
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Reed-Solomon Codes

av

Elise Reuterskiöld

2025 - No K19

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Reed-Solomon Codes

Elise Reuterskiöld

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Samuel Lundqvist

2025

Abstract
Reed-Solomon codes are a class of error-correcting codes widely used in digital
communication and storage systems due to their ability to detect and correct
multiple errors that occur during transmission. This paper provides a com-
prehensive overview of the theoretical foundation, encoding and decoding pro-
cesses of cyclic Reed-Solomon codes over Galois fields. Two decoding methods
are analyzed, the Direct method and the Euclidean method. Their theoretical
structure are discussed in detail, including syndrome computation, error loca-
tor and error magnitude polynomials and error correction limits. To evaluate
practical performance, both methods were implemented in Python and their
computational efficiency was compared under varying parameters such as Ga-
lois field order, block length and number of errors. The results show that the
Euclidean method scales more efficiently with increasing possible and actual
errors, making it more suitable for real-world applications involving high error
rates. Finally, implementation challenges are explored along with an analysis of
how algorithmic choices affect performance and reliability.

Sammanfattning
Reed-Solomon-koder är en klass av felrättande koder som används i stor ut-
sträckning inom digital kommunikation och lagringssystem, tack vare deras
förm̊aga att upptäcka och korrigera flera fel som kan uppst̊a under överföring.
Denna uppsats ger en omfattande översikt över den teoretiska grunden samt
kodnings och avkodningsprocesserna för cykliska Reed-Solomon-koder över olika
ändliga kroppar. Tv̊a avkodningsmetoder analyseras, den direkta metoden
och den euklidiska metoden. Metodernas teoretiska grund diskuteras i de-
talj, s̊asom syndromberäkning, fellokaliserings- och felmagnitudspolynom, samt
begränsningar för felkorrigering. För att utvärdera praktisk prestanda im-
plementerades b̊ada metoderna i Python, och deras beräkningsmässiga effek-
tivitet jämfördes under varierande parametrar, s̊asom antal element i kroppen,
blocklängd och antal fel. Resultaten visar att den euklidiska metoden är ef-
fektivare vid ökande möjliga och faktiska fel. Detta gör den mer lämplig för
verkliga tillämpningar med höga felniv̊aer. Slutligen utforskas implementer-
ingsutmaningar, tillsammans med en analys av hur algoritmiska val p̊averkar
prestanda och tillförlitlighet.

1

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Literature . 4
2.2 Groups, Rings and Fields . 4

3 Overview Error Correcting Codes 5
3.1 Linear Codes . 6
3.2 Cyclic and Polynomial Codes . 7
3.3 BCH Codes . 9
3.4 Reed-Solomon Codes . 10

4 Encoding Reed-Solomon Codes 10
4.1 Message Encoding . 11
4.2 Encoding Example . 12

5 Decoding Reed-Solomon Codes 13
5.1 Essential Concepts in Error Correction 13

5.1.1 Syndromes . 14
5.1.2 Error Correction Limitations 15
5.1.3 Error localization . 17

5.2 Direct Method . 17
5.2.1 Direct Decoding Example 19

5.3 Euclidean Decoder . 20
5.3.1 Extended Euclidean Algorithm 21
5.3.2 Forney’s Algorithm . 22
5.3.3 Euclidean Decoding Example 24

6 Python Implementation 25
6.1 Method . 26
6.2 Results . 27
6.3 Discussion . 29

6.3.1 Challenges and Limitations 30
6.3.2 Use of Generative AI . 31

6.4 Conclusion . 31

7 Generative AI disclosure 32

A Appendix 34

2

1 Introduction

Error-correcting codes play a significant role in ensuring reliable data transmis-
sion and storage in modern communication systems. These codes enable the
recovery of lost or corrupted data by introducing redundancy in the transmit-
ted message, allowing the detection and correction of errors. Among the various
error-correcting codes, Reed-Solomon codes have gained widespread recognition
due to their robustness and efficiency in correcting errors in noisy environments.

These codes are a class of non-binary cyclic codes that are widely used in
applications such as digital communications, data storage, and broadcasting.
Defined over finite fields, they are particularly effective in correcting multiple
consecutive errors. The error-correction capability of a Reed-Solomon code is
determined by its codeword length, n, and the length of the actual information k.

The Reed–Solomon codes were first developed in 1960 by the American math-
ematicians Irving Stoy Reed and Gustave Solomon. During the early 1960s,
further advancements were made, particularly a new approach based on the
Bose–Chaudhuri–Hocquenghem (BCH) codes, developed by Raj Chandra Bose,
D. K. Ray-Chaudhuri, and Alexis Hocquenghem, were introduced. The original
decoding method for the BCH version of Reed–Solomon codes is referred to as
the Direct method, as it solely depends on the structure and definitions of the
code. Throughout the latter half of the 20th century, various decoders and new
versions of the original scheme were created. Among them, a decoding method
called the Euclidean decoder, which utilizes the Euclidean algorithm, was devel-
oped. The Euclidean method and the Direct method will be the main focus of
this paper.

The versatility of Reed-Solomon codes has led to their widespread use across
various domains. They have had a profound impact on data storage technologies
such as CDs, DVDs, and Blu-ray disks, where they enable recovery of data even
in the presence of scratches or damage. They have also been applied to digital
television broadcasting, were they protect against errors that occur during signal
transmission, ensuring high-quality reception. Reed-Solomon codes also play a
critical role in applications like QR codes for data retrieval, satellite communi-
cation, and even deep space communication, where data transmission is subject
to extreme environmental conditions. Multiple NASA space crafts such as Voy-
ager, the Galileo orbiter and the Mars observer, utilize Reed-Solomon encoding
for deep space communication [6]. Although newer techniques for deep space
communication are continuously implemented, Reed-Solomon remain in use [2],
with the latest publicly available reference dating to 2019 [3].

This paper presents the theoretical background of error-correcting codes, with
a primary focus on Reed-Solomon codes. Furthermore, the decoding process of
a Reed-Solomon code is explained, accompanied by an example. Two different
decoding methods, the Direct method and the Euclidean method, are described,

3

with examples provided for both. Lastly, the paper discusses an implementa-
tion of the encoding and decoding methods in Python. The efficiency of the two
methods is compared, and their differences are further analyzed.

2 Preliminaries

This section provides an overview of key concepts and definitions essential for
understanding the theoretical foundation of this study, as well as introduce the
relevant literature.

2.1 Literature

This study incorporates several fundamental definitions and key concepts from
Error-control coding for data networks by Irving S. Reed and Xuemin Chen [1].
It uses the clear and well-established definitions presented in the text to provide
a consistent theoretical framework. Specifically, the fundamental concepts and
principles discussed in Chapters 2, 4, 5, and 6 have been referenced to ensure
consistency with established academic discourse in the field of error correction.

These foundational concepts serve as the starting point for the theoretical dis-
cussions in this study, providing clarity and a shared understanding of key ideas.
Where necessary, additional sources have been used to supplement the initial
concepts derived from Error-control coding for data networks, ensuring a com-
prehensive approach to the topic while maintaining consistency with established
definitions.

2.2 Groups, Rings and Fields

This paper assumes a basic understanding of Galois fields. A brief introduction
to the properties of a group, ring, field and Galois field is therefore provided.
Firstly, a group is defined as a set of elements that, together with an associative
operation, satisfies three fundamental properties.

Definition 1. Group A group G is an algebraic structure consisting of a set of
elements such that under an associative operation ⋆, the set is closed, contains
an identity element and every element in the set has an inverse.

An abelian group is a group that is commutative, meaning that for two elements
a, b ∈ F with operation ⋆, it holds that a⋆b = b⋆a. A ring R is a set of elements
under addition and multiplication, where addition forms an abelian group and
multiplication is associative and distributes over addition.

Definition 2. Ring A ring R is an algebraic structure consisting of a set
R with two binary operations, addition and multiplication. The set R is an
abelian group under addition and it is closed under multiplication. There exists a

4

multiplicative identity element and multiplication is associative and distributive
over addition. That is, for all a, b, c ∈ F , it holds that

a · (b+ c) = a · b+ a · c.

By adding further constraints on a ring R, a field can be constructed. A field
F is a set of elements under two operations, + and ·, such that F is an abelian
group under + and F \{0} is an abelian group under ·. If the number of elements
in the field is finite, the field is called a finite field, also known as a Galois field,
named after the French mathematician Évariste Galois.

Definition 3. Field A field F is a ring in which multiplication is commutative
and every nonzero element has a multiplicative inverse.

Definition 4. Galois Field A Galois field is a field F that contains a finite
number of elements.

An important property of a Galois field is its order, i.e., the number of elements
it contains. The order of a Galois field is always a prime power, pm.

Theorem 1. Order of a Galois Field The order of a Galois field is a prime
power pm, for a prime p and a positive integer m.

Most commonly, Galois fields are finite fields consisting of p elements. Such
fields are isomorphic to the field of integers modulo p, denoted Zp. In this
paper, the notation GF (p) will be used to represent a Galois field of order p,
where p is a prime.

Theorem 2. Field of Prime Order If a field has p elements, where p is a
prime, then the field is isomorphic to the finite field Zp.

A finite field always contains at least one primitive element, called a generator.
This primitive element α can be used to generate all other elements of the field.
This means that every non-zero element in the field can be expressed as a power
of α. In particular, for every element x ∈ GF (p) \ {0}, there exists a natural
number i such that x = αi.

Definition 5. Generator Let F be a finite field. A generator α ∈ F is an
element such that for every x ∈ F \ {0}, there exists a natural number i for
which x = αi.

3 Overview Error Correcting Codes

The purpose of any error-correcting code is to facilitate the handling of errors
in data transmission over a noisy channel. The fundamental principle of error
correction is the introduction of redundant elements into the original informa-
tion. This additional information is then used by the receiver to reconstruct the
original data. Error-correcting codes can be broadly classified into two main

5

categories: block codes and convolutional codes. The focus of this paper, Reed-
Solomon codes, belongs to the class of block codes. Block codes operate on
fixed-length blocks of data, encoding each block independently to produce a
corresponding codeword. The encoding process, typically performed within a
Galois field, transforms a message m of length k into a codeword of length n,
where k < n, and can be described by the encoding function

E : GF (p)k → GF (p)n,

where GF (p)k is the set of vectors of length k with elements from GF (p). The
set of all possible codewords,

C = {E(m)|m ∈ GF (p)k} ⊆ GF (p)n,

constitutes the code. Based on the algebraic structure of a code, it can be
classified as a linear code and, more specifically, as a cyclic code.

3.1 Linear Codes

When working with error correction, efficiency is an important factor to con-
sider. A specific structure of the code ensures that decoding codewords can be
performed more efficiently. This is achieved by constructing a linear code.

Definition 6. Linear Code A code C of length n over a Galois field GF (p)
is called a linear code if it forms a k-dimensional subspace of the vector space
GF (p)n. That is, for any two codewords c1, c2 ∈ C, any linear combination of
c1 and c2 is also in C.

For a linear code, a codeword c of length n is generated from an original message
m of length k. A code C over a Galois field GF (p) therefore contains pk distinct
codewords created from messages m. The additional t = n− k elements in the
codeword are called the parity.

Every linear code with codewords of length n and message length k can be de-
scribed by a generator matrix G, which defines how message vectors are mapped
to codewords. The generator matrix has dimensions k × n and is given by

G ∈ GF (p)k×n.

Definition 7. Generator Matrix Let C be a linear code with codewords of
length n and message length k over a Galois field GF (p). The generator matrix
G is a k × n matrix such that the code is the row space of G, meaning each
codeword is a linear combination of the rows of G.

For a given message row vector m of length k, the corresponding codeword c is
obtained through the matrix multiplication

c = mG.

6

If the k × n generator matrix G is structured so that the first k symbols cor-
respond to the message itself, it is said to be in standard form. For a k × k
identity matrix Ik and some matrix A, the generator matrix in standard form
is given by

G = [Ik | A].

Every generator matrix for a linear code can be expressed in standard form
due to the linearity of the code. The generator matrix can also be used to
construct the parity-check matrix H, which provides a way to verify whether a
given vector is a valid codeword. Assuming that the generator matrix is given
in standard form as described above, the corresponding parity-check matrix is
given by

H = [−AT | It].
Every linear code thus has a parity-check matrix H of dimensions (n − k) × n
(alternatively, t×n), which is related to the generator matrix G by the condition

HGT = 0.

Definition 8. Parity-Check Matrix The parity-check matrix H of a linear
code C is an t× n matrix that satisfies the condition

HGT = 0,

where G is the generator matrix of the code and 0 is the t× k null matrix.

As a direct consequence, every valid codeword satisfies

HcT = 0,

where cT is the transpose of the codeword vector c. This equation ensures that
c lies within the code defined by the generator matrix G.

3.2 Cyclic and Polynomial Codes

Cyclic codes are a subset of linear codes in which the cyclic shift of any codeword
c ∈ C is also in C. This property makes cyclic codes particularly useful in error
correction, as they allow for efficient encoding and decoding algorithms.

Definition 9. Cyclic Code Let C be a linear code with codewords of length
n over a Galois field GF (p). The code C is a cyclic code if, for every codeword
c = (c1, c2, . . . , cn−1, cn) ∈ C, the codeword obtained by a cyclic shift, c′ =
(cn, c1, . . . , cn−1), is also in C.

The elements of a codeword c = (c1, c2, . . . , cn) in a cyclic code can be viewed
as the coefficients of a polynomial

c(x) = c1 + c2x+ · · ·+ cnx
n−1.

Since every cyclic code can be represented in polynomial form, it is also known
as a polynomial code. These codes exist within the polynomial ring GF (p)[x],
which is the set of one-variable polynomials with coefficients in GF (p).

7

Definition 10. Polynomial Ring A polynomial ring GF (p)[x] consists of
polynomials in one variable, where the coefficients are elements from the finite
field GF (p). The set is equipped with two operations, polynomial addition + and
polynomial multiplication (·).
While codewords in other linear codes can also be expressed as polynomials,
this representation is particularly important for cyclic codes.

Definition 11. Polynomial Code Let C be a linear code of length n over a
Galois field GF(p), where each codeword c = (c1, c2, . . . , cn) ∈ C is represented
by a polynomial

c(x) = c1 + c2x+ · · ·+ cnx
n−1 ∈ GF (p)[x].

The code C is called a polynomial code if there exists a fixed polynomial g(x) ∈
GF (p)[x] such that each codeword polynomial c(x) ∈ C can be written as

c(x) = q(x)g(x),

for some polynomial q(x) ∈ GF (p)[x].

The polynomial g(x) is called the generator polynomial. It is the lowest-degree
polynomial that generates the code C of length n and also divides xn − 1 over
a given finite field GF (p). The algebraic structure of these polynomial codes is
naturally described within the quotient ring

GF (p)[x]/(xn − 1),

where (xn − 1) is the ideal generated by xn − 1, meaning that any multiple of
xn − 1 is equal to zero in the quotient ring.

Definition 12. Ideal For a commutative ring R, a non-empty subset I, is
called an ideal of R if a − b ∈ I for all a, b ∈ I and a · r = r · a ∈ I for a ∈ I
and r ∈ R.

The quotient ring is formed by considering all polynomials modulo the ideal,
meaning that two polynomials are considered equivalent if their difference lies
in the ideal. Specifically, in this context, computations proceed as usual with
the added rule that xn can be replaced by 1. The formal definition of a quotient
ring, however, is beyond the scope of this paper, as the focus is on the applica-
tion to error correcting codes rather than the abstract algebraic theory.

Since codewords are polynomials of degree less than n, addition and multi-
plication in this ring are performed modulo xn − 1, making polynomial codes
particularly suitable for cyclic structures. Formally, a polynomial code can be
described as

C = ⟨g(x)⟩ = {q(x)g(x) | q(x) ∈ GF (p)[x]/(xn − 1)}.

This underlying structure of polynomial codes allows for efficient encoding and
decoding through polynomial division. These properties are particularly useful
in constructing error-correcting cyclic codes, such as BCH codes and Reed-
Solomon codes.

8

3.3 BCH Codes

The Bose–Chaudhuri–Hocquenghem (BCH) codes form a class of cyclic codes,
and more specifically polynomial codes. In 1959 and 1960, BCH codes were in-
dependently discovered by Raj Chandra Bose, D. K. Ray-Chaudhuri, and Alexis
Hocquenghem. These codes are specifically designed to detect and correct pre-
cise and more importantly, multiple errors, making them highly effective in error
correction for digital communication systems and storage. As previously men-
tioned, the foundation of cyclic polynomial codes is the generator polynomial.

BCH codes are defined over a finite Galois field GF (pm), where p is a prime and
m is a positive integer. The field GF (pm) is a finite field extension of GF (p),
with a generator α of the multiplicative group of nonzero elements in GF (pm).
A common choice of p is 2, creating the binary field GF (2) with elements {0, 1}.
Note that this corresponds to choosing to m = 1. An extension of this field, for
m = 3 is the given by GF (23) with 8 elements

{0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1}

The key feature of BCH codes is their ability to correct multiple errors by select-
ing a set of consecutive powers of a primitive element α in the field GF (pm), and
using these powers as roots for the generator polynomial of the code. The gen-
erator polynomial of a BCH code is the lowest-degree monic polynomial whose
roots are a set of consecutive powers of the generator α.

Definition 13. Minimal polynomial The minimal polynomial Mi(x) of αi

is the monic polynomial of smallest degree with coefficients in GF (p) for which
Mi(α

i) = 0.

Definition 14. BCH Codes Let C be a cyclic code over a Galois field GF (pm)
with a generator α. The code C is a BCH code if the generator polynomial g(x)
is given by

g(x) = lcm(M1(x),M2(x), . . . ,M2v(x)),

where Mi(x) is the minimal polynomial of αi over GF (pm), v is the maximum
number of errors that can be corrected, and lcm denotes the least common mul-
tiple of the minimal polynomials.

As with all cyclic polynomial codes, any codeword polynomial c(x) that is a
multiple of the generator polynomial g(x) is a valid codeword in C. This is be-
cause the generator polynomial always evaluates to zero at certain points, and
thus, if the generator polynomial is part of the codeword, the entire codeword
will evaluate to zero at those points. This property is an important aspect of
decoding BCH code messages.

While BCH codes are effective for correcting multiple errors, they are some-
what limited in their flexibility, especially when dealing with more complex
error correction needs. To overcome some of these limitations, Reed-Solomon
codes offer enhanced error correction capabilities.

9

3.4 Reed-Solomon Codes

An important class of BCH codes is Reed-Solomon codes. They were initially
invented by Irving S. Reed and Gustave Solomon in 1960 and later developed
to incorporate the principles of BCH codes for greater efficiency. Reed-Solomon
codes, like BCH codes, are typically defined over the finite field GF (pm), for a
prime p and a positive integer m. The length of the codewords n has to satisfy
n ≤ pm and is usually chosen as n = pm − 1 or n = qm for optimal efficiency.
The length of the message, k, must be chosen so that k < n. A Reed-Solomon
code is commonly denoted as RS(n, k). The key distinction between BCH codes
and their Reed-Solomon counterpart is that the number of correctable errors for
a Reed-Solomon code is determined by the choice of n and k, not by the con-
struction of the generator polynomial itself.

This paper focuses on cyclic Reed-Solomon codes, specifically the BCH ver-
sion. These codes use a fixed generator polynomial, as defined below. However,
the original Reed-Solomon codes are not necessarily cyclic, depending on the
choice of evaluation points. In contrast, linear Reed-Solomon codes use a vari-
able polynomial based on the message to be encoded, while the encoder and
decoder share only a fixed set of evaluation points. The original theoretical
decoding method involved generating potential polynomials from subsets of k
out of n received values and selecting the most frequently occurring polynomial
as the correct one. A process that was computationally impractical except for
very simple cases.

Definition 15. Reed-Solomon Codes (BCH version) Let C be a cyclic
code over a Galois field GF (pm) with a generator α. The code C is a Reed-
Solomon code if the generator polynomial g(x) is given by

g(x) =

t∏
i=1

(x− αi),

where t is the parity of the code.

Due to the definition of the generator polynomial g(x), it evaluates to zero for
all αi when i ∈ [1, t]. Consequently, all valid codewords also evaluate to zero at
these values due to the cyclic structure. As will be explained in greater detail
in the next section, this property enables the correction of a specific number of

errors. Specifically, up to v =

⌊
t

2

⌋
errors can be corrected.

4 Encoding Reed-Solomon Codes

The BCH version of Reed-Solomon encoding is based on the generator polyno-
mial g(x). The construction of the generator polynomial and its use in creating
codewords is important to ensure that the code is cyclic and can be corrected.

10

As previously mentioned, Reed-Solomon codes consists of four main parame-
ters. The first is the order pm of the Galois field, the second is a generator of
that field α, the third is the length of the codewords n, also known as the block
length, and finally, the length of the message k.

4.1 Message Encoding

The first step in encoding a message as a Reed-Solomon codeword is the con-
struction of the generator polynomial g(x). To create a cyclic code, the generator
polynomial has t = n − k consecutive powers of α as roots. This ensures that
the polynomial evaluates to zero at these points. Since α is a generator of the
Galois field, each value αi, for i ∈ [1, t], is unique.

Definition 16. Generator Polynomial Let n be the length of the codewords
in a cyclic code and k the length of the message. The generator polynomial g(x)
over a given Galois field GF (pm) is a polynomial of degree t = n − k that is
given by

g(x) =

t∏
i=1

(x− αi)

for some generator α of the Galois field.

To encode a message of length k, a corresponding polynomial is constructed so
that the coefficients of the polynomial represent the message.

Definition 17. Message Polynomial The message polynomial for a message
m = (m1,m2, ...,mk) of length k is a polynomial of degree k − 1 defined as

m(x) =

k∑
i=1

mix
i−1.

The goal when constructing the codeword is to ensure that it can be expressed
as the product of a polynomial and the generator polynomial. As noted above,
the generator polynomial evaluates to zero at αi for i ∈ [1, t]. Due to the
construction of g(x), any correctly received codeword will also evaluate to zero
at these points. Conversely, if any errors occur, only information about the
errors will be preserved during evaluation.

Definition 18. Reed-Solomon encoding formula Let C be a Reed-Solomon
code with block length n, message length k and parity t = n− k. Let g(x) be the
generator polynomial and m(x) the message polynomial. The codeword s(x) is
given by:

s(x) = m(x)xt − (m(x)xt (mod g(x))).

Theorem 3. Reed-Solomon Codeword Structure Let s(x) be a Reed-
Solomon encoded message of length n with parity t. The codeword s(x) can be
expressed as a multiple of the generator polynomial g(x) such that

s(x) = q(x)g(x),

11

where q(x) is the quotient when dividing m(x)xt by g(x).

Proof. First, note that m(x)xt (mod g(x)) is equal to the remainder r(x) when
m(x)xt is divided by the generator polynomial g(x). This gives the equation

m(x)xt = q(x)g(x) + r(x),

for some quotient q(x). Thus, the codeword can be expressed as

s(x) = m(x)xt − (m(x)xt (mod g(x)))

= m(x)xt − r(x)

= m(x)xt − (m(x)xt − q(x)g(x))

= q(x)g(x).

Using the Reed-Solomon encoding formula results in a polynomial of degree
n− 1. The coefficients of this polynomial form the final codeword that is trans-
mitted. Due to the construction of the codeword, the last k elements, which are
the coefficients of the highest-degree terms, correspond to the original message.
Note that if the polynomial is viewed in reverse, the first k elements correspond
to the message, as described in Section 3.1. However, due to the structure of
the parity-check matrix for Reed-Solomon codes, it is more practical to reverse
the codeword, as will be shown in the decoding section.

4.2 Encoding Example

In this section, a simple example of the encoding procedure described above is
presented using a Reed Solomon code with block length n = 7, message length
k = 3 and parity t = 7−3 = 4. To avoid large numbers, the Galois field is chosen
as GF (11) and the generator α = 2. Using previously mentioned definitions,
the generator polynomial is calculated in the following way,

g(x) =

4∏
i=1

(x− 2i) = (x− 2)(x− 4)(x− 8)(x− 5) = 1 + 8x+ 5x2 + 3x3 + x4.

Assuming the message m = (1, 1, 2), the message polynomial is given by

m(x) = 1 + x+ 2x2.

Polynomial long division is used to calculate the remainder r(x) when dividing
m(x)xt by g(x).

12

2x2 + 6x+ 6
2x6 + x5 + x4 |x4 + 3x3 + 5x2 + 8x+ 1

−(2x6 + 6x5 + 10x4 + 5x3 + 2x2)

6x5 + 2x4 + 6x3 + 9x2

−(6x5 + 7x4 + 8x3 + 4x2 + 6x)

6x4 + 9x3 + 5x2 + 5x
−(6x4 + 7x3 + 8x2 + 4x+ 6)

2x3 + 8x2 + x+ 5

The codeword polynomial is then calculated as

s(x) = m(x)xt − r(x)

= (2x6 + x5 + x4)− (2x3 + 8x2 + x+ 5)

= 6 + 10x+ 3x2 + 9x3 + x4 + x5 + 2x6.

Note that the codeword can be factored into the generator polynomial (x) and
a quotient q(x), such that

s(x) = (6 + 6x+ 2x2)(1 + 8x+ 5x2 + 3x2 + x4) = q(x)g(x),

in agreement with Theorem 3. The final codeword that the sender transmits
consists of the coefficients of the codeword polynomial s = (6, 10, 3, 9, 1, 1, 2).
The four additional symbols appended to the original message represent the
parity of the codeword, corresponding to t = 4.

5 Decoding Reed-Solomon Codes

During the transmission of a Reed-Solomon codeword, encoded as shown above,
errors may occur. Due to the structure of the codeword, the key to identifying
these errors is to evaluate the codeword polynomial at the roots of the generator
polynomial, given by αi for i ∈ [1, t]. The evaluation of the codeword at each
root is called a syndrome and serves as the basis for error correction.

5.1 Essential Concepts in Error Correction

To understand the different methods for decoding Reed-Solomon codewords, it
is essential to first grasp some key foundational concepts. This includes the
calculation of syndromes and their function, as well as an understanding of the
structure of received errors. Additionally, the limitations of error correction are
discussed.

13

5.1.1 Syndromes

The received codeword is interpreted as a polynomial in the same way as it was
created. However, during transmission, some coefficients change. These changes
can be written as a polynomial called the error polynomial.

Definition 19. Error Polynomial Let s(x) be a Reed-Solomon codeword
polynomial of degree n− 1, corresponding to the codeword vector s. Let r(x) be
the polynomial representation of the received codeword r, with degree at most
n−1. The error polynomial e(x), with coefficients e = (e1, e2, ..., en), represents
the difference between the original and the received codeword given by

e(x) = r(x)− s(x),

where the degree of the polynomial depends on the locations of the errors.

As defined in the previous section, the codeword polynomial is constructed as a
product of the generator polynomial g(x) and some quotient q(x). When errors
occur during transmission, the received codeword polynomial is therefore given
by

r(x) = s(x) + e(x) = q(x)g(x) + e(x).

Each syndrome Si is computed by evaluating r(x) at αi. Since the generator
polynomial equals zero when evaluated at αi for i ∈ [1, t] the syndromes depend
only on the error polynomial at these points. Thus,

Si = r(αi) = s(αi) + e(αi) = q(αi)g(αi) + e(αi) = e(αi),

for i ∈ [1, t]. This results in t syndromes. Note that received codewords without
errors result in all syndromes being zero.

Definition 20. Syndrome Let r be a received Reed-Solomon codeword of
length n and parity t. The syndrome Si for i ∈ 1, t is given by

Si = e(αi).

An effective method to calculate the syndromes is by utilizing the Vandermonde
matrix. The Vandermonde matrix is commonly used to evaluate a polynomial
of degree n at multiple values, given by the vector of evaluation points x =
(x1, x2, . . . , xm). By multiplying the coefficient vector of a polynomial with the
Vandermonde matrix constructed from these evaluation points, all evaluations of
the polynomial can be computed simultaneously, resulting in a vector of values
corresponding to the polynomial evaluated at each point in x.

Definition 21. Vandermonde matrix Given a sequence of distinct numbers
x = (x1, x2, ..., xm), the m× n Vandermonde matrix is given by

V =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xm x2
m · · · xn−1

m

 .

14

The t syndromes S = (S1, S2, . . . , St), computed from the received codeword
r = (r1, r2, . . . , rn) of length n, are obtained using a t×n Vandermonde matrix
with x = (α1, α2, . . . , αt). This method calculates all syndromes in a single step,
by evaluating the error polynomial at multiple values, according to Definition
18.

ST = V rT = V eT =


1 α α2 · · · αn−1

1 α2 α22 · · · α2(n−1)

...
...

...
. . .

...

1 αt αt2 · · · αt(n−1)



e1
e2
...
en

 =


S1

S2

...
St

 .

5.1.2 Error Correction Limitations

Given the construction of the generator polynomial, only t syndromes can be
computed. As a direct consequence, only a limited number of errors can be de-
tected and corrected. Therefore, at least n−v of the error polynomial coefficients
e = (e1, e2, ..., en) must equal zero. Since the locations of the v nonzero error
coefficients are unknown, each of these errors ej for j ∈ [1, v] can be described
with a magnitude Ej and a location lj , where lj ∈ [1, n].

Definition 22. Error magnitude Let r be a received Reed-Solomon codeword
containing v errors. The vector of nonzero error magnitudes, E = (E1, E2, . . . , Ev),
represents the size of each of the v deviations from the original, transmitted
codeword.

Definition 23. Error locations Let r be a received Reed-Solomon codeword
of length n with v errors. The error locations l = (l1, l2, ..., lv) represents the
location of the v deviations from the original codeword so that lj ∈ [1, n].

Using this interpretation of the v errors, the t syndrome can be expressed as a
function of errors magnitude and its location.

Theorem 4. Syndrome Representation Let r be a received Reed-Solomon
codeword with v errors. Let Ej be the error magnitude and lj the error location
of error j for j ∈ [1, v]. The syndrome Si = e(αi) for i ∈ [1, t], can be expressed
as

Si =

v∑
j=1

Ej(α
i)lj .

Proof. Since the syndrome Si = e(αi) is the evaluation of the polynomial e(x),
it can be further expressed as

Si = e1 + e2(α
i) + e3(α

i)2 + · · ·+ en(α
i)n−1.

As previously mentioned, if v errors can be corrected, then at least n − v co-
efficients of the error polynomial must be zero. The positions of the remaining

15

nonzero terms in the syndrome expression are referred to as the error locations,
as defined in Definition 21, and correspond to the degrees of the polynomial
terms. To further distinguish the nonzero coefficients from the original error
polynomial, the magnitudes of the errors, denoted as Ej , are defined according
to Definition 20. The syndrome can then be written using only nonzero terms
as

Si = E1(α
i)l1 + E2(α

i)l2 + · · ·+ Ev(α
i)lv =

v∑
j=1

Ej(α
i)lj ,

when v errors has occurred.

All error correcting codes has limitations regarding the amount of errors in a
codeword that can be corrected. For the Reed-Solomon codes, the limits depend
of the parity of the codewords and the definition of the syndromes.

Theorem 5. Maximum Error Correction Let C be a Reed-Solomon code
with codewords of length n with a message of length k and parity t. The maxi-
mum amount of errors that can be corrected is given by

vmax =

⌊
n− k

2

⌋
=

⌊
t

2

⌋
.

Proof. From the definitions above, the Reed-Solomon code generates t syn-
dromes that each depend on the magnitude and location of the error. Assume
that at most v errors has occurred and can be corrected. This generates a
system of t equations

Si =

v∑
j=1

Ej(α
i)lj = E1(α

i)l1 + ...+ Ev(α
i)lv

and 2v unknown variables Ej and lj for j ∈ [1, v]. A unique solution to a
system of equations is possible, but not guaranteed, if and only if the number
of equations is greater than or equal to the number of variables. To solve the
system of equations that the syndromes make up, the following must apply

t ≥ 2v ⇐⇒ v ≤ t

2
.

Since v has to be a positive integer, the floor function of the expression defines
the maximum amount of errors. Hence,

vmax =

⌊
t

2

⌋
and v ≤

⌊
t

2

⌋
.

16

5.1.3 Error localization

The final key aspect in understanding different decoding methods is error local-
ization. To determine the magnitudes of the errors, one must first identify their
locations, lj . This is achieved by defining the error locator polynomial Λ(x).
The roots of this polynomial correspond to α−lj , allowing the error locations to
be found by solving Λ(x) = 0.

Definition 24. Error locator polynomial For a received Reed-Solomon code-
word with v errors at locations lj for j ∈ [1, v] the error locator polynomial Λ(x)
is given by

Λ(x) =

v∏
j=1

(1− xαlj) = 1 +

v∑
i=1

Λix
i.

There are several methods for determining the error locator polynomial and
its coefficients. The following section describes how the Direct and Euclidean
methods are used to compute both the error locations and their magnitudes.

5.2 Direct Method

The direct method of Reed-Solomon decoding utilizes the definitions of the
syndromes and the error locator polynomial to solve the system of equations
in two main steps. First, the coefficients of the error locator polynomial are
calculated. This is done by solving a system of linear equations, where the
equations are derived from the syndromes, under the assumption that v errors
have occurred.

Theorem 6. Syndrome-Derived Error Locator Polynomial Let Λ(x)
be the error locator polynomial with roots α−lj for j ∈ [1, v], and let C be a

code that corrects v errors and generates 2v syndromes Si =
v∑

j=1

Ej(α
i)lj . The

coefficients Λi of the error locator polynomial Λ(x) can be obtained by solving
the system of linear equations

Sv+k + Λ1Sv+k−1 + ...+ Λv−1Sk+1 + ΛvSk = 0,

for k ∈ [1, v], with the corresponding augmented matrix


S1 S2 · · · Sv

S2 S3 · · · Sv+1

...
...

. . .
...

Sv Sv+1 · · · S2v−1




Λv

Λv−1

...
Λ1

 =


−Sv+1

−Sv+2

...
−S2v

 .

Proof. Given the construction of the error location polynomial Λ(x), the roots
of the polynomial are known. Thus,

Λ(α−lj) = 0

17

for j ∈ [1, v]. Furthermore, the syndromes can be expressed as

Si =

v∑
j=1

Ej(α
i)lj =

v∑
j=1

Ej(α
lj)i,

where Ej is the error magnitude and lj the error location.

Both sides of the expression Λ(α−lj) = 0 is first multiplied by the sum of the

error magnitude
v∑

j=1

Ej .

0 = Λ(α−lj)

= 1 + Λ1(α
−lj) + ...+ Λv−1(α

−lj)v−1 + Λv(α
−lj)v

=
v∑

j=1

Ej + Λ1

v∑
j=1

Ej(α
−lj) + ...+ Λv−1

v∑
j=1

Ej(α
−lj)v−1 + Λv

v∑
j=1

Ej(α
−lj)v.

To obtain the syndromes from the expression, each term is further multiplied
by αlj(v+1) as shown below.

0 =
v∑

j=1

Ej + Λ1

v∑
j=1

Ej(α
−lj) + ...+ Λv−1

v∑
j=1

Ej(α
−lj)v−1 + Λv

v∑
j=1

Ej(α
−lj)v

=
v∑

j=1

Ej(α
lj)v+1 + Λ1

v∑
j=1

Ej(α
lj)v + ...+ Λv−1

v∑
j=1

Ej(α
−lj)2 + Λv

v∑
j=1

Ej(α
−lj)

= Sv+1 + Λ1Sv + ...+ Λv−1S2 + ΛvS1.

Note that the final equation corresponds to k = 1 and by continuing to multi-
ply the expression by αlj , the expression is shifted. This process results in the
remaining equations corresponding to k = 1, 2, . . . , v, ultimately leading to the
final system of linear equations represented by the augmented matrix described
above.

The error locator polynomial, expressed with coefficients Λi, is a polynomial
of degree v. Normally, there is no general method for solving polynomials of a
higher degree. However, because the polynomial is constructed over a Galois
field GF (pm), brute force can be used to find the solutions. Using trial and
error, Λ(x) is evaluated at α−lj for lj ∈ [0, n− 1] until v solutions are found.

The final step in decoding the message is computing the magnitude of each

18

error. Since the error locations are no longer unknown, the initial definition of
the syndromes now forms a linear equation system that can be solved.


αl1 αl2 · · · αlv

α2l1 α2l2 · · · α2lv

...
...

. . .
...

αvl1 αvl2 · · · αvlv



E1

E2

...
Ev

 =


S1

S2

...
Sv

 .

The calculations above leave two vectors, l = (l1, l2, ..., lv) andE = (E1, E2, ..., Ev).
By matching each error magnitude with its corresponding location, the error
vector e = (e1, e2, . . . , en) is obtained. Subtracting the error vector from the
received codeword r = (r1, r2, ..., rn), the original codeword s = (s1, s2, ..., sn)
is obtained. Note that the actual message is given only by the last k elements
of s.

5.2.1 Direct Decoding Example

In this section, the previously encoded message, as shown in section 4.2, will be
decoded using the Direct method over the Galois field GF (11). Assuming that
two errors have occurred, a possible received codeword is r = (6, 1, 3, 9, 7, 1, 2).
First, the four syndromes are computed using the 4 × 7 Vandermonde matrix
as follows

ST = V rT =


1 2 4 8 5 10 9
1 4 5 9 3 1 4
1 8 9 6 4 10 3
1 5 3 4 9 1 5





6
1
3
9
7
1
2


=


1
4
7
9

 .

The lambda values Λi are then calculated by solving the linear equation system

(
S1 S2

S2 S3

)(
Λ2

Λ1

)
=

(
−S3

−S4

)
−→

(
1 4
4 7

)(
Λ2

Λ1

)
=

(
4
2

)
.

The error location polynomial coefficients, Λ1 = 4 and Λ2 = 10 are obtained
and by adding the constant term 1, the error location polynomial is given by

Λ(x) = 10x2 + 4x+ 1.

By trial and error, the roots 2−lj of the polynomial Λ(x) are found such that

2−l1 = 6 and 2−l2 = 9.

19

Solving for the locations, l = (l1, l2) = (1, 4). The final step is computing the
magnitude of the errors at location 1 and 4. This is done by solving the linear
system of equations

(
αl1 αl2

α2l1 α2l2

)(
E1

E2

)
=

(
S1

S2

)
−→

(
2 5
4 3

)(
E1

E2

)
=

(
1
4

)
.

The resulting error magnitudes is given by E = (E1, E2) = (2, 6). Match-
ing the error magnitudes with their locations, results in the error vector
e = (0, 2, 0, 0, 6, 0, 0). Subtracting the error from the received codeword
r = (6, 1, 3, 9, 7, 1, 2), the correct and final codeword is given by

s = r − e = (6, 1, 3, 9, 7, 1, 2)− (0, 2, 0, 0, 6, 0, 0) = (6, 10, 3, 9, 1, 1, 2),

where the actual message is given by the last k elements, m = (1, 1, 2).

5.3 Euclidean Decoder

In 1975, Yasuo Sugiyama discovered a method to find the locations and mag-
nitudes of the errors, called the Euclidean method [4]. The Euclidean method
utilizes the Extended Euclidean algorithm to solve the Key Equation and find
the error location polynomial Λ(x) and the error magnitude polynomial Ω(x).

The Key Equation is constructed using the error location polynomial Λ(x),
the error magnitude Ω(x) polynomial and the syndrome polynomial S(x). The
syndrome polynomial contains 2v syndromes. If the parity t of the codeword is
an odd number, the last syndrome St is excluded.

Definition 25. Syndrome polynomial Let C be a Reed-Solomon code that
corrects at most v errors and generates 2v syndromes. The syndrome polynomial
S(x) is a polynomial of degree 2v − 1 given by

S(x) =

2v∑
i=1

Six
i−1.

Note, that by substituting the expression for the syndromes from Theorem 4,
the syndrome polynomial can be written as

S(x) =

2v∑
i=1

v∑
j=1

Ej(α
i)ljxi−1.

The Key Equation describes the relationship between the syndrome polynomial
S(x), the error locator polynomial Λ(x) and the magnitude polynomial Ω(x),
such that Ω(x) is the greatest common devisor of S(x) and x2v.

20

Definition 26. Error magnitude polynomial Let S(x) be the syndrome
polynomial and Λ(x) the error locator polynomial for a code where at most v
errors can be corrected. The error magnitude polynomial Ω(x) is given by

Ω(x) = S(x)Λ(x) mod x2v.

The purpose of the Key Equation is to find both the error locator polynomial
and the error magnitude polynomial, as they contain all the information needed
to compute the error vector e. This equation can be solved, meaning that Q(x)
and Λ(x) can be determined, using the Extended Euclidean Algorithm.

5.3.1 Extended Euclidean Algorithm

The Euclidean algorithm provides a method to compute the greatest common
divisor (GCD) of two integers. Bézout’s identity states that for two integers a
and b with a greatest common divisor c, there exists two integers x and y so
that

ax+ by = c.

The Extended Euclidean algorithm not only solves for the greatest common
devisor c but also the Bézout coefficients x and y. The algorithm can also be
applied to polynomials.

Regardless of whether integers or polynomials are used, the algorithm follows
the same steps, except for the stopping condition. There are four parameters
that are updated at each step i of the algorithm, with starting point i = 1. The
quotient qi−1, the remainder ri and the Bézout coefficients si and ti. The initial
setup is as follows

r0 = a s0 = 1 t0 = 0
r1 = b s1 = 0 t1 = 1.

At each step, r1 is updated to r0 and the remainder when dividing r0 with r1
becomes the new r1, following the standard Euclidean algorithm. The remain-
ing values are updated in the same way, according to

ri+1 = ri−1 − qi+1ri
si+1 = si−1 − qi+1si
ti+1 = ti−1 − qi+1ti,

until ri+1 = 0.

Example 1. Extended Euclidean Algorithm
To find the greatest common divisor (GCD) as well as the Bézout coefficients for
two integers a = 122 and b = 52, the Extended Euclidean Algorithm is applied
to solve the equation

122x+ 52y = GCD(122, 52).

21

At the stopping point i, si = x, ti = y and ri = GCD(122, 52). Using the
iterative pattern above, for every step i, the values qi, ri, si and ti are updated
in the following way

i qi ri si ti

0 122 1 0

1 52 0 1

2 2 122− 2 · 52 = 18 1− 2 · 0 = 1 0− 2 · 1 = −2

3 2 52− 2 · 18 = 16 0− 2 · 1 = −2 1− 2 · −2 = 5

4 1 18− 1 · 16 = 2 1− 1 · −2 = 3 −2− 1 · 5 = −7

Since r5 would equal zero, the stopping point is i = 4. At this point rr =
2, s4 = 3 and t4 = −7. The greatest common divisor is thereby given as
GCD(122, 52) = 2 and the Bézout coefficients coefficients equal x = 3 and
y = −7, showing that

122 · 3− 52 · 7 = 2.

When the algorithm is applied to finding Λ(x) and Ω(x), only the added pa-
rameter t is needed. The initial setup is then

r0(x) = x2v t0(x) = 0
r1(x) = S(x) t1(x) = 1.

When working with polynomials, the stopping criteria is instead determined
by the degree of the polynomial ri(x), which equals v. At this stopping point,
ti(x) = kΛ(x) for some integer k. To ensure that the constant coefficient of Λ(x)
is 1, as per the definition, kΛ(x) is divided by the constant coefficient of ti(x).
The same procedure is applied to the error magnitude polynomial, resulting in

Λ(x) =
ti(x)

ti(0)
and Ω(x) =

ri(x)

ti(0)
.

The roots of Λ(x), and consequently the error locations, are determined using
the brute-force approach, as described in Section 5.2.

5.3.2 Forney’s Algorithm

Once the error magnitude and location polynomials have been computed, For-
ney’s algorithm, named after George David Forney Jr in 1965, is applied to
determine the magnitude of each error [5]. For each error location lj , the error

22

magnitude polynomial Ω(x) and the derivative of the error location polynomial,
Λ′(x), are evaluated at α−lj . The magnitude is then given by the negative
quotient of Ω(x) and Λ′(x).

Theorem 7. Forney’s algorithm Let S(x) be the syndrome polynomial, Λ(x)
the error locator polynomial with roots α−lj and Ω(x) the magnitude polynomial
so that

Ω(x) = S(x)Λ(x) mod x2v,

where at most v errors can be corrected. The error magnitude Ej at error
location lj ∈ [0, n− 1] is given by

Ej =
−Ω(α−lj)

Λ′(α−lj)
.

Proof. Following the definitions above, the syndrome polynomial is given by

S(x) =

2v∑
i=1

Six
i−1 =

2v∑
i=1

v∑
j=1

Ej(α
i)ljxi−1,

and the error locator polynomial is defined as

Λ(x) =

v∏
k=1

(1− αlkx).

The coefficients of the magnitude polynomial Ω(x) is obtained by substituting
the expressions of the known polynomials into the key equation

Ω(x) =

2v∑
i=1

v∑
j=1

Ej(α
i)ljxi−1

v∏
k=1

(1− αlkx) mod x2v.

Since the error locator polynomial Λ(x) has degree v, the key equation can be
rewritten as follows:

Ω(x) =
2v∑
i=1

v∑
j=1

Ej(α
i)ljxi−1

v∏
k=1

(1− αlkx) mod x2v

=
v∑

j=1

Ejα
lj

2v−1∑
i=1

(αljx)i
v∏

k=1

(1− αlkx) mod x2v

=
v∑

j=1

Ejα
lj (1− αljx)

2v−1∑
i=1

(αljx)i
v∏

k=1
k ̸=j

(1− αlkx) mod x2v

=
v∑

j=1

Ejα
lj (1− αljx) 1−(αljx)2v

1−(αljx)

v∏
k=1
k ̸=j

(1− αlkx) mod x2v

=
v∑

j=1

Ejα
lj (1− (αljx)2v)

v∏
k=1
k ̸=j

(1− αlkx) mod x2v

= (
v∑

j=1

Ejα
lj − x2v

v∑
j=1

Ejα
2lj)

v∏
k=1
k ̸=j

(1− αlkx) mod x2v

=
v∑

j=1

Ejα
lj

v∏
k=1
k ̸=j

(1− αlkx).

23

Evaluation of the magnitude polynomial at x = α−lj gives

Ω(α−lj) =

v∑
j=1

Ejα
lj

v∏
k=1
k ̸=j

(1− αlkα−lj) = Ejα
lj

v∏
k=1
k ̸=j

(1− αlk−lj).

Furthermore, the derivative of the error locator polynomial is calculated using
the generalized product rule:

Λ′(x) =

v∑
j=1

−αlj

v∏
k=1
k ̸=j

(1− αlkx).

The evaluation of the derivative at x = α−lj gives

Λ′(α−lj) =

v∑
j=1

−αlj

v∏
k=1
k ̸=j

(1− αlkα−lj) = −αlj

v∏
k=1
k ̸=j

(1− αlk−lj).

The evaluated polynomials yield the final expression for computing the error
magnitude Ej at error location lj ∈ [0, n− 1]

−Ω(α−lj)

Λ′(α−lj)
=

−Ejα
lj

v∏
k=1
k ̸=j

(1− αlk−lj)

−αlj
v∏

k=1
k ̸=j

(1− αlk−lj)
= Ej .

As previously described in Section 5.2, the final codeword is computed by match-
ing ut the magnitude of each error with its location and subtracting that error
vector from the received codeword.

5.3.3 Euclidean Decoding Example

In this section, the previously demonstrated decoding example will be performed
using the Euclidean decoder instead. Once again, the received vector contains
two errors, so that r = (6, 1, 3, 9, 7, 1, 2) and the order of the Galois field equal
p = 11. From the calculations in the previous section, using the direct method,
the syndromes are given by S = (1, 4, 7, 9). The syndrome polynomial is there-
fore given by

S(x) = 9x3 + 7x2 + 4x+ 1.

Note that for a Reed-Solomon code with n = 7 and k = 3, at most v = 2 errors
can be corrected. Thus, the key equation is given by

Ω(x) = S(x)Λ(x) mod x4.

24

To solve for Λ(x) and Ω(x), the Extended Euclidean algorithm is applied in two
steps by iteratively updating the parameter polynomials as follows

i qi(x) ri(x) ti(x)

0 x4 0

1 9x3 + 7x2 + 4x+ 1 1

2 5x+ 1 6x2 + 2x+ 10 6x+ 10

3 7x+ 8 6x+ 9 2x2 + 3x+ 9

The two polynomials r3(x) and t3(x) are further normalized by dividing them
by the constant term in t3(x), yielding the final error locator polynomial and
error magnitude polynomial

Λ(x) = t3(x)
t3(0)

= 2x2+3x+9
9 = 10x2 + 4x+ 1

Ω(x) = r3(x)
t3(0)

= 6x+9
9 = 8x+ 1.

The roots to the error locator polynomial Λ(x) and the corresponding error
locations are once again computed with brute force, resulting in l = (l1, l2) =
(1, 4). Additionally, the derivative of the error locator polynomial is given by

Λ′(x) = 9x+ 4.

Lastly, Forney’s algorithm is applied for the two error locations (l1, l2) = (1, 4),
yielding the two error magnitudes

E1 = −Ω(α−l1)
Λ′(α−l1)

= −Ω(2−1)
Λ′(2−1) = 6

3 = 2

E2 = −Ω(α−l2)
Λ′(α−l2)

= −Ω(2−4)
Λ′(2−4) = 4

8 = 6.

Subtracting the error magnitudes E = (E1, E2) = (2, 6) from the received
codeword at the error locations l = (l1, l2) = (1, 4) leaves the correct codeword
s = (6, 10, 3, 9, 1, 1, 2).

6 Python Implementation

To compare the two decoding methods described in the previous section, both
the encoding and decoding processes have been implemented in Python. Since

25

the operations are performed within a specific Galois field, the SymPy library
has been used to support symbolic computations. Specifically, all polynomials
are constructed using the SymPy.Poly function, which can create a polynomial
within a certain domain, such as a Galois field. The complete program can be
found in the appendix.

6.1 Method

The program consists of three main functions. One for encoding a given message
and two for the different decoding methods. The arguments used in these func-
tions, which define the environment, include the block length n, the message
length k, the order of the Galois field P , where P = pm, with a corresponding
generator α and finally, the message or the received codeword, represented as a
vector of coefficients.

The encoding function first constructs the generator and message polynomi-
als within the Galois field GF (P). These polynomials are then used to compute
the coefficients of the codeword, which is returned as the output. To simu-
late transmission errors, an error vector is subsequently added to the codeword.
Both methods for decoding the received codeword uses the same two functions
to find the correct Vandermonde matrix as well as computing the syndromes.
The remaining decoding is however different for the two methods.

When decoding the codeword using the Direct method, the first step is com-
puting the coefficients Λi for the error locator polynomial. This is done by con-
structing the syndrome matrix and multiplying its inverse with the syndrome
vector. However, the inverse only exists for the matrix created if the correct
number of errors or fewer is assumed. Since the number of errors is unknown
when a codeword is received, the function assumes that one error has occurred
and increases this assumption by one until the syndrome matrix is no longer
invertible. The last invertible solution contains the correct number of errors.

Once the coefficients have been computed, the roots of the error location poly-
nomial are calculated, and the corresponding error locations are found using
brute force. The final step before computing the original codeword is to de-
termine the error magnitudes. Since there exists a unique solution, the matrix
containing the error locations is invertible. Its inverse is multiplied by the first
v syndromes, yielding the error magnitudes Ej .

The Euclidean method consists of two main functions: one using the Extended
Euclidean algorithm and one using Forney’s algorithm. To solve the Key Equa-
tion, the Extended Euclidean algorithm is applied exactly as described in Section
5.3.1. The two polynomials ri(x) and ti(x) are updated according to their def-
initions until the degree of ri(x) equals the maximum number of errors. Note
that this method does not depend on the actual number of errors that have
occurred. The two polynomials Λ(x) and Ω(x) are then computed by dividing

26

ri(x) and ti(x) by ti(0). The roots of the error location polynomial are com-
puted using the same function as in the Direct method. For each error location,
Forney’s algorithm is applied to find the corresponding magnitude.

To compare the efficiency of the two methods, the time required for each de-
coding function to compute the correct message is measured and analyzed. The
values of the four main variables, n, k, and P , have been varied to assess their
impact on the algorithm’s efficiency. By systematically adjusting these pa-
rameters, an evaluation of the computational performance of both methods is
conducted. The results provide insight into the trade-offs between limitations
and speed, helping to determine which method is more suitable for different
decoding scenarios.

6.2 Results

The first variables that was examined was the order P of the Galois field and
the choice of the generator α. Since the block length n and message length k
need to be the same for a fair evaluation, they have been set to n = 7 and
k = 3, and the received message includes two errors. Five different Galois fields
have been examined, and each one has been tested with the smallest and largest
possible generators, as well as the median of all possible generators. The results
are shown in Table 1.

Table 1: Efficiency comparison of the Direct and Euclidean method for n = 7
and k = 3, varying P and α.

α P = 11 P = 47 P = 211 P = 853 P = 3413

Minimum
Direct 0.0027 0.0031 0.0068 0.022 0.075

Euclidean 0.0028 0.0039 0.0071 0.021 0.075

Median
Direct 0.0022 0.0039 0.0069 0.022 0.076

Euclidean 0.0029 0.0039 0.0071 0.020 0.075

Maximum
Direct 0.0026 0.0038 0.0071 0.022 0.074

Euclidean 0.0028 0.0041 00.0075 0.021 0.074

From the results shown in Table 1, it is evident that the choice of α does not
have any significant impact on the efficiency of either method. Nor is the effi-
ciency between the two methods significantly different. It is further noted that
the order of the Galois field has some impact on the efficiency, meaning that
larger numbers yield longer computation times.

27

Secondly, the effect of the maximum number of errors vmax, as well as the actual
number of errors v, was examined. The block length was chosen as n = 255,
since it is a very common block length when using Reed-Solomon codes. For
example, RS(255, 223) was the version used on the Voyager and Galileo mis-
sions by NASA [1]. The message length k was varied to change the maximum
number of errors vmax. Note from the results shown in Table 2 that the actual
number of errors cannot exceed the maximum number of errors.

Table 2: Efficiency comparison of the Direct and Euclidean method for n = 255,
P = 257 and α = 3, varying vmax and v.

v = 2 v = 8 v = 16 v = 32 v = 64 v = 126

vmax = 2
Direct 0.026

Euclidean 0.025

vmax = 8
Direct 0.066 0.086

Euclidean 0.069 0.086

vmax = 16
Direct 0.16 0.24 0.38

Euclidean 0.15 0.29 0.19

vmax = 32
Direct 0.23 0.26 0.40 1.75

Euclidean 0.24 0.27 0.33 0.41

vmax = 64
Direct 0.44 0.47 0.61 2.07 19.5

Euclidean 0.46 0.51 0.62 0.77 1.02

vmax = 126
Direct 0.86 0.88 1.02 2.47 20.8 261.7

Euclidean 0.91 1.03 1.19 1.48 2.04 2.93

The results shown in Table 2 and Figure 1 reveal a significant difference between
the two methods as the number of errors increases. It is clear that increasing
both the maximum number of errors and the actual number of errors leads to
a decrease in efficiency. However, the effect varies somewhat between the two
methods. For the Direct method, the number of actual errors appears to be the
primary factor that increases computation time, with the increase following an

28

Figure 1: Efficiency comparison of Direct and Euclidean decoding for n = 255,
k = 3, P = 257 and α = 3. Computing time for v errors measured in second s.

exponential rather than a linear pattern as shown in Figure 1. When the number
of actual errors is small, both methods exhibit similar behavior in terms of how
efficiency decreases as the maximum number of errors increases. Overall, the
Euclidean method proves to be more reliable when dealing with larger numbers
of errors.

6.3 Discussion

As seen in the previous section, there are some differences in efficiency between
the two methods. During the development of the program, multiple versions
were created, and numerous improvements and modifications have influenced
efficiency. Of course, it is possible that efficiency partially depends on the pro-
gram itself and how it is structured. However, the most significant difference
between the two methods is that the computation of the error location poly-
nomial depends on the number of errors that have occurred, which is initially
unknown. This uncertainty leads to a trial-and-error process to determine the
correct values, resulting in increased computation time.

The most noticeable difference between the two methods concerns the Direct
method’s handling of a large number of errors. Upon closer inspection of the
program, it became clear that a specific function significantly increases the com-
putation time, the function responsible for computing the λ values. This occurs
because the size of the matrix depends on the number of errors that have oc-
curred. In the initial iterations of the program, the matrix was constructed
under the assumption that the maximum possible number of errors had oc-
curred. This resulted in very large matrices that gradually decreased in size
until an invertible one was found, yielding the correct number of errors. As
expected, computing the inverses of multiple large matrices is extremely time-

29

consuming. To improve efficiency, the initial matrix was instead constructed
under the assumption that only one error had occurred, incrementally increas-
ing until the correct solution was found. This approach significantly improved
computational efficiency. However, due to the Direct method’s dependence on
an unknown number of errors, some unnecessary computation remains unavoid-
able.

Regarding the decrease in efficiency as the maximum number of errors increases,
this can be explained by the fact that a significant portion of the computation
in both methods depends on this value. A larger v consequently results in more
syndromes and higher-degree polynomials, leading to increased computational
complexity.

Another conclusion worth noting with respect to the results shown in Table
1 is that the optimal choice for the order of the Galois field should be as small
as possible. Commonly, P and n are chosen such that n = P − 1 or n = P ,
which represents the maximum value for n. As confirmed by Table 1, this is
the most reasonable choice from an efficiency perspective. In real-world applica-
tions—where the underlying technology utilizing Reed-Solomon codes is based
on binary systems—the most common choice of field is GF (28). This corre-
sponds directly to an 8-bit byte, making it effective for integration with various
digital systems [1]. A widely used configuration within this field, particularly
at NASA, is RS(255, 223). Although other choices for m are also common, the
base of the field is almost always binary, to ensure compatibility with existing
systems.

A somewhat surprising result is the striking similarity between the two meth-
ods, particularly in Table 1, despite their fundamentally different computational
approaches. This presents a potential area for further investigation to better
understand the underlying algorithms. Given that the Euclidean method for de-
coding Reed-Solomon codes is a more recently developed approach, its overall
reliability, as demonstrated in the results, appears reasonable.

6.3.1 Challenges and Limitations

The biggest challenge in implementing and timing the two methods, was de-
termining how much of the computation time depends on the implementation
itself versus the actual decoding method. Therefore, a significant part of the de-
velopment process involved optimizing the implementation to ensure maximum
efficiency given the circumstances. In particular, working with symbolic math-
ematics is generally much more time-consuming than working with numerical
computations. However, this is a crucial aspect of error-correcting codes that
must be included in the program as well.

An additional challenge when interpreting the results has been the difficulty
in finding research that shows similar outcomes. After an extensive search for

30

corroborative information, it appears to be virtually nonexistent. This may be
a matter of time, as the original development of these methods occurred half a
century ago. Since then, numerous new versions of the Euclidean decoder have
been created to enhance efficiency. However, the Direct method may no longer
be discussed because it is not applicable in real-world contexts due to its lack
of scalability.

6.3.2 Use of Generative AI

When writing the program, the generative AI application ChatGPT has been
used in two main areas. Primarily, AI has been utilized to quickly find and
understand appropriate Python functions, especially within the SymPy library,
such as the Poly or zip functions.

Furthermore, an attempt was made to identify the most inefficient computa-
tions within the program. A few useful suggestions provided by ChatGPT were
implemented to improve the efficiency of some loops. However, most of the
optimizations were achieved through manual and systematic analysis of compu-
tation time, followed by adjustments to the algorithm’s implementation.

Lastly, generative AI was used to find the correct formatting of various mathe-
matical expressions, structures, and symbols in LATEX.

6.4 Conclusion

The comparison of the Direct and Euclidean decoding methods for Reed-Solomon
codes reveals clear differences in computational efficiency, particularly as the
number of errors increases. While both methods successfully decode messages,
the Euclidean method proves to be more reliable and scalable when handling
larger error counts due to its structured approach to solving the key equation.
The Direct method, on the other hand, suffers from an inherent inefficiency
caused by its dependence on an unknown number of errors, leading to a costly
trial-and-error process.

The key difference that distinguishes the efficiency of the two methods is that
the Euclidean method computes the basis for both the location and magnitude
of the error in a single calculation, with lower computational complexity. By
using the Extended Euclidean Algorithm, most of the computations are per-
formed independently of the number of errors, which avoids uncertainty and
repetition. This approach to determining the unknown error values bypasses
the time-consuming process of solving linear equation systems, resulting in a
more consistent computation time. In this method, the number of errors only
affects the final computation step of Forney’s algorithm. Regardless of how a
linear system is solved, it is generally more time-consuming than the simple
repeated division used in the Euclidean method. Specifically, repeatedly solv-
ing linear systems due to uncertainty regarding the number of errors is highly

31

inefficient.

These findings emphasize the importance of algorithm selection in error cor-
rection applications. While the Direct method may still be useful in scenarios
with minimal errors, the Euclidean method is the preferable choice for larger
and more complex cases. Ultimately, the results demonstrates that while both
methods have their merits, the Euclidean method is better suited for practical
applications requiring efficient and scalable error correction.

7 Generative AI disclosure

This paper was written with the assistance of generative AI, specifically the free
version of OpenAI’s ChatGPT-4. AI was used for formatting in LATEX, correct-
ing grammar, sentence structure and improving the Python implementation. A
detailed description of the specific usage of generative AI can be found in Sec-
tion 6.3.2. All AI-generated content has been reviewed and edited as needed,
and I take full responsibility for the complete content of this paper.

32

References

[1] Irving S. Reed and Xuemin Chen, Error-Control Coding for Data Networks,
Springer Science+Business Media, 1999.

[2] Jet Propulsion Laboratory, 208 Telemetry Data Decoding (DSN Docu-
ment 810-005, Rev. C), NASA, 2025. https://deepspace.jpl.nasa.gov/
dsndocs/810-005/208/208C.pdf (Accessed 2025-04-28).

[3] NASA, ISS Daily Summary Report – 2/06/2019, NASA, 2019.
https://www.nasa.gov/blogs/stationreport/2019/02/06/

iss-daily-summary-report-2-06-2019/ (Accessed 2025-04-18).

[4] R. E. Blahut, Algebraic Codes for Data Transmission, Cambridge University
Press, 2003.

[5] Wikipedia contributors, “Forney algorithm,” Wikipedia, The Free Encyclo-
pedia, March 15, 2025. https://en.wikipedia.org/w/index.php?title=
Forney_algorithm&oldid=1280684112 (Accessed 2025-05-10).

[6] William A. Geisel, Tutorial on Reed-Solomon Error Correction Coding
(NASA Technical Memorandum 102162), NASA, 1990. https://ntrs.

nasa.gov/api/citations/19900019023/downloads/19900019023.pdf

(Accessed 2025-04-18).

33

A Appendix

import sympy as sp

import time

def generator(n):

""" Function finds every generator of a finite field of

order n."""

generators = []

for gen in range(2,n):

x = set()

for j in range(1, n):

x.add(pow(gen , j) % n)

if len(x) == n-1:

generators.append(gen)

return generators

def finding_error_locations(roots , a, mod):

""" Function returns the error locations l_i from list of

polynomial roots a^(-l_i)."""

positions = []

for i in roots:

for l in range(mod):

if pow(pow(a, l, mod), -1, mod) == i:

positions.append(l)

break

return positions

def inv_mod(A, mod):

""" Function returns the inverse of a matrix A if it

exists."""

matrix = sp.Matrix(A)

try:

return matrix.inv_mod(mod)

except ValueError:

return None

def vandermonde(n, t, a, mod):

""" Function returns the txn vandermonde matrix for a

given alpha a."""

vandermonde = sp.zeros(t, n)

34

for i in range(t):

for j in range(n):

vandermonde[i, j] = pow(a, (i+1) * j, mod)

return vandermonde

def syndrome(vander , r, mod):

""" Functions returns t syndromes by calculating V*r for

a received vector r."""

rec = sp.Matrix(r)

return vander*rec % mod

def lam(s, mod):

""" Function constructs the syndrome matrix and vector.

The lambda values are returned by multiplying the

inverse (if it exists) of the matrix with the vector.

If the inverse does not exist , the last successful

result is returned."""

v = 1

if s[0] == 0:

v += 1

lam = None

while v <= len(s) // 2:

s_matrix = sp.Matrix ([[s[i + j] for j in range(v)]

for i in range(v)])

s_vector = sp.Matrix([-s[v + i] for i in range(v)])

try:

inv_S = s_matrix.inv_mod(mod)

lam = (inv_S * s_vector) % mod

except ValueError:

return lam

v += 1

return lam

def error_location(lam , mod , a):

""" Function creates the error location polynomial (lam_p

) from the lambda values (lam) and returns the error

location , corresponding to the roots of the

polynomial."""

x = sp.symbols(’x’)

lam_p = sp.Poly((sum(lam.tolist (), []) + [1]), x, domain

=sp.GF(mod))

roots = [x for x in range(mod) if lam_p(x) % mod == 0]

positions = finding_error_locations(roots , a, mod)

35

return positions

def error_magnitude(S, error_loc , mod , a):

""" Function creates error location matrix given the

error locations and alpha a. Function returns the

error magnitudes by multiplying inverse of error

location matrix with the syndrome vector (length

equals number of errors)."""

l = len(error_loc)

l_matrix = sp.zeros(l, l)

for j in range(l):

base = pow(a, error_loc[j])

l_matrix[0, j] = base

for i in range(1, l):

l_matrix[i, j] = l_matrix[i - 1, j] * base

mag = inv_mod(l_matrix , mod) * sp.Matrix(S[0:l]) % mod

return mag

def error_correction(received , locations , magnitudes):

""" Function matches the error locations with their

magnitude and creates error vector that is subtracted

from the received vector to return the correct

message."""

error_vector = sp.zeros(len(received), 1)

for i, mag in zip(locations , magnitudes):

error_vector[i] = mag

correct_message = [a - b for a, b in zip(received ,

error_vector)]

return correct_message

def euklides(S, mod):

""" Function applies the extended euklides algorithm to

solve the key equation and returns the error location

polynomial (lamba) and the error magnitude

polynomial (omega)."""

x = sp.symbols(’x’)

if len(S) % 2 != 0:

S = S[:-1]

t = len(S)

r0 = sp.Poly(x ** t, x, domain=sp.GF(mod))

r1 = sp.Poly(S[::-1], x, domain=sp.GF(mod))

t0 = sp.Poly(0, x, domain=sp.GF(mod))

t1 = sp.Poly(1, x, domain=sp.GF(mod))

while sp.degree(r1) >= t/2:

q, r = r0.div(r1)

36

r0 , r1 = r1 , r

t0 , t1 = t1 , t0 - q*t1

omega = r1.div(t1.eval (0))[0]

lamba = t1.div(t1.eval (0))[0]

return omega , lamba

def error_forney(omega , lamba , mod , a):

""" Function computes the roots of the error location

polynomial and finds the corresponding error

locations and their magnitude using f o r n e y s formula

."""

x = sp.symbols(’x’)

roots_lamba = [x for x in range(mod) if lamba(x) % mod

== 0]

lamba_diff = lamba.diff(x)

pos = finding_error_locations(roots_lamba , a, mod)

mag = []

for i in range(len(roots_lamba)):

x = roots_lamba[i]

mag.append(-omega(x)*pow(lamba_diff(x), -1, mod) %

mod)

return pos , mag

def encode(m, n, k, mod , a):

""" Function returns the codeword (length n) of a message

(length k) within a galois filed of order m with

generator a."""

t = n-k

x = sp.symbols(’x’)

roots = [pow(a, i, mod) for i in range(1, t + 1)]

gen = sp.expand(sp.prod(x - r for r in roots))

gen = sp.Poly(gen , x, domain=sp.GF(mod))

x_t = sp.Poly(x ** t, x, domain=sp.GF(mod))

px_t = x_t * sp.Poly(m[::-1], x, domain=sp.GF(mod))

_, rem = px_t.div(gen)

message_sent = [(c % mod) for c in (px_t - rem).

all_coeffs ()[:: -1]]

return message_sent

def decode_direct(r, n, k, mod , a):

""" Function decodes a received codeword using the direct

method and returns the correct message """

start_time1 = time.time()

V = vandermonde(n, n-k, a, mod)

37

S = syndrome(V, r, mod)

if all(s == 0 for row in S.tolist () for s in row):

print("Received␣message", r[(n - k):], "is␣correct!"

)

return None

L = lam(S, mod)

error_loc = error_location(L, mod , a)

if not error_loc:

print("Received␣message␣has␣more␣than", (n-k)//2, "

errors␣and␣cannot␣be␣corrected.")

return None

error_mag = error_magnitude(S, error_loc , mod , a)

correct_message = error_correction(r, error_loc ,

error_mag)[(n - k):]

print("The␣corrected␣message␣is", correct_message , "!")

timeer = time.time() - start_time1

print(f"Time␣algorithm:␣{timeer :.3}")

print("The␣corrected␣message␣is:")

return correct_message

def decode_euklides(r, n, k, mod , a):

""" Function decodes a received codeword using the

Euclidean method and returns the correct message."""

start_time = time.time()

V = vandermonde(n, n-k, a, mod)

S = syndrome(V, r, mod)

if all(s == 0 for row in S.tolist () for s in row):

print("Received␣message", r[(n - k):], "is␣correct!"

)

return None

E = euklides(S, mod)

F = error_forney(E[0], E[1], mod , a)

if not F[0]:

print("Received␣message␣has␣more␣than", (n - k) //

2, "errors␣and␣cannot␣be␣corrected.")

return None

correct_message = error_correction(r, F[0], F[1])[(n - k

):]

print("The␣corrected␣message␣is", correct_message , "!")

timeer = time.time() - start_time

print(f"Time␣algorithm:␣{timeer :.3}")

print("The␣corrected␣message␣is:")

return correct_message

38

Example usage:

n = 7

k = 3

P = 11

a = 2

m = [1, 1, 2]

error = [0, 2, 0, 0, 6, 0, 0]

print("Codeword:", encode(m, n, k, P, a))

r = [(a + b) % P for a, b in zip(encode(m, n, k, P, a),

error)]

print("Received:", r)

print("\n---␣Direct␣method␣---")

print(decode_direct(r, n, k, P, a))

print("\n---␣Euclidean␣method␣---")

print(decode_euklides(r, n, k, P, a))

Output:

39

