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Abstract

This thesis explores the foundational framework of constructive analysis,
replacing classical nonconstructive principles such as The Law of Excluded
Middle (LEM) with explicit constructive methods that culminate in a proof
of the Mean Value Theorem. By strengthening notions of continuity and
carefully refining foundational concepts, it shows how classical results can be
reestablished by discarding assumptions that fail to produce explicit construc-
tive examples.



Sammanfattning

Denna uppsats utforskar grunden av konstruktiv analys genom att
ersätta icke-konstruktiva principer så som Lagen om det uteslutna tredje
med tydliga, konstruktiva metoder som bygger upp till att bevisa Medelvärdessat-
sen. Genom att förstärka begrepp om kontinuitet och förfina specifika
grundläggande koncept, visar vi hur klassiska resultat inom matematisk
analys kan bli återetablerade genom att undvika antaganden som inte
resulterar i specifika konstruktioner.
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1 Introduction
Constructivism is a branch of the foundations of mathematics that imposes stricter
criteria on methods of proof and notions of existence compared to classical mathe-
matics. While classical mathematics accepts that an object can be proven to exist
if one can prove its nonexistence is impossible, constructive mathematics challenges
the validity of those types of methods. Constructively, that interpretation of exis-
tence does not hold as constructive mathematics requires that existence claims be
supported by explicit constructions. In other words, to assert that an object exists,
one must provide a concrete method or algorithm to construct it.

More formally, constructive mathematics does not accept the Law of Excluded Mid-
dle or other principles that imply it, such as the Axiom of Choice.

Definition 1.1 (Law of Excluded Middle). Any statement is either true or false.

This is very obvious in classical mathematics, that there is no middle ground between
true and false. However, in constructive mathematics, the absence of a proof for
either the truth or falsity of a statement means we cannot assert either which is the
reality of many unsolved problems in present day.

Lets take a look at an example of a nonconstructive proof to the following proposi-
tion:

Proposition 1.2. There exist irrational numbers a and b such that ab is rational.

Nonconstructive proof. Take the number
√

2
√

2 and by the law of excluded middle,
it is either rational or irrational.

If it is rational, then a = b =
√

2 and if it is not, let a =
√

2
√

2 and b =
√

2.

Then

(
√

2
√

2)
√

2 =
√

22 = 2,

which is a rational number and thus concludes the proof.

We will proceed to show how Proposition 1.2 is proven constructively.

Constructive proof. Take the number
√

2log2 9, then

2 1
2 log2 9 = 2log2 9

1
2 = 9 1

2 = ±3,

which is rational.



In the second proof, we avoided the Law of Excluded Middle by explicitly construct-
ing the irrational numbers a and b, thereby satisfying the constructive criteria. Of
course, the irrationality of log2 9 needs to be established, but that is not harder than
showing the irrationality of

√
2.

Our goal is to explore the theory of real analysis constructively, culminating in a
constructive proof of the Mean Value Theorem, following the constructive theory
developed by Errett Bishop [BB85]. Along the way, we will highlight the differences
between classical and constructive approaches, particularly focusing on how certain
classical results must be reformulated or proven differently to meet constructive
standards. We will also examine how some classical theorems fail constructively,
and how the constructive framework addresses these issues.

In this thesis, we accept all standard axioms and rules for integers and rational
numbers as in classical mathematics, as classical and constructive mathematics are
provable in the same way on finite discrete objects.



2 Brouwerian Counterexamples

2.1 A brief history
L.E.J. Brouwer, the founder of intuitionism criticised many classical theorems that
relied on nonconstructive proofs, especially those that implied solutions to unsolved
problems. He argued that such theorems could not be constructively valid because
if they were, we could use them to solve these open problems. Brouwer thus devel-
oped a method that demonstrates this, the Brouwerian counterexample. One of his
earliest examples of an unsolved problem that developed into such a counterexample
was the question “is there in the decimal expansion of π a decimal that in the long
run occurs more often than others?” [AS15]. In Brouwer’s time, and still to this
day, we do not know the truth to this statement. Therefore we can’t assume the
Law of Excluded Middle hold for it and is thus deemed nonconstructive.

Brouwer faced criticism his rejection of the Law of Excluded Middle, particularily
from David Hilbert [Dal13]. Hilbert called out the intuitionistic limitations on math-
ematical concepts like irrational numbers and set theory. Brouwer, in turn, argued
that LEM was an unjustified generalisation from finite systems to all mathematics,
emphasising a constructivist and intuitionist perspective.

The foundational discussion soon became a conflict that was a defining moment in
the history of mathematics, divided into two camps between Brouwer and Hilbert,
with the latter having better talent at inspiring a measure of loyalty. Despite this
setback for Brouwer, his ideas laid the groundwork for future developments in con-
structive mathematics and the philosophy of mathematics.

Errett Bishop revived the interest in constructive mathematics that had laid virtually
stagnant by the mid-1960s with his publication Foundations of Constructive Analysis
[Bis67]. He systematically developed the method of Brouwerian Counterexamples
to further show a statement is nonconstructive.

For more historical context about Brouwer’s influence on constructivism and his
early development of Brouwerian Counterexamples, his biography L.E.J. Brouwer
– Topologist, Intuitionist, Philosopher by Dirk van Dalen [Dal13] and the arti-
cle Brouwerian Counterexamples by Mark Mandelkern [Man89] are warmly recom-
mended .

2.2 Omniscience principles
Bishop systematically formulated Brouwer’s nonconstructive examples into several
principles of omniscience, two of which we will list in this thesis. A mathematical
proof that is shown to entail one of the principles of omniscience is deemed non-
constructive and is called a Brouwerian counterexample. It is not a counterexample
in the true sense of the word, but rather a demonstration that a proposition is not
constructive.



The presentation of omniscience principles and the treatment of Brouwerian coun-
terexamples in this section is influenced by authors Bridges and Vîţă with their
book Techniques of Constructive Analysis [BV06] and the first chapters of Varieties
of Constructive Mathematics by Bridges and Richman [BR87].

Definition 2.1 (Limited principle of omniscience). If (an) is binary sequence of
integers, then either an = 0 for all n or else there exists n such that an = 1.

The limited principle of omniscience is a special case of the law of excluded middle
and thus nonconstructive. A consequence of LPO is the following principle, the
lesser limited principle of omniscience.

Definition 2.2 (Lesser limited principle of omniscience). For a binary sequence
(an) with at most one term equal to 1 (in the sense aman = 0 for all m ̸= n), either
a2n = 0 or a2n+1 = 0 for all n.

In other words, we can decide whether all even-indexed terms are zero or all odd-
indexed terms are zero.

2.3 A Brouwerian counterexample
Proposition 2.3. The statement

x ≥ 0 or x ≤ 0 for all x ∈ R

implies LLPO.

Proof. Consider a binary sequence (an) that has at most one term equal to one, and
use it to define the binary expansion of a real number

x =
∞∑

n=1
(−1)nan2−n. (2.3.1)

If x = 0 then (an)=0. If x ̸= 0, then there is exactly one n such that an = 1 and

x =
∞∑

n=1
(−1)n2−n = ±2−n (2.3.2)

depending on whether n is even or odd.

If x is positive, then all odd indexes are zero and if x is negative, then all even
indexes are zero. Therefore, proposition 2.3 implies LLPO.



Constructive real analysis

3 The Real number system
For the purposes of this thesis, we will not delve into the full construction of the real
numbers. Instead, we will present only the definitions, lemmas, and propositions
that are directly pertinent to proving Lemma 3.9, which plays a crucial role in our
later proofs.

We construct the real numbers using sequences in QZ+ , the set of all sequences of
rational numbers indexed by the positive integers.

Definition 3.1. A sequence x ≡ (xn) of rational numbers is called a real number if
it is regular, that is, it satisfies

|xm − xn| ≤ m−1 + n−1 for all positive integers m and n. (3.1.1)

For the following definitions and lemmas, all indices m, n, and N are positive inte-
gers.

Definition 3.2. A real number x ≡ (xn) is positive if

xn > n−1 for some n. (3.2.1)

Definition 3.3. A real number x ≡ (xn) is nonnegative if

xn ≥ −n−1 for all n. (3.3.1)

Since the conditions in these definitions for real numbers are local and pointwise, we
will introduce two lemmas that offer uniform conditions. This approach will make
it easier to use them in constructing proofs.

Lemma 3.4. A real number x is positive if and only if there exists a positive integer
N such that

xm ≥ N−1 for all m ≥ N . (3.4.1)

Proof. (⇒) Assume that x is positive. Then there exists a positive integer n such
that xn > n−1.

Let us choose N to be any sufficiently small positive integer satisfying

2N−1 ≤ xn − n−1. (3.4.2)



For all m ≥ N , then we get

|xm − xn| ≤ xm + xn ≤ m−1 + n−1 ≤ N−1 + n−1 (3.4.3)
xm ≥ xn − m−1 − n−1 ≥ xn − N−1 − n−1 (3.4.4)

xm ≥ xn − m−1 − n−1 ≥ xn − N−1 − n−1 ≥ N−1. (3.4.5)

Equation (3.4.3) is due to the regularity condition (3.1.1) and reversing the inequal-
ities gives (3.4.4). Finally, we combine this with xn − n−1 ≥ 2N−1 that shows
xm ≥ N−1 for all m ≥ N .

(⇐) Conversely, if xm ≥ N−1 for all m ≥ N , then xN+1 ≥ N−1 > (N + 1)−1, so x is
positive.

Conversely, assume that xm ≥ N−1 for all m ≥ N . Choose n = N +1. Then n > N ,
so n−1 < N−1. From our assumption,

xn ≥ N−1 > n−1.

Therefore, by definition 3.2, x is positive.

Lemma 3.5. A real number x is nonnegative if and only if for every positive integer
n, there exists a positive integer Nn such that

xm ≥ −n−1 for all m ≥ Nn. (3.5.1)

Proof. (⇒) Assume that x is nonnegative. Then, by Definition 3.3, for all n,

xm ≥ −m−1 ≥ −n−1

where m ≥ n.

By letting n ≡ Nn, equation (3.5.1) is valid.

(⇐) Conversely, we begin by assuming (3.5.1) holds with n ≡ Nn and let k, m, n ∈
Z+.

Expand xk ≥ xm−|xm−xk| using the regularity condition and the triangle inequality
to get

xk ≥ xm − |xm − xk| ≥ −n−1 − m−1 − k−1.

For the following proposition, R∗ represents either R+ or R0+, where R+ is the set
of all positive real numbers and R0+ is the set of all nonnegative real numbers.

Proposition 3.6. If x and y are real numbers, then

i.) x + y, xy ∈ R∗ whenever x, y ∈ R∗

ii.) x + y ∈ R0+ whenever x ∈ R0+ and y ∈ R∗.



Proof.

i.) For sequences of rational numbers (xn) and (yn), their term-wise sum (xn + yn)
is also a sequence of rational numbers. Furthermore, if (xn) and (yn) are regular
sequences, then (xn + yn) is also regular since the regularity condition is preserved
under addition:

|(xm+ym)−(xn+yn)| = |(xm−xn)+(ym−yn)| ≤ |xm−xn|+|ym−yn| ≤ 2(m−1+n−1).

Hence, for real numbers x ≡ (xn) and x ≡ (yn), their sum is defined as x + y ≡
(xn + yn).

ii.) Let x ∈ R+ and y ∈ R0+.

By Lemma 3.4, there exists a positive integer N such that xm ≥ N−1 for all m ≥ N .

Since y is nonnegative, for the positive integer n > 2N , Lemma 3.5 guarantees
ym ≥ −n−1 for all m ≥ Nn. Remember that −n−1 > (2N) follows from n > 2N .

Set K = max{N, Nn}. Then, for all m ≥ K, the sum xm + ym defines as

xm + ym ≥ N−1 − n−1 > N−1 − (2N)−1 = (2N)−1. (3.6.1)

Since xm + ym > (2N)−1 for some integer 2N , the sum x + y defines as a positive
real number.

Definition 3.7. Let x and y be real numbers, then

x > y if x − y ∈ R+ (3.7.1)
x ≥ y if x − y ∈ R0+. (3.7.2)

Lemma 3.8. A real number x is nonnegative if and only if −x is not positive.

Proof. (⇒) Let x be a nonnegative. By definition, xn ≥ −n−1 for all n. Assum-
ing −x is positive, then −xn > −n−1 for all n. We know these inequalities are
contradictory since they are rationals.

(⇐) Now, let −x ̸> 0.

Trichotomy holds for rationals, so for each positive integer n, either −xn ≤ n−1 or
−xn > n−1. We can rule out the latter, since it implies that −x is positive which
contradicts with our assumption. Hence, −xn ≤ n−1 for all n.

For each positive integer n, we know −xn ≤ n−1 or −xn > n−1, as all these are
rational. We can rule out the latter, since it implies that −x is positive which
contradicts with our assumption. Hence, −xn ≤ n−1 for all n.

For each positive integer n, either −xn ≤ n−1 or −xn > n−1. We can rule out the
latter, since it implies that −x is positive which contradicts with our assumption.
Hence, −xn ≤ n−1 for all n.



Multiplying both sides of the inequality by −1, we get xn ≥ −n−1 for all n which
means that x ≥ 0. Thus x is nonnegative.

Lemma 3.9. Let x and y be real numbers. Then, x ≤ y if and only if x ̸> y.

Proof. By Lemma 3.8, apply to y − x.



4 Sequential convergence in the reals
Thanks to our construction of real numbers in the previous section, the concept of
sequential convergence in constructive analysis closely parallels its classical counter-
part. However, a careful examination of Cauchy sequences and their relationship to
the real numbers becomes crucial when we move on to defining and understanding
continuity of functions.

Definition 4.1. A sequence of real numbers (xn) converges to a real number x∗ if
for each positive integer k, there exists a positive integer Nk such that

|xn − x∗| ≤ k−1 for all n ≥ Nk. (4.1.1)

We call x∗ the limit of sequence (xn) which is unique. Then we say limn→∞(xn) = x0.
If xn > k for all n ≥ Nk, then limn→∞(xn) = ∞.

Definition 4.2 (Cauchy Sequence). A sequence of real numbers (xn) is a Cauchy
sequence if for each positive integer k, there exists a positive integer Mk such that

|xm − xn| ≤ k−1 for all n, m ≥ Mk. (4.2.1)

Theorem 4.3. A sequence of real numbers (xn) converges if and only if it is a
Cauchy sequence.

Proof. (⇒) Assume (xn) converges to x0 and let Mk ≡ N2k. Then, by eq. (4.1.1)

|xm −xn| ≤ |xm −x0|+ |xn −x0| ≤ (2k)−1 +(2k)−1 = k−1 for all m, n ≥ Mk. (4.3.1)

Therefore, (xn) is a Cauchy sequence.

(⇐) Conversely, assume (xn) is a Cauchy sequence and let Nk ≡ max{3k, M2k}.
Then, by eq. (4.2.1)

|xm − xn| ≤ 2k−1 for all n, m ≥ Mk. (4.3.2)

Next, let yk be the 2kth rational approximation of xNk
. For m ≥ n,

|ym − yn| ≤ |ym − xNm| + |xNm − xNn| + |xNn − yn|
≤ (2m−1) + (2m)−1 + (2n)−1 + (2n)−1 = m−1 + n−1.

Thus, y ≡ (yn) is a real number.

Lastly, we will prove that (xn) converges to y. To do so, consider n ≥ Nk, then
compute

|y − xn| ≤ |y − yn| + |yn − xNn| + |xNn − xn|
n−1 + (2n)−1 + (2k)−1 ≤ (3k)−1 + (6k)−1 + (2k)−1 = k−1.



5 Continuous functions

5.1 Continuity vs Uniform continuity
Definition 5.1 (Continuity). A real valued function f is continuous on a compact
interval I = [a, b] if for all c ∈ I and for an arbitrary ε > 0 there exists a δ > 0 such
that for all x ∈ I with |x − c| ≤ δ we have |f(x) − f(c)| ≤ ε.The value of δ can
depend either on c or ε.

c − δ c c + δ

f(c) − ε

f(c)

f(c) + ε

x

y

f(x)

Figure 1: Graphic representation of continuity

By removing the brackets of |x − c| ≤ δ, we get an interval Iδ = [c − δ, c + δ],
marked in green in Figure 1. Since |x − c| ≤ δ implies |f(x) − f(c)| ≤ ε, the interval
marked in blue on the y-axis, we can visualise a rectangle that represents an area of
continuity for a function f(x). For a continuous function, whenever an x-value is in
Iδ, the y-values have to be in the rectangle. Since δ can depend on both c and ε, the
size of the rectangle may be changed to have the function pass through the rectangle
in a way that does not pass through the top or bottom, thus keeping continuity.

Definition 5.2 (Uniform continuity). A real valued function f is continuous on a



compact interval I = [a, b] if for an arbitrary ε > 0 there exists a δ(ε) > 0 such that
for all x, y ∈ I with |x − y| ≤ δ(ε) we have |f(x) − f(y)| ≤ ε.

The key difference between the two definitions is that for uniform continuity, δ (mod-
ulus of continuity) can only depend on ε. Visually this means that one rectangle will
satisfy the definition for the entire function. In other words, the exact rectangle can
be drawn at any x-value, and the function will pass through it from one horizontal
side to the other.

The value δ is locally applicable in Definition 5.1 and globally applicable in Defini-
tion 5.2, so a uniformly continuous function is continuous but a continuous function
may not necessarily be uniformly continuous.

Constructive analysis exclusively uses the definition of uniform continuity because
the standard notion of continuity proves too weak for constructive purposes. Propo-
sition 5.8 shows the constructive power of uniform continuity.

5.2 Supremum and Infimum
Definition 5.3 (Supremum and infimum). A real number b is an upper bound of
a nonvoid set A, if x ≤ b for all x ∈ A. The real number b is a supremum of A, or
supA if it is also holds that for each ε > 0, there exists x ∈ A with x > b − ε.

A real number b is a lower bound of a nonvoid set A, if x ≥ b for all x ∈ A. The
real number b is an infimum of A, or infA if it is also applies that for each ε > 0,
there exists x ∈ A with x > b + ε.

Definition 5.4. A subset A of the real numbers R is located if for all x, y ∈ R with
x < y, either y is an upper bound for A or there exists a ∈ A such that x < a.

Definition 5.5. A real valued set A is called totally bounded if for each ε > 0 there
exists finitely many points y1, y2, . . . yn ∈ A such that for each x ∈ A at least one of
the numbers |x − y1|, |x − y2|, . . . , |x − yn| is less than ε.

Theorem 5.6 (Least-upper-bound principle). Let A be a real valued set bounded
above. Then A has a supremum if and only if A is located.

Proof. (⇒) Assuming sup A exists and x < y, then sup A < y or sup A > x.

In the case when x < sup A, the inequality also implies 0 < sup A − x and since
a ≤ sup A, we can find an a ∈ A such that

sup A − (sup A − x) < a,

and thus x < a. We have proven that the stated condition exists.



(⇐) Conversely, let’s assume the stated condition holds. Let a1 ∈ A and let b1 be
an upper bound of A with b1 > a. We construct sequences (an) in A and (bn) of
upper bounds of A recursively, such that for all positive integers n,

an ≤ an+1 < bn+1 ≤ bn (5.6.1)

bn+1 − an+1 ≤ 3
4(bn − an). (5.6.2)

Equation (5.6.2) ensures the distance between an and bn shrinks at a controlled rate,
allowing the sequences to converge.

Next, we compute two points between an and bn:

x = an + 1
4(bn − an) (5.6.3)

y = an + 3
4(bn − an). (5.6.4)

Noting that an < x < y < bn, we apply the stated condition to x and y.

Either y is an upper bound of A, we set bn+1 ≡ an + 3
4(bn − an) and an+1 ≡ an,

or there exists an a ∈ A with a > x. Then we set an+1 ≡ a and bn+1 ≡ b which
completes the recursive construction.

By Equation (5.6.1) and Equation (5.6.2), we get

0 ≤ bn − an ≤ 3
4(b1 − a1) (n ∈ Z+).

Constructing a modulus Mk where k = ((3
4)n−1(b1 − a1))−1 results in sequences (bn)

and (an) being Cauchy sequences that converge to common limit l with an ≤ l ≤ bn

for each positive integer n. Since every bn is an upper bound of A, then so is l.
Given ε > 0, there is also a certain n for an ∈ A so that l ≥ an > l − ε. Thus we
have proven l = sup A.

A notable difference between the classical and constructive least-upper-bound the-
orems is that the classical principle asserts that all real and nonvoid sets that are
bounded above have a supremum while the constructive theorem has to assert ad-
ditional properties to set A, which is that is has to be a located set.

Corollary 5.7 (Existence of supremum and infimum). If a real-valued set A is
totally bounded, then it has a supremum and an infimum.

Proof. Firstly, a totally bounded set A is constructed by letting x, y ∈ R with x < y,
and ε = 1

4(y − x). For each a ∈ A, choose points a1, . . . aN ∈ A such that at least
one of the numbers |a − a1|, . . . , |a − aN | is less than ε.



For some n such that 1 ≤ n ≤ N , define an as

an > max{a1, . . . , aN} − ε.

The properties of an is either x < an or an ≤ x. If x < an, the condition of
Theorem 5.6 is directly satisfied. If an ≤ x, then an < x + 2ε.

Consider any a ∈ A. By total boundedness, choose i with |a − ai| < ε. Since
ai < an + ε, then

a ≤ ai + |a − ai| < an + ε + ε = an + 2ε. (5.7.1)

Combining Equation (5.7.1) with an < x + 2ε the inequality becomes

a < an + 2ε < x + 4ε = y. (5.7.2)

Value y becomes an upper bound for A and according to the least-upper-bound-
property, sup A exists. It follows by symmetry that inf A exists as well.

Proposition 5.8. If f is a real valued continuous function on a compact interval
I = [a, b], then the supremum and infimum of f on I exists.

Proof. Let ε > 0 and choose points a = a0 ≤ a1 ≤ . . . an = b such that ai+1 − ai ≤
δ(ε) for 0 ≤ i ≤ n − 1. Since δ is a modulus of continuity for f then for each x ∈ I
with |x − ai| ≤ δ(ε), we have |f(x) − f(ai)| ≤ ε for some i.

The set {f(x) : x ∈ I} is totally bounded since ε is arbitrary. By Corollary 5.7,
sup f and inf f exist.

Although the standard definition of continuity allows δ to depend on both on a
particular point c and ε, this notion is not strong enough for constructive proofs like
the one above. Constructively, we require uniform continuity, where δ depends only
on ε and not on c. This uniformity ensures that the entire domain is controlled by a
single modulus of continuity, allowing the constructive existence proofs of supremum
and infimum given in Proposition 5.8.

5.3 Intermediate Value Theorem
Theorem 5.9. Let f be a continuous function on I = [a, b] with f(a) < f(b). Then,
for each y ∈ [f(a), f(b)] and each ε > 0, there is an x ∈ I such that |f(x) − y| < ε.

Proof. Since f is continuous, then a ̸= b. Considering y ∈ [f(a), f(b)] and ε > 0, let

m ≡ inf{|f(x) − y| : a ≤ x ≤ b}, (5.9.1)

which exists by Proposition 5.8.



Suppose, for contradiction that m > 0. Then, f(a) − y ≤ −m and f(b) − y ≥ m.
Divide I into points a = x0 ≤ x1 ≤ · · · ≤ xn = b and let δ be a modulus of continuity
for f such that xi+1 − xi ≤ δ(m) for 0 ≤ i ≤ n − 1. It follows that

|(f(xi+1) − y) − (f(xi) − y)| = |f(xi+1) − f(xi)| ≤ m (5.9.2)

for some i.

Given that |f(x) − y)| ≥ m for all x ∈ I, the sign of f(xi) − y must remain the same
for all i, either they are all positive, or all negative.

Initially, we established that f(a) − y ≤ −m, which is negative, and f(b) − y ≥ m,
which is positive. For the chain of sign consistency to hold, we cannot start negative
at x0 and end up positive at xn. This contradiction ensures that m ̸> 0, therefore
m < ε. Thus, we have established the required result.



6 Differentiability
Definition 6.1. Let f and f ′ be continuous functions on a closed interval I and let
δ be an operation from R+ → R+ such that

|f(xj) − f(xi) − f ′(xi)(xj − xi)| ≤ ε|xj − xi| (6.1.1)

whenever ε > 0, xi, xj ∈ I and |xj − xi| ≤ δ(ε). Then f is said to be differentiable
on I, f ′ is the uniquely determined derivative of f on I and δ is the modulus of
differentiability of f on I.

Alternatively, we interpret 6.1 as

f(xj) − f(xi)
xj − xi

→ f ′(xi) as xj approaches xi (6.1.2)

which aligns with our familiar understanding from classical analysis. This means
that the difference between the actual change in f over the interval [xi, xj] and its
linear approximation by f ′(xi)(xj − xi) remains bounded by some error, ε > 0, as
long as |xj − xi| ≤ δ(ε). Here, δ(ε) describes how small the interval [xi, xj] must be
to ensure that the linear approximation f ′(x) is accurate within a given tolerance.

Note that we are assuming that the derivative is always continuous in contrast to
the classical definition.

Proposition 6.2 (Derivation rules). Let f(x) and g(x) be differentiable functions
on I and let c be a constant. The following rules for derivation hold:

i.) D(f + g) = f ′ + g′

ii.) D(f · g) = f ′g + fg′

iii.) D(x) = 1

iv.) D(c) = 0.

Proof. Because the definitions and properties of standard functions in constructive
analysis align with their classical counterparts, and the derivation rules remain un-
changed, we will omit the proofs of these differentiation formulas here.

6.1 Rolle’s theorem
Just as classically one relies on Rolle’s theorem to identify a point x in the interval
I where the derivative vanishes, here we cannot guarantee that the greatest lower
bound lies within the closed interval, which would allow us to find an x such that
f ′(x) = 0. Nevertheless, we can establish a small ϵ > 0 such that |f ′(x)| < ϵ for
some x ∈ I, ensuring that f ′(x) = 0 is arbitrarily close to zero.



Lemma 6.3. Let f be differentiable on I = [a, b] and let f(a) = f(b). Then, for all
ϵ > 0, there exists x ∈ I such that |f ′(x)| < ϵ.

Proof. Let δ be a modulus of differentiability for f on I. Since f is continuous on a
closed interval, by proposition 5.8, we can define m as

m = inf{|f ′(x)| : x ∈ I} (6.3.1)

and thus |f ′(x)| ≥ m for all x ∈ I.

We claim that m = 0. We know that for any real number x ≥ 0, if x ̸> 0, then
x = 0 (by Lemma 3.9). So, suppose for contradiction that m > 0. The definition
of m establishes that f ′(x) ≥ m or f ′(x) ≤ −m at any given point x ∈ I. Since
f is differentiable and thus its derivative f ′ is continuous, if both cases occur, the
Intermediate Value Theorem implies that between values greater than or equal to
m and values less than or equal to −m, there must be a point ζ ∈ I such that
|f ′(ζ)| < m. This contradicts the definition of m as the infimum of |f ′(x)|.

f ′(a) f ′(b)

a b

m

−m

|f ′(x)| < m

x

y

Figure 2: Example of a graphic representation of f ′(x) where f ′(x) ≤ −m at some
given x

Therefore, only one of the cases f ′(x) ≥ m or f ′(x) ≤ −m occurs. Without loss of
generality, suppose f ′(x) ≥ m for all x ∈ I.

Before we proceed, we need to establish the error term of the derivative. In definition
6.1, the error term ε is defined such that |xi+1 − xi| ≤ δ(ε). For this proof, it is
necessary to choose ε small enough so that f ′ provides a suitable approximation of
the change in f . To avoid introducing additional terms, we set ε = 1

2m. If ε = m



were used, the resulting error would be too large. Thus, ε = 1
2m offers a manageable

error, though any value of varepsilon satisfying ε < m would suffice.

Next, we apply the modulus of differentiability to select appropriate points in I.
Specifically, a = x0 ≤ x1 ≤ ... ≤ xn−1 ≤ xn = b such that xi+k − xi ≤ δ(1

2m) for
all i where 0 ≤ i ≤ n − 1. This ensures the derivate f ′(x) gives a sufficiently good
approximation of the change in f over each subinterval.

Since f(a) = f(b), then

0 = f(b) − f(a)

=
n−1∑
i=0

f(xi+1) − f(xi) (6.3.2)

=
n−1∑
i=0

f ′(xi)(xi+1 − xi) +
n−1∑
i=0

(f(xi+1) − f(xi) − f ′(xi)(xi+1 − xi)) (6.3.3)

≥
n−1∑
i=0

m(xi+1 − xi) −
n−1∑
i=0

1
2m(xi+1 − xi) = 1

2m(b − a). (6.3.4)

Equation (6.3.2) is a telescoping sum. In equation (6.3.3), we decompose the dif-
ference f(xi+1) − f(xi) into its linear approximation f ′(xi)(xi+1 − xi) and the error
term. By the modulus of differentiability, the error term is bounded by 1

2m(xi+1−xi).
Therefore, in equation (6.3.4), we use this bound and the bound of the derivative to
establish that the sum is at least 1

2m(b − a).

Since 1
2m(b − a) > 0, this contradicts the fact that the expression equals to zero due

to the fact f(a) = f(b). Therefore, our assumption m > 0 is false, and we conclude
m = 0, or rather

inf{|f ′(x)| : x ∈ I} = 0. (6.3.5)

This proves the theorem. It says precisely that for every ϵ > 0 there exists some
x ∈ I such that |f ′(x)| < ϵ.

6.2 Mean Value Theorem
Rolle’s theorem did the hard work, this is now an easy corollary.

Theorem 6.4. Let f be differentiable on I = [a, b]. Then for each ε > 0 there is an
x ∈ I such that

|f(b) − f(a) − f ′(x)(b − a)| ≤ ε. (6.4.1)

Proof. We begin by defining a differentiable function g on I and calculating its
derivative as

g(x) = (x − a)(f(b) − f(a)) − f(x)(b − a) (6.4.2)
g′(x) = f(b) − f(a) − f ′(x)(b − a). (6.4.3)



Observe that g(a) = −f(a)(b − a) = g(b). Rolle’s theorem tells us that for all ε > 0,
there exists x ∈ I such that |g′(x)| ≤ ε. Substituting g′(x) yields (6.4.1).

In this thesis, we explored the framework of constructive analysis and demonstrated
how it differs from its classical counterpart.

Throughout our investigation, several key differences have emerged. In classical
analysis, both definitions of continuity are used. Constructively however, uniform
continuity is much stronger for many functions which is why uniform continuity
is exclusively used. Moreover, where classical completeness principles guarantee
supremum existence for every bounded set of real numbers, constructive analysis
requires additional conditions such as the set being located or totally bounded. By
ensuring that continuity is uniform and sets are suitably well-structured, we can
provide a constructive formulation of the Mean Value Theorem.

It might seem unexpected that proof by contradiction still appear in constructive
mathematics. However, the rule of proof by contradiction is different than what
we might be used to in classical mathematics. It is more limited in constructive
mathematics because we cannot show that positive or negative properties hold.
Rather, a constructivist contradiction shows that a particular construction fails.

Additionally, Brouwerian counterexamples highlighted the logical gaps in certain
classical proofs, showing where nonconstructive principles must be replaced by con-
structive reasoning. Can’t show that positive/negative properties are holding.

By embracing these principles, constructive analysis provides a setting in which
proofs reveal the computable and verifiable content of mathematical claims. In
doing so, it strengthens our grasp of the underlying logic and ensures that classical
results, like for the Mean Value Theorem can be reconstructed in a form that rests
on more transparent, constructive foundations.



References
[AS15] Mark Van Atten and Göran Sundholm. L.E.J. Brouwer’s ‘Unreliability of

the logical principles’. A new translation, with an introduction. en. 2015.
doi: 10.13140/RG.2.1.4845.2563. url: http://rgdoi.net/10.13140/
RG.2.1.4845.2563.

[BB85] Errett Bishop and Douglas Bridges. Constructive Analysis. Ed. by M.
Artin et al. Vol. 279. Grundlehren der mathematischen Wissenschaften.
Berlin, Heidelberg: Springer, 1985. isbn: 978-3-642-64905-9 978-3-642-
61667-9. doi: 10.1007/978-3-642-61667-9.

[Bis67] Errett Bishop. Foundations of Constructive Analysis. New York, NY,
USA: Mcgraw-Hill, 1967. doi: 10.2307/2272421.

[BR87] Douglas Bridges and Fred Richman. Varieties of Constructive Mathemat-
ics. London Mathematical Society Lecture Note Series. Cambridge: Cam-
bridge University Press, 1987. isbn: 978-0-521-31802-0. doi: 10.1017/
CBO9780511565663.

[BV06] D. S. Bridges and Luminiţa Simona. Vîţă. Techniques of constructive anal-
ysis. New York: Springer, 2006. isbn: 0-387-33646-X. doi: 10.1007/978-
0-387-38147-3.

[Dal13] Dirk van Dalen. L.E.J. Brouwer : topologist, intuitionist, philosopher :
how mathematics is rooted in life. London: Springer, 2013. isbn: 978-1-
4471-4615-5. doi: 10.1007/978-1-4471-4616-2.

[Man89] Mark Mandelkern. “Brouwerian Counterexamples”. In: Mathematics Mag-
azine 62.1 (1989). Publisher: Mathematical Association of America, pp. 3–
27. issn: 0025-570X. doi: 10.2307/2689939.

https://doi.org/10.13140/RG.2.1.4845.2563
http://rgdoi.net/10.13140/RG.2.1.4845.2563
http://rgdoi.net/10.13140/RG.2.1.4845.2563
https://doi.org/10.1007/978-3-642-61667-9
https://doi.org/10.2307/2272421
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1007/978-0-387-38147-3
https://doi.org/10.1007/978-0-387-38147-3
https://doi.org/10.1007/978-1-4471-4616-2
https://doi.org/10.2307/2689939

	Introduction
	Brouwerian Counterexamples
	A brief history
	Omniscience principles
	A Brouwerian counterexample

	The Real number system
	Sequential convergence in the reals
	Continuous functions
	Continuity vs Uniform continuity
	Supremum and Infimum
	Intermediate Value Theorem

	Differentiability
	Rolle's theorem
	Mean Value Theorem

	References

