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Abstract

This thesis is an introduction to the Fourier transform on functions in the
Schwartz space. The definition of a function being in the Schwartz space will
be stated and some properties these type of functions have, e.g. the behavior
of the convolution of two functions, will be explained. Thereafter, the Fourier
transform is introduced and also some important theorems, like the Fourier
Inversion Formula. Finally, we will apply this theory on two famous partial
differential equations, namely the wave equation and the heat equation. The
wave equation will be solved in a compact form in one dimension, and the
heat equation will be solved in n dimensions.



Sammanfattning

I följande uppsats ges en introduktion av fouriertransformen p̊a funktioner
i Schwartzrummet. Definitionen av funktioner i Schwartzrummet anges och
även n̊agra egenskaper dessa sorters funktioner har, exempelvis beteendet vid
faltning av tv̊a funktioner. Därefer introduceras fouriertransformen tillsam-
mans med viktiga satser som inverstransformen. Slutligen, appliceras teorin
p̊a tv̊a kända partiella differential ekvationer, nämligen v̊agekvationen och
värmeekvationen. V̊agekvationen löses som en kompakt form i endimension
och värmeekvationens lösning är i n-dimensioner.
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1 Introduction

In this thesis we introduce the Fourier transform as a tool for solving two interesting
partial differential equations, the wave equation and the heat equation. This topic
is associated with some theoretical complexity and to make this topic more under-
standable for me, we will reduce ourselves into the Schwartz space. Chapter 4 offers
a brief explanation of the Schwartz space and the behavior of functions this space.

In this chapter, I would like to present the key figures in this thesis. The founder
of the Schwartz space is Laurent Schwartz (1915–2002), most famous for his the-
ory of distributions. Specifically that his formalization of distributions (generalized
functions) always had well-defined derivatives. Schwartz was widely recognized in
the mathematical community and was invited by Harald Bohr to Copenhagen in Oc-
tober 1947 [1]. Schwartz taught several remarkable students when he was in Nancy
and in 1953, he became a professor in Paris. He continued teaching at the École
Polytechnique in Paris from 1959 to 1980. Beyond his mathematical achievements,
he was politically active and participated in the French elections of 1945 but failed
to be elected [4].

Another key contributor to this field is Jean-Baptiste Joseph Fourier (1768-1830),
who is best known for his work in mathematical physics, particularly the Fourier
series. I believe many students that studies mathematics are with familiar the
Fourier series, but fewer may be aware of Fourier’s life. Fourier is one of the most
historically famous and brilliant French mathematical scientists. He showed talents
for mathematics and mechanics at a very young age and it led him to study at
the Benedictine College, École Royale Militaire of Auxerre, where he became a
mathematics teacher in 1790. The French Revolution took place during this time
and Fourier was largely involved and it influenced his life. He desired to avoid
political troubles but was still selected to join Napoleon Bonaparte’s (1769–1821)
Egyptian expedition in 1798. Upon his return, Fourier resumed his position as
a Professor at the École Polytechnique in 1801. In 1807, he completed his most
famous memoir, “On the propagation of heat in solid bodies” and submitted it to
the Academy of Sciences of Paris. The paper was impressive but faced criticism for
his use of trigonometric (Fourier) series expansions of functions without theoretical
justification [2]. Despite this, Fourier’s contributions have proved to have a large
impact on mathematical physics, particularly analyzing the conduction of heat in
solid bodies, the Fourier integral theorem, Fourier series and the Fourier transform,
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which will be examined in detail in Chapter 5 [2] [3].
It is a bit thoughtful that both Schwartz and Fourier were French mathematicians

and held professorships at the École Polytechnique but in different eras, since their
achievements form the foundation of this thesis. Before we start delving into the
mathematical theory, I would like to explain the importance of the wave equation
and the heat equation and their practical applications. Chapter 6 will focus on
solving these equations with the theory from previous chapters.

The wave equation is a second-order linear partial differential equation that de-
scribes the movement of waves in different media. This equation can be applied in
numerous areas such as optics e.g. X-ray diffraction optics. It is also applied in
music and design of instruments, and in fluid dynamics for understanding waves in
fluids, like studying the simpler case such as ripples on the surface of a lake or pond.
The wave equation is also useful in predicting natural disasters like earthquakes and
tsunamis [6].

The heat equation is also a partial differential equation. It explains the distri-
bution of heat over time in various media. Heat is a fluid insider matter, capable
of flowing from one position to another. The heat equation is fundamental to un-
derstanding the theory of heat conduction and is useful in studying heat transfer in
solids, biological tissues, oceans or soil [8]. By exploring these equations and their
solutions, this thesis aims to provide an understanding of mathematical theory and
foundations with practical applications.

The main literature this thesis relies on are An Introduction to Pseudo-Differential
Operators (3rd ed.) by M. W. Wong [9] and The Fourier Transform and the Wave
Equation by A. Torchinsky [7] and the lecture notes Heat Equation from a course
called ”Math 220B” by Julie Levandosky at Stanford University [5].
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2 Notation of differential operators

Before we start exploring the mathematical theory of the Schwartz space and the
Fourier transform, we will have to introduce some notations. Firstly, this thesis
will use the differential operators on Rn that are expressed as ∂

∂xj
for j = 1, 2, ..., n.

Further, define the operator Dj given by Dj = −i ∂
∂xj

and i2 = −1.
The most general linear partial differential operators of order m on Rn will be

on the form ∑
α1+α2+...+αn≤m

aα1,...,αn(x)Dα1
1 Dα2

2 · · ·Dαn
n ,

where α1, . . . , αn are nonnegative integers and aα1,...,αn is an infinitely differentiable
complex-valued function on Rn. An n-tuple of nonnegative integers is called a multi-
index and is denoted as

α = (α1, α2, ..., αn).

The length of α is denoted by |α| = ∑n
j=1 αj and we shall denote Dα = Dα1

1 Dα2
2 ···Dαn

n

and with this, rewrite the differential operator in a compact form as

∑
|α|≤m

aα(x)Dα.





3 Preliminary

This chapter introduces some useful definitions and will present some results by
applying them. Additionally, the Leibniz’s rule and the Fubini’s theorem will be
presented and used frequently in the following chapters.

Definition 3.1. A function f : Rn → R is radial if and only if it can be written as
f(x) = f̃(|x|) for some f̃ : [0,+∞) → R.

Proposition 3.2. If a function f is radial, then the following equality holds,
∫
Rn
f(x)dx = cn

∫ +∞

0
f̃(r)rn−1dr

where cn is the surface area of the unit circle in Rn.

Proof. We will prove this in two dimensions. Let f : R2 → R and it to be radial.
Changing the coordinates into the polar coordinates

x1 = r cos θ x2 = r sin θ,

leads to ∫
R2
f(x1, x2)dx1dx2 =

∫ 2π

0

∫ +∞

0
f̃(r)r drdθ

= 2π
∫ +∞

0
f̃(r)r dr.

Notice that 2π is the surface area of the unit circle in R2.

Similarly in three dimensions, we have f : R3 → R and it to be radial with polar
coordinates

x1 = r sin θ cosφ x2 = r sin θ sinφ x3 = r cos θ.

Then, the integral becomes
∫
R3
f(x1, x2, x3)dx1dx2dx3 =

∫ 2π

0

∫ π

0

∫ +∞

0
f̃(r)r2 sin θ drdθdφ

= 2π · 2
∫ +∞

0
f̃(r)r2 dr

= 4π
∫ +∞

0
f̃(r)r2 dr.

The surface area of the unit circle in R3 is 4π and we have shown that the proposition
is true in three dimensions.

15



Lemma 3.3. The following function depending on α,
∫
Rn

1
(1 + |x|)αdx

is convergent provided α > n.

Proof. Since the function is radial, by Proposition 3.2 we get the following integral,

I = cn

∫ +∞

0

1
(1 + |r|)α rn−1 dr.

Use the function
g(r) = rn−1−α

and apply the limit comparison test to get

lim
r→+∞

rn−1

(1+r)α

rn−1−α = lim
r→+∞

rα

(1 + r)α = lim
r→+∞

1
(1 + 1

r
)α = 1.

Since the limit exists, the integral I is convergent if and only if
∫ +∞

1
rn−1−αdr

is convergent. (This integral from 0 to 1 is convergent because the function g(r) is
geometric and is convergent when |r| < 1.) The value of this integral is

lim
N→+∞

∫ N

1
rn−1−αdr = lim

N→+∞


[
rn−α

n−α

]r=N
1

if n ̸= α,

[ln r]N1 if n = α.

Note that the only case when the limit exists is when n − α < 0. The limit in this
case is

lim
N→+∞

Nn−α − 1
n− α

= 1
α− n

.

Hence, when α > n the integral I in question converges.

Lemma 3.4. (Leibniz’s rule)
The formula

Dα(fg) =
∑
β≤α

(
α

β

)
(Dβf)(Dα−βg)

=
∑
β≤α

(
α

β

)
(−i)α(∂βf)(∂α−βg)
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is known as Leibniz’s rule.

The following theorem is a consequence of the general Fubini’s theorem.

Theorem 3.5. (Fubini’s theorem)
Let X, Y be two open sets in Rn. Let k : X × Y → R and k ∈ C(X × Y ) such that
for all N ∈ N:

sup
(x,y)∈X×Y

(1 + |x|)N(1 + |y|)N |k(x, y)| < ∞,

then ∫
X

(∫
Y
k(x, y) dy

)
dx =

∫
Y

(∫
X
k(x, y) dx

)
dy.

17





4 The Schwartz space

This chapter is an introduction to the Schwartz space. What is means for a function
to be in the Schwartz space and what properties these function have will be answered
in this chapter. Some important results will be presented such as two different
ways to define the Schwartz space, that the product of a Schwartz function and
a polynomial still is in the Schwartz space, and the convolution of two Schwartz
functions belongs to the Schwartz space. The results from this chapter will be
relevant in upcoming chapters.

4.1 The definition of the Schwartz space

We begin by presenting two different definitions of a function being in the Schwartz
space and showing that the two definitions are equivalent.

Definition 4.1. The Schwartz space 𝒮 consists of the set of infinitely differentiable
functions on Rn, denoted as C∞(Rn) and called as smooth funtions, satisfying that
for all multi-indices α and β,

sup
x∈R

∣∣∣xα∂βf(x)
∣∣∣ < +∞.

Lemma 4.2. Let f ∈ C∞(R). The following are equivalent

(i) for every α, β ∈ N
[f ]α,β := sup

x∈R

∣∣∣xα∂βf(x)
∣∣∣ < +∞,

(ii) for every β ∈ N and for every N ∈ N

PN,β(f) := sup
x∈R

(1 + |x|)N
∣∣∣∂βf(x)

∣∣∣ < +∞.

Proof. Assume PN,β(f) exists and is finite. Notice that this inequality

|xα| ≤ |x||α| ≤ (1 + |x|)|α|

can be used to get

sup
x∈R

|xα|
∣∣∣∂βf(x)

∣∣∣ ≤ sup
x∈R

(1 + |x|)|α|
∣∣∣∂βf(x)

∣∣∣ .
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Let the length of α be equal to N to arrive at the inequality

sup
x∈R

|xα|
∣∣∣∂βf(x)

∣∣∣ = sup
x∈R

∣∣∣xα∂βf(x)
∣∣∣ ≤ sup

x∈R
(1 + |x|)N

∣∣∣∂βf(x)
∣∣∣ .

Conversely, assume [f ]α,β exists and is finite. Then by the binomial expansion,
for all k and for all j = 1, .., n the following is true for all x,

(1 + |x|)|α| = 1 +
|α|∑
k=1

(
|α|
k

)
|x|k.

By multiplying this with |f(x)| we get

(1 + |x|)|α||f(x)| = |f(x)| +
|α|∑
k=1

(
|α|
k

)
|x|k|f(x)|.

Reformulate the part |x|k|f(x)| by starting with expressing

|x| =
n∑
j=1

|xj| =

√√√√√ n∑
j=1

|xj|

2

≤ max
j=1,...,n

|xj|
√√√√ n∑
j=1

1 =
√
n max
j=1,...,n

|xj|.

Replace this inequality in |x|k|f(x)| as

|x|k|f(x)| ≤
(√

n max
j=1,...,n

|xj|
)k

|f(x)|

=
√
n
k max
j=1,...,n

{|xj|k|f(x)|}

≤
√
n
k max
j=1,...,n

[f ]kej ,0 ,

where ej = (0, .., 0, 1, 0, ..., 0) and 1 is on the j-th position. This maximum exists
because the maximum is chosen from a finite number of j and the function [f ]kej ,0

is also finite by assumption. Therefore, we can furthermore write that

(1 + |x|)|α||f(x)| = |f(x)| +
|α|∑
k=1

(
|α|
k

)
|x|k|f(x)|

≤ |f(x)| +
|α|∑
k=1

(
|α|
k

)
√
n
k max
j=1,...,n

[f ]kej ,0 .
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The supremum of the right hand side is

sup
x∈R

|f(x)| +
|α|∑
k=1

(
|α|
k

)
√
n
k max
j=1,...,n

[f ]kej ,0


which we can rewrite as

[f ]0,0 + sup
x∈R

|α|∑
k=1

(
|α|
k

)
√
n
k max
j=1,...,n

[f ]kej ,0 .

A sum of finite terms where the maximum is finite, is also finite. We can therefore
safely conclude,

sup
x∈R

(1 + |x|)N
∣∣∣∂βf(x)

∣∣∣ ≤ ∞.

Hence, combing the results shows

sup
x∈R

|xα|
∣∣∣∂βf(x)

∣∣∣ = sup
x∈R

(1 + |x|)N
∣∣∣∂βf(x)

∣∣∣ .

4.2 Properties of functions in the Schwartz space

Functions in the Schwartz space are smooth and have its derivatives decreasing
faster than a polynomial. These are pleasant properties for a function but how does
a Schwartz function act on multiplication with another function or under transla-
tion and more. This section will explore these aspects and also show the Peetre’s
Inequality. The source of Theorem 4.6 is An Introduction to Pseudo-Differential
Operators (3rd ed.) by M. W. Wong.

Corollary 4.3. Prove that for all f ∈ 𝒮(Rn) that
∫
Rn

|f |dx < +∞.

Proof. To show this, we will use that f ∈ 𝒮(Rn) and the definition tell us that

sup
x∈R

(1 + |x|)N
∣∣∣∂βf(x)

∣∣∣ < +∞.
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We have ∫
Rn

|f |dx =
∫
Rn

(1 + |x|)N

(1 + |x|)N
|f(x)| dx

≤ sup
y∈R

∫
Rn

1
(1 + |x|)N

(1 + |x|)N |f(x)| dx

≤
∫
Rn

1
(1 + |x|)N

sup
y∈R

(1 + |x|)N |f(x)| dx

= PN,0(f)
∫
Rn

1
(1 + |x|)N

dx

and the integral of bounded functions will also be bounded and therefore we have
shown ∫

Rn
|f |dx < +∞.

Proposition 4.4. Let f ∈ 𝒮. Then the functions

(Tyf)(x) = f(x+ y), x ∈ Rn,

and
(Myf)(x) = eix·yf(x), x ∈ Rn,

and
(Daf)(x) = f(ax), x ∈ Rn

are in 𝒮.

Proof. To show that Tyf,Myf and Dαf are in the Schwartz space we will use the
definition. Firstly, we have

sup
x∈Rn

(1 + |x|)N
∣∣∣∂β(Tyf)(x)

∣∣∣ = sup
x∈Rn

(1 + |x|)N
∣∣∣∂βf(x+ y)

∣∣∣
and by using the triangle inequality we obtain

sup
x∈Rn

(1 + |x+ y − y|)N
∣∣∣∂βf(x+ y)

∣∣∣ ≤ sup
x∈Rn

(1 + |x+ y|)N(1 + |y|)N
∣∣∣∂βf(x+ y)

∣∣∣ .
The term (1+ |y|)N is not dependent on x and can be considered as a constant when
taking the supremum. Doing a change of variables, with z = x+ y allows

sup
z∈Rn

(1 + |z|)N(1 + |y|)N
∣∣∣∂βf(z)

∣∣∣ < ∞,
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and since f ∈ 𝒮 we have that (Tyf)(x) ∈ 𝒮.

Secondly, take

sup
x∈Rn

(1 + |x|)N
∣∣∣∂β(Myf)(x)

∣∣∣ = sup
x∈Rn

(1 + |x|)N
∣∣∣∂βeix·yf(x)

∣∣∣
and by using Lemma 3.4, the Leibniz rule on ∂βeix·yf(x), it is equal to

∑
k≤β

(
β

k

)
(−i)β(∂keix·y)(∂β−kf(x)) =

∑
k≤β

(
β

k

)
(−i)β(iy)keix·y∂β−kf(x)

= C(β)eix·y∂β−kf(x)

where C(β) = ∑
k≤β

(
β
k

)
(−i)β(iy)k and is not dependent on x. Implementing this in

the original equation leads to

sup
x∈Rn

(1 + |x|)N
∣∣∣C(β)eix·y∂β−kf(x)

∣∣∣ .
Since |C(β)eix·y| is bounded, we can exclude it from the supremum with respect to
x and we get

sup
x∈Rn

(1 + |x|)N
∣∣∣∂β−kf(x)

∣∣∣ .
Since f is in the Schwartz space, for every N and every multi-index, which in this
case is β − k, this expression is finite.

Lastly, we will express supx∈Rn(1 + |x|)N
∣∣∣∂β(Daf)(x)

∣∣∣ with using the variable
substitution x = x/a which results in

sup
x∈Rn

(1 + |x|)N
∣∣∣∂βf(ax)

∣∣∣ = sup
x∈Rn

(1 + |x/a|)N
∣∣∣∂βf(x)

∣∣∣ .
We have two cases which are when |a| is smaller or larger than 1. In the first case
when |a| > 1, we can use |x/a| < |x| such that

sup
x∈Rn

(1 + |x/a|)N
∣∣∣∂βf(x)

∣∣∣ < sup
x∈Rn

(1 + |x|)N
∣∣∣∂βf(x)

∣∣∣ < ∞.

The second case when |a| < 1, we need to apply the relation

1 + |x/a| = |a|
|a|

+ |x|
|a|

= |a| + |x|
|a|

<
1 + |x|

|a|
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on our main equation to arrive at

sup
x∈Rn

(1 + |x/a|)N
∣∣∣∂βf(x)

∣∣∣ < sup
x∈Rn

(
1 + |x|

|a|

)N ∣∣∣∂βf(x)
∣∣∣ .

Since f ∈ 𝒮 and |a| is a constant and does not depend on the supremum, we can
write

sup
x∈Rn

(1 + |x|)N
∣∣∣∂βf(x)

∣∣∣ < ∞.

Hence, (Daf)(x) ∈ 𝒮.

Lemma 4.5. If f ∈ 𝒮 and P is a polynomial, then the product f(x)P (x) is in the
Schwartz space.

Proof. I will restrict this proof in one dimension. To show that the product is in the
Schwartz space we first have to realize that a polynomial is smooth and that f also
is smooth because it is in 𝒮. By this, the product is also smooth.

Let the polynomial be P (x) = xγ where γ is an integer and if we differentiate
the product once, we get by Lemma 3.4 the Leibniz rule

∂x(xγf) = γxγ−1f + xγf ′.

If we differentiate N times, it results in

∂Nx (xγf) =
N∑
j=0

cj(x)f (j)(x)

where cj(x) is a polynomial. Multiplying this expression with xα will give us

xα∂Nx (xγf) =
N∑
j=0

xαcj(x)f (j)(x).

Every term of this expression is bounded since f is smooth and any product with f
and a polynomial will be bounded per definition in Lemma 4.2. This sum will also
be bounded and therefore the supremum exists. Since supx∈R |xα∂Nx (xγf)| < ∞, a
product of a function in the Schwartz space and a polynomial, is in the Schwartz
space.

The following result is a corollary of Theorem 2.1 in [9].
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Theorem 4.6. Let Y be an open set in Rn such that

(i) F (x, ·) ∈ 𝒮 for all x in Rn,

(ii) F (·, y) ∈ C∞(Rn) for all y in Y,

(iii) supx∈Rn

∫
Y |(∂αxF )(x, y)|dy < ∞ for all multi-indices α.

Then the integral
∫
Y F (x, y)dy, as a function of x, is in C∞(Rn) and

∂β
∫
Y
F (x, y)dy =

∫
Y

(∂βxF )(x, y)dy, x ∈ Rn,

for all multi-indices β.

The next lemma is called the Peetre’s Inequality and we will find it useful for
the following proofs.

Lemma 4.7. (Peetre’s Inequality)
The inequality

(1 + |x− y|)t ≤ (1 + |x|)t(1 + |y|)|t|

is valid for all t ∈ R and for all x, y ∈ Rn.

Proof. Assume that t ≥ 0. By the triangular inequality we get

1 + |x− y| ≤ 1 + |x| + |y| ≤ (1 + |x|)(1 + |y|).

Hence
(1 + |x− y|)t ≤ (1 + |x|)t(1 + |y|)t.

Now, assume that t < 0, and expand the inequality as

1 + |x| ≤ 1 + |x− y| + |y| ≤ (1 + |x− y|)(1 + |y|).

This is equivalent to
1 + |x|

1 + |x− y|
≤ 1 + |y|.

By taking this to the power of |t| and rewriting the expression, we have the relation

1
(1 + |x− y|)|t| ≤ (1 + |y|)|t|

(1 + |x|)|t| .
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Since t < 0 we have that −|t| = t and therefore it is true to express

(1 + |x− y|)t ≤ (1 + |x|)t(1 + |y|)|t|.

4.3 The convolution of two functions

The convolution of two function is an important operation that will be helpful in the
following chapters. We will define the convolution and show that for two function
f, g in the Schwartz space, their convolution also belongs to the Schwartz space.

Definition 4.8. Let f, g ∈ 𝒮. The value of the integral denoted by (f ∗ g)(x) is
defined as ∫

Rn
f(x− y)g(y) dy,

and is called the convolution of f and g.

Lemma 4.9. If f, g ∈ 𝒮(Rn) then

f ∗ g ∈ C∞(Rn)

and
∂α(f ∗ g)(x) = ∂αf ∗ g(x).

Proof. The first expression is the convolution of f and g which is

f ∗ g =
∫
Rn
f(x− y)g(y) dy.

By Proposition 4.4 we know that f(x − y) ∈ 𝒮. To show that the convolution is
smooth, we will use Theorem 4.6. Let us argue why the conditions (i) − (iii) are
satisfied. The first condition is to fix y, and then the product f(x − y)g(y) is only
dependent on the function f and will be a translation which belongs to the Schwartz
space. The second condition is to fix x, and then we have the product of f and g with
respect to x to be smooth since it belongs to the Schwartz space. Lastly, we have to
examine the third condition supx∈Rn

∫
Y |∂αx f(x− y)g(y)|dy < ∞ for all multi-indices

α. A larger term than ∂αx f(x− y) is [f ]0,α = supx∈R |∂αx f(x)| and it is finite since f
is a Schwartz function. This means that we can with justice put this term outside
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of the integral as

sup
x∈Rn

∫
Rn

|∂αx f(x− y)g(y)| dy ≤ sup
x∈Rn

[f ]0,α
∫
Rn

|g(y)| dy.

The term
∫
Rn |g(y)| dy is finite since it is independent of x so this whole expression

is finite as
sup
x∈Rn

∫
Rn

|∂αx f(x− y)g(y)| dy < ∞.

With Theorem 4.6, we now have the result of f(x− y)g(y) ∈ C∞(Rn) for all y ∈ Rn

and hence f ∗ g ∈ C∞(Rn).
The second expression is

∂α(f ∗ g)(x) = ∂αx

∫
Rn
f(x− y)g(y) dy.

We previously explained that we can apply Theorem 4.6 on the convolution to show
smoothness but we are also allowed to interchange the order of the integration and
the derivation. That leads to

∫
Rn
∂αx f(x− y)g(y) dy = ∂αf ∗ g(x)

and the proof is complete.

Lemma 4.10. Prove that for all functions f, g ∈ 𝒮(Rn) that

f ∗ g ∈ 𝒮(Rn).

Proof. First, we need to prove that the convolution of f and g are smooth but
that is the result of Lemma 4.9. Now, we have to show that the derivatives of
the convolution are decreasing faster than a polynomial. Fix M ≥ 0 and let L =
M+(n+1). We are now going to use the two different ways to prove that a function
is Schwartz from Lemma 4.2. Expand the expression of the convolution and use the
triangle inequality in order to get

PM,0(f ∗ g) = (1 + |x|)M |f ∗ g(x)| ≤ (1 + |x|)M
∫
Rn

|f(x− y)g(y)| dy.

By adding and rearranging some terms we get

∫
Rn

(1 + |x|)M
(1 + |x− y|)M(1 + |y|)L (1 + |x− y|)M |f(x− y)| · (1 + |y|)L|g(y)| dy.
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Take the supremum with respect to x, of the integral and notice that it can be placed
inside the integral since the integral is dependent on y as

∫
Rn

(1 + |x|)M
(1 + |x− y|)M(1 + |y|)L sup

x∈Rn
(1 + |x− y|)M |f(x− y)| · sup

x∈Rn
(1 + |y|)L|g(y)| dy.

This expression has terms that is on the same form as PN,β(f) = supx∈R (1 + |x|)N
∣∣∣∂βf(x)

∣∣∣
defined in Lemma 4.2 which leads to the reformulated expression

∫
Rn

(1 + |x|)M
(1 + |x− y|)M(1 + |y|)LPM,0(f)PL,0(g) dy.

Here again, we use the fact that this integral only depends on y such that the same
terms as before, can be placed outside of the integral as(∫

Rn

(1 + |x|)M
(1 + |x− y|)M(1 + |y|)L dy

)
PM,0(f)PL,0(g).

By using Peetre´s Inequality where t = M , this expression can be rewritten even
further to
(∫

Rn

(1 + |x|)M
(1 + |y|)L (1 + |x− y|)−M dy

)
PM,0(f)PL,0(g)

≤
(∫

Rn

(1 + |x|)M
(1 + |x|)M (1 + |y|)M−Ldy

)
PM,0(f)PL,0(g).

The expression (∫
Rn

1
(1 + |y|)L−M dy

)
PM,0(f)PL,0(g)

is similar to the expression in Lemma 3.3 and by using the result of it, the integral
is convergent when L−M > n. Since we chose L = M + (n+ 1) we have L−M =
M + (n + 1) − M > n which is always true. We already know that PM,0(f) and
PL,0(g) are convergent since both f and g are in the Schwartz space. Using this
result, one obtains for some constant C ∈ Rn that

PM,0(f ∗ g) ≤ CPM,0(f)PL,0(g) < ∞

which shows that f ∗ g ∈ 𝒮(Rn).
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5 The Fourier transform

The Fourier transform will be a fundamental tool for solving the PDEs in the fol-
lowing chapter. In this chapter, we will state the definition and present some main
properties. After establishing these properties, we will be able to prove the Fourier
inversion formula. This chapter is primarily built from chapter 4 in An Introduction
to Pseudo-Differential Operators (3rd ed.) by M. W. Wong.

5.1 Properties of the Fourier transform

We will begin by presenting the definition and the Fourier transform of a convolution.
We will then show some propositions that will be crucial for the proof of the Fourier
inversion theorem.

Definition 5.1. Let f ∈ 𝒮. Then

f̂(ξ) = (2π)−n/2
∫
Rn
e−ixξf(x)dx, ξ ∈ Rn

is called the Fourier transform of f.

Proposition 5.2. Let f and g be real valued functions belonging to 𝒮. Then the
Fourier transform of the convolution of f and g can be rewritten as

f̂ ∗ g = (2π)n/2f̂ ĝ.

Proof. By Lemma 4.10, the convolution of f and g also belongs to 𝒮. The following
expression can by definition be rewritten as

(2π)−n/2f̂ ∗ g(ξ) = (2π)−n/2 · (2π)−n/2
∫
Rn
e−ixξ(f ∗ g)(x)dx

= (2π)−n
∫
Rn
e−ixξ

(∫
Rn
f(x− y)g(y)dy

)
dx.

By using Fubini’s theorem, the earlier expression is equal to

(2π)−n
∫
Rn

∫
Rn
e−i(x−y)ξf(x− y) · e−iyξg(y)dydx

= (2π)−n
∫
Rn
e−iyξg(y)

(∫
Rn
e−i(x−y)ξf(x− y)dx

)
dy

= (2π)−n/2
(∫

Rn
e−iyξg(y)dy

)
f̂(ξ)

= ĝ(ξ)f̂(ξ),



which finishes the proof.

Remark 5.3. We will use the notion ”integration by parts” in the proof of the next
proposition. What we mean by that is that it is possible to write that for all integers
n and all multi-indices α ∈ Nn, that

∫
Rm

∂αf(x)g(x)dx = (−1)|α|
∫
Rm

f(x)∂αg(x)dx

if f ∈ 𝒮 and g ∈ C∞(Rm) and does not grow faster than a polynomial i.e. g satisfies
that for all α, there exists an integer M such that

sup
x∈Rm

|∂αg(x)|
(1 + |x|)M < +∞.

We will show this in one dimension. The expression we will prove is
∫ ∞

−∞
f (n)(x)g(x)dx = (−1)n

∫ ∞

−∞
f(x)g(n)(x)dx.

Induction will be preformed to prove this statement where the base case, n = 1 is
∫ ∞

−∞
f ′(x)g(x)dx = −

∫ ∞

−∞
f(x)g′(x)dx.

This can be shown as true by using Lemma 3.4, the Leibniz rule in one dimension
to get ∫

(fg)′(x)dx =
∫
f ′(x)g(x)dx+

∫
f(x)g′(x)dx

which is ∫
f ′(x)g(x)dx = f(x)g(x) −

∫
f(x)g′(x)dx.

The value of this integral is
∫ ∞

−∞
f ′(x)g(x)dx = lim

N→∞

∫ N

−N
f ′(x)g(x)dx

= lim
N→∞

(
[f(x)g(x)]N−N −

∫ N

−N
f(x)g′(x)dx

)
.

Since the function f is in the Schwartz space and g does not grow faster than
a polynomial, the product of them tends to zero as the variable x goes towards
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infinity. Therefore we have

lim
N→∞

(
[f(x)g(x)]N−N −

∫ N

−N
f(x)g′(x)dx

)
= 0 − lim

N→∞

∫ N

−N
f(x)g′(x)dx

= −
∫ ∞

−∞
f(x)g′(x)dx.

The induction hypothesis is
∫ ∞

−∞
f (n−1)(x)g(x)dx = (−1)n−1

∫ ∞

−∞
f(x)g(n−1)(x)dx.

The induction step is stated as
∫ ∞

−∞
f (n)(x)g(x)dx =

∫ ∞

−∞
(f ′(x))(n−1)

g(x)dx.

By using the induction hypothesis we get the previous relation to be equal to

(−1)n−1
∫ ∞

−∞
f ′(x)g(n−1)(x)dx

and the base case makes it possible to rewrite this expression as

(−1)n−1(−1)
∫ ∞

−∞
f(x)

(
g(n−1)(x)

)′
dx

which is equal to
(−1)n

∫ ∞

−∞
f(x)g(n)(x)dx.

Hence we have proved what we wanted to for n derivatives in the one dimensional
case.

Proposition 5.4. Let φ ∈ 𝒮. Then

(i) (Dαφ)∧(ξ) = ξαφ̂(ξ) for every multi-index α,

(ii) (Dβφ̂)(ξ) = ((−x)βφ)∧(ξ) for every multi-index β,

(iii) φ̂ ∈ 𝒮.

Proof. For the first part (iii), using the Fourier transform gives us

(Dαφ)∧(ξ) = (2π)−n/2
∫
Rn
e−ixξ(Dαφ(x))dx.
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Since the function φ ∈ 𝒮 and the function e−ixξ can be expressed in terms of sine
and cosine that are bounded functions, integrating by parts (from Remark 5.3) is
feasible which generates

(2π)−n/2
∫
Rn
e−ixξ(Dαφ(x))dx = (2π)−n/2(−1)|α|

∫
Rn

(Dαe−ixξ)φ(x)dx

= (2π)−n/2(−1)|α|
∫
Rn

(−i∂x)α(e−ixξ)φ(x)dx

= (2π)−n/2(−1)|α|
∫
Rn

(−i)|α|(−iξ)αe−ixξφ(x)dx

= (2π)−n/2(−1)|α|
∫
Rn

(−1)|α|ξαe−ixξφ(x)dx

= ξαφ̂(ξ).

For the second part (ii), we will implement the Fourier transform again as

Dβφ̂(ξ) = Dβ
(

(2π)−n/2
∫
Rn
e−ixξφ(x)dx

)
.

By using Theorem 4.6 we can interchange the differential sign and the integration.
We can use this theorem because when x or ξ is fixed, the product e−ixξφ(x) belongs
to the Schwartz space. The third condition in Theorem 4.6 is valid because e−ixξφ(x)
is in the Schwartz space and the integral of |∂αξ e−ixξφ(x)| with respect to x is bounded
by definition. Therefore, the supremum will also exist. The interchanging gives us

Dβ
(

(2π)−n/2
∫
Rn
e−ixξφ(x)dx

)
= (2π)−n/2

∫
Rn
Dβ

(
e−ixξφ(x)

)
dx

= (2π)−n/2
∫
Rn

(−x)βe−ixξφ(x)dx

= ((−x)βφ)∧(ξ).

For the last part (iii), we have to show that φ̂ ∈ 𝒮 which is by definition, that
the function φ̂ is infinitely differentiable on Rn satisfying that all multi-indices α
and β,

sup
x∈Rn

∣∣∣ξαDβφ̂(ξ)
∣∣∣ < +∞.

Firstly, the Fourier transform of φ is

(φ)∧(ξ) = (2π)−n/2
∫
Rn
e−ixξφ(x)dx.

By assumption is φ ∈ 𝒮 and we previously explained in (ii) that this expres-
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sions satisfies the conditions for Theorem 4.6. Hence, we can say that the integral∫
Rn e−ixξφ(x)dx is smooth. Secondly, let α and β be any two multi-indices and by

(i) and (ii), we have
∣∣∣ξαDβφ̂(ξ)

∣∣∣ =
∣∣∣ξα((−x)βφ)∧(ξ)

∣∣∣ =
∣∣∣{Dα((−x)βφ)}∧(ξ)

∣∣∣ .
Since φ ∈ 𝒮 and (−x)β is a polynomial, by Lemma 4.5 the product is in the Schwartz
space. Furthermore, we also have that Dα((−x)βφ) ∈ 𝒮 by the definition of a
Schwartz space. By taking the supremum of the expression

∣∣∣{Dα((−x)βφ)}∧(ξ)
∣∣∣,

and applying the Fourier transform we have

sup
ξ∈Rn

∣∣∣{Dα((−x)βφ)}∧(ξ)
∣∣∣ = sup

ξ∈Rn

∣∣∣∣(2π)−n/2
∫
Rn
e−ixξDα((−x)βφ(x))dx

∣∣∣∣
≤ (2π)−n/2 sup

ξ∈Rn

∫
Rn

∣∣∣e−ixξ
∣∣∣ · ∣∣∣Dα((−x)βφ(x))

∣∣∣ dx.
We know that the integral of e−ixξ is 1 over the whole real line and since we know
that Dα((−x)βφ) ∈ 𝒮, this integral will be finite and bounded. Therefore,

sup
ξ∈Rn

∣∣∣ξαDβφ̂(ξ)
∣∣∣ ≤ (2π)−n/2∥Dα((−x)βφ)∥1 < ∞

and we have shown that φ̂ ∈ 𝒮.

Proposition 5.5. The expressions of Tyf,Myf and Dαf in Propositions 4.4 are by
applying the Fourier transform, equal to

(i) (Tyf)∧(ξ) = (Myf̂)(ξ), ξ ∈ Rn,

(ii) (Myf)∧(ξ) = (T−yf̂)(ξ), ξ ∈ Rn,

(iii) (Daf)∧(ξ) = |a|−n(D1/af̂)(ξ), ξ ∈ Rn.
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Proof. By using the definition for Fourier transform on f , part (i) can be shown by

(Tyf)∧(ξ) = (2π)−n/2
∫
Rn
e−ixξ(Tyf)(x)dx

= (2π)−n/2
∫
Rn
e−ixξf(x+ y)dx

= {Change of variables: x = x− y}

= (2π)−n/2
∫
Rn
e−i(x−y)ξf(x)dx

= eiyξ(2π)−n/2
∫
Rn
e−ixξf(x)dx

= eiyξf̂(ξ)
= (Myf̂)(ξ).

The second part (ii), is

(Myf)∧(ξ) = (2π)−n/2
∫
Rn
e−ixξ(Myf)(x)dx

= (2π)−n/2
∫
Rn
e−ixξeiyxf(x)dx

= (2π)−n/2
∫
Rn
e−ix(ξ−y)f(x)dx

= f̂(ξ − y)
= (T−yf̂)(ξ).

The last part (iii) can be shown by using a change of variables which is

(Daf)∧(ξ) = (2π)−n/2
∫
Rn
e−ixξ(Daf)(x)dx

= (2π)−n/2
∫
Rn
e−ixξf(ax)dx

= {x = x

a
}

= (2π)−n/2
∫
Rn
e−i( x

a
)ξf(x)|a|−ndx

= |a|−nf̂
(
ξ

a

)
= |a|−n(D1/af̂)(ξ).

Proposition 5.6. Let φ(x) = e−|x|2/2. Then φ̂(ξ) = e−|ξ|2/2.

Proof. First, we will restrict this proof in one dimension. The derivative of the
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function φ is
φ′(x) = −x · e−|x|2/2.

Notice that it also is
φ′(x) = −x · φ

and rewriting it leads to an ordinary differential equation which looks like

φ′(x) + x · φ = 0.

This ODE has one initial value, φ(0) = 1. Instead of solvning this as we are used to,
we are going to use the Fourier transform. The Fourier transform of this ODE is

(φ′)∧(ξ) + (x · φ)∧(ξ) = 0.

By using statement (i) and (ii) in Proposition 5.4 we can rewrite the equation as

−1
i

· (−i∂φ)∧(ξ) − (−x · φ)∧(ξ) = −1
i

· (Dφ)∧(ξ) − (−x · φ)∧(ξ)

= −1
i
ξφ̂(ξ) −Dφ̂(ξ)

= −1
i
ξφ̂(ξ) + i∂φ̂(ξ)

= −1
i
ξφ̂(ξ) + iφ̂′(ξ).

This is equal to zero so it results in

ξφ̂(ξ) + φ̂′(ξ) = 0.

The equation we got is on the same form as the ODE before the Fourier transform.
Notice that at ξ = 0 the function φ̂ is

φ̂(0) = (2π)−1/2
∫ ∞

−∞
e−ix·0 · e−|x|2/2dx =

∫ ∞

−∞

1√
2π
e−|x|2/2dx = 1.

The last expression is the density function of the normal distribution which we know
is 1. The conclusion is that the ODEs of φ and φ̂ is on the same form with the same
initial values which results to the unique solution of the Fourier transformed ODE
to be

φ̂(ξ) = e−|ξ|2/2.
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Now we are going to show this in several dimension. The Fourier transform of
φ̂(ξ) is explicilty

(2π)−n/2
∫
Rn
e− |x|2

2 e−ixξdx = (2π)−n/2
∫
R
e− |x1|2

2 · · · e− |xn|2
2 · e−ix1ξ1 · · · e−ixnξndx

= (2π)−n/2
n∏
j=1

∫
R
e−

|xj |2

2 e−ixjξjdxj.

Every term of this expression is the Fourier transform of φ(x) = e−|x|2/2 which we
have shown is on the same form as itself and therefore it is possible to say that this
is equal to

n∏
j=1

e−
|ξj |2

2 = e− |ξ|2
2 .

5.2 The Fourier inversion theorem

We are now prepared to prove the key theorem, the Fourier inversion theorem. This
theorem will be applied in the final steps of solving PDEs in the following chapter.
It will be used to convert solutions from their Fourier transformed expressions.

Theorem 5.7. (The Fourier Inversion Formula)
Let (f̂)∨ = f for all functions f ∈ 𝒮. Here, the operation ∨ is defined by

ǧ(x) = (2π)−n/2
∫
Rn
eix·ξg(ξ) dξ, g ∈ 𝒮.

Proof. Applying the Fourier inversion formula on f̂ gives us

(f̂)∨(x) = (2π)−n/2
∫
Rn
eix·ξf̂(ξ) dξ.

The application is possible since f ∈ 𝒮 and then also f̂ ∈ 𝒮 by Proposition 5.4. Let
ϵ > 0 and define

Iϵ(x) = (2π)−n/2
∫
Rn
eix·ξ−(ϵ2|ξ|2)/2f̂(ξ) dξ.

The goal with this proof is to show that Iϵ(x) tends to f and to (f̂)∨ as ϵ approaches
0. Let a part of the function in the integral to be

g(ξ) = (2π)−n/2 eix·ξ−(ϵ2|ξ|2)/2.
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Notice that g(ξ) can be rewritten with the expressions in Proposition 5.5 as

g(ξ) = (MxDϵφ)(ξ),

where
φ(ξ) = (2π)−n/2 e−|ξ|2/2.

We know that the integral of φ(ξ) over Rn is 1 since it is the Gaussian function.
By Propositions 5.5 we can compute the Fourier transform of MxDϵφ and with
Proposition 5.6 we know that the Fourier transform of φ(ξ) is,

ĝ(η) = (T−xϵ
−nD1/ϵφ̂)(η) = (2π)−n/2ϵ−ne−|η−x|2/(2ϵ2).

The expression we defined as Iϵ can be formulated as Iϵ(x) =
∫
Rn g(ξ)f̂(ξ)dξ and

since we know the Fourier transform of g, we are going to apply it. Expanding the
Fourier transform of f is

∫
Rn
g(ξ)

(
(2π)−n/2

∫
Rn
e−iξ·ηf(η)dη

)
dξ

and by Fubini’s theorem, the order of intergration can be changed since the functions
are in the Schwartz space. The result is

∫
Rn
f(η)

(
(2π)−n/2

∫
Rn
e−iξ·ηg(ξ)dξ

)
dη =

∫
Rn
f(η)ĝ(η)dη.

Implementing the Fourier transform of g(η) in Iϵ is

(2π)−n/2ϵ−n
∫
Rn
f(η)e−|η−x|2/(2ϵ2)dη

and notice that this can be rewritten as a convolution like

Iϵ(x) = (f ∗ φϵ)(x),

where φϵ(x) = ϵ−nφ(x
ϵ
). The convolution can also be written as

f ∗ φϵ(x) =
∫
Rn
f(x− y)φ(y/ϵ)ϵ−ndy.
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Substitution of variables with y = ϵz and dy = ϵndz leads to
∫
Rn
f(x− ϵz)φ(z)dz.

Subtracting f(x) from the convolution is equal to

f ∗ φϵ(x) − f(x) =
∫
Rn
f(x− y)φϵ(y) dy − f(x)

and since
∫
Rn φ(z)dz = 1, this integral can be multiplied as

∫
Rn
f(x− y)φϵ(y) dy −

∫
Rn
φ(z) dz · f(x).

By using the same substitution of variables as earlier again, we get
∫
Rn
f(x− ϵz)ϵ−nφ(z) ϵndz −

∫
Rn
f(x)φ(z) dz =

∫
Rn

(f(x− ϵz) − f(x))φ(z) dz.

Notice, that the fundamental theorem of calculus on the function g(x) = f(x− ϵtz),
is

g(1) − g(0) =
∫ 1

0
g′(t)dt,

and then for all x ∈ Rn, we have

f(x− ϵz) − f(x) =
∫ 1

0

(
d

dt
f(x− ϵtz)

)
dt.

Applying the chain rule on this is expressed as
∫ 1

0
(∇f)(x− ϵtx) · (−ϵz)dt.

Expressing this with a sum is

−ϵ
n∑
j=1

∫ 1

0

∂f

∂ej
(x− ϵtx)dt · zj.
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We can now bound f(x− ϵz) − f(x) as

|f(x− ϵz) − f(x)| =
∣∣∣∣∣∣−ϵ

n∑
j=1

∫ 1

0

∂f

∂ej
(x− ϵtx)dt · zj

∣∣∣∣∣∣
≤ ϵ

n∑
j=1

∫ 1

0

∣∣∣∣∣ ∂f∂ej (x− ϵtx)
∣∣∣∣∣ dt · |zj|

≤ ϵ
n∑
j=1

P0,ej
(f)|zj|

≤ ϵ

 n∑
j=1

P0,ej
(f)

 |z|.

Recall the expression with the convolution and that it now is bounded by

|f ∗ φϵ(x) − f(x)| =
∣∣∣∣∫

Rn
(f(x− ϵz) − f(x))φ(z) dz

∣∣∣∣
≤ ϵ

n∑
j=1

P0,ej
(f)

∫
Rn

|φ(z)||z| dz.

Since the function φ ∈ 𝒮, the product of a polynomial |z| also belongs to the Schwartz
space by Lemma 4.5. Then the supremum of the integral of φ(z)|z| is finite by the
definition of the Schwartz space (which is Definition 4.1.)

Now, we want to show the uniform convergence of the convolution f ∗ φϵ to the
function f . Recall, that a sequence of functions hn(x) converges uniformly to a
function h(x) on a set E if for every ϵ > 0 there exists a natural number N such
that for all n ≥ N and for all x ∈ E,

|hn(x) − h(x)| < ϵ.

Also, recall that the supremum norm of a function h on a set X is defined as

∥h∥∞ := sup{|h(x)| : x ∈ X}.

With our earlier deduction about the integral of |φ(z)||z| being finite, we can take
the supremum of the whole inequality and that implies

∥f ∗ φϵ − f∥∞ ≤ ϵ

 n∑
j=1

P0,ej
(f)

C(φ).
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By assumption, are both f and φ in the Schwartz space, meaning the expression
∥f ∗ φϵ − f∥∞ being bounded by a constant. As ϵ is tending towards zero, the whole
expression is

lim
ϵ→0

∥f ∗ φϵ − f∥∞ = 0.

Therefore the convolution f ∗φϵ(x) will converge uniformly to f(x). Hence, we have

Iϵ(x) = (f ∗ φϵ)(x) → f(x) = f.

Let us observe the behavior of the integral Iϵ(x) in comparison to (f̂)∨(x) as ϵ
approaches 0. The difference is
∣∣∣Iϵ(x) − (f̂)∨(x)

∣∣∣ =
∣∣∣∣(2π)−n/2

∫
Rn
eix·ξ−(ϵ2|ξ|2)/2f̂(ξ) dξ − (2π)−n/2

∫
Rn
eix·ξf̂(ξ) dξ

∣∣∣∣
which we can simplify as∣∣∣∣(2π)−n/2

∫
Rn

(e−(ϵ2|ξ|2)/2 − 1)f̂(ξ) dξ
∣∣∣∣ .

Notice, that
|e−ϵ2|ξ|2/2 − 1| ≤ ϵ2|ξ|2/2

is true, and we can therefore write

∣∣∣∣(2π)−n/2
∫
Rn

(e−(ϵ2|ξ|2)/2 − 1)f̂(ξ) dξ
∣∣∣∣ ≤

∣∣∣∣∣(2π)−n/2 ϵ
2

2

∫
Rn

|ξ|2f̂(ξ) dξ
∣∣∣∣∣ .

Since f ∈ 𝒮, the product |ξ|2|f̂(ξ)| = |ξ2
1 + . . . + ξ2

n||f̂(ξ)| is also in the Schwartz
space. The product is therefore integrable and we can show that

|Iϵ(x) − (f̂)∨(x)| ≤ C(f) · ϵ2

which tends to 0 as ϵ approaches 0. Hence Iϵ → (f̂)∨(x) and we have therefore
proved

(f̂)∨(x) = f(x).
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6 Applications of the Fourier Transform on PDEs

This chapter discusses applications of the presented theory in this thesis. We will
apply the Fourier transform to solve two PDEs, the wave equation and the heat
equation. A more general solution of the wave equation will be presented in n

dimensions and a simplified version will be examined in one dimension. The source
of the theory corresponding to the wave equation is from The Fourier Transform and
the Wave Equation by A. Torchinsky [7]. The solution of the heat equation will be
presented in n dimensions along with a theorem related to the solution. The source
of both the solution and the theorem is from the lecture notes ”Heat equation” by
Julie Levandosky [5].

Before stating the PDEs, denote the Laplacian in Rn as

∇2 = ∂2
x1x1 + . . .+ ∂2

xnxn
.

We can now formally state the wave equation.

6.1 The wave equation

The wave equation in n dimensions is

∂2
ttu(x, t) = ∇2u(x, t) x ∈ Rn, t ∈ R, t > 0

with initial conditions

u(x, 0) = φ(x) and ∂tu(x, 0) = ψ(x), x ∈ Rn,

where φ and ψ are in 𝒮(Rn).

6.1.1 The general solution of the wave equation in n dimensions

Suppose that φ, ψ ∈ 𝒮(Rn). Use the Fourier transform on the wave equation to ob-
tain the Fourier solution. Consider t as a parameter and apply the Fourier transform
on the second derivative of u which is expressed as

∂̂2
xkxk

u(ξ, t) = i|2|ξ2
kû(ξ, t) = −ξ2

kû(ξ, t), 1 ≤ k ≤ n.



Here, the statement (i) in Proposition 5.4 is used in the first step. It follows that
the Fourier transform of the Laplacian becomes

∇̂2u(ξ, t) =
n∑
k=1

∂̂2
xkxk

u(ξ, t) =
n∑
k=1

−ξ2
kû(ξ, t) = −(ξ2

1 + . . .+ ξ2
n)û(ξ, t) = −|ξ|2û(ξ, t).

The Fourier transform of the wave equation is

∂2
ttû(ξ, t) + |ξ|2û(ξ, t) = 0, ξ ∈ Rn, t > 0.

with initial conditions

û(ξ, 0) = φ̂(ξ) and ∂tû(ξ, 0) = ψ̂(ξ), ξ ∈ Rn.

This equation is an homogeneous ordinary differential equation in t which we know
how to solve as in the next lemma.

Lemma 6.1. The ordinary differential equation

∂2
ttû(ξ, t) + |ξ|2û(ξ, t) = 0, ξ ∈ Rn, t > 0,

with initial conditions

û(ξ, 0) = φ̂(ξ) and ∂tû(ξ, 0) = ψ̂(ξ), ξ ∈ Rn,

has the solution
û(ξ, t) = φ̂(ξ) cos(|ξ|t) + ψ̂(ξ) sin(|ξ|t)

|ξ|
.

Proof. The characteristic function to the ODE is

r2 + |ξ|2 = 0 ⇔ r = ±
√

−|ξ|2.

Putting these roots into the general form of solutions, we gain the two functions

û1(ξ, t) = ei|ξ|t and û2(ξ, t) = e−i|ξ|t

and by using Euler’s Formula we can rewrite these solutions as

û1(ξ, t) = cos(|ξ|t) + i sin(|ξ|t) and û1(ξ, t) = cos(|ξ|t) − i sin(|ξ|t).
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These solutions can be expressed as one solution by adding them as

û(ξ, t) = c1û1(ξ, t) + c2û2(ξ, t)
= (c1 + c2) cos(|ξ|t) + (c1 − c2)i sin(|ξ|t).

The derivative of û(ξ, t) in time is

∂tû(ξ, t) = −|ξ|(c1 + c2) sin(|ξ|t) + |ξ|(c1 − c2)i cos(|ξ|t).

To find the constants c1 and c2 we have to use the initial conditions and comparing
them which gives us the equations system

û(ξ, 0) = c1 + c2 = φ̂(ξ),

∂tû(ξ, 0) = |ξ|(c1 − c2)i = ψ̂(ξ),
⇒

c1 = φ̂−iψ̂/|ξ|
2 ,

c2 = φ̂+iψ̂/|ξ|
2 .

Hence, the final solution to the Fourier transform of the wave equation is

û(ξ, t) = φ̂(ξ) cos(|ξ|t) + ψ̂(ξ) sin(|ξ|t)
|ξ|

.

The final solution is on a Fourier transformed version and we need to find the
inversion of it by applying the inversion formula. The application is justified by
arguing that the function û(ξ, t) is in the Schwartz space, which indeed it is. The
terms of û(ξ, t) are products of φ̂(ξ) ∈ 𝒮 and the smooth functions cosine and sin(|ξ|t)

|ξ|

(with the value defined as 1 at ξ = 0) and hence, φ̂(ξ) is smooth. We also need
to show that cosine and sin(|ξ|t)

|ξ| , and all its derivatives do not grow faster than a
polynomial.

Claim 6.2. The functions cos(|ξ|) and sin(|ξ|)
|ξ| are smooth and also themselves and

all their derivatives are bounded.

Proof. Notice that the cosine function can be represented by its power series ex-
pressed as

cos(|ξ|) =
∑

(−1)k|ξ|2k/(2k!).

With uniform convergence on any ball of the type |ξ| ≤ R we have that |ξ|2k =
(ξ2

1 + . . .+ ξ2
n)k is a differentiable function. The function cosine is differentiable over

Rn but the function |ξ| is not differentiable at ξ = 0. We will examine two cases.
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For |ξ| larger than 1, we can use the chain rule on cos(|ξ|) as

∂j cos(|ξ|) = cos′(|ξ|) · ∂j|ξ|

where
∂j|ξ| = ∂j

√
ξ2

1 + · · · + ξ2
n

= 1
2(ξ2

1 + · · · + ξ2
n)−1/2 · 2ξj

= ξj
|ξ|
.

The second derivative of cos(|ξ|) is by the Leibniz rule

∂2
j,k cos(|ξ|) = cos′′(|ξ|) · ∂j|ξ|∂k|ξ| + cos′(|ξ|) · ∂2

j |ξ|

where
∂2
j |ξ| = ∂k(ξj) · |ξ|−1 + ξj∂k(|ξ|−1)

= ∂k(ξj) · |ξ|−1 − ξj|ξ|−2∂k|ξ|.

The expression ∂k(ξj) is 1 when j = k and 0 when j ̸= k. Hence

∣∣∣∂2
j |ξ|

∣∣∣ ≤ 1
|ξ|

+
∣∣∣∣∣ ξj|ξ|

∣∣∣∣∣ 1
|ξ|

ξk
|ξ|

< 2,

since |ξ| > 1 and the numerator of every fraction is smaller than 1. We have
shown that the first and second derivative of |ξ| are bounded. The higher degrees
of derivatives of |ξ| are functions of ξj

|ξ| or |ξ|−1 and they are also bounded. Now we
have both that the derivatives of cosine and the derivatives of the function |ξ| are
bounded. The power series of cosine is

cos(|ξ|) =
∞∑
k=0

(−1)k|ξ|2k
2k!

=
∞∑
k=0

(−1)k(ξ2
1 + . . .+ ξ2

n)k
2k! ,

where the function
F (z) =

∞∑
k=0

(−1)kzk
2k!

is infinitely differentiable and |ξ| is also infinitely differentiable and bounded shown
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earlier.
For |ξ| smaller than 1, we will use that cos(|ξ|) ∈ 𝒞∞(Rn) and for all α we have

that
∂α cos(|ξ|) ∈ 𝒞∞(Rn)

and bounded. Taking the maximum of this leads to

max
|ξ|≤1

|∂α cos(|ξ|)| ≤ Cα < +∞

since |ξ| ≤ 1 is a compact set and by continuity of cosine.
A similar reasoning can be applied to sin(|ξ|t)

|ξ| . The Taylor series expansion of sine
leads to

sin(|ξ|t)
|ξ|

= 1
|ξ|

∞∑
j=0

(−1)j|ξ|2j+1

(2j + 1)! =
∞∑
j=0

(−1)j|ξ|2j
(2j + 1)! .

Here again, the function |ξ|2j appeared which we have shown is infinitely differen-
tiable and bounded and the function

G(z) =
∞∑
j=0

(−1)jzj
(2j + 1)!

is infinitely differentiable. Hence, all their derivatives are bounded.

Applying the inversion formula on û(ξ, t) yields the equation

u(x, t) = 1
(2π)n/2

∫
Rn
φ̂(ξ) cos(|ξ|t)eiξxdξ + 1

(2π)n/2

∫
Rn
ψ̂(ξ)sin(|ξ|t)

|ξ|
eiξxdξ.

This expression is one version of the solution of the wave equation. We would now
like to write it on another form without mixing functions with Fourier transformed
functions. In the next subchapter we will show what a solution without any Fourier
transformed functions looks like in one dimension.

6.1.2 A compact solution of the wave equation in one dimension

The solution to the wave equation in one dimension is

u(x, t) = 1√
2π

∫
R
φ̂(ξ) cos(|ξ|t)eiξxdξ + 1√

2π

∫
R
ψ̂(ξ)sin(|ξ|t)

|ξ|
eiξxdξ.
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To make it more compact and readable without any Fourier transformed functions,
we want to rewrite the terms in this solution as in the following lemmas.

Lemma 6.3. The expression

1√
2π

∫
R
ψ̂(ξ)sin(|ξ|t)

|ξ|
eiξxdξ

can be rewritten as
1
2

∫ x+t

x−t
ψ(z) dz.

Proof. We will use the indicator function defined as

1A =

1 if x ∈ A,

0 if x ̸∈ A.

The Fourier transform of the indicator function is

1̂
21[−t,t] = 1√

2π

∫ t

−t
e−ixξ 1

2 · 1 dx

= 1
2

1√
2π

1
−iξ

[
e−ixξ

]x=t

−t

= − 1
2iξ

√
2π

· (−2i)
(
eitξ − e−itξ

2i

)

= 1√
2π

sin tξ
ξ

.

Rewrite this relation as
√

2π · 1̂
21[−t,t] = sin tξ

ξ
.

Since sin tξ
ξ

is an even function with respect to ξ, it is possible to add an absolute
value on ξ without changing anything. Applying this in our wanted expression is
equal to

1√
2π

∫
R
ψ̂(ξ)sin(|ξ|t)

|ξ|
eiξxdξ = 1√

2π

∫
R
ψ̂(ξ)

√
2π · 1̂

21[−t,t]e
iξxdξ.

Evaluating the Fourier transform on the indicator functions again leads to

1√
2π

∫
R
ψ̂(ξ)

√
2π
(

1√
2π

∫ t

−t
e−iyξ 1

2 dy

)
eiξxdξ
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and changing the order of integration by Fubini’s theorem is

1
2

∫ t

−t

1√
2π

∫
R
ψ̂(ξ)eiξ(x−y)dξ dy.

Use the Fourier inverse formula to simplify the expression above to get

1
2

∫ t

−t

(
ψ̂
)∨

(x− y)dy = 1
2

∫ t

−t
ψ(x− y)dy.

A substitution of variables where z = x− y results in

1
2

∫ x−t

x+t
ψ(z)(−1) dz = 1

2

∫ x+t

x−t
ψ(z) dz.

We have now simplified the second term of the solution to the wave equation.
Notice, that the first term with cosine, is the derivative of the second term with sine
with respect to t. This is presented in the following lemma.

Lemma 6.4. The expression

1√
2π

∫
R
φ̂(ξ) cos(|ξ|t)eiξxdξ

is equal to
1
2 (φ(x+ t) + φ(x− t)) .

Proof. The derivative with respect to t of sin(|ξ|t)
|ξ| is cos (|ξ|t) and we can therefore

compute the derivative of the simplified expression of the sine term in Lemma 6.3
which is

d

dt

(1
2

∫ x+t

x−t
φ(x̃)dx̃

)
.

Since φ is differentiable by being the Schwartz space, a primitive integral h(x̃) exists
and we get

d

dt

(1
2 (h(x+ t) − h(x− t))

)
.

Since h(x̃) is the primitive integral of φ(x̃), the other way around is that the deriva-
tive of h(x̃) is φ(x̃). Which leads us to

1
2 (h′(x+ t) − (−1)h′(x− t)) = 1

2 (φ(x+ t) + φ(x− t)) .
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Finally, for the wave equation in one dimension,

∂2
ttu(x, t) = ∇2u(x, t) x ∈ R, t ∈ R, t > 0

with initial conditions

u(x, 0) = φ(x) and ∂tu(x, 0) = ψ(x), x ∈ R,

where φ and ψ are in 𝒮(R), the final solution in one dimension is

u(x, t) = 1
2 (φ(x+ t) + φ(x− t)) + 1

2

∫ x+t

x−t
ψ(z) dz

where x ∈ R and t > 0.

6.2 The heat equation

The heat equation in n dimensions is

∂tu(x, t) = k∇2u(x, t) x ∈ Rn, t ∈ R, t > 0

and k > 0 is a proportionality constant, with initial condition

u(x, 0) = ϕ(x) x ∈ Rn,

where ϕ is in 𝒮(Rn).

6.2.1 The solution of the heat equation in n dimensions

We know from the last subchapter that the Fourier transform of the Laplacian is

∇̂2u(ξ, t) = −|ξ|2û(ξ, t)

and by applying it in the heat equation we get

∂tû(ξ, t) = −k|ξ|2û(ξ, t).
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This is an ordinary differential equation on the form

∂tû(ξ, t) + k|ξ|2û(ξ, t) = 0

which we will solve in the next lemma.

Lemma 6.5. The ordinary differential equation

∂tû(ξ, t) + k|ξ|2û(ξ, t) = 0, ξ ∈ Rn, t > 0,

with initial condition
û(ξ, 0) = ϕ̂(ξ) ξ ∈ Rn,

has the solution
û(ξ, t) = ϕ̂(ξ)e−k|ξ|2t.

Proof. The ODE in question has the characteristic equation

r + k|ξ|2 = 0

with the root
r = −k|ξ|2.

The homogenous solution to the ODE is

û(ξ, t) = Ce−k|ξ|2t.

The initial condition gives us

û(ξ, 0) = Ce−k|ξ|2·0 = C = ϕ̂(ξ)

and therefore the final solution is

û(ξ, t) = ϕ̂(ξ)e−k|ξ|2t.

Since û(ξ, t) ∈ 𝒮, applying the Fourier inversion formula on û(ξ, t) gives us

u(ξ, t) = 1
(2π)n/2

∫
Rn
eiξxϕ̂(ξ)e−k|ξ|2tdξ.
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Expanding the Fourier transform on ϕ̂(ξ) yields

1
(2π)n/2

∫
Rn
eiξx

[
1

(2π)n/2

∫
Rn
e−iξyϕ(y)dy

]
e−k|ξ|2tdξ

= 1
(2π)n/2

∫
Rn
ϕ(y)

[
1

(2π)n/2

∫
Rn
e−iξ(y−x)e−k|ξ|2tdξ

]
dy

= 1
(2π)n/2

∫
Rn
ϕ(y)f̂(y − x)dy

where f(ξ) = e−k|ξ|2t. Now, we want to analyze the Fourier transform of f(ξ). Notice
the similarities in this expression and the expression in Proposition 5.6.

Lemma 6.6. The Fourier transform of the function

f(ξ) = e−k|ξ|2t

is expressed as
f̂(z) = 1

(2kt)n/2 e
−|z|2/4kt.

Proof. Let the function g(ξ) be

g(ξ) = e−|ξ|2/2

and in Proposition 5.6 it is stated that the Fourier transform of g(ξ) is itself. Notice
that the function f(ξ) can be expressed in a another from by dilation with g(ξ) as

f(ξ) = e−k|ξ|2t = e2kt · −|ξ|2/2 = e−|√2kt·ξ|2
/2 = g

(√
2kt · ξ

)
.

The Fourier transform of the dilated function g
(√

2kt · ξ
)

is by Proposition 5.5 equal
to

(D√
2kt g)∧(ξ) =

∣∣∣√2kt
∣∣∣−n (D1/

√
2kt ĝ)(z).

Simplifying it results in

∣∣∣√2kt
∣∣∣−n (D1/

√
2kt ĝ)(z) = 1

(2kt)n/2 e
−
∣∣∣ 1√

2kt
·z
∣∣∣2/2

= 1
(2kt)n/2 e

−|z|2/4kt.

Hence, the Fourier transform of f(ξ) is equal to the Fourier transform of g
(√

2kt · ξ
)
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which is
1

(2kt)n/2 e
−|z|2/4kt.

The result of the Fourier transform of f(ξ) = e−k|ξ|2t can be applied to the main
solution of the heat equation

u(ξ, t) = 1
(2π)n/2

∫
Rn
ϕ(y)f̂(y − x)dy

which is equal to

1
(2π)n/2

∫
Rn
ϕ(y) 1

(2kt)n/2 e
−|x−y|2/4ktdy = 1

(4kπt)n/2

∫
Rn
ϕ(y)e−|x−y|2/4ktdy.

We have finally reached the solution to the heat equation in n dimensions which is

u(ξ, t) = 1
(4kπt)n/2

∫
Rn
ϕ(y)e−|x−y|2/4ktdy

for t > 0.

6.2.2 A theorem based on the solution of the heat equation

The following theorem explains some properties the solution formula u(x, t) of the
heat equation have.

Theorem 6.7. Assume ϕ ∈ C∞(Rn) and bounded, and define

u(x, t) = 1
(4kπt)n/2

∫
Rn
ϕ(y) e−|x−y|2/4ktdy.

Then the following is true,

(i) u ∈ C∞(Rn),

(ii) ut − k∇2u = 0 for all x ∈ Rn, t > 0,

(iii) lim(x,t)→(x0,0) u(x, t) = ϕ(x0) where x0, x ∈ Rn, t > 0.

Proof. The proof will execute (i) − (iii).
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(i) The first part can be proved by using Theorem 4.6. Recall that ϕ is smooth
and bounded which is equivalent to ϕ having the properties

sup
x∈Rn

|ϕ(x)| < +∞ and ϕ ∈ C∞(Rn).

The first and the second condition in Theorem 4.6 is fulfilled since for a fixed x,
the product ϕ(x)e−|x−y|2/4kt is only the Gaussian function depending on y which
we know is in the Schwartz space. For a fixed y, the product is smooth since the
exponential term is the Gaussian function. The third condition is also satisfied
since the derivative with respect to x of the product ϕ(x)e−|x−y|2/4kt, is finite
by the definition of the Schwartz space. We can then integrate ϕ(x)e−|x−y|2/4kt

with respect to y and the supremum of it will also be finite. Hence, the
Theorem 4.6 can be applied and therefore the function u(x, t) is smooth over
Rn.

(ii) For second part, we are going to use the function ℋ(x, t) ≡ 1
(4πt)n/2 e−|x|2/4t.

This function satisfies the heat equation for the variables ℋ(x − y, kt) which
we will show now. By the Leibniz rule, we have the partial derivative with
respect to t, to be

∂

∂t
ℋ(x− y, kt) = d

dt

(
(4kπt)−n/2

)
· e−|x−y|2/4kt + (4kπt)−n/2 · d

dt

(
e−|x−y|2/4kt

)
.

By expressing the derivatives explicitly, we have

− n

2t(4kπt)
−n/2 · e−|x−y|2/4kt + (4kπt)−n/2 · e−|x−y|2/4kt

(
|x− y|2

4kt2

)

and factorising leads to

∂

∂t
ℋ(x− y, kt) = (4kπt)−n/2e−|x−y|2/4kt

(
|x− y|2

4kt2 − n

2t

)
.

The Laplacian with respect to x is computed by first finding

∂

∂xj
ℋ(x− y, kt) = (4kπt)−n/2 · e−|x−y|2/4kt

(
−|x− y|

2kt

)
,
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and then

∂2

∂x2
j

ℋ(x− y, kt) = (4kπt)−n/2 · e−|x−y|2/4kt
(

|x− y|2

4k2t2
− 1

2kt

)
.

Summing over j = 1 to n gives us

∇2ℋ(x− y, kt) =
n∑
j=1

∂2

∂x2
j

ℋ(x− y, kt)

=
n∑
j=1

(4kπt)−n/2 · e−|x−y|2/4kt
(

|xj − y|2

4k2t2
− 1

2kt

)

= (4kπt)−n/2 · e−|x−y|2/4kt

 n∑
j=1

|xj − y|2

4k2t2
−

n∑
j=1

1
2kt


= (4kπt)−n/2 · e−|x−y|2/4kt

(
|x− y|2

4k2t2
− n

2kt

)
.

The heat equation is ∂tu(x, t) = k∇2u(x, t) and by multiplying ∇2u(x, t) with
k we arrive at the conclusion

k∇2u(x, t) = k · (4kπt)−n/2 · e−|x−y|2/4kt
(

|x− y|2

4k2t2
− n

2kt

)
= ∂tu(x, t).

Since the function ℋ(x− y, kt) is a solution to the heat equation, we can use
the previous knowledge that the solution to the heat equation is on form

u(x, t) = 1
(4kπt)n/2

∫
Rn
ϕ(y)e−|x−y|2/4ktdy,

and it becomes possible to rewrite this expression as

u(x, t) =
∫
Rn
ϕ(y)ℋ(x− y, kt)dy.

The differentiation in time of u(x, t) is

ut(x, t) = ∂t

(∫
Rn
ϕ(y)ℋ(x− y, kt)dy

)
=
∫
Rn
∂t (ϕ(y)ℋ(x− y, kt)) dy

where the last step applies Theorem 4.6, passing the derivatives inside the
integral, which is valid according to earlier argumentation in statement (i).
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The same reasoning is applicable for ∇2u(x, t) which is expressed as

∇2u(x, t) =
∫
Rn

∇2 (ϕ(y)ℋ(x− y, kt)) dy.

Hence, the expression ut − k∇2u is equal to
∫
Rn
∂t (ϕ(y)ℋ(x− y, kt)) dy −

∫
Rn
k∇2 (ϕ(y)ℋ(x− y, kt)) dy

and ϕ(y) is not dependent on t or x, which means it can be thought of as a
constant. Then the expression is simplified as

∫
Rn
ϕ(y)

(
ℋt − k∇2ℋ

)
(x− y, kt)dy.

In the beginning of the proof, it was shown that ℋ(x − y, kt) is a solution to
the heat equation which implies the expression (ℋt − k∇2ℋ) (x− y, kt) being
zero. Hence, we have shown that

ut − k∇2u =
∫
Rn
ϕ(y)

(
ℋt − ∇2ℋ

)
(x− y, kt)dy = 0

for all x ∈ Rn and t > 0.

(iii) For the last part, we will use some known definitions. Since ϕ ∈ C∞(Rn),
recall that the definition for pointwise continuity is, for all ϵ > 0, there exists
a γ > 0 such that |y − x0| < γ implies |ϕ(y) − ϕ(x0)| < ϵ.

By using the fact that the density function of the normal distribution can be
expressed as ∫

Rn

1
(4kπt)n/2 e

−|x−y|2/4ktdy = 1

and multiplying this with ϕ(x0) implies

ϕ(x0) = 1
(4kπt)n/2

∫
Rn
ϕ(x0)e−|x−y|2/4ktdy.

The expression lim(x,t)→(x0,0) u(x, t) = ϕ(x0) is proved by showing

lim
(x,t)→(x0,0)

|ϕ(x0) − u(x, t)| = 0.
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Using the density function leads to

|ϕ(x0) − u(x, t)| =
∣∣∣∣∣ 1
(4kπt)n/2

∫
Rn
ϕ(x0)e−|x−y|2/4ktdy

− 1
(4kπt)n/2

∫
Rn
ϕ(y)e−|x−y|2/4ktdy

∣∣∣∣∣ .
The terms can be written as a single integral since they have the same boundary
and that is expressed as

|ϕ(x0) − u(x, t)| =
∣∣∣∣∣ 1
(4kπt)n/2

∫
Rn

(ϕ(x0) − ϕ(y))e−|x−y|2/4ktdy

∣∣∣∣∣
=
∣∣∣∣∫

Rn
(ϕ(x0) − ϕ(y))ℋ(x− y, kt)dy

∣∣∣∣ .

Let γ be the one from the definition of pointwise continuity of the function ϕ.
Let the space Rn be equal to the two unions Rn = B(x0, γ) ∪ Rn \ B(x0, γ).
The integral can be formulated as two integrals with this new boundary, that
is∣∣∣∣∣
∫
B(x0,γ)

(ϕ(x0) − ϕ(y))ℋ(x− y, kt)dy
∣∣∣∣∣+
∣∣∣∣∣
∫
Rn\B(x0,γ)

(ϕ(x0) − ϕ(y))ℋ(x− y, kt)dy
∣∣∣∣∣ .

By placing the absolute values inside the integral, our expression becomes
bounded by
∫
B(x0,γ)

|ϕ(x0) − ϕ(y)|ℋ(x− y, kt)dy+
∫
Rn\B(x0,γ)

|ϕ(x0) − ϕ(y)|ℋ(x− y, kt)dy

and the function ℋ(x − y, kt) is non-negative. Our goal is to show that this
expression tends to zero as (x, t) tends to (x0, 0). Let us look closer at each
term.

Part I : The first part is

I =
∫
B(x0,γ)

|ϕ(x0) − ϕ(y)|ℋ(x− y, kt)dy.

The ball B(x0, γ) is equivalent to a point y ∈ Rn fulfilling |x0 − y| < γ. With
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this, the integral I with respect to y is

I ≤ sup
|x0−y|<γ

|ϕ(x0) − ϕ(y)|
∫
B(x0,γ)

ℋ(x− y, kt)dy.

For the ϵ from the definition for pointwise continuity, the supremum part
sup|x0−y|<γ |ϕ(x0) − ϕ(y)| is smaller than ϵ since ϕ is continuous by assumption
and |x0 − y| is smaller than γ. The integral

∫
B(x0,γ) ℋ(x−y, kt)dy is bounded by

the integral
∫
Rn ℋ(x− y, kt)dy since B(x0, γ) ⊂ Rn and the integral of it is the

density function of the normal distribution which is equal to one. Therefore,
the integral with boundary of the ball is bounded. Hence, the whole expression
I goes to zero.

Part II : The second part is

II =
∫
Rn\B(x0,γ)

|ϕ(x0) − ϕ(y)|ℋ(x− y, kt)dy.

Notice,

|ϕ(x0) − ϕ(y)| ≤ |ϕ(x0)| + |ϕ(y)| ≤ 2 sup
z∈Rn

|ϕ(z)| = 2 ∥ϕ∥∞ .

Then integral II is bounded by
∫
Rn\B(x0,γ)

|ϕ(x0) − ϕ(y)|ℋ(x− y, kt)dy ≤ 2 ∥ϕ∥∞

∫
Rn\B(x0,γ)

ℋ(x− y, kt)dy.

Since ∥ϕ∥∞ is bounded by assumption and ϕ is not dependent on y, we need
to show that

∫
Rn\B(x0,γ) ℋ(x− y, kt) tends to zero as (x, t) approaches (x0, 0).

The set Rn\B(x0, γ) is everything in Rn except the ball with radius γ centered
at x0. If we take a point y ∈ Rn, then |y − x0| > γ has to be fulfilled, which
means that the point y is not in the ball. We will continue to expand this
inequality |y − x0| to eventually reach at an interesting expression. With the
triangle inequality we get

|y − x0| ≤ |y − x| + |x− x0| ≤ |y − x| + γ

2

where x lies inside the ball and we assume it is closer to the center x0 than γ
2 .
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With |y − x0| > γ the inequality is

|y − x0| ≤ |y − x| + |y − x0|
2 .

Rearranging it creates
|y − x0|

2 ≤ |y − x|

which is equivalent to

−|y − x0|2

4 ≥ − |y − x|2

and then by dividing with 4kt we get

−|y − x0|
16kt ≥ −|y − x|

4kt .

Taking this expressions to the exponent and the is

e− |y−x|2
4kt ≤ e− |y−x0|2

16kt .

Let us go back to the integral that we wanted to show tends to zero which is
∫
Rn\B(x0,γ)

ℋ(x− y, kt) dy =
∫
Rn\B(x0,γ)

1
(4kπt)n/2 e

−|x−y|2/4kt dy.

The boundary of this integral can also be written as |y − x0| > γ as explained
earlier, and by applying the inequality we just derived, we get
∫
Rn\B(x0,γ)

1
(4kπt)n/2 e

−|x−y|2/4kt dy ≤
∫

|y−x0|>γ

1
(4kπt)n/2 e

−|y−x0|2/16kt dy.

There exists a δ > 0 and by assumption of t, take 0 < t < δ, then the
square root of t will also be non-negative. We can therefore use the variable
substitution, z = (y−x0)/

√
t inside the absolute value. With the substitution

the expression is
∫

|z|>γ/
√
t

1
(4kπt)n/2 e

−|z|2/16k(
√
t)n dz.

By canceling the variable t in the integral and taking out the constant C =
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1/(4kπ)n/2 from the integral, we now have

C
∫

|z|>γ/
√
t
e−|z|2/16k dz

and this the integral of a Gaussian distribution. As t goes to zero, |z| goes
to infinity, meaning that the integral is over the double tail of the Gaussian
distribution. The integral is therefore approaching zero.

We have now proved that I + II tends to zero as (x, t) tends to (x0, 0). Hence,
lim(x,t)→(x0,0) u(x, t) = ϕ(x0) where x0, x ∈ Rn, t > 0.
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7 Conclusion

In this thesis, we have used the Fourier transform as a powerful mathematical tool to
solve the wave equation and the heat equation for functions in the Schwartz space.
We started with defining the Schwartz space and showed that the convolution of
two Schwartz functions also belongs to this space. Utilizing the convolution of two
functions, we were able to prove the Fourier inversion formula. Lastly, we could solve
the PDEs by using Fourier transformed expressions and rewriting them as ODEs
which are more straightforward to solve. However, the resulting solutions remained a
bit tricky until we simplified some terms by clever mathematical techniques. We also
noticed that the solution of the wave equation in one dimension takes a surprisingly
simple expression.

By working in the Schwartz space, we avoided to concern us about discontinuities
or unbounded behavior. However, functions in the real life are not always that
pleasant. While the introduction of this thesis explained some practical applications
of the wave and the heat equation, it is important to understand that the solutions
presented here only exists in the Schwartz space, which is unusual in real world
scenarios.
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