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Abstract

Since infinite real projective space RP∞ is a classifying space of Z2, the homotopy classes
of maps X → RP∞ corresponds bijectively to isomorphism classes of line bundles on X.
This makes RP∞ worth studying. We will thus partially compute the stable cohomotopy
groups of this space and related stunted projective spaces. First we exhibit a nontrivial
isomorphism of Ext groups, obtained by studying the cohomology of RP∞ and stunted
projective spaces as modules over the Steenrod algebra. This implies that the E2 page of
two Adams spectral sequences agree in an appropriate range: the one for computing the
stable homotopy groups of spheres and the one for computing the stable cohomotopy of
infinite stunted projective spaces, allowing us to compare the two, from which our main
results will follow.



Sammanfattning

Eftersom det oändliga reella projektiva rummet RP∞ är ett klassificerande rum for Z2

finns det en bijektion mellan homotopiklasser av avbildningar X → RP∞ och isomor-
fiklasser av linjebuntar över X. Detta gör RP∞ värt att studera. Därför kommer vi
beräkna de stabila kohomotopigrupperna för detta rum och relaterade trunkerade pro-
jektiva rum. Först uppvisar vi en icke-trivial isomorfi av Ext grupper, erhållen genom att
studera kohomologin för RP∞ och trunkerade projektiva rum som moduler över Steenrod
algebran. Detta implicerar att E2 sidan av två Adams spektralsekvenser överensstäm-
mer i ett lämpligt intervall: den som beräknar de stabila homotopigrupperna för sfärer
och den som beräknar den stabila kohomotopin för trunkerade oändliga projektiva rum,
vilket möjliggör en jämförelse mellan de två, varifrån våra huvudsakliga resultat följer.
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1 Introduction
1.1 Motivation and background
Projective spaces are usually a mathematics students’ first encounter with moduli spaces,
vaguely meaning a space which parametrizes a collection of geometric objects with some
common properties. In our case, projective n-space RPn parametrizes all lines in Rn+1

passing through the origin, and infinite projective space RP∞ parametrizes all lines
in R∞ passing through the origin. Let X be some space. Picking a continuous map
X → RP∞ means we are associating to each point in X some line in R∞ in a continuous
manner. It is therefore reasonable to think that for each map X → RP∞, we would
obtain an associated line bundle E → X on X. In fact, if X is a reasonable space,
like Hausdorff and paracompact, then there is a bijection between homotopy classes of
maps X → RP∞ and isomorphism classes of line bundles on X. See theorem 3.6.3 in [7]
for the more general statement that the homotopy classes of maps X → BG is in one-
to-one correspondence with isomorphism classes of principal G-bundles on X. Gaining
homotopical information about RP∞ would thus give us information about line bundles
on spaces.

So what homotopical information will we try to get? The stable cohomotopy of RP∞

and also the stable cohomotopy of stunted projective spaces. A stunted projective space
is the quotient of one projective space by a smaller projective space; that is, a space of
the form RPn/RP k for k < n. We also include RP∞/RP k to our collection of what
we call stunted projective spaces. By cohomotopy, we mean homotopy classes of maps
X → Sn into a sphere, as opposed to the homotopy groups which are maps Sn → X out
of a sphere. By stable, we essentially mean that we are considering the homotopy classes
of maps that remain after applying the suspension functor an arbitrary amount of times.

Historically, one of the main motivators for studying the stable cohomotopy of stunted
projective spaces was to understand the 0:th stable cohomotopy group of RP∞ ∪ {∗}
in order to prove Segal’s conjecture. It states that the 0:th stable cohomotopy group of
BG∪{∗} is isomorphic to the completion of the Burnside ring A(G) at its augmentation
ideal, for any finite group G. As mentioned before, by theorem 3.6.3 in [7], homotopical
information about BG is related to information about principal G-bundles, which is one
of the reasons BG is worth studying. Segal’s conjecture, if it were true, would relate
homotopical information about BG to some completed ring Â(G).

The big deal about this is that Â(G) is a combinatorial object which is relatively easy
to compute in many cases, see [16]. The computation of stable cohomotopy groups
we discuss in this thesis was the first step in proving this conjecture because by this
computation, Lin shows in theorem 1 of [19] that the conjecture holds for G = Z2. The
last step of Segal’s conjecture was proven by Carlsson in [11], and the reader is welcome
to read the introductory section of that article to see how the computations of sections
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Section 1.2 Algebraic preliminaries

4 and 5 in this thesis connect with the overarching sequence of proofs that finally led to
the full proof of Segal’s conjecture.

Another reason to study stunted projective spaces is due to their connection with the
problem of finding the maximum number of orthogonal vector fields on a sphere. Before
Adams’ paper [1], it was already known that one could construct ρ(n) − 1 orthogonal
vector fields on Sn−1 for some function ρ, but this paper proved that there does not exist
ρ(n) such vector fields. He did this by proving the sufficient condition that there is no
map f : RPn+ρ(n)/RPn−1 → Sn whose restriction to RPn/RPn−1 = Sn is a degree 1
map of n-spheres. The problem concerning vector fields on spheres was thus reduced, in
some sense, to a problem concerning the cohomotopy of stunted projective spaces.

To get information about the homotopy classes of maps [X,Sn] or [Sn, X] for some
(stunted) projective space X is however very hard. One way to make this problem more
manageable is to develop a new category where the objects are similar to topological
spaces, in the sense that one has a notion of homotopy theory in this new category, and
study the homotopy classes of maps [Σ∞(X),Σ∞(Sn)] instead. Here Σ∞(−) is a functor
from topological spaces to this new category, which will be the category of spectra. We
will prove that the set [Σ∞(X),Σ∞(Sn)] is in some sense a simplification of [X,Sn].

In this thesis, the motivation for developing spectra is because we want to restrict our-
selves to only considering the homotopy classes of maps between objects which are suffi-
ciently connected, meaning that they are n-connected for arbitrarily large n. In the case
when our space X is a finite CW complex, we have that the homotopy classes of maps
between spectra [Σ∞(X),Σ∞(Sn)] becomes the colimit of the diagram

[X,Sn]
Σ(−)−−−→ [ΣX,ΣSn]

Σ(−)−−−→ [Σ2X,Σ2Sn]→ · · · ,

where the maps are given by applying the suspension functor. At first glance, it is
reasonable to imagine that the colimit of the diagram above would be more compli-
cated to compute than [X,Sn]. The work we do in the section on spectra will prove,
to the contrary, that this colimit is much more manageable. It is in this sense that
[Σ∞(X),Σ∞(Sn)] will be shown to be a simplification of [X,Sn].

1.2 Algebraic preliminaries
Let us mention some notation having to do with graded modules. In the following, fix
a graded ring R and suppose all involved modules are graded R-modules. By (M)t, we
mean the t:th graded component of M . Unless explicitly stated otherwise, assume all
maps between graded modules are graded maps.

Definition 1.1. The i:th suspension of a graded module M is the module ΣiM , where
(ΣiM)t =M t−i for all t.

Definition 1.2 (Graded Hom). Given graded R-modules M , let Homt
R(M,N) denote

the R-module homomorphisms lowering the degree by t.
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Section 1.2 Algebraic preliminaries

Remark 1.3. An element in Homt
R(M,N) is the same as a graded map ΣtM → N .

Definition 1.4 (Graded Ext). Let P• →M be a projective resolution of graded modules.
Define Exts,tR (M,N) as the s:th cohomology group of the cochain complex Homt

R(P•, N).

Recall that the tensor product M ⊗R N has a natural grading, given by (M ⊗R N)t =⊕
i+j=tM

i ⊗R N t.

Definition 1.5 (Graded Tor). Let P• →M be a projective resolution of graded modules.
Define TorRs,t(M,N) as the s:th homology group of the chain complex (P• ⊗N)t.

Notice that Hom, Ext and Tor become graded modules under this decomposition. We
finish by mentioning two basic lemmas on inverse limits that we will use readily.

Lemma 1.6. Given a short exact sequence of inverse systems 0 → Ai → Bi → Ci → 0
of R-modules, there is a natural exact sequence

0→ lim←−
i

Ai → lim←−
i

Bi → lim←−
i

Ci → lim←−
i

1 Ai → lim←−
i

1 Bi → lim←−
i

1 Ci → 0 .

Definition 1.7. An inverse system {Ai}i∈Z is Mittag-Leffler if for all i, there is an integer
ci such that for all n ≥ ci, Im (An → Ai) = Im (Aci → Ai).

Essentially, being Mittag-Leffler means that the image into Ai stabilizes for all i. Notice
that this is trivially satisfied if all modules Ai are finite.

Lemma 1.8. If {Ai}i is Mittag-Leffler, then lim←−
1
i
Ai = 0.

Proof. Proposition 3.5.7 in [29].

Remark 1.9. Lemma 1.6 implies that inverse limits are an exact functor when the
leftmost inverse system in a short exact sequence is Mittag-Leffler.
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2 Spectra
2.1 Motivation
The homotopy groups of spaces is something worth studying, but this is hard. For
π1(−), we have Seifert-Van Kampen’s theorem, which may be compared to the excision
for (co)homology. There is however no such analog for the functors πn(−) when n ≥ 2.
A natural question to ask oneself is whether one can modify πn(−), allowing some loss
of homotopical information, in order to obtain another functor from pointed topologi-
cal spaces to abelian groups which is easier to compute, for example due to having an
excision-type theorem. The answer is yes! It may be constructed as follows.

The suspension functor Σ(−) induces a group homomorphism πn(X) = [Sn, X] →
πn+1(ΣX) = [Sn+1,ΣX] given by sending a map f : Sn → X to Σf : Sn+1 → ΣX.
By the Freudenthal suspension theorem, the suspension homomorphism πn+k(Σ

kX) →
πn+k+1(Σ

k+1X) is an isomorphism for sufficiently large k. Consider the sequence below,
where all maps are defined by this suspension homomorphism.

[Sn, X]→ [Sn+1,ΣX]→ [Sn+1,Σ2X]→ · · · .

Taking the colimit of this sequence, we obtain a group which we call the n:th stable
homotopy group of X and denote by πsn(X). Essentially, the Freudenthal suspension
theorem says that after applying the suspension functor to the homotopy classes of maps
[Sn, X] enough times, the group stabilizes.

The intuition one should keep in mind during this section is that we want to study
homotopy classes of maps [X,Y ], but only consider which maps remain after having
applied the suspension functor an arbitrary amount of times. To be able to describe and
prove theorems about such stable homotopy classes, it is natural to desire some objects
X̃ and Ỹ which book-keep the data of all suspensions of X and Y . These will be our
spectra. It is also natural to desire a map X̃ → Ỹ that book-keeps the data of all the
maps ΣkX → ΣkY for k ≥ 0. In so doing, the hope is that one could define homotopies
in this new category of spectra, and that the homotopy classes of maps [X̃, Ỹ ] be equal
to the direct limit lim−→k

[ΣkX,ΣkY ] in favorable cases.

To justify this construction, we note then that the stable homotopy groups πsn(−) will in
fact become a generalized homology theory, meaning that we have an excision theorem,
allowing us to compute the stable variant πsn(−) more easily than πn(−). Furthermore,
we will show that the homotopy classes of maps [X̃, Ỹ ] between any two spectra are
always abelian groups, allowing us to leverage its additive structure to our advantage.

The algebraic invariant we will be computing is the stable cohomotopy of a family of
spaces. Note that the homotopy classes of maps [X,Sk] is in general not a group. Once
we define a suitable notion of spectrum S̃k which acts much like the topological space
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Section 2.2 CW spectra

Sk, not only will we have that [X̃, S̃k] is a group for any spectrum X̃, but that the
sequence of functors [Σ∞(−), S̃k] for k ≥ 0, will define a generalized cohomology theory!
Here Σ∞(−) is an (as of yet) undescribed functor which takes a space and outputs some
associated spectrum. The goal of this thesis is essentially then to compute the groups
obtained by evaluating this generalized cohomology theory at stunted projective spaces.

2.2 CW spectra
We note that all spaces are assumed to be pointed in the entire thesis, so by suspension
we mean reduced suspension. Our two main references for section 2 is the first three
chapters in part 3 of Adams’ blue book [4] and chapter 5.2 in Hatcher’s unpublished
book Spectral Sequences in Algebraic Topology [14]. All references made to theorems
concerning the homotopy theory of spaces can be found in chapter 4 of [13], whose main
statements we assume the reader is vaguely familiar with. Without further ado, let us
get our hands dirty with some math. We begin by defining a spectrum.

Definition 2.1. A spectrum consists of a sequence of pointed spaces {Xi}i≥0 and maps
σi : ΣXi → Xi+1 for i ≥ 0. We call the spaces Xi the component spaces and the maps
σi the component maps.

Definition 2.2. A CW spectrum is a spectrum where each space in the sequence is a
CW complex and each map σi : ΣXi ↪−→ Xi+1 is an inclusion of subcomplexes.

Given a spectrum consisting of CW complexes, we may force the structure maps σi :
ΣXi → Xi+1 to be inclusions of subcomplexes by replacing our original map with a
cofibration. More precisely, for all n > 0, replace Xn with the homotopy equivalent
space Mσn−1 , the mapping cylinder of the map σn−1 : ΣXn−1 → Xn and let the new
structure map σ̃n−1 : ΣXn−1 →Mσn−1 be the inclusion map.

In this text, we will focus only on CW-spectra. From now on, we will by a spectrum
always mean a CW spectrum unless explicitly stated otherwise. We will mainly focus on
two types of spectra: suspension spectra and Eilenberg-Maclane spectra.

Definition 2.3 (Suspension spectra). Given a CW-complex X, the suspension spectrum
of X is denoted Σ∞(X). Its component spaces are defined by Σ∞(X)i = ΣiX and the
component maps are the identity.

Example 2.4.

(1) The sphere spectrum Sk, defined as the suspension spectrum Σ∞(Sk) of the k-
sphere.

(2) Stunted projective spectra X l
k, defined as Σ∞(RP l/RP k−1), for 0 < k ≤ l (we will

generalize these later).
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Section 2.2 CW spectra

To properly define Eilenberg-Maclane spectra, recall first the adjunction between suspen-
sion and the loop-space functors on pointed compactly generated weak Hausdorff spaces
[ΣX,Y ] ∼= [X,Ω(Y )]. From this it follows that the loop-space ΩK(G,n) has the same
homotopy groups as a K(G,n− 1), since [Sk,K(G,n)] ∼= [Sk−1,ΩK(G,n)]. By the CW
approximation theorem, there is thus a weak equivalence K(G,n− 1)→ ΩK(G,n). The
adjoint of this map under the adjunction above is of the form ΣK(G,n− 1)→ K(G,n).
By replacing the codomain with the mapping cylinder as described above, we may assume
this map is an inclusion of subcomplexes.

Definition 2.5 (Eilenberg-Maclane spectra). For an abelian group G and an integer
n ≥ 0, we define the Eilenberg-Maclane spectrum H(G,n) to be the spectrum with the
i:th component space being the space K(G,n + i) and the i:th component map being
the map ΣK(G,n+ i)→ K(G,n+ i+ 1) as described in the paragraph above.

We will now show that a lot of the theory and properties concerning CW spaces are kept
intact when generalizing to the context of CW spectra. We begin by defining its cells.
Given a CW spectrum X, any k cell in Xi (which is not the basepoint 0-cell) will be
a k + 1-cell in Xi+1, since ΣXi is a subcomplex of Xi+1. We define a k-cell Xi to be
equivalent to a k + n cell in Xi+n if the latter is the iterated suspension of the former.

Definition 2.6. A cell in a CW spectrum X is the equivalence class of a cell in the
CW complex Xi for some i, with the equivalence relation as described above. Taking
the smallest-dimensional representative of a cell in X, we get a k+ i-cell in Xi, for some
integers k, i. The dimension of this cell in X is defined to be k.

Hopefully, this messy definition will become more intuitive with a couple examples.

Example 2.7.

(1) Let X be the sphere spectrum S1. Then X0 = S1, X1 = S2, X2 = S3 and so on.
The cell structure on the X0 may be given by one 0-cell and one 1-cell. Consider the
1-cell in X0. It becomes a 2-cell in X1, a 3-cell in X2, and so on. The equivalence
class of these cells is a 1-cell in X. Furthermore, this is the only non-basepoint
cell in X, because any non-basepoint cell in Xi is equivalent to the 1-cell in X0.
Therefore, X consists of one 0-cell (the basepoint) and one 1-cell, just like the
actual 1-sphere.

(2) Let Y be the spectrum with Yi = S1 ∨ S2 ∨ S3 ∨ . . . for all i. Since suspensions
distribute over wedge products, ΣYi = S2 ∨ S3 ∨ . . . , and we define σi to be the
inclusion maps. For any integer n, we may pick a n-cell in Y0 by taking the n-cell
of Sn ⊆ Y0 and this is not the suspension of any other cell in lower component
spaces. The equivalence class of this cell constitutes an n-cell in Y . We thus have
cells of any dimension in Y , including negative dimensions.

6



Section 2.2 CW spectra

One can generalize the argument in the first example to show that given any CW complex
C, with nk many k-cells, its suspension spectrum Σ∞(C) will have nk many k-cells as
well. The second example describes a situation which we want to avoid. To prove the
convergence of the Adams spectral sequence, we must restrict ourselves to CW spectra
which satisfy some conditions. Our ideal spectra have cells of dimension bounded below,
finitely many cells in each dimension, or better yet finitely many cells in total.

Definition 2.8. A CW spectrum is

• connective if it has cells of dimension bounded below,

• of finite type if it has finitely many cells in each dimension,

• finite if it has finitely many cells.

We will finally start defining maps of spectra. One obvious way to define a map f : X →
Y of spectra is as a sequence of pointed maps fi : Xi → Yi that is compatible with the
component maps, meaning that the diagram below commutes.

ΣXi Xi+1

ΣYi Yi+1

σX
i

Σfi fi+1

σY
i

This can definitely be done, and we will call these proper maps of spectra. There is how-
ever a more favorable definition, which aligns more with the desire to simplify topological
problems by studying what happens eventually, after suspending enough times.

Definition 2.9. A subspectrum X̃ of a CW spectrum X is a CW spectrum such that
the component spaces X̃i are subcomplexes of Xi for all i, and such that the component
maps σi of X restrict to component maps σ̃i : ΣX̃i → X̃i+1, meaning ΣX̃i ⊆ X̃i+1. The
subspectrum is called cofinal if, given any i and any cell c in Xi, there is some integer n
such that the n:th suspension of the cell Σnc lies in X̃i+n.

Being a cofinal subspectrum essentially means that each cell in X eventually lies in X̃.
Notice that if Σnc lies in X̃i+n, then ΣNc lies in X̃i+N for all N ≥ n. Notice that being
a cofinal subspectrum is a transitive property, in the sense that if A is a cofinal in B and
B is cofinal in C, then A is cofinal in C.

Definition 2.10. A map of CW spectra f : X → Y is a proper map f : X̃ → Y of
spectra for some cofinal subspectrum X̃ of X. We consider two maps f, g : X → Y to
be equal if they agree on a common cofinal subspectrum.
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Section 2.2 CW spectra

Given maps of spectra f : X → Y and g : Y → Z, which are proper maps f : X ′ → Y
and g : Y ′ → Z from cofinal subspectra, an important question to ask is whether the
composition may be properly defined. To verify this, we remark that there is a cofinal
subspectrum X ′′ of X ′ which maps into Y ′ along f . Let the component spaces X ′′

i be
the union of all cells in X ′

i which lie in f−1(Y ′
i ). One can show that this subspectrum is

cofinal. We may thus take the composition X ′′ → Y ′ → Z as our proper map defining
g ◦ f .

We will now exhibit some basic isomorphisms of spectra, which will justify our definition
of maps of CW spectra and indicate how suspending spectra compares to suspending
spaces. Let us preliminarily define the suspension of a spectrum X by ΣX, defined by
(ΣX)i = ΣXi and the component maps Σ(σi) : Σ2Xi → ΣXi+1 are induced from the
component maps σi of X by applying the suspension functor (on morphisms of spaces).

Example 2.11.

(i) Given any cofinal subspectrum X̃ of X, we may define a map X → X̃ by taking
the proper map id : X̃ → X̃, and another map X̃ → X which is the inclusion. The
composition of these maps is the identity, so X̃ is isomorphic to X as a spectrum.

(ii) Given a spectrum X, we may define a spectrum Y with component spaces Yi =
Xi−1 for all i > 0, with Y0 be a point, and define the component maps as the maps
from X but shifted one degree. Then ΣY is a subspectrum of X, since ΣXi−1 ⊆ Xi.
In fact, it is cofinal, since the suspension of any cell in Xi lies in ΣXi, which is Yi+1

by definition. By the example above, for any spectrum X, there is a spectrum Y
such that X is isomorphic to ΣY .

(iii) Given a spectrum X, we may define a spectrum Z with component spaces Zi =
Xi+1 for all i ≥ 0 and define the component maps as shifted component maps from
X. One can show that ΣX is a cofinal subspectrum of Z like in the example above,
so Z is isomorphic to ΣX.

These examples are meant to justify our given definition of maps of spectra. The first
example aligns with our initial wish to know what happens eventually, since considering
only a cofinal part of our spectrum recovers all information. The third example shows
that there are two ways to define suspensions of spectra, which are equivalent thanks
to the first example. The second example exhibits the surprising property that the any
spectrum is equivalent to the suspension of another spectrum, a property which does
not hold in the slightest for topological spaces. This property turns out to be incredibly
important, because it will imply (once we have defined it) that the homotopy classes of
maps [X,Y ] between two arbitrary spectra is always an abelian group!

Definition 2.12. Given a spectrum X and any integer k, its k:th suspension ΣkX is
defined by (ΣkX)i = Xi+k, where the component spaces equals a point when i + k is
negative, and the component maps are the shifted component maps coming from X, or
constant maps when i+ k is negative.

8



Section 2.3 Homotopy theory

This assignment is clearly functorial, since the map Σkf : ΣkX → ΣkY will just be the
map f shifted k steps up/down among the component spaces.

2.3 Homotopy theory
We will now introduce homotopy theory in the category of spectra, and mention without
proof some theorems that are analogous to theorems from the homotopy theory of spaces,
like the cellular approximation theorem, Whitehead’s theorem, exactness of cofibration
sequences and representability of cohomology theories.

Given a spectrum X, define X × I to be the spectrum with (X × I)i = Xi × I, where
the product means the reduced product that collapses {basepoint} × I to a point. Then
Σ(Xi × I) equals Σ(Xi) × I, so we define the component maps of X × I as σi × 1 :
ΣXi × I → Xi+1 × I, where σi are the component maps of X. Notice that there are
obvious maps of spectra i0, i1 : X → X×I induced by the maps x 7→ (x, 0) and x 7→ (x, 1)
on each component.

Definition 2.13. A homotopy between two maps f, g : X → Y of spectra is a map
H : X × I → Y such that H ◦ i0 = f and H ◦ i1 = g. Given two spectra X and Y , we
denote by [X,Y ] the homotopy classes of maps.

One of the big advantages of working with spectra is that the homotopy classes of maps
between any two spectra is always an abelian group! Recall that for spaces, the homotopy
classes of maps between spaces is a group, if the domain equals the suspension of some
space. Furthermore, it is an abelian group if the domain is the double suspension of a
space. The group operation is given as follows. Given two homotopy classes of maps
between spaces f, g : ΣX → Y one may define the sum f + g as the composition

ΣX
pinch−−−→ ΣX ∨ ΣX

f∨g−−→→ Y .

The pinch map is given by the quotient map collapsing X × {0.5} ⊆ ΣX to a point,
where we consider ΣX as a quotient of X × I. The map f ∨ g is given by mapping each
point in the first or second wedge product to Y along f or g, respectively.

We can define addition of maps similarly in the case of spectra. Let f, g : Σ2X → Y be
maps of spectra. Assuming f and g are proper maps by restricting to cofinal subspectra,
we may define their sum on each component space by (f + g)i = fi + gi : Σ2Xi →
Yi. Taking for granted that [Σ2Xi, Yi]spaces is an abelian group, it is easy to see that
[Σ2X,Y ]spectra is an abelian group. Since every spectrum is the double suspension of
some spectrum, we conclude that for any spectra X and Y , [X,Y ] is an abelian group.

If X = Σ∞C is the suspension spectrum of some finite CW complex C, then the homo-
topy classes of maps [Σ∞C, Y ] may be described by the direct limit of the diagram

[C, Y0] [ΣC,ΣY0] [ΣC, Y1] [Σ2C,ΣY1] [Σ2C, Y2] · · · .Σ (σY
0 )∗ Σ (σY

0 )∗

9
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Also, considering the group [ΣkΣ∞C, Y ] instead will give you a similar colimit but with
the domains in the groups above shifted.

Proposition 2.14. If C is a finite CW complex, we have an isomorphism

[ΣkΣ∞C, Y ] ∼= lim−→
n

[Σk+nC, Yn] .

Proof. Proposition 2.8 in [4].

This equivalent characterization of homotopy classes of maps is good to keep in mind,
and further instills the idea that the group [X,Y ] only detects what happens after taking
sufficient suspensions. Another proposition which reaffirms this is the following.

Proposition 2.15. The suspension map [X,Y ] → [ΣX,ΣY ] is an isomorphism for all
spectra X,Y , and it is natural in X and Y .

Proof. Theorem 3.7 in [4].

An immediate corollary is that the inverse map [ΣX,ΣY ]→ [X,Y ] given by de-suspension
(applying the functor Σ−1(−)) is also an isomorphism. Later on in the text, we will make
identifications of the form [ΣaA,ΣbB] = [Σa−bA,B] = [A,Σb−aB] using these isomor-
phisms.

Example 2.16.

(i) The homotopy groups of a spectrumX are given by πn(X) = [Sn, X] = lim−→i
[Sn+i, Xi].

(ii) The cohomotopy groups of a spectrum X are given by πn(X) = [X,Sn]. By the
proposition above, this is isomorphic to [Σ−nX,S0].

(iii) By proposition 2.4, it is easy to see that the homotopy group πk(H(G,n)) equals
zero if n ̸= k and equals G if n = k, for any abelian group G. This justifies calling
H(G,n) an Eilenberg-Maclane spectrum, due to the analogy with the defining
property of Eilenberg-Maclane spaces.

Definition 2.17. The stable homotopy groups and stable cohomotopy groups of a space
X are given by πsn(X) := [Sn,Σ∞X] and πns (X) := [Σ∞X,Sn], respectively.

Definition 2.18. A map of spectra f : X → Y is cellular if for every i, the map
f : X ′

i → Yi is cellular (where X ′ is some cofinal subspectrum).

Assuming the cellular approximation theorem for spaces, we will illustrate how one can
extend the theorem to the analogous theorem concerning spectra.

Proposition 2.19. Any map f : X → Y is homotopic to a cellular map. If the map f
is already cellular on a subspectrum A of X, the homotopy may be taken so that it fixes
A.

10
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Proof. Assume by restricting to a cofinal subspectrum that f is a proper map which is
cellular on A. We will prove by induction that fn : Xn → Yn is homotopic to a cellular
map relative An for all n ≥ 0. We will also prove that this homotopy may be taken
so that it fixes the subcomplex ΣXn−1, for n ≥ 1, so that the sequences of homotopies
Hn : Xn × I → Yn defines a homotopy between maps of spectra H : X × I → Y .

For the base case, this means that f0 : X0 → Y0 is cellular on A0. By the cellular
approximation theorem for spaces, we may homotope f0 to a cellular map on all of X0.
Assume the map fn : Xn → Yn is homotopic to a cellular map relative An. Applying the
functor Σ(−), we get that Σfn : ΣXn → Yn+1 is cellular. By the definition of a proper
map, the diagram below commutes.

ΣXi Xi+1

ΣYi Yi+1

σX
i

Σfi fi+1

σY
i

This means that Σfn is a restriction of the map fn+1 to a subcomplex, since the compo-
nent maps σXi are by definition inclusions of subcomplexes. By the cellular approximation
theorem for spaces, we can homotope fn+1 to a cellular map relative ΣXn and An+1,
completing the induction step.

With homotopies between maps of spectra and homotopy groups of spectra defined, one
may extend the definition of weak equivalence and homotopy equivalence to hold for
spectra as well. One can then state the spectra-analog of Whitehead’s theorem.

Proposition 2.20. A weak equivalence of CW spectra X → Y is a homotopy equiva-
lence.

Proof. Theorem 3.4 in [4].

Corollary 2.21. Suppose the map of spectra f : X → Y induces weak equivalences
fi : Xi → Yi on each component space. Then f is a homotopy equivalence.

Proof. The maps fi induce isomorphisms πk(Xi) ∼= πk(Yi) for all k. By the colimit
description of πk(X) and πk(Y ) from proposition 2.14 and the remark in example 2.16(i),
it follows that f induces isomorphisms πk(X) ∼= πk(Y ) for all k, meaning its a weak
equivalence of spectra. By proposition 2.20 above, it follows that f is a homotopy
equivalence.

Given a subspectrum A of X, a natural way to define the quotient X/A would be to
set (X/A)i = Xi/Ai and let the component maps σ̃i : ΣXi/Ai → Xi+1/Ai+1 be the
component maps σ : ΣXi → Xi+1 of X after passing to the quotient. To ensure that σ̃i
are inclusions of subcomplexes, there is a necessary condition the subspectrum A must
satisfy.

11
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Definition 2.22. A subspectrum A of X is closed if given any i and any cell in Xi, if
the k:th suspension of this cell lies in Ai+k for some k, then the cell lies in Ai from the
start.

Given a closed subspectrum A of X, X/A as constructed above will thus also be a CW
spectrum, since A being closed implies that the component maps of X/A are inclusions.
If A is a subspectrum of X which is not closed, let A be the union of all cells in X
whose suspension eventually lies in A. This may be though of as the closure of A in X.
Since A is cofinal in A, it follows by the example 2.11(i) that the inclusion A ↪−→ A is an
equivalence. From now on, when taking the quotient X/A, we assume we have already
identified A with A.

Recall that in the category of spaces, given a subcomplex A of X, applying the functor
[−, Z] to the cofiber sequence A ↪−→ X ↠ X/A → ΣA ↪−→ ΣX → . . . induces a natural
long exact sequence

[A,Z]← [X,Z]← [X/A,Z]← [ΣA,Z]← [ΣX,Z]← [Σ(X/A), Z]← · · ·

for any CW complex Z (where exactness in the first three sets are to be considered ex-
actness as sets). In fact, the same holds for spectra. Namely, given a closed subspectrum
A of X, there is a similar cofiber sequence A ↪−→ X ↠ X/A → ΣA ↪−→ ΣX → . . . , and
applying the contravariant functor [−, Z] to it gives us an exact sequence as above, for
any CW spectrum Z. In fact, since any spectrum is equivalent to the suspension of
another spectrum, the sequence above may be extended indefinitely to the left.

Unlike spaces, however, applying instead the covariant functor [Z,−] to the cofibra-
tion sequence of spectra also gives us an exact sequence. Again, since any spectrum is
equivalent to the suspension of another spectrum, this exact sequence may be extended
indefinitely to the left. We will summarize these facts as a theorem.

Proposition 2.23. Given a closed subspectrum A of X and any spectrum Z, there are
natural exact sequences

· · · [Σ−1(X/A), Z] [A,Z] [X,Z] [X/A,Z] [ΣA,Z] · · ·q∗ i∗ q∗ i∗

· · · [Z,Σ−1(X/A)] [Z,A] [Z,X] [Z,X/A] [Z,ΣA] · · · ,q∗ i∗ q∗ i∗

where i : A ↪−→ X is the inclusion and q : X ↠ X/A is the quotient map.

Proof. This is a particular case of propositions 3.9 and 3.10 in [4].

The proof of the proposition above is given by Adams in a more general setting, where
instead of the basic cofiber sequence A ↪−→ X ↠ X/A, we have any map of spectra
f : X → Y and a cofiber sequence X → Y → Cf , where Cf is the mapping cone of f .

12
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This general situation reduces to ours, because in the case when X is a closed subcomplex
of Y and f is the inclusion map, the mapping cone Cf will be isomorphic to Y/X. For
all of this to make sense, we need to define the mapping cone of a map of spectra.

Recall that we may define the mapping cone Cf for a map of spaces f : X → Y as the
colimit of the diagram below, where I is taken to have the basepoint 0.

X X ∧ I

Y

x 7→(x,1)

f

Another way to say this is that Cf is the adjunction space (X ∧ I) ∪f Y . We may
define the mapping cone Cf for a map of spectra f : X → Y similarly. Assuming f is a
strict map, we define the component spaces as (Cf )i = Cfi = (Xi ∧ I) ∪fi Y . To define
the component maps is an unnecessary technicality which will not be highly relevant
for our purposes, so we will only sketch how it is done. First, we claim that ΣCfi is
homeomorphic to CΣfi . Second, we remark that by the definition of CW complexes Σfi
is the restriction of fi+1 : Xi+1 → Yi+1 to the subcomplex ΣXi, and from this one can
conclude that there is a natural map CΣfi → Cfi+1

. Finally, we define the component
maps as the composition ΣCfi

∼= CΣfi → Cfi+1

Furthermore, we claim that one can similarly define the mapping cylinder Mf for a map
of spectra f : X → Y , by setting (Mf )i = Mfi = (Xi × I) ∪fi Yi and defining the
component maps similarly as was done above. Recall that any map of CW complexes
f : X → Y factors through the mapping cylinder Mf , as the composition of an inclusion
of a subcomplex and a homotopy equivalence, as below.

X Y

Mf

f

≃

The inclusion is given by sending X to the quotient of X ×{0} in Mf and the homotopy
equivalence is given by contracting the quotient of X × I in Mf down to X × {1}.

Similarly, we claim that any map of CW spectra f : X → Y factors through Mf in
such a way, with the inclusion and homotopy equivalence of spectra being defined just as
above on each component space of the spectra involved. Later on, when we construct the
Adams spectral sequence, we will say that we "replace the map f by an inclusion". By
this we mean that given a map of spectra f : X → Y , we instead consider the inclusion
X ↪−→ Mf as constructed above. Since Mf is homotopy equivalent to Y , the groups
[X,Y ] and [X,Mf ] are isomorphic. This means particular that there is a one-to-one
correspondence between homotopy classes of such maps and thus that we are not losing
any homotopic information after doing such a replacement.

13
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We will illustrate a way that proposition 2.23 may be used to prove a lemma about the
finite generation of [X,Y ] for a special case.

Lemma 2.24. If X is a finite spectrum and Y is of finite type, then [X,Y ] is finitely
generated.

Proof. We prove this by induction on the number of non-basepoint in X. For the base
case when X has one cell, X must be some sphere spectrum, and thus [X,Y ] is finitely
generated since Y is of finite type.

For the induction step, suppose X has n + 1 non-basepoint cells. Let A be some non-
basepoint cell in X (recall that this is an equivalence class of cells in Xi as i ranges).
Then A is some sphere spectrum and X/A has n cells. By the inductive hypothesis,
[A, Y ] and [X/A, Y ] are finitely generated. By the first exact sequence in proposition
2.23, we have an exact sequence

[A, Y ]
i∗←− [X,Y ]

q∗←− [X/A, Y ] ,

from which we obtain the short exact sequence

0→ [X/A, Y ]/ ker q∗ → [X,Y ]→ Im i∗ → 0 .

Since subgroups and quotients of finitely generated abelian groups are finitely generated,
the left and right groups are finitely generated. If we have a short exact sequence of
modules where the left and right modules are finitely generated, then the middle module
must also be finitely generated.

Let us now move on to defining the wedge product of spectra. To do this, let
∨
αXα

be the spectrum with i:th component space equal to
∨
α(Xα)i and the component map

equal to the composition below.

S1 ∧ [
∨
α(Xα)i]

∨
α S

1 ∧ (Xα)i
∨
α(Xα)i+1

∼=
∨

α σ
Xα
i

Definition 2.25. The wedge product of a family of spectra {Xα}α is denoted by
∨
αXα,

with the i:th component space equal to
∨
α(Xα)i and the i:th component map equal to

the composition

S1 ∧ [
∨
α(Xα)i]

∨
α S

1 ∧ (Xα)i
∨
α(Xα)i+1 .

∼=
∨

α σ
Xα
i

The first map is a homeomorphism, coming from the fact that smash products commute
with arbitrary wedges in a convenient category of topological spaces, which is definitely
true for our situation where all spaces are CW complexes. The second map is applying
the component map of Xα on each wedge.

14



Section 2.4 Cohomology

2.4 Cohomology

We have now made enough definitions and stated enough theorems to describe how one
can talk about cohomology in the context of spectra. Recall that a reduced generalized
cohomology theory on spaces may be defined as a sequence of contravariant functors
Hn : (Top∗

CW)op → Ab from the category of pointed CW complexes to the category
abelian groups satisfying the Eilenberg-Steenrod axioms (minus the dimension axiom).
We may similarly define cohomology theories on spectra, as a sequence of contravariant
functors from CW spectra to satisfying these axioms, because we have defined what a
homotopy, suspension and wedge product means in the context of spectra.

Definition 2.26. A reduced cohomology theory of spectra is a sequence of contravariant
functors Hn (for n ∈ Z) from CW spectra to abelian groups satisfying the following
conditions.

(i) Homotopy invariance: If two maps f, g : X → Y are homotopic, thenH(f) = H(g).

(ii) Exactness: If i : A ↪−→ X is the inclusion of a closed subspectrum and q : X ↠ X/A
is the quotient map, then the induced sequence

Hk(X/A)
q∗−→ Hk(X)

i∗−→ Hk(A)

is exact for all k ∈ Z.

(iii) Suspension isomorphism: There is a natural isomorphism of functors

Hk(−)→ Hk+1(Σ(−)) .

(iv) Additivity : For any family of spectra {Xα}α, the natural map

H∗

(∨
α

Xα

)
→
∏
α

H∗(Xα)

is an isomorphism.

For any spectrum X, we may define a sequence of functors hn(−) := [Σ−n(−), X].
This sequence of functors defines a reduced cohomology theory of spectra. Homotopy
invariance is obvious. Exactness follows from our discussion about cofiber sequences. In
fact, we get a long exact sequence associated to the pair (X,A) since we have natural
connecting maps Hk(A) → Hk+1(X/A). The suspension isomorphism follows from the
fact that the suspension map [X,Y ]→ [ΣX,ΣY ] is an isomorphism for all spectra X,Y .
Additivity follows from the observation that maps out of a wedge product may be seen
as a tuple of maps out of every single wedge in the wedge product.

Furthermore, given any spectrum X, one can verify that one may define a reduced
cohomology theory on spaces by setting hn(−) = [Σ−nΣ∞(−), X] for all n ∈ Z. If
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the reader was not already convinced that spectra are worth studying, hopefully this
will convince you: Surprisingly, the converse statement is also true! By the Brown
representability theorem given any reduced cohomology theory H∗ on connected CW
complexes, there is a spectrum X and an isomorphism Hn(−) ∼= [Σ−nΣ∞(−), X] of
functors, meaning that every cohomology theory of spaces is represented by a spectrum!
We refer the reader to Brown’s original proof in [8] for more on this topic.

Remark 2.27. Dually, we can define a reduced homology theory of spectra in an analo-
gous fashion and prove that for any spectrum X, Xn(−) = [ΣnX,−] defines a homology
theory on spectra. In particular, it follows that the homotopy groups πn(X) of spectra
form a homology theory. This means that we have a Mayer-Vietoris long exact sequence,
among other things, which one does not have for ordinary homotopy groups of spaces,
making it much easier to compute!

It is known that singular (or equivalently, cellular) cohomology of spaces with coefficients
in an abelian group G is represented by Eilenberg-Maclane spaces, since Hn

sing(−) ∼=
[−,K(G,n)]. We will now define cellular homology and cohomology of spectra with co-
efficients in G. One can then prove that this cohomology theory of spectra is represented
by the Eilenberg-Maclane spectra, meaning that Hn

CW(−) ∼= [−, H(G,n)].

Given a spectrum X, let C•(Xi;R), abbreviated to C•(Xi), be the cellular chain com-
plex of the space Xi with coefficients in some ring R. By the definition of a CW spec-
trum, there are inclusion ΣXi ↪−→ Xi+1. Consequently, there are inclusions C•(Xi) ↪−→
C•+1(Xi+1), given by taking a cell in Xi, suspending it, and considering it as a cell in
Xi+1. We define the cellular chain complex of the spectrum X as

Ck(X) = lim−→
i→∞

Ci+k(Xi)

for all k, where the direct limit runs over the diagram Ck(X0) ↪−→ C1+k(X1) ↪−→ · · · of
inclusions as described above. The direct limit over i of the differentials coming from
the complexes C•(Xi) gives us a differential for C•(X). We may thus define the cellular
homology groups of X Hk(X) as the k:th homology group of the complex C•(X). In
fact, since direct limits are an exact functor, the homology of C•(X) is isomorphic to the
direct limit of the homology of C•(Xi). This means that the homology groups Hk(X)
may equivalently be defined as

lim−→
i→∞

Hi+k(Xi) ∼= Hk(X) = Hk(C•(X)) .

The cellular cohomology with coefficients in an R-module G are simply the homology
groups of the cochain complex obtained by applying the functor HomR(−, G) to the
cellular chains C•(X). That is, Hk(X;G) := Hk(HomR(C•(X), G)). Defining the cellular
cohomology like this, one can in fact verify that the universal coefficient theorem holds
in this setting.

16



Section 2.4 Cohomology

Proposition 2.28. Given any spectrum X, k ∈ Z, R-module G for R a principal ideal
domain, there is a split exact sequence

0→ Ext1R(Hk−1(X;R), G)→ Hk(X;G)→ HomR(Hk(X;R), G)→ 0 .

We will now present the spectra-analog of Milnor’s short exact sequence. Recall that if a
CW complex X is the union

⋃
i≥0Xi of monotonically increasing subcomplexes Xi, then

for any reduced cohomology theory H∗, there is a short exact sequence

0→ lim←−
i

1 Hn−1(Xi)→ Hn(X)→ lim←−
i

Hn(Xi)→ 0

for all integers n. The proof of this can be done analogously in the context of spectra.

Proposition 2.29. If the spectrum X is the union of a sequence of monotonically in-
creasing subspectra Xi, then for any reduced cohomology theory H∗ of spectra, there is
for each integer n a short exact sequence

0→ lim←−
i

1 Hn−1(Xi)→ Hn(X)→ lim←−
i

Hn(Xi)→ 0 .

Remark 2.30. For the construction of the Adams spectral sequence, we need a lemma
about a scenario when the functor [X,−] commutes with arbitrary wedge sums of spectra.
For the wedge sum of two spectra, [X,Y1 ∨ Y2] is isomorphic to [X,Y1] ⊕ [X,Y2]. The
isomorphism from [X,Y1 ∨Y2] is simply given by composing a map from this group with
the quotients Y1 ∨Y2 → Yi for i = 1, 2. The inverse isomorphism from [X,Y1]⊕ [X,Y2] is
given by composing the pair of maps with the inclusions Yi ↪−→ Y1 ∨ Y2 and taking their
sum. In fact, it is easy to prove that this isomorphism is natural in X. By induction,
there is an isomorphism [X,

∨n
i=1 Yi]

∼=
⊕n

i=1[X,Yi] natural in X, for all n. For the case
when we are dealing with arbitrarily large wedge sums, we have the following lemma,
whose proof will utilize plenty of the theorems we have mentioned thus far.

Lemma 2.31. Let X is a connective spectrum of finite type. Assume {pi}i≥0 is a
sequence of integers such that pi ≥ M for some M , and which repeats values only
finitely many times. Then the natural mapX,∨

i≥0

H(Z2, pi)

→∏
i≥0

[X,H(Z2, pi)]

is an isomorphism.

Proof. Since X is a connective spectrum of finite type, the spectra Xn (consisting of all
cells of dimension ≤ n) are finite for each n, and constitute a monotonically increasing
sequence of subspectra whose union is all of X. Setting H∗(−) = [Σ−∗(−),

∨
iH(Z2, pi)],
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we obtain a reduced cohomology theory. By the proposition above, we have a short exact
sequence

0→ lim←−
n

1[Σ1Xn,
∨
i

H(Z2, pi)]→

[
X,
∨
i

H(Z2, pi)

]
→ lim←−

n

[Xn,
∨
i

H(Z2, pi)]→ 0 .

Consider the rightmost group. SinceXn is a finite spectrum, the group [Xn,
∨
iH(Z2, pi)]

is equal to [Xn,
∨Mn
i H(Z2, pi)] for some integer Mn by the cellular approximation the-

orem, since for pi > n, the spectrum H(Z2, pi) only has cells of dimension higher than
n. By the remark above, it follows that the rightmost group in the exact sequence above
equals lim←−n

⊕Mn
i [Xn, H(Z2, pi)]. By cellular approximation again, this group equals

lim←−n
⊕

i[X
n, H(Z2, pi)] since we are simply adding zero groups. One can confirm that

this group is isomorphic to
∏
i[X,H(Z2, pi)].

To finish the proof it remains to show that the lim1 group in the short exact sequence
above vanishes. First, note that [Σ1Xn,

∨
iH(Z2, pi)] ∼=

⊕Mn
i [Σ1Xn, H(Z2, pi)] by the

same argument as in the paragraph above. Then, notice that this group is equal to a (fi-
nite) direct sum of the pi:th cellular cohomology groupHpi

CW(Σ1Xn;Z2) ∼= Hpi−1
CW (Xn;Z2)

by the representability of cohomology. Since Xn is a finite spectrum, it is easy to see
that the homology groups HCW

∗ (Xn;Z) are finitely generated in each degree, and thus by
proposition 2.28 it is easy to verify that Hpi

CW(Σ1Xn;Z2) is finite. From this we conclude
that the inverse system [Σ1Xn,

∨
iH(Z2, pi)] is finite, and thus trivially Mittag-Leffler.

Before proving the last lemma of the section, we take a moment to recall a definition of
the Steenrod algebra and explain its connection with Eilenberg-Maclane spectra. The
(mod 2) Steenrod algebra, which we will denote by A, can be defined in many ways.

One way to define it is as the algebra of all stable cohomology operations H∗(−,Z2)→
H∗+i(−,Z2) of spaces. Another way is to define it as the cohomology ring of the
Eilenberg-Maclane spectrum H(Z2, 0). From this definition it becomes obvious that
the total cohomology of an Eilenberg-Maclane spectrum H(Z2, n) is a free A-module
over n, for any n. Another way is to define it as the free associative algebra over Z2 on
the generating set {Sqi | i ≥ 0} modulo the Adem relations, as Adem proves in his paper
[5].

Steenrod and Epstein prove in [28] that the (mod 2) Steenrod algebra A is in fact charac-
terized by five axioms. We will thus take the following as our definition of the Steenrod
algebra.

Definition 2.32. The Steenrod algebra A is generated by the collection of elements
{Sqi ≥ 0} as a Z2-algebra, where the Steenrod squares Sqi : H∗(−) → H∗+i(−) satisfy
the following five axioms.
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(1) Naturality : For any space X, Sqi : Hn(X;Z2)→ Hn+i(X;Z2) is a homomorphism
which is natural in X.

(2) Sq0 : Hn(X)→ Hn(X) is the identity.

(3) If x ∈ H i(X), then Sqi(x) = x ⌣ x, where ⌣ denotes the cup product.

(4) If i > deg(x), then Sqi(x) = 0.

(5) Cartan formula: Sqn(x ⌣ y) =
∑

i+j=n Sqi(x)⌣ Sqj(y).

From this definition of the Steenrod algebra, it is obvious that A acts on the total
cohomology ring of a space, but it remains to describe how it acts on the total cohomology
ring of a spectrum. We restrict ourselves to considering only spectra X of finite type.
Notice that A has an obvious grading, with |Sqi|= i for all i.

Let {Xi}i be the component spaces of X. Define as sequence of spectra Ki as follows: Let
(Ki)n = Σn−iXi for all n ≥ i and (Ki)n = Xn for n < i, where the component maps are
the obvious ones inherited from X. It is easy to verify that the union of the Ki’s equals
X. Since X is a spectrum of finite type, it is easy to verify that Hn(X) ∼= lim←−iH

n(Ki)

by proposition 2.29. Furthermore, since Ki is eventually the spectrum Σ−iΣ∞Xi for all
i, so it follows that Hn(Ki) = Hn(Σ−iΣ∞Xi) = Hn+i(Σ∞Xi) = Hn+i(Xi), where the
last cohomology group is of a space.

Consequently, for spectra X of finite type, Hn(X) ∼= lim←−iH
n+i(Xi) for all n. We may

thus define the A-module structure on the total cohomology of a spectrum H∗(X) by its
action on

⊕
n lim←−iH

n+i(Xi). More explicitly, note that the inverse limit lim←−iH
n+i(Xi)

is given by taking the inverse limit of the following inverse system

· · · → Hn+2(X2)
(σX

1 )∗

−−−−→ Hn+2(ΣX1) ∼= Hn+1(X1)
(σX

0 )∗

−−−−→ Hn+1(ΣX0) ∼= Hn(X0) ,

where the isomorphisms are given by the suspension isomorphisms. Since the Steenrod
squares are natural with respect to maps in cohomology induced by maps of spaces,
and since they commute with the suspension isomorphism, it follows that we have a
commutative diagram as follows for any i ≥ 0.

· · · Hn+2(X2) Hn+2(ΣX1) Hn+1(X1) Hn+1(ΣX0) Hn(X0)

· · · Hn+2+i(X2) Hn+2+i(ΣX1) Hn+1+i(X1) Hn+1+i(ΣX0) Hn+i(X0)

(σX
1 )∗

Sqi

∼=

Sqi

(σX
0 )∗

Sqi

∼=

Sqi Sqi

(σX
1 )∗ ∼= (σX

0 )∗ ∼=

It follows that we have a natural map Sqi : Hn(X) → Hn+i(X) obtained from taking
the inverse limits in the diagram above. This is precisely how the Steenrod algebra acts
on the cohomology of spectra. From the fact that A satisfies axioms 1,2,5 from definition
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2.32 on the cohomology of spaces, it is easy to see that i A, as cohomology operations
on the cohomology of spectra, also satisfies 1,2,5. Notice that if we are dealing with a
suspension spectrum of a space, then its cohomology as a spectrum is isomorphic as an
A-module to the cohomology of the underlying space, so in this case all five axioms are
fulfilled.

We will show now that the cohomology ring of H∗(H(Z2, 0)) is a free A-module. In [14],
Hatcher proves that the map A→ H̃∗(K(Z2, n),Z2) given by Sqi 7→ Sqi(ιn), where ιn ∈
Hn(K(Z2, n),Z2) is the generator, is an isomorphism in degrees ≤ n. Since H(Z2, 0) is a
spectrum of finite type, Hn(H(Z2, 0)) ∼= lim←−iH

n+i(K(Z2, i)), and from the isomorphism
above one can verify that the induced map A→

⊕
n lim←−iH

n+i(K(Z2, i)) given by Sqn 7→
(Sqn(ιi))i is an isomorphism in all degrees.

We will now expand on this idea and show that the cohomology of finite type spectra
which are wedges of Eilenberg-Maclane spectra are also free A-modules.

Lemma 2.33. If {pi}i≥0 is a sequence of non-negative integers which repeats values
only finitely many times, then the total cellular cohomology H∗(

∨
iH(Z2, pi);Z2) is a

free A-module.

Proof. Notice that ΣpiH(Z2, 0) = H(Z2, pi), where the suspension of spectra are defined
as shifting the component spaces. By Hk(−) below, we mean the cellular cohomology of
a spectrum with Z2 coefficients. By the wedge axiom and suspension isomorphism, we
have that

H∗(
∨
i

H(Z2, pi)) =
⊕
k

Hk(
∨
i

H(Z2, pi))

∼=
⊕
k

∏
i

Hk(H(Z2, pi))

∼=
⊕
k

∏
i

Hk−pi(H(Z2, 0)) .

By our assumption on {pi}i, k − pi is non-negative only for finitely many values of i.
The direct product in the expression above may thus be taken to be a direct sum. Since
direct sums commute with each other, the group above is isomorphic to⊕

i

H∗−pi(H(Z2, 0)) .

By the identification of the Steenrod algebra with the cohomology ring of H(Z2, 0), we
get that this group is isomorphic to ⊕

i

ΣpiA

and is thus a free A-module.
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3 Adams Spectral Sequence
3.1 General introduction to spectral sequences
In algebraic topology, one can often study a space X by relating it with other spaces,
which are pieced together by some exact sequence. One example of this is the long exact
sequence of homotopy groups associated to a fibration F ↪−→ X → B. Another example is
the long exact sequence in (co)homology associated to a pair (X,A). Oftentimes however,
the algebraic invariant one is interested in, like the stable cohomotopy groups of X in our
case, does not piece together in some satisfactory exact sequence which relates it to other
groups which are more familiar. But all is not lost. We may still be able to approximate
our algebraic invariant of interest by relating it to objects which are more familiar, now
using sequences of chain complexes rather than just one long exact sequence. This is
what spectral sequences attempt to do.

We will give an example of how spectral sequences naturally arise, and in the process
prove a theorem related to spectral sequences. Suppose we want to compute the homology
groups H∗(X) of a space X for some homology theory H∗(−). If X is complicated
enough, then taking a subspace A ⊆ X and studying the associated long exact sequence in
homology of the pair (X,A) may not give you enough information on H∗(X), because the
groups H∗(A) and H∗(X,A) may still be too complicated to understand. But hopefully,
if we take a filtration X1 ⊆ X2 ⊆ . . . X such that ∪iXi = X, the groups H∗(Xi) and
H∗(Xi+1, Xi) may be more understandable. In that case, it remains only to relate these
groups to the one we are interested in. We will now show how this leads to a spectral
sequence.

For each i, we have the long exact sequence associated to the pair (Xi+1, Xi), which we
may write in the following staircase formation.

. . . Hn(Xi)

Hn(Xi+1) Hn(Xi+1, Xi) Hn−1(Xi)

Hn−1(Xi+1) . . .

Writing them in this manner, we see that the staircase-shaped long exact exact sequences
for each pair (Xi+1, Xi) fit together in the following commutative diagram, where each
color represents a different staircase-shaped long exact sequence.
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Hn(Xi) Hn(Xi, Xi−1) Hn−1(Xi−1) Hn−1(Xi−1, Xi−2) Hn−2(Xi−2)

Hn(Xi+1) Hn(Xi+1, Xi) Hn−1(Xi) Hn−1(Xi, Xi−1) Hn−2(Xi−1)

Hn(Xi+2) Hn(Xi+2, Xi+1) Hn−1(Xi+1) Hn−1(Xi+1, Xi) Hn−2(Xi)

Let E be the direct sum of all the groups in the columns which are fully colored in the
diagram above; that is, the groups of the form Hm(Xj , Xj−1). Let A be the direct sum
of all groups in the remaining columns; that is, the groups of the form Hm(Xj). Let
i : A→ A be the map induced by all maps of the form Hm(Xj)→ Hm(Xj+1), j : A→ E
the map induced by the quotient maps Hm(Xj) → Hm(Xj , Xj−1) and k : E → A the
map induced by the connecting homomorphisms Hm(Xj , Xj−1)→ Hm(Xj−1). The fact
that the big diagram above was created by piecing together exact sequences allows us to
more succinctly write it as the diagram below, which is exact at every spot.

A A

E

i

jk

An exact triangle-shaped diagram like this one with two of the groups involved being
the same is called an exact couple. Looking back at the big colored diagram, i represents
the direct sum of all vertical maps, j is the direct sum of maps with codomain of the
form Hm(Xj , Xj−1), and k represents the direct sum of all maps with domain of the form
Hm(Xj , Xj−1).

Once we have obtained an exact couple, we can always construct a spectral sequence, as
will be shown below. Consequently, from a filtration of a space X, we obtain a spectral
sequence! From now on, we may thus assume that A and E are some arbitrary abelian
groups which fit into an exact couple, unless explicitly told otherwise, and show the
general construction.

Given an exact couple, we obtain a chain complex E d−→ E
d−→ E where the boundary maps

are defined by d = jk. Notice that d2 = jkjk, which is equal to zero by exactness, so this
is indeed a chain complex, and thus we may consider its homology group E2 = ker d/Im d.
Furthermore, the homology group E2 now takes part in an exact couple of its own! Define
A2 = Im i, i2 : A2 → A2 such that i2 = i|A2 , j2 : A2 → E′ such that j2 = j ◦ i−1 and
k2 : E2 → A2 such that k2([e]) = k(e). By a diagram chase, one can show that j2 and k2
are well-defined, and also that the diagram
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A2 A2

E2

i2

j2k2

is exact at every corner, so this defines an exact couple! We call this new exact couple
the derived couple. We may iterate this process of going from one exact couple to another
exact couple in which the new bottom group becomes the homology of the old bottom
group (with respect to the map di = jiki). Doing so gives us a sequence of groups
E = E1, E2, E3, . . . with differentials d = d1, d2, d3, . . . with the property that En+1 =
ker dn/Im dn.

Returning to our specific example, we see that the sequence of abelian groups Ei also has
a natural bigrading (meaning a grading indexed over Z×Z rather than just over Z) which
the differentials di respect. We may define Ep,q1 = Hp+q(Xp, Xp−1) and Ap,q1 = Hp+q(Xp).
Recall that the maps i1, j1, k1 were constructed by summing over maps between these
bigraded components, so it is clear that the differential d1 = j1k1 : E1 → E1 restricts
to a map between these bigraded components. It follows that the groups En obtain a
bigraded structure from E1 since they are subquotients of it.

We will now explain in which bigraded component the map dp,qn from the (p, q)-graded
component lands in. By looking at the general construction of a new exact couple from
an old exact couple, we see that by iterating the process n times, dn is essentially equal
to j1i−n+1k1, where i−n+1 denotes taking the inverse n− 1 times. To describe what we
mean by this precisely, recall that the groups En are subquotients of the group E1. The
map dn may thus be regarded as the map E1 → E1 defined by j1i−n+1k1, which is not
defined on E1 however, but it is well-defined on the subquotient En.

Noting that k1 is of the form Ep,q1 → Ap−1,q
1 and i1 is of the form Ap,q1 → Ap+1,q−11

1

and j1 does not change bidegrees, it follows that dp,qn is a map of the form dp,qn : Ep,qn →
Ep−n,q+n−1
n . To see this pictorially, notice that dp,qn is given by mapping an element

a ∈ Ep,qn along k1, taking the preimage of it n− 1 times along i1, then mapping it along
j1 as follows:

Ap−n,q+n−1
1 Ep−n,q+n−1

1 ∋ dn(a)

...

Ap−2,q+1
1

a ∈ Ep,q1 Ap−1,q
1

j1

i1

i1

i1

k1
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We may now define (homology) spectral sequences!

Definition 3.1. A (homology) spectral sequence consists of a sequence of bigraded
abelian groups {E∗,∗

i }i and homomorphisms dp,qi : Ep,qi → Ep−i,q+i−1
i such that d2i = 0

and Ep,qi+1 = ker dp,qi /Im dp+i,q−i+1
i for all p, q and all i ≥ 1.

The word "homology" is written in parentheses, because the only significance this word
has in relation to spectral sequences is to specify how the differentials di change the
bidegree. To define a cohomology spectral sequence, we start precisely as above, but now
the differentials point in the direction di : E

p,q
i → Ep+i,q−i+1

i instead.

Imposing some boundedness conditions on our given space X allows us to describe
how the sequence of groups Ei eventually stabilize. For example, suppose X is a fi-
nite CW complex. Then it is D-dimensional for some integer D. Since X has a filtration
X1, X2, . . . which is bounded below (by zero), we may define Xi = ∅ for i < 0. Also, we
have that Xn = X for n ≥ D. Using this, we see that for any fixed pair p, q, there is some
large integer N such that Ep−n,q+n−1

1 = Ep+n,q−n+1
1 = 0 for all n ≥ N . Consequently,

the differential dn exiting and entering Ep,qn must both be zero for any n ≥ N . This
means that Ep,qN = Ep,qN+1 = · · · = Ep,qN+k for all k ≥ 0. We denote this stable group by
Ep,q∞ .

Summarizing what we have done in our example, we have taken a space X, filtered it
into subspaces X1, X2, . . . and pieced together long exact sequences associated to pairs
of subspaces (Xi, Xi−1) into a spectral sequence {En} and obtained for every bidegree
p, q a stable group Ep,q∞ (assuming X is a finite complex). We will now relate these stable
groups to the groups we are interested in, H∗(X), and finally justify the machinery we
have developed!

Consider the following exact sequence, obtained from the exact couple involving An and
En.

Ep+n−1,q−n+2
n Ap+n−2,q−n+2

n Ap+n−1,q−n+1
n Ep,qn Ap−1,q

n Ap,q−1
n

kn in jn kn in

By the construction of Ap,qn , it consists of the subgroup of Ap,q1 which lies in the image
of in−1

1 : Ap−n+1,q+n−1
1 → Ap,q1 . Since Ap−n+1,q+n−1

1 vanishes for large enough n, (since
Xi = ∅ when i < 0), it follows that the fifth and sixth terms vanish for large n. The
leftmost term vanishes since for large n it is the subquotient of a group of the form
H∗(X,X), because Xn = X for n large enough. Consequently, we have the following
short exact sequence.

0 Ap+n−2,q−n+2
n Ap+n−1,q−n+1

n Ep,qn 0
in jn

By the definition of A∗,∗
n , we have that for n large enough, the middle group equals

Im(Hp+q(Xp)→ Hp+q(X)) and the leftmost group equals Im(Hp+q(Xp−1)→ Hp+q(X)).
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Consequently, by the short exact sequence above, we obtain an isomorphism

Ep,q∞
∼= F pp+q/F

p−1
p+q

for all p, q, where we define

F ts = Im(Hs(Xt)→ Hs(X)) .

Notice that {F ts}t≥0 is a filtration for Hs(X) for every s, which is the group we are
interested in. In summary, we just showed that the stable groups Ep,q∞ are isomorphic
to the successive filtration quotients of the filtered group Hp+q(X). We will now define
some terminology so that we may phrase our result as a theorem.

Definition 3.2. Let E∗ be a spectral sequence. An element c ∈ Es,tn is called a cycle if
it lies in the kernel of dn. It is called a permanent cycle if c lies in the kernel of di for all
i ≥ n (where we consider c as an element in Ei). It is called a boundary if it lies in the
image of dn.

Definition 3.3. Let E∗ be a spectral sequence. For all n ≥ 1, call the bigraded group
E∗,∗
n the En-page. Denote the group of permanent cycles in bidegree (s, t) by Es,t∞ . Call

the bigraded group E∗,∗
∞ the E∞-page.

Definition 3.4. Given a spectral sequence E∗,∗
∗ , if for all p, q, the permanent cycles Ep,q∞

is isomorphic to the successive filtration quotients of some fixed filtered group G, we say
that the spectral sequence converges to G.

Theorem 3.5. Given a finite filtration X1 ⊆ X2 ⊆ . . . Xn = X on a space X such that
∪iXi = X, we obtain a spectral sequence (En, dn)n with Ep,q1 = Hp+q(Xp, Xp−1) which
converges to H∗(X).

This theorem allows us to relate the groups Hp(Xq, Xq−1) with the groups Hp(X), in
both directions. Notice that the theorem above was proven for any homology theory, but
now let us specify a homology theory to give a concrete application for this theorem.

Application 3.6. Cellular homology coincides with singular homology for finite CW
complexes.

Of course, this can be proven more directly, but hopefully this proof will give the reader
a taste for how an easier spectral sequence argument goes.

Proof. Let X be our given finite CW-complex. Define the filtration of X such that Xi is
the i-skeleton of X. Since X is a finite complex, we have for large n that Xn = X. By
theorem 3.5, we have a spectral sequence which converges to the singular cohomology
groups Hsing

∗ (X).

Notice that Ep,q1 = Hsing
p+q (Xp, Xp−1) is isomorphic to Hsing

p+q (Xp/Xp−1). Also, Xp/Xp−1

is a wedge of p-spheres. Assuming we are working with reduced homology, the singular
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homology groups of a wedge of p-spheres is concentrated in degree p. Consequently,
Ep,q1 = 0 if and only if q ̸= 0. It follows also that Ep,qn = 0 for all n ≥ 0 when q ̸= 0 since
these groups are subquotients of Ep,q1 .

In the case when q = 0, the chain complex {(Ep,01 , dp,01 )}p≥0 is in fact precisely the chain
complex computing the cellular cohomology of X, so Ep,02 = HCW

p (X). Furthermore,
notice that dp,02 has codomain Ep−2,1

2 , which is necessarily zero, and thus all differentials
landing in the column E•,0

2 vanish. similarly, all differentials starting from the column
E•,0

2 vanish. This implies that Ep,p3 = ker dp,p2 /Im dp+1,p+2
2 = Ep,p2 and thus by induction

Ep,p∞ = Ep,p2 = HCW
p (X).

By the convergence of the spectral sequence, it follows that Ep,02
∼= F pp /F

p−1
p for all p.

Notice however that Hsing
p (Xp−1) = 0, since Xp−1 is a p − 1 dimensional CW-complex

and thus has no singular homology groups in degree p, so F p−1
p = 0. Furthermore, this

long exact sequence in homology of the pair (Xp, Xp−1) shows that the map Hsing
p (Xp)→

Hsing
p (X) induced by inclusion must be surjective, so F p,p = Hp(X). Therefore, we have

that HCW
p (X) ∼= Hsing

p (X).

Now we introduce some terminology and state two lemmas, whose proofs are done by a
quick diagram chase.

Definition 3.7. Let E∗ and D∗ be spectral sequences. A map of spectral sequences
f : E∗ → D∗ is a sequence of maps fn : Es,tn → Ds,t

n which commutes with the differentials
of En and Dn for all n ≥ 1.

Lemma 3.8. Let f : E∗ → D∗ be a map of spectral sequences such that for some N ≥ 1,
fN : Es,tN → Ds,t

N is an isomorphism for all s, t. Then for all n ≥ N , fn : Es,tn → Ds,t
n is

an isomorphism for all s, t as well.

Lemma 3.9. Let f : E∗ → D∗ be a map of spectral sequences such that for some N ≥ 1,
fN : Es,tN → Ds,t

N (and thus for all n ≥ N by lemma above) is an isomorphism for all s, t.
Then there is an induced map f∞ : Es,t∞ → Ds,t

∞ which is an isomorphism for all s, t.

We finish the section by a discussion of filtered groups, which ends with the proof of two
statements that will be necessary for the proof of our final theorem in the thesis.

Definition 3.10. A filtered group is a group G with a filtration F •. A map of filtered
groups f : G → G̃ is a group homomorphism which respects the filtrations, meaning
f(Fn) ⊆ F̃n.

As a remark, notice that lim−→n
Fn =

⋃
n F

n and that lim←−n F
n =

⋂
n F

n. Our convention
below is that the filtration is decreasing, meaning that Fn+1 ⊆ Fn for all n. To prove
the final two lemmas in this subsection, we will need the following, which is proved by
an easy diagram chase.
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Lemma 3.11 (The 4-lemma). Given a commutative diagram of modules

A B C D

Ã B̃ C̃ D̃

a b c d

with exact rows such that a is surjective and d is injective, then

(1) if c is surjective then so is b,

(2) if b is injective then so is c.

Now, we can prove our lemmas.

Lemma 3.12. Let f : G→ G̃ be a map of filtered groups such that

•
⋃
n F

n = G and
⋃
n F̃

n = G̃,

•
⋂
n F

n = 0 and
⋂
n F̃

n = 0,

• lim←−
1
n
Fn = 0,

• f induces isomorphisms Fn/Fn+1 ∼= F̃n/F̃n+1 for all n.

Then f is an isomorphism of filtered groups.

Proof. Since f respects the filtrations, we have the commutative diagram below for all
integers m < n, with exact rows and where the vertical maps are induced by f .

0 Fn/Fn+1 Fm/Fn+1 Fm/Fn 0

0 F̃n/F̃n+1 F̃m/F̃n+1 F̃m/F̃n 0

(3.1)

The left vertical arrow is an isomorphism by assumption. If n = m + 1, then the right
vertical arrow is also an isomorphism by assumption, and thus by the five lemma the
middle vertical map is an isomorphism in the case when n = m+ 1. By induction on n
(starting at n = m+ 1), it follows that f induces an isomorphism Fm/Fn ∼= F̃m/F̃n for
all n > m such that the following diagram commutes.

Fm/Fn Fm−1/Fn Fm−2/Fn · · ·

F̃m/F̃n F̃m−1/F̃n F̃m−2/F̃n · · ·

∼= ∼= ∼=
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Taking the colimit as m→ −∞ (which amounts to taking unions as m→ −∞), gives us
an isomorphism G/Fn ∼= G̃/F̃n for all integers n such that a diagram similar as to the
one above commutes. Taking the inverse limit over n, we obtain an isomorphism

lim←−
n

→ G/Fn ∼= lim←−
n

G̃/F̃n .

The map of short exact sequences of inverse systems

0 Fn G G/Fn 0

0 F̃n G̃ G̃/Fn 0

f f f

induces the commutative diagram below with exact rows, by the naturality of the exact
sequence in lemma 1.6.

0 lim←−
n

Fn G lim←−
n

G/Fn lim←−
n

1 Fn

0 lim←−
n

F̃n G̃ lim←−
n

G̃/Fn lim←−
n

1 F̃n

∼= ∼= ∼= (3.2)

We have just shown that the fourth vertical map (from the right) is an isomorphism.
The first map is trivially an isomorphism, and the second map is an isomorphism by
assumption (since both groups are zero). Also, the fifth map is an injection since by
assumption its domain is zero. Using lemma 3.11 on the first four columns, we see that
f : G→ G̃ is an injection, and using this lemma on the last four columns, we see that f
is a surjection.

Now we prove a similar theorem but regarding only surjections. The proof below will be
very similar to the one above.

Lemma 3.13. Let f : G → G̃ be a map of filtered groups where G is finite and the
first three conditions of lemma 3.12 are satisfied, and also that f induces surjections
Fn/Fn+1 ↠ F̃n/F̃n+1 for all n. Then f is a surjection.

Proof. For m < n, we have the map of short exact sequences as in (3.1). The left
vertical map is a surjection by assumption. The right vertical map is also a surjection
by assumption, for the base case n = m + 1. By the five-lemma, the middle map is
a surjection. By induction, the map f induces a surjection Fm/Fn ↠ F̃m/F̃n for all
n > m. Since direct limits are an exact functor, applying it to this surjection, we get a
surjection G/Fn ↠ G̃/F̃n for all n.

28



Section 3.1 General introduction to spectral sequences

In general, the inverse limit functor is not right exact, but since the kernel of G/Fn ↠
G̃/F̃n is a subquotient of the finite group G, the kernel must be finite for all n, and
thus it is trivially Mittag-Leffler, implying by lemma 1.6 that the induced map of inverse
limits

lim←−
n

G/Fn → lim←−
n

G̃/F̃n

is also a surjection. Using this, we get a diagram analogous to (3.2), but with the fourth
vertical map (from the left) now being only a surjection rather than an isomorphism.
Using lemma 3.11 on the last four columns of this diagram, we see that f : G → G̃ is a
surjection.
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Section 3.2 Construction of Adams spectral sequence

3.2 Construction of Adams spectral sequence
We can finally construct the Adams spectral sequence, our main computational tool for
computing the stable cohomotopy of RP∞. Our three main references for section 3 are
chapter 9 of McLeary’s User’s Guide to Spectral Sequences [21], chapter 5.2 in Hatcher’s
Spectral Sequences in Algebraic Topology [14], and the first three chapters in Bruner’s
An Adams Spectral Sequence Primer [9]. In this entire section, when we write Hk(−) we
mean the cellular cohomology of a spectrum with Z2 coefficients, unless explicitly stated
otherwise.

One of the main ideas in the Adams spectral sequence is as follows. For a module over
a ring M , we may study it by analyzing homological invariants, like Ext groups in our
case. To compute such groups, we must first take some sort of resolution of M , which
in our case will be a free resolution. The Steenrod algebra, as the algebra of all stable
cohomology operations for cohomology in Z2, has a natural action on the cohomology
groups of a spectrum. If M was the total cohomology H∗(X) of some spectrum X,
then it has this A-module structure. A natural question to ask is then whether one can
topologically realize the resolution of H∗(X) as an A-module on the level of spectra,
before even passing to cohomology. More precisely, can we construct a collection of
spectra {Kn}n and a sequence

X → K0 → K1 → · · ·

such that applying the functor H∗(−) gives us a free resolution

0← H∗(X)← H∗(K0)← H∗(K1)← ·

of A-modules? The answer is yes! In fact, more is true. Applying HomA(−, H∗(Y ))
for some spectrum Y to the resolution and taking the homology gives us the groups
ExtnA(H∗(X), H∗(Y )), which is not inherently interesting, but what makes it interesting
is that it approximates the group [Y,X] in some sense. The precise connection between
these is captured by the Adams spectral sequence.

Let X be a connective spectrum of finite type. Being of finite type implies that Hk(X)
is finitely generated for all k, and being connective implies that Hk(X) vanishes for k
smaller than some fixed integer. Let {cα}α be a set of generators for H∗(X) as an A-
module. By the representability of cohomology, each cα ∈ H |cα|(X) corresponds to map
X → K(Z2, |cα|). Notice that the values of |cα| as α ranges is bounded below by some
number and that it repeats values only a finite number of times. By lemma 2.31, the
set {cα}α corresponds to a map i0 : X →

∨
αK(Z2, |cα|). Replacing this map by an

inclusion, let X1 = K0/X.

We claim that X1 is connective of finite type. We can for all n ≥ 1 pick models of the
spaces K(Z2, n) such that they have no non-basepoint cell of dimension less than n. It
follows that the spectrum H(Z2, 0) has no cell of dimension less than zero, and thus that
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ΣnH(Z2, 0) = H(Z2, n) has no cell of dimension less than n. This implies that K0 is
connective of finite type, and thus that X1 (as a quotient of K0) is connective of finite
type.

Picking a set of generators for H∗(X) as an A-module gives rise to a map X1 → K1

just as before. Replacing this map by an inclusion, we may set X2 = K1/X1 and iterate
the process. We get a sequence Kn of finite type spectra which are wedges of Eilenberg-
Maclane spectra and connective spectra of finite type Xn. We also obtain the following
sequence, where the dotted maps Kn → Kn+1 are the compositions of the lower maps.

X K0 K1 K2 K3 . . .

X1 = K0/X X2 = K1/X1 X3 = K2/X2

i0
q0 q1 q2i1 i2 i3

(3.3)

Denoting X by X0, notice that we have cofiber sequences Xn ↪−→ Kn ↠ Xn+1 for all
i ≥ 0. Applying the total cohomology functor H∗(−), we get the following diagram.

0 H∗(X) H∗(K0) H∗(K1) H∗(K2) H∗(K3) . . .

H∗(X1) H∗(X2) H∗(X3)

(i0)∗

(i1)∗ (i2)∗ (i3)∗
(q0)∗ (q1)∗ (q3)∗ (3.4)

By lemma 2.33, the modules H∗(Kn) are free over A. Furthermore, we claim that the
top row is exact, and thus that it constitutes a free resolution of H∗(X).

Lemma 3.14. The top row in (3.4) is exact.

Proof. By the exactness axiom for cohomology theories (definition 2.26(ii)), the sequences
H∗(Xn+1) → H∗(Kn) → H∗(Xn) are exact for all i ≥ 0. If we can show that in (3.4)
the vertical maps (qn)

∗ are injections and that the diagonal maps (in)
∗ are surjections,

the result will follow by an easy diagram chase.

We will describe how the maps in were constructed in slightly more detail to prove this.
Pick an element cα from the generating set for H∗(Xn) as an A-module that was used
in the construction of in. Under the isomorphism H |cα|(Xn) ∼= [Xn, H(Z2, |cα|)], cα
corresponds to a map fα : Xn → H(Z2, |cα|) such that f∗α(ι) = cα for some particular
cohomology class ι ∈ H |cα|H(Z2, |cα) called the fundamental class. This map pulls back
to some tuple (fβ)β under the surjection

∏
β[Xn,K(|cβ|)] → [Xn,K(|cα|)] which under

the isomorphism in lemma 2.31 corresponds to the map in : Xn → Kn. We describe how
these elements are related to each other by the sequence below.

in (fβ)β fα f∗α(ι) = cα

[Xn,Kn]
∏
β[Xn,K(|cβ|)] [Xn,K(|cα|)] H |cα|H(Z2, |cα)∼=
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Notice that the first map is given by sending in to (projβ ◦ in), where projβ : Kn →
H(Z2, |cβ|) is the projection map which contracts everything but the β-wedge to a point.
Consequently, under the sequence above in maps to cα = f∗α(ι) = (projα ◦ in)∗(ι) =
i∗n(proj∗α(ι)). In particular, this means that cα is in the image of i∗n, meaning that i∗n is
surjective for all n.

Taking the long exact sequence in cohomology of the pair (Kn, Xn), we get an exact
sequence · · · → H |cα|−1(Xn+1) → H |cα|(Kn) → H |cα|(Xn) → · · · for all k. We just
showed that the maps induced by inclusion are surjective. It follows by exactness that
the maps induced by the quotient are injective. Taking the direct sum as α ranges over
all possible values (and noting that direct sums are an exact functor), we obtain our
result.

We will now try to relate the homological information coming from the free resolution
H∗(K•) → H∗(X) to the spectral sequence we will describe now. Recall that in the
beginning of this section, we showed that given subspaces X0 ⊆ X1 ⊆ · · · of X, we could
patch together the long exact sequences of the pairs (Xi+1, Xi) to obtain an exact couple,
from which we obtained a spectral sequence. We will follow the same pattern now.

For each n ≥ 0, we have cofibration sequences Xn ↪−→ Kn ↠ Xn+1. Let Y be a finite
spectrum. Recall that Yk(−) := [ΣkY,−] defines a homology theory on spectra by remark
2.27. Applying this homology theory to these cofibration sequences, we get a long exact
sequence in homology, which may be presented in this staircase formation.

· · · Yk+1(Xn+1)

Yk(Xn) Yk(Kn) Yk(Xn+1)

Yk−1(Xn) · · ·

These staircase-formed exact sequences (as n ranges over all non-negative integers) can
be patched together as before into the following big diagram, where each color represents
a different staircase diagram.

Yk+1(Xn+1) Yk+1(Kn+1) Yk+1(Xn+2) Yk+1(Kn+2) Yk+1(Xn+3)

Yk(Xn) Yk(Kn) Yk(Xn+1) Yk(Kn+1) Yk(Xn+2)

Yk−1(Xn−1) Yk−1(Kn−1) Yk−1(Xn) Yk−1(Kn) Yk−1(Xn+1)

(3.5)

Let E be the direct sum of all the columns which are fully colored; that is, the groups
of the form Yk(Kn). Let A be the direct sum of all the remaining columns; that is,
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Section 3.2 Construction of Adams spectral sequence

the groups of the form Yk(Xn). Let i : A → A the direct sum of all connecting maps,
j : A → E be the map induced by inclusion, and k : E → A be the map induced
by quotients. Relating these maps back to the diagram above, i takes elements down
vertically, j takes elements to the right from A to E and k takes elements to the right
from E to A. These three maps form the exact couple

A A

E

i

jk

from which we obtain a spectral sequence E∗. This is the Adams spectral sequence! It
has a natural bigrading: let Es,t1 = Yt(Ks).

We will now describe the groups Es,t2 and provide an alternative description for the E1

page.

Lemma 3.15. The groups Es,t1 = [ΣtY,Ks] are isomorphic to Homt
A(H

∗Ks, H
∗Y ).

Proof. By lemma 2.27 we have an isomorphism [Y,Ks] ∼=
∏
α∈I [Y,H(Z2, |cα|)]. By the

representability of cohomology, this is isomorphic to
∏
α∈I H

∗(Y ). This is isomorphic to
the A module of all set maps I → H∗(Y ), denoted by HomSet(I,H

∗(Y )). Since H∗(Ks)
is a free A-module of rank |I| by lemma 2.33, it follows by the universal property of
free modules that this is isomorphic to Hom0

A(H
∗(Ks), H

∗(Y )). Composing all these
isomorphisms, we obtain an isomorphism [Y,Ks] ∼= Hom0

A(H
∗(Ks), H

∗(Y )) given by
sending a map f to the induced map in cohomology f∗. For clarity, we describe how the
composition looks in each step by the sequence below.

f (projα ◦ f)α
(
f∗proj∗α(ι)

)
α

[
α 7→ f∗proj∗α(ι)

] [
proj∗α(ι) 7→ f∗proj∗α(ι)

]
[Y,Ks]

∏
α∈I [Y,H(Z2, |cα|)]

∏
α∈I H

∗(Y ) HomSet(I,H
∗(Y )) Hom0

A(H
∗(Ks), H

∗(Y ))

The image of f under this composition is indeed f∗ since the collection {proj∗α(ι)}α gen-
erate H∗(Ks) as an A-module, and thus any degree-preserving A-module homomorphism
H∗Ks → H∗Y is completely determined by where it maps these elements. To see that
{proj∗α(ι)}α generates H∗Ks, notice first that the natural map

H∗(Ks)→
∏
α

H∗(H(Z2, |cα|))

is an isomorphism by the wedge axiom for cohomology (definition 2.26(iv)). Secondly,
the fundamental class ι ∈ H |cα|(K(Z2, |cα|)) ∼= H1(K(Z2, 1)) generates H∗K(Z2, |cα|)
as an A-module, as one can see by our proof that the cohomology of Eilenberg-Maclane
spectra are free over A just above lemma 2.33. The preimages of the generators ι ∈
H |cα|(K(Z2, |cα|)) in each factor of the direct product pull back to the collection of
elements {proj∗α(ι)}α, thus proving that this collection generates H∗(Ks).

33



Section 3.2 Construction of Adams spectral sequence

We have thus shown that the map [Y,Ks]→ Hom0
A(H

∗Ks, H
∗Y ) given by f 7→ f∗ is an

isomorphism. Swapping Y with ΣtY , we get an isomorphism

[ΣtY,Ks] ∼= Hom0
A(H

∗Ks, H
∗(ΣtY )) .

We have an isomorphism H∗(ΣtY ) ∼= ΣtH∗Y as graded modules, which induces the
isomorphism Hom0

A(H
∗Ks, H

∗(ΣtY )) ∼= Hom0
A(H

∗Ks,Σ
tH∗Y ) = Homt

A(H
∗Ks, H

∗Y ).
The last equality follows from the fact that a degree-preserving map of graded modules
M → ΣtN is precisely a degree t lowering map of graded modules M → N .

Remark 3.16. Recall that for all s, Ks is a spectrum of finite type. Also, Y is a finite
spectrum. It is easy to show, just like for the analogous statement in spaces, that this
implies that the cohomology of Ks is finitely generated in every degree and that the total
cohomology of y is finitely generated. Since we are working with coefficients in Z2, finite
generation is the same as being finite. Consequently, the group of degree t lowering maps
Es,t1 = Homt

A(H
∗Ks, H

∗Y ) must be finite for all t. In fact, each element has order 2.
Since Es,tn are subquotients of Es,t1 for all n, it follows that in any bidegree on any page,
the Adams spectral sequence is finite, given the conditions of X being connective of finite
type and Y being finite.

Lemma 3.17. The groups Es,t2 are isomorphic to Exts,tA (H∗X,H∗Y ).

Proof. The differential on the first page is given by d1 = jk. By the definition of j and
k, ds,t1 is precisely the the map Yt(Ks) → Yt(Ks+1) induced by the map Ks → Ks+1 in
(3.3). Under the isomorphism Es,t1

∼= Homt
A(H

∗Ks, H
∗Y ) given in the lemma above, the

differential
ds,t1 : Homt

A(H
∗Ks, H

∗Y )→ Homt
A(H

∗Ks+1, H
∗Y )

becomes precisely the map the map induced byH∗Ks+1 → H∗Ks from the free resolution
(3.4), which is in turn induced by Ks → Ks+1 from (3.3).

Under the isomorphism from lemma 3.15, we obtain an isomorphism of chain complexes
E•,•

1
∼= Hom•

A(H
∗K•, H

∗Y ). Taking the homology at the bidegree (s, t) of these com-
plexes, we thus obtain an isomorphism Es,t2

∼= Exts,tA (H∗X,H∗Y ).

Summarizing what we have done so far, we have constructed a sort of resolution on the
level of spectra X → K• such that applying H∗(−) gives us a free resolution H∗(K•)→
H∗X of A-modules. The construction of the spectra-level resolution gave us cofibration
sequences Xs ↪−→ Ks ↠ Xs+1, and thus long exact sequences in the homology groups
Yk(−), from which we built a spectral sequence. We have identified the E1 and E2 pages.
It remains to relate these groups to the group [Y,X], which will be done by showing that
the E∞ page equals the associated graded module of [Y,X] modulo odd torsion for some
appropriate filtration.

We will now define some terms relating to the construction we have done thus far. Note
that from (3.3), we obtain a sequence of maps X → X1 → X2 → · · · .
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Section 3.2 Construction of Adams spectral sequence

Definition 3.18. The sequence of maps X → X• and the cofiber sequences X• ↪−→ K• ↠
X•+1 constructed in (3.3) is called an Adams resolution of X.

In the colored diagram (3.5) above consisting of patched-together staircase diagrams,
notice that we have columns of the form Yt(Xs) → Yt−1(Xs−1) → · · · → Yt−s(X) for
all s, t. This was the A-column in the exact couple constructing the Adams spectral
sequence.

Definition 3.19. For each s, t, let F s,t ⊆ Yt−s(X) denote the image of the map Yt(Xs)→
Yt−s(X) as described above. We call the sequence {F s+n,t+n} the Adams filtration. An
element in Yt−s(X) = [Σt−sY,X] is said to be of Adams filtration ≥ s if it lies in F s,t.

Notice that the sequence {F s+n,t+n}n∈Z constitute a decreasing filtration of Yt−s(X).
This filtration determines how far an element in [Σt−sY,X] is pulled back along the
column A-column Yt+∗(Xs+∗) in (3.5).

Looking at the cofibration sequence · · ·Σ−1Xi+1 → Xi → Ki → Xi+1, we see that there
are natural maps of the form Σ−n−1Xn+1 → Σ−nXn for all n (including the case n = 0
where X0 = X). Applying the functor Yt−s(−) to the sequence Σ−•X• → X, we get a
sequence of maps

Yt−s(Σ
−nXn)→ . . . Yt−s(X) .

The groups in this sequence may be rewritten so that we obtain the sequence

Yt+n+1(Xs+n+1)→ Yt+n(Xs+n)→ · · ·Yt−s(X) .

In fact, one can easily verify that the maps in this sequence are precisely equal to those
in the A-column of (3.5).

Definition 3.20. The Adams tower of X is the sequence X• → X constructed above,
where Xn := Σ−nXn for all n.

Remark 3.21. An element in Yt−s(X) is thus of Adams filtration ≥ n precisely if it is in
the image of the map Yt−s(X

n) → Yt−s(X), given by composition with the appropriate
maps in the Adams tower.

Definition 3.22. Let T c ⊆ Yc(X) denote the submodule of all odd-order torsion elements
in Yc(X) = [ΣcY,X].

The sequence {F s+n,t+n/(F s+n,t+n ∩T t−s)} constitutes a filtration for Yt−s/T t−s, which
we will also call the Adams filtration. We will denote these simply by F s+n,t+n/T t−s

below, because we will show that T t−s always lies in F s+n,t+n for reasons which will
become apparent soon.

Before moving on to discussing the convergence of the Adams spectral sequence, we prove
a about Adams filtrations which will come in handy later.
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Section 3.3 Convergence and naturality

Lemma 3.23. If a map f ∈ [ΣiY,X] is not of Adams filtration ≥ 1, then it does not
induce the zero map in cohomology.

Proof. Applying Y∗(−) cofiber sequence X → K0 → X1 coming from an Adams resolu-
tion of X, we obtain from the long exact sequence in particular the exact sequence

Yi(Σ
−1X1)→ Yi(X)→ Yi(K0) .

The element f ∈ Yi(X) not being of Adams filtration ≥ 1 means precisely that it does not
lie in the image of the leftmost map, and thus by exactness it maps to a nonzero element
f̃ ∈ Yi(K0) = [ΣiY,K0]. Since the rightmost map above is defined by composition, this
means that we have a commutative diagram as follows.

ΣiY X

K0

f

f̃

By lemma 3.15, the induced map in cohomology f̃∗ is nonzero. Applying H∗(−) to the
diagram above shows thus that the induced map f∗ is nonzero as well.

3.3 Convergence and naturality

Finally we can state how the E1 and E2 page of the spectral sequence we have constructed
relates to the group [Y,X]. This theorem states that the Adams spectral sequence weakly
converges to [Σ∗Y,X] with respect to the Adams filtration on [Σ∗Y,X], given some
aforementioned conditions on Y and X.

Theorem 3.24. Let X be a connective spectrum of finite type, and Y be a finite spectrum.
Let {F s+n,t+n}n be the Adams filtration on [Σt−sY,X] and let E∗,∗

∗ be the Adams spectral
sequence computing [Σ∗Y,X]. Then for all s, t, we have short exact sequences

0→ F s+1,t+1 → F s,t → Es,t∞ → 0

for all s, t, meaning that Es,t∞ ∼= F s,t/F s+1,t+1.

We will need to prove some lemmas before we can tackle the theorem above.

Oftentimes, we want to compare different Adams spectral sequences so that we can
leverage one of the spectral sequences to get information about the other. This will not
only be crucial for proving the theorem above, but is one of the main ideas in completing
Lin’s computation of the stable cohomotopy of infinite projective space in [19]. To this
end, we prove the following lemma, helping us compare different Adams-type resolutions
of spectra. It may be seen as the spectra-analog of the comparison theorem in homological
algebra for projective resolutions.
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Lemma 3.25. Assume we are given the filled-in arrows in the diagram below.

X K0 K1 K2 . . .

Y L0 L1 L2 · · ·

f

Let X and Y be connective spectra of finite type. Assume that applying the functor
H∗(−) to the top row gives you an exact sequence · · · → H∗K1 → H∗K0 → H∗X → 0.
Assume that the Li are wedges of finite type and are Eilenberg-Maclane spectra. Assume
also that the composition of two consecutive maps in the rows are nullhomotopic. Then
we can fill in the diagram above with the dashed arrows such that the diagram commutes
up to homotopy.

Proof. We begin by replacing all horizontal maps with inclusions. Since the composi-
tion of two consecutive maps in the either row is always nullhomotopic, the horizontal
maps factor through the quotients to give a homotopy-commutative diagram as follows
(considering for now only the filled-in arrows).

X K0 K1 K2 · · ·

X1 = K0/X X2 = K1/X1
. . .

Y L0 L1 L2 · · ·

Y1 = L0/Y Y2 = L1/Y1
. . .

f

By lemma 2.31 and the representability of cohomology, a map X → L0 is in one-to-
one correspondence with a tuple {cα}α of elements in H∗(X). Since the induced map
in cohomology H∗K0 → H∗X is surjective by assumption, there are a tuple of classes
{bα}α ∈

∏
αH

∗K0 that are sent to {f∗cα}α along this map. By lemma 2.31, the tuple
{bα}α corresponds to a map K0 → L0. By explicitly writing out the isomorphism
H∗(−) ∼= [−,K(Z2, ∗)] and the isomorphism in lemma 2.31, one can confirm by a diagram
chase that including this map K0 → L0 in the diagram above gives us square involving
the map f : X → Y which is homotopy-commutative.

Consequently, the map K0 → L0 factors through the quotients to give a map f1 : X1 =
K0/X → Y1 = L0/Y which makes the square involving the map K0 → L0 homotopy-
commutative. The proof of lemma 3.14 shows in fact that the induced map in cohomology
H∗K1 → H∗X1 must be surjective and that H∗X1 → H∗K0 is injective. Using this it
follows that the diagram below satisfies the same exactness assumption in the top row,
just as in our original diagram.

X1 K1 K2 K3 · · ·

Y1 L1 L2 L3 · · ·
f1
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In fact, all other assumption we held for the original diagram also holds for this one. By
induction, our result follows.

Remark. If we set X = Y and pick two different Adams resolutions of X, one can
use this lemma with f = id to show that Es,t2 is independent of the choice of Adams
resolutions.

Corollary 3.26. If

X K0 K1 K2 · · ·

X1 X2
. . .

is an Adams resolution for X, then

Xn Kn Kn+1 Kn+2 · · ·

Xn+1 Xn+2
. . .

is an Adams resolution for Xn, for all n. Consequently, if · · · → X2 → X1 → X is an
Adams tower for X, then · · · → Xn+2 → Xn+1 → Xn is an Adams tower for Xn, for all
n.

Proof. We essentially just proved this in lemma 3.25 above for the case n = 1 when
stating that the sequence X1 → K• satisfies all aforementioned assumptions. The result
follows by induction.

Remark. From this one can conclude that the Adams filtration is independent of the
choice of Adams resolution or Adams tower. It is easy to see that lemma 3.25 implies
that, given any two Adams towers X• and Z• on X, there are sequences of maps fi
making the diagram

· · · X2 X1 X

· · · Z2 Z1 X

id

commute, and similarly we can construct a similar diagram with vertical maps going the
other way as well. Applying the functor Yt(−) to these two diagrams, we see that an
element in Yt(X) has Adams filtration ≥ s with respect to the tower X• if and only if it
has Adams filtration ≥ s with respect to the tower Z•.

Lemma 3.27. Let X and Y satisfy the conditions of theorem 3.24. Let F s,t denote
the Adams filtration just as in theorem 3.24. If the groups π∗(X) consist completely of
2-torsion elements, then the set ⋂

n∈Z
F s+n,t+n

of elements in [Σt−sY,X] of infinite Adams filtration equals zero.
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Proof. By lemma 2.24 πk(X) is finitely generated for all k, and thus finite since it consists
only of 2-torsion elements. Let n be the smallest integer such that πn(X) is nonzero.
Let L0 be the wedge product of dimZ2 H

n(X) many copies of H(Z2, n). By lemma 2.31
and the representability of cohomology, a choice of Z2-basis for Hn(X) is equivalent to
a map X → L0 which induces an isomorphism when applying the functor Hn(−), so we
pick a basis to obtain such a map.

By the naturality of the universal coefficient theorem (proposition 2.28) and the five-
lemma, it follows that the map X → L0 also induces an isomorphism when applying the
functorHn(−). There is a Hurewicz theorem analog in the context of spectra which states
that for n−1-connected spectra, the Hurewicz map πn(X)→ Hn(X) is an isomorphism.
Applying πn(−) to the map X → L0 essentially gives us the map πn(X)→ πn(X)⊗Z Z2

given by f 7→ f ⊗ 1 in the following sense.

By the wedge axiom, πn(L0) is isomorphic to the product of dimZ2 H
n(X) many copies

of Z2. By the universal coefficient theorem, dimZ2 H
n(X) = dimZ2 Hn(X) and by the

isomorphism above, dimZ2 Hn(X) = dimZ2 πn(X). Consequently, πn(L0) ∼= πn(X)⊗ZZ2.
It is easy to verify that the composition of these isomorphisms with the induced map
πn(X) → πn(L) gives us precisely the aforementioned map πn(X) → πn(X) ⊗Z Z2. By
assumption, πn(X) is a group of order a power of 2, and such groups always gave an
element of order 2. This element can never be in the kernel of this map, and thus the
kernel is a strictly smaller group than πn(X). The same statement is then true for the
induced map πn(X)→ πn(L0).

Replace the map X → L0 by an inclusion and let Z1 = L0/X. Applying the homology
theory πk(−) to the cofibration sequence X ↪−→ L0 ↠ Z1, we get that πk(Z1) = 0 for
k ≤ n and the exact sequence

0→ πn+1(Z1)→ πn(X)→ πn(L0) .

It follows that πn+1(Z1) is the kernel of the induced map πn(X) → πn(L0), which we
already showed was strictly smaller than πn(X).

We may repeat the process. Notice that Z1 is of finite type since it is a quotient of
L0, which itself is of finite type. Let L1 be a wedge of dimZ2 H

n+1(Z1) many copies
of H(Z2, n + 1). We construct a map Z1 → L1 which by applying πn+1(−) effectively
induces the map πn+1(Z1)→ πn+1(Z1)⊗ZZ2, guaranteeing that the kernel of the induced
map πn+1(Z1)→ πn+1(L1) is strictly smaller than πn+1(Z1). Replacing Z1 → L1 by an
inclusion, we form Z2 = L1/Z1, where πk(Z2) = 0 for k ≤ n + 1 and πn+2(Z2) is
isomorphic to the kernel of πn+1(Z1) → πn+1(L1), and is thus strictly smaller than
πn+1(Z1).

We continue the continue the process like this. Since πn(X) was finite, it follows that
for some positive integer N , the process stops, and we have that Zk is a spectrum
with πn+N (ZN ) = 0, and all lower homotopy groups zero as well. Now, we consider
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the smallest integer m such that πn+N+m(ZN ) is nonzero and continue the process of
constructing spectra just as above.

Doing this, we obtain a the diagram

X L0 L1 L2 · · ·

Z1 Z2 Z3

with the property that that for each i, there is an integer N such that πi+n(Zn) = 0 for
all n ≥ N . More than that, we claim that for each i, there is an integer n such that
Yi+n(Zn) = 0 for all n ≥ N . One can easily prove this by induction on the number of
non-basepoint cells in Y (recalling that Y is a finite spectrum by assumption). One uses
the first part of proposition 2.23 and the cofiber sequence Sk ↪−→ Y ↠ Y/Sk, where Sk is
a k-cell in Y for some k.

Consider the following diagram, which satisfies the conditions in lemma 3.25.

X K0 K1 K2 . . .

X L0 L1 L2 · · ·
id

Here the spacesK• are the Eilenberg-Maclane spectra from the construction of the Adams
spectral sequence computing [Σ∗Y,X]. By the lemma, we may extend the diagram to
obtain the homotopy-commutative diagram below.

X K0 K1 K2 · · ·

X1 X2
. . .

X L0 L1 L2 · · ·

Y1 Y2
. . .

id

Applying the functors Yt(−) to this diagram, we see that there is a map from the diagram
(3.5) to an analogous diagram for X → L• of patched-together staircase-shaped long
exact sequences coming from applying Yt(−) to the cofiber sequences Yi ↪−→ Li ↠ Yi+1

making all squares commute. Picking out the relevant column Y•(X•) from (3.5) and the
column Y•(Z•) from the analogous diagram corresponding to the sequence X → L•, we
have the following commutative diagram, for all integers i.
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...
...

Yi+n(Xn) Yi+n(Zn)

Yi+n−1(Xn−1) Yi+n−1(Zn−1)

...
...

Yi(X) Yi(Z)
id

If an element in Yi(X) had infinite Adams filtration, this would mean that it pulls back
to an element arbitrarily high in the leftmost column. By construction, the groups in
the rightmost column vanish for large enough n. By the commutativity of the diagram,
it follows for any i that any element in Yi(X) of infinite Adams filtration must be equal
to zero, completing the proof.

Lemma 3.28. Let X and Y satisfy the conditions of theorem 3.24. Let F s,t denote
the Adams filtration just as in theorem 3.24. The subgroup of odd-order torsion T t−s in
[Σt−sY,X] is equal to ⋂

n∈Z
F s+n,t+n ,

the set of elements in [Σt−sY,X] of infinite Adams filtration.

Proof. First, we show that T t−s ⊆
⋂
n F

s+n,t+n. We do this by proving that all vertical
maps in the column Yt−∗(Xs−∗) of (3.5) are isomorphisms when restricted to odd-torsion
elements. From this it is immediate that every element in T t−s ⊆ [Σt−sY,X] gets pulled
back arbitrarily high in this column of (3.5), from which one direction of the lemma
follows.

Consider the diagram (3.5). By remark 3.16 the fully colored columns Yt(Ks) ∼= Homt
A(H

∗Ks, H
∗Y )

are finite Z2-modules for all s, t. This means that all elements in this group are have
order 2.

Suppose we have an element α in the kernel of Yt+1(Xs+1) → Yt(Xs) which is of odd
torsion, meaning k ·α = 0 for some odd integer k. Consider the diagram below, which is
a segment of (3.5) that illustrates our short diagram chase.

k · β k · α = 0

β α

Yt+1(Ks) Yt+1(Xs+1)

Yt(Xs) 0

= =

∈ ∈

∋
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By exactness, α lies in the image of the map Yt+1(Ks) → Yt+1(Xs+1). Let β be an
element which maps to α. Since β 7→ α, it follows that k · β 7→ k ·α = 0. Since Yt+1(Ks)
only has elements of order 2, k · β = β. Consequently, β maps to 0 and to α, which
implies that α = 0, proving injectivity. One can by a similar diagram chase prove that
any odd-torsion element in Yt(Xs) pulls back to an odd-torsion element in Yt+1(Xs+1)
along the map Yt+1(Xs+1)→ Yt(Xs).

It remains to show that the complement of T k lies in the complement of
⋂
n F

n,k+n,
where k = t − s. Let f be an element in the complement of T k, meaning it is 2-torsion
or has infinite order. By the fundamental theorem of finitely generated abelian groups,
it is easy to see that there is a positive integer i such that f does not lie in the image of
the multiplication by 2i map 2i : Yk(X)→ Yk(X).

Let 2i : X → X be the map given by 2i · idX , the 2i-fold sum of the identity map with
itself. The induced map in Yk(−) of πn(−) is precisely given by the multiplication 2i

map. Applying πn(−) to the cofiber sequence

X
2i−→ X

q−→ C2i ,

where C2i denotes the mapping cone, induces a long exact sequence, which constitutes
the top row in the diagram below. The two squares below commute simply due to the
maps involved being group homomorphisms.

πn(X) πn(X) πn(C2i) πn−1(X) πn−1(X)

πn(X) πn(C2i) πn−1(X)

2i q∗

2i

δ

2i

2i

2i

q∗ δ

We claim πn(C2i) consists only of 2-torsion, for any n. To see this, take any element α ∈
πn(C2i). Commutativity in the rightmost square and exactness imply that δ(2iα) = 0.
By exactness, 2iα lies in the image of q∗, which by commutativity in the leftmost square
and exactness implies that 22iα = 0. We remark that f ∈ Yk(X) not lying in the image
of 2i implies by exactness of the sequence obtained by applying Yk(−) to X → X → C2i

that q∗f must be a nonzero element.

Let C2i → (C2i)• be an Adams resolution for C2i , and let L• be the corresponding
sequence of wedges of Eilenberg-Maclane spectra involved in constructing the Adams
spectral sequence. Consider the following diagram, which satisfies the conditions in
lemma 3.25.

X K0 K1 K2 . . .

C2i L0 L1 L2 · · ·

q

Using lemma 3.25, we obtain the following commutative diagram, arguing just like in the
end of lemma 3.28.
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Section 3.3 Convergence and naturality

...
...

Yk+n(Xn) Yk+n((C2i)n)

Yk+n−1(Xn−1) Yk+n−1((C2i)n−1)

...
...

Yk(X) Yk(C2i)
q∗

Lemma 3.28 shows that the only element of infinite Adams filtration in Yk(C2i) is the
zero map. By construction q∗(f) ̸= 0, so q∗(f) cannot be of infinite Adams filtration.
The commutativity of the diagram above thus implies that f cannot be of infinite Adams
filtration, because otherwise q∗(f) would be so too.

We can finally prove the convergence of the Adams spectral sequence.

Proof of Theorem 3.24. Consider the n:th derived couple

An An

En

in

jnkn

of our spectral sequence. We can unroll this to obtain the following exact sequence.

Es+n−2,t+n−2
n · · ·

Es,tn As+1,t
n

As−1,t−1
n

· · · As−n+2,t−n+2
n

As−n+1,t−n+1
n

kn

kn

in jn

kn

in

jn

(3.6)

The exact sequence is written like this is so one can overlay it on the diagram (3.5) and
consider the groups above as subquotients of the corresponding groups in (3.5).

Consider the map in : As,tn → As−1,t−1
n . We claim this is injective for large enough n.

On odd-torsion elements, this follows from the fact that i1 : As,t1 → As−1,t−1
1 is injective

on odd-torsion elements, as was proven in the beginning of lemma 3.28, and that in is
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Section 3.3 Convergence and naturality

simply a restriction of i1. On infinite-order elements, this follows from exactness of the
sequence above, since we know that E∗,∗

n is always a finite 2-group by remark 3.16 and
thus that the image of kn never contains infinite-order elements.

It remains to show that in : As,tn → As−1,t−1
n is an injection on 2-torsion elements, which

we will prove by showing that As,tn has no nonzero 2-torsion elements for large enough n.
By the definition of As,tn , it equals the image of the map (i1)

n−1 : As+n−1,t+n−1
1 → As,t1 .

By corollary 3.26 · · · → Xs+2 → Xs+1 → Xs is an Adams tower for Xs. Consequently,
the subset As,tn ⊆ Yt(Xs) is precisely the subset of maps of Adams filtration ≥ n− 1.

By lemma 3.27 applied on the Adams spectral sequence computing Y∗(Xs), it follows that
for each 2-torsion element in As,tn ⊆ Yt(Xs) we may pick n large enough to guarantee it
is zero. Since Xs is of finite type and Y is finite, Yt(Xs) is a finitely generated abelian
group by lemma 2.24, and thus its subgroup of 2-torsion elements must be finite. We
may thus pick a global n large enough so that As,tn contains no nontrivial 2-torsion at all,
thus proving that in : As,tn → As−1,t−1

n is injective.

By exactness of (3.6), it follows that kn starting at Es,tn is the zero map. Consequently, the
differential dn = jn◦kn starting at Es,tn must be zero for large enough n. Consider now the
differential dn with codomain equal to Es,tn . This map has the domain Es−n,t−n+1

n , which
is zero when n is large enough, making the bidegrees negative, and thus this differential
is the zero map. Therefore, for large enough n, Es,tn = Es,tn+k for all positive integers k,
and thus Es,tn = Es,t∞ .

Furthermore, recall that the map kn starting at Es,tn is zero. By exactness, this implies
that Es,tn is isomorphic to the cokernel of in starting at As−n+2,t−n+2

n . By definition,
As−n+2,t−n+2
n = in−1

1 (As+1,t+1
1 ). For large enough n, this is precisely F s+1,t+1, and

similarly As−n+1,t−n+1
n = F s,t for large enough n. Consequently, the cokernel of in

starting at As−n+2,t−n+2
n is precisely F s,t/F s+1,t+1, completing the proof.

Remark 3.29. The isomorphism F s,t/F s+1,t+1 → Es,t∞ is given by jn for some large
enough n.

Now that we have proved the convergence of the Adams spectral sequence given some
conditions our spectra, we can state more clearly how a map of spectra induces a map of
Adams spectral sequences, and (assuming both spectral sequences are convergent) how
the two short exact sequences describing convergence in the respective spectral sequences
may be compared. In the following, denote the Adams spectral sequence computing [A,B]
by E∗(A,B) and F s,t(A,B) the corresponding Adams filtration.

Theorem 3.30 (Naturality of the Adams spectral sequence).
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Section 3.3 Convergence and naturality

(i) Let X,Y, Z be spectra such that X and Y are finite and Z is connective of finite
type. Then any map f : X → Y induces a map of Adams spectral sequences
f∗n : Es,tn (Y,Z) → Es,tn (X,Z), and a map f∗∞ : Es,t∞ (Y, Z) → Es,t∞ (X,Z) such that
the diagram below commutes. The left and middle vertical maps are simply given
by pre-composition with f .

0 F s+1,t+1(Y,Z) F s,t(Y,Z) Es,t∞ (Y, Z) 0

0 F s+1,t+1(X,Z) F s,t(X,Z) Es,t∞ (X,Z) 0

f∗ f∗ f∗∞

(ii) Let X,Y, Z be spectra such that X and Y are connective of finite type and Z is
finite. Then any map f : X → Y induces a map of Adams spectral sequences
f∗ : Es,tn (Z,X) → Es,tn (Z, Y ) such that the diagram below commutes. The left and
middle vertical maps are simply given by composition with f .

0 F s+1,t+1(Z,X) F s,t(Z,X) Es,t∞ (Z,X) 0

0 F s+1,t+1(Z, Y ) F s,t(Z, Y ) Es,t∞ (Z, Y ) 0

f∗ f∗ (f∗)∞

Proof of part (i). The map f : X → Y induces a natural transformation of functors
[Y,−] → [X,−], given by pre-composition with f , and thus a natural transformation
[ΣtY,−]→ [ΣtX,−] for all t. Let the following diagram be an Adams resolution of Z.

Z K0 K1 K2 K3 . . .

Z1 = K0/Z Z2 = K1/Z1 Z3 = K2/Z2

i0
q0 q1 q2i1 i2 i3

We thus have cofiber sequences Zi ↪−→ Ki ↠ Zi+1 for all i ≥ 0. Applying the homology
theory Yt(−) = [ΣtY,−] or Xt(−) = [ΣtX,−] to the collection of cofiber sequences
gives us two different patched-together staircase diagrams similar to (3.5). The natural
transformations [ΣtY,−]→ [ΣtX,−] for all t thus gives us maps from each group in the
first patched-together staircase diagram to each group in the second staircase diagram
which makes all relevant diagrams commute. More concretely, this gives us the following
commutative diagram between the two exact couples.

A(Y,Z) A(Y,Z)

E(Y,Z)

A(X,Z) A(X,Z)

E(X,Z)

f∗ f∗

f∗
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Section 3.3 Convergence and naturality

It follows that there is a similar commutative diagram involving instead the derived
couples of these two exact couples. By induction, it follows that we have a map f∗ :
En(Y,Z)→ En(X,Z) for all n ≥ 1. By remark 3.29, the isomorphism

F s,t(P,Z)/F s+1,t+1(P,Z) ∼= Es,t∞ (P,Z)

is given by jn, for P = X,Y . The commutativity of the diagram above implies that the
rightmost square in the diagram below commutes.

0 F s+1,t+1(Y, Z) F s,t(Y, Z) Es,t∞ (Y, Z) 0

0 F s+1,t+1(X,Z) F s,t(X,Z) Es,t∞ (X,Z) 0

f∗ f∗ f∗∞

The commutativity of the leftmost square is obvious.

Proof of part (ii). Let X → X• be an Adams resolution, and K• be the sequence of
wedges of Eilenberg-Maclane spectra involved in the construction of the resolution. Sim-
ilarly, let Y → Y• be an Adams resolution, with corresponding wedges of Eilenberg-
Maclane spectra L•. By lemma 3.25, we obtain the following homotopy-commutative
diagram.

X K0 K1 K2 · · ·

X1 X2
. . .

Y L0 L1 L2 · · ·

Y1 Y2
. . .

f

The cofiber sequences Xs → Ks → Xs+1 and Ys → Ls → Ys+1 gives us long exact
sequences in the homology theory [Σ∗Z,−]. By the diagram above, we have a map
between these two long exact sequences, which means having the commutative diagram

· · · [ΣtZ,Xs] [ΣtZ,Ks] [ΣtZ,Xs+1] [Σt−1Z,Xs] · · ·

· · · [ΣtZ, Ys] [ΣtZ,Ls] [ΣtZ, Ys+1] [Σt−1Z, Ys] · · ·

for all s, t. By taking direct sums over s, t we obtain the following commutative diagram,
comparing the exact couples associated to the respective spectral sequences.

A(Z,X) A(Z,X)

E(Z,X)

A(Z,Y ) A(Z,Y )

E(Z,Y )

f∗ f∗

f∗
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Section 3.4 Multiplicative structure

Just as before, it follows thus that f induces a map f∗ : Es,tn (Z,X) → Es,tn (Z, Y ) for all
n ≥ 1. Just as before, since jn induces the convergence isomorphism for large enough n,
and the diagram above commutes, it follows that the diagram

0 F s+1,t+1(Z,X) F s,t(Z,X) Es,t∞ (Z,X) 0

0 F s+1,t+1(Z, Y ) F s,t(Z, Y ) Es,t∞ (Z, Y ) 0

f∗ f∗ (f∗)∞

commutes, completing the proof.

3.4 Multiplicative structure
We will finish off this section by showing that the Adams spectral sequence has a mul-
tiplicative structure. First, we will give some definitions of a product structure on Ext
groups.

Given the graded A-modules L,M,N , there is an associative pairing

Exts,tA (M,N)⊗ Exts
′,t′

A (L,M)→ Exts+s
′,t+t′

A (L,N)

given as follows. Let P• → M and P ′
• → L be projective resolutions. Take α ∈

Exts,tA (M,N) and α′ ∈ Exts
′,t′

A (L,M), and let f ∈ Homt
A(Ps, N) and f ′ ∈ Homt′

A(Ps′ ,M)
be their respective representatives. Consider the following diagram with filled-in arrows.

M P0 P1 · · · Ps · · ·

Ps′ Ps′+1 · · · Ps′+s · · ·
f ′

f ′0 f ′1 f ′s

Since the rows are exact and the bottom row consists of projective modules, one can
extend this to a commutative diagram including the dashed arrows f ′•. Notice that the
composition f ◦ f ′s lies in Homt+t′

A (Ps+s′ , N).

Definition 3.31. The Yoneda product αα′ of α and α′ given above is given by the
equivalence class of f ◦ f ′s in Exts+s

′,t+t′

A (L,N).

One can verify that this pairing is independent of all choices of lifts, and thus that it is
well-defined. One can also show that it is associative and bilinear.

Recall that given an exact sequence of modules, there is a long exact sequence in Ext.
This also holds in the setting of graded modules, in which case the Ext group also inherits
a grading. In fact, the connecting homomorphisms of these long exact sequences may be
described as taking the Yoneda product with the short exact sequence, represented as an
element in the appropriate Ext1 group.
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Section 3.4 Multiplicative structure

To make this more precise, recall that there is a bijection between set of equivalence
classes of extensions 0 → A → ? → B → 0 of R-modules and Ext1R(B,A). For a
reference to this fact, see theorem 3.4.3 in [29]. If we suppose A and B above are graded
R-modules, then the equivalence classes of extensions is in bijection with Ext1,0R (B,A).
Given a short exact sequence 0 → L → M → N → 0 of graded A-modules, there is
thus a corresponding element α ∈ Ext1,0A (N,L). Also, given another graded A-module
K, there are two long exact sequences in Ext, given by

· · · → Exts,tA (K,L)→ Exts,tA (K,M)→ Exts,tA (K,N)→ Exts+1,t+1
A (K,L)→ · · ·

and

· · · → Exts,tA (N,K)→ Exts,tA (M,K)→ Exts,tA (L,K)→ Exts+1,t+1
A (N,K)→ · · ·

for all t. The bidegree-preserving maps are the obvious ones induced by the maps in the
short exact sequence.

Proposition 3.32. The connecting maps

Exts,tA (K,N)→ Exts+1,t+1
A (K,L) and Exts,tA (L,K)→ Exts+1,t+1

A (N,K)

are given by left and right multiplication with α ∈ Ext1,0A (N,L), respectively.

We will illustrate how exactly α is constructed from the extension 0→ L→M → N → 0.
From this, the proof of the proposition above will follow from some diagram chasing,
which we will omit. Let P• → N be a projective resolution and consider the diagram
below, with only the filled-in arrows.

· · · P1 P0 N

0 L M N 0

f id

Since the both rows are exact and the top row consists of projective modules (except
possibly N but it does not matter), it follows that we can extend the diagram with the
dashed arrows. Notice that f ∈ Hom1,0

A (P1, L). One can verify that this is a cocycle. We
define α to be the equivalence of f in Ext1,0(N,L).

We can now describe how one can multiply elements in the Adams spectral sequence,
and how this relates to the Yoneda product. Let E∗,∗

∗ (X,Y ) denote the spectral sequence
computing [Σ∗X,Y ].

Proposition 3.33. For each integer n ≥ 2 and all s, s′, t, t′, there is a natural bilinear
and associative pairing

Es,tn (Y,Z)⊗ Es′,t′n (X,Y )→ Es+s,t+t
′

n (X,Z)

such that the following holds.
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Section 3.4 Multiplicative structure

• When n = 2, the pairing is the Yoneda product.

• The differentials dn are an derivations with respect to this product, meaning
dn(αβ) = dn(α)β + αdn(β).

• The product structure on En passes thus to a product structure on its homology
groups. This product is precisely the product we have defined on En+1.

Proof. Theorem 2.1 in [25].
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4 Ext Calculation
The sole purpose of this section is to prove that the graded map of A-modules ϕ : Z2 → P
given by λ 7→ λx0 induces an isomorphism ϕ∗ : Exts,tA (Z2,Z2)→ Exts,tA (Z2, P ) for all s, t.
The module P will be introduced shortly. The domain of ϕ∗ consists precisely of the
E2 page of the Adams spectral sequence computing [S∗, S0], the stable (co)homotopy of
spheres. The codomain of ϕ∗ (in some appropriate range) will prove to be precisely the
E2 page of the Adams spectral sequence computing the stable cohomotopy of infinite
projective space.

Historically, it was first conjectured by Adams in [3] that the simplest possibility is that
a similar Ext group as to the one we are interested in, Exts,tA (Σ−1Z2,Z2), is isomorphic
to Exts,tA (P,Z2). Adams guessed that the splitting isomorphism exhibited in the sketch
of the proof below would hold, and then that by passing to inverse limits, one could
get such an isomorphism of Ext groups. Lin, Davis and Mahowald proved in [20] that
both of Adams’ conjectures hold, and from this prove that ϕ∗ as mentioned above is an
isomorphism! This article is our primary reference for the entire section.

This isomorphism of Ext group will thus allow us to compare these spectral sequences,
and will be of utmost importance to our spectral sequence argument in the last section.
In my opinion, the spectral sequence part of computing the stable cohomotopy of RP∞

can almost be considered a straightforward corollary, once one has this isomorphism.
The non-triviality of computing π∗s(RP∞) comes mainly from the material that lies in
this section.

To impress upon the reader how non-trivial this isomorphism of Ext groups is, we note
that computing Ext groups of modules over the Steenrod algebra, even in the case
Exts,tA (Z2,Z2), is incredibly nontrivial. Computing these groups just amounts to tak-
ing a free resolution of Z2 (a tiny module consisting of only two elements), applying the
functor Homt

A(−,Z2) and computing the cohomology groups. Of course, if these Ext
groups were easy to compute, we would have complete knowledge of the E2 page of the
Adams spectral sequence computing [S∗, S0] and thus have a lot of information [S∗, S0],
so it makes sense that this should be hard.

One way Exts,tA (Z2,Z2) is computed is by constructing a minimal free resolution F• → Z2,
which means that at each step, Fi is constructed by taking the minimum number of free
generators in each degree. Doing this, lemma 5.49 in [14] proves that the boundary maps
in the complex Homt

A(F•,Z2) are all zero, and thus that Exts,tA (Z2,Z2) = Homt
A(Fs,Z2)

for all s, t. The advantage of this method is that computing the Ext groups reduces
to constructing a minimal free resolution within a certain (finite) range, and this is
something a computer can do. See Bruner’s and Rognes’ preprint [10] for more on this.

The problem is, however, that we want to compare Exts,tA (Z2,Z2) and Exts,tA (Z2, P ) in
an infinite range, namely for all s, t. The main difficulty, which is what makes the proof
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Section 4.1 Sketch of the proof

of the isomorphism so nontrivial, is that we are exhibiting an isomorphism for all s, t
between two groups, neither of which we know much about.

We will now introduce some modules and rings involved in the proof. Let A be the
Steenrod algebra, as defined in definition 2.32. It is known that the subset {Sq0}∪{Sq2

i |
i ≥ 0} generates A as an algebra, see Corollary 1 on page 47 in [24]. With this in mind,
we define An as the subalgebra generated by {Sq2

i | 0 ≤ i ≤ n}. Let P be the graded
A-module Z2[x, x

−1], where |x|= 1. The A-module structure on P is given by

Sqixk =

{(
k
i

)
xk+i if k ≥ 0(

2m+k
i

)
xk+i if k < 0 ,

where the binomial coefficients are taken modulo 2, and m is some large positive integer
compared to |k| and i. We will later discuss why this action is well-defined, but for the
moment let us take it for granted. Define Qk,n as the An-submodule of P generated by
{xi | i < k}.

The reason we define the A-module structure of P like this is because the A-module
structure of the total cohomology of finite and infinite stunted projective spaces will
coincide with submodules and subquotients of P .

Before moving on to giving a sketch of the proof, we will remark that for the entirety
of this section all modules will be graded, and all maps between modules will thus be
assumed to be graded maps, unless explicitly told otherwise.

4.1 Sketch of the proof

Even though we want to show that the map ϕ∗ : Exts,tA (Z2,Z2) → Exts,tA (Z2, P ) is an
isomorphism, we will for the for the majority of the section deal with Tor groups instead.
Namely, we will show that the map γ : P → Σ−1Z2 given by

∑
i λix

i 7→ λ−1 induces an
isomorphism γ∗ : TorAs,t(Z2, P )→ TorAs,t(Z2,Σ

−1Z2). After proving some results adjacent
to the tensor-hom adjunction, we derive our desired isomorphism of Ext groups.

The most important and nontrivial lemma in this proof is that we have a splitting, given
by the isomorphism

A⊗An P/Qk,n
∼=

⊕
i≥k

i≡−1 mod 2n+1

ΣiA⊗An−1 Z2

of A-modules, for all n and k, such that the diagram

A⊗An P/Qk,n

⊕
i≥k

i≡−1 mod 2n+1

ΣiA⊗An−1 Z2

A⊗An P/Qk+1,n

⊕
j≥k+1

j≡−1 mod 2n+1

ΣjA⊗An−1 Z2

∼=

proj θ

∼=

(4.1)
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and the diagram below commute. Do not worry about the details of these maps for now.
We will explain it all when the time comes.

A⊗An P/Qk,n

⊕
i≥k

i≡−1 mod 2n+1

ΣiA⊗An−1 Z2

A⊗An+1 P/Qk,n+1

⊕
k≥k

j≡−1 mod 2n+2

ΣjA⊗An Z2

∼=

proj ψ

∼=

(4.2)

Furthermore, we prove a natural change of rings isomorphism TorAs,t(Z2, A ⊗An M) ∼=
TorAn

s,t (Z2,M), where M is any left An-module. Applying the functor TorAs,t(Z2,−) on
(4.1) and using this change of rings isomorphism, we obtain an isomorphism of inverse sys-
tems. In fact, one can show that the inverse limit of the leftmost inverse system is isomor-
phic to TorAn

s,t (Z2, P ) and the inverse limit of the rightmost system is
⊕

i TorAn
s,t (Z2,Σ

iZ2)
such that i ≡ −1 mod 2n+1, with no boundedness condition on the index i anymore.
Applying TorAs,t(Z2,−) on (4.2) and using this isomorphism of inverse, limits, we will
obtain the diagram below.

TorAn
s,t (Z2, P )

⊕
i≡−1 mod 2n+1

TorAn−1

s,t (Z2,Σ
iZ2)

TorAn+1

s,t (Z2, P )
⊕

j≡−1 mod 2n+2

TorAn
s,t (Z2,Σ

jZ2)

∼=∼=

proj∗ ψ∗

∼=∼=

The direct limit of the leftmost system is TorAs,t(Z2, P ). By the nature of the maps ψ∗,
we will see that the direct limit of the rightmost system is TorAs,t(Z2,Σ

−1Z2). So we have
an isomorphism between these direct limits. We will then show that γ∗ : TorAs,t(Z2, P )→
TorAs,t(Z2,Σ

−1Z2) is the inverse to this isomorphism, implying that γ∗ is an isomorphism,
completing the sketch proof.

4.2 The A-module P

Let us now return to the question of why the action of A on P is well defined, in the
sense that it is independent of the choice of m. To prove this, we need the lemma below,
which will come in handy many times for determining how A acts on the module P .

Definition 4.1. For a non-negative integer n, we mean by its dyadic expansion the
unique sum n =

∑
i≥0 ni · 2i such that ni is 0 or 1 for all i.
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Lemma 4.2. For positive integers m and n, with m =
∑

imi2
i and n =

∑
i ni2

i their
respective dyadic expansion, (

m

n

)
≡
∏
i

(
mi

ni

)
mod 2 .

Proof. Lemma 3C.6 in [13]

The proof of the lemma below contains an explanation as to why the A-module structure
of P is well defined.

Lemma 4.3 (Periodicity property of P as An-module). For a ∈ An and any integer k,
axk ̸= 0 if and only if axk+2n+1 ̸= 0.

Proof. Since An is generated by the elements Sq0, Sq1, . . . , Sq2
n
, it suffices to prove the

result for a = Sq2
i

for some i such that 0 ≤ i ≤ n. Assume first that k is non-negative.
then

axk =

(
k

2i

)
xk+2i .

Notice that the coefficients in the dyadic expansion of 2i are all zero, except the i:th one,
which is one. By the lemma above, it follows that(

k

2i

)
=

(
ki
1

)
,

where k =
∑

i ki2
i is its dyadic expansion. Furthermore, notice that since i < n+ 1, the

dyadic expansion of k and k+2n+1 agree on the first n terms of the sum. In particular, the
i:th coefficients are the same in the dyadic expansions of k and k + 2n+1. Consequently,(

k + 2n+1

2i

)
=

(
ki
1

)
by the lemma above, and thus

axk+2n+1
=

(
ki
1

)
xk+2n+1+2i .

Therefore, axk is nonzero if and only if axk+2n+1 is nonzero in the case when k ≥ 0.

Assume now that k is negative. If we define axk = Sq2
i
xk to be equal to(

2m + k

2i

)
xk+2i

for m large enough with respect to |k| and i, the proof will follow in the same manner. We
may pick m large enough so that 2m + k is positive and such that the dyadic expansion
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of 2m + k remains unchanged in the first m − 1 terms. It then follows that this action
of A on P is well-defined, since for any i = 0, . . . , n,

(
2m+k
2i

)
will be constant for large

enough m. Since 2m + k is positive, it follows now from the argument above that(
2m + k

2i

)
=

(
2m + k + 2n+1

2i

)
,

so the coefficient in front of axk equals the coefficient in front of axk+2n+1 . Notice
that if k + 2n+1 is already positive, we need not add 2m in the binomial coefficient, but
either way, the i:th coefficient of the dyadic expansion of k + 2n+1 and 2m + k + 2n+1

will be the same, so it will not matter. Therefore, axk ̸= 0 if and only if axk+2n+1 ̸= 0 in
the case when k is negative as well.

Using this periodicity property, we notice another periodicity phenomenon.

Corollary 4.4 (Periodicity isomorphisms). For all integers k and n, we have a isomor-
phisms

Σ2n+1
P/Qk,n ∼= P/Q2n+1+k,n

of An-modules given by xi 7→ xi+2n+1 .

Proof. The map Σ2n+1
P → P given by xi 7→ xi+2n+1 is clearly a bijection. It is An-

linear precisely by the periodicity property above. It descends to the quotient to give
our desired isomorphism.

Lemma 4.5. As a module over An, P is generated by the elements xi such that x ≡ −1
mod 2n+1.

Proof. Suppose i = 2n+1 − 1 and that j is some integer such that 0 ≤ j < 2n+1. Then
Sqjxi =

(
i
j

)
xi+j . The dyadic expansions of i and j are

i =
n∑

α=0

1 · 2α and j =
n∑

α=0

jα2
α ,

where jα ∈ {0, 1}. By lemma 4.2, (
i

j

)
=

n∏
α=0

(
1

jα

)
,

but since jα ∈ {0, 1} for all α, all binomial coefficients on the right hand side are equal to
one, and thus the expression above equals one. Consequently, Sqjxi = xi+j = x2

n+1−1+j .
Furthermore, one can show by induction on j and an application of the Adem relations
that Sqj ∈ An for all 0 ≤ j < 2n+1, so x2

n+1−1+j ∈ spanAn
(P ). For a spelled-out

proof, see proposition 4L.8 in [13]. Moving on, lemma 3.2 implies that Sqjxk·2n+1−1 =
xk·2

n+1−1+j ∈ spanAn
(P ) for all integers k. By the division algorithm, any integer can

be written in the form k · 2n+1 − 1 + j. It follows that xr ∈ spanAn
(P ) for all integers

r.
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By our periodicity isomorphisms and the lemma above, we conclude that by studying the
submodule Qk,n for some fixed k, we may recover all information on the whole family of
submodules Qk,n as k varies. Notice that the proof of the lemma 4.5 shows us that taking
only the powers xi such that i < k and i ≡ −1 mod 2n+1 suffices to generate all of Qk,n.
Consequently, Qk,n = Qk̃·2n+1−1,n for all k such that (k̃− 1) · 2n+1− 1 < k ≤ k̃ · 2n+1− 1.

To this end, fix n, and let Q = Q−1,n, Q′ = Q2n+1−1,n and Q′′ = Q2·2n+1−1,n. All the
proofs we present below that hold for Q will also hold for Qk,n, for any integer k, modulo
some obvious indexing modifications. We focus on Q and Q′ to simplify notation.

As a quick remark, note that we are suspending the leftmost module below by −1 to
make the map graded.

Lemma 4.6. We have an isomorphism

Σ−1An ⊗An−1 Z2 → Q′/Q

of An-modules given by a⊗ 1 7→ ax−1.

Proof. To show that this map is well-defined, we need to show that the associated bilinear
map Σ−1An × Z2 → Q′/Q is An−1-balanced, which reduces to showing that for any
a ∈ An−1, (a, 1) maps to 0, except when a = Sq0, and then (a, 1) 7→ x−1, because
An−1\{Sq0} acts trivially on Z2 and Sq0 is the identity element. It suffices to prove this
on the generators of An−1, so assume a = Sq2

i
for some 0 < i ≤ n− 1.

Assume m is an integer larger than n. The dyadic expansion of 2m − 1 is given by∑m−1
k=0 1 · 2k, so the dyadic expansion of 2m − 1 − 2n is given by a similar expression,

except with the coefficient for 2n set to zero. Notice now that in the dyadic expansion
of 2m − 1 − 2n, adding 2i has the effect of flipping the coefficients in front of the terms
2k for k ≥ i from one to zero until it reaches the n:th coefficient which turns from zero
to one. That is, 2m − 1 − 2n + 2i =

∑
k=0 ak2

k, where ak = 1 for 0 ≤ k < i and k ≥ n
and ak = 0 other otherwise. It follows by lemma 4.2 that(

2m + 2i − 1− 2n

2n

)
= 1 ,

and it clear that (
2m − 1

2i

)
= 1 .

Consequently, ax−1 = Sq2
i
x−1 = Sq2

n
x2

i−1−2n . Since the right hand side lies in Q, it
follows that ax−1 = 0 ∈ Q′/Q, so the map Σ−1An ⊗An−1 Z2 → Q′/Q is well-defined.

By lemma 4.5, {xi | i < 2n+1 − 1, i ≡ −1 mod 2n+1} generates Q′ as an An-module,
so [x−1] ∈ Q′/Q generates all of Q′/Q as an An-module, which implies that the map
Σ−1An⊗An−1 Z2 → Q′/Q is surjective. Since this map is may also be seen as a Z2-linear
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map, if we can show that the domain and codomain have the same dimension as a Z2-
vector space, it follows also that it is injective by linear algebra, and thus an isomorphism
of An-modules.

In [18], Lin explains that An is free as a right An−1-module (module structure given
by multiplication) with basis given by the set of Milnor basis elements Sq(r1, . . . , rn+1)
such that ri ∈ {0, 2n+1−i} for all i. We define the Milnor basis in the start of the next
subsection, so look there if you want to recall the definition, but all we need to know
is that there is a set of 2n+1 elements in An\An−1 which freely span An as a right
An−1-module. The image of these elements in the tensor product An ⊗An−1 Z2 will be
linearly independent over Z2 because the elements described above are elements which
lie in An but not in An−1, and they also span all of the tensor product because the map
An → An ⊗An−1 Z2 is surjective. Consequently, the Z2-dimension of the tensor product
is 2n+1.

It remains to show that dimZ2 Q/Q
′ = 2n+1 as well. Fix an integer i such that 0 ≤

i < 2n+1. Then there is a maximal integer q such that xq2n+1+i ∈ Q′. Otherwise, Q′

would have elements of arbitrarily high degree, which is impossible because An is a finite
algebra and Q′ is the An-span of a set of elements which have degree bounded above, so
the degree of all elements in Q′ are bounded above by some number. By the maximality
of q, it also follows that xq2n+1+i does not lie in Q because if it were so, then we could
have chosen q to be larger.

By the definition of Q′, it follows that there is some a ∈ An and xk such that k < 2n+1−1
and such that xq2n+1+i = axk. By the periodicity property (lemma 4.3), it follows that
axk−q

′2n+1
= x(q−q

′)2n+1+i as well, for any positive integer q′. Notice that this is also
an element in Q′. In fact, this is an element in Q. Consequently, the only power of
x equivalent to i modulo 2n+1 which lies in Q′ but not in Q is given by xq2

n+1+i. It
follows that as a Z2-module, Q′/Q is 2n+1 dimensional, with one basis element for each
congruence class of 2n+1. This completes the proof that the map An ⊗An−1 Z2 → Q′/Q
is an isomorphism.

We will take for granted proposition 2.3(a) in [17] which states the following.

Lemma 4.7. If an A-module P is projective, then P is as an An-module for all n.

Since A is a projective A-module, it follows by the lemma above that it is a projective
An-module, and thus a flat An-module since projective implies flat. Using this, we prove
the following.

Lemma 4.8. We have a short exact sequence

0→ Σ−1A⊗An−1 Z2
α−→ P/Q→ P/Q′ → 0

of A-modules.
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Proof. Obviously we have a short exact sequence

0→ Q′/Q→ P/Q→ P/Q′ → 0

of An-modules. Using our isomorphism from lemma 4.6, we get the short exact sequence

0→ Σ−1An ⊗An−1 Z2 → P/Q→ P/Q′ → 0

of An-modules. Since A is flat over An, we may apply the exact functor A⊗An−1 (−) to
get our desired short exact sequence of A-modules.

In the next section, we will prove that this short exact sequence splits and that this
splitting makes the relevant diagrams, mentioned in the sketch proof, commute.

4.3 Splitting
To prove the splitting of the short exact sequence in lemma 4.8, we need to make a
quick detour to speak more about the structure of the Steenrod algebra and its dual.
First, we note that A is a Hopf algebra, as proven in [22]. This means that it has an
associative algebra structure, with multiplication given by µ : A ⊗ A → A and a unit
map Z2 → A. Also, it has a coassociative coalgebra structure, with a comultiplication
map ψ : A→ A⊗A determined by

Sqn 7→
∑
i+j=n

Sqi ⊗ Sqj

and a counit A → Z2 determined by the map Sqi 7→ 0 if i > 0 and Sq0 7→ 1. Finally, it
has an anti-automorphism χ : A → A which is determined by the commutativity of the
following diagram.

A⊗A A⊗A

A Z2 A

A⊗A A⊗A

χ⊗1

µψ

ψ
1⊗χ

µ

The commutativity of this diagram allows us to completely determine χ by induction.
Notice that χ(Sq0) = Sq0 by the commutativity of the diagram. For n ≥ 1, we have by
the commutativity that∑

i+j=n

χ(Sqi) · Sqj =
∑
i+j=n

Sqi · χ(Sqj) = 0 .

The Z2-dual of the Steenrod algebra A∗ := HomZ2(A,Z2) is also a Hopf algebra. As luck
would have it, A∗ is a much more manageable algebra than A. In fact, Milnor proves in
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[22] that A∗ is a polynomial ring Z2[ζ1, ζ2, . . . ] with ζi lying in degree 2i− 1 for all i ≥ 0.
The dual of the multiplication map µ : A⊗ A→ A turns into the comultiplication map
A∗ → A∗ ⊗A∗ for A∗, determined by

ζn 7→
∑
i+j=n

ζ2
j

i ⊗ ζj .

Since A∗ is a polynomial ring, it has a Z2-basis given by the set of all products
∏
i≥1 ζ

ri
i

where the sequence (ri)i ranges over all sequences of non-negative integers with fi-
nite support. The dual basis of this defines a Z2-basis {Sq(r1, r2, · · · , ) | ri ≥ 0}
for A, which we call the Milnor basis. That is, Sq(r1, r2, . . . ) is defined such that
ξs11 ξ

s2
2 . . .

(
Sq(r1, r2, . . . )

)
= 1 if (s1, s2, . . . ) = (r1, r2, . . . ) and equal to zero otherwise.

The Milnor basis relates to the subalgebras An as follows.

Lemma 4.9. The subalgebra An is a finite dimensional Z2-module, with a basis given
by

{Sq(r1, r2, . . . , rn+1) | ri < 2n+2−i for i ≤ n+ 1 and ri = 0 for i > n+ 1} .

Proof. Proposition 2 in [22].

Using the natural identification of A with its double dual A = A∗∗, we may thus make
the identification

An =
(
A∗/(ξ2

n+1

1 , ξ2
n

2 , . . . , ξ2
2

n , ξn+1, ξn+2, . . . )
)∗

.

If we take the dual of a smaller quotient of A∗, we obtain the group

B =
(
A∗/(ξ2

n

2 , . . . , ξ2
2

n , ξn+1, ξn+2, . . . )
)∗

.

By this description of An, one can verify that the comultiplication map A∗ → A∗ ⊗ A∗

restricts to a map B∗ → B∗ ⊗ A∗
n−1, so taking the dual gives us a map B ⊗ An−1 → B,

which imbues B with a right An−1-module structure. Similarly, the comultiplication
restricts to a map B∗ → An ⊗ B∗, so B is also a left An-module. Lin explains in [20]
that B is free as a right An−1-module by theorem 4.4 of [23]. Taking this for granted, we
may prove the following isomorphism in the lemma below, but first, we need a definition
and a lemma which we also take for granted.

Definition 4.10. Let M be a graded A-module that has finite Z2-dimension in each
graded component and vanishes in degrees below zero. That is, Mn is zero for n < 0 and
is a finite-dimensional Z2-module for n ≥ 0. Define the Hilbert series H(M) of M to be
the power series given by

H(M) =
∞∑
n=0

dimZ2 M
n · tn .
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Lemma 4.11. If A is a connected graded algebra over Z2 (like the Steenrod algebra),
and B is a free graded right A-module, and C is a graded left A-module (with finite-
dimensional graded components, so that H(B) and H(C) are well-defined), then

H(B ⊗A C) =
H(B)H(C)

H(A)

Proof. Lemma 7 in [6] shows that

H(B)H(C)

H(A)
=
∑
i≥0

H(TorAi (B,C)) .

Since B is free over A, it is in particular flat, and thus all higher Tor groups vanish, and
TorA0 (B,C) = B ⊗A C, completing the proof.

Let us now fill in the missing step to prove that the short exact sequence of lemma 4.8
splits.

Lemma 4.12. The map
β : Σ−1B ⊗An−1 Z2 → P/Q

given by β(b⊗ 1) = bx−1 is an An−1-module isomorphism.

Proof. The map is well-defined because the associated bilinear map Σ−1B × Z2 → P/Q
is a restriction of the previously defined map Σ−1A× Z2 → P/Q in the proof of lemma
4.6, which we already showed was An−1-balanced.

To prove that β is surjective, we will show that Sqi ∈ B for all i. Notice that by the
description of B above, this is equivalent to showing that evaluating any element in the
ideal (ξ2n2 , . . . , ξ2

2

n , ξn+1, ξn+2, . . . ) ⊆ A∗ at Sqi gives you zero. Proposition 8 in section 6
of [24] show that Sq(i, 0, 0, . . . ) in fact equals Sqi, meaning that Sqi is dual to the element
ξi1. It follows that that evaluating any element in the ideal above at Sqi will give you
zero, since it does not contain ξi1, and consequently, Sqi ∈ B.

Notice now that β(Sqi ⊗ 1) = Sqix−1 = xi−1 for all i. That is, the action of Sqi on x−1

is always nontrivial, from which it follows that β is surjective. This is because
(
2m−1
i

)
,

for some m large enough, is always equal to 1 due to lemma 4.2, because the dyadic
expansion of 2m−1 consists only of ones in the coefficients that matter. The argument is
completely analogous to the one proving that Sqjxi = xi+j in the beginning of the proof
of lemma 4.5.

It remains to prove that β is injective. To do this, we will show that each graded
component of Σ−1B ⊗ Z2 and P/F has the same dimension over Z2 (notice that each
graded component of these modules are finite-dimensional). That is, it suffices to show
that the Hilbert series of these two modules agree. Since β is in particular a surjective
Z2-linear map between the graded components, it will then follow by linear algebra that
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β induces isomorphisms between the graded components as Z2-modules. In particular, it
will be an injection on graded components, and since β is a graded map, it follows that
β must be an injection.

Notice that β restricts to the isomorphism Σ−1An ⊗An−1 Z2 → Q′/Q of lemma 4.6.
There we mentioned an explicit Z2-basis {Sq(r1, . . . , rn+1) | ri = 0 or ri = 2n+1−i} for
Σ−1An ⊗An−1 Z2. Since the degree of Sq(r1, . . . , rn+1) equals

∏n+1
i=1 (2

i − 1)ri, it follows
that the Hilbert series H(An ⊗An−1 Z2) equals

n+1∏
i=1

1 + x(2
i−1)2n+1−i

,

and thus that H(Q′/Q) = H(Σ−1An ⊗An−1 Z2) = x−1H(An ⊗An−1 Z2).

Since all exact sequences split over a field, we have that P/Q is isomorphic to the direct
sum of its filtration quotients. That is,

P/Q ∼=
⊕
i≥0

Q(i+1)·2n+1−1,n/Qi·2n+1−1,n

∼=
⊕
i≥0

Σi·2
n+1

Q′/Q

as graded Z2-modules, where the second isomorphism comes from the periodicity iso-
morphism (corollary 4.4). Consequently,

H(P/Q) =
∑
i≥0

xi·2
n+1

H(Q′/Q)

=
H(Q′/Q)

1− x2n+1 .

By lemma 4.11,

H(Σ−1B ⊗An−1 Z2) = x−1H(B ⊗An−1 Z2) =
H(B) · 1
xH(An−1)

. (4.3)

Using the explicit algebraic description of B given in the discussion of the dual Steenrod
algebra, we see that it has the additive basis

{Sq(r1, . . . , rn+1) | r1 ≥ 0, ri < 2n+2−i for i ≥ 2} .

Consequently, by combinatorics,

H(B) =
1

1− x
·
r+1∏
i=2

1− x(2i−1)2r+2−i

1− x2i−1
,
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and similarly one shows that

H(An−1) =
r∏
i=1

1− x(2i−1)2r+1−i

1− x2i−1
.

From these identities, it is easy to verify that H(B)/xH(An−1) = H(Q′/Q)/(1− x2n+1
),

and thus one concludes by (4.3) that H(P/Q) = H(Σ−1B ⊗An−1 Z2), completing the
proof.

The isomorphism proven above pieces together into the following commutative diagram,
where the map µ is given by multiplication and α is the leftmost map in the short exact
sequence of lemma 4.8:

Σ−1A⊗An−1 Z2 A⊗An P/Q

Σ−1A⊗An B ⊗An−1 Z2

α

µ⊗1
1⊗β∼=

To see that it actually commutes, note first that by linearity it suffices to prove com-
mutativity on simple tensors. Given any element a ⊗ b ⊗ k in the bottom right group,
α(µ ⊗ 1(a ⊗ b ⊗ k)) = α(ab ⊗ k) = ab ⊗ k · x−1. By the algebraic description of An
and B given in the introduction of the dual Steenrod algebra, we see that A∗

n is a
quotient of B∗, so taking duals gives us that B is a submodule of An. Consequently,
ab⊗ k · x−1 = a⊗ k · bx−1 = (1⊗ β)(a⊗ b⊗ k), so the diagram commutes. Finally, we
can prove our desired splitting lemma.

Lemma 4.13. We have a splitting

A⊗An P/Q
∼=
⊕
i≥0

Σi·2
n+1−1A⊗An−1 Z2

as A-modules.

Proof. By the commutativity of the diagram above, it follows that (µ ⊗ 1)(1 ⊗ β−1) ◦
α is the identity, and thus that the short exact sequence given in lemma 4.4 splits.
Consequently,

A⊗An P/Q
∼=
(
Σ−1A⊗An−1 Z2

)
⊕
(
A⊗An P/Q

′
)

(4.4)

as graded A-modules. Since P/Q′ ∼= Σ2n+1
P/Q as An-modules, it follows that

A⊗An P/Q
∼=
(
Σ−1A⊗An−1 Z2

)
⊕
(
Σ2n+1

A⊗An P/Q
)
,

so by induction

A⊗An P/Q
∼=
(
Σ(r+1)·2n+1

A⊗An P/Q
)
⊕

r⊕
i=0

Σi·2
n+1−1A⊗An−1 Z2
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for all r. Given any integer d, consider the degree d part of the left hand side. Depending
on d, we may always pick r large enough so that the degree d part of the leftmost factor
on the right hand side vanishes. This is because the smallest non-vanishing degree in
A is zero, and for P/Q it is −1, so for the leftmost factor it vanishes below degree
(r + 1) · 2n+1 − 1, so making r large enough, this term must vanish at degree d. This
implies that on each graded component the left hand side always equals the rightmost
component on the right hand side, and thus the result follows.

To describe the splitting more explicitly, we will provide the elements which under the
splitting get mapped to the generators of the respective cyclic modules A⊗An−1 Z2. Let
χ : A→ A be the canonical antiautomorphism of A and define the elements

yk =
∑
i+j=k

χ(Sqi)⊗ xj

in A⊗An P/Q. Notice that this sum is finite due to the automatic restrictions i ≥ 0 and
j ≥ −1.

Lemma 4.14. For each k ≥ 0, the splitting in lemma 4.6 sends yk·2n+1−1 to the generator
of Σk·2n+1−1A⊗An−1 Z2.

Proof. Explicitly, original splitting isomorphism in (4.4) is given by

b 7→
(
(µ⊗ 1)(1⊗ β−1)(b) , b− α(µ⊗ 1)(1⊗ β−1)(b)

)
,

where the leftmost factor in the codomain is isomorphic to the image of α and the
rightmost factor is isomorphic to the kernel of (µ ⊗ 1)(1 ⊗ β−1). This is the splitting
lemma from elementary abstract algebra. Notice that y−1 = χ(Sq0)⊗x−1 = 1⊗x−1 and
that βSq0 = x−1. From this it follows that the isomorphism above sends y−1 to (1, 0),
that is, to the generator of the leftmost factor A⊗ Z2.

We will now show that yk for k > −1 lands in the rightmost factor under the original
splitting isomorphism (4.4), meaning that yk 7→ (0, yk). This is equivalent to yk lying in
the kernel of (µ⊗1)(1⊗β−1). Recall that β(Sqj+1⊗1) = xj for all j ≥ −1, as explained
in the proof of lemma 4.5. It follows that

(µ⊗ 1)(1⊗ β−1)

 ∑
i+j=k

χ(Sqi)⊗ xj
 = (µ⊗ 1)

 ∑
i+j=k

χ(Sqi)⊗ Sqj+1 ⊗ 1


= (µ⊗ 1)

 ∑
i+(j+1)=k+1

χ(Sqi)⊗ Sqj ⊗ 1


=

∑
i+(j+1)=k+1

χ(Sqi)Sqj ⊗ 1 ,
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and when k + 1 ≥ 1 (which it is in this case, since k > −1) this is zero precisely by
the definition of the antiautomorphism χ. It follows that yk maps to (0, yk) under the
splitting isomorphism in (4.4).

Furthermore, the periodicity isomorphism A⊗An P/Q
′ ∼=−→ Σ2n+1

A⊗An P/Q sends yk ∈
A⊗ P/Q′ to yk−2n+1 ∈ A⊗ P/Q, because∑

i+j=k

χ(Sqi)⊗ xj 7→
∑
i+j=k

χ(Sqi)⊗ xj−2n+1

=
∑

i+j=k−2n+1

χ(Sqi)⊗ xj

= yk−2n+1 ∈ A⊗An P/Q .

Under the splitting in (4.4) after we have applied the periodicity isomorphism on the
rightmost factor, meaning under the isomorphism

A⊗An P/Q
∼=
(
Σ−1A⊗An−1 Z2

)
⊕
(
Σ2n+1

A⊗An P/Q
)
,

we see that y2n+1−1 maps to (0, y−1) by the two paragraphs above. Applying the splitting
isomorphism (4.4) again, we see that under the splitting

A⊗An P/Q
∼=
(
Σ−1A⊗An−1 Z2

)
⊕
(
Σ2n+1

A⊗An P/Q
)
⊕
(
Σ2·2n+1

A⊗An P/Q
)
,

the element y2n+1−1 maps to (0, 1⊗ 1, 0) and y2·2n+1−1 maps to (0, 0, y−1). By induction,
we see that the final splitting isomorphism given in the statement of lemma 4.13 sends
yk·2n+1−1 to (0, . . . , 0, 1⊗ 1, 0, 0, . . . ), with a 1⊗ 1 in the k + 1:th factor, for all k ≥ 0.

We return to considering all modules Qk,n, as k ranges over the integers. As we’ve said
before, all theorems proven above involving Q extend analogously to Qk,n for any integer
k. The splitting in lemma 4.13 for example, is now a direct sum ranging over the indices
i such that i · 2n+1 − 1 ≥ k (notice that in the case k = −1, we exactly recover the
indexing in lemma 4.13). Lemma 4.14 in particular tells us that yp ∈ A ⊗An P/Qk,n is
nonzero when p ≡ −1 mod 2n+1 and p ≥ k. Let us prove the converse.
We will take three identities below for granted. It relies on the fact that B is free as a
left An-module to get the coefficients ai from an appropriate An-linear combination of
the Steenrod square described in the first equality in lemma 4.15 below, and then one
studies the action of the χ(ai)’s on P .

Lemma 4.15. For any n, there are finitely many elements ai ∈ An with degree i·2n+1+2n

so that
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(i) Sqk·2
n+1+2n =

∑
i+j=k

aiSqj·2
n+1

,

(ii)
∑
i+j=k

χ(ai)x
j·2n+1−1 = xk·2

n+1+2n−1 ,

(iii)
∑
i+j=k

χ(ai)x
j·2n+1+2n−1 = 0 .

Proof. Lemma 3.3 in [20].

Lemma 4.16. The element yp in A⊗An P/Qk,n is zero whenever p ̸≡ −1 mod 2n+1.

Proof. In fact, we prove the stronger statement that yp ∈ A⊗AnP/Qk,n not only vanishes
when p ̸≡ −1 mod 2n+1, but that when p ≡ −1 mod 2n+1, the indices in the defining
sum of yp,

yp =
∑
i+j=p

χ(Sqi)⊗ xj ,

ranges only over the indices such that i ≡ 0 mod 2n+1 and j ≡ −1 mod 2n+1. We
prove this by induction on n.

For the base case n = 0, A0 consists of only of Sq0 and Sq1 and their sum, since (Sq1)2 =
0. For this case, the first equality in lemma 4.9 reduces to the equality Sq2k+1 = Sq1Sq2k

by degree reasons, since for ai ∈ A0 to have degree 2i+ 1, we must have that i = 0 and
thus also that ai = Sq1. Also by degree reasons, notice that the antiautomorphism must
send Sq1 to Sq1. Finally we recall that Sq1xk is zero if and only if k is even, which can
be seen directly from the the definition of the A-module structure of P .

Let us now prove the base case. If p ̸≡ −1 mod 2, meaning that p is even, we may split
the sum defining yp ∈ A⊗A0 P/Qk,0 into two pieces as follows:

yp =
∑
i+j=p

i,j≡0 mod 2

χ(Sqi)⊗ xj +
∑
i+j=p

i,j≡1 mod 2

χ(Sqi)⊗ xj .

Consider the second sum on the right hand side. Let i = 2̃i + 1 and j = 2j̃ + 1. The
equality i+ j = p is then equivalent to (2̃i) + (2j̃ +2) = p. We see now that second sum
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is equal to ∑
(2̃i)+(2j̃+2)=p

χ(Sq2̃i+1)⊗ x2j̃+1 =
∑

(2̃i)+(2j̃+2)=p

χ(Sq1Sq2̃i)⊗ x2j̃+1

=
∑

(2̃i)+(2j̃+2)=p

χ(Sq2̃i)Sq1 ⊗ x2j̃+1

=
∑

(2̃i)+(2j̃+2)=p

χ(Sq2̃i)⊗ Sq1x2j̃+1

=
∑

(2̃i)+(2j̃+2)=p

χ(Sq2̃i)⊗ x2j̃+2

=
∑
i+j=p

i,j≡0 mod 2

χ(Sqi)⊗ xj ,

(4.5)

but this is precisely equal to the first sum of yp. Since we are working over characteristic
2, it follows that yp = 0. It remains to show that when p ≡ −1 mod 2, meaning it is
odd, has the previously described restriction on the indices. We may again split the sum
defining yp into two pieces as follows:

yp =
∑
i+j=p

i≡0 mod 2
j≡1 mod 2

χ(Sqi)⊗ xj +
∑
i+j=p

i≡1 mod 2
j≡0 mod 2

χ(Sqi)⊗ xj .

We need to show that the second sum vanishes. This follows from an identical compu-
tation as in (4.5), but this time the sum vanishes since Sq1xj = 0, due to j being even,
thus completing the base case.

Assume now that the (stronger) statement is proven for n − 1. Since the projection
map A⊗An−1 P/Qk,n−1 → A⊗An P/Qk,n is surjective, let yp be an element which maps
to yp ∈ A ⊗An P/Qk,n under this projection. By the inductive hypothesis, if p ̸≡ −1
mod 2n+1, then unless p ≡ 2n−1 mod 2n+1, it follows that ỹp = 0 and thus that yp = 0.
To show that p ̸≡ −1 mod 2n+1 implies yp = 0, it remains to consider the case when
p ≡ 2n − 1 mod 2n+1.

Assume now that p ≡ 2n − 1 mod 2n+1. Note that i ≡ 0 mod 2n is equivalent to i ≡ 0
mod 2n+1 or i ≡ 2n mod 2n+1, and similarly j ≡ −1 mod 2n is equivalent to i ≡ −1
mod 2n+1 or i ≡ 2n − 1 mod 2n+1. By the inductive hypothesis, we may write ỹp as
the sum on the left hand side below, and thus also the image yp in that way. By the
using the above mentioned equivalence, we may split the sum in the left hand side into
four pieces by matching the congruence cases. Furthermore, note that since p ≡ 2n − 1
mod 2n+1, only two of the pieces are nonempty sums, which gives us the equality with
the right hand side below:∑

i+j=p
i≡0 mod 2n
j≡−1 mod 2n

χ(Sqi)⊗ xj =
∑
i+j=p

i≡2n mod 2n+1

j≡−1 mod 2n+1

χ(Sqi)⊗ xj +
∑
i+j=p

i≡0 mod 2n+1

j≡2n−1 mod 2n+1

χ(Sqi)⊗ xj .
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If we let p = p̃ · 2n+1 + 2n − 1, we may re-index the sums on the right hand side above
as follows: ∑

i+j=p̃

χ(Sqi·2
n+1+2n)⊗ xj·2n+1−1 +

∑
i+j=p̃

χ(Sqi·2
n+1

)⊗ xj·2n+1+2n−1 .

Using lemma 4.9(i) we may rewrite the first sum on the right hand side above as∑
s+t+j=p̃

χ(Sqt·2
n+1

)χ(as)⊗ xj·2
n+1−1 =

∑
s+t+j=p̃

χ(Sqt·2
n+1

)⊗ χ(as)xj·2
n+1−1

=
∑
t+r=p̃

χ(Sqt·2
n+1

)⊗ xr·2n+1+2n−1 ,

but this is precisely the second sum on the right hand side, and since we are working
over characteristic 2, it follows that yp = 0 in this case. The first equality is due to the
tensor product being over An, and χ(as) ∈ An since An. The second equality is due to
lemma 4.9(ii).

It remains to show that when p ≡ −1 mod 2n+1, yp is equal to the sum with appropri-
ately restricted indices. The proof follows just like the case when p ≡ 2n − 1 mod 2n+1.
By the inductive hypothesis, we may write yp, and thus its image yp, as a sum with
restricted indices. Let p = p̃ · 2n+1 − 1 Using the equivalence of congruences as in the
previous case, we may split it into four sums by mixing and matching the congruence
cases. Since p ≡ −1 mod 2n+1, only two of these sums are nonempty. Consequently,

yp =
∑
i+j=p̃

χ(Sqi·2
n+1

)⊗ xj·2n+1−1 +
∑
i+j=p̃

χ(Sqi·2
n+1+2n)⊗ xj·2n+1+2n−1 .

Consider the second sum on the right hand side above; it remains to show that it vanishes.
Using lemma 4.9(i) first, noting that we have tensored over An, and finally using 4.9(ii),
we get that the second sum equals∑

s+t+j=p̃

χ(Sqt·2
n+1

)χ(as)⊗ xj·2
n+1−1 =

∑
s+t+j=p̃

χ(Sqt·2
n+1

)⊗ χ(as)xj·2
n+1−1

=
∑
t+r=p̃

χ(Sqt·2
n+1

)⊗ 0

= 0 .

4.4 Homological algebra over A-modules
In the sketch of the proof, we stated some facts in homological algebra that we will now
prove. Given a right and left A-module M and N respectively, we may consider them
as An modules for all n, and we thus have projection maps M ⊗An N → M ⊗An+1 N
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which piece into a direct system. Given a projective resolution P• → L as A-modules, it
follows by lemma 4.7 and that the forgetful functor is exact that this resolution may also
be considered a projective resolution of An-modules for all n. Tensoring these resolutions
(as n ranges) by M , we get the following commutative diagram.

...
...

· · · M ⊗An P1 M ⊗An+1 P1 · · ·

· · · M ⊗An P0 M ⊗An+1 P0 · · ·

· · · M ⊗An L M ⊗An+1 L · · ·

The columns are chain complexes and the rows are direct systems. A natural question
to ask is whether the taking the homology first then passing to the direct limit results
in a group isomorphic to first passing to the direct limit and then taking the homology.
The answer is yes!

Lemma 4.17. The natural map

lim−→
n

TorAn
s,t (M,L)

∼=−→ TorAs,t(M,L)

is an isomorphism, for right and left A-modules M and L, respectively.

Proof. The group TorAn
s,t (M,L) is the homology of the column M ⊗An P• in the diagram

above. Since A = ∪nAn, it follows that the natural map lim−→n
M ⊗An Pk → M ⊗A Pk

is an isomorphism for all k. Since direct limits are an exact functor, and exact functors
commute with homology, the direct limit of TorAn

s,t (M,L) is precisely the homology of
M ⊗A P•.

For a graded Z2 module M , let M∗ denote its graded dual HomZ2(M,Z2). Notice that
dualizing a left A-module makes it into right A-module, and vice versa. To translate a
statement about isomorphisms of Tor groups into a statement about Ext groups, we will
use the tensor-hom adjunction as follows.

Lemma 4.18. We have a natural isomorphism

HomZ2(N ⊗A P,Z2) ∼= HomA(P,N
∗) ,

where N and P are right and left A-modules, respectively.

Proof. Essentially, our claim is that the classical tensor-hom adjunction

HomZ2(N ⊗Z2 P,Z2) ∼= HomZ2(P,N
∗)
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restricts to an isomorphism as described above. Recall that the adjunction is given
explicitly by sending f : N ⊗Z2 P → Z2 to f̃ : P → N∗ such that p 7→ f(− ⊗ p) and
g : P → N∗ to g̃ : N ⊗Z2 P → Z2 n⊗ p 7→ f(p)(n).

We need to show that if f is A-balanced, then f̃ is A-linear, and that if g is A-linear,
then g̃ is A-balanced. These statements follow from the following equalities, where a ∈ A,
n ∈ N , p ∈ P .

f̃(a · p) = f(−⊗ a · p) g̃(n · a⊗ p) = g(p)(n · a)
= f(− · a⊗ p) =

(
a · g(p)

)
(n)

= a · f(−⊗ p) = g(a · p)(n)
= a · f̃(p) = g̃(n⊗ a · p)

The isomorphism in the lemma above allows us to relate Ext and Tor groups by consid-
ering it as an isomorphism between the chain complexes computing Exts,tA (M,N∗) and(
TorAs,t(N,M)

)∗, respectively, as will be shown below.

Lemma 4.19. There is an isomorphism

Exts,tA (M,N∗) ∼=
(
TorAs,t(N,M)

)∗
natural in both M and N . Here N and M are right and left A-modules which are graded
Z2-modules.

Proof. Let P• → M be a projective resolution. Applying the functor N ⊗A − and
then (−)∗, we get the chain complex (N ⊗A P•)

∗, which by lemma 4.18 is isomor-
phic to the complex HomA(P•, N

∗). The homology of the latter complex is precisely
Ext∗,∗A (M,N∗). Consider the former complex. Since Z2 is an injective Z2-module, it fol-
lows that HomZ2(−,Z2) = (−)∗ is an exact functor, and thus commutes with homology.
This implies that the homology of (N ⊗A P•)

∗ is isomorphic to the dual of the homology
of N ⊗A P•. This group is precisely

(
TorA∗,∗(N,M)

)∗.
Recall that An is a finite-dimensional Z2-module by lemma 4.9. This implies that An, as
a graded Z2 module, is bounded above. If we let (M)t denote the t:th graded component
for a graded module M , then it follows that (An)

t = 0 for t > d, for some integer
d. If M is a bounded A-module, we have the following boundedness conditions on the
corresponding Tor-group below.

Lemma 4.20. If M t = 0 for all t < u, then TorAn
s,t (Z2,M) = 0 for t < u. Also, if M t = 0

for all t > u, then TorAn
s,t (Z2,M) = 0 for t > u+ (s+ 1)d.
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Proof. It suffices to construct a free resolution of F• → M such that (Fs)
t = 0 for

t < u or t > u + (s + 1)d, depending on the case. This is because tensoring with Z2

does not change the grading, and thus the grading does not change on the subquotient
TorAn

s,t (Z2,M).

For the first case, let S0 be the set of generators for M . Let F0 be the free A-module
on the set S0 and let F0 → M be the obvious map. Then (F0)

t = 0 for t < u since all
generators s ∈ S0 have degree at least u, and An cannot decrease the degree. Then let
S1 be the set of generators for ker(F0 → M) and let F1 be the free module on S1 and
iterate the process.

For the second case, Let S0 and F0 be as above. Note then that (F0)
t = 0 for t > u+ d,

because all generators s ∈ S0 have degree at most u, and An increases the degree by at
most d. If we let S1 and F1 be as before, then (F1)

t = 0 for t > u + d + d = u + 2d,
because all generators s ∈ S0 have degree at most u+ d, and An increases the degree by
at most d. From induction the result follows

In the sketch of the proof, we stated a change of rings theorem, which we will now prove.

Lemma 4.21. We have an isomorphism

TorA∗,∗(Z2, A⊗An M) ∼= TorAn
∗,∗(Z2,M)

for all n, where M is a graded An-module, which is natural in M .

Proof. We will show that the functor A⊗An− is exact and takes projective An-modules to
projective A-modules (so that it takes projective resolutions to projective resolutions).
Exactness of A ⊗An − follows from A being flat over An, as explained below lemma
4.7. To prove that this functor takes projectives to projectives, recall that since it is an
extension by scalars functor, it is left adjoint to the forgetful functor F (−) : A-Mod →
An-Mod. If P is a projective An module, then the functor HomAn(P,−) is an exact
functor of An-modules. Since the forgetful functor is exact, pre-composing gives us an
exact functor HomAn(P, F (−)). By the adjunction, this functor is isomorphic to the
functor HomA(A ⊗An P,−), which must then be exact. Consequently A ⊗An P is a
projective A-module.

Given a projective resolution of An-modules P• →M , the sequence A⊗An P• → A⊗An

M is a projective resolution of A-modules. We have isomorphisms of chain complexes
Z2⊗A (A⊗An P•) ∼= (Z2⊗AA)⊗An P• ∼= Z2⊗An P•. It follows that the homology of the
leftmost complex is isomorphic to the homology of the rightmost complex, completing
the proof.
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4.5 Passing to direct and inverse limits
Finally, we have proven enough lemmas to get to the good stuff which we promised would
happen in the sketch proof. We prove that the splitting makes the diagrams mentioned in
the sketch commute, that taking inverse and direct limits will give us what we promised,
and finally that by a duality argument, we may go from an isomorphism of Tor groups
to an isomorphism of Ext groups. To this end, consider the following two diagrams (4.6)
and (4.7).

A⊗An P/Qk,n
⊕

i·2n+1−1≥k Σ
i·2n+1−1A⊗An−1 Z2

A⊗An P/Qk′,n
⊕

i·2n+1−1≥k′ Σ
i·2n+1−1A⊗An−1 Z2

∼=

proj θ

∼=

(4.6)

Consider the diagram (4.6) above. The horizontal isomorphisms above are the ones from
lemma 4.13. Here we are assuming that k < k′, and that the left vertical map "proj"
is the quotient map. Finally, the right vertical map θ is the graded map which is the
identity on the graded components where both groups are nonzero, and the zero map
otherwise. This diagram commutes by lemma 4.14.

A⊗An P/Qk,n
⊕

i·2n+1−1≥k

Σi·2
n+1−1A⊗An−1 Z2

A⊗An+1 P/Qk,n+1

⊕
i·2n+2−1≥k

Σi·2
n+2−1A⊗An Z2

∼=

proj
ψ

∼=

(4.7)

Consider now the diagram (4.7) above. The horizontal isomorphisms are the ones from
lemma 4.13, but for the cases n and n + 1 respectively. The left vertical map "proj" is
the projection map a⊗p 7→ a⊗p. Finally, the right horizontal map ψ is defined similarly
to θ, being the identity on the graded components when both components are nonzero
and the zero map otherwise. Notice that ψ sends half of the elements to zero, and is
the identity on the other half. To see that the diagram commutes, it suffices to check
commutativity on the generators, which are the yp’s by 4.14, and this is easy to verify
due to lemma 4.16.

Recall that the functor TorA∗,∗(Z2,−) commutes with arbitrary direct sums (essentially
because the tensor product distributes naturally over direct sums). Using this, and lemma
4.21, we obtain the following commutative square by applying the functor TorA∗,∗(Z2,−)
on the diagram (4.6), where j and j′ range over the appropriate integers as described in
(4.6).
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TorAn
∗,∗(Z2, P/Qk,n)

⊕
j TorAn−1

∗,∗ (Z2,Σ
jZ2)

TorAn
∗,∗(Z2, P/Qk′,n)

⊕
j′ TorAn−1

∗,∗ (Z2,Σ
j′Z2)

∼=

proj∗ θ∗

∼=

(4.8)

We can deduce the commutativity of the diagram above by piecing together the following
two commutative diagrams (4.9) and (4.10) below, because the first column in (4.9) and
the last column in (4.10) create the square above. The first square in (4.9) commutes by
the naturality of the change of rings isomorphism in lemma 4.21. The second square in
(4.9) commutes by the functoriality of TorA∗,∗(Z2,−) since this diagram comes from (4.6).
The first square in (4.10) commutes since the functor TorA∗,∗(Z2,−) commutes with direct
sums. Finally, the second square in (4.10) commutes by the naturality of the change of
rings isomorphism.

TorAn
∗,∗(Z2, P/Qk,n) TorA∗,∗(Z2, A⊗An P/Qk,n) TorA∗,∗(Z2,

⊕
j Σ

jA⊗An−1 Z2)

TorAn
∗,∗(Z2, P/Qk′,n) TorA∗,∗(Z2, A⊗An P/Qk′,n) TorA∗,∗(Z2,

⊕
j′ Σ

j′A⊗An−1 Z2)

∼=

proj∗

∼=

proj∗ θ∗

∼= ∼=

(4.9)

TorA∗,∗(Z2,
⊕

j Σ
jA⊗An−1 Z2)

⊕
j TorA∗,∗(Z2,Σ

jA⊗An Z2)
⊕

j TorAn−1
∗,∗ (Z2,Σ

jZ2)

TorA∗,∗(Z2,
⊕

j′ Σ
j′A⊗An−1 Z2)

⊕′
j TorAn−1

∗,∗ (Z2,Σ
j′A⊗An Z2)

⊕′
j TorAn−1

∗,∗ (Z2,Σ
j′Z2)

∼=

θ∗

∼=

θ∗ θ∗

∼= ∼=

(4.10)

One can similarly use the fact that Tor commutes with direct sums and the naturality
of the isomorphism in lemma 4.21 to conclude that we have a commutative diagram as
below, induced by applying the functor TorA∗,∗(Z2,−) on (4.7). The indices j and j′ range
over the corresponding sets as described in (4.7).

TorAn
∗,∗(Z2, P/Qk,n)

⊕
j TorAn−1

∗,∗ (Z2,Σ
jZ2)

TorAn+1
∗,∗ (Z2, P/Qk,n+1)

⊕
j′ TorAn

∗,∗(Z2,Σ
j′Z2)

∼=

proj∗ ψ∗

∼=

(4.11)

Fix a pair of integers s, t. Recall that Qk,n = spanAn
{xi | i < k}. Since An is finite, and

Qk,n is the An-linear span of a bounded above set (in terms of grading degree), it follows
that Qk,n vanishes in grading degree greater than u, for some integer u. By lemma 4.20,
it follows that TorAn

s,t (Z2, Qk,n) = 0 for small enough integers k, because small enough k
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ensures that u may be picked sufficiently small. By the long exact sequence in Tor, it
follows that the map induced by the quotient TorAn

s,t (Z2, P ) → TorAn
s,t (Z2, P/Qk,n) is an

isomorphism for small enough k. Consequently, the map

TorAn
s,t (Z2, P )→ lim←−

k

(
· · · proj∗−−−→ TorAn

s,t (Z2, P/Qk,n)
proj∗−−−→ TorAn

s,t (Z2, P/Qk+1,n)
proj∗−−−→ · · ·

)
induced by the quotient is an isomorphism. Notice that (4.8) gives us an isomorphism
of inverse systems. Taking the inverse limit in that diagram, and using the isomorphism
above, we obtain the isomorphism

TorAn
s,t (Z2, P )

∼=−−→
⊕
j∈Z

TorAn−1

s,t (Z2,Σ
j·2n+1−1Z2).

Notice there is no boundedness condition on the index of the direct sum anymore. This
isomorphism takes part in the commutative diagram below, obtained by applying the
functor lim←−k(−) to (4.11).

TorAn
s,t (Z2, P )

⊕
j∈Z

TorAn−1

s,t (Z2,Σ
j·2n+1−1Z2)

TorAn+1

s,t (Z2, P )
⊕
j′∈Z

TorAn
s,t (Z2,Σ

j′·2n+2−1Z2)

∼=

proj∗ ψ∗

∼=

(4.12)

We can now prove the isomorphism of Tor groups promised in the sketch.

Lemma 4.22. The induced map γ∗ : TorAs,t(Z2, P ) → TorAs,t(Z2,Σ
−1Z2) is an isomor-

phism.

Proof. Recall that y−1, as an element in Qk,n for k ≤ −1, is equal to 1 ⊗ x−1. The
composition

Σ−1A⊗An−1 Z2

⊕
j·2n+1−1≥−1

Σj·2
n+1−1A⊗An−1 Z2 A⊗An P/Qk,n Σ−1A⊗An Z2

∼= 1⊗γ

sends 1 ⊗ 1 to 1 ⊗ 1. More precisely, it sends 1 ⊗ 1 to (1 ⊗ 1, 0, 0, . . . ) to y−1 to 1 ⊗ 1.
The reason that 1 ⊗ γ(y−1) = 1 ⊗ 1 is because x−1 is not zero in P/Qk,n for k ≤
−1. Consequently, applying the functor TorAs,t(Z2,−) to this composition, and using the
change of rings isomorphism and that Tor commutes with direct sums, it is easy to verify
that that the composition

TorAn−1

s,t (Z2,Σ
−1Z2)

⊕
j TorAn−1

s,t (Z2,Σ
j·2n+1−1Z2) · · ·

· · · TorAn
s,t (Z2, P/Qk,n) TorAn

s,t (Z2,Σ
−1Z2)

∼=

∼= γ∗
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is the projection map from Tor of a sub-ring to Tor of a bigger ring (where j ranges
over the set j · 2n+1 − 1 ≥ k). Applying the functor lim←−k(−) on this diagram, (where
the leftmost and rightmost groups may be considered as inverse systems with identity
maps), we get the diagram

TorAn−1

s,t (Z2,Σ
−1Z2)

⊕
j TorAn−1

s,t (Z2,Σ
j·2n+1−1Z2) · · ·

· · · TorAn
s,t (Z2, P ) TorAn

s,t (Z2,Σ
−1Z2)

∼=

∼= γ∗

where j now ranges over all integers, and where the composition is still the projection
map of Tor of a sub-ring to Tor of a bigger ring.

Consider now the diagram (4.12). It presents an isomorphism between two direct systems.
Taking the direct limit as n→∞, using lemma 4.17, we get an isomorphism

TorAs,t(Z2, P ) ∼= TorAs,t(Z2,Σ
−1Z2) .

This is because the only summand in the rightmost direct system of (4.12) which does not
vanish, due to the definition of ψ, is the summand described in the right hand side above.
Furthermore, notice that the isomorphism of direct systems (4.12) may be extended on
the sides to a sequence of direct systems as follows, where the horizontal composition
from the right to the left is the projection map discussed above:

...
...

...
...

TorAn
s,t (Z2,Σ

−1Z2) TorAn
s,t (Z2, P )

⊕
j∈Z TorAn−1

s,t (Z2,Σ
j·2n+1−1Z2) TorAn−1

s,t (Z2,Σ
−1Z2)

TorAn+1

s,t (Z2,Σ
−1Z2) TorAn+1

s,t (Z2, P )
⊕

j′∈Z TorAn
s,t (Z2,Σ

j′·2n+2−1Z2) TorAn
s,t (Z2,Σ

−1Z2)

...
...

...
...

proj∗

γ∗ ∼=

proj∗ ψ∗ proj∗

γ∗ ∼=

Taking the direct limit, and using lemma 4.15, we get the diagram

TorAs,t(Z2,Σ
−1Z2)

γ∗←−− TorAs,t(Z2, P ) ∼= TorAs,t(Z2,Σ
−1Z2)

whose composition (from right to left) is the identity. From this, we will conclude that
γ∗ is an isomorphism, completing the proof.

We will now use our lemmas adjacent to the tensor-hom adjunction to prove that the
map ϕ induces an isomorphism of Ext groups. In the proof of lemma 4.15, Lin explains
that the action of a ∈ A on xk is nonzero if and only if the action of χ(a) on x−1−k−|a|
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Section 4.5 Passing to direct and inverse limits

is nonzero. We take this for granted. Using the anti-automorphism χ, we may imbue P
with a right A-module structure, defined by xk · a := χ(a) · xk. We can now see that the
composition

P × P µ−−→ P
γ−−→ Σ−1Z2

is A-balanced, where µ is the multiplication map. Assuming i+ j + |a|= −1 (otherwise
both elements we now describe will go to zero due to the grading), this composition takes
(xi · a, xj) to the coefficient of (χ(a)x−1−j|a|)xj and takes (xi, a · xj) to the coefficient of
xi(axj), and these elements are equal by what we have said before.

Since the composition γ ◦ µ is A-balanced, it defined a map γ ◦ µ : P ⊗A P → Σ−1Z2.
Under the tensor-hom adjunction, this homomorphism maps to the element η : P →
HomZ2(P,Σ

−1Z2), given by η(xk) = γ ◦ µ(−⊗ xk). In fact, as we have explained before,
the fact that γ ◦ µ is A-balanced implies that η is A-linear (as both a left and right
module).

Furthermore, one can verify that η is a graded map, because it sends a degree k element
xk ∈ P to the element η(xk). Consider η(xk) now. It takes a degree −k − 1 element
x−k−1 ∈ P to the degree −1 element 1 ∈ Σ−1Z2, and for j ̸= −k − 1, η(xk) takes xj to
0, which lies in (Σ−1Z2)

j+k. Consequently, η(xk)(Pm) ⊆ (Σ−1Z2)
m+k for any integer m,

so η(xk) is an element of degree k, implying that the map η is graded.

It is clear that γ ◦ µ is a non-degenerate bilinear form, meaning that for any nonzero
element p ∈ P , there is an element q ∈ P such that γ ◦µ(p⊗ q) ̸= 0. From this it follows
that η is injective. Since η is an map of graded Z2 modules which are finite-dimensional
in each graded component, it follows from linear algebra that η is a bijection. Conse-
quently, η gives an isomorphism P ∼= HomZ2(P,Σ

−1Z2) of graded A-modules. There-
fore, Ση induces an isomorphism ΣP ∼= ΣHomZ2(P,Σ

−1Z2) = HomZ2(Σ
−1P,Σ−1Z2) =

HomZ2(P,Z2) = P ∗.

The equality ΣHomZ2(P,Σ
−1Z2) = HomZ2(Σ

−1P,Σ−1Z2) above comes from the fact
that degree i− 1 maps P → Σ−1Z2 are precisely degree i maps Σ−1P → Σ−1Z2, so(

ΣHomZ2(P,Σ
−1Z2)

)i
=
(
HomZ2(Σ

−1P,Σ−1Z2)
)i

for all i. Similarly, HomZ2(Σ
−1Z2,Z2) = ΣHomZ2(Z2,Z2), and this is isomorphic to ΣZ2.

The isomorphism is simply given by sending 1 ∈ ΣZ2 to the identity map.

Taking the dual of the map γ : P → Σ−1Z2, we obtain a map γ∗ : (Σ−1Z2)
∗ → P ∗.

Under the isomorphism for the domain and codomain of this map, we claim the map
becomes Σϕ : ΣZ2 → ΣP , meaning that the following diagram commutes.

P ∗ (Σ−1Z2)
∗

ΣP ΣZ2

γ∗

Ση ∼= ∼=

Σϕ

(4.13)
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Section 4.5 Passing to direct and inverse limits

This amounts to showing that γ∗f(−) = Ση(x0)(−), where f is the nonzero element
in (Σ−1Z2)

∗. Given any
∑

i eix
i ∈ P , where ei ∈ Z2, we have that γ∗(f)(

∑
i eix

i) =
f(γ(

∑
i eix

i)) = f(e−1) = e−1 = γ ◦ µ(
∑

i eix
i ⊗ x0) = Ση(x0)(

∑
i eix

i), from which the
commutativity follows. We now have enough to prove our theorem!

Theorem 4.23. The induced map

ϕ : Exts,tA (Z2,Z2)→ Exts,tA (Z2, P )

is an isomorphism of A-modules.

Proof. As said before, we may imbue every left A-module with a right A-module struc-
ture, and vice versa, through the anti-automorphism χ. Doing this, it follows that the
transposition map M ⊗A N → N ⊗A M given by a ⊗ b 7→ b ⊗ a is an isomorphism,
and thus induces a natural isomorphism TorAs,t(M,N)

∼=−→ TorAs,t(N,M), for M and N
right and left A-modules, respectively. Consequently, we have the following commutative
diagram.

TorAs,t(Z2, P ) TorAs,t(Z2,Σ
−1Z2)

TorAs,t(P,Z2) TorAs,t(Σ−1Z2,Z2)

γ∗
∼=

∼= ∼=

γ∗

∼=

Applying the functor (−)∗ to the diagram above, we get the top square in the diagram
below. The commutativity of the middle square follows from the naturality of the iso-
morphism in lemma 4.19. Finally, the commutativity of the bottom square follows from
applying the functor Exts,tA (Z2,−) to (4.13).

TorAs,t(Z2, P )
∗ TorAs,t(Z2,Σ

−1Z2)
∗

TorAs,t(P,Z2)
∗ TorAs,t(Σ−1Z2,Z2)

∗

Exts,tA (Z2, P
∗) Exts,tA (Z2, (Σ

−1Z2)
∗)

Exts,tA (Z2,ΣP ) Exts,tA (Z2,ΣZ2)

(γ∗)∗

∼=
∼=

∼=

∼=

(γ∗)∗

∼=

(γ∗)∗

(Ση)∗ ∼= ∼=

(Σϕ)∗

By the commutativity of the diagram, it follows that the bottom map (Σϕ)∗ is an iso-
morphism, and thus that the map ϕ∗ we are interested in is an isomorphism.
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5 The main theorem
Finally, we may start to compute the stable cohomotopy groups of projective spaces
of the form RPn/RP k and RP∞/RP k! Our primary reference for this section is Lin’s
article [19], which proves our final theorem. Let us first give an outline of how the proof
will go, then define the spectra we will be working with, and lastly state the theorem
which we will prove.

First, we start with some preliminary computations of the stable cohomotopy groups of
finite stunted projective spaces RPn/RP k, showing that these groups are finite 2-groups
in some relevant range. This will be done with the help of the Atiyah-Hirzebruch spectral
sequence.

Second, we use our isomorphism of Ext groups from the previous section to provide an
isomorphism between the E2 pages of Adams spectral sequences computing [S∗, S0] and
the stable cohomotopy of RPn/RP k. Using our Atiyah-Hirzebruch computation, we
pass to an inverse limit as n → ∞ and show that the isomorphism above passes to an
isomorphism between the E2 pages of the spectral sequences computing [S∗, S0] and the
stable cohomotopy of RP∞/RP k.

Third, we prove that the Adams spectral sequence computing the stable cohomotopy
of RP∞/RP k is convergent. Notice that this is not guaranteed by theorem 3.24 since
RP∞/RP k is not a finite spectrum, so some non-trivial work needs to be done to prove
this. Using also the convergence of spectral sequence computing [S∗, S0], we exhibit a
homomorphism of filtered groups which induces an isomorphism of successive filtration
quotients, from which we conclude that the homomorphism is an isomorphism, complet-
ing the proof.

Let us now define the spectra we will be working with, and in so doing extend what we
mean by the stable cohomotopy ofRPn/RP k orRP∞/RP k. DefineRPnk := RPn/RP k−1.
Obviously, the suspension spectra of such spaces are defined for any k − 1 < n when k
is positive. We will however also try to make define spectra which, in some sense, are
suspension spectra of RPnk in the case when k−1 or n are negative. We are able to make
sense of such spectra by James’ periodicity equivalence.

Proposition 1.4 in [15] tells us that we have the homotopy equivalence

Σl(RPn+r/RPn) ≃ RP l+n+r/RP l+n

in the case where 2ϕ(r) divides l, and ϕ(r) is the number of integers s such that 0 < s < r
and s is equal to 0, 1, 2 or 4 modulo 8. This is called James’ periodicity equivalence. As a
quick remark, we not that the reason for such restrictions on l stems from the work on the
maximal number of linearly independent vector fields of spheres! James proves that there
is a homotopy equivalence described above whenever the projection Vn,r → Vn,1 = Sn−1
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onto the first factor has a section, where Vn,r is the Stiefel manifold. Having such a
section is equivalent to having a collection of r − 1 pairwise orthogonal vector fields on
Sn−1.

Given any pair of integers n and r with r < n, we may pick l large enough so that
l ≥ ϕ(n− r + 1) and 2l + r − 1 > 0. Define the spectrum Xn

r to be

Σ−2lΣ∞(RP 2l+n
2l+r

) .

By James periodicity equivalence, it follows that the construction of Xn
r is independent

of the chosen integer l up to a homotopy equivalence of spectra. To see this, let l be the
smallest integer such that l ≥ ϕ(n − r + 1) and 2l + r − 1 > 0 and define the spectrum
Xn
r as above. Let Y n

r be the spectrum

Σ−2l+1
Σ∞(RP 2l+1+n

2l+1+r
) .

By the James periodicity equivalence,

Σs−2l+1
(RP 2l+1+n/RP 2l+1+r) ≃ Σs−2l(RP 2l+n

2l+r
) .

The left hand side is the s:th component space of Y n
r and the right hand side is the s:th

component space of Xn
r , so Xn

r and Y n
r have homotopy equivalent component spaces. By

corollary 2.21 Xn
r and Y n

r are homotopy equivalent as spectra. In particular, it follows
that Xn

r is homotopy equivalent to the suspension spectrum of RPnr when 0 < r ≤ n.

Below, we have a direct system of spectra where the maps below are induced by inclusions.

Σ∞(Sr) = Xr
r → Xr+1

r → Xr+2
r → . . .

Define the (homotopy) direct limit of this system to be the spectrumXr, meaning that we
let Xr be the mapping telescope of this sequence. Recall that we have already discussed
mapping cylinders in the context of spectra, so the mapping telescope is just a union of a
sequence of mapping cylinders just as for spaces. It is easy to see that when r is positive,
Xr is simply the spectrum Σ∞(RP∞

r ). In particular, X1 = Σ∞(RP∞).

We may now state our main theorem, whose proof is the culmination of the entire thesis.
By Sc below, we mean the sphere spectrum, and by [S0, Sc]2 we mean the group [S0, Sc]
modulo all odd-order torsion.

Theorem.

(i) If k < c and c > 0, then [Xk, S
c] = 0.

(ii) If k < c and c = 0, then [Xk, S
0] is isomorphic to the 2-adic integers Ẑ2 as filtered

groups.
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Section 5.1 Atiyah-Hirzebruch spectral sequence computation

(iii) If k < 0 and c < 0, then there exists a map f : Xk → S0 such that f∗ : H0S0 →
H0Xk is nonzero. Furthermore, the induced map

f∗ : [S0, Sc]2 → [Xk, S
c]

is an isomorphism if k < c− 1 and a surjection if k = c− 1.

We will now move on to the first step of our proof outline.

5.1 Atiyah-Hirzebruch spectral sequence computation

Our goal for this subsection is to show that the cohomotopy groups [X l
k, S

c] are finite and
even finite 2-groups in some range. We start by computing the cellular homology groups
of X l

k. We use this data in conjunction with the Atiyah-Hirzebruch spectral sequence to
reach our goal.

Recall that RPn can be given a CW structure with one i-cell for each i = 0, . . . , n, such
that for i > 0, the i-disk is attached to the i − 1-skeleton of RPn (which is RP i−1) by
the two-sheeted projection ∂Di = Si−1 → RP i−1. Similarly, we can give RP ab a CW
structure with one i-cell for each i = 0, b, b+1, . . . , a. The b-skeleton of RP ab is simply Sb.
For i > b, the i-disk is attached to the i− 1 skeleton of RP ab (which is RP i−1

b ) along the
map Si−1 → RP i−1

b , which is just the composition of the two-sheeted projection above
with the quotient RP i−1 → RP i−1

b .

Using the description of the cell structure of RP ab as e0 ∪ eb ∪ · · · ∪ ea, we may compute
its cellular homology (with coefficients in Z). The cellular chain complex is given by
Cp(RP

a
b ;Z) = Z if p = 0, b, . . . , a and zero otherwise. Recall that by the cellular boundary

formula (the unnumbered theorem below theorem 2.35 in [13]), the boundary map of the
cellular chain complex is given by dp(ep) = Dpe

p−1. The integer Dp is given by the degree
of the composition

Sp−1 → RP p−1
b ↠ Sp−1 ,

where the first map is the attaching map of ep and the second map is the map collapsing
RP p−1 − ep to a point.

To determine the degree of the composition above, one can for example note that it is
a smooth map between compact connected manifolds. Furthermore, notice that when
restricting the map to any hemisphere of Sp−1, it is a diffeomorphism, and thus it is a
local diffeomorphism. There is a theorem in differential topology that states if we have a
local diffeomorphism between compact connected manifolds, then the degree of this map
is given by ∑

x∈f−1(y)

deg f |Ux ,

where y is a regular point and Ux is a neighborhood of x such that the restriction of the
map to this open set is a diffeomorphism. If we pick the point N = (1, 0, . . . , 0) from
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Section 5.1 Atiyah-Hirzebruch spectral sequence computation

our map, its preimage is given by {N,−N}. Notice now that restricting the composition
above to a neighborhood around N , we get a map homotopic to the identity, and re-
stricting the composition above to a neighborhood around −N , we get a map homotopic
to the antipodal map. The identity map has degree 1, and the antipodal map has degree
p. Consequently, the degree of the composition is given by 1 + (−1)p = Dp.

We can now compute the cellular homology groups of RP ab , depending on the parity of a
and b. If p = 0, then Hp(RP

a
b ) = Z simply because Rab is path-connected. If 0 < p < b or

a < p, then clearly Hp(RP
a
b ) = 0. Assume b < p < a. If p is even, then Dp = 2, and thus

dp is injective, meaning that ker dp = 0, and thus that Hp(RP
a
b ) = 0. If p is odd, then

Dp = 0 and Dp−1 = 2, implying that Hp(RP
a
b ) = Z2. Let us now consider the edge cases:

if a is even, then ker da = 0 and thus Ha(RP
a
b ) = 0, and if a is odd, then Ha(RP

a
b ) = Z,

since da+1 = 0. Finally, if b is even, then Db+1 = 0 and thus Hb(RP
a
b ) = Z since db is

necessarily zero, and if b is odd, then Db+1 = 2, and thus Hb(RP
a
b ) = Z2. Summarizing

our computations, we have that

Hp(RP
a
b ,Z) =


Z if p = 0, p = b even, p = a odd
Z2 if p odd and b < p < a, or if p = b odd
0 otherwise.

The spectral sequence below is in fact constructed from the cohomological variant of the
exact couple which we exhibited in the introduction in section 3. We proved convergence
in that analogous case (theorem 3.5) and we argue that the proof is similar now. The
computation of the E2-page is easy to prove by some diagram chasing, so we take it for
granted.

Theorem 5.1 (Atiyah-Hirzebruch cohomology spectral sequence). Let A∗ be an unre-
duced additive generalized cohomology theory and let Ã∗ denote the reduced variant. Let
X be a finite CW complex and Xp denote the p-skeleton of X.We have a convergent
spectral sequence {Ep,qn }n≥1 such that

• Ep,q2 = Hp(X;Aq(pt)) ,

• Ep,q∞ =
ker
(
Ãp+q(X)

restrict−−−−→ Ãp+q(Xp−1)
)

ker
(
Ãp+q(X)

restrict−−−−→ Ãp+q(Xp)
) .

Define
F st = ker

(
Ãt(X)

restrict−−−−→ Ãt(Xs)
)
.

Then F •
t is a decreasing filtration · · · ⊆ F st ⊆ F s−1

t ⊆ . . . of At(X) which is exhaustive
(meaning ∪sF st = At(X)), and reaches both zero and the whole group At(X) in finitely
many steps. This is because we assume X is a finite CW-complex, so it is equal to its
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Section 5.1 Atiyah-Hirzebruch spectral sequence computation

n-skeleton for some n, implying that F st = 0 for s ≥ n, and also F st = At(X) for s ≤ 0.
The convergence in the theorem above may be written more succinctly now as

Ep,q∞
∼= F p−1

p+q /F
p
p+q .

Lemma 5.2. If k < c < l, then [X l
k, S

c] is a finite 2-group.

Proof. We will prove this with theorem 5.1. Notice that XL
k = Σ−2αΣ∞RP l+2α

k+2α . For
simplicity of notation, let Bl

k = RP l+2α

k+2α . Recall that stable cohomotopy

π∗s(−) = [Σ∞(−), S∗]

is a reduced additive cohomology theory on CW complexes. Furthermore, we may modify
it so that it becomes the unreduced cohomology theory π∗s(− ⊔ pt). Also, note that
πqs(pt⊔pt) = πqs(S0) which is equal to the stable homotopy group πs0(Sq). The associated
Atiyah-Hirzebruch spectral sequence has E2 page Ep,q2 = Hp(Bl

k;π0(S
q)) and it converges

to πp+qs (Bl
k) = [Σ2αX l

k, S
p+q] = [X l

k, S
p+q−2α ].

Since we are interested in computing the group [X l
k, S

c] = π2
α+c
s (Bl

k), we focus on the
pairs of integers p, q such that p+ q − 2α = c, or equivalently when p+ q = 2α + c. By
the universal coefficient theorem for cohomology,

Ep,q2 = Hp(Bl
k;π

s
0(S

q)) ∼= HomZ(Hp(B
l
k), π

s
0(S

q))⊕ Ext1Z(Hp−1(B
l
k), π

s
0(S

q)) . (5.1)

When q > 0, πs0(Sq) vanishes since the unstable homotopy groups vanish in this range,
which can be seen by the cellular approximation theorem. When q = 0, πs0(S0) = Z,
since it is known that πk(Sk) = Z for all k ≥ 1. Furthermore, Serre’s finiteness theorem
(theorem 1.1.8 in [26]) states that the unstable groups πn+k(Sn) are finite for k > 0
except in the case when n = 2m and k = 2m− 1. Consequently, πsn+k(S

n)) = πsn(S
n−k)

is finite for all k > 0, since in the colimit, we may pick a cofinal subsystem which avoids
these exceptional cases. Therefore, the only case when πs0(Sq) is finite is when q = 0.

Using (5.1) and the computation of the homology groups of Bl
k given above, it is easy to

see that if p+ q = 2α + c and q ≤ 0, then Ep,q2 will always be a finite 2-group (including
when it is zero also). We will prove it for one of the cases to show how it is done. The
remaining cases follow from similar arguments.

If q = 0, then πs0(S
q) = Z. Also, p = 2α + c, so Hp(B

l
k) equals Z2 if p is odd and zero

otherwise. In both cases, HomZ(Hp(B
l
k,Z)) = 0. If p−1 = 2α+k, then Hp−1(B

l
k) equals

Z if p− 1 is even and equals Z2 if p− 1 is odd. It follows that ExtZ(Hp−1,Z) equals 0 or
Z2. Finally, consider the case when p−1 > 2α+k. Then Hp−1(B

l
k) is Z2 or 0 depending

on parity, and thus the Ext group is either Z2 or zero. In all of the cases, it follows by
(5.1) is a direct sum of finite 2-groups.
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Furthermore, notice that for p > 2αL + 1 Hp(B
l
k) and Hp−1(B

l
k) vanish, and thus by

(5.1), Ep,q2 = 0 in this case. Consequently, for the case when p+ q = 2α+ c, the E2 page
is only non-vanishing for finitely many indices, all of which are finite 2-groups. Since the
E∞ page consists of subquotients of the E2-page, the same holds here. The convergence
of the Atiyah-Hirzebruch says that there is an isomorphism

Ep,q∞
∼= F p−1

p+q /F
p
p+q ,

where F pp+q is defined as above. Since F 2α+l
p+q = 0 (due to Bl

k being a CW complex of
dimension 2α + l), it follows in particular that F 2α+l−1

p+q = F 2α+l−1
p+q /F 2α+l

p+q is a finite 2-
group. Furthermore, the isomorphism above states that the successive filtration quotients
of π2α+cs (Bl

k) are finite 2-groups, meaning that each subgroup F ∗
p+q has index a power of

2 in F ∗+1
p+q . Consequently, F sp+q is a finite 2-group for each s. Since this filtration reaches

π2
α+c
s (Bl

k) in finitely many steps, it follows thatπ2α+cs (Bl
k) is a finite 2-group.

By a completely analogous argument as above, by computing the E2-page case-by-case
using the universal coefficient theorem, we can also show the following lemma, whose
proof we will omit.

Lemma 5.3. If k ̸= c or k is odd, then [X l
k, S

c] is finite, assuming l > c.

5.2 Comparing spectral sequences
When we introduced the A-module P , we claimed that the A-module structure of the
total cohomology of finite and infinite stunted projective spaces will coincide with sub-
modules and subquotients of P . It is time we proved this. First, we define the rele-
vant submodules and subquotients of P . Let Pk = {xi | i ≥ k} and for k ≤ n, let
Pnk = Pk/Pn+1. Assume from now on that by cohomology we mean cellular homology
with Z2 coefficients, unless explicitly stated otherwise.

After definition 2.32 of the Steenrod algebra, we discussed how the Steenrod algebra acts
on the total cohomology of a spectrum. We remarked that for the suspension spectrum
of a space, its cohomology as a spectrum is isomorphic as A-modules to the cohomology
of its underlying space. Consequently, H∗X l

k
∼= Σ−2αH∗(RP 2α+l

2αk ) as graded A-modules,
for some integer α.

To determine the A-module structure of Σ−2αH∗(RP 2α+l
2αk ), we first determine the ring

structure of cohomology rings of the form H∗(RP ab ). It is easy to see that H∗(RP ab )
∼= P ab

as graded Z2-modules for all 0 < b ≤ a. Recall that the cohomology ring H∗(RP a) is
given by the truncated polynomial ring Z2[x]/(x

a+1), where x ∈ H1(RPn;Z2) ∼= Z2 is the
nonzero element. By the long exact sequence in cohomology of the pair (RP a, RP b), one
sees that the graded map induced by the quotient H∗(RP ab )→ H∗(RP a) is an injection.
Consequently, the cohomology ring H∗(RP ab ) equals P ab as a ring.
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Recalling definition 2.32 of the Steenrod algebra, we will determine now the A-module
structure of H∗(RP a). Given x ∈ H∗(RP a) = Z2[x]/(x

a+1). Define the total Steenrod
square to be Sq :=

∑
i Sqi. Notice this sum is finite when evaluated at any element in the

cohomology ring by axiom 4. By axiom 3, we have that Sq1(x) = x2, and this is nonzero
in H∗(RP a). Consequently, we have that Sq(x) = x + x2 = x(1 + x) by axiom 4. Note
that the Cartan formula, axiom 5, implies that the total Steenrod square is multiplica-
tive. Consequently, Sq(xn) = Sq(x)n = xn(1 + x)n =

∑
i

(
n
i

)
xn+i, where the binomial

coefficients of course are taken modulo 2. By the elements in each graded component
separately, we see that Sqi(xn) =

(
n
i

)
xn+i for all i (where we have the convention that(

n
i

)
= 0 for n < i. The subring H∗(RP ab ) has exactly the A-module structure as that of

H∗(RP a) (in the range of elements xn such that b ≤ n ≤ a).

We see thus thatH∗(RP ab ) equals P ab asA-modules. It follows thatH∗X l
k
∼= Σ−2αP 2α+l

2αk
∼=

P lk as graded A-modules. Furthermore, by Milnor’s exact sequence (proposition 2.29),
we have a short exact sequence of graded A-modules

0→ lim←−
l

1 H∗−1(X l
k)→ H∗(Xk)→ lim←−

l

H∗(X l
k)→ 0 .

The leftmost group is zero since the inverse system is in each degree composed of finite
2-groups and is thus trivially Mittag-Leffler. The rightmost group is equal to the inverse
limit of P lk as l→∞, which is equal to Pk. Therefore, H∗(Xk) ∼= Pk as A-modules.

Notice that the E2-page of the Adams spectral sequence computing the cohomotopy of
X l
k equals Exts,tA (H∗S0, H∗X l

k) = Exts,tA (Z2, Pk). In the introduction of the previous
section, we promised that Exts,tA (Z2, P ) equals Exts,tA (Z2, Pk) in some appropriate range.
It is time we proved this.

Let α be the element in Ext1,1−kA (Z2, Pk) associated to the extension

0→ Pk → Pk−1 → P k−1
k−1 = Σk−1Z2 → 0 .

Lemma 5.4. The map Exts,tA (Z2, Pk)→ Exts,tA (Z2, P ) induced by inclusion is an isomor-
phism when s− t > k and a surjection when s− t = k.

Proof. In the proof of lemma 4.20, we constructed a free resolution F• → Z2 such that
Fs is zero in degrees below s. We use this free resolution. The map Homt

A(Fs, Pk) →
Homt

A(Fs, P ) induced by inclusion is a surjection when s− t ≥ k, since for every homo-
morphism Fs → P which lowers the degree by t, the image of this map will lie in degree
at least s − t, and thus we may restrict the codomain to identify it as an element in
Homt

A(Fs, Pk). Since Fs is by definition free, HomA(Fs,−) is an exact functor and will
thus take injections to injections, implying that the map induced by inclusion will also be
injective, independent of s and t. Consequently, the map Homt

A(Fs, Pk)→ Homt
A(Fs, P )

is an isomorphism when s− t ≥ k.

By a quick diagram chase, one can prove from the isomorphism on the chain level that
the induced map in homology Exts,tA (Z2, Pk) → Exts,tA (Z2, P ) is an isomorphism when
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s− t > k and a surjection when s− t = k. Essentially, this follows from the fact that if
we have a chain map as in the diagram below,

. . . Homt
A(Fs+1, Pk) Homt

A(Fs, Pk) Homt
A(Fs−1, Pk) . . . Homt

A(F0, Pk)

. . . Homt
A(Fs+1, P ) Homt

A(Fs, P ) Homt
A(Fs−1, P ) . . . Homt

A(F0, P )

∼= ∼=

where all vertical arrows not shown to the left are isomorphisms, then the vertical maps
will always induce surjections in homology, and it will induce injections as long as the
vertical map directly to the right of our given one is also an isomorphism.

Below, we will determine the kernel of the map Exts,tA (Z2, Pk) → Exts,tA (Z2, P ) in the
case when s = t. Before doing this, we will describe the diagonal Exts,sA (Z2,Z2) in the
E2-page of the Adams spectral sequence computing the stable homotopy of spheres.

In the category of graded A-modules, an extension of Σk−1Z2 by ΣkZ2 is a module with
only a copy of Z2 in degrees k and k − 1. By degree reasons, the A-module of such an
extension is completely determined by the action of Sq1, which will either act trivially or
non-trivially. This means that there exists at most one nontrivial extension of Σk−1Z2

by ΣkZ2. In fact, there is a nontrivial extension. Consider the short exact sequence

0→ ΣkZ2 → P kk−1 → Σk−1Z2 → 0 ,

where the first map is inclusion into the degree k part and the second map is projection
onto the degree k − 1 part. It is an element in Ext1,0A (Σk−1Z2,Σ

kZ2) = Ext1,1A (Z2,Z2).
We claim that this extension splits if and only if k is odd, meaning that it is nontrivial
if and only if k is even. This implies that Ext1,1A (Z2,Z2) = Z2.

For all i ≥ 2 the elements Sqi send all elements in P kk−1 to zero by degree reasons, so the
only possible nontrivial action A may have on P kk−1 is by Sq1. Notice that Sq1(xk−1) =(
k−1
1

)
xk = (k − 1)xk, which is zero if and only if k is odd. Consequently, when k is

odd, P kk−1 is a trivial A-module and thus the extension above splits, but when k is odd,
then P kk−1 is not isomorphic to ΣkZ2 ⊕ Σk−1Z2 as an A-module, and thus the extension
does not split. Denote the nontrivial element in Ext1,1A (Z2,Z2) by h0. Furthermore, by
theorem 2.3 in [12], Exts,s(Z2,Z2) = Z2 for all s ≥ 0, with the generator hs0, where the
product structure is given by the Yoneda product.

Lemma 5.5. In the case when s − t = k in lemma 5.4, the map Exts,tA (Z2, Pk) →
Exts,tA (Z2, P ) is a surjection with kernel spanned by αhs−1

0 . Furthermore, if k is even,
then αhs−1

0 is nonzero for all s ≥ 1. If k is odd, then αh0 = 0.

Proof. The short exact sequence 0 → Pk → Pk−1 → Σk−1Z2 → 0 induces the following
long exact sequence of Ext groups:

· · · → Exts−1,t
A (Z2,Σ

k−1Z2)
δ−→ Exts,tA (Z2, Pk)

i∗−→ Exts,tA (Z2, Pk−1)→ . . .
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Since s− t > k − 1, it follows that the map Exts,tA (Z2, Pk−1)→ Exts,tA (Z2, P ) induced by
inclusion is an isomorphism by lemma 5.4. Composing this isomorphism with the map
i∗ in the long exact sequence above, we get the exact sequence

Exts−1,t
A (Z2,Σ

k−1Z2)
δ−→ Exts,tA (Z2, Pk) −→ Exts,tA (Z2, P ) ,

where the map to the right is the precisely the map we are interested in, namely the
map induced by the inclusion Pk ↪−→ P . Furthermore, we can rewrite the domain of δ
to Exts−1,t+k−1

A (Z2,Z2), and this is equal to Exts−1,s−1
A (Z2,Z2) since s − t = k. Conse-

quently, we have an exact sequence

Exts−1,s−1
A (Z2,Z2)

δ−→ Exts,tA (Z2, Pk) −→ Exts,tA (Z2, P ) .

The leftmost group above is isomorphic to Z2 with generator hs−1
0 . By proposition 3.32,

the map δ is given by multiplying with α ∈ Ext1,∗A (Z2, Pk) on the left. By exactness, it
follows that the kernel of the map we are interested in is spanned by the element αhs0.

Assume k is even. We have the following map of short exact sequences. Notice that the
sequence above represents α and that the sequence below represents h0, since k is even.

0 Pk Pk−1 Σk−1Z2 0

0 ΣkZ2 P kk−1 Σk−1Z2 0

π π id

The map π is given by π(
∑

i aix
i) = ak in both cases. By the naturality of the long exact

sequence in Ext, we have the following commutative diagram.

Exts−1,t
A (Z2,Σ

k−1Z2) Exts,tA (Z2, Pk)

Exts−1,t
A (Z2,Σ

k−1Z2) Exts,tA (Z2,Σ
kZ2)

δ

id π∗

δ

By proposition 3.32, the upper horizontal map is given by multiplication with α and
the lower horizontal map is given by multiplication with h0. The upper δ thus sends
the generator hs−1

0 to αhs−1
0 and the lower δ sends the generator hs−1

0 to hs0. By the
commutativity of the diagram, it follows that π∗(αhs−1

0 ) = hs0. Since hs0 is the generator
of Exts,tA (Z2,Σ

kZ2) = Exts,sA (Z2,Z2) it is nonzero, and thus αhs−1
0 must be nonzero in

the case when k is even.

Assume now that k is odd. Then the extension 0 → Σk−1Z2
i−→ P k−1

k−2 → Σk−2Z2 → 0
represents h0. From this short exact sequence we get the exact sequence

Ext0,2−kA (Z2,Σ
k−2Z2)

h0·(−)−−−−→ Ext1,2−kA (Z2,Σ
k−1Z2)

i∗−→ Ext1,2−kA (Z2, P
k−1
k−2 ) ,
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which is the same as having the exact sequence

Ext0,0A (Z2,Z2)
h0·(−)−−−−→ Ext1,1A (Z2,Z2)

i∗−→ Ext1,2−kA (Z2, P
k−1
k−2 ) .

Since the generator h0 lies in the image of the left map, it follows by exactness that
i∗ = 0. Below, we have a map of short exact sequences where the middle and right
vertical maps are inclusions.

0 Pk Pk−1 Σk−1Z2 0

0 Pk Pk−2 P k−1
k−2 0

id i

This induces the commutative square in the diagram below by taking long exact sequences
in Ext.

Ext1,2−kA (Z2,Σ
k−1Z2) Ext2,2−kA (Z2, Pk)

Ext1,2−kA (Z2, P
k−1
k−2 ) Ext2,2−kA (Z2, Pk)

δ

i∗ id

δ

Since i∗ = 0, and the upper δ maps h0 to αh0, it follows by the commutativity of the
diagram that αh0 = 0 in the case when k is odd.

Notation. Let E∗,∗
∗ (l), E∗,∗

∗ (∞) and E∗,∗
∗ (Sk) denote the Adams spectral sequence for

computing the cohomotopy of X l
k, Xk and the sphere spectrum Sk, respectively. Let

Es,t∞ (l), Es,t∞ (∞) and Es,t∞ (Sk) denote the permanent cycles in the bidegree (s, t) for
the respective spectral sequences. Furthermore, let F ∗,∗(l) denote the filtration on the
cohomotopy of X l

k. More specifically, let F s,t(l) denote the subset of maps in [X l
k, S

s−t]
of Adams filtration ≥ s. Define F ∗,∗(∞) and F ∗,∗(Sk) analogously.

In general, the inverse limit functor is not exact, which implies that it does not com-
mute with taking homology of a chain complex. This means that the homology groups
of the chain complex

(
lim←−lE

∗,∗
n (l), d∗,∗n

)
are not necessarily equal to the inverse limit

of the homology of the chain complex
(
E∗,∗
n (l), d∗,∗n

)
, which is equal to the inverse

limit of
(
E∗,∗
n+1(l), d

∗,∗
n+1

)
by definition. In this case, however, all groups in the spec-

tral sequence E∗,∗
∗ (l) are finite. This is because they are subquotients of Es,t1 (l) =

Homt
A(H

∗Ks, H
∗X l

k), which is finite, due to Ks being of finite type and X l
k being fi-

nite.

Consequently, all inverse limits involved consists of finite groups and thus trivially satisfy
the Mittag-Leffler condition, implying that in this case, taking inverse limits is exact and
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thus that it commutes with taking homology. Therefore, taking the inverse limits of
the bigraded groups E∗,∗

n (l) gives us a spectral sequence whose n:th page is equal to
lim←−lE

∗,∗
n (l) for all 1 ≤ n ≤ ∞. To prove the convergence of the spectral sequence of

interest, namely the one computing [Xk, S
∗], we will show that it is isomorphic to the

inverse limit spectral sequence given above. This will be done by induction on the pages.
We start the base case on the second page.

Lemma 5.6. The map induced by the quotients

Exts,tA (Z2, Pk)→ lim←−
l

Exts,tA (Z2, P
l
k)

is an isomorphism.

Proof. Since P lk is a quotient of Pk, it follows that the Z2-dual (P lk)
∗ is a submodule of

P ∗
k and it is easy to see that the natural map lim−→l

(P lk)
∗ → P ∗

k induced by inclusions is
an isomorphism. Applying the functor TorAs,t(−,Z2) to this isomorphism, we obtain an
isomorphism

TorAs,t(lim−→
l

(P lk)
∗,Z2)

∼=−→ TorAs,t(P
∗
k ,Z2) .

Consider the group on the left hand side above. Let F• → Z2 be a projective resolution
of Z2. Then this group is equal to the homology of the chain complex lim−→l

(P lk)
∗⊗F•. By

the tensor-hom adjunction, the tensor product functor − ⊗ Fk is a left adjoint functor
for all k. Since left adjoint functors commute with direct limits, there is an isomorphism
lim−→l

(P lk)
∗⊗Fk ∼= lim−→l

((P lk)
∗⊗Fk), natural in Fk. The previously mentioned chain complex

is thus isomorphic to lim−→l
((P lk)

∗ ⊗ F•). Since the direct limit is an exact functor, and
exact functors commute with homology, the homology of this chain complex is equal to
lim−→l

TorAs,t((P lk)
∗,Z2), meaning we have an isomorphism

lim−→
l

TorAs,t((P
l
k)

∗,Z2)
∼=−→ TorAs,t(P

∗
k ,Z2) .

Applying the functor (−)∗ here, and noting that the dual takes direct limits to inverse
limits, we may apply the isomorphism given in lemma 4.19 to get the following diagram
of isomorphisms.

lim−→l
TorAs,t((P lk)

∗,Z2)
∗ TorAs,t(P ∗

k ,Z2)
∗

lim−→l
Exts,tA (Z2, P

l
k) Exts,tA (Z2, Pk)

∼=

∼=

∼=

The dotted arrow, constructed from the three other isomorphisms, gives us our desired
isomorphism, which one can confirm is given by the natural map into the inverse limit
induced by the projection map.
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Lemma 5.7. For every integer n, the map

Es,tn (∞)→ lim←−
l

Es,tn (l)

is an isomorphism.

Proof. We will prove this by induction on n. The base case is precisely the lemma
above. Assume the result is true for n. By the naturality of the Adams spectral sequence
(theorem 3.30), for each l the inclusion X l

k → Xk induces a map of spectral sequences
E∗(∞) → E∗(l). This means that the map Es,tn (∞) → Es,tn (l) induced by the inclusion
commutes with the differentials in the respective spectral sequences, so that we have the
following chain map, for all l.

. . . Es−r,t−r+1
n (∞) Es,tn (∞) Es+r,t+r−1

n (∞) . . .

. . . Es−r,t−r+1
n (L) Es,tn (L) Es+r,t+r−1

n (L) . . .

dn dn

dn dn

Also, since the map Es,tn (∞) → Es,tn (L) commutes with the maps of the form Es,tn (L̃ +
1) → Es,tn (L̃) induced by inclusion, it follows by the naturality of the Adams spectral
sequence that we may take the inverse limits to obtain the commutative diagram below.

. . . Es−n,t−n+1
n (∞) Es,tn (∞) Es+n,t+n−1

n (∞) . . .

. . . lim←−LE
s−n,t−n+1
n (L) lim←−LE

s,t
n (L) lim←−LE

s+n,t+n−1
n (L) . . .

dn

∼=

dn

∼= ∼=

lim dn lim dn

(5.2)

The bottom row in (5.2) is still a chain map by the functoriality of lim←−(−). Furthermore,
by the inductive hypothesis, it is an isomorphism of chain complexes.

This chain isomorphism induces an isomorphism between the homology of the top com-
plex (which is by definition E∗,∗

n+1(∞)) and the homology of the bottom complex

H

(
lim←−
L

E∗,∗
n (L)

)
.

We will be done if we can show that the homology group above is isomorphic to

lim←−
L

(H(E∗,∗
n (L))) = lim←−

L

(
E∗,∗
n+1(L)

)
.

As we discussed in remark 3.16, the spectral sequence E∗,∗
∗ (l) is finite in all bidegrees.

The inverse system Es,tn (l) is thus trivially Mittag-Leffler, meaning that the inverse limit
is exact in this case, and thus commutes with homology.
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Corollary 5.8. The map in lemma 5.7 restricts to an isomorphism

Es,t∞ (∞)
∼=−−→ lim←−

l

Es,t∞ (l)

on the E∞ page .

Proof. Since the map in lemma 5.7 is a map of spectral sequences, it commutes with the
differentials of the spectral sequence. It is then immediate that permanent cycles map to
permanent cycles, so the codomain in the map above makes sense. Furthermore, given
a permanent cycle {zl}l, it must for some integer N lie in lim←−lE

s,t
N (l), so by the lemma

above, there is an element z ∈ Es,tN (∞) which maps to it. Since our map commutes
with differentials, the fact that {zl}l is a permanent cycle implies that z must be too,
so the map is surjective. To prove injectivity, take a permanent cycle z whose image
{zl}l is zero. It follows then that for some integer N , {zl}l = 0 ∈ lim←−lE

s,t
N (l), but then

z ∈ Es,tN (∞) is zero by the injectivity in lemma 5.7.

5.3 Computation of stable cohomotopy groups

We will now exhibit an isomorphism between the groups these spectral sequences (as we
will show later) converge to.

Definition 5.9. Given an abelian group G, we define the 2-adic filtration on G by
20 ·G ⊇ 21 ·G ⊇ 22 ·G ⊇ · · · .

Lemma 5.10. The natural map

[Xk, S
i]→ lim←−

l

[X l
k, S

i]

is an isomorphism for all i.

Proof. Consider Milnor’s exact sequence (theorem 2.29)

0→ lim←−
l

1[X l
k, S

i−1]→ [Xk, S
i]→ lim←−

l

[X l
k, S

i]→ 0 .

By lemma 5.3, unless k = i− 1 and k is even, the inverse system [X l
k, S

i−1] consists only
of finite groups, and thus is Mittag-Leffler, implying that the lim1 group above vanishes.
There is only one case left to consider. Let i− 1 = k and k be even.

Since we are interested in what happens in the limit, we may assume l is some integer
such that l > k + 1 and l > k. Applying the functor [−, Sk] to the cofiber sequence

Sk
jl
↪−→ X l

k ↠ X l
k+1, we get the exact sequence

[X l
k+1, S

k]→ [X l
k, S

k]
j∗l−→ [Sk, Sk] .
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The leftmost group is finite by lemma 5.3, so by exactness ker j∗l is finite for all l > k+1,
and thus this inverse system is Mittag-Leffler. The short exact sequence 0 → ker j∗l →
[X l

k, S
k]→ Im j∗l → 0 of inverse systems thus induces by lemma 1.6 an exact sequence

0→ lim←−
l

1[X l
k, S

k]→ lim←−
l

1 Im j∗l → 0 ,

so our problem reduces to showing that the inverse system Im j∗l is Mittag-Leffler.

Notice that H∗X l
k = P lk and that H∗Sk = ΣkZ2 as graded A-modules. By the long exact

sequence in cohomology associated to the cofibration sequence Sk ↪−→ X l
k ↠ X l

k+1, we
have an exact sequence

HkX l
k+1 → HkX l

k
j∗−→ HkSk .

Since the leftmost group is zero (by degree reasons), it follows that j∗ is non-zero in
degree k. Consequently, the map j∗ : H∗X l

k → H∗Sk is precisely the map π : P lk → Z2

described in the proof of lemma 5.5 in the case when k is even. There, we showed that
the induced map (j∗)∗ = π∗ : Exts,s−kA (Z2, P

l
k)→ Exts,sA (Z2,Z2) sends αhs−1

0 to hs0.

Furthermore, the differential d2 in E∗,∗
2 (l) sends αhs−1

0 to an element in the group
Exts+2,s+1−k

A (Z2, P
l
k). In particular, (s+2)−(s+1−k) = k+1 > k, so by lemma 5.4 and

theorem 4.23, Exts+2,s+1−k
A (Z2, P

l
k)
∼= Exts+2,s+1−k

A (Z2,Z2). Also, since (s+2)− (s+1−
k) = k+1, it means in particular that it is even. It is known that the group Extσ,τA (Z2,Z2)
vanishes for large enough σ unless σ − τ = 0. This follows from Adams’ vanishing theo-
rem, the first theorem in [2]. Consequently, the element d2(αhs−1

0 ) vanishes when s ≥ S,
for some large integer S. In general this shows that dr(αhs−1

0 ) ∈ Exts+r,s+r−1−k
A (Z2,Z2)

vanishes when s ≥ S and r ≥ 2, so αhS−1
0 is a permanent cycle in E∗,∗

∗ (l).

By the convergence of the spectral sequence E∗,∗
∗ (Sk) for computing [Sk, Sk], we have

an isomorphism ES,S∞ (Z2,Z2) ∼= FS,S−k(Sk)/FS+1,S−k+1(Sk). In fact, it is known that
Eσ,σ2 (Z2,Z2) = Eσ,σ∞ (Z2,Z2) = Z2 for all σ ≥ 0; see theorem 14.7 in [27]. We claim that
hS0 ∈ E

S,S
∞ (Z2,Z2) is represented by the map 2S · id ∈ FS,S−k(Sk)/FS+1,S−k+1(Sk).

By lemma 9.19 in [21], the 2-adic filtration is contained in the Adams filtration, so
2S · [Sk, Sk] ⊆ FS,S−k(Sk) for all S. It follows that

2S · [Sk, Sk]/2S+1 · [Sk, Sk] ⊆ FS,S−k(Sk)/FS+1,S−k+1(Sk) .

Since 2S · id is a nonzero element in the leftmost group, it is a (and thus the) nonzero
element in the rightmost group, proving that hS0 is represented by 2S · id.

By the convergence of the spectral sequence E∗,∗
∗ (l), it follows that the permanent cycle

αhS−1
0 is represented by some map f : X l

k → Sk. By the naturality of the Adams spectral
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sequence, the following diagram commutes.

αhS−1
0 ∈ ES,S−k∞ (l) ES,S∞ (Sk) ∋ hS0

f ∈ FS,S−k(l)/FS+1,S−k+1(l) FS,S−k(Sk)/FS+1,S−k+1(Sk) ∋ 2S · id

j∗

∼=

j∗

∼=

By the commutativity of the diagram, f maps to 2S · id. In particular, 2S · id ∈ Im j∗,
meaning that 2S · [Sk, Sk] ⊆ Im j∗, and thus that the order of the cokernel coker j∗ is
bounded above by |[Sk, Sk]/2S [Sk, Sk]|= 2S , so Im j∗l has index at least 2S in [Sk, Sk].
By the commutativity of the diagram

[X l+1
k , Sk] [Sk, Sk]

[X l
k, S

k] [Sk, Sk]

j∗l+1

j∗l

it follows that Im j∗l monotonically decreases as l increases. By the boundedness of the
index, it follows that Im j∗ eventually becomes stationary for large enough l. Therefore,
the inverse system Im j∗l is Mittag-leffler.

The isomorphism exhibited above respects Adams filtrations.

Lemma 5.11. f ∈ [Xk, S
t] has Adams filtration ≥ s if and only if the image in the

inverse limit {fl}l ∈ lim←−l[X
l
k, S

t] has Adams filtration ≥ s:

Proof. Let · · · → Y 2 → Y 1 → St be an Adams tower for St. Consider the follow-
ing commutative diagram, where the horizontal maps are given by composing with the
appropriate maps in the Adams tower.

f̃ ∈ [Xk, Y
s] [Xk, S

t] ∋ f

{f̃l}l ∈ lim←−l[X
l
k, Y

s] lim←−l[X
l
k, S

t] ∋ {fl}l

The element f : Xk → St lies in the upper right corner, and its image along the rightmost
map is {fl}l. Notice that f having Adams filtration ≥ s means precisely that it lies in
the image of the upper map. Similarly, fl has Adams filtration ≥ s for all l precisely
when {fl}l lies in the image of the bottom map.

If f has Adams filtration ≥ s, then there is an element f̃ which maps to f along the
upper map. The image of f̃ in the inverse limit gives us a consistent sequence {f̃l}l which
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maps to {fl}l, meaning that fl has Adams filtration ≥ s. Conversely, assume now that
fl has Adams filtration ≥ s for all l. Then there is an element {f̃l}l which maps to {fl}l
along the bottom map. The leftmost map is surjective by the Milnor exact sequence. By
the commutativity of the diagram, there is an element f̃ which maps to f .

Corollary 5.12. The isomorphism given in lemma 5.10 restricts to an isomorphism

F s,t(∞)
∼=−−→ lim←−

l

F s,t(l) .

We are starting to close in on why the spectral sequence E∗,∗
∗ (∞) converges. By the

convergence of the spectral sequences E∗,∗
∗ (l), we have a short exact sequence

0→ F s+1,t+1(l)→ F s,t(l)→ Es,t∞ (l)→ 0 (5.3)

for all s, t, l. Taking inverse limits, and using the isomorphism from the corollary above
and from lemma 5.10, we get an exact sequence

0→ F s+1,t+1(∞)→ F s,t(∞)→ Es,t∞ (∞) . (5.4)

This means we have an injection from the successive filtration quotients to the perma-
nent cycles of the spectral sequence E∗,∗

∗ (∞). Notice that the rightmost map must not
necessarily be surjective, since inverse limits are in general not right exact. To prove
convergence, it thus remains to prove that this map is a surjection. Surprisingly, we will
use a lemma from graph theory to prove this.

Lemma 5.13 (König’s Lemma). Given any infinite connected graph where each vertex
has finitely many adjacent vertices, there is an infinitely long path that does not repeat
vertices.

Proof. Take a vertex v1. Since the graph is connected, all of the infinitely many vertices
can be reached by a path starting at v1 without repeating any vertex. Each such path
must pass through one of the finitely many neighbors of v1. By a sort of pigeonhole
principle, it follows that there is some vertex, call it v2, neighboring v1 and through
which infinitely many of these paths must pass through. Since the graph is connected
and infinite all of the infinitely many vertices can be reached by a path starting at v2
without repeating any vertex. A similar argument as above allows us to pick a new vertex
v3, extending the path v1 → v2, and then we iterate the procedure, extending the path
v1 → v2 → v3.

Theorem 5.14. The Adams spectral sequence E∗,∗
∗ (∞) converges.

Proof. It remains to show that the rightmost map in (∗) is surjective. Given a permanent
cycle x ∈ Es,t∞ (∞) its image {xl}l under the map in corollary 5.8 is a permanent cycle.
By the convergence of the spectral sequences E∗,∗

∗ (l), each xl ∈ Es,t∞ (l) is represented
by a map fl : X l

k → Ss−t under the surjection given in (5.3). Since we care about
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what happens in the limit, we may assume l > k and l > s − t. By lemma 5.2 the
groups [X l

k, S
s−t] are all finite in this range. The naturality of the Adams spectral

sequence implies that the inclusion X l
k ↪−→ X l+1

k induces the following map of short exact
sequences.

0 F s+1,t+1(l + 1) F s,t(l + 1) Es,t∞ (l + 1) 0

0 F s+1,t+1(l) F s,t(l) Es,t∞ (l) 0

The commutativity of the rightmost square means that given any representative fl+1 of
the permanent cycle xl+1, we can pick the restriction fl of fl+1 as a representative of xl.

Define a graph consisting of vertices all elements in F s,t(l) as l ranges over L0 for some
fixed integer L0 greater than k and s − t. Let two vertices be adjacent if and only if
one is the restriction of the other. This graph is infinite. By the last sentence in the
paragraph above, this graph is connected. Lemma 5.2 shows that the groups [X l

k, S
s−t]

are all finite, so the subgroups F s,t(l) are finite, and thus each vertex has finitely many
neighbors.

By lemma 5.13, it follows that there is an infinitely long path in this graph that does
not repeat vertices. This means precisely that there is a sequence of maps {fl}l≥L0 ∈∏
l≥L0

F s,t(l) such that the restriction of fl+1 to X l
k is fl, and this is equivalent to the

sequence {fl}l being an element in the inverse limit lim←−l F
s,t(l). By corollary corollary

5.12, this element pulls back to an element f ∈ F s,t(∞), which gets mapped to our
permanent cycle z ∈ Es,t∞ (∞) by the commutativity of the following diagram.

f ∈ F s,t(∞) Es,t∞ (∞) ∋ x

{fl}l ∈ lim←−l F
s,t(l) lim←−lE

s,t
∞ (l) ∋ xl

This implies that the rightmost map in (5.4) is surjective, completing the proof.

Now that we have proven convergence, we move on to proving a concrete fact about the
cohomotopy groups [Xk, S

t].

Lemma 5.15. If k < t, then maps f : Xk → St are of infinite Adams filtration only if
f = 0.

Proof. Let · · · → Y 2 → Y 1 → St be an Adams tower for St. For each l > t we have the
following commutative diagram.

f̃ ∈ [Xk, Y
s] [Xk, S

t] ∋ f

f̃l ∈ [X l
k, Y

s] [X l
k, S

t] ∋ fl
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The map f : Xk → St being of Adams filtration ≥ s means precisely that there is a f̃
which maps into it as above. Mapping f and f̃ along the vertical maps, we see by the
commutativity of the diagram that the restriction fl is of Adams filtration ≥ s. Assuming
f is of infinite Adams filtration, it follows thus that fl is of infinite filtration.

By lemma 5.2 the group [X l
k, S

t] is always a 2-group, so by lemma 3.28, it follows that
[X l

k, S
t] has no elements of infinite filtration, except the constant map, so fl = 0 for all

l > t. Consequently, the map f gets mapped to 0 along the map [Xk, S
t]→ lim←−l[X

l
k, S

t].
By the injectivity of this map, due to lemma 5.10, it follows that f = 0.

We can finally prove our main theorem! By [S0, Sc]2, we mean the quotient of [S0, Sc]
by all odd-order torsion.

Theorem 5.16.

(i) If k < c and c > 0, then [Xk, S
c] = 0.

(ii) If k < c and c = 0, then [Xk, S
0] is isomorphic to the 2-adic integers Ẑ2 as filtered

groups.

(iii) If k < 0 and c < 0, then there exists a map f : Xk → S0 such that f∗ : H0S0 →
H0Xk is nonzero. Furthermore, the induced map

f∗ : [S0, Sc]2 → [Xk, S
c]

is an isomorphism if k < c− 1 and a surjection if k = c− 1.

Proof of part (i). When k < c, it follows by lemma 5.4 and theorem 4.23 that Es,t2 (∞) =
Exts,tA (Z2, Pk) ∼= Exts,tA (Z2,Z2) when s− t = c. Note that if s− t = c, then since c > 0,
it follows in particular that s > t. We will show that in this case, the latter Ext group
vanishes.

In the proof of lemma 4.20 we constructed a free resolution F• → Z2 of Z2 as an A-
module such that the t:th graded component (Fs)t of Fs vanishes when t < s. The group
Exts,tA (Z2,Z2) equals the homology at the group Homt

A(Fs,Z2). Notice that this Hom
group is completely determined by where the homomorphisms send the elements in (Fs)

t

because the codomain of the maps are concentrated in degree zero, but in the case when
s > t, this graded component of Fs is zero, and thus the Hom group is zero, finally
implying that the homology at that group is zero.

Since Es,t2 (∞) = 0 for all s − t = c, it follows that the subquotients Es,t∞ (∞) van-
ish at these indices too. By the convergence of the spectral sequence, it follows that
F s,t(∞)/F s+1,t+1(∞) = 0 for all s− t = c, implying that all F s,t(∞) = F s+1,t+1(∞) for
all s− t = c. Consequently, all maps in [Xk, S

c] have infinite Adams filtration, and thus
the group must be zero by lemma 5.15.
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Proof of part (ii). In this case, it follows by lemma 5.4 and theorem 4.23 that ϕ∗ :
Exts,s−iA (Z2,Z2) → Exts,s−iA (Z2, Pk) = Es,s−i2 (∞) is an isomorphism for i = 0, 1. Re-
call that Exts,sA (Z2,Z2) = Z2 for all s ≥ 0. Also, as proven in the beginning of the proof
of part (i), since s > s − 1, it follows that Exts,s−1

A (Z2,Z2) = 0 for all s. Consequently,
the permanent cycles hs0 map to permanent cycles ϕ∗(hs0) in Es,s2 (∞), since the codomain
of the differential at bidegree s, s is a subquotient of Es−r,s+r−1

2 (∞), which is zero, and
thus necessarily dr(ϕ∗(h

s
0)) = 0. We will show that none of the elements ϕ∗(hs0) are

boundaries.

Suppose, to the contrary, that ϕ∗(hs0) = dr(x) for some s ≥ 0, r ≥ 2 and x ∈ Es+r,s−r+1
r (∞).

Since the differentials are a derivation with respect to the given product structure on the
Adams spectral sequence by proposition 3.33, it follows that dr(x · ht0) = dr(x) · ht0 +
x · dr(ht0) = ϕ∗(h

s
0)h

t
0 = ϕ∗(h

s+t
0 ). This element is nonzero, and thus x · ht0 must be a

nonzero element in Es+r+t,s−r+1+t
r (∞) for all t ≥ 0. It follows that there is a nonzero

element in Es+r+t,s−r+1+t
2 (∞) for all t. Note that s+ r+ t− (s− r+1+ t) = 2r− 1 > k,

so by lemma 5.4 and theorem 4.23, there is a nonzero element in Es+r+t,s−r+1+t
2 (S0)

for all t. Since s + r + t − (s − r + 1 + t) = 2r − 1 is in particular not zero, it fol-
lows that Es+r+t,s−r+1+t

2 (S0) vanishes for large enough t, because, as previously stated,
Eσ,τ2 (S0) = Extσ,τA (Z2,Z2) vanishes for large enough σ unless σ − τ = 0 by Adams’ van-
ishing theorem. This leads to a contradiction. Therefore, none of the elements ϕ∗hs0 are
boundaries, from which it also follows that Es,s2 (∞) = Es,s∞ (∞) = Z2.

By the convergence of E∗,∗
∗ (∞), it follows that the element h00 ∈ E

0,0
∞ (∞) is represented

by the nonzero element in F 0,0(∞)/F 1,1(∞), call it f . By lemma 3.23 the induced map
f∗ in cohomology is not zero, since f is not of Adams filtration ≥ 1. Consequently, the
map f∗ : H∗S0 = Z2 → H∗Xk = Pk is precisely the map ϕ : Z2 → Pk, which is the
map that induces the isomorphism Es,s2 (S0) ∼= Es,s2 (∞) by lemma 5.4 and theorem 4.23.
Since these groups consist of permanent cycles which are not boundaries, it follows that
f induces an isomorphism Es,s∞ (S0) → Es,s∞ (∞). By the convergence of these spectral
sequences, it follows that we have an isomorphism of filtration quotients

F s,s(S0)/F s+1,s+1(S0) ∼= F s,s(∞)/F s+1,s+1(∞)

for all s. In fact, we also have this isomorphism of filtration quotients with respect to the
2-adic filtration on the group [S0, S0], because as we showed in the proof of lemma 5.10,
2s[S0, S0]/2s+1[S0, S0] is equal to the filtration quotient on the left hand side above.

The isomorphism [S0, S0]→ Z given by sending the identity map to 1 makes the square
below commute.

[S0, S0] [Xk, S
0]

Z [Xk, S
0]

Ẑ2

g 7→g◦f

∼=

k 7→k·f

k 7→k·f

(5.5)
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Furthermore, since [X l
k, S

0] is a finite 2-group by lemma 5.2, it has a canonical Ẑ2-module
structure given by scalar multiplication with the power series

∑
i ai2

i ∈ Ẑ2. The inverse
limit of these groups, which is [Xk, S

0] by lemma 5.10, is thus also a Ẑ2-module. The
diagonal map in the diagram above (call it ψ) is given by multiplication with a 2-adic
integer and it makes the triangle commute, where the vertical map in this triangle is the
natural map from Z to its 2-adic completion.

Let the 2-adic integers Ẑ2 be a filtered group with respect to the 2-adic filtration. Since
homomorphisms distribute over addition, the map ψ in (5.5) preserves the 2-adic fil-
tration, meaning that ψ(2s · Ẑ2) ⊆ 2s[Xk, S

0]. Recall that the 2-adic filtration is
contained in the Adams filtration, meaning that 2s[Xk, S

0] ⊆ F s,s(∞), and thus that
ψ(2s · Ẑ2) ⊆ F s,s(∞) for all s. This means ψ is a map of filtered groups with respect
to the Adams filtration on its codomain. By the same argument, it follows that the top
horizontal map in (5.5) is a map of filtered groups, with respect to the 2-adic filtration
on [S0, S0] and Adams filtration on the codomain.

Consider the two vertical maps in the first column of (5.5). The first map is an isomor-
phism, and thus trivially induces an isomorphism of filtration quotients (with respect to
the 2-adic filtrations). Furthermore, it is easy to verify that the second map does so as
well, meaning that 2sZ/2s+1Z ∼= 2sẐ2/2

s+1Ẑ2 for all s. By the commutativity of (5.5),
the map ψ induces an isomorphism of filtration quotients since the top horizontal map
f∗ does so, as was shown above.

It is easy to see that
⋃

≥0 2
sẐ2 = Ẑ2,

⋂
s 2

sẐ2 = 0 and that the Adams filtration exhausts
[Xk, S

0]. By lemma 5.15, it follows that
⋂
s F

s,s(∞) = 0. Once we prove that

lim←−
s

1 2sẐ2 = 0 ,

all criteria for lemma 3.11 will be met, and thus we can conclude that ψ : Ẑ2 → [Xk, S
0]

is an isomorphism of filtered groups. We have a short exact sequence of inverse systems
0 → 2sẐ2 → Ẑ2 → Z2s → 0 where the surjection is given by

∑
i ai2

i 7→
∑

i<s ai2
i and

the middle inverse system consists of identity maps. Taking inverse limits, we get by
lemma 1.6 an exact sequence

Ẑ2 → Ẑ2 → lim←−
s

1 2sẐ2 → 0 .

In fact, it is easy to verify that the leftmost map is an isomorphism, which is in particular
surjective. By exactness, the lim1 group vanishes, completing the proof.

Proof of part (iii). Such a map f : Xk → S0 must exist, because there is an element in
Ẑ2 which is not in 2 · Ẑ2, and thus by part (ii) there is an element in [Xk, S

0] which is
not of Adams filtration ≥ 1, and thus the map f exists due to lemma 3.23.
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By assumption, the induced map f∗ : H∗S0 = Z2 → H∗Xk = Pk is precisely the
map ϕ : Z2 → Pk. It follows thus by lemma 5.4 and theorem 4.23 that f induces an
isomorphism Es,t2 (S0) ∼= Es,t2 (∞) when s − t > k. By induction on n, it follows that
for all n ≥ 2, f induces an isomorphism on the En-page when s − t > k + 1 and a
surjection when s − t = k + 1 by a similar argument as in the proof of lemma 5.4.
It follows that f induces an isomorphism on the E∞-page when s − t > k + 1, and
that it must induce a surjection when s − t = k + 1. From the convergence of these
two spectral sequences, we see that f induces an isomorphism of filtration quotients
F s,t(S0)/F s+1,t+1(S0) ∼= F s,t(∞)/F s+1,t+1(∞) when s− t > k+1 and a surjection when
s− t = k+1. We are interested in the case when s− t = c, so assume this from now on.

Let T c =
⋂
n F

s+n,t+n(S0). By lemma 3.28, this is precisely the odd-order torsion in
[S0, Sc]. By some isomorphism theorem, we have that

F s,t(S0)/F s+1,t+1(S0) ∼= (F s,t(S0)/T c)
/
(F s+1,t+1(S0)/T c) .

If we filter the group [S0, Sc]2 = [S0, Sc]/T c by F s+∗,t+∗/T c, it is easy to see that this
filtration exhausts the group and that

⋂
n F

s+n,t+n/T c = 0. Furthermore, since [S0, Sc]
is finite by Serre’s finiteness theorem, it is clear that

lim←−
n

1 F s+n,t+n/T c = 0 .

Therefore, if c > k + 1, then f : [S0, Sc]2 → [Xk, S
c] induces an isomorphism by lemma

3.12 and if c = k + 1, then f induces a surjection by lemma 3.13.

96



References
[1] J.F. Adams. Vector fields on spheres. Annals of Mathematics, 1962.

[2] J.F. Adams. A periodicity theorem in homological algebra. Mathematical Proceedings
of the Cambridge Philosophical Society, 1965.

[3] J.F. Adams. Operations of the n:th kind in k-theory, and what we don’t know about
RP∞. Cambridge University Press, 1974.

[4] J.F. Adams. Stable Homotopy and Generalized Homology. The University of Chicago
Press, 1974.

[5] José Adem. The relations on steenrod powers of cohomology classes. In Algebraic
Geometry and Topology, pages 191–238. Princeton University Press, 1957.

[6] L.L. Avramov and Ragnar-Olaf Buchweitz. Lower bounds for betti numbers. Com-
positio Mathematica, 1991.

[7] Tilman Bauer. Characteristic classes in topology, geometry and algebra,
2024. URL: https://github.com/tilmanbauer/characteristic-classes/blob/
master/characteristic-classes.pdf.

[8] Edgar Brown. Cohomology theories. Annals of Mathematics, 1962.

[9] Robert Bruner. An adams spectral sequence primer, 2009. URL: http://www.rrb.
wayne.edu/papers/adams.pdf.

[10] Robert Bruner and John Rognes. The cohomology of the mod 2 steenrod algebra,
2021. URL: https://arxiv.org/pdf/2109.13117.

[11] Gunnar Carlsson. Equivariant stable homotopy and segal’s burnside ring conjecture.
Annals of Mathematics, 1984.

[12] Paul Goerss. The adams-novikov spectral sequence and the homotopy groups
of spheres, 2007. URL: https://people.math.rochester.edu/faculty/doug/
otherpapers/goerss-ans.pdf.

[13] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[14] Allen Hatcher. Spectral Sequences in Algebraic Topology. Unpublished, 2004.

[15] I.M. James. The Topology of Stiefel Manifolds. Cambridge University Press, 1976.

[16] Erkki Laitinen. On the burnside ring and stable cohomotopy of a finite group.
Mathematica Scandinavica, 1979.

[17] T.Y. Lin and H.R. Margolis. Homological aspects of modules over the steenrod
algebra. Journal of Pure and Applied Algebra, 1974.

97

https://github.com/tilmanbauer/characteristic-classes/blob/master/characteristic-classes.pdf
https://github.com/tilmanbauer/characteristic-classes/blob/master/characteristic-classes.pdf
http://www.rrb.wayne.edu/papers/adams.pdf
http://www.rrb.wayne.edu/papers/adams.pdf
https://arxiv.org/pdf/2109.13117
https://people.math.rochester.edu/faculty/doug/otherpapers/goerss-ans.pdf
https://people.math.rochester.edu/faculty/doug/otherpapers/goerss-ans.pdf


Section 5.3 REFERENCES

[18] W.H. Lin. The adams-mahowald conjecture on real projective spaces. Mathematical
Proceedings of the Cambridge Philosophical Society, 1979.

[19] W.H. Lin. On conjectures of mahowald, segal and sullivan. Mathematical Proceedings
of the Cambridge Philosophical Society, 1979.

[20] W.H. Lin, M.E. Mahowald, and J.F. Adams. Calculation of lin’s ext groups. Math-
ematical Proceedings of the Cambridge Philosophical Society, 1979.

[21] John McCleary. A User’s Guide to Spectral Sequences. Cambridge University Press,
2000.

[22] John Milnor. The steenrod algebra and its dual. Annals of Mathematics, 1957.

[23] John Milnor and John Moore. On the structure of hopf algebras. Annals of Mathe-
matics, 1965.

[24] R.E. Mosher and M.C. Tangora. Cohomology Operations and Applications in Ho-
motopy Theory. Harper & Row Publishers, 1968.

[25] R.M.F. Moss. On the composition pairing of adams spectral sequences. Journal of
the Lond Mathematical Society, 1968.

[26] Douglas Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres.
Academic Press, 1986.

[27] John Rognes. Introduction to the adams spectral sequence, 2015. URL:
https://www.mn.uio.no/math/personer/vit/rognes/kurs/mat9580v15/
adams-sp-seq.010615.pdf.

[28] N.E. Steenrod and D.B.A. Epstein. Cohomology Operations. Princeton University
Press, 1962.

[29] Charles Weibel. An Introduction to Homological Algebra. Cambridge University
Press, 1994.

98

https://www.mn.uio.no/math/personer/vit/rognes/kurs/mat9580v15/adams-sp-seq.010615.pdf
https://www.mn.uio.no/math/personer/vit/rognes/kurs/mat9580v15/adams-sp-seq.010615.pdf

	Introduction
	Motivation and background
	Algebraic preliminaries

	Spectra
	Motivation
	CW spectra
	Homotopy theory
	Cohomology

	Adams Spectral Sequence
	General introduction to spectral sequences
	Construction of Adams spectral sequence
	Convergence and naturality
	Multiplicative structure

	Ext Calculation
	Sketch of the proof
	The A-module P
	Splitting
	Homological algebra over A-modules
	Passing to direct and inverse limits

	The main theorem
	Atiyah-Hirzebruch spectral sequence computation
	Comparing spectral sequences
	Computation of stable cohomotopy groups


