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Abstract

Noetherian and Artinian rings are two important classes of rings. In this
thesis we present the basic definitions and some of the properties of Noethe-
rian and Artinian rings. We begin by establishing several equivalent defini-
tions. We then prove some important theorems for Noetherian rings, including
Hilberts basis theorem and that surjective homomorphisms to a different ring
maintains the Noetherian property. We also explore the primary decomposi-
tion of Noetherian rings. Then we move on to Artinian rings and explore some
of their properties, including their primary decomposition and the nilradical.

Sammanfattning

Noetherska och Artinska ringar är två viktiga klasser av ringar. I denna
uppsats presenterar vi de grundläggande definitionerna och vissa egenskaper
hos Noetherska och Artinska ringar. Vi börjar med att etablera flera ekvi-
valenta definitioner. Därefter bevisar vi några viktiga satser för Noetherska
ringar, inklusive Hilberts bassats och att surjektiva homomorfier till en annan
ring bevarar den Noetherska egenskapen. Vi undersöker också den primära
dekompositionen av Noetherska ringar. Sedan går vi vidare till Artinska ringar
och undersöker några av deras egenskaper, inklusive deras primära dekompo-
sition och nilradikal.
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1 Introduction

In this thesis we will outline the basic concepts and some important results relating
to commutative Noetherian and Artinian rings. Noetherian and Artinian rings both
have a finite ideal structure in the sense that they have put restrictions on chains
of ideals, called the chain conditions. In chapter 3 we will develop these conditions
further and outline three equivalent conditions for Noetherian rings and two for
Artinian rings.

An important result relating to Noetherian rings is Hilbert’s basis theorem, which
states that if the elements in a ring of polynomials has coefficients from a Noetherian
ring, then the ring of polynomials is also Noetherian. This and the corresponding
theorem for rings of formal power series will be covered in chapter 4. In chapter 4
we will also cover some results regarding the primary decomposition of Noetherian
rings, including that every ideal of a Noetherian ring has a primary decomposition.

Chapter 5 is devoted to Artinian rings. Topics that will be covered here include
the primary decomposition and nilpotency. We will show that in Artinian rings, all
prime ideals are maximal and that the number of prime ideals is finite.

The literature this thesis will rely on is Abstract Algebra (3rd ed.) by D. Dummit
and R. Foote, which will hereafter be referred to as [DF03]. We will also be using
Introduction to Commutative Algebra by M. F. Atiyah and I. G. Macdonald, which
will be refered to as [AM69]. Finally, we will also be using Basic Algebra (2nd ed.)
by Nathan Jacobson, which will be refered to as [Jac09].

Finally, this thesis will only cover commutative rings, so we will not be covering,
for example, left/right Noetherian rings.

2 Preliminary

In this chapter, we will present some definitions and results that will be important in
this thesis. This includes the definitions of rings, ideals, and quotient rings. We will
also establish some relationships between ideals and the associated quotient rings.
This chapter relies heavily on [DF03] as a source. We start by defining groups and
rings.
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2.1 Groups and rings

Definition 1. A group is a set G with an associated binary operation ∗ such that
the following holds:

• For any two elements x, y ∈ G, it follows that x ∗ y ∈ G.

• For all x, y, z ∈ G, it holds that (x ∗ y) ∗ z = x ∗ (y ∗ z).

• An element e exists in G, with the properties that e ∗ x = x ∗ e = x for all
x ∈ G.

• For each x ∈ G there exist x−1 ∈ G with the property that x∗x−1 = x−1∗x = e.

A group is called abelian (or commutative) if the following condition is satisfied:

• For all x, y ∈ X, it holds that x ∗ y = y ∗ x.

Definition 2. A ring is a set R with two associated operations + and × with the
properties that:

• R is an abelian group under the + operation.

• For all x, y, z ∈ R, it holds that (x × y) × z = x × (y × z).

• For all x, y, z ∈ R, it holds that x×(y +z) = (x×y)+(x×z) and (x+y)×z =
(x × z) + (y × z).

A ring is called commutative if:

• For all x, y ∈ R, it holds that x × y = y × x.

If there exists an element 1 ∈ R such that 1 × x = x × 1 = x for all x ∈ R, then
R is said to have an identity. From now on, R will be a commutative ring with a
multiplicative identity.

2.2 Ideals

Now we move on to define ideals, which is a core concept of this thesis. We will
also define some properties relevant to ideals that are important in this thesis. In
particular, we will define prime ideals, irreducible ideals, principal ideals, primary
decomposition, nilpotency, and what it means that an ideal is generated by a set of
elements.
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Definition 3. An ideal I is a subset of a ring R that satisfies the following properties:

• If two elements a and b are in I, then x + y ∈ I and a × b ∈ I.

• If x ∈ R and a ∈ I, then x × a ∈ I and a × x ∈ I.

If, in addition, I ̸= R it is called a proper ideal of R.

Definition 4. A prime ideal P is an ideal with the property that given two el-
ements a, b ∈ R, if a × b ∈ P it follows that either a ∈ P or b ∈ P .

Definition 5. An ideal I is irreducible if there are no ideals A and B such that

I ⊂ A, I ⊂ B

and
I = A ∩ B.

Definition 6. An ideal I or a ring R is generated by a set X if every element ai ∈ I

can be written as
ai =

∑
i

rixi

for finitely many ri such that ri ̸= 0 and ri ∈ R and xi ∈ X. If X has only a finite
number of elements, then I is said to be finitely generated.

Definition 7. A Principal Ideal is an ideal that is generated by a single element.

Definition 8. An ideal I in R is said to be a maximal ideal if I ⊂ R and there exist
no other ideal J such that I ⊂ J ⊂ R.

Definition 9. An ideal I is nilpotent if there is some k ∈ Z+ such that Ik = 0.

Definition 10. Let R be a commutative ring and I a proper ideal of R. Then
I is said to have a primary decomposition if there exists a finite set of primary ideals
{P1, ..., Pn} such that

I = P1 ∩ P2 ∩ ... ∩ Pn.
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2.3 Integral domains and Principal ideal domains

The concepts of integral domains will be important in chapter 5. They will be de-
fined here along with principal ideal domains which will be relevant in chapter 3.

Definition 11. An Integral Domain is a commutative ring R such that if a, b ∈ R

and a, b ̸= 0, it follows that ab ̸= 0.

Definition 12. A Principal Ideal Domain is an integral domain where every ideal
is a principal ideal.

Proposition 1. The ring of integers Z is a Principal Ideal Domain.

Proof. Omitted

2.4 Ring homomorphisms

Next, we will go over ring homomorphisms and quotient rings. These concepts will
be important later in this thesis.

Definition 13. Let R and A be rings. A ring homomorphism is a function
f : R −→ A such that

f(x1 + x2) = f(x1) + f(x2)

and
f(x1x2) = f(x1)f(x2)

for all x1, x2 ∈ X.

Definition 14. The kernel of a ring homomorphism f is those elements x ∈ R

such that f(x) = 0 ∈ A. This is denoted ker(f).

Theorem 1. Let I be an ideal of a ring R and f a homomorphism f : R −→ A

such that ker(f) = I. Then A is a ring. This type of ring is called a Quotient ring
and is denoted R/I.
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Proof. See [DF03, page 240-242].

2.5 Quotient ring properties

Some properties of quotient rings will be relevant to our proofs and theorems. In
particular the relationship between the ideal we quotient by and the quotient ring
will prove important.

Lemma 1. Let R be a commutative ring and I an ideal in R. Then I is max-
imal if and only if R/I is a field.

Proof. See [DF03, Chapter 7, Proposition 12].

Lemma 2. Let R be a commutative ring and I an ideal in R. Then I is prime if
and only if R/I is an integral domain.

Proof. See [DF03, Chapter 7, Proposition 13].

2.6 Intersection of ideals

Finally, the following results about the intersection of ideals will be important.

Proposition 2. Let R be a ring and Ii ideals of R. Then ⋂n
i=0 Ii is an ideal of

R and ⋂n
i=0 Ii ⊆ Ii for all Ii.

Proof. Omitted.

Furthermore, it is easy to see that for any ideal I

I ∩
(

n⋂
i=0

Ii

)
⊆

n⋂
i=0

Ii.

3 Chain Conditions

Before we define Noetherian and Artinian rings we need to introduce the concept
of chain conditions. In this chapter we will present the ascending chain condition,
along with the maximal condition and the condition that the ring is finitely gener-
ated. We will go on to establish that these three conditions are equivalent. Beyond
this we will also define the descending chain condition and the minimal condition.
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This chapter will be largely based on chapter 6 in [AM69]. We start by defining
ascending and descending chains of ideals.

Definition 15 (Ascending chain of ideals). Let Σ be the set of all ideals Ii of
a ring R. An ascending chain of ideals is then given by a subset of Σ ordered by:

I1 ⊆ I2 ⊆ I3 ⊆ ...

The chain is called a descending chain if it is instead ordered by ⊇.

Definition 16 (Ascending chain condition (ACC)). If, for every ascending chain of
ideals I1 ⊆ I2 ⊆ I3 ⊆ ... in Σ, there exists an integer N such that In = In+1 for all
n ≥ N , we say that the chain stabilizes and that the ring R satisfies the Ascending
chain condition (ACC).
If the sequence is instead ordered by ⊇ this condition is called the descending chain
condition (DCC).

In practice, to show that a ring satisfies the ascending chain condition, we will
usually show that it is not possible to construct a strictly ascending chain of ideals;
and if it does not satisfy the ACC we show that it is possible. And the same goes
for the DCC. We now turn our attention to the maximal condition which we will
define as the following.

Definition 17 (Maximal condition (MaxC)). If every non-empty subset of Σ has a
maximal ideal, then we say that the ring R satisfies the Maximal condition (MaxC).
If the sequence is instead ordered by ⊇, the condition is called the minimal condition
(MinC) and requires an ideal that is contained in all other ideals.

The ascending chain condition and the maximal condition establishes important
concepts of finiteness in the ideal structure of a ring. There is an important rela-
tionship between these two conditions.

Proposition 3. A ring satisfies the ACC if and only if it satisfies MaxC.

Proof. First, we show that when ACC is satisfied, it follows that MaxC is satisfied.
This is equivalent to showing that when MaxC is not satisfied, it follows that ACC
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is not satisfied. Assume that there is a set of ideals C ∈ Σ with no maximal ideal.
Then, for any I0 in C, there exists an ideal I1 in C such that I0 ⊂ I1 (if I1 does not
exist, I0 is maximal). Moreover, this means that we can find an ideal I2 such that
I0 ⊂ I1 ⊂ I2. So for any n, you can construct a chain I0 ⊂ I1 ⊂ ... ⊂ In, that can
be extended to include In+1 ⊃ In. Hence, we have shown that when there exists no
maximal ideal, it is possible to construct an infinite chain of ideals, and therefore
the ACC is not satisfied. This means that when MaxC is not satisfied, it follows
that ACC is not satisfied, or equivalently, ACC implies MaxC.

Now, we want to show that MaxC implies ACC. Suppose that the MaxC is
satisfied. Let S be a descending chain of ideals In ⊇ In+1 ⊇ .... Then there exist a
maximal ideal Im in S. Since Im is not contained in any ideal except itself, we have

Im = Im+1 = In+2 = ...

and hence, the ACC is satisfied.
Now that we have proven the implications for both directions we can conclude

that the ACC is satisfied if and only if the MaxC is satisfied.

Corollary 1. A ring satisfies the DCC if and only if it satisfies the MinC.

Proof. This proof is the same as the proof of proposition 3 but with the ideal inclu-
sions reversed.

Now we have established the equivalence between the maximal condition and the
ascending chain condition. There is one more condition that is equivalent to these,
but first we must show the following lemma.

Lemma 3. Let I0 ⊆ I1 ⊆ I2 ⊆ ... be a chain of ideals. Then ⋃∞
j=0 Ij is an ideal.

Proof. We have that
0 ∈ I0 ⊆

∞⋃
j=0

Ij.

Now we need to show that

x, y ∈
∞⋃

j=0
Ij =⇒ x + y ∈

∞⋃
j=0

Ij.

10



If x and y are in ⋃∞
j=0 Ij, then there exists n1 and n2 such that

x ∈ In1 , y ∈ In2 .

If n is equal to or greater than max{n1, n2} we have that In1 and In2 are contained
in In, and therefore x and y are both in In. Because In is an ideal we know that

x + y ∈ In ⊆
∞⋃

j=0
Ij.

Finally, we need to show that for all elements a in the ambient ring it holds that

ax ∈
∞⋃

j=0
Ij, ∀ x ∈

∞⋃
j=0

Ij.

This follows from the fact that x is an element in some ideal In contained in ⋃∞
j=0 Ij

which is, by definition of ideals, closed under multiplication with elements of the
ambient ring.

Now we are ready to introduce the third condition.

Proposition 4. The ascending chain condition is satisfied if and only if every
ideal the ring is finitely generated.

Proof. We start here by showing that all ideals of a ring that satisfy the ACC are
finitely generated. Assume that the set of ideals of a ring R satisfies the ACC,
and by extension, the MaxC. We now want to show that all ideals are finitely
generated. First, note that if I = R, then I = (1) is principal and by extension
finitely generated. So we can assume that I ⊂ R. Now let

S := {J ⊆ I | finitely generated ideals of I}.

As the ideals in S satisfies the MaxC we know that there exists a maximal ideal
M in S which is generated by some set {x1, ..., xn} in R. Now, if M = I, then I is
finitely generated. If however, M ⊂ I we can find some element xn+1 that is in I

but not in M such that
M ⊂ (x1, ..., xn, xn+1) ⊆ I.

This contradicts our assumption that M is the maximal element in S. Hence, we
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can conclude that if the ACC is satisfied, all ideals are finitely generated.
To show the other direction, that a ring whose ideals are all finitely generated

satisfies the ACC, we start by assuming that the ideals Ii of a ring R are finitely
generated. If I1 ⊆ I2 ⊆ I3 ⊆ . . . is an ascending chain of ideals of R, then we know
that I = ⋃∞

i=1 Ii is a finitely generated ideal. Now, let {x1, ..., xn} be a generating
set for I. Since all Ii are contained in I, it follows that all Ii can be generated by
some subset of {x1, ..., xn}. Hence, all Ii in the chain are finitely generated.

Example 1. The ring of integers Z satisfies the ACC but not the DCC.
First we note that the ring of integers is a principal ideal domain. Let Ij be the
ideal of Z such that

Ij = (mj)

for some mj in Z. Note that, when mj ̸= 0, we have that Ij ⊂ Ij+1 if and only if
mj+1 | mj, which implies that if mj is a prime number, Ij is a maximal ideal. If
mj is not prime, there exist some number mj+1 such that mj+1 divides mj. Now,
consider some m1 that is the product of some set of prime numbers. Then we can
create a chain of ideals by successively removing those prime numbers:

(m1) ⊂ (m2) ⊂ ... ⊂ (p)

where p is the last remaining prime number, and hence (p) is maximal. Therefore
the ring of integers satisfies the ACC.
To show that Z does not satisfy the DCC, we just reverse the order of the chain
and show that it becomes infinite:

Z ⊃ (p1) ⊃ (p1p2) ⊃ (p1p2p3) ⊃ ... ⊃
(

k∏
i=1

pi

)
⊃ ...

This chain can be continued indefinitely by multiplying the generator by another
integer. Hence, Z does not satisfy the DCC.

We have now discussed three equivalent conditions on rings: the ascending chain
condition, the maximal condition, and the condition that it is finitely generated.
This brings us to the definitions of Noetherian and Artinian rings.

Definition 18. A ring is Noetherian if it satisfies any of the following equivalent
conditions:
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• The ascending chain condition.

• The maximal condition.

• All ideals are finitely generated.

Because these conditions are equivalent, one of them bieng satisfied is equivalent to
all of them being satisfied.

Definition 19. A ring is Artinian if it satisfies the descending chain condition
and the minimal condition.

The two upcoming chapters will cover some of the properties of Noetherian and
Artinian rings.

4 Noetherian Rings

In this Section we present an overview of some properties of Noetherian rings. We
will first deal ring homomorphisms from noetherian rings. Then we move on to show
the Hilbert’s basis theorem for rings of polynomials and the equivalent results for
rings of formal power series. Finally we will explore the primary decomposition of
Noetherian rings.

4.1 Ring homomorphism

Theorem 2. If R is a Noetherian ring and f is a surjective ring homomorphism to
a ring A. Then A is Noetherian.

Proof. Because f is surjective there is, for every a ∈ A, an element r ∈ R such that
f(r) = r. Let I be an ideal of A. We want to show that I is finitely generated. The
preimage of I in R is

f−1(I) = {r ∈ R | f(r) ∈ I}.

The fact that f is a surjective ring homomorphism implies that f−1(I) is an ideal of R

and that f(f−1(I)) = I. Because f−1(I) is an ideal of R it is finitely generated. Let
{r1, ..., rn} be the set of generators of f−1(I). This means that since f(f−1(I)) = I,
we have that

I = (f(r1), ..., f(rn)) .
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Hence, A is Noetherian.

4.2 Hilbert’s Basis Theorem

We now move on to discussing an important result connecting the Noetherian prop-
erty and rings of polynomials. First, we have the following definition.

Definition 20. Let R be a commutative ring with a multiplicative identity. and x

a variable. A polynomial with coefficients in R is a formal sum

p(x) = anxn + an−1x
n−1 + ... + a0.

We say that two polynomials
p(x) =

∑
i

aix
i

and
q(x) =

∑
i

bix
i

are equal if ai = bi for all i. We denote by R[x] the set of all polynomials with
coefficients in R. We now define addition and multiplication the same as with any
polynomial addition and polynomial multiplication.

Next, we must show that the ring of polynomials is actually a ring.

Proposition 5. The set R[x] with associated addition and multiplication as de-
fined above has a ring structure.

Proof. First, we note that R[X] is associative, commutative, and closed under ad-
dition. That it is closed under addition follows from the fact that when adding two
polynomials p(x) and q(x) as defined above, the resulting coefficients will be ai + bi

for all i, and since ai and bi are elements of the ring R, ai + bi must also be in
R. We can also see that R[X] is closed under multiplication. This can be seen by
noting that when multiplying two polynomials p(x) and q(x), all coefficients in the
resulting polynomial will be a product of coefficients in p(x) and q(x), and because
those coefficients are elements in the ring R, the new coefficients must also be in R.
Hence, R[x] is a ring.

The leading coefficients will be important when proving Hilberts basis theorem. We
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will will now provide a definition and prove that they form an ideal of R.

Definition 21. Consider the polynomial

p(x) =
∑

i

aix
i.

The leading coefficient of p(x) is am ̸= 0 such that aj = 0 for all j > m. If p(x) = 0,
then the leading coefficient is 0.

Lemma 4. Let R be a ring, R[x] the ring of polynomials with coefficients in R, and
B an ideal of R[x]. Then the set

I = {a ∈ R | a is a leading coefficient of a polynomial in B}

is an ideal of R.

Proof. Because 0 is in B it follows that 0 is in I since the leading coefficient of 0 is
0. Furthermore, consider two elements a and b in I. Then there exist elements in B

such that
f(x) = axj + lower terms ∈ B

and
g(x) = axk + lower terms ∈ B.

If j = k we have

f(x) + g(x) = (a + b)xj + lower terms ∈ B.

If j ̸= k we can assume that j > k. Then we have that

xj−kg(x) = bxj + lower terms ∈ B

and then it follows that

f(x) + xj−kg(x) = (a + b)xj + lower terms ∈ B.

It then follows that a + b is in I. Finally, consider an element a in I and let λ be an
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element of R. Then there is an element of B

f(x) = axj + lower terms ∈ B

such that
λf(x) = (λa)xj + lower terms ∈ B.

Which implies that λa is in I. Hence we can conclude that I is an ideal of R.

Now we can move on to Hilbert’s basis theorem. The original theorem as stated by
Hilbert is a bit different from the one presented here. The original theorem is that if
R is a field or the ring of integers, then R[x] is finitely generated. Here, we present
a more general version of it.

Theorem 3. Hilbert’s Basis Theorem. If R is a Noetherian ring, then the polyno-
mial ring R[x] is also Noetherian.

Proof. This proof is inspired by the proof for Hilbert’s (generalized) basis theorem
in [Jac09]. Let R be a Noetherian ring and B an ideal of the polynomial ring R[x].
We want to show that B is finitely generated. Now, let I be the ideal of leading
coefficients

I = {a ∈ R | a is a leading coefficient of a polynomial in B}.

Because R is Noetherian we have that

I = (b1, ..., bi, ..., bm)

where {b1, ..., bi, ..., bm} is the finite set of generators for I. Furthermore, for every
1 ≤ i ≤ m and ai ∈ R there is a polynomial fi in B with

fi = aix
ji + lower terms.

Now, let
r = max{Ji}.

We now want to show that

B = (f1, ..., fi, ..., fm).

16



Consider some f = axk + lower terms in B. By induction on k = deg(f), we will
show that

f =
∑

i

gifi

for some gi ∈ R[x]. If f = 0 or k = 0, this is obvious. Suppose that k ≥ r. Note
that any leading coefficient can be written as

a =
∑

i

λibi

where λi ∈ R. Hence we have that

f = axk + lower terms =
(∑

i

λibi

)
xk + lower terms.

Now, if we multiply by xr−k we get

xr−kf =
(∑

i

λibi

)
xr + lower terms =

=
∑

i

λibix
r−Jifi + lower terms

which is in B because xr−kf has the same leading coefficient as f . Let k1 =
deg(xr−kf). It is clear that k1 < k. If k1 < r we are done, otherwise repeat
until it kj < r for some j. If k < r, then we can construct a polynomial h with the
same leading coefficient as f where deg(h) < k as follows:

h = f −
∑

i

λifi

for some λi ∈ R. We can then repeat this process until the we get the 0 polynomial.
We have now shown by induction that every f ∈ B can be written as a finite sum
f = ∑

i gifi for some gi ∈ R and fi ∈ B. Hence B is finitely generated and R[x] is
Noetherian.

4.3 Formal power series

Now that we have discussed polynomial rings we can extend the discussion to sums
of powers, where the highest power with a non-zero coefficient is not finite. We start
by defining the ring of formal power series, and its order.
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Definition 22. Let R be a ring and x a variable. A formal power series is the
formal sum ∞∑

i=0
aix

i = a0 + a1x + a2x
2 + ...

where the coefficients ai are elements of R. We say that two formal power series

p(x) =
∑

i

aix
i

and
q(x) =

∑
i

bix
i

are equal if ai = bi for all i. We denote by R[[x]] the set of all formal power series
with coefficients in R. Addition and multiplication is defined as for any power series.

Definition 23. if f is a formal power series. Then the order of f is equal to
the lowest power of x where the coefficient is non-zero. It is denoted o(f).

Lemma 5. Let f and g be formal power series. Then we have the following:

o(fg) ≥ o(f) + o(g)

and
o(f + g) ≥ min (o(f), o(g)) .

Proof. To prove that o(fg) ≥ o(f) + o(g), we note that if ao(f) ̸= bo(g), then the
lowest order term in fg is

ao(f)x
o(f) · bo(g)x

o(g) = ao(f)bo(g)x
o(f)+o(g),

which has order o(f) + o(g). If ao(f) = bo(g), then o(fg) > o(f) + o(g).
That o(f + g) ≥ min (o(f), o(g)) is straightforward since the coefficients in the sum
is equal to ai + bi for every i.

Lemma 6. The set R[[x]] as defined above has a ring structure.

Proof. This proof is the same as the proof that R[x] has a ring structure.
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Now we are ready to turn our attention to the equivalent of Hilbert’s basis theorem
for rings of formal power series. The following theorem establishes a relationship
between Noetherian rings and formal power series.

Theorem 4. If R is a Noetherian ring, then R[[x]] is also noetherian.

Proof. [Jac09, Theorem 7.11]. We use a similar strategy here as in the proof of
Hilbert’s basis theorem. Let R be a Noetherian ring, R[[x]] the ring of polynomials
with coefficients in R, and B ⊆ R[[x]] an ideal. We now want to show that B is
finitely generated. Here we will define the leading coefficient as am ̸= 0 such that
aj = 0 for all j < m. As a corollary to Lemma 4 the set of leading coefficients in R

is then an ideal of R. Call this ideal I. Since R is finitely generated we have that

I = (b1, ..., bi, ..., bm)

for some finite set of generators {b1, ..., bi, ..., bm}. For every i there is fi ∈ B with

fi = aix
Ji + higher terms.

Let
r = maxJi.

Now, we need to show that

B = (f1, ..., fi, ..., fm).

Suppose f = axk + higher terms, where a ∈ R. We will show that f = ∑
i gifi for

some gi ∈ R[[x]] and fi ∈ B. For some λi ∈ R and bi ∈ I we have that a = ∑
i λibi.

We therefore have that

f =
(∑

i

λibi

)
xk + higher terms ∈ B.

Multiply by xr−k and we get

xr−kf =
(∑

i

λibi

)
xr + higher terms ∈ B
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which can also be written as

xr−kf =
∑

i

λibix
r−Jifi + higher terms.

Now we note that
o(f − xr−kf) > k.

Now, let k1 = r − Ji and lets repeat this process such that we get a sequence
k1 < k2 < k3 < .... Then we can construct a sum

h =
∑

i

 ∞∑
j=1

λijbijx
kj

 fi + higher terms.

Whose order is arbitrarily large. Note that ∑∞
j=1 λijbijx

kj is a formal power series
in R[[x]]. Hence we have showed that an element f ∈ B can be written as a sum
f = ∑

gifi for some gi ∈ R[[x]] and fi ∈ B. Hence B is finitely generated by the set
{f1, ..., fi, ..., fm}, and therefore R[[x]] is Noetherian.

4.4 Primary decomposition

To finish of this section, we will now discuss some results relating to the primary
decomposition of Noetherian rings and prove that every ideal of a Noetherian ring
has a primary decomposition.

Lemma 7. Let R be a Noetherian ring. Then every ideal of R is the intersec-
tion of a finite number of irreducible ideals.

Proof. [AM69, Lemma 7.11]. By contradiction, assume that there exists a non-
empty set of ideals Ij of R that are not contained in the intersection of a finite
number of irreducible ideals, Call this set A. Because R is Noetherian, this set
of ideals must have a maximal element Im. The maximal element Im is reducible,
which means that

Im ⊂ Ii ∩ Ij

for some i ̸= j ̸= m such that Im ⊂ Ij and Im ⊂ Ij. Because Im is maximal, this
means that Ii and Ij cannot be in A, and are therefore contained in the intersection
of a finite number of irreducible ideals, and by extension so is Im. This contradicts
our assumption that Im is not the intersection of a finite number of irreducible
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ideals.

The annihilator of a subset of a ring will an important concept here. We will now
define it and explore some of properties.

Definition 24. Let R be a ring. The annihilator of a set X ∈ R is the set of
elements a ∈ R such that a · x = 0 for all x ∈ X. It is denoted Ann(X)

Lemma 8. The annihilator of a set X ∈ R is an ideal of R.

Proof. Let X be a subset of a ring R. We now want to show that any linear
combination of elements in Ann(X) and R is an element in Ann(X). Let ai be
elements in Ann(X) and rj be elements in R, then the linear combinations are given
by ∑

i

∑
j

airj.

Multiply this by an element x ∈ X and we get

x
∑

i

∑
j

airj =
∑

i

∑
j

x · airj =
∑

i

∑
j

(x · ai)rj =
∑

j

0 · rj = 0.

Hence, we can conclude that the linear combination is in Ann(X).

Corollary 2. If R is a Noetherian ring and X is a subset, then Ann(X) is finitely
generated.

Proof. From lemma 8 we know that Ann(X) is an ideal of R, and because R is
Noetherian, every ideal including Ann(X) must be finitely generated.

Now that we have established some properties of the annihilator we can move on
to the following lemma establishing a connection between irreducible ideals and pri-
mary ideals in Noetherian rings.

Lemma 9. If R is a Noetherian ring, then all irreducible ideals in R are primary
ideals.

Proof. [AM69, Lemma 7.12]. Let R be a Noetherian ring and I an ideal of R. Now
consider the quotient ring A = R/I. I is irreducible if and only if the trivial ideal
(0) ∈ A is irreducible. Assume that (0) ∈ A is irreducible, then we want to show
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that (0) ∈ A is primary. Consider the elements x ∈ A and y ∈ A such that xy = 0
and y ̸= 0. Then we have the chain of ideals

Ann(x) ⊆ Ann(x2) ⊆ ...

and, because of the ACC, fore some n this simplifies to

Ann(xn) = Ann(xn+1) = ...

Now, consider an element a ∈ (xn) ∩ (y). Then, for some elements b and c we have
that

a = bxn = cy

if, and only if
bxn+1 = bxnx = cyx = 0.

Which implies that
b ∈ Ann(xn+1) = Ann(xn)

and therefore a = bxn = 0. We have thus showed that (xn) ∩ (y) = {0}. Since we
have assumed that {0} is irreducible we can conclude that (xn) = {0} and (y) = {0}
and by extension x = 0 and y = 0. Hence, I is primary.

Finally, this leads us to our concluding result of this section.

Theorem 5. Let R be a Noetherian ring. Then every ideal of R has a primary
decomposition.

Proof. This follows directly from lemma 7 and lemma 9.

5 Artinian Rings

In this section we will explore some of the properties and ideal structure of Artinian
rings. We will explore the primary decomposition of Artinian rings. From there we
will move on to show that Artinian rings are a subset of the Noetherian rings. We
begin with two definitions that will be important later.

Definition 25. The Jacobson radical of a commutative ring R is the intersec-
tion of the maximal ideals. It will be denoted as J(R).

22



Definition 26. The nilradical of a commutative ring R is the intersection of the
prime ideals. It will be denoted as N(R).

Next, we need to establish a relationhip between an ideal of an Artinian ring and
the associated quotient ring.

Lemma 10. If I is an ideal of an Artinian commutative ring R, then the quo-
tient ring R/I is Artinian.

Proof. Consider the ideals of R/I. They have the form of a quotient ring J/I for
some I ⊆ J ⊆ R. Because R is Artinian the set of elements J ⊆ R such that I ⊆ J

must satisfy the DCC, and therefore, so must R/I.

We now turn a more general result regarding quotient rings.

Lemma 11. If ρ is a prime ideal of a commutative ring R, then the quotient
ring R/ρ is an integral domain.

Proof. We need to show that R/ρ has no zero divisors. Let consider two elements
a′, b′ ∈ R/ρ. We want to show that a′b′ = 0 if and only if a′ = 0 or b′ = 0. Suppose
a′b′ = 0. Then because the map from R to R/ρ is a homomorphism we have

a′b′ = (ab)′ = 0.

This means that ab ∈ ρ. Because ρ is a prime ideal this means that either a ∈ ρ or
b ∈ ρ, and whichever one is in ρ will be 0 in R/ρ.

Corollary 3. Let ρ be a prime ideal of an Artinian commutative ring R. Then the
quotient ring R/ρ is an Artinian integral domain.

Proof. Follows directly from Lemma 10 and 11.

Now we are ready to establish the following theorem regarding prime ideals in Ar-
tinian rings.

Theorem 6. If a ring R is Artinian, then all prime ideals in R are maximal.
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Proof. [AM69, Proposition 8.1]. Consider a prime ideal ρ ⊂ R. From corollary 3
we know that the quotient ring R/ρ is an Artinian integral domain. Now consider
a non-zero element x ∈ R/ρ. We have that (xn) ⊇ (xn+1) ⊇ ... and because R/ρ is
Artinian we have that for some n

(xn) = (xn+1),

which implies that there exists an element y such that

xn = xn+1y.

As x ̸= 0 and R/ρ is an integral domain this can be reduced to

xy = 1.

Therefore, y is the inverse of x and R/ρ is a field, and by extension ρ must be
maximal.

Corollary 4. If R is a commutative Artinian ring, then J(R) = N(R).

Proof. Follows directly from Theorem 6 and the definitions 11 and 12.

Next, we need to establish some important lemmas that will be important later.

Lemma 12. Consider the set of prime ideals {ρ1, ..., ρn} ∈ R. Let m be an ideal
such that m is contained in ⋃n

i=1 ρi. Then, for some i, m ⊆ ρi.

Proof. [AM69, Proposition 1.11i]. We will prove the equivalent result that if m is not
contained in any ρi it will not be contained in their union. If m ̸⊆ ρi for 1 ≤ i ≤ n

for some n, then
m ̸⊆

n⋃
i=1

ρi.

Now, we can use induction on n. For n = 1 this reduces to m ̸⊆ ρi implies m ̸⊆ ρi,
which is obvious. For n > 1, assuming it holds for n−1, we can construct a sequence
of elements xi ∈ m with the property that when if j ̸= i, then xi ̸∈ ρj. If there is an
i for which there is no such xi for which xi ∈ ρi, then we are done. Otherwise, we
have a sequence of elements xi that are all in only one ideal ρi each. That means
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we can construct a new element as follows

y =
n∑

i=1
x1x2...xi−2xi−1xi+1...xn−1xn.

This is a sum where each xi is a factor of every term except one. By extension, for
every i, every term in the sum is in ρi except one (the one where xi is not a factor).
The sum therefore consists of n − 1 terms that, for each i, are in ρi and a single
term is not in ρi. This implies that y cannot be in ρi for any i and by extension
not in their union either. So therefore we can conclude that m ̸⊆ ρi for all i implies
m ̸⊆ ⋃n

i=1 ρi, or equivalently that m ⊆ ρi for some i implies

m ⊆
n⋃

i=1
ρi,

and hence we are done.

Lemma 13. Let ρ be a prime ideal of a ring R and {a1, ..., an} ⊆ P (R) where P (R)
is a power set of R and ai are ideals of R such that

n⋂
i=1

ai ⊆ ρ.

Then, for some i, ai ⊆ ρ. Furthermore, if ⋂n
i=1 ai = ρ, then for some i we have that

ai = ρ.

Proof. [AM69, Proposition 1.11ii]. We will prove the equivalent statement that if
for all i, ai ̸⊆ ρ, then ⋂n

i=1 ai ̸⊆ ρ. Assume that for all i we had ai ̸⊆ ρ. Then, for
every i, there must be an element xi ∈ ai such that xi ̸∈ ρ. This means that

n∏
i=1

xi ∈
n⋂

i=1
ai.

However, because ρ is a prime ideal, we have that

n∏
i=1

xi ̸∈ ρ,

and by extension
n⋂

i=1
ai ̸⊆ ρ.
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Hence we can conclude that if ai ⊆ ρ for at least one i, then ⋂n
i=1 ai = ρ. Lastly, we

note that if ρ = ⋂n
i=1 ai, then ρ ⊆ ai for all i. Adding this to our previous results we

get that if ρ = ⋂n
i=1 ai, then ai = ρ for some i.

Now we are ready to prove the following theorem about Artinian rings.

Theorem 7. If a ring R is Artinian, then R has a finite number of maximal ideals.

Proof. [AM69, Proposition 8.3]. Let mi denote maximal ideals in an Artinian ring
R, and M the set containing every intersection m1 ∩m2 ∩ . . . . Since all intersections
of ideals are also ideals (Proposition 2), we know that every element in M is an ideal
of R. Now to show that M has a minimal element, suppose there is no minimal
element in M , then we can construct an infinite chain

m1 ⊃ m1 ∩ m2 ⊃ ... ⊃
n⋂

i=1
mi ⊃ ...

This would contradict the DCC, and hence we know that this sequence stabilizes
at some minimal element, say ⋂n

i=1 mi. This implies that if m is any maximal ideal
in R, we get

m ∩
(

n⋂
i=1

mi

)
=

n⋂
i=1

mi

and by extension
n⋂

i=1
mi ⊆ m.

From this follows, as a result of lemma 13, that there exists an i such that mi ⊆ m,
and because mi is maximal it follows that mi = m.

Finally, we will show a result regarding the nilradical of Artinian rings. But first we
must provide a definition and a lemma.

Definition 27. Let I and J be two ideals. The product IJ is defined as the
ideal generated by the set

{ij | i ∈ I, j ∈ J}.

As a corollary, we have that In is the ideal generated by the set

{
n∏

i=1
xi | xi ∈ I}
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Lemma 14. If R is a ring and I an ideal of R, then In+1 ⊆ In for all n ≥ 1.

Proof. First, we show that this holds for n = 1, i.e. I2 ⊆ I. Every element in
I2 is a sum of products of two elements in I. Because I is an ideal it is closed
under multiplication and addition, which means that any element in I2 must also
be an element in I, and hence I2 ⊆ I. Now we proceed by induction. Suppose that
In ⊆ In−1 holds for some n ≥ 2. We now want to show that In+1 ⊆ In. Let a be
an element in In+1. It can then be written as a sum of products of elements in In.
Again, because In is an ideal it is closed under multiplication and addition. This
means that a ∈ In+1 implies that a ∈ In, and therefore In+1 ⊆ In. By induction,
we have therefore shown that In+1 ⊆ In for all n ≥ 1.

Proposition 6. If a ring R is Artinian, the nilradical N(R) is nilpotent.

Proof. [AM69, Proposition 8.4]. Let R be an Artinian ring and R = N(R). Because
R is Artinian and R is an ideal of R, the DCC and Lemma 14 implies that there
exist som k ∈ Z+ such that

Rk = Rk+1 = ... = a.

Note also that this means that an = a for all n ∈ Z+. Assume that a is non-zero
and define a set

S = {b ∈ R | b is ideal such that ab ̸= 0}.

We know that a is in S, so it is not empty. Because R is Artinian we know that S has
a minimal element, which we will call c. Let x be an element in c such that xa ̸= 0
(which also means x ̸= 0). Then it is clear that (x) ⊆ c, and because c is minimal,
we can therefore conclude that (x) = c. We also have that xa ⊆ (x), and that
(xa)a = xa2 = xa ̸= 0. Because c is minimal this implies that xa = (x) = c. Since
x ∈ (x) there must exist some element y ∈ a such that x = xy and by extension

x = xy = xy2 = . . .

However, since y is in a power of the nilradical, y must be nilpotent which means that
x = xyn = 0 for all n ∈ Z+. Since we picked x to be non-zero this is a contradiction.
Hence a = Rk = 0.
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