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Abstract

Elliptic curve cryptography (ECC) is widely used in modern cryptographic sys-
tems and relies on the presumed hardness of the elliptic curve discrete logarithm
problem (ECDLP), over suitably chosen curves. This thesis first develops the al-
gebraic background including modular arithmetic, finite fields, the Weierstrass
equation and the group law, before formally stating the ECDLP and examining
potential attacks. We analyze the index-calculus method, a sub exponential al-
gorithm, as an attack against the general discrete logarithm problem and discuss
why it generally does not does not work for elliptic curves. After this we shift fo-
cus to Pollard’s rho and lambda methods by analyzing how pseudo-random walks,
cycle detection and the extraction of the secret k from colliding states works. To
evaluate practical performance, we implement Pollard’s rho algorithm in Sage-
Math and test it in various scenarios. One test focuses on corroborating Wash-
ington’s heuristic that about twenty partitions of the subgroup generated by P is
near-optimal. To do this, 50 randomly generated curves over prime fields of order
roughly 108 were generated, varying the walk-partition parameter s ∈ {2, . . . ,40}.
The experiment shows a steep runtime decline up to s ≈ 15 and only marginal
gains beyond s ≈ 20. We then benchmark our implemented version of Pollard’s
rho against SageMath’s built in version. This tests shows that SageMath’s version
is significantly more efficient, likely due to SageMath using cython. We then con-
clude by timing Pollard’s rho against Pollard’s kangaroo method using SageMath’s
built in versions. Which highlights how information about the range of the secret
k can greatly improve performance. If it is known that k ∈ (a,b) with L = b−a and
|P | = n, we observe that for L = n/log (n) the runtime can be more than halved.
Subsequent tests shows an even greater increase in speed for smaller intervals L.

Abstract

Elliptiskurvkryptografi (ECC) används världen över i moderna kryoptografiska
system och förlitar sig på den förmodade svårigheten i det diskreta logaritmprob-
lemet för elliptiska kurvor (ECDLP), över lämpligt valda kurvor. Detta examen-
sarbete inleds med en redogörelse för den algebraiska bakgrunden nödvändig för
att förstå strukturen kring elliptiska kurvor och attacker mot ECDLP. Vi går bland
annat igenom modulräkning, ändliga kroppar, Weierstrass ekvationen och grup-
plagen som definierar hur additioner av punkter på kurvan sker. Vi analyserar
index-calculus metoden, en algoritm som har snabbare tidskomplexitet än övriga
undersökta, som en attack mot det generella diskreta logaritmproblemet (DLP)
och förklarar varför den generellt sett inte är överförbar till elliptiska kurvor. Efter
detta skiftar vi fokus till Pollard’s rho och lambda metoder för att lösa ECDLP.
Vi förklarar hur cykeldetektering fungerar och hur vi kan lösa ut skalären k ifrån
detta. För att utvärdera den praktiska prestandan implementerar vi Pollard’s rho
i SageMath och utför två tester. Vi undersöker huruvida Washingtons tumregel
att cirka tjugo partitioner av delgruppen genererad av P är optimal. För att göra
detta genererade vi 50 kurvor över primkroppar med cirka 108 element och vari-
erade antalet partitioner s från 2 till 40 stycken. Experimentet visar att tiden för
algoritmen att lösa ECDLP minskar drastiskt för varje ökning av s fram till s ≈ 15,
med endast en marginell minskning efter s ≈ 20. Sedan jämför vi tiden det tar
för vår implementerade version av Pollards rho att lösa ECDLP mot SageMaths
inbyggda. Detta test visar att SageMaths inbyggda version är betydligt snabbare,
vilket troligtvis beror på att SageMath använder cython för beräkningar. Vi avs-
lutar med att jämföra Pollards kangaroo metod mot Pollards rho via de inbyggda
funktionerna i SageMath. Detta test visar hur information om att k ligger i ett givet



intervall kan drastiskt förkorta tiden att lösa ECDLP. Om vi vet att k ∈ (a,b) med
L = b − a och |P | = n, så observerar vi att för L = n/log (n) så kan tiden att lösa
ECDLP halveras. Vidare tester visar en ännu större skillnad mellan funktionerna
när storleken på L minskar.
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1 Introduction

Elliptic curve cryptography (ECC) has rapidly developed during the last 30 years, be-
coming more and more widely adopted. It offers robust security with drastically smaller
key sizes compared to classical methods such as RSA or Diffie-Hellman. As noted in
[3][§6], Washington writes that "a key size of 4096 bits for RSA gives the same level of
security as 313 bits in an elliptic curve system", showing the efficiency of ECC. The
security of ECC relies on the presumed computational difficulty of the elliptic curve
discrete logarithm problem (ECDLP), an adaptation of the classical discrete logarithm
problem (DLP). The ECDLP asks us to find the integer k such that Q = kP for given
points P and Q on a specified elliptic curve. To get a deeper understanding on how
elliptic curve cryptography works and known attacks on the ECDLP, we first need to
develop an algebraic foundation.

This thesis begins by detailing the algebra necessary to define and understand el-
liptic curves and the algorithms that attack the ECDLP. We begin by looking at modular
arithmetic, working our way through fields and finite fields until we define what an el-
liptic curve is in our setting. Defined through whats called the Weierstrass equation,
an elliptic curve by our definition, has to fulfill that given two points and their secant
line, the secant line intersects the elliptic curve in one unique additional point. This is
what allows us to define a group structure from the points of the elliptic curve. We then
revisit finite fields to discuss elliptic curves within this abstract but practical setting.

Once the theoretical background is established, we shift our attention towards the
DLP and the index calculus method, a sub exponential algorithm for finite multiplica-
tive groups. Here, we examine the structural differences between these groups and el-
liptic curves, explaining why adapting index calculus to elliptic curves generally fails
due to the absence of a meaningful notion of prime factorization for points of the
curve.

We then introduce the ECDLP and present some known attacks to break the ECDLP.
Here, Pollard’s methods; rho, lambda and kangaroo are central. They are all similar
methods that are used for different scenarios. These methods all use pseudo-random
walks within the elliptic curve group to find the discrete logarithm. Only keeping track
of two elements at a time, allows them to keep storage at a minimal for a slight cost
in computation. We explore how cycle detection works using Floyd’s method and how
to calculate the discrete logarithm from a cycle detection. This thesis concludes with
three empirical analyses performed in SageMath, exploring practical aspects of Pol-
lard’s rho and kangaroo methods. We first test how different partition sizes of the cyclic
group 〈P〉 affect the performance of Pollard’s rho, then benchmark our implementation
of Pollard’s rho against SageMath’s built in version and finally demonstrate how Pol-
lard’s kangaroo method can offer significant speed up with apriori knowledge about
the range of k.
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2 Fields and Finite Fields

Before we can explore elliptic curves, we review the notion of a field: every coordinate
we encounter will lie in some field and every step of the elliptic curve group law relies
on the structure of fields. This section follows [2, §22.3] and [1, §1.4 and §7.1]

Definition 2.0.1. A field F, is a set that consists of two abelian groups under different
operations, (F,+), (F\ {0}, ·) and satisfies the following properties called axioms.

Axioms of a Field

1. Associativity: ∀a,b,c ∈ F it holds that (a+b)+c = a+(b+c) and (a ·b)·c = a ·(b ·c).

2. Commutativity: ∀a,b,c ∈ F it holds that a +b = b +a and a ·b = b ·a.

3. Distributivity: ∀a,b,c ∈ F it holds that a ·(b+c) = ab+ac and (a+b) ·c = ac+bc

4. Identity: There exists an element 0 ∈ F such that a +0 = a = 0+ a for all a ∈ F .
There exists 1 ∈ F such that 1 ·a = a = a ·1 for all a ∈ F

5. Inverse: There exists for both operations a unique element for each a ∈ F such
that a + (−a) = 0 and a ·a−1 = 1. The latter if a ̸= 0.

Example 2.0.2. The set of all rational numbers

Q= {
m

n
| m,n ∈Z, n ̸= 0}

with the usual addition and multiplication all five axioms are satisfied. However, the
ring of integers

Z= {. . . ,−1,0,1, . . . }

with the usual operations is not a field. It satisfies associativity, commutativity, and
distributivity and has the additive identity 0 and the multiplicative identity 1. However,
only the elements ±1 have multiplicative inverses in Z, thus it is not a field.

Definition 2.0.3. Let F be a field with additive identity 0, a non-zero element a in F is a
zero divisor if there exists a non-zero element b in F such that

a ·b = 0

Lemma 2.0.4. A field contains no zero-divisors.

Proof. Let F be a field and assume for contradiction, that there are a,b in F that satisfies

a ̸= 0, b ̸= 0, a ·b = 0

Because a ̸= 0, by the inverse axiom, a has an inverse a−1. Multiply a ·b = 0 on the left
by a−1 and use associativity:

a−1(a ·b) = (a−1a)b = b

While the right side becomes:
a−1 ·0 = 0

Hence b = 0 which contradicts the assumption. Therefore no such non-zero pair can
exist in a field, thus F has no zero-divisors.
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2.1 Modular arithmetic

Modular arithmetic is a system of arithmetic for integers where numbers "wrap around"
after reaching a certain modulus. This section follows [2, §13]

Definition 2.1.1. For an integer n > 0, we say that two integers a and b are congruent
modulo n, written as

a ≡ b (mod n),

if n divides their difference, i.e., n | (a −b).

Example 2.1.2. Consider integers, Z modulo 5. Then, 12 ≡ 2 (mod 5), since 5 divides
12−2 = 10.

2.2 Relations and cosets

To prepare us for Lagrange’s theorem, we introduce the notion of relations on a set and
cosets from group theory. This section follows [2, §7 and §12.2].

Definition 2.2.1 (Relation). Let X be a set, a relation R on X is a subset

R ⊆ X ×X

If (x, y) is in R we write x R y .

Definition 2.2.2 (Potential properties of a relation). A relation R on X can be

1. reflexive if x R x for every x in X .

2. symmetric if x R y then y R x for all x, y in X .

3. transitive if x R y and y R z then x R z for all x, y, z in X .

Definition 2.2.3 (Equivalence relation). Let X be a set, an equivalence relation ∼, is a
relation on X that is reflexive, symmetric and transitive. Given an equivalence relation
∼ on X and an element x in X , the equivalence class of x is:

[x] = {y ∈ X : y ∼ x}

Lemma 2.2.4. Let X be a set with x, y in X and ∼ being an equivalence relation on X .
Then the two equivalence classes [x], [y] are either identical or disjoint.

Proof. Assume X is a non-empty set and x, y is in X . We prove the lemma by showing
that if [x] and [y] share at least one element, they are identical. Suppose [x]∩ [y] ̸=∅,
then take z in [x]∩ [y], thus z ∼ x and z ∼ y . By the symmetry property x ∼ z, then the
transitive property implies that x ∼ y . Now take any w in [x], since w ∼ x and x ∼ y ,
transitivity implies that w ∼ y , thus w is in [y], so [x] ⊆ [y]. The reverse inclusion is
proved similarly. This shows that two equivalence classes are either identical or dis-
joint.

Theorem 2.2.5. Let X be a set and ∼, an equivalence relation on X . Then the distinct
equivalence classes

[x] = {y ∈ X | y ∼ x} x ∈ X

form a partition of X .
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Proof. Assume that X is a set and ∼ is an equivalence relation on X . Then for any x in
X , the reflexive property of the equivalence relation gives x ∼ x, thus x is in [x]. This
means that every element in X belongs to (at least) one equivalence class. By lemma
2.2.4, if two classes share at least one element they are equal. Therefore the union of
distinct equivalence classes is pairwise disjoint, contains all elements of X and thus,
cover all of X .

Definition 2.2.6 (Cosets). Let G be a group and H ⊆G , then the left and right coset are
the subsets formed by H multiplied by an element g ∈G . That is, for the left coset

g H = {x ∈G | x = g h for some h ∈ H }

Example 2.2.7. Let G = (Z6,+) and H = {0, 3} ⊂ G , then H is a subgroup since the
identity, 0 ∈ H and the inverse of 3 which is 3 since 3+3 ≡ 0 (mod 6) is also in H . Then
the left cosets of H are

Table 1: Left cosets of H
g g +H

0 {0,3} (same as H)
1 {1,4}
2 {2,5}
3 {3,0} (same as H)
4 {4,1} (same as 1+H)
5 {5,2} (same as 2+H)

As we can see, not all subsets form a subgroup of G .

Theorem 2.2.8. Let G be a group and H ⊆G . Define the relation ∼ on G by:

g ∼ k ⇔ g−1k ∈ H

Then ∼ is an equivalence relation and its equivalence classes are the left cosets g H .

Proof. Assume G is a group and H ⊆G . Define the relation ∼ on G by:

g ∼ k ⇔ g−1k ∈ H

First we show that ∼ is an equivalence relation by checking the three properties:

• Reflexive: For any g in G , g−1g = e ∈ H .

• Symmetric: Let g ,k be in G , then if g ∼ k by definition g−1k is in H. Since sub-
groups are closed under inverses, (g−1k)−1 is also in H. But (g−1k)−1 = k−1g ,
which implies that k ∼ g .

• Transitive: Let x, y, z in G with x ∼ y and y ∼ z. This means that x−1 y is in H and
y−1z is in H . Since H is a subgroup we also have that x−1 y y−1z = x−1z is in H ,
thus x ∼ z.
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Now we show that each equivalence class is a left coset. Fix a g in G . Then the equiva-
lence class of g is

[g ] = { k ∈G | g−1k ∈ H }

while the left coset determined by g is

g H = { k ∈G | k = g h for some h ∈ H }

Take k in [g ], then g−1k is in H , call this element h. Since

g−1k = h ⇔ k = g h

we also have that k is in g H , thus [g ] ⊆ g H . The reversed inclusion is proved similarly.
Hence we have that

[g ] = g H

Lemma 2.2.9. Let G be a group with H ⊆G a finite subgroup, then |g H | = |H g | = |H |.
Proof. Let G be a group and H ⊆ G , then take any element g ∈ G and form the left
coset g H . If |g H | ̸= |H | then at least two elements in the coset would have to be equal.
Assume for contradiction that

g h1 = g h2 for some h1 ̸= h2 with h1,h2 ∈ H

Then since G is a group, g has an inverse which gives

g−1g h1 = g−1g h2 =⇒ h1 = h2

disproving this statement. The same argument can be applied to right cosets. It follows
that

|g H | = |H g | = |H |

Theorem 2.2.10 (Lagrange’s theorem). Lagrange’s theorem states that if G is a finite
group of order |G| = n, then the order of any subgroup H ⊆G must divide n.

Proof. Let G be a group and H ⊆ G , with |G| = n and |H | = m. Then by theorem 2.2.8
the distinct left cosets of H are equivalence classes and by theorem 2.2.5, they form a
partition of G . Assume that we have k distinct left cosets, then:

G = g1H ∪ g2H · · ·∪ gk H

Now we can take the cardinality

|G| = |g1H ∪ g2H · · ·∪ gk H |
Since by assumption these cosets are all disjoint we get that

|G| = |g1H | + |g2H | · · ·+ |gk H |
By lemma 2.2.9, all left cosets of H have the same cardinality as H so

|G| = |H |+ |H | · · ·+ |H | = k ·m

Thus the order of H divides the order of G .
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2.3 Primitive root

We continue by introducing the notion of a primitive root. This section mainly builds
towards the index calculus method, that will be discussed later. This section follows [1,
§13.1]

Definition 2.3.1. Take any positive integer n and defineZ×
n = {a | 1 ≤ a ≤ n−1, g cd(a,n) =

1} to be the group of co-primes to n (if n is prime then this includes all integers up until
n−1). The setZ×

n together with multiplication forms a finite group and the size is given
by |Z×

n | =φ(n) (Euler’s phi function).

Definition 2.3.2. Let a ∈Z×
n , then the multiplicative order of a (mod n), denoted or dn(a)

, is the smallest positive integer 1 ≤ k such that ak ≡ 1 (mod n).

Lemma 2.3.3. Let p be a prime number, then or dp (a) for any a ∈Z×
p divides p −1.

Proof. A proof follows from Lagrange’s theorem. Since p is prime |Z×
p | = p −1, by La-

grange’s theorem, take a ∈Z×
p , then if |a| = m we must have that m | p −1.

Definition 2.3.4. A primitive root modulo p (with p prime) for the group Z×
p , is an in-

teger g ∈ Z×
p such that or dp (g ) = p −1. Then g is a generator for the group Z×

p , which

means that the powers g , g 2, . . . , g p−1 run through all non-zero residues, so every inte-
ger is congruent to 0 or some power of g .

Example 2.3.5. Let p = 5, then Z×
p = {1,2,3,4} with 2 being a primive root. Since 24 =

16 ≡ 1 (mod 5), we can express each element as a power of 2

21 ≡ 2 (mod 5)

22 ≡ 4 (mod 5)

23 ≡ 3 (mod 5)

24 ≡ 1 (mod 5)

Thus we clearly have:
{21,22,23,24} ≡ {2,4,3,1} (mod 5)

Lemma 2.3.6. If p is a prime and g a primitive root for the multiplicative group F×p
Then:

g (p−1)/2 ≡−1 (mod p)

Proof. We have that since g is a primitive root, g generates the finite group F×p and

g p−1 ≡ 1 (mod p),then

g p−1 = (g
p−1

2 )2 ≡ 1 (mod p)

Thus g
p−1

2 must be one of two square roots of 1 in the group, namely +1 or −1. If

g
p−1

2 ≡ 1 (mod p)

then the order of g would divide p−1
2 contradicting that or dp (g ) = p−1. Hence the only

possibility is that

g
p−1

2 ≡−1 (mod p)
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2.4 Finite fields

Most familiar fields,Q,R,C,are infinite, for cryptographic applications we instead work
over finite fields that contain only finitely many elements. We now introduce finite
fields and record some basic facts that will be needed later. This section follows [1, §9.2
and §13], [3, Appendix C] and [4, Chapter 1 and 2].

Definition 2.4.1. A finite field is a field (F,+, ·) with an underlying set consisting of a
finite number of elements. If |F| = q < ∞ then F is called a finite field and is often
denoted Fq .

Finite fields can be categorized into two types:

• Prime fields: These occur when q is a prime number p. A prime field Fp con-
sists of the integers modulo p. That is, the set {0,1,2, . . . , p −1} with addition and
multiplication performed modulo p.

• Extension fields: These occur when q = pn for some prime p and integer n > 1.
These fields are built from prime fields by extending them using polynomials.

Example 2.4.2. (Finite field): The set F3 = {0,1,2} with addition and multiplication
taken modulo 3 is a finite field. Here 0 is the additive identity because a +0 = 0+a = a
for every a ∈ F3, and 1 is the multiplicative identity because a · 1 = 1 · a = a for every
a ∈ F3. For instance,

2+2 = 4 ≡ 1 (mod 3), 2 ·2 = 4 ≡ 1 (mod 3).

Definition 2.4.3 (Polynomials in a field). Given a field F, a polynomial f (x) is an ex-
pression of the form

f (x) =
n∑

i=0
ai xi ai ∈ F, x ̸∈ F for some n ∈N

With x being treated as a formal symbol, thus a polynomial as in the usual sense only
with coefficients in F. Operations are performed according to the usual definition for
addition and multiplication.

Definition 2.4.4 (Polynomial ring). The elements of a field F together with polynomials
form a ring, denoted F[x] and is called the polynomial ring over F. We will soon see how
we can turn this into a field extention.

Definition 2.4.5 (Irreducible polynomial). A polynomial p(x) in a polynomial ring F[x]
with deg (p) ≥ 1 is irreducible over F if it does not factor over F[x]. That is, p(x) can not
be written as

p(x) = a(x) ·b(x) a(x),b(x) ∈ F[x]

with deg (a),deg (b) < deg (p) and neither a(x) nor b(x) being a non-zero constant.

Definition 2.4.6 (Residue class). Given a polynomial ring F[x] and a polynomial f (x) in
F[x] with degree n ≥ 1. The residue polynomial ring F[x]/ f (x) is comprised of residue
classes [g ] for polynomials g (x) in F[x], where each residue class has a representative
r (x). That is the remainder of g (x) divided by f (x), which is simply saying that

g (x) ≡ r (x) (mod f (x))

15



Theorem 2.4.7. Let F be a field and f (x) in F[x] be a polynomial, then F[x]/ f (x) is a
field if and only if f (x) is irreducible.

Proof. The proof of this theorem is showed in [4, Theorem 1.61]

Theorem 2.4.8. Let Fp be a finite prime field, then there exists a monic irreducible
polynomial f (x) in Fp [x] of degree n > 1. It follows that Fp [x]/ f (x) is a field.

Proof. We will not prove this theorem here, if the reader is interested we refer to [4,
Theorem 1.87]

Proposition 2.4.9. Let f (x) in Fp [x] be a monic irreducible polynomial with degree
n > 1 and let α := [x] be the residue class of x in Fp [x]/ f (x). Then Fpn is constructed by
Fp [x]/ f (x) and every element of Fpn can be uniquely expressed as{

a0 +a1α+a2α
2 +·· ·+an−1α

n−1
∣∣ ai ∈ Fp

}
.

Hence
Fp [x]/ f (x) ∼= Fpn

Proof. Let Fp be a finite prime field and f (x) in Fp [x] a monic irreducible polynomial
with degree n > 1. From theorem 2.4.7 we know that Fp [x]/ f (x) is a field. Take any
polynomial g (x) in Fp [x] then g (x) has a unique representative r (x) with deg (r (x)) <
deg ( f (x)). If this representative was not unique, then two polynomials r1,r2 with de-
gree less than n satisfies

r1 ≡ r2 (mod f (x))

then
f (x) | (r1 − r2) but deg (r1 − r2) < deg ( f ), so r1 = r2

So each representative r (x) is unique. Write

r (x) = a0 +a1x +·· ·+an−1xn−1, ai ∈ Fp

Since α= [x] in Fp [x]/ f (x) we have that

[g (x)] = r (x) = a0 +a1α+·· ·+an−1α
n−1

where any choice of ai gives a polynomial of degree less than n. There are p possi-
bilities for each coefficient ai so the set above has pn elements. The existence of this
field is guaranteed by theorem 2.4.8 and later on theorem 2.4.16 tells us that this field
is unique (up to isomorphism). Hence

Fp [x]/ f (x) ∼= Fpn

Example 2.4.10. (Extension field): The field F16 is not a prime field, it contains 16
elements so it must be an extension of F2. One classical way of constructing it is as the
set

F16 = {0, 1, α, 1+α , α2, 1+α2, α+α2, 1+α+α2, α3, 1+α3, 1+α2 +α3,

1+α+α3, α+α3, α2 +α3, α+α2 +α3, 1+α+α2 +α3}
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Where α is a root of the irreducible polynomial x4 +x +1 over F2, thus

F16
∼= F2[x]/(x4 +x +1)

When working in the multiplicative group F×16 we multiply the polynomials modulus
x4 +x +1 (and reduce coefficients modulus 2). For example

α4 ≡α+1 (mod x4 +x +1),

so
α5 =α ·α4 ≡α(1+α) =α+α2 (mod x4 +x +1)

and then
α10 ≡ (α+α2)2 =α2 +α4 ≡ 1+α+α2 (mod x4 +x +1)

Addition is simply taking each coefficient modulo 2, for example

(α+α2)+ (α2 +α3) =α+2α2 +α3 ≡α+α3 (mod 2)

Definition 2.4.11. Characteristic of a field: The characteristic of a field, denoted
char (F) is the smallest integer p such that

1+·· ·+1︸ ︷︷ ︸
p times

= 0 in F

with 1 denoting the identity of F, if such an integer exists, otherwise F is not finite and
char (F) = 0.

Example 2.4.12. The field F3 has characteristic 3, since 3 is a prime number. The field
F16 has characteristic 2 since it is an extension of the prime field F2.

Lemma 2.4.13. If Fq is a finite field then char (Fq ) = p for some prime p.

Proof. Since Fq is a finite field, char (Fq ) ̸= 0. Assume for contradiction that char (Fq ) =
n with n not being prime, then n is the smallest positive integer such that

1+·· ·+1︸ ︷︷ ︸
n times

= n ·1 = 0 in Fq

Since n was assumed to be composite, let n = a ·b with 1 < a,b < n, then

0 = (n ·1) = (a ·1)(b ·1)

We then have two non-zero elements whose product is zero, hence they are zero-
divisors, something a field can not have by lemma 2.0.4.

Lemma 2.4.14. Zp is a field ⇐⇒ p is a prime

Proof. 1. p prime =⇒ Zp is a field. It is tedious but easy to show that (Zp ,+) is
an abelian group, so we only show that (Z×

p , ·) also is an abelian group. We show
this by proving that every element has an inverse, since it is clear that (Z×

p , ·) is
closed under multiplication and that the identity, distributivity, associativity and
commutativity axioms hold. Fix an a in (Z×

p , ·) and define a map

ϕ :Z×
p −→Z×

p ϕ(x) = a · x (mod p)
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This map is injective because if ϕ(x1) = ϕ(x2) then a · x1 ≡ a · x2 (mod p), so p |
a(x1 − x2), since p is a prime and since a ̸≡ 0 (mod p) we obtain that x1 ≡ x2

(mod p). A map between two finite sets of the same size that is injective must be
a bijection. This means that there exists an element b in Zp such that

b ·a ≡ 1 (mod p)

Thus b is the multiplicative inverse of a. This ensures that every non-zero ele-
ment has a multiplicative inverse. So (Z×

p , ·) is indeed an abelian group which
proves that Zp is a field.

2. n composite =⇒ Zn is not a field. Here we prove the converse of the implication
and thus assume that n is not a prime. Then since n is a composite number we
can express n as n = m ·k with 1 < m,k < n. Then in Zn we have that

m ·k ≡ 0 (mod n) while m ̸≡ 0 and k ̸≡ 0

So m and k are non-zero elements whose product is zero, hence they are zero-
divisors, something a field can not have by lemma 2.0.4. Thus

Zp is a field ⇐⇒ p is a prime

Theorem 2.4.15. Let Fq be a finite field, then

|Fq | = q = pn

Where p = char (Fq ) and n is a positive integer.

Proof. Let Fq be a finite field. From lemma 2.4.13 we know that char (Fq ) = p for some
minimal prime p. Because of this we have that 1Fq added to itself p times is zero, while
1Fq added to itself less times, is not. So the set

S = { 0, 1, 1+1, 1+1+1, . . . , (p −1) ·1Fq } ⊂ Fq

has p distinct elements. Now define the map

ϕ : S −→Zp ϕ
(
x ·1Fq

)= x (mod p)

We will show that ϕ is an isomorphism. To begin, we show that ϕ is a homomorphism.
Take any x ·1Fq , y ·1Fq in S Let

x ·1Fq + y ·1Fq = (x + y) ·1Fq = s ·1Fq

then if
x + y > p −1 then x ·1Fq + y ·1Fq = (x + y −p) ·1Fq in S

This implies that
(x + y) ≡ s (mod p)

So then

ϕ(x ·1Fq + y ·1Fq ) =ϕ(s ·1Fq ) = s (mod p)
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shows that

ϕ(x ·1Fq + y ·1Fq ) = s ≡ x + y =ϕ(x ·1Fq )+ϕ(y ·1Fq ) (mod p)

Similarly for multiplication, for 0 ≤ x, y ≤ p −1 we have that

(x ·1Fq )(y ·1Fq ) = (x y) ·1Fq = (x y mod p) ·1Fq ≡ s ·1Fq in S

then
ϕ((x ·1Fq ) · (y ·1Fq )) =ϕ(s ·1Fq ) = s

which implies that

ϕ((x ·1Fq ) · (y ·1Fq )) = s ≡ x · y = (x ·1Fq ) · (y ·1Fq ) =ϕ(x ·1Fq ) ·ϕ(y ·1Fq ) (mod p)

So ϕ is a homomorphism. Now take any x1 ·1Fq , x2 ·1Fq in S, if

ϕ(x1 ·1Fq ) =ϕ(x2 ·1Fq )

then that is equivalent to
x1 = x2

So ϕ is injective. Since
|S| = p = |Zp |,

the injective homomorphism ϕ must also be surjective, thus it is an isomorphism.
Hence

(S,+, ·) ∼=Zp

We know from lemma 2.4.14, that Zp is a field for any prime p, hence every finite field
Fq has Zp as a subfield, for some prime p. Since Zp is a field, we can scale any element
of F by elements of Zp and view Fq as a vector space over Zp . Since Fq is finite, this
vector space must have finite dimension, say dimZp Fq = n. Now we can choose a basis
of Fq over Zp , say α1, . . . ,αn . Then every element x in Fq can uniquely be expressed as
a linear combination of this base:

x = b1α1 +b2α2 · · ·+bnαn with bi ∈Zp

Since the coefficients bi belong to Zp , there are p possibilities for each bi . This means
that there are exactly pn possible combinations and hence pn distinct elements in Fq .
Thus

|Fq | = q = pn

Theorem 2.4.16. For every prime p and natural number n, there exists a unique (up to
isomorphism) field Fpn with |Fpn | = pn .

Proof. We start by proving the case when n = 1. We know from lemma 2.4.14 that a
field exists for every prime p, namely Zp . We must now show that it is unique (up to
isomorphism). Let Fp be a field of order p and assume for contradiction that it is not
isomorphic to Zp . Then from the proof of theorem 2.4.15 we know that

S = {0,1, . . . , (p −1) ·1Fp } ⊆ Fp

19



Since we also saw that
|S| = p = |Fp | and that S ∼=Zp

It follows that S must be the whole of Fp and that for every prime p

Fp
∼=Zp

For n > 1 it follows from theorem 2.4.8 that an irreducible monic polynomial f (x) of
degree n > 1 always exists and proposition 2.4.9 shows how Fpn is constructed, however
for the uniqueness we refer the reader to [4, Theorem 2.5] and its proof.
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3 Elliptic curves

There are many elliptic curves, for cryptographic applications, we impose certain re-
strictions on the type of curves that we work over. Before defining what an elliptic curve
in our application is, we need to introduce some standard results. This section mainly
follows [3][§2.1].

Definition 3.0.1 (Weierstrass equation). Fix a field Fwith char (F) ̸= 2,3, then the Weier-
strass equation is a monic cubic polynomial in two variables defined as

y2 = x3 + Ax +B

where A,B ∈ F. For this equation to be able to define an elliptic curve in our applica-
tions, we require that the polynomial does not have any repeated roots.

Definition 3.0.2 (Discriminant). The discriminant for the Weierstrass equation is de-
fined as

∆=−16(4A3 +27B 2)

Definition 3.0.3. If the discriminant ∆ ̸= 0 then the Weierstrass curve defined over a
field F is called non-singular.

Theorem 3.0.4. If the discriminant ∆ ̸= 0 then the cubic polynomial y2 = x3 + Ax +B
only has distinct roots in F

Proof. Let r, s, t be roots to f (x) = x3 + Ax +B , then

f (x) = (x − r )(x − s)(x − t ) = x3 − (r + s + t )x2 + (r s + r t + st )x − r st

Comparing coefficients with x3 + Ax +B , whose x2-coefficient is 0, yields three equa-
tions

σ1 = r + s + t = 0, σ2 = r s + r t + st = A, σ3 = r st =−B (1)

Since we want all roots to be unique, this is equivalent to

(r − s)2(r − t )2(s − t )2 ̸= 0 (2)

Expanding this, we can combine from (2) the classical discriminant formula for a monic
cubic

(r − s)2(r − t )2(s − t )2 = σ2
1σ

2
2 −4σ3

2 −4σ3
1σ3 −27σ2

3 +18σ1σ2σ3 (3)

Insert (1) into (3), since σ1 = 0, all terms containing σ1 vanish, leaving

(r − s)2(r − t )2(s − t )2 =−4A3 −27B 2

Multiplying by the normalizing factor −16 gives

−16(r − s)2(r − t )2(s − t )2 =−16(4A3 +27B 2) =∆ (4)

Because the left side of (4) is a product of squares, it vanishes iff at least two of the roots
are equal, thus

∆ ̸= 0 ⇔ (r, s, t ) are pairwise distinct
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Before defining an elliptic curve, we first need to introduce an extra element called
the point at infinity.

Definition 3.0.5. Fix a field F with char (F) ̸= 2,3 and choose A,B ∈ F with non-zero
discriminant ∆=−16(4A3 +27B 2) ̸= 0. The (affine) Weierstrass curve is

y2 = x3 + Ax +B

To make it into an elliptic curve and later to obtain a well-behaved group law, we adjoin
one extra point, denoted ∞ and call it the point at infinity. Strictly speaking, ∞ origi-
nates from viewing the curve in projective coordinates, where every affine line acquires
a "point at infinity" and all vertical lines meet in the single projective point (0 : 1 : 0) [3,
§2.3]. Expanding on theory behind projective mapping is not something we will do in
this paper. Instead we treat ∞ as a formal symbol, obeying two simple rules:

• A line "passes through" ∞ exactly when it is vertical.

• In the group law on E(F), the point ∞ acts as the identity.

Intuitively you may picture ∞ as a single point where the upper and lower ends of
the y-axis are glued together. This ensures that every vertical line meets the curve at
one additional point ∞, thus any two distinct vertical lines have exactly one common
point on the curve.

Definition 3.0.6 (Elliptic curve). Let F be a field with char (F) ̸= 2,3. Select coefficients
A,B in F so that the discriminant

∆=−16(4A3 +27B 2) ̸= 0

Then the elliptic curve over F is the set of points

E(F) = {
(x, y) ∈ F×F : y2 = x3 + Ax +B

}∪ {∞}

Where ∞ is the point of infinity.

Example 3.0.7. Consider E : y2 = x3 +2x +2 over F5. Its discriminant is

∆=−16(4 ·23 +27 ·22) =−16(32+108) =−2240 ≡ 0 (mod 5)

Since ∆ ≡ 0 (mod 5) this curve is singular over F5 and is thus not an elliptic curve in
our sense. However, slightly modifying the equation to y2 = x3 +2x +1 instead yields:

∆=−16(4 ·23 +27 ·12) =−16(32+27) =−944 ≡ 1 (mod 5)

Since this discriminant is nonzero modulo 5, the modified curve is a non-singular el-
liptic curve.
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Figure 1: Graph of two non-singular elliptic curves. Left: y2 = x3 − x (three real roots).
Right: y2 = x3 −x +1 (one real root).

3.1 Point addition on an elliptic curve

Fix a field F, of characteristic char (F) ̸= 2,3 and a non-singular E in Weierstrass form.
Then we can define an addition law on the points of the curve. This section follows [3,
§2.2].

Definition 3.1.1. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on E , then the ad-
dition of points is defined as taking the line L between P1 and P2. As we will see this
will intersect E in one additional point (x3, y ′

3). We then define y3 to be the reflection
of this point across the x-axis, that is taking y3 :=−y ′

3. This results in several scenarios
depending on the coordinates of P1 and P2:

1. If x1 ̸= x2, take the secant line L through P1 and P2 with slope m defined as

m = y2 − y1

x2 −x1

The equation for the secant line is

L : y = m(x −x1)− y1

If we substitute y from L into the Weierstrass equation we get

(m(x −x1)+ y1)2 = x3 + Ax +B

We can rearrange this to the monic cubic

g (x) = x3 −m2x2 + (A+2y1m)x +·· · = 0 (1)

Since both (x1, y1) and (x2, y2) lie on E , x1 and x2 must be roots of g . Since we
have a cubic there can only be one additional root x3. For a monic cubic x3 +
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a2x2 +a1x +a0, the sum of its roots equals −a2. In (1) the x2-coefficient is −m2,
hence

x1 +x2 +x3 = m2 =⇒ x3 = m2 −x1 −x2 (2)

Now we can insert x3 in the equation for L:

y ′
3 = m(x3 −x1)+ y1

Then since we defined y3 to be reflected across the x-axis, we get

y3 = m(x1 −x3)− y1

An example of this can be seen in figure 2, picture 1, where P3 is the reflection of
the third point that the secant intersects E with.

2. If x1 = x2 but y1 ̸= y2, then the line L through P1 and P2 is vertical and does not
intersect E in a third point so we set

P1 +P2 =∞

An example of this can be seen in figure 2, picture 2, where P1 and P2 have the
same x-coordinate, thus the secant line is vertical.

3. (Doubling) If P1 = P2 and y1 ̸= 0 , we are taking the tangent line to the point
P = P1 = P2. Through implicit differentiation we can derive the slope as

m = 3x2
1 + A

2y1

Similarly to case 1, we can then write the equation for L as

L : y = m(x −x1)+ y1

With the same reasoning as above we get that

x3 = m2 −2x1

Inserting x3 into the equation for L gives

y ′
3 = m(x3 −x1)+ y1

Thus
y3 = m(x1 −x3)− y1

An example of this can be seen in figure 2, picture 3, taking the tangent line to P1

and reflecting the second intersection point to obtain P2.

4. If P1 = P2 and y1 = 0 then the tangent is vertical, thus giving us

2P =∞

An example of this can be seen in figure 2, picture 4, where P1 = (x,0) thus the
tangent is vertical.
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5. If P1 = (x, y) and P2 = ∞ then the line is vertical and will intersect E in the re-
flection of P1 across the x-axis. After reflecting across the x-axis again we end up
back at P1, thus

P +∞= P

6. If P1 = P2 =∞ then we define addition as P1 +P2 =∞+∞=∞.

P1 P2

P3

1. Secant, x1 x2

P1

P2

2. Vertical secant, P1 +P2 =∞

P1

P2

3. Tangent (doubling), y1 0

P1

4. Vertical tangent, 2P=∞

Figure 2: Examples of point addition on an elliptic curve

Example 3.1.2. On E : y2 = x3 +x +1 over F5, add P = (0,1) and Q = (2,1). The slope is:

m = 1−1

2−0
= 0

Then:

x3 = m2 −xP −xQ = 0−0−2 ≡ 3 (mod 5), y3 = m(xP −x3)− yP =−1 ≡ 4 (mod 5).

Thus, P +Q = (3,4).

3.2 The group structure of elliptic curves

The previous subsection gave explicit addition formulas for pairs of points on a elliptic
curve in Weierstrass form. An important result of this is that these rules satisfies all
four axioms for an abelian group, turning the set of points on an elliptic curve into an
abelian group [3, Theorem 2.1].
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Theorem 3.2.1 (Group theorem elliptic curves). Fix a field F, of characteristic char (F) ̸=
2,3 and a non-singular elliptic curve, E , in Weierstrass form. Then the the addition of
points, as previously described, on the elliptic curve E(F) satisfies the following prop-
erties:

1. commutative: P1 +P2 = P2 +P1 ∀P1,P2 ∈ E .

2. Existence of identity: P +∞= P ∀P ∈ E .

3. Existence of inverses: ∀P ∈ E , ∃P ′ ∈ E such that P +P ′ =∞.

4. Associativity: (P1 +P2)+P3 = P1 + (P2 +P3) ∀P ∈ E .

Thus the points on E(F) form an abelian group with ∞ as the identity element.

Proof. 1. Commutative:

Let P = (x1, y1) and Q = (x2, y2) with P ̸= ±Q

then the slope m is symmetric since for

P +Q, m = y2 − y1

x2 −x1
and for Q +P, m = y1 − y2

x1 −x2
= (−1) · (y2 − y1)

(−1) · (x2 −x1)

We get that x3 = m2−x1−x2 which is the same for P +Q and Q +P since m is the
same. For P +Q call the y −value y3and for Q +P call it y ′

3, then

y3 = m(x1 −x3)− y1 and y ′
3 = m(x2 −x3)− y2

their difference is

y ′
3 − y3 = m(x2 −x3)− y2 − (m(x1 −x3)− y1) = m(x2 −x1)− (y2 − y1)

since by definition of m
y2 − y1 = m(x2 −x1)

we get that
y ′

3 − y3 = m(x2 −x1)−m(x2 −x1) = 0 =⇒ y ′
3 = y3

If P = Q then commutativity obviously holds since P +P = P +P . If P = (x, y)
and Q = −P then Q = (x,−y) and P +Q = Q +P = ∞ by definition. Similarly if
P = (x, y) and Q =∞ then by definition of ∞, P +∞=∞+P = P .

2. Existence of identity: Since by definition ∞ is the identity element, P +∞ =
P ∀P ∈ E .

3. Existence of inverses: If P = (x, y) then we let P ′ be the reflection of P on the
x-axis, thus P ′ = (x,−y) giving us a tangent line that is vertical, thus P +P ′ =∞.

4. Associativity: Proving associativity is substantially more involved than verifying
the other axioms, one must track how three chords/tangents meet the curve in
projective space and show that the two possible orders of addition gives the same
fourth intersection point. The full argument runs several pages in [3, §2.4] and
lies beyond the scope of this paper.

26



3.3 Elliptic curves over finite fields

We are now ready to define the type of elliptic curves that will be used throughout the
rest of this paper. By restricting to curves defined over finite fields, we obtain a dis-
crete group structure suitable for cryptographic applications such as the elliptic curve
discrete logarithm problem that we discuss later on. We lose however, the geometric
interpretation of point addition and viewing of the curve, as shown in Figure 3. This
section follows [3, §4.1].

Definition 3.3.1. When an elliptic curve is defined over a finite field Fq , with char (Fq ) ̸=
0 and ∆ ̸= 0, all coordinates belong to Fq and we write its set of Fq -rational points as

E(Fq ) = {
(x, y) ∈ Fq ×Fq : y2 = x3 + Ax +B

}∪ {∞}

Example 3.3.2. Consider E : y2 = x3 +x +1 over F5. We find:

x = 0 : y2 = 1 ⇒ y1 = 1, y2 = 4

x = 1 : y2 = 3 ⇒ no solutions in F5

x = 2 : y2 = 1 ⇒ y1 = 1, y2 = 4

x = 3 : y2 = 1 ⇒ y1 = 1, y2 = 4

x = 4 : y2 = 4 ⇒ y1 = 2, y2 = 3

Thus, the points of E(F5) are: (0,1), (0,4), (2,1), (2,4), (3,1), (3,4), (4,2), (4,3) plus the point
at infinity {∞}.

Figure 3: Example of an elliptic curve over a finite field

Theorem 3.3.3. Given a finite field Fq and taking an Elliptic curve E over Fq we can get
an estimation for the number of points in E , denoted #E by

|#E − (q −1)| ≤ 2
p

q

27



Proof. The full proof can be found in [3][§4.2]. The main idea is to express the error
term a = q +1−#E(F) as the trace that appears when one compares the q-power map
φ : (x, y) → (xq , y q ) with the identity on the curve. It is shown that the quadratic qx2 −
ax +1 is non-negative for every real x, this forces its discriminant to be non-positive,
that is a2 ≤ 4q , which is exactly Hasse’s bound.

28



4 Discrete logarithm problem (DLP)

Many cryptographic systems rely on the difficulty of solving the discrete logarithm
problem and currently there are no known algorithms that run in polynomial time[8,
§0]. We will be discussing one method of solving this problem for the multiplicative
group for finite fields and after that move on to the DLP for elliptic curves. This intro-
duction and index calculus mainly follows [3][§5.1].

4.1 Discrete logarithm problem for finite fields

Definition 4.1.1. Consider the multiplicative group of a finite field, F×q with char (Fq ) =
p. The classic discrete logarithm problem, in this group, requires us to find an expo-
nent k from the congruence

g k ≡ h (mod p) with g ,h,k ∈ F×q
Definition 4.1.2. Given a prime p, primitive root g and an integer k such that g k ≡ h
(mod p) we denote the discrete logarithm of h with respect to k as:

L(h) = k (mod p −1)

That is, L(h) is the power of g that gives h.

With this definition we can utilize logarithms laws since if

k = k1 ·k2 then g k = g k1+k2 ⇒ L(k) ≡ L(k1)+L(k2) (mod p −1)

Example 4.1.3. Let p = 17 then F×17 = {1,2,3 . . . ,16}. Let g = 3, then g is a primitive root
mod 17. We have that 312 ≡ 4 (mod 17), thus we have that L(4) = 12. Since 4 = 2 ·2 we
can write

L(4) = L(2 ·2) ≡ L(2)+L(2)

Where L(2) = 14, therefore we have that 14+14 = 28 ≡ 12 (mod 16)

4.1.1 Index calculus method

The index calculus method takes advantage of being able to factor integers as product
of primes, by calculating L(k) for lots of small prime numbers k and then using these
to build towards L(h). First we decide a smoothness bound S, which is an integer that
determines the base of primes called

B = {k ∈N | k is prime and k < S}

From this base we then calculate relations of the form

g x ≡±ki ·k j . . . (mod p)

Thus we have found relations between L(x) and sums of primes from our base B . We
then compute g m ·h for several values of m until we find an integer m = j so that

g j ·h ≡ kn ·kp · . . . (mod p) kn ,kp · · · ∈ B

We can then calculate k from the relation

L(k) ≡ L(kn)+L(kp )+·· ·−L( j ) (mod p −1)
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Example 4.1.4. Let p = 877, g = 2,h = 15 then we want to solve

2k ≡ 15 (mod 877)

First we set up our base, let B = {2,3,5,7,11}. We then look for exponents x with

2x ≡±∏
q∈B

q i (mod 877)

A search in SageMath, gives these five relations:

Table 2: Relations for index calculus
x Congruence (mod 877) Logarithm

10 210 ≡ 3 ·72 L(3)+2L(7)
21 221 ≡ 5 ·72 L(5)+2L(7)
1 21 ≡−53 ·7 L(−1)+3L(5)+L(7)

43 243 ≡−3211 L(−1)+2L(3)+L(11)
54 254 ≡−3 ·5 ·11 L(−1)+L(3)+L(5)+L(11)

From lemma 2.3.6 we know that L(−1) = 438, we can thus put these calculated val-
ues into equations giving

L(3)+2L(7) ≡ 10 (mod 876) (1)

L(5)+2L(7) ≡ 21 (mod 876) (2)

438+3L(5)+L(7) ≡ 1 (mod 876) (3)

438+2L(3)+L(11) ≡ 43 (mod 876) (4)

438+L(3)+L(5)+L(11) ≡ 54 (mod 876) (5)

Using (1),(2) and (3) we can back-substitute and find values for L(3),L(5),L(7), then
putting this together with (4) and (5) we get

L(2) = 1, L(3) = 686, L(5) = 697, L(7) = 100 and L(11) = 861.

We have that
21 ·15 = 30 = 2 ·3 ·5 so our j is 1

Hence, we get that

1+L(15) ≡ L(2)+L(3)+L(5) (mod 876) ⇒ L(15) = L(3)+L(5) = 1383 ≡ 507 (mod 876)

A quick check shows that
2507 ≡ 15 (mod 877)
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4.1.2 Why the Index calculus method (usually) does not work for elliptic curves

The index calculus method relies on the ability to factor elements over a small base
of generators, in the finite multiplicative group F×q this translates to prime factoriza-
tion. However, the group E(Fq ) generally does not have anything equivalent to prime
factorization. In particular, elliptic curve points do not decompose into "prime" or "ir-
reducible" points in the same way integers do. As a result, there is no obvious choice
of a factor base B , or an efficient method to determine whether a given point lies in
the subgroup generated by a small set of such base points[8, §0 and §1]. Washington
describes how one could adapt the index calculus method to specific types of curves,
called hyper-elliptic curves, in [3][Chapter 13], this is however beyond the scope of this
paper.

4.2 Discrete logarithm problem for elliptic curves

We are now ready to introduce the discrete logarithm problem for elliptic curves. Since
we have seen that the points of an elliptic curve form an abelian group, we can adapt
the classic discrete logarithm problem (DLP), usually posed in the multiplicative group
F×p , to elliptic curves over finite fields. When working over elliptic curves, instead of
asking for an exponent k, we ask for how many point additions k that links two points P
and Q. The algorithms that we will mainly be looking at require roughly

√
#E(Fq ) group

operations, so choosing q to be large makes the problem computationally exhaustive
[3, Chapter 5].

Definition 4.2.1. ECDLP Let E be an elliptic curve defined by the Weierstrass equation
y2 = x3 + Ax +B over a finite field Fq , with discriminant ∆ ̸= 0. Denote by E(Fq ) the
finite set of Fq -rational points on E , including the point of infinity {∞}. The elliptic
curve discrete logarithm problem can then be formulated as:

Given points P,Q ∈ E(Fq ) find the integer k such that

Q = kP

That is the point P added to itself k times.

4.2.1 Implication of Lagrange’s theorem

For elliptic curves, Lagrange’s theorem implies that since the points form a group, the
order of any point P ∈ E(Fq ) must divide the total number of points |E(Fq )|. Thus,
solutions to equations of the form Q = kP , with Q,P ∈ E(Fq ), are considered modulo
the order of P .

4.2.2 Note

An important note is that if P and Q are arbitrary points in E(Fq ), then it does not
necessarily exist an k such that Q = kP . If P has order n then any point of the form
xP lies in the cyclic subgroup 〈P〉 of order n. In this case the equation Q = kP has a
solution k mod n if and only if Q also lies in 〈P〉. In practice it is assumed that P has
large prime order since if P is a composite, an attacker could break the problem one
factor at a time (the Pohlig Hellman trick [3][§5.2.3]). Q is chosen specifically to be in
the subgroup generated by P , so under these conditions one knows that Q is indeed a
multiple of P so the ECDLP is well defined with k taken modulo the order of P .
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4.3 Algorithms to solve ECDLP

Naively one could try to find k by computing multiples of P sequentially: 2P,3P,4P, . . .
until a match kP = Q is found. However, this straightforward approach quickly be-
comes infeasible, as the computational time required grows exponentially with the size
of the underlying field. Since an elliptic curve over Fq by theorem 3.3.3 has roughly q
points, this could mean O(q) additions. If the field size is roughly q ≈ 2m , where m is
the bit-length of the public key, the expected amount of additions is roughly 2m oper-
ations, thus exponential in the key length. For a 256-bit field this would require on the
order of 2256 additions, far beyond any realistic computing time. This section mainly
follows [3, Chapter 5]

4.4 Pollard’s rho

Pollard’s ρ algorithm is a probabilistic algorithm designed to solve the ECDLP which if
|P | = n, runs in O(

p
n) time [3, §5.2.2]. Given an elliptic curve E taken over a finite field

F , with known points P and Q in the group generated by 〈P〉, with the order of P de-
noted n. Pollard’s ρ algorithm uses cycle detection in a randomly generated sequence
of group elements. After choosing a function

f : 〈P〉→ 〈P〉

meant to pseudo-randomly shuffle the elements in 〈P〉 it chooses the next element to
look at by recursion Pi+1 = f (Pi ). Since we know that the subgroup 〈P〉 is finite, since
E(Fq ) is finite, the sequence generated by f inevitably enters a cycle after a finite num-
ber of steps. This produces indices i0 < j0 such that Pi0 = P j0 . After this, all subsequent
elements repeat periodically with a period equal to j0 − i0. Since we begin with a tail
and then enter a cycle it forms the shape of a Greek ’rho’ letter, where the name comes
from. To increase efficiency, with a small increase to computational costs, Pollard’s ρ
method maintains only two elements generated by the sequence. These are called the
tortoise and the hare, where one moves twice as fast as the other:

Tortoise: Pi+1 = f (Pi ),

Hare P2(i+1) = f ( f (P2i ))

When these two elements intersect, a cycle is detected and from there we can calculate
k. This approach significantly reduces memory usage, as it requires storage only for
the current pair of elements regardless of group size. The effectiveness of Pollard’s ρ
method can be greatly affected by the choice of the pseudo random function f . Next
we define one version that is commonly used.

Definition 4.4.1 (Update function for Pollard’s rho method). Given an instance of the
ECDLP, with the order of |P | = n. Start by fixing an integer s ≥ 2, which will be the
number of partitions of the group 〈P〉. Pick random coefficients

(ai ,bi ) ∈ {0, . . . , n −1} (0 ≤ i ≤ s)

and compute one jump for each residue i :

Ri = ai P +bi Q ∈ 〈P〉
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During the walk we keep two triples of the form (X , a,b) where X = aP +bQ. To update
we first compute

i = x(X ) (mod s)

Where x(X ) is the affine x-coordinate of X viewed as an integer 0 ≤ x(X ) < p, where
p = char (F) and if X is the point of {∞} then i is taken to be 0. Then the function f is:

f (X , a,b) = (X +Ri , a +ai , b +bi )

Where a +ai , b +bi are reduced modulo n while X +Ri is a standard point addition.

4.4.1 Solving for k

To start we chose a random initial point by selecting 0 ≤ a0,b0 ≤ n −1 which gives us

(a0P +b0Q, a0, b0) = (X0, a0, b0)

The algorithm then iterates until a collision is detected between the tortoise and the
hare, with indices i < j we have Xi = X j . We can express these points as

Xi = ai P +bi Q and X j = a j P +b j Q

We thus have
ai P +bi Q = a j P +b j Q

which can rearrange according to group law as

(ai −a j )P = (b j −bi )Q

Given that Q = kP , we can derive that

(ai −a j ) ≡ (b j −bi )k mod n

To solve for k we first calculate d = gcd(b j −bi , n). This gives way for three scenarios:

• Case 1: If d = 1 then (b j −bi ) is invertible mod n, and we can directly compute
the value of k using the inversion:

k ≡ (b j −bi )−1(ai −a j ) (mod n)

• Case 2: If d > 1 and d | (ai −a j ) then the congruence is solvable but has exactly

d solutions. This is because
(b j−bi )

d is invertible modulo n
d . Let

A = (ai −a j )

d
, B = (b j −bi )

d
and N = n

d

then
k ≡ B−1 A+ t N (t = 0,1, . . . ,d −1)

Each value can then individually be checked to see if it satisfies Q = kP .

• Case 3: If d > 1 but does not divide (ai −a j ) then there are no solutions and we
have to restart the algorithm.
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Example 4.4.2.

Let E : y2 = x3 +2x +2 over F17, P = (5,1), n = |P | = 19, Q = kP = (0,6), s = 3

we update the point X = (x, y) by the function

(X , a,b) 7−→ (
X +Ri , a +ai , b +bi

)
, i = x(X ) mod s

with partitions

(a0,b0) = (1,1), (a1,b1) = (2,3), (a2,b2) = (3,5), Ri = ai P +bi Q

we can check that

R0 = P +Q = (13,7), R1 = 2P +3Q = (3,1), R2 = 3P +5Q = {∞}

We pick a starting state (X , a,b) = (Q,0,1) = ((0,6),0,1) then

i = x(X ) mod 3 = 0 mod 3 = 0.

So we update the tortoise by

((0,6),0,1) → ((0,6)+R0,0+a0,1+b0) = ((3,16),1,2)

Using the addition rules that were shown above. Then the hare that takes two jumps
by

((0,6),0,1) → ((3,16),1,2) → ((3,16)+R0,1+a0,2+b0) = ((3,1)2,3)

If we do this continuously we get this table:

Table 3: Floyd’s cycle states for Pollard’s ρ example

Step Tortoise (X , a,b) Hare (X , a,b)

1 ((3,16),1,2) ((3,1),2,3)
2 ((3,1),2,3) ((5,1),4,5)
3 ((0,11),3,4) ((5,1),10,15)
4 ((5,1),4,5) ((5,1),16,6)

Here we can see the collision at step 4, where we get a collision at (5.1). We can then
calculate k from

aP +bQ = a′P +b′Q ⇒ (a −a′)P = (b′−b)Q ⇔ (−12)P = 1 ·Q ⇒ −12 = 1 ·k

Since −12 ≡ 7 (mod 19)

we get k = 7

A quick calculation can be done to check that it is indeed the case:

7 ·P = 2 · (2 ·P )+2 ·P +P = (3,1)+ (6,3)+ (5,1) = (0,6)

Remember that we are not adding coordinates, we are using the addition as defined in
the group law.
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4.5 Pollard’s lambda

Pollard’s λ method is a probabilistic algorithm designed to solve the ECDLP, extending
the ideas of Pollard’s ρ method to effectively leverage parallel computations. Instead of
independently running multiple instances of the ρ algorithm, the λ method uses mul-
tiple concurrent instances that collaboratively report distinguished points to a central
database. Washington claims that when running several parallel processes, Pollard’s
λ’s expected runtime of O(

p
n) can be "significantly improved" [3, 5.2.2]. On the other

hand van Oorschot and Weiner claims, given m parallel processes the speedup is at
most of the order O(

p
m), which is notably not linear with the amount of processes[6,

§3]. Given an instance of the ECDLP, we begin by defining a pseudo-random function
similar to the ρ algorithm:

f : 〈P〉→ 〈P〉
which is used to generate sequences of points P j

i+1 = f (P j
i ) from random chosen start-

ing points P0 . . .P r
o for each process. Then each sequence saves certain predetermined

points, called distinguished, which are usually chosen by simple arithmetic criteria,
such as points whose coordinates satisfy a particular condition (e.g. the last k bits be-
ing zero), to a central list. Due to the group 〈P〉 being finite, independent sequences are
bound to eventually collide, producing matching distinguished points in the central
list. When a second distinguished point is reported back, computations halt and sim-
ilarly to the ρ algorithm, the discrete logarithm k can be computed from the collision
points. Specifically, if two processes report the same distinguished points represented
as

P = aP +bQ and P = a′P +b′Q

then we have:
(a −a′)P = (b′−b)Q

and since Q = kP , we can derive the congruence:

(a −a′) ≡ (b′−b)k (mod n)

which can be solved efficiently similar to in Pollard’s ρ method. In practice, some col-
lisions may not directly result in a solution similar to Pollard’s ρ, requiring continued
parallel computation until a useful collision emerges.

4.6 Pollard’s kangaroo

Pollard’s kangaroo method is closely related to the ρ and λ method and the two are of-
ten written about interchangeably. It is specifically useful when the discrete logarithm
k is known to lie within a certain interval [a,b] [6, §5.1]. Such prior knowledge about k’s
approximate range may arise from partial information leaks, previous computations or
known structural constraints in cryptographic scenarios. The method (in a single pro-
cessor case) involves two independent walks ("kangaroos") that make pseudo-random
jumps in the group 〈P〉:

• Tame kangaroo starts at the upper endpoint of the interval, setting T0 = bP and
performs jumps determined by a predefined pseudo-random function, record-
ing its cumulative distance from bP .
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• Wild kangaroo begins from the unknown point W0 = Q = kP and executes the
same sequence of jumps as the tame kangaroo.

Both kangaroos follow the same deterministic rules for jumping, defined by a pseudo-
random update function:

f : 〈P〉→ 〈P〉, Xi+1 = Xi + f (Xi )

Eventually, the wild kangaroo lands on a point previously visited by the tame kangaroo,
at which point both kangaroos converge and continue identically after that. To recover
the discrete logarithm k, suppose the tame kangaroo traveled a cumulative distance of
dt , ending at point Tn = (b +dt )P . Similarly, the wild kangaroo traveled a distance dw

from Q, landing on the same point:

(k +dw )P = (b +dt )P

Solving for k gives:
k = b +dt −dw

Since the interval length is L = b−a, the expected runtime of Pollard’s kangaroo method
is O(

p
L). Heuristically, because collisions inside the interval behave like a birthday

paradox in a set of size L, we expect O(
p

L) steps before a collision. A rigorous analysis
is given in [6, §5.1]. This makes pollards kangaroo particularly efficient for intervals
significantly smaller than the full group size. However, it should be noted that van
Oorschot and Weiner shows that when the interval covers the whole group of size n,
the kangaroo method requires around 2

p
n operations, while an optimized ρ-method

roughly requires
√

π
2 n [6, §1 and (6)]. Thus the kangaroo method is expected to run 1.6

times slower on the full group.
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5 Empirical tests

5.1 Selecting curves for testing the ECDLP

To be able to consistently select similar curves and points P for the following tests, we
decided to standardize a way to select all variables. The goal was to obtain a point P
with large prime order of approximately the same size across the "scale" set for each
experiment. Since the difficulty of the ECDLP relies on the order of P we thus enforce
some consistency across the curves within the same test.

• To start, we first pick a random prime p in the range (10scale ,10scale+1).

• Then we randomly select integers (A,B) in Fp such that ∆ ̸= 0, thus giving us an
elliptic curve E(Fp ).

• We then factor |E(Fp )| and take the largest prime number q , if q is not in the
range p

100 < q ≤ |E(Fp )| we start over.

• After finding a suitable curve we select a point P in E(Fp ) such that |P | = q (which
we know exists from theorem 2.2.10).

• Finally we randomly draw k from {1, . . . , q −1} and calculate Q = kP .

5.2 Performance evaluation of Pollard’s rho with different partition
sizes

In [3][§5.2.2] Washington briefly suggests that dividing 〈P〉 into s ≈ 20 subsets yields
near-optimal running times for Pollard’s rho algorithm. To test this claim, we imple-
mented Pollard’s rho algorithm with Floyd’s cycle detection in SageMath with varying
values for s.

5.2.1 Implementation in SageMath

The partition is set up for each s, an integer list is fixed {ai ,bi }s−1
i=0 where ai = i + 1,

bi = 2i + 1 and pre-calculate points Ri = ai P +bi Q (0 ≤ i < s). A state (X , a,b) with
X = aP +bQ updates by applying the precomputed jump by

(X , a,b) 7−→ (
X +Ri , a +ai , b +bi

)
, i = x(X ) mod s

Where x(X ) denotes the affine x-coordinate of X (viewed as the integer 0 ≤ x(X ) < p,
where p = char (F)) and if X is the point of {∞} then i is taken to be 0. Thus at each
step we reduce the current x-coordinate modulo s to get the partition i, then add the
precomputed jump Ri and finally update a → a+ai (mod n) and b → b+bi (mod n).
Cycle detection via the tortoise and hare method halts the process when two states
share the same X . Upon collision (X , a,b) = (X , a′,b′), we solve (a−a′)P = (b′−b)Q for
the secret k ≡ (a −a′) (b′−b)−1 (mod n). IF g cd(b′−b,n) > 1 but remains below n1/2,
we test all candidate solutions in that small factor.
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5.2.2 Experimental Methodology

• Curve selection. To be able to work efficiently with sufficiently large curves, 50
elliptic curves were randomly generated over prime fields of approximately 108

size using 5.1.

• Trials per partition count. For each curve and each s ∈ {2,3, ...,40}, 10 indepen-
dent Pollard’s rho trials were run, each with random starting states (a0,b0). If a
run was not successful, it was restarted with a new starting state (up to 10 times).

• Timing and averaging. For each successful trial, the elapsed time was recorded
and averaged out over the 10 runs, then averaged across all 100 curves to yield
the plot below.

5.2.3 Results and observations

Figure 4: Performance evaluation of Pollard’s rho method vs. number of partitions

The performance curve presented in Figure 4 clearly illustrates a sharp decrease in the
average runtime of Pollard’s rho method as the number of partitions s increases from
2 up to approximately 15. This trend indicates that the pseudo-random walk rapidly
achieves a desirable level of mixing. However, beyond s ≈ 15, additional increases in
the partition count yield diminish returns, with only minor improvements observed
after s ≈ 20. There is a noticeable dip at s = 34, which could suggest that there are
gains to be made by increasing s beyond 20. However, these findings are specific to
our field sizes, curves, random choices of P,Q, starting points and implementation.
Different parameter choices or moving to substantially larger groups, may shift the
optimum. Thus, while our experiments support the s = 20 heuristic, they should not
be considered as definite proof for all contexts.
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5.3 Testing my implementation against SageMath’s

To test the efficiency of our implementation of Pollard’s rho, we compared its per-
formance with the built-in Pollard’s rho method provided by SageMath. Ten elliptic
curves of scale 109 were randomly selected using 5.1 and the discrete logarithms were
solved using both implementations. The results, as seen in Figure 5, indicate, that
while both methods successfully computed the discrete logarithm problem, my im-
plementation was consistently slower. This discrepancy is likely due to differences
in the back-end, with the biggest culprit most likely being computational overhead.
While my implementation relies on python-level operations, SageMath’s implementa-
tion utilizes cython which allows a python program to interface with C code which can
be much faster [7]. That is, SageMath’s implementation most likely has a more opti-
mized backend, which operates at lower levels and can compute much faster.

Figure 5: Performance evaluation of my implementation of Pollard’s rho method vs.
SageMath’s built in.

5.4 Empirical speed-up obtained by Pollard’s kangaroo method

Pollard’s kangaroo algorithm exploits apriori knowledge that the discrete logarithm k
is confined to an interval of [a,b] of length L = b−a, giving an expected running time of
O(

p
L) instead of O(

p
n) for Pollard’s ρ walk on the whole group of order n. To see how

that asymptotic advantage looks in practice, we bench-marked the two SageMath im-
plementations algorithm=’rho’ and algorithm=’lambda’ on progressively smaller
intervals. When running the ’lambda’ algorithm we could pass on the interval L.

Experimental Methodology

• Curve selection. We chose a random curve using 5.1 of scale 12.
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• Intervals. Then we fixed five intervals { n1/8, n1/4, n1/2, n/log (n), n/2, n }

• Secret k. For each interval we picked a random secret k within that interval,
formed Q = kP and timed

– discrete_log(Q,P, ord=n, algorithm=’rho’)

– discrete_log(Q,P, ord=n, algorithm=’lambda’, bounds=(0,b))

We repeated the whole procedure on 20 curves (scale=12, hence p ≈ 1012) and aver-
aged the timings.

5.4.1 Results

The comparative performance of Pollard’s kangaroo and Pollard’s ρ methods can be
seen in Figure 6. In the first figure, when the discrete logarithm k is restricted to inter-
vals of size equal to n or n/2, the kangaroo method does not show any speed advantage,
instead performing slower than Pollard’s rho. This result aligns with the theoretical ex-
pectations, since the kangaroo method’s performance advantage should only be seen
when the interval size is substantially smaller than the entire group. The most interest-
ing result is that when L = n/l og (n), we can see that in our tests, averaged out over 20
curves, that the kangaroo method performed more than twice as fast. The difference
is as expected even larger when L = p

n and beyond, where the timing for the kanga-
roo method is less than 1

14 that of Pollard’s rho. This highlights that Pollard’s kangaroo
method is much more efficient as the search interval shrinks, showing its practical ap-
plicability primary in scenarios where some apriori information about k is available.
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Figure 6: Performance evaluation of Pollard’s rho method vs. Pollard’s kangaroo
method given that k is within a certain interval
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