 ε

2 ≃ 1 for all infinitesimal ε.

3. The tangent function is defined for all real numbers except for odd integer multiples of π
2 so its hyperreal

extension is defined for all hyperreals except for odd hyperinteger multiples of π
2 . Consider tan(π2 + ε)

where ε is infinitesimal. By transfer we know that tan = sin
cos and the addition formulas for sine and cosine,

hold for all hyperreals. We then get

tan
(π
2
+ ε
)
=

sin
(
π
2 + ε

)
cos
(
π
2 + ε

) =
sin π

2 cos ε+ cos π
2 sin ε

cos π
2 cos ε− sin π

2 sin ε
=

cos ε

− sin ε
≃ 1

− sin ε
.

We know the sine function is positive on ]0, π2 ] and negative on ] − π
2 , 0[. Therefore, sin ε is a positive

infinitesimal when ε is a positive infinitesimal and is a negative infinitesimal when ε is a negative infinites-
imal. This means that tan

(
π
2 + ε

)
≃ 1

− sin ε is positive unlimited when ε is a negative infinitesimal, but
negative unlimited when ε is a positive infinitesimal.

Shadows
We know all the standard real numbers are limited, we also know that they are closed under adding infinitesimals
so r + ε is limited for every real r and infinitesimal ε. The question arise if this exhaust all limited hyperreals
or if there are limited hyperreal that are not the sum of a real number and an infinitesimal. The answer is no
which we prove as follows.

Theorem 4.3. For every a ∈ L there exists a unique r ∈ R such a ≃ r. Equivalently, for every a ∈ L there’s
one and only one real number r ∈ µ(a).

Proof. Let a ∈ L and consider the set A = {x ∈ R : x < a} which is a real non-empty subset, embedded
into the hyperreal number-line. Since a is limited there exists real numbers m,M such that m < a < M and
consequently A is non empty and bounded from above by M . By the supremum axiom, A must have a least
upper-bound r which is a real number. Since r is an upper-bound S+s /∈ A for all positive real s which, by how
A is defined, means a ≤ r + s or equivalently a− r ≤ s for all positive real s. Since r is the least upper-bound
we also have r− s ∈ A for all positive real s, otherwise r− s would be the least real upper-bound. Again by A:s
definition we get r − s < a thus −s < a− r. And so −s < a− r < s or equivalently |a− r| < s for all positive
real s i.e. a ≃ r ∈ R. So every limited hyperreal is close to at least one real number.

For Uniqueness let r and s be real numbers such that r ≃ s. Since their difference is always a real numbers, it’s
only infinitesimal if r − s = 0 i.e r = s. Ergo hyperreal can be infinitely close to at most one real number.



One can thus think of as the real number-line were around every real number there’s an ’infinitesimal cloud’
that is its monad. In addition, by theorem 4.3, the map

sh : L → R,
x 7→ y such that x ≃ y and y ∈ R.

is well defined. We call sh(a), the the shadow of a.

Remark. The shadow of a is sometimes called standard part of a since theorem 4.3 implies that a = r + ε
for some real r and infinitesimal ε, so sh(a) = sh(r + ε) = r.

We prove some useful properties of the shadow map.

Proposition 4.4. Let a, b ∈ L then the following holds

(i) sh(a± b) = sh(a)± sh(b),

(ii) sh(a · b) = sh(a) · sh(b),

(iii) sh(a/b) = sh(a)/ sh(b) assuming sh(b) ̸= 0,

(iv) if sh(a) < sh(b), then a < b,

(v) if a ≤ b, then sh(a) ≤ sh(b).

Proof. For (i) note that we can always write sh(a) = a+ α and sh(b) = b+ β for some α, β ∈ I the difference(
sh(a)± sh(b)

)
− (a± b) = (a+α)± (b+β)− (a± b) = α±β ∈ I so sh(a)± sh(b) ≃ a± b. Because sh(a)± sh(b)

is a sum/difference of real numbers, it’s also real so by theorem 4.3 sh(a)± sh(b) = sh(a± b)

For (ii) we again have sh(a) · sh(b) ∈ R and sh(a) · sh(b)−a · b = (a+α)(b+β) = a · b+a ·β+α · b+α ·β−a · b =
a ·β+α · b+α ·β ∈ I so sh(a) · sh(b) is the unique real number infinitely close to a · b i.e. sh(a) · sh(b) = sh(a · b).

The proof of (iii) is analogous to the proof of (ii).

For (iv) if sh(a) < sh(b), then as proven above sh(b− a) = sh(b)− sh(a) > 0. The difference b− a cannot then
be non-positive since, if it were, sh(b− a)− (b− a) ≥ sh(b− a) > 0 contradicting sh(b− a) ≃ b− a. Therefore
b− a > 0 i.e. b > a.

The proof of (v) is analogous to the proof of (iv).

Remark. A strict inequality doesn’t imply a strict inequality in (v). For example, if r is real and ε is a positive
infinitesimal, then r − ε < r + ε but sh(r − ε) = sh(r + ε) = r.

A curious reader might have noted that, by proposition 4.1 L is a sub-rings of ∗R and I is an ideal in L,
and wondered about the quotient ring L/I. In proposition 4.2 we’ve proven that sh : L → R is a ring
homomorphism and it’s easy to verify that sh is surjective with ker(sh) = I. So by the first ring homomorphism
theorem L/I ≃ R where the pre-image of a is µ(a).

Since ’infinitely close’ is an equivalence we know by proposition 4.3 that the monads of the real numbers
partition the reals but, with Proposition 4.4 (iv) and (v), we know that the monads never overlap. The fact
that L/I ≃ R then shows that this partition has the ring structure of R. With this information we sketch
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Limited hyperreals L

Theorem 4.3 is actually equivalent to the notion that R has ’no holes’ since (informally) if it had, a limited
number in that hole wouldn’t be infinitely close to any real. We prove this formally by proving



Theorem 4.5. theorem 4.3 is equivalent with the completeness of R.

Proof. The the completeness of R implies theorem 4.3 since we used the supremum axiom in its proof.

We prove the completeness of R by proving the supremum axiom. Let X ⊆ R be non-empty with a real upper-
boundM . Consider the sequence s : N → R defined as sn = minZn where Zn = {k ∈ Z : k

n is an upper-bound to X}..
There’s always ⌈n ·M⌉ ∈ Zn and n ·x is always a lower bound of Zn, where x is any element of X. Then because
Zn is a non-empty subset of Z bounded from below, it must have a minimum, we are therefore assured that s
is well-defined.

There is then a hyperreal extension of the sequences from ∗N to ∗R. Following sequence notation we write sn
instead of s(n) for unlimited n as well. Consider sN

N for some N ∈ ∗N∞. By definition sN
N is an upper-bound

of X, so it’s greater then some real number r ∈ X. Also by definition we know sN−1
N is not an upper-bound,

since if it were, sN
N wouldn’t be the least upper-bound. Hence sN−1

N is less then some real number s ∈ X. Then
because sN−1

N = sN
N − 1

N < s, we get sN
N < s + 1

N < s + 1 ∈ R since 1
N is infinitesimal by proposition 4.1.

Consequently r < sN
N < s+ 1 which means sN

N is limited so by theorem 4.3 we can find sh( sNN ) = L ∈ R.

Because sN
N is greater then every element of X, it follows by proportion 4.4 (iv) and that X ⊆ R, that L is

also a upper bound. For the sake of contradiction, let q be real upper-bound to X strictly less than L. Note
that sN

N − sN−1
N = 1

N ∈ I so sh( sN−1
N ) = L > q = sh(q). Then by proposition 4.4 (iv) we get sN−1

N > q, but
sN−1
N is not an upper-bound, resulting in contradiction. Ergo L is the least real upper-bound of X.

Remark. Considering the restriction the shadow map to the limited hyperrationals, that is sh : ∗Q ∩ L → R,
we still get a surjective homomorphism with the kernel ∗Q∩ I. This is because ’every real number is arbitrarily
close to a rational number’ is true in R and can be express by the LR-sentence

(∀r ∈ R)(∀ε ∈ R+)(∃q ∈ Q)(|r − q| < ε).

Applying transfer and then taking ε to be a positive infinitesimal means

(∀r ∈ ∗R)(∃q ∈ ∗Q)(|r − q| < ε)

is true in ∗R. Ergo every hyperreal number and in particular every real number is infinitely close to a hy-
perrationals. Thus the restriction of the shadow map is still surjective so (∗Q ∩ L)/(∗Q ∩ I) ≃ R. This gives
an alternative construction of R from Q by preforming the ultrafilter construction on QN. Then the limited
numbers are ∗Q∩L and the infinitesimal are ∗Q∩ I), so taking the quotient group gives a structure isomorphic
to R.

5 Non-Standard Analysis
All the necessary building blocks to start doing analysis with the hyperreals are now in place. Throughout the
rest of this paper we prove things about real sequences, series, functions etc by finding equivalent condition for
their hyper-real counterparts, then carrying out the analysis within the hyperreal framework. These results are
based on chapter 6 through 9 of [1].

5.1 Convergence of Sequences
In this subsection we show how the asymptotic behavior of a real sequence s, is determined by what values it
takes for unlimited hypernatural. We sometimes call the image of ∗N∞ under s, the extended tail of s, painting
a picture of the plot of s continuing in infinity.

To begin we remind ourselves that in R, a real valued sequences s converges to a real number L if every open
interval around L contains all s terms after some ω ∈ N. We then call L the limit of s. This can be express by
the LR-sentence

(∀ε ∈ R+)(∃ω ∈ N)(∀n ∈ N)(ω ≤ n→ |sn − L| < ε). (1)

Theorem 5.1. A real sequence s converges to a real number L if and only if sN ≃ L for all N ∈ ∗N∞.



Proof. For the ’only if’-part, assume s converges to a real number L so (1) is true in R. It then follows for
every positive real ε, there exists a ωε such that

(∀n ∈ N)(ωε ≤ n→ |sn − L| < ε)

is true in R and by transfer it holds for all hypernatural. Since ωε is real, it’s limited so any N ∈ ∗N∞ is larger
then it so |sN − L| < ε. Since this can be done for all ε ∈ R+ it means |sN − L| is infinitesimal. Ergo sN ≃ L
for all N ∈ ∗N∞.

For the ’if’-part, suppose sN ≃ L for all N ∈ ∗N∞. Fixing a N ∈ ∗N∞, every hyper natural n greater than N
must also be unlimited. It follows that (∀n ∈ ∗N)(N ≤ n→ |sn−L| < ε) is true in ∗R for any ε ∈ R+. Binding
N with an existential quantification results in

(∃ω ∈ ∗N)(∀n ∈ ∗N)(ω ≤ n→ |sn − L| < ε).

which is a L∗R-sentence. Applying transfer means

(∃ω ∈ N)(∀n ∈ N)(ω ≤ n→ |sn − L| < ε).

is true in R for each ε ∈ R+, which implies (1). Accordingly s converges to L.

The pictures this theorem paints is if s converges to L if and only if its extended tails stays entirely in µ(L). If
s is convergent, then sh(sN ) for any unlimited N is its limit; together with proposition 4.4 this means that
the sum or product of convergent sequences converges to the sum/product of their limits.

Similarly, divergence to positive or negative infinity of a sequences s is also determined by the extended tail.
As a reminder, s divergence to positive infinity if the LR-sentences

(∀r ∈ R)(∃ω ∈ N)(∀n ∈ N)(ω ≤ n→ r < sn) (2)

is true in R and s divergence to negative infinity if the LR-sentences

(∀r ∈ R)(∃ω ∈ N)(∀n ∈ N)(ω ≤ n→ sn < r) (3)

is true in R.

Theorem 5.2. A real sequence s

(i) diverges to positive infinity if and only if sN is positive unlimited for all N ∈ ∗N∞,

(ii) diverges to negative infinity if and only if sN is negative unlimited for all N ∈ ∗N∞.

Proof. For the ’only if’-part of (i), let s be real valued sequence which diverges to positive infinity which means
(2) is true in R. Similarly to the previous proof we fixed an arbitrary r with its corresponding ωr then apply
to transfer to get

(∀n ∈ ∗N)(ωr ≤ n→ r < sn)

being true in ∗R. Continuing like last time, since ωr is a standard real, we get that ωr ≤ N and thus r < sN for
all N ∈ ∗N∞. Since this can be done for any real r it follows that sN is greater than every real i.e. is positive
unlimited.

For the ’if’-part of (i), suppose sN is positive unlimited for all N ∈ ∗N∞. Fixing a N ∈ ∗N∞, every hyper
natural n, greater than N , must also be unlimited. So by our assumption (∀n ∈ ∗N)(N ≤ n→ r < sN ) is true
for each r ∈ R+. Binding N with an existential quantification results in the L∗R-sentence

(∃ω ∈ ∗N)(∀n ∈ ∗N)(ω ≤ n→ r < sN )

which is true in ∗R. By transfer
(∃ω ∈ N)(∀n ∈ N)(ω ≤ n→ r < sN ).

is true in R for any r ∈ R+ so (1) is true in ∗R which means s diverges to positive infinity.

The proof of (ii) is analogous.

With theorems 5.1 through 5.3 we can see a sequences s asymptotic behavior just by investigating sN for
unlimited N . We demonstrate this with some basic examples



Example. For the real sequence defined as sn = 2n3+n+2
n3+2n2 we can find its limit in a similar way to how one would

in standard analysis. Consider an unlimited natural N we get sN = 2N3+N+2
N3+2N2 =

2+ 1
N2 + 2

N3

1+ 2
N

. By proposition

4.1 we get 2+ 1
N2 +

2
N3 ≃ 2 and 1+ 2

N ≃ 1 which means both are limited. We can therefore substitute them into

the numerator and denominator while presering infinite closeness. Thus
2+ 1

N2 + 2
N3

1+ 2
N

≃ 2
1 = 2 for all N ∈ ∗N∞ so

by theorem 5.1 s converges to 2.

For a sequence which doesn’t converge, consider tn = n(−1)n. By transfer, every other hypernatural number is
even while every other is odd and −1 to the power of an even number is 1, while to the power of an odd number
yields -1. That means that tN = N while tN+1 = −N , where N is some even hypernatural. By theorems 5.1
it follows that t doesn’t converge to any real number since tN ̸≃ tN+1. Nor does t diverges to +∞ or −∞ by
theorem 5.2 since tN is positive unlimited while tN+1 is negative unlimited.

Theorem 5.3. A real sequence s

(i) is bounded from above if and only if sN is never positive unlimited for any N ∈ ∗N∞.

(ii) is bounded from below if and only if sN is never negative unlimited for any N ∈ ∗N∞.

Proof. For the ’only if’-part of (i) assume s is bounded from above. Then (∀n ∈ N)(sn ≤ m) is true in R for
some real m. By transfer (∀n ∈ ∗N)(∗sn ≤ m)) is true in ∗R so sn cannot be positive unlimited for any n ∈ ∗N,
including all N ∈ ∗N∞.

For the ’if’-part of (i), assume sN is non positive unlimited, for all N ∈ ∗N∞. Since sn is real for all n ∈ N
it follows that sn so not positive unlimited for any n ∈ ∗N. Fixing any positive unlimited M it follows
that (∀n ∈ ∗N)(n < M) is true which implies (∃x ∈ ∗R)(∀n ∈ ∗N)(n < x) is true in ∗R. By transfer
(∃x ∈ R)(∀n ∈ N)(n < x) is true in R, so s is bounded from above.

The proof of (ii) is analogous.

Corollary 5.4. A real sequence s is bounded, that is bounded from above and below, if and only if sN is
limited for all N ∈ ∗N∞.

Proof. Follows immediate from theorem 5.3 since the only numbers not positive or negative unlimited, are
limited.

With these theorems we can derive some classic analysis results.

Theorem 5.5. Let s, t be real valued sequences that converge to L,M ∈ R respectively. If sn ≤ tn for all n ∈ N,
then L ≤M .

Proof. If sn ≤ tn for all n ∈ N, then by transfer it also holds for all n ∈ ∗N. By theorem 5.1 L = sh(sN ) and
M = sh(sN ) for any fixed N ∈ ∗N∞, so since sN ≤ tN , it follows from proposition 4.2 (v) that L ≤M .

Theorem 5.6 (Squeeze theorem). If rn ≤ sn ≤ tn for all n ∈ N and both r and t converge to L ∈ R, then s
also converges to L.

Proof. If rn ≤ sn ≤ tn for all n ∈ N then by transfer it also holds for all n ∈ ∗N. By theorem 5.1 L ≃ rN ≤
sN ≤ tN ≃ L for all N ∈ ∗N∞ so by proposition 4.2 (v), L ≤ sh(sN ) ≤ L for all N ∈ ∗N∞ which means s
converge to L.

Theorem 5.7. A real sequences s : N → R converges if

(i) s is bounded from above and non-decreasing or

(ii) s is bounded from below and non-increasing.

Proof. For (i), assume s is bounded from above by some M ∈ R and is non-decreasing i.e. s1 ≤ s2 ≤ s3 ≤ . . ..
Then s is bounded from below by s1 and bounded-above by M , so by corollary 5.4 sN is limited for N ∈ ∗N∞.
Fixing an unlimited natural N , all natural n are less than N so sn ≤ sN by s being non-decreasing. By
proposition 4.4 (v) it follows that sh(sn) = sn ≤ sh(sN ) for all n ∈ N, so sh(N) is a real upper-bound for
the image of N under s, the real set {sn : n ∈ N}. Let r be a real upper-bound for {sn : n ∈ N}. Then the
LR-sentence (∀n ∈ N)(sn ≤ r) is true in R so, by transfer, sN ≤ r which implies sh(sN ) ≤ sh(r) = r. Thus
sN is the least upper-bound of {sn : n ∈ N}. Since the least upper-bound is unique and this holds for any
N ∈ ∗N∞, every sN has the same shadow for every N ∈ ∗N∞ so s converges by theorem 5.1.

The proof of (ii) is analogous.



An important kind of real sequences are so called Cauchy sequences, which are sequences where the terms get
arbitrarily close to each other, eventually. Formally, a real valued sequence s is Cauchy if the LR-sentences

(∀ε ∈ R+)(∃ω ∈ N)(∀m,n ∈ N)(ω ≤ m,n→ |sm − sn| < ε) (4)

is true in R. We can give a hyperreals characterization of Cauchy sequences as follows

Theorem 5.8. A real valued sequence s is Cauchy if and only if sN ≃ sM for all M,N ∈ ∗N∞.

Proof. For the ’only if’-part, assume s is Cauchy so (4) is true in R. Analogous to the proofs of theorem 5.1
and 5.2 we fix the ε and ωε in (4) giving the true LR-sentence

(∀m,n ∈ N)(ωε ≤ m,n→ |sm − sn| < ε).

From transfer, it then follows that |sM − sN | < ε for any unlimited M,N . Since this can be carried out for any
positive real ε, we get sM ≃ sN .

For the ’if’-part, assume sN ≃ sM for all N ∈ ∗N∞. Then fixing an unlimited hypernatural N the sentences

(∀m,n ∈ ∗N)(N < m,n→ |sm − sm| < ε)

is then true where for any ε ∈ R+. Binding N with an existential quantifier yields the L∗R-sentences

(∃ω ∈ ∗N)(∀m,n ∈ ∗N)(ω < m,n→ |sm − sm| < ε)

which is true in ∗R By transfer (4) is true in R for every positive realε, so s is Cauchy.

In theorem 4.3 we showed that the shadow map is equivalent to the completeness of the real numbers by
proving the supremum-axiom. Another statement equivalent to the completeness of R is ’a sequence converges
if and only if it is Cauchy’. Although it’s equivalent with theorem 4.3 we prove it here for pedagogical purposes.
However we first need the following lemma.

Lemma 5.9. Every Cauchy sequences is bounded

Proof. Assume s is a Cauchy sequence so (4) is true in R, which implies (∀m,n ∈ N)(ωε ≤ m,n→ |sm−sn| < ε)
is true in R for a fixed ε ∈ R+ and a corresponding ωε. By transfer (∀m,n ∈ ∗N)(ωε ≤ m,n → |sm − sn| < ε)
is true in ∗R. Fixing m as ωε then yields (∀n ∈ ∗N)(ωε ≤ ωε, n → |sωε

− sn| < ε) which is equivalent with
(∀n ∈ ∗N)(ωε ≤ n → −ε − sωε < −sn < ε − sωε). Since both sωε and ε are real numbers, it follows that sn is
limited for all n ∈ ∗N, including the unlimited ones. Therefore, by corollary 5.4, s is bounded.

Theorem 5.10. A real valued sequence converges if and only if it is Cauchy.

Proof. Suppose s converges to some real L, then sN ≃ L for all N ∈ ∗N∞ by theorem 5.1 which implies
sN ≃ sM for all M,N ∈ ∗N∞ by ≃ being an equivalence. Ergo s is Cauchy by theorem 5.6.

For the converse, suppose s is Cauchy. By lemma 5.9 s is bounded so by corollary 5.4, sN is limited for all
unlimited natural N . Thus sh(sN ) is defined for all unlimited N and by theorem 5.8 all extended terms terms
have the same shadow. Therefore, by theorem 5.1, s converges to sh(sN ).

5.2 Series
A real infinite series

∑∞
k=1 ak, where a is a real sequences, is said to converge to a real value A if the sequence

of partial sums
(∑n

k=1 ak

)
convergence to A. We also say

∑∞
k=1 ak is diverges if

(∑n
k=1 ak

)
diverges. For any

unlimited hyper naturals N , we define
∑N

k=1 ak as the N -th term of the hyperreal extension of the partial sum
sequence. If M ≥ N we also define

∑M
k=N ak as

∑M
k=1 ak −

∑N−1
k=1 ak.

Remark. Note that
∑N

k=1 ak for a unlimited N is NOT a sum, it is just suggestive notation. Hyper-finite sums
can be defined for hyper-integers, but that is beyond the scope of this paper. For the interested, the topic is
explored in [1] section 12.7.

We apply our previous results about general sequences to partial sum sequences. In particular theorem 5.1,
5.6 and 5.7 implies

Proposition 5.11. For any real series
∑∞

k=1 the following holds



(i)
∑∞

k=1 ak = A if and only if
∑N

k=1 ak ≃ A ∈ R.

(ii)
∑∞

k=1 ak converges if and only if
∑M

k=N ak is infinitesimal for all unlimited hyper naturals M ≥ N .

If
∑∞

k=1 ak converges, then as a special case of (ii) we have
∑N

N ak = aN ≃ 0 for all N ∈ ∗N∞ which necessitates
that the sequence a must converge to 0. Anyone who’s read analysis before, knows that the converse doesn’t
hold, nevertheless we demonstrate with an example.

Example. For any unlimited natural N , by proposition 4.1, 1
N ≃ 0 so the sequences ( 1n ) converges to 0,

nevertheless consider
∑∞

k=1
1
k . Since ( 1n ) is decreasing, by transfer we have

∑m
k=n

1
k ≥ (m − n) 1

m for any
m,n ∈ ∗N since m − n is the ’number of terms’. In particular, for a unlimited natural N , we get

∑2N
N

1
k ≥

(2N −N) 1
2N = N

2N = 1
2 which is not infinitesimal so. Thus

∑∞
k=1

1
k diverges by proposition 5.11 (ii) .

With Proposition 5.11 we are able to prove some classical results about series.

Proposition 5.12. If
∑∞

k=1 ak and
∑∞

k=1 bk are convergent series, and c is some real number, then

•
∑∞

k=1(ak ± bk) =
∑∞

k=1 ak ±
∑∞

k=1 bk

•
∑∞

k=1 cak = c
∑∞

k=1 ak

Proof. Let
∑∞

k=1 ak converge to A ∈ R and
∑∞

k=1 bk converge to B ∈ R. Then
∑N

k=1 ak ≃ A and
∑N

k=1 bk ≃ B
for all N ∈ ∗N∞. The LR-sentences (∀n ∈ N)(

∑n
k=1 ak+

∑n
k=1 bk =

∑n
k=1(ak+bk)) is true in R so, by transfer,

it holds for all hyper natural n, including the unlimited ones. Thus
∑N

k=1(ak±bk) =
∑N

k=1 ak±
∑N

k=1 bk ≃ A+B
for all N ∈ ∗N∞ so

∑∞
k=1(ak ± bk) = A+B =

∑∞
k=1 ak ±

∑∞
k=1 bk.

The second statement follows from transfer on (∀n ∈ N)(
∑n

k=1 cak = c
∑n

k=1 ak) and similar reasoning.

Lemma 5.13. Let an ≥ 0 for all n ∈ N. Then
∑∞

k=1 ak converges if and only if
∑N

k=1 ak is limited for all
N ∈ ∗N∞, which holds if and only if

∑N
k=1 ak is limited for some N ∈ ∗N∞

Proof. If
∑∞

k=1 ak converges, then for all unlimited N there exits some real A such that
∑N

k=1 ak ≃ A. As a
consequence

∑N
k=1 ak is limited for all N ∈ ∗N∞.

If
∑N

k=1 ak is limited, for all N ∈ ∗N∞, then
∑N

k=1 ak is limited, for some M ∈ ∗N∞.

Let M be an unlimited hypernatural such that sM is limited. Since a is non-negative, we know that (∀m,n ∈
N)(m < n →

∑m
k=1 ak ≤

∑n
k=1 ak) is true in R. Applying transfer and by M being unlimited, we get

∑M
k=1 is

an upper-bound for {
∑m

k=1 ak : m ∈ N}. Since sM is limited, we can get that sh(sM ) is a real upper-bound for
{
∑m

k=1 ak : m ∈ N}. The real sequence of partial sums is then a non-decreasing sequence bounded from above,
so by theorem 5.6 it converge, so

∑∞
k=1 ak converges.

Proposition 5.14 (Comparison Test 1). If 0 ≤ an ≤ bn for all n ∈ N, then

•
∑∞

k=1 ak being divergent implies
∑∞

k=1 bk being divergent.

•
∑∞

k=1 bk being convergent implies
∑∞

k=1 ak being convergent.

Proof. We begin by proving the second statement. If 0 ≤ an ≤ bn for all n ∈ N, then by induction 0 ≤∑n
k=1 ak ≤

∑n
k=1 bk for all n ∈ N and by transfer this holds for all ∗N. If

∑∞
k=1 bk converges, then by lemma

5.13,
∑N

k=1 bk is limited for some N ∈ ∗N∞ which by 0 ≤
∑N

k=1 ak ≤
∑N

k=1 bk, implies
∑N

k=1 ak is also limited.
Ergo

∑∞
k=1 ak converges by lemma 5.13.

The first statement is just the contra-position of the first and therefore equivalent.

Proposition 5.15 (Comparison Test 2). If a and b are positive real sequences and the sequence a
b converges,

then
∑∞

k=1 ak converges if and only if
∑∞

k=1 bk converges.

Proof. Let a and b be positive real sequences and let the sequence a
b converge to some real L. By theorem 5.1

an

bn
≃ L for all N ∈ ∗N∞, it follows that L

2 <
aN

bN
< 3L

2 and thus L
2 bN < aN < 3L

2 bN for all N ∈ ∗N∞ since b is
positive. Fixing some unlimited H we then get that (∀n ∈ ∗N)(H ≤ n → L

2 bn < an <
3L
2 bn). Binding H with

an existentialist quantifier we get a true L∗R-sentences and applying transfer we get that

(∃H ∈ ∗N)(∀n ∈ ∗N)
(
H ≤ n→ (

L

2
)bn < an < (

3L

2
)bn
)



is true in ∗R. By transfer, this implies that L
2 bn < an < 3L

2 bn for all natural numbers n, greater then some
fixed natural number h. It follows by induction that L

2

∑m
k=n bk <

∑m
k=n ak <

3L
2

∑m
k=n bk holds for all m,n

such that h ≤ n ≤ m. By transfer

(∀m,n ∈ ∗N)
(
h ≤ n ≤ m→ L

2

m∑
k=n

bk <

m∑
k=n

ak <
3L

2

m∑
k=n

bk

)
is true in ∗R. Since all unlimited hypernaturals are greater then h we get, and

L

2

M∑
k=N

bk <

M∑
k=N

ak <
3L

2

M∑
k=N

bk

for all unlimited M,N such that N ≤M .

If
∑∞

k=1 bk converges, then L
2

∑M
k=N bk and 3L

2

∑M
k=N bk are infinitesimal for all unlimited M,N such that

N ≤ M by proposition 5.11 (ii). The inequality then forces
∑M

k=N ak to be infinitesimal for all unlimited
M,N such that N ≤M , which means

∑∞
k=1 ak converges.

If
∑∞

k=1 ak converges, then
∑M

k=N ak is infinitesimal for all unlimited hypernatural M,N such that N ≤M by
proposition 5.11 (ii). Since b being positive, the sequences of partial sums is non-decreasing so 0 ≤

∑m
k=n bk =∑m

k=1 bk −
∑n

k=n−1 bk for all natural numbers n ≤ m, so by transfer for all hypernatural numbers M ≤ N . By
the above inequality we then get 0 < L

2

∑M
k=N bk <

∑M
k=N ak for all unlimited hypernaturals M,N such that

N ≤M , which implies L
2

∑M
k=N bk being infinitesimal. Ergo

∑∞
k=1 bk converges.

5.3 Continuity
As a reminder, in standard analysis a real valued function f is continuous at a point in the interval c if, for
every opens subset around f(c), there exists an open subset around c which gets mapped into it. This capture’s
the notion that f(x) should approach f(c) when x approaches c. Formally, continuity is expressed by the
LR-sentence

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ Df )(|x− c| < δ → |f(x)− f(c)| < ε) (5)

being true in R. This εδ-definition is famously daunting the first time one sees it; non-standard analysis can
however, with the use of infinitesimals, capture continuity quite succinctly.

Theorem 5.16. A function f , defined for a real value c, is continuous at c if and only if x ≃ c implies
f(x) ≃ f(c) for all x ∈ ∗Df .

Proof. Suppose f is continuous at c so (5) is true in R, thus for any positive real ε, there is a corresponding
positive real δε such that

(∀x ∈ Df )(|x− c| < δε → |f(x)− f(c)| < ε)

is true in R. By transfer this holds for all of ∗Df , in particular those x infinitely close to c. Then since x− c is
infinitesimal, it follows that it’s less then every possible δε thus |f(x) − f(c)| < ε is true in R for any ε ∈ R+,
ergo f(x) ≃ f(c).

For the converse, suppose x ≃ c implies f(x) ≃ f(c) for all x ∈ ∗Df . Fixing a positive infinitesimal δ, if
|x − c| < δ, then x ≃ c so, by assumption, |x − c| < δ implies f(x) ≃ f(c). Binding δ with an existential
quantifier, we get that

(∃δ ∈ ∗R+)(∀x ∈ ∗Df )(|x− c| < δ → |f(x)− f(c)| < ε)

is in ∗R, for every ε ∈ R+. Applying transfer we infer that f is continuous at c.

We say that a function f is continuous on a set X ⊆ R if it is continuous on every point in X, and that f is
continuous if it is continuous on its domain. To demonstrate, we investigate the continuity of the cosine function

Example. For any real c and any infinitesimal ε, we have cos(c+ ε)− cos c = cos c cos ε− sin ε sin c− cos c ≃
cos c · 1 + 0 · sin c− cos c ≃ 0 by transfer on the addition formula for cosine, and because sin ε ≃ 0, cos ε ≃ 1. So
by theorem 5.16, cosine is a continuous function.

We now prove the intermediate value theorem and the extreme value theorem - two classic results which are
both, in standard analysis, proved by dividing up an interval into smaller sub-interval. The non-standard proof
builds on the same idea but considers sub-intervals of infinitesimal length.



Theorem 5.17 (The Intermediate Value Theorem). If a real function f is continuous on the closed interval
[a, b], then for every d strictly in between f(a) and f(b), there exists a c ∈]a, b[ such that f(c) = d.

Proof. Assume without loss of generality that f(a) < f(b), so f(a) < d < f(b). For every n ∈ N we partition
[a, b] into n sub-intervals of width b−a

n . The partition is defined by its endpoints, we denote the set of endpoints,
for n-interval partition as Pn = {a + k b−a

n : k = 0, 1, . . . , n}. The set {pk ∈ Pn : f(pk) < d} is always finite,
having at most n elements, and is never empty since p0 = a is always in it. Consequentially we can define a
sequence s such that sn = max{pk ∈ Pn : f(pk) < d}. By how s is defined, it follows that

a ≤ sn < b and f(sn) < d ≤ f(sn +
b− a

n
)

for all n ∈ N. By transfer, the same hold for all n ∈ ∗N for the hyperreal extension of s. Fixing any unlimited
natural N , by the first condition sN is limited so we may define c = sh(sN ). If follows that b−a

N is infinitesimal,
so sN + b−a

N ≃ sN ≃ c. By continuity f(sN + b−a
N ) ≃ f(c). By the second condition of s, we get that d is

between f(sN ) and f(sN + b−a
N ), hence d ≃ f(sN ) ≃ f(c). Since both d and f(c) are real, they must be equal

by theorem 4.3.

Theorem 5.18 (Extreme Value Theorem). If a real function f is continuous on the closed interval [a, b], then
f assume a maximum and minimum on [a, b] i.e there exists c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all
x ∈ [a, b].

Proof. To obtain a maximum for f in [a, b], consider the partitions Pn = {a+ k b−a
n : k = 0, 1, . . . , n} from the

previous proof, and let sn be the least pk ∈ Pn such that f(pk) is maximal. Again sn is well-defined since for
every n ∈ N, there are a finite amount of endpoints. Consequently

a ≤ sn ≤ b and f(a+ k
b− a

n
) ≤ f(sn)

holds for all n ∈ N and integers k such that 0 ≤ k ≤ n. Applying transfer, the statement holds for all N ∈ ∗N and
hyperintegers K such that 0 ≤ K ≤ N . The first condition ensures sN always being limited, so let d = sh(sM )
for a fixed M ∈ ∗N∞.

Note that for each n ∈ N, fixing r ∈ [a, b], there exists an integer 0 ≤ k ≤ n such that

a+ k
b− a

n
≤ r ≤ a+ (k + 1)

b− a

n
.

Then by transfer, for each N ∈ ∗N there exists a hyperinteger 0 ≤ K ≤ N such that

a+K
b− a

N
≤ r ≤ a+ (K + 1)

b− a

N
.

Then since a + K b−a
N ≃ a + (K + 1) b−a

N it follows that r ≃ K b−a
N . Then for our fixed M ∈ ∗N∞, and a

fixed r ∈ [a, b] there exists a hyperinteger 0 ≤ Kr ≤ M such that r ≃ a + Kr
b−a
M . The continuity of f

on [a, b], then implies that f(a + Kr
b−a
M ) ≃ f(r) ∈ R and f(sM ) ≃ f(d) ∈ R. By the second condition

of s, we know that f(a + K b−a
M ) ≤ f(sM ) ≃ f(d) for all hyperintegers K, so by Proposition 4.4 (iv),

sh
(
f(a + Kr

b−a
N )
)
= f(r) ≤ sh

(
f(sM )

)
= f(d). This holds for any r ∈ [a, b], so it follows that f(d) is the

maximum of f on [a, b].

The proof f obtains a minimum is analogous.

Another advantage of non-standard analysis is that usually hard to understand concept uniform continuity is
(relatively) more intuitive. In standard analysis, a function f is uniformly continuous on X if

(∀ε ∈ R+)(∃δ ∈ R+)(∀x, y ∈ X)(|x− y| < δ → |f(x)− f(y)| < ε) (6)

is true in R. The only difference between this and regular continuity on a set is that the x-quantifier is within
the existential quantifier. What this means is that the choice of δ cannot depend on the point we’re evaluating
continuity at, only the value ε. However, In the hyperreals, uniform continuity can be expressed in the following
way.

Theorem 5.19. A function f is uniformly continuous on a real set X if and only if x ≃ y implies f(x) ≃ f(y)
for all x, y ∈ ∗X.



Proof. Assume that f is uniformly continuous on X ⊆ R so (6) is true in R. Then, fixing some ε ∈ R+, there
exists a δε ∈ R+ such that

(∀x, y ∈ X)(|x− y| < δε → |f(x)− f(y)| < ε).

By transfer
(∀x, y ∈ ∗X)(|x− y| < δε → |f(x)− f(y)| < ε)

is true in ∗R. If x, y ∈ ∗X are infinitely close, then |x− y| is less then every δε, so |f(x)− f(y)| < ε is true for
every ε ∈ R+, i.e. f(x) ≃ f(y).

For the converse, suppose x ≃ y implies f(x) ≃ f(y) for all x, y ∈ ∗X. Then, fixing a positive infinitesimal δ,
the sentence

(∀x, y ∈ ∗X)(|x− y| < δ → |f(x)− f(y)| < ε)

is true in for each ε ∈ R+. Binding δ with an existential quantifier and applying transfer we get that

(∃δ ∈ R+)(∀x, y ∈ X)(|x− y| < δ → |f(x)− f(y)| < ε)

is true in ∗R for all ε ∈ R+. Ergo, f is uniformly continuous on X.

Theorem 5.20. If a real valued function f is continuous on [a, b], then f is uniformly continuous on [a, b].

Proof. Let f be continuous on [a, b] and consider x, y ∈ ∗[a, b] such that x ≃ y. Since x, y ∈ ∗[a, b] they must
be limited. It then follows that sh(x) = sh(y) = c ∈ R. By f being continuous on [a, b] and x, y ≃ c we get
f(x), f(y) ≃ f(c) so by ≃ being an equivalence, f(x) ≃ f(y). Thus by theorem 7.4, f is uniformly continuous
on [a, b].

Remark. This result doesn’t holds for open intervals ]a, b[ or unbounded intervals of the form [a,∞[, ]−∞, a]. In
the open case it doesn’t holds since ]a, b[ isn’t closed under taking shadow e.g. a+ε ∈]a, b[ but sh(a+ε) = a /∈]a, b[.
In the unbounded case, all their elements aren’t limited so the shadow of x and y isn’t always defined.

We prove an interesting connection between Cauchy sequences and uniformly continuous functions.

Proposition 5.21. If a real valued sequence s is Cauchy and f is uniformly continuous on the co-domain of s,
then the sequences f ◦ s is also Cauchy.

Proof. If s is Cauchy, then sM ≃ sN for all M,N ∈ ∗N∞ by theorem 5.8. By f being uniformly continuous
on the co-domain of s, it follows that f(sM ) ≃ f(sN ) for for all M,N ∈ ∗N∞, hence f ◦ s is also Cauchy.

Regular continuity isn’t sufficient since f(sM ), f(sN ) may be non-standard - we demonstrate via example.

Example. The function f(x) = 1
x is continuous on ]0, 1] since f(c) − f(c + ε) = 1

c − 1
c+ε = c+ε−c

c2+cε = ε
c2+cε is

infinitesimal for all real c ∈]0, 1] and all infinitesimal ε. It is however not uniformly continuous on ]0, 1] because,
for positive infinitesimals ε, ε2 ∈ ∗]0, 1], we have f(ε2)− f(ε) = 1

ε2 −
1
ε = 1−ε

ε2 which is unlimited despite ε ≃ ε2.
So by theorem 5.19, f isn’t uniformly continuous on ]0, 1]. The sequences s defined as sn = 1

n is Cauchy since
it convergence to 0, it also stays entirely in ]0, 1]. Despite this we see that (f ◦ s)(n) = 1

1
n

= n which divergence
to positive infinity, so cannot be Cauchy.

In standard analysis, continuity is usually defined in terms of limits. In non-standard analysis we opted for a
more intuitive definition but rest assured that limits can still be defined in the hyperreals.

Theorem 5.22. Given a real valued function f and a real c

1. limx→c− f(x) = L if and only if f(x) ≃ L for all x ∈ ∗Df such that x ≃ c and x < c.

2. limx→c+ f(x) = L if and only if f(x) ≃ L for all x ∈ ∗Df such that x ≃ c and x > c.

3. limx→c f(x) = L if and only if f(x) ≃ L for all x ∈ ∗Df such that x ≃ c and x ̸= c.

4. limx→+∞ f(x) = L if and only if f(x) ≃ L for all positive unlimited x ∈ ∗Df .

5. limx→−∞ f(x) = L if and only if f(x) ≃ L for all negative unlimited x ∈ ∗Df .

6. limx→c f(x) = +∞ if and only if f(x) is positive unlimited for all x ∈ ∗Df with x ≃ c and x ̸= c.

7. limx→c f(x) = −∞ if and only if f(x) is negative unlimited for all x ∈ ∗Df with x ≃ c and x ̸= c.



Proof. Part 1,2 and 3 are very similar so we only prove 3 here. For the ’only if’-part, assume limx→c− f(x) = L,
which means

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ Df )(|x− c| < δ → |f(x)− L| < ε)

is true in R. Thus fixing any positive real ε, there is a δε such that

(∀x ∈ Df )(|x− c| < δε → |f(x)− L| < ε)

is true in R. By transfer then, if x ∈ ∗Df is such that x ≃ c and x ̸= c, then by |x − c| being less then any
δε ∈ R+ we get that |f(x)− L| < ε is true in ∗R, for any ε ∈ R+ - hence f(x) ≃ L.

For the ’if’-part assume x ≃ c and x ̸= c implies f(x) ≃ L, for all x ∈ ∗Df . Then fixing a positive infinitesimal
δ, we have |x−c| < δ → |f(x)−L| < ε being true for any positive real ε. Binding δ with an existential quantifier
we get a true L∗R and applying transfer we get that

(∃δ ∈ R+)(∀x ∈ Df )(|x− c| < δ → |f(x)− L| < ε)

is true in R for any positive real ε. Ergo limx→c− f(x) = L.

Part 4 and 5 are similar to the proof of theorem 5.1 while while 6 and 7 are almost identical to the proof of
theorem 5.2.

It follows that that limx→c f(x) = L if and only if limx→c− f(x) = limx→c+ f(x) = L. Also note that this
aligns with the standard definition of a function being continuous at a point c if limx→c f(x) = f(c). We now
investigate some interesting limits with non-standard methods.

Example.

1. Let f(x) = sin 1
x be the function defined for all non-zero reals, consider limx→c f(x). If c ̸= 0, then for

any x ≃ c we have 1
x ≃ 1

c so, by sine being continuous we have sin 1
x ≃ sin 1

c . Thus limx→c f(x) = sin 1
c for

all non-zero c. However if c = 0, then for limx→c f(x) = L to exists, f(ε) must be infinitely close to some
real number, for every non-zero infinitesimal ε. Since the inverse of an unlimited number is a non-zero
infinitesimal we know that both 1

2πK and 1
2πK+π

2
are infinitesimals where K is an unlimited hyperintegers.

By transfer sin( 1
1

2πK

) = sin(2πK) = 0 while sin( 1
1

2πK+π
2

) = sin(2πK + π
2 ) = 1 so the limit a at 0 cannot

exists.

2. For an opposite example consider the piecewise function

g(x) =

{
x if x is rational,
−x if x is irrational,

defined on the all of R. For all non-zero infinitesimal ε, either g(ε) = ε ≃ 0 or g(ε) = −ε ≃ 0, hence
limx→0 g(x) = 0. As for when c is non-zero, we know every real number is infinitely close to a hyperrational
and a hyperirationals by transfer on the true sentence

(∀ε ∈ R+)(∀c ∈ R)(∃x ∈ Q)(∃y ∈ Q)(c ̸= x ∧ c ̸= y ∧ |c− x| < ε ∧ |c− y| < ε).

Then for all c ∈ ∗R, there exists a hyperrational x, and a hyperirational y, such that c ≃ x, y. Moreover
g(x) = x ≃ c while g(y) = −y ≃ −c, so if c is non-zero, then g(x) ̸≃ g(y) which means the limit limx→c g(x)
cannot exists.

5.4 The Derivative
The derivative of a real function f at a real point x, denoted f ′(x), represent the rate of change of f in x.
Alternatively f ′(x) is the slope of the tangent of f passing through x. In standard analysis, f ′(x) is defined as
the limit

lim
h→0

f(x+ h)− f(x)

h
. (7)

In non-standard analysis however, we can almost use Leibniz’ original definition introduced in the introduction,
but with our new non-standard tools.



Theorem 5.23. A real valued function f has a derivative at the real point x, denoted f ′(x), if and only if f is
defined on µ(x) and

f(x+ ε)− f(x)

ε
≃ f ′(x)

for all non-zero infinitesimals ε.

Proof. A real function f has a derivative f ′(x) at x ∈ R if and only if

lim
h→0

f(x+ h)− f(x)

h
= f ′(x)

and by theorem 5.22, that is equivalent with

f(x+ ε)− f(x)

ε
≃ f ′(x)

for all non-zero infinitesimal ε.

So when f is differentiable at x we have

f ′(x) = sh
(f(x+ ε)− f(x)

ε

)
.

The linearity of the derivative then follows from the linearity of the shadow map. Note the similarity, but
also the difference, with Leibniz definition, intruded in the introduction; Let us demonstrate the difference by
computing the derivative of f(x) = xn.

Example. Consider the function f(x) = xn, then

f(x+ ε)− f(x)

ε
=

(x+ ε)n − xn

ε

where ε is a non-zero infinitesimal. We know that the binomial theorem applies for infinitesimal by the transfer
principle, so (x+ ε)n = xn + nxn−1ε+

(
n
2

)
xn−2ε2 · · ·+ εn. The value is never unlimited, so we may substitute

it into the fraction we compute

xn + nxn−1ε+
(
n
2

)
xn−2ε2 · · ·+ εn − xn

ε
=
nxn−1ε+

(
n
2

)
xn−2ε2 · · ·+ εn

ε
= nxn−1 + · · ·+ εn−1 ≃ nxn−1,

arriving at f ′(x) = nx−1. In the final step we use the arithmetic rules we proved in proposition 4.1. We get
around the problem of ε being both non-zero when dividing by it, and zero when removing all its multiples, by
the fraction not equaling nxn−1, but being infinitely close to it.

In non-standard, an interesting quantity arises in relation to the derivative, namely

Definition 5.24 (Increment). Given a real number x, a function f defined on µ(x) and a non-zero infinitesimal
∆x, we call the difference f(x+∆x)− f(x) the increment of f at x by ∆x, denoted ∆f

The notation is suggestive since ∆f stands for the increase in f , when x increments by an infinitesimal amount
∆x. The fraction ∆f

∆x is then the slope of the line passing through (x, f(x)) and (x+∆x, f(x+∆x)), and when
f is differentiable at x ∈ R, we have

∆f

∆x
≃ f ′(x).

for non-zero infinitesimal ∆x. If f is differentiable at x, it also follows that ∆f
∆x is limited which necessitates

∆f = ∆f
∆x∆x being infinitesimal, so ∆f = f(x + ∆x) − f(x) ≃ 0, which implies f(x + ∆x) ≃ f(x), for all

infinitesimal ∆x. By theorem 5.16 we then have

Proposition 5.25. If f is differentiable at x ∈ R, then f is continuous at x.

Additionally, if ∆f
∆x ≃ f ′(x) when f is differentiable at x, we have ∆f

∆x −f ′(x) = ε ∈ I and multiplying both sides
by ∆x we get

∆f = f ′(x)∆x+ ε∆x or equivalently f(x+∆x) = f ′(x) + ∆xf(x) + ε∆x.

This is result is called the Incremental Equation and is interesting because it shows relation between the actual
increment of the function ∆f , and f ′(x)∆x which is the increment along the tangent of f at x. Even though



they’re both infinitesimal, the equation shows that they’re difference is infinitesimal, to a ’higher order’ than
∆x, i.e. ∆f−f ′(x)∆x

∆x = ε∆x
∆x = ε is still infinitesimal. The second formulation also shows how, for a fixed x, the

function l(∆x) = f(x) + f ′(x)∆x linearly approximates f(x + ∆x) for infinitesimal ∆x, with an infinitesimal
error compared to ∆x.

All the classic rules for the derivative follow

Proposition 5.26. If f and g are function, differentiable at x ∈ R, then f+g, f ·g and f
g are also differentiable

at x ∈ R in the following ways

• (f · g)′(x) = f ′(x)g(x) + f(x)g′(x),

• ( fg )
′ = f ′(x)g(x)−f(x)g′(x)

g2(x) assuming g(x) ̸= 0.

Proof. Analyzing ∆(f · g) and using some algebra, we get

∆(f · g) = f(x+∆x)g(x+∆x)− f(x)g(x)

= (f(x) + ∆f)(g(x) + ∆g)− f(x)g(x) [f(x+∆x) = f(x) + ∆f ]

= f(x)∆g + g(x)∆f +∆f∆g.

Diving by ∆x then yields

∆(f · g)
∆x

=
f(x)∆g + g(x)∆f +∆f∆g

∆x
= f(x)

∆g

∆x
+

∆f

∆x
g(x) + ∆f

∆g

∆x
≃ f(x)g′(x) + f ′(x)g(x).

Analyzing ∆( fg ) we get

∆(
f

g
) =

f(x+∆x)

g(x+∆x)
− f(x)

g(x)

=
f(x+∆x)g(x)− f(x)g(x+∆x)

g(x+∆x)g(x)

=
f(x+∆x)g(x)− f(x)g(x+∆x) + f(x)g(x)− f(x)g(x)

g(x+∆x)g(x)

=
(f(x+∆x)− f(x))g(x)− f(x)(g(x+∆x)− g(x))

g(x+∆x)g(x)

=
∆fg(x)− f(x)∆g

g(x+∆x)g(x)
.

Dividing by ∆x yields

∆fg(x)− f(x)∆g

∆x
· 1

g(x+∆x)g(x)
=

(
∆f

∆x
g(x)− f(x)

∆g

∆x

)
1

g(x+∆x)g(x)

≃ f ′(x)g(x)− f(x)g′(x)

g2(x)
. [g(x+∆x) ≃ g(x)]

Proposition 5.27 (The Chain rule). If f is differentiable at x ∈ R and g differentiable at f(x), then g ◦ f is
differentiable at x with (g ◦ f)′(x) = g′(f(x))f ′(x).

Proof. By f being differentiable at x it’s also continuous at x, so f(x+∆x) ≃ f(x) for all non-zero infinitesimal
∆x. By g being differentiable at f(x) it is defined for µ(f(x)), so (g ◦ f)(x + ∆x) = g(f(x + ∆x)) is always
defined.

Investigating the increment of g ◦ f we see

∆(g ◦ f) = g(f(x+∆))− g(f(x)) = g(f(x) + ∆f)− g(f(x)),

or put into words, the increment of g ◦ f at x by ∆x is equal to the increment of g at f(x) by ∆f . Applying
the incremental equation then yields

∆(g ◦ f) = g′(f(x))∆f + ε∆f



for some infinitesimal ε. Dividing both sides by ∆x gives

∆(g ◦ f)
∆x

= g′(f(x))
∆f

∆x
+ ε

∆f

∆x
≃ g′(f(x))f ′(x)

ergo (g ◦ f)′(x) = g′(f(x))f ′(x).

Theorem 5.28. If f has a local maximum or minimum at real point x, and is differentiable at x, then f ′(x) = 0

Proof. If f has a maximum at x, then by transfer f(x + ∆x) ≤ f(x) for all infinitesimal ∆x. Then if ε is a
positive infinitesimal and δ is a negative infinitesimal

f ′(x) ≃ f(x+ ε)− f(x)

ε
≤ 0 ≤ f(x+ δ)− f(x)

δ
≃ f ′(x).

Since f ′(x) is real, this necessitates that f ′(x) = 0. The case when x is a minimum is analogous.

With the these results together with theorem 5.17 and 5.18 from section 5.3 we could prove that for a
function f that is continuous on [a, b] and differentiable on ]a, b[:

• Rolle’s Theorem: If f(a) = f(b) = 0, then there exists a c ∈]a, b[ such that f ′(c) = 0,

• Mean Value Theorem For some c ∈]a, b[

f ′(c) =
f(a)− f(b)

a− b
,

• If f ′ is positive/zero/negative on some sub-interval ]a′, b′[, then f is growing/constant/negative on [a′, b′].

However these proofs would not include any non-standard reasoning, so we do not go through them here.

5.5 The Riemann Integral

The definite integral
∫ b

a
f(x) represents the area restricted by the graph of f , the x-axis, x = a and x = b, with

the slight caveat that area under the x-axis is negative. In standard analysis one partitions [a, b] into a finite
number of sub-intervals, approximating the area one each sub-interval by rectangles, and considering the sum
of these rectangles areas, so called Riemann Sums. The definite integral is then defined as the limit of these
sums as the sub-intervals increase and the partitions get finer and finer. with so sums of rectangles of some
fixed width.
A well known fun fact is that the notation

∫ b

a
f(x) dx is relic from Leibniz infinitesimal methods [1]. The

“
∫

” symbol is an elongated “S” standing for “sum”, and what is being summed are the areas of infinitely many
rectangles of heights f(x) and whose widths are an infinitesimal width dx. In this section, non-standard analysis
allow us to make this intuition precise.

We begin by introducing the standard definition of Riemann sums and the integral

Definition 5.29 (Riemann Sum). Given a function f who’s bounded on [a, b] and a partition P = {x0, x1, . . . , xn} ⊂
[a, b] where a = x0 < x1 < . . . < xn = b. Let mi = inf [xi−1,xi] f and Mi = sup[xi−1,xi] f for i = 1, 2, . . . , n, also
let ∆xi = xi − xi−1. We define the

• Lower Riemann sum, denoted by Lb
a(f, P ), as

∑n
i=1mi∆xi,

• Upper Riemann sum, denoted by U b
a(f, P ), as

∑n
i=1Mi∆xi

Definition 5.30. We say that a function f bounded on [a, b] is Riemann integrable on [a, b] if the greatest
lower-bound of f and lowest upper-bound of f on [a, b], are equal. That is, if

sup
P
Lb
a(f, P ) = inf

P
U b
a(f, P ).

In that case we denote their shared value by the integral
∫ b

a
f(x)dx.

In standard analysis one proves that
∫ b

a
f(x)dx is the integral of f on [a, b] in the following way [1]

Proposition 5.31. A function f who’s bounded on [a, b] is Riemann integrable with the integral
∫ b

a
f(x)dx if

and only if



1. Lb
a(f, P ) ≤

∫ b

a
f(x)dx ≤ U b

a(f, P ) for ever partition P on [a, b].

2. For every positive real ε, there exists a P such that U b
a(f, P )− Lb

a(f, P ) < ε.

We want to able to partitions where every sub-interval is a certain width so we define

Definition 5.32. Given an interval [a, b] and a positive real number ∆x let n be the least integer such that
a + n∆x ≥ b. We then define a partition P∆x = {x0, x1, . . . , xn} with xk = a + k∆x for k = 0, 1, 2, . . . , n − 1
and xn = b. This gives a partitions [a, b] into n− 1 sub-intervals [x0, x1], [x1, x2], . . . , [xn−2, xn − 1] of width ∆x
and a one [xn−1, xn] of width less then ∆x.

Let Lb
a(f,∆x) and U b

a(f,∆x) denote Lb
a(f, P∆x) and U b

a(f, P∆x). Fixing f and [a, b], we can view Lb
a(f,∆x)

and U b
a(f,∆x) as functions from positive reals as domains (if ∆x greater then b− a we just get P∆x = {a, b}).

It follows Lb
a(f,∆x) and U b

a(f,∆x) as functions have hyperreal extension, defined for all positive hyperreals,
including positive infinitesimal. We can then consider infinitesimal partitions and prove the following results.

Theorem 5.33. If f is a continuous function on [a, b], then for any positive infinitesimal ∆x

Lb
a(f,∆x) ≃ U b

a(f,∆x).

Proof. Assume f is continuous on [a, b], it’s the bounded by theorem 5.17. We begin by considering U b
a(f,∆x)−

Lb
a(f,∆x) for a real positive ∆x. Unfolding the definitions we get

U b
a(f,∆x)− Lb

a(f,∆x) =

n∑
i=1

Mi∆xi −
n∑

i=1

mi∆xi =

n∑
i=1

(Mi −mi)∆xi

Since n is finite in this case we may take M∆x as the maximum of Mi −mi for i = 1, 2, . . . , n, i.e. the biggest
vertical difference of f on a sub-interval partitioned by P∆x. This gives an upper-bound

n∑
i=1

(Mi −mi)∆xi ≤
n∑

i=1

M∆xi =M

n∑
i=1

∆xi =M(x1 − x0 + x2 − x1 + . . .+ xn − xn−1) =M(b− a).

Since M∆x = Mi − mi and Mi,mi are supremum and infimum on a closed interval [xi−1, xi], it follows by
the extreme value theorem that c∆x, d∆x ∈ [xi−1, xi] such that f(c∆x) = Mi and f(d∆x) = mi. Since all
sub-intervals are at most ∆x wide, it follows that |c∆x − d∆x| ≤ ∆x. Putting these results together into a
LR-sentence we get

(∀∆x ∈ R+)(∃c∆x, d∆x ∈ R)
(
|c∆x − d∆x| ≤ ∆x ∧ U b

a(f,∆x)− Lb
a(f,∆x) ≤ (f(c∆x)− f(d∆x))(b− a)

)
.

Applying transfer and picking a positive infinitesimal ∆x gives c∆x ≃ d∆x by the first conjunct. In addition,
since [a, b] is a closed interval, the continuity of f on [a, b] implies uniform continuity on [a, b] by theorem 6.5.
As a consequence f(c∆x) ≃ f(d∆x), and since b−a is limited, the product (f(c∆x)−f(d∆x))(b−a) is infinitesimal.
This necessitates U b

a(f,∆x)− Lb
a(f,∆x) being infinitesimal which gives us U b

a(f,∆x) ≃ Lb
a(f,∆x).

Theorem 5.34. If f is a non-decreasing or non-increasing function on [a, b], so called monotonic, then for any
positive infinitesimal ∆x

Lb
a(f,∆x) ≃ U b

a(f,∆x).

Proof. Assume f is non-decreasing on [a, b] i.e. x ≤ y implies f(x) ≤ f(y) for all x, y ∈ [a, b]. Again U b
a(f,∆x)−

Lb
a(f,∆x) =

∑n
i=1(Mi − mi)∆xi and, by f being non-decreasing Mi,mi always exists as f(xi−1) = mi and

f(xi) = Mi. We also have ∆xi = ∆x for i = 1, 2, . . . , n − 1 and ∆xn ≤ ∆x. Hence 0 ≤ ∆xi ≤ ∆x for
i = 1, 2, . . . , n so we get the upper-bound

U b
a(f,∆x)− Lb

a(f,∆x) =

n∑
i=1

(f(xi)− f(xi−1))∆xi

≤
n∑

i=1

(f(xi)− f(xi−1))∆x

= ∆x(f(x1)− f(x0)− f(x1) + f(x2)− . . .− f(xn−1) + f(xn))

= ∆x(f(b)− f(a)).

Applying transfer we get U b
a(f,∆x) − Lb

a(f,∆x) ≤ ∆x(f(b) − f(a)) for all ∆x ∈ ∗R+. Since f(b) − f(a) is
limited we get U b

a(f,∆x) ≃ Lb
a(f,∆x) for all positive infinitesimal ∆x.

The proof for when f is non-increasing on [a, b] is analogous.



In the previous section we proved that U b
a(f,∆x) ≃ Lb

a(f,∆x) for all positive infinitesimal ∆x, when f is
continuous or monotonic on [a, b]. These result only hold if the lower and upper sums are done on the same
infinitesimal partition. This can be further generalized to hold for any infinitesimal partitions.

Proposition 5.35. If U b
a(f,∆x) ≃ Lb

a(f,∆x) for all positive infinitesimal ∆x, then Lb
a(f,∆y) ≃ Lb

a(f,∆z) and
U b
a(f,∆y) ≃ U b

a(f,∆z) for all positive infinitesimal ∆y,∆z, i.e. all upper and lower Riemann integrals of an
infinitesimal partition width are infinitely close.

Proof. By refinement of partitions we know that the upper Riemann sum is greater then the lower Riemann
sum, regardless of partitions [1]. Thus by transfer, Lb

a(f,∆x) ≤ U b
a(f,∆y) for all ∆x,∆y ∈ ∗R+. Assume

U b
a(f,∆x) ≃ Lb

a(f,∆x) for all positive infinitesimal ∆x and consider the lower and upper Riemann sums of the
positive infinitesimals ∆y and ∆z. It follows that one of these four cases must be true

case 1: Lb
a(f,∆y) ≤ Lb

a(f,∆z) ≤ U b
a(f,∆y) ≤ U b

a(f,∆z),

case 2: Lb
a(f,∆y) ≤ Lb

a(f,∆z) ≤ U b
a(f,∆z) ≤ U b

a(f,∆y),

case 3: Lb
a(f,∆z) ≤ Lb

a(f,∆y) ≤ U b
a(f,∆y) ≤ U b

a(f,∆z),

case 4: Lb
a(f,∆z) ≤ Lb

a(f,∆y) ≤ U b
a(f,∆z) ≤ U b

a(f,∆y).

In case 1, by our assumption Lb
a(f,∆y) ≃ U b

a(f,∆y) and since Lb
a(f,∆z) is between them, it must be infinitely

close to both. Our assumption also implies Lb
a(f,∆z) ≃ U b

a(f,∆z). Thus, by ≃ being an equivalence, all the
sums must be infinitely close. Analogous arguments work for the other cases.

This results then means that if U b
a(f,∆x) ≃ Lb

a(f,∆x) for every positive infinitesimal ∆x, then every infinitesi-
mal Riemann sums has the same shadow. In this case, the shadow of infinitesimal Riemann sums is the integral
of f on [a, b].

Theorem 5.36. If U b
a(f,∆x) ≃ Lb

a(f,∆x) for every positive infinitesimal ∆x, then f is integrable on [a, b] and
in particular ∫ b

a

f(x)dx = sh(U b
a(f,∆x)) = sh(Lb

a(f,∆x))

for any positive infinitesimal ∆x.

Proof. We prove this by proving that sh(U b
a(f,∆x)) fulfills both condition in proposition 5.31.

Firstly, since all lower sums are less then all upper sums, we have, for any partition P that

Lb
a(f, P ) ≤ U b

a(f,∆x) ≃ sh(U b
a(f,∆x)) ≃ Lb

a(f,∆x) ≤ U b
a(f, P ).

Since Lb
a(f, P ), U

b
a(f, P ) and sh(U b

a(f,∆x)) are all real, we may conclude that

Lb
a(f, P ) ≤ sh(U b

a(f,∆x)) ≤ U b
a(f, P ).

For the second condition, since U b
a(f,∆x) ≃ Lb

a(f,∆x) for all positive infinitesimal ∆x, the L∗R-sentence

(∃∆x ∈ ∗R+)(U b
a(f,∆x)− Lb

a(f,∆x) < ε)

is true in ∗R for every ε ∈ R+. So by transfer there exists a partition P∆x such that U b
a(f, P∆x)−Lb

a(f, P∆x) < ε
for every positive real ε.

Together with theorem 5.33 and 5.34 we’ve then proven that if a function is continuous or monotonic on an
interval, then it’s integrable on that interval.

To prove some classic properties of integrals

Proposition 5.37. If f, g are functions, integrable on [a, b], then

(i)
∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx,

(ii)
∫ b

a
(f(x) + g(x))dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx ,

(iii) if a ≤ c ≤ b, then
∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx ,



(iv) If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx,

(v)
∣∣∣∫ b

a
f(x)dx

∣∣∣ ≤ ∫ b

a
|f(x)|dx,

(vi) if m ≤ f(x) ≤M for all x ∈ [a, b], then m(b− a) ≤
∫ b

a
f(x)dx ≤M(b− a).

Proof. Assume f and g are integrable on [a, b].

For (i) we note that the supremum of cf on [xi−1, xi] is the supremum of f times c, i.e. cmi. Consider U b
a(cf,∆x)

for a positive real ∆x, by definition

U b
a(cf,∆x) =

n∑
i=1

cmi∆xi = c

n∑
i=1

mi∆xi = c · U b
a(f,∆x).

This holds for any positive real ∆x, so by transfer it holds for all positive hyperreal. Thus by theorem 8.3∫ b

a

cf(x) = sh(U b
a(c · f,∆x)) = sh(cU b

a(f,∆x)) = c sh(U b
a(f,∆x)) = c

∫ b

a

f(x)dx.

The proof of (ii) is similar to the proof of 1, except that the supremum of f + g on [xi−1, xi] is the supremum
of f plus the supremum of g on [xi−1, xi].

For (iii) let ∆x = c−a
k for some natural number k, and let P∆x be the partition on [a, b], Q∆x the partition

on [a, c] and let R∆x be the partition on [c, b]. Then P∆x consist of a < a + c−a
k < · · · < a + k c−a

k = c <
· · · a + (n − 1) c−a

k < b while Q∆x consists of a < a + c−a
k < · · · < a + k c−a

k = c while R∆x consists of
c = a+ k c−a

k <= a+ (k + 1) c−a
k < · · · < a+ (n− 1) c−a

k < b. Thus P∆x = Q∆x ∪R∆x, so it follows that

U b
a(f,∆x) =

n∑
i=1

Mi∆xi =

k∑
i=1

Mi∆xi +

n∑
i=k+1

Mi∆xi = U c
a(f,∆x) + U b

c (f,∆x)

for all k ∈ N. By transfer it holds for all hypernatural k. If k is unlimited, then consequently ∆x = c−a
k be

infinitesimal and by theorem 5.36∫ b

a

f(x)dx = sh(U b
a(f,∆x)) = sh(U c

a(f,∆x)+U
b
c (f,∆x)) = sh(U c

a(f,∆x))+sh(U b
c (f,∆x)) =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

For (iv), assume f(x) ≤ g(x) for all x ∈ [a, b]. Then on any interval [xi−1, xi] the supremum of f , denoted
Mi(f) must be less then the supremum of g, denoted Mi(g). Consequently

U b
a(f,∆x) =

n∑
i=1

Mi(f)∆xi ≤
n∑

i=1

Mi(g)∆xi = U b
a(g,∆x)

holds for all positive real∆x. by transfer it holds for positive infinitesimal ∆x. By theorem 5.36∫ b

a

f(x)dx = sh
(
U b
a(f,∆x)

)
≤ sh

(
U b
a(g,∆x)

)
=

∫ b

a

g(x)dx.

The proof of (v) follows form transfer on the triangle inequality for sums.

For (vi) assume m ≤ f(x) ≤M for all x ∈ [a, b]. Then m ≤Mi ≤M for i = 1, . . . , n. Consequently

m(b− a) =

n∑
i=1

m∆xi ≤
n∑

i=1

Mi∆xi = U b
a(f,∆x) ≤

n∑
i=1

M∆x = (b− a)M

holds for every positive ∆x. By transfer

m(b− a) ≤ (U b
a(f,∆x) ≤M(b− a).

holds for every positive infinitesimal ∆x. Since m(b− a) and M(b− a) are real, it follows that

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).



We end this paper by deriving on of the most famous analysis results, namely the Fundamental Theorem of
Calculus. The theorem follows immediately from the following.

Theorem 5.38. Given a function f that’s continuous on [a, b], let F (x) =
∫ x

a
f(t)dt. The function F is then

differentiable on every x ∈ [a, b] and F ′(x) = f(x).

There’s a very intuitive reason why this holds if one considers the increment of F at x by ∆x. Since f is
continuous it only change by an infinitesimal amount if when we increment by ∆x. The increase in area is then
infinitely close to the area a rectangle of width ∆x and a height f(x). Thus ∆F

∆x ≃ f(x)∆x
∆x ≃ f(x). We formally

prove this as follows.

Proof. Let F (x) =
∫ x

a
f(t)dt and consider a real number ∆x such that 0 ≤ ∆x ≤ b− x. Then by proposition

5.37 part (iii)

F (x+∆x)− F (x) =

∫ x+∆x

a

f(t)dt−
∫ x

a

f(t)dt =

∫ x+∆x

x

f(t)dt.

Since f is continuous on [a, b] it is continuous on the sub-interval [x, x + ∆x] and by the extreme value
theorem, there exists x1, x2 ∈ [x, x + ∆x] such that f(x1) is a minimum, and f(x2). By proposition 5.37
(vi)

f(x1)(x+∆x− x) ≤
∫ x+∆x

x

f(t)dt ≤ f(x2)(x+∆x− x)

so
f(x1)∆x ≤ F (x+∆x)− F (x) ≤ f(x2)∆x

and since ∆x is positive

f(x1) ≤
F (x+∆x)− F (x)

∆x
≤ f(x2).

Because this holds for any positive real ∆x so by transfer it holds for any positive hyperreal ∆x. If ∆x is a
positive infinitesimal, then since x ≤ x1, x2 ≤ x + ∆x and f is continuous we have f(x1) ≃ f(x2) ≃ f(x).
Consequently

f(x) ≃ f(x1) ≤
F (x+∆x)− F (x)

∆x
≤ f(x2) ≃ f(x)

for all positive infinitesimal ∆x. For negative infinitesimals,

F (x+∆x)− F (x) = −

(∫ x

a

f(t)dt−
∫ x+∆x

a

f(t)dt

)
= −

∫ x

x+∆x

f(t)dt =

∫ x+∆x

x

f(t)dt.

Then by analogous argument
F (x+∆x)− F (x)

∆x
≃ f(x)

for all negative infinitesimal ∆x and thus for all non-zero infinitesimal ∆x, so by theorem 5.23 F ′(x) =
f(x).

Theorem 5.39 (Fundamental Theorem of Calculus). If G has a continuous derivative g on [a, b], then
∫ b

a
g(x)dx =

G(b)−G(a)

Proof. Let F (x) =
∫ x

a
g(t)dt. By theorem 5.38 F and G have the same derivative g on [a, b], so they can only

differ by some some constant c. It then follows that G(b) − G(a) = F (b) + c − (F (a) + c) = F (b) − F (a) =∫ b

a
f(x)dx−

∫ a

a
f(x)dx =

∫ b

a
f(x)dx.
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In the proof of theorem 2.8 it should refer to proposition 2.4 instead of proposition
2.

In the proof of proposition 2.10, it should refer to theorem 2.8 instead of theorem
2.1.

In the proof oftheorem 2.11, it should refer to proposition 2.7 instead of proposition
4

In the first paragraph of section 3.2, it should refer to proposition 2.15 instead of
proposition 2.8.

In proposition 4.1, α ·β should not be under the indeterminate cases, it should be α ·A
instead.

The second paragraph of the proof of theorem 5.3 needs to be rewritten. An improved
version reads:
For the ’if’-part of (i), assume sN is not positive unlimited, for all N ∈ ∗N∞. Fixing a
positive unlimited M , it follows that (∀n ∈ ∗N)(sn ≤ M). Binding M with an existential
quantifier yields a L∗R-sentences (∃M ∈ ∗R)(∀n ∈ ∗N)(sn ≤ M). Applying transfer means
s must be bounded.

In the proof of theorem 5.34 there should be a clarification that, since f is non-
increasing/non-decreasing on [a, b], it is bounded on the interval by f(a) and f(b).

The proofs of part (i) and (ii) of proposition 5.37 are faulty. For (i) sup cf = c sup f is
only the case when c ≥ 0. If c < 0, then sup cf = c inf f so U(cf,∆x) = cL(f,∆x) and
thus ∫ b

a

cf(x)dx = sh(U(cf,∆x)) = c sh(L(f,∆x)) = c

∫ b

a

f(x)dx.

For (ii) it is wrong that sup(f + g) = sup f + sup g, instead sup(f + g) ≤ sup f + sup g
and inf(f + g) ≥ inf f + inf g. Consequently

L(f,∆x) + L(g,∆x) ≤ L(f + g,∆x) ≤ U(f + g,∆x) ≤ U(f,∆x) + U(g,∆x)

and since L(f,∆x) + L(g,∆x) ≃ U(f,∆x) + U(g,∆x), it follows that they all have the
same shadow. Thus∫ b

a

(f(x)+g(x))dx = sh(U(f+g,∆x)) = sh(U(f,∆x)+U(g,∆x)) =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.
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