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Abstract

In this text, I lay out the Gelfand representation. I start by building up
the necessary background terminology, along with some useful theorems,
assuming relatively little knowledge of the discussed topics. I then con-
struct the Gelfand representation and show how it is and anti-equivalence
of the categories of locally compact Hausdorff spaces Haus and the cate-
gory of C*-algebras C*-Alg.

Sammanfattning

I den hér texten beskriver jag gelfandrepresentationen. Jag borjar med
att bygga upp nodvandig bakgrundsterminologi, samt en del anvandbara
satser och antar relativt lag forkunskap inom de omraden jag tar upp.
Jag konstruerar sedan Gelfandrepresentationen och visar hur den ar en
antiekvivalens mellan katogrierna av lokalt kompakta Hausdorffrum Haus
och kategorin av C*-algebror C*-Alg
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1 Introduction

The Gelfand duality is a very well celebrated theorem, or at least so claims
the text about it that I have read. Judging by how easy it is to fin such texts
though, I believe it is fair to say they probably know what they are talking
about. When 1 first laid eyes on the theorem, it looked very intimidating. I
hope that I have managed to provide detailed enough background knowledge to
make that leap easier for the uninformed reader, even though the background
subjects are highly interesting in and of themselves and I simply do not have
enough space here to come even close to do them justice. As always, any reader
wishing to know more about any subject may look towards the bibliography
given at the end. Most of the resources I used while writing this are available
online although not everything may be free.

2 Background knowledge

2.1 Category theory

We will not delve deeper into this subject than is necessary to establish the
concepts needed in this thesis. For a more complete introduction, the reader
may find [Riel6] to be useful. This section will mostly be an excerpt from
chapter one of her book.

Definition 2.1.1 (Category). A Category C, consists of a collection of objects
and a collection of morphisms such that the following axioms are upheld

(1) A collection of objects ob(C). This may be a set or a proper class.

(2) A collection of morphisms! mor(C). This may be a set or a proper class.
Each morphism has a domain and a codomain. A morphism f with domain
X and codomain Y is denoted as

f:X—=Y

The collection of all morphisms between two objects X and Y in a category
C is denoted? Home(X,Y)

(3) For each pair of morphisms f, g, if cod(f) = dom(g), that is the codomain
of f is the same as the domain of g, then f and g are composable and
there exists a morphism

go | : dom(f) = cod(g)®

IMorphisms are also sometimes called arrows. Similarly, the domain and codomain may
be refered to as the source and the target of the morphism. Some authors will change between
these many times in the text. For the sake of consistency, I will stick to the nomenclature as
defined above.

2Home(X,Y) is pronounced ”the hom-set between X and Y”. Despite the name, the
hom-set need not be a set in general, but may instead be a proper class.

3Note that composition works in the opposite order to which it is written. Thus, go f has
the same domain as f and the same codomain as g. g o f may be pronounced as ” g following
f7and the author finds this convention useful in remembering the order correctly.




(4) For each object X in the category, there is a designated identity morphism
1x : X — X with the property that for every morphism f,g with X as
domain and codomain respectively

lxog=gyg
folx=f

(5) For each pairwise composable triplet of morphisms f, g, h, if f, g are com-
posable and g, h are composable , then

folgoh)=(fog)oh
and this justifies the notation

fogoh

The notions of objects and morphisms are to be considered atomic, and have
no intrinsic characteristics other than the ones defined above as far as category
theory is concerned. This is a fundamental part of the philosophy of category
theory; any inherent structure to the objects and morphisms other than the way
they connect with each other is discarded.

In general, we may say that it is not the internal structure of the objects
that is of interest for category theory, hence why objects are to be considered
atomic. Rather, it is how the objects and morphisms are connected that is of
interest. The operation of morphism composition is thus of fundamental import
in how the category is built.

Because of this categorical focus on connections rather than intrinsic prop-
erties, there arises a dual to most concepts in category theory. At its core, the
idea is to take whichever concept is currently being studied and then reverse
the direction of the morphisms. That is, for each morphism, switch the domain
and the codomain, but otherwise leave everything untouched. We demonstrate
this with the following dual* to the concept of a category.

Definition 2.1.2 (Opposite Category). Let C be a category. The opposite
category C°P of C is a category where

(1) The collection of objects 0b(C°P) is the same as 0b(C)

(2) For each morphism f : X — Y in mor(C) there is a morphism f¢ : X — Y
in mor(C°P)

(3) Each object has 157 as its identity morphism

4Many constructions in category theory come in pairs of two. The dual of any categorical
concept refers in general to a structure that is identical, except for the fact that the domain
and codomain of every morphism is reversed.



(4) For each pair of composable morphisms f, g in C, g°? and f°P are compos-
able in C°P and

(90N =17 29"

Before we move on to some more higher order concepts, there is one more
important thing to mention, and that is the isomorphism

Any student well versed in math has surely heard of the concept of an iso-
morphism. As mathematicians, we often like to say that two or more things are
the same up to isomorphism as a way to signal to the reader that for the pur-
poses of the current discussion, they are to be considered the same even if they
technically differ. The observant reader may notice parallels between this idea
disregarding irrelevant structure, and the category theoretical philosophy of dis-
carding any non-connectional structure. Indeed, category theory does formalize
the concept of an isomorphism, as specified below.

Definition 2.1.3 (Isomorphism). A morphism f : X — Y is an isomorphism
if there exists another morphism f~!:Y — X such that

fﬁloleza fofilzly

Definition 2.1.4 (Functor). Let C' and D be categories. A functor is a function
F : C — D that meets the following criteria

(1) Each object X in C is mapped to an object Fx in D.

(2) Each morphism f: X — Y in C is mapped to a morphism Ff : Fx — Fy
in D

(3) For each object ¢ in C, F(1.) = 1p.

(4) For each pair of composable morphisms f,g in C, FgF f = F(gf)

If F: C — D we say that F is a contravariant functor®

Definition 2.1.5 (Natural transformation). Let F: C — D and G : C — D
be functors. A natural transformation o : F' = G is a mapping between two
functors such that

(1) For each object ¢ € C, a there is a morphism a. : Fc — Ge in D such that
for every morphism f : ¢ — ¢’ in C the composite morphisms a. o F'f and
G f o a, are identical.

Additionally, if every «. is an isomorphism, « is said to be a natural isomor-
phism. We write this F' = G

5Note that since every category has an opposite category, every funktor is a contravariant
funktor in some sense, since we usually only talk about either a given category and not both
the category and its opposite, this is still a useful term.



Remark. The distinction of being naturally isomorphic rather than merely being
isomorphic but not naturally isomorphic is important. The classic example of
this is the linear functionals that we see more of later in the text. The space of
all linear functionals over a vector space A is isomorphic to A but not naturally
isomorphic. It is however naturally isomorphic to the underlying field T

Definition 2.1.6 (Equivalence of categories). A category C'is equivalent to a
category D if there exists functors F' : C' — D, G : D — C such that

FG=Z1p GF=l1¢

If C is instead equivalent to D°P, we say that C' and D are anti-equivalent.

2.2 Algebra
Basic definitions

Definition 2.2.1 (Group). A group® G consists of a set G along with a binary
operation + such that the following group azioms hold

(1) Foreach f,ge G, f+9g€ G

(2) For each f,g,h € G, (f+g9)+h = f+ (g + h) and is usually denoted
f+g+h

(3) There is a special element called 0 called the identity of the group. For
eachge G,0+ g =g

(4) For each g € G, there exists an inverse —g such that g+(—g) = —g+g =0

A group may have any number of additional properties, but one of particular
import of us is that when the group operation is commutative.

Definition 2.2.2 (Abelian Group). An abelian group is a group G that fulfills
the following additional axiom in addition to the ones listed above

(5) Forall f,ginG, f+g9g=g+f

Definition 2.2.3 (Ring). A ring R is a set R together with two binary oper-
ations + and x such that the following ring azioms hold true. It is important
to note here that all rings considered will be assumed to be commutative.

For +

(1) Forevery f,g € G, f+g€G

(2) For any f,g,h € R, f+ (9+ h) = (f + g) + h, and just as with groups,
the parenthesis are usually omitted.

6This definition is actually abuse of notation. Formally, this group should be denoted
(G, +)
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(3) Forevery f,ge R f+g=g+f

(4) There is an element 0 € R such that forallg e G,04+g=g
For x

(5) Forevery f,g€ R, f Xxg€R

(6) For every f,g,h € G, fx(gxh)=(fxg)xh

(7) There is an element called 1 that has the property, for all g € R, 1 x g =
gxl=gyg

(8) Forevery f,ge R, fxg=gx [
and then additionally
(9) For each f,g,h e R, f X (g+h)=(f xg)+ (f xh)

Definition 2.2.4 (Module). A module can be thought of as a generalization
of an abelian group. Let R be a commutative ring. An abelian group (M, +)
together with a binary operation - : R x M — M is a R-module” if the following
holds for every r,s € R and every x,y € M:

L) r-(ze4+y)=r-xz+r-y

(2) (r+s)-z=r-z+s-2°

3) (rxs)-z=r-(s-1)
And if R has a unit

4 1-z=z

Definition 2.2.5 (Algebra). Let M be an R-module, and let 7, s,z,y be as
above. We say that M is an R-algebra if the following holds in addition to the
module properties resume,,

(B)r-(@xy)=(r-z)xy=ax(r-y)
For z,y elements in M and a,b elements of R resume,,
6) °(@+y) z=2-2+y-2

Definition 2.2.6 (Ideal). Given a ring R, an ideal? is a set I C R such that
(I,+) is a subgroup of (R,+) and for every r € Rand v € I, 7 x v € I.*1.

"In general, right R-modules and left R-modules are not the same, however since we assume
that R is commutative, they will coincide

8Keep in mind that 4+ on the left side of the equals sign is the operation in R, but + on
the right hand side is the operation in M

9Since R is commutative, left distributivity follows from right distributivity

10ysually there is a difference between a left and a right ideal, but since we are assuming
all rings to be commutative, this difference is nil.

11We often say that I absorbs multiplication
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A proper ideal is an ideal that is a proper subset of the ring R.

An ideal I is said to be mazimal if there is no larger proper ideal containing
it, that is for every ideal J D I, either I = J or R = J.

If the quotient ring R/I mby define quotient or nah has a unit, then the I
is said to be modular. We denote the set of all ideals that are both maximal,
modular and proper by Max(R)

Definition 2.2.7 (subspace). If A is some algebraic construction and B C A
is an algebraic structure of the same kind as A and importantly with the same
algebraic operations as A'?, then B is a subspace of A. Usually we talk more
specifically about subgroups, subalgebras, etc. but the definitions are analo-
gous. '3

Definition 2.2.8 (Homomorphism). A homomorphism is a mapping preserving
algebraic structure. This can mean a few things, depending on exactly which
of the above algebraic structures we are considering.

A group homomorphism if a function ¢ between to groups G and H which
preserves the group structure, that is

olx+ay) =¢@) +aely) Vr,yedG

where +¢ is the group operation in G and +p is the group operation in H.
For a ring homomorphism, we require that not only that + be preserved,
but also that - is.

o(x-gy) =) me(y)

Here G and H are of course assumed to be rings.
Similarly, for an algebra homomorphisms and later *-homorphisms, we also
require that the structure of the algebra be preserved.

Notation. In the preceding sections, I have tried to be clear with which multi-
plication belongs to which structure, which ring, which module and so on and
so forth. However, this is often clear from context, and for the remainder of this
text I will not specify which is which. The reason for this is that it unnecessarily
clutters the page with symbols and degrades readability rather than helps it.
From now on, both x Xy and x -y will be written simply as xy unless the context
is somehow such that it is not obvious which is which.

Definition 2.2.9 (Kernel). Let ¢ be a homomorphism defined on some algebra
A. Then the kernel ker of ¢ is the set of of all points that are mapped to 0,
that is ker o = ¢~ 1({0})

The codomain ¢(A) is often denoted A/ker ¢ and is said to be the quotient

space.™

12but restricted to B of course

130f course, this can be generalized with categorical language, but that is not what we are
doing here

Kernels and quotients may be defined for most algebraic structures, but I have elected
not to do so here. The definitions are analogous and do not really bring any new insight other
than the one already gained.
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Definition 2.2.10 (*-algebra). Let A be a C-algebra. Let x: A — A,z — a*
be function satisfying the following properties
For every xz,y € A
(1) (@+y) =" +y
(2) (\z)* = Az* for any A € C
B3) (zy)" =y~
(4) (z7) ==
Then A is called a *-algebra and x is called involution.
Definition 2.2.11 (Linear functional). A linear functional is a function eval
from an albegra A to the underlying set .
Additionally, if the linear functional is an algebra homomorphism, that is to
say if
p(ry) = p(x)e(y)
Then we say that ¢ is multiplicative.

2.3 Topology
Basic definitions

First we begin with some basic definitions, followed by some properties of topo-
logical spaces that will be useful later. Most of these definitions are from [Leell]

Definition 2.3.1 (Topology). A topology'®consists of a set X together with a
collection T of subsets of X called open sets. They must fulfill the following
axioms;

For A; € T
(1) For any'®indexing set I, (J;c; Ai € T
(2) XeT
(3) If I is a finite set, then (),c; 4 € T

Additionally, the complement of an open set A in X, X \ A, is called a closed
set.

When one wishes to define a topological space X, straight up defining what
the open sets are is the most straightforward way of doing it, but there are many
other equivalent ways. Instead of defining the open sets one may, for example,
instead choose to define the neighborhoods of points. I will not show that this
is an equivalent way of defining a topology in this text, but the concept itself is
still very useful.

15Similarly as with groups, denoting a topological space merely as X is abuse of notation.
More proper would be to write (X, 7).

161t is important to note that @ is always a member of the topology because it is the union
over {A;}ico-
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Definition 2.3.2 (Neighborhood). Let X be a topological space, let ¢ € X and
let A be an open set containing a A set IV is said to be a neighborhood of q if
ACN
Remark. Every open set A is a neighborhood of the points contained in A.
This follows immediately from the definition. Some authors, notably [Leell],
define neighborhoods as always being open sets, however the more common
definition is to define neighborhoods as containing open sets, while themselves
not necessarily being open.
Remark. While open sets can be thought of as a generalization of the open
intervals from the real numbers, neighborhoods can instead be thought of as a
generalization fo the concept of closeness. If N1 and N5 are both neighborhoods
of g and N1 C Ns, then the points contained in N7 may in some sense be thought
of as closer to ¢ than the points contained in N \ Nj.

The final way to define a topology I will mention in this text is to define a
basis.

Definition 2.3.3 (Basis). A basis on a set X is a collection of sets B that fulfill
two criteria.

(1) B forms a cover of X, that is (Jgcz B =X
(2) The intersection of any two basis sets is also a basis set, that is to say
VB1, By € B,Bl NByeB
Proposition 2.3.4. Let B be a basis on X, and let T be the collection of all
(possible empty) unions of sets from B. Then T is a topology on X.
Proof. The proof may be found in [Leell]. O

Definition 2.3.5 (Continuous function). A continuous function is a function
between two topological spaces f : X — Y such that for every set A C Y that
is open in Y, the preimage of A under f, f~1(A), is open in X.

Ezample 2.3.6. In R equipped with the default topology, the function f : z — z2
is continuous.

Remark. In the category of topological spaces Top, the continuous functions are

the morphisms and the topological spaces are the objects. From this one might
surmise that continuous functions are indeed very important.

Definition 2.3.7 (Product topology). Let A and Y be topological spaces. Let
AC X beasetopenin X and BCY beasetopeninY. Let BC X xY
be the collection of all sets on the form A x B. Then the topology on X x Y
generated by B is called the product topology.

Ezample 2.3.8. Let R have the usual topology, and let R x R have the product
topology. Then the sets

A={(z,y): x>0,y >0}
B={(z,y):a® +y* <1}
C=AUB

14



are all open in R x R, while the sets

D= {(z,y) : v =0,y € R}
E={(z,y) 2,y e Ra* +y* <1}

are not open in R x R.

Properties of topological spaces

When defining a topology, the open sets may be chosen more or less arbitrarily
(as long as they fulfill the axioms). Each different choice of opens sets define
a different topology over the set X. However, many of these topologies behave
sort of ”strange”.

Ezample 2.3.9. Consider the set X = {1,2}, with 7 = {0, {1}, {1,2}} as the
open sets. The reader may verify that this is a proper topological space. It has
the ”strange” property that the number 2 is ”close” to the number 1, as every
neighborhood containing 2 also contains 1, yet 1 is not ”close” to 2 as the set
{1} is a neighborhood of 1 but not of 2. Examples such as this motivates the
definition of the Hausdorff property.

Definition 2.3.10 (Hausdorff space). A topological space Xis considered Haus-
dorff if, for every pair of points q1, g2 € X, there exists neighborhoods Ny, Na,
such that g1 € N1, gg € No and NN Ny =0

We can see now, that X in example 2.3.9 is not Hausdorff, because there is
no neighborhood of 2 not also containing 1. The Hausdorff property is one of
several so called separation axioms, which as the name implies, says something
about how well the points in the space are separated from each other. In a similar
spirit, I will now state, but not prove, a theorem called Urysohn’s lemma

Theorem 2.3.11 (Urysohn’s lemma). Let X be a topological space such that
for every pair of disjoint closed subsets of X have disjoint open neighborhoods.'”
Let A, B C X be closed. Then, and only then, is there a continuous function
f: X —10,1] such that f(A) = {0} and f(B) = {1}

Proof. The interested reader may find a proof of the theorem in [Wil04] O

Definition 2.3.12 (Compact set). Let X be a topological space, and {A;}icr
be a collection of open sets in X such that {A;};cr covers X, meaning

XQU&

il
If in every such {A};cr we can find a finite subcollection of sets

{A;};es C {A}icr where J C I is finite

17This is called being a normal space and is another one of the so called separation axioms
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that also covers X, then we say that X is compact.
Further, if around every point ¢ it is possible to find a neighborhood N(q)
that is compact, then the topological space X is said to be locally compact[Leel1]'8.

Theorem 2.3.13 (Tychnofl’s theorem). Let {X;}icr be a collection of compact
topological spaces. Then their cartesian product [| X; is compact with respect to
the product topology.

Proof. The interested reader may find the proof in [Kel81] on page 143. O

Definition 2.3.14 (Topological group). A topological space G together with a
binary operation + and a unary operation ~! is said to be a topological group
if the following holds

(1) (G,+) is a group, as defined in 2.2.1 (with ~! being the inverse operation
iz !

(2) + and ~! are continuous with respect to the product topology on G x G
and the topology on G respectively

Further, if the topology defined on G is both locally compact and Hausdorff,
we say that G is a locally compact group[Foll6].

2.4 Measure theory

Definition 2.4.1 (Measure). A o-algebra consists of a set X together with a
collection 2 of subsets of X such that the following hold

(1) X e
(2) f Ac A then X \ Ae
(3) If for every n € N A,, € 2, then (Jy A, €

Let 2 be a g-algebra, and let u : 20 — [0,00]. Further let p be countably
additive, meaning

1 (U Ai) = Z“(Ai) with A, N A; =0 for every A;, A; € A
i=1 i=1

and let u(A4,) < oo for some n € N. Then y is said to be a measure on
The set X together with 2l and p is called a measure space.

18There are several different definitions of local compactness, the one given here is the most
common. The curious reader may look in [Leell] for several properties of locally compact
spaces that other authors sometimes gives as definitions. Unfortunately, the various properties
are not in general equivalent to being locally compact as defined here, however in a Hausdorff
space, they are.
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Definition 2.4.2 (Borel measure). Let X be a topological space. Let 2 be the
smallest o-algebra such that for every open set A C X, A is in A.'° Then the
members of A are called the Borel sets of X

If X is locally compact and Hausdorff, the measure p defined on 2 is called
a Borel measure.

Definition 2.4.3 (Measurable function). Let f be a function from a measure
space M to a topological space X. If for every open set A C X, the preimage
f71(A) C M is a measurable set, then the function f is said to be measurable.

3 Gelfand theory

3.1 Definitions

Definition 3.1.1 (Normed algebra). let A be a C-algebra and let ||| : A — R
be a unary mapping with the following properties
For z,y e R

Dz +yll < llzll + vl

(1)
(2) |laz|| = |al||z| for all a € C
(3) If |z|| =0 then x =0

4) [z =0

Remark. The norm on an algebra induces a so called metric on A. Any function
f that preserves the metric, that is ||f(z)||2 = ||=||1 is called isometric and is
an isomorphism of metric spaces.

Definition 3.1.2 (Adjoining unit). Let A be an algebra without unit. Let
A ={(z,\) € A x C}. Then define
@A)+ (op) = (@+y, A+ p) ple,A) = (po, pA)
and define
(@, )y, 1) = (wy + Ay + p, Ap)
Then e = (0,1) is the identity in A,
If A is normed, it can be extended to A, by
[, DI = [l + |Al

Definition 3.1.3 (Vanish at infinity). Let X be a locally compact topological
space and let f : X — C. Let € > 0. If there exists some compact subset A C X
such that |f(z)| < e for every such ¢, then f is said to vanish at infinity.

Notation. We denote the set of all functions f from X that vanish at infinity

19Guch 2 is guaranteed to exist [Rud87, Thm. 1.10]
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Definition 3.1.4 (Strong separation). Let X be a topological space. Let F be
a family of functions from X to C such that the following holds

Vee X3f € F f(x) #0, Va,ye Xa#ydge F g(x)# f(xr)
Then F' is said to strongly separate the points of X

Definition 3.1.5 (Cauchy sequence). Let A be an algebra, and let {z,} be a
sequence of points in A for n € N. If for every choice of € > 0 there exists an
N € N such that whenever n,m > N

lxn — zml|| < e

then {z,} is called a Cauchy sequence.
If there exists a point a € A such that for every £ > 0

|€m — al] > ¢ only for finitely many x,, € {z,}
then a is said to be a limit point of {z,}

Definition 3.1.6 (Banach Algebra). Let A be a C-algebra. Let ||-]] : A = R
be a function satisfying the following properties

For every z,y € A
(1) [lz =0
(2) If ||| = 0 then x =0
@) Mz +yll < [lzfl + [yl
(4)
()
)

4) |[Az|| = |Al||z|| for any X € C
5) lle[l =1
(6) llzyll < [lz|[lyll
Then ||| is called a norm and A together with ||-|| is called a normed algebra.

Further, if every Cauchy sequence of points in A has a limit point a € A,
then A is said to be complete.
If A is both normed and complete it is called a Banach algebra.

Theorem 3.1.7 (Stone-Weierstrass theorem). Let X be a locally compact A be a
subalgebra of Co(X) such that A is closed under complex conjugation. Further,
assume A strongly separates X. Then for every meighborhood € > 0 and for
every function f € Cy(A) there is some a € A such that ||f —al|, <€

Definition 3.1.8 (Spectrum of an element). Let A be and algebra over the
complex numbers C and let e be the identity of A. We say = € A is invertible
if there exists and inverse 2= € A such that x2~! = e. Then for and z € A,
the spectrum of x, o4(x) is defined as follows

oa(x) ={X € C: Xe — x is not invertible in A

18



Definition 3.1.9 (Spectral radius). Let A be a normed algebra and let z € A.
Then
ra(z) = inf{[|z"||”™ : n € N}

is called the spectral radius of x.

Definition 3.1.10. Let X be a locally compact Hausdroff space and let f €
Co(X) Then the supremum norm is the norm defined by

[flloc = sup|f(z)]
zeX

Definition 3.1.11 (Gelfand topology). Let A be a commutative Banach alge-
bra, and let A(A) denote the set of all nonzero linear functionals on A. Let T
be the smallest topology for which every function

eval, : A(A) = C ¢ ¢(x) forsomez e A

Notation. For the reminder of this text, A(A) will always refer to the set of
linear functionals over A an it will be assumed to always have the Gelfand
topology as above.

3.2 The Gelfand representation

Theorem 3.2.1 ([Kan09, Lem. 2.1.1]). Let A be an algebra over the real or the
complex numbers with identity e, and let ¢ be a linear functional on A which
satisfies

ple) =1 and ¢ (2?) = p(z)*
Then @(xy) = (x)p(y) for every z,y € A

Proof.
¢ (2%) + @y + yz) + ¢ (y*) = w(z2+my+y$+y)
=¢((z+y)?)
=(p ))

(z +
= (e(x) + ¢(y))?
o(2)* + 20(x)0(y) + ¢(y)*
= ¢ (¢%) + 20(x)e(y) + ¢ (v°)

Subtracting from both sides, we see that

p(ry +yz) = 20(z)p(y)

for any x,y € A. To complete the proof, we need to show that p(zy) = ¢(yx)
Let a,b € A and note that

(ab — ba)? 4 (ab + ba)* = 2(a(bab) + (bab)a)
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implies that

o(ab — ba)® + 4p(a)*p(b)* = ¢
¢

Then set a =  — ¢(x)e so that ¢(a) = 0 and set b = y to obtain
0 = ¢(ay — ya)
= p(ay) — ¢(ya)

Thus ¢(ay) = ¢(ya), so p(xy) = ¢(yzx) .

Definition 3.2.2 (Weight function). Let G be a locally compact group and let
w be a positive function defined on G. Then w is a weight function if it satisfies
the following

(1) w(zy) <w(@)w(y) Yo,y cG
(2) w is Borel measurable

Theorem 3.2.3 ([Kan09, Lem. 1.3.3]). Let C be a compact subset of a G. Then
there exists positive real numbers a and b, such that

a<w(z)<b Vel

Proof. The proof may be found in [Kan09]. The reader may find [BCS58] a
useful reference for some specific steps in the proof.
O

Theorem 3.2.4 (Gleason-Kahane-Zelasko [Kan09, Thm. 2.1.2]). Let A be a
unital Banach algebra. For a linear functional ¢ on A the following are equiv-
alent:

(1) ¢ is nonzero and multiplicative
(2) p(e) =1 and ¢(x) # 0 for every x € A that is invertible.
(8) o(x) € oa(x) Vre A

Proof. The proof is done in 3 steps.

1 — 2: If ¢ is nonzero, then p(e) = 1 per definition, and if z is invertible, then
1=p(@)p@?).

2—3: Let A€ A\ oa(z). Then 0 # p(x — Ae) = p(x) — A
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3 —1: Let p(z) € ga(x) Vo € A. We first show that ¢ (2?) = ¢(z)?. It then
follows from 3.2.1 that ¢ is nonzero and multiplicative.

Let n > 2 and let
P(X) = o((Ae —2)")

Let Aq,..., A\, denote the roots of P. Then
0=P\)=p(Nie—2)") € ca((Nie —x)") for each i
But then )\; € 04(x) and thus |\;| < r4(z)? Further
TT0 =20 =) = X =gl (o (02) V2 -1 07)
i=1
By comparing the coeflicients of each power of A we see that
Zz\i =np(z) and Z Aidj = (Z) o(x?)
i=1 1<i<j<n
From this it follows that
n 2 n
(Z Ai> =Y i=1"A 42 > AN =) A +n(n— (@)
i=1 1<i<j<n i=1

Combining the above we conclude that

2

n*le(@)* - ¢ (2%)] = < nfe (2%)] + nra(z)

) (xQ) + Z )\?
i=1

As this holds for all n we conclude that ¢ (z?) = ¢(z)?
O

Theorem 3.2.5 ([Kan09, Thm. 1.4.6]). Let X be a locally compact Hausdorff
space. Let E C X, and let the following hold for each such E:

I(E)={feCy(X): f(x) =0 for every x € E}

Then g : E — I(E) is a bijection between the collection of nonempty closed
subsets of X and the proper closed ideals of Co(X). I(E) is a modular ideal iff
E is compact. I(E) € Max(Co(X)) iff E is a singleton set.

The interested reader may find the proof in [Kan09]

Theorem 3.2.6 ([Kan09, Thm. 2.1.8]). For a commutative Banach algebra A,
the mapping
p—kerp={zxeAd:p(x)=0}
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Proof. Let ¢ € A(A). Then kery is an ideal of A and also a losed linear
subspace of codimension one in A . Choose a € A such that ¢(a) = 1. Then for
any x € A
plaz — x) = p(a)p(z) — p(x) =0

so ax — x € ker . It follows that ker ¢ € Max(A)

Let @1, 92 € A(A) such that ker ¢, = ker p2. Denote this ideal I. Let u be
such that v is an identity modulo I . Since the codimension of I in A is one,
meaning that [ is a proper ideal, any x € A can be uniquely expressed as

r=Au+y forsomeyecl, AeC

O

Theorem 3.2.7 ([Kan09, Thm. 2.2.3]). Let A be a commutative banach algebra
then the following holds

(1) A(A) is a locally comapct Hausdorff space
(2) A(A.) = A(A) U {px} is the one-point compactification of A(A)
(3) A(A) is compact if A has an identity.

Proof. 1 Let let A have an identity, and let 1, p2 € A(A) be distinct. Then
there is some € A such that 0 < $|¢1(z) — @2(x)|. It follows then that
here are disjoint neighbourhoods N7, Na containing (1 and ¢4 respectively,
so A(A) is Hausdorff. Let N be a neighborhood of Delta(A) and let N,
be a neighborhood of A(A.). Let ¢ € A(A),e > 0 and let FF C A be
finite. Then

N, F.e) = N(p, Fe) U{po} if |p(x)]| <eVr e F
e N(p, F,e) otherwise

Thus the Gelfand topology on A(A) coincides with the Gelfand topology
on A(A.). Since {pso} is closed in A(A.), it follows that A(A) is open,
and thus locally compact .

2 Letze Aje >0

Ne ={poc} U{p € A(A) : [p(z)] <&} (1)
= A(A) \{Y(A(Ae) : |o(z)] = €} (2)

The sets {p(A(Ae) : |¢p(z)| > e, € A} are closed in A(A.), so they
are compact since Delta(A) is Hausdorff. The complement of a basv
neighbourhood N around ¢, is the union of finitely many such compact
1. Thus Delta(A.) = A(A) U{pw} is the one point compactification of
A(A)
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3 Let
C=][{zeC:l2 < |}

z€EA

and let C' have the Product topology. Then by Tychnoff’s theorem, C' is
compact. Note that |p(z)| < ||z|| for every ¢ € A(A),z € A. Define

$p:AA)>C o p(z) forzeA

Then ¢ is injective and per definition a homeomorphism.

To show that A(A) is compact, it suffices to show that p(Delta(A)) is
closed (recall that this is true ).

Let A = (Az),eca € C be a point in the smallest closed set containing
d(A(A)). Let z,y € A,a, 8 € C. For any € > 0, if ¢(a) — A, < € whenever
a = ax + By, then

|a>\x + 5)\1/ - )\ax+/3y| §|O‘H)‘x - (p(l‘)H—

|6||)‘1/ - ‘P(y)| + |<P(04 + By) - )‘am+5y|
<e(lef + 18]+ 1)

and

Aoy = Aady| < [Aay — p(@y)] + [e)]le() = Aal + [Xallo(y) — Ayl
< e+ lyll+ ll=l)
Because € > 0 was arbitrary, it follows that the function ¢ : A — C,z —

Az is a homomorphism, and that ¢ € A(A)
O

Remark. The other direction of 3 is not relevant for this text, but it does follow
from Shilov’s idempotent theorem which may be found in

Theorem 3.2.8 ([Kan09, Them. 2.2.5]). Let A be a commutative Banach al-
gebra. Then for each x € A

oa(@)\{0} CZ(A(A)) = {p(z) : ¢ € A(A)} C oa(2)

Proof. Let A be a Banach algebra with identity e. Then by 3.2.4 it follows that
for every ¢ € A(A), ¢(x) € oa(x). For the other direction, let A € o 4(x). Then
the ideal

I=(0Me—2x)A

is proper, so it must be the kernel of some homomorphism ¢ € A(A). But then
p(he —x) =0, 50 A € Z(A(A)) O

Theorem 3.2.9 ([Kan09, Thm. 2.2.7]). Let A be a commutative Banach algebra
and let T' be the Gelfand representation of A . Then the following holds
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(1) T maps A into Co(A(A)) and is norm decreasing.
(2) T'(A) strongly separates the points of A(A).
(8) T is isometric iff ||z||> = |22 || for every x € A

Proof. 1 By 3.2.7 A(A,) is the one point compactification of A of A(A),
and since T(poo) = 0 it follows that & € Co(A(A)). By 3.2.8

1]l = ra(z) < [l

3 Since
L(A)(p) # {0} Ve e A(4)

and since if p; # @9 it follows that ¢1 (29 # @o(z) for some x € A, it is
obvious that I'(A) strongly separates the points inA(A)

3 Let |jy||* = ||?|| for every y € A. Then by induction,

lyl1* = lly*"|
for every n € N. It follows that
S o 2" 1/2" _
8 = rala) = lim |la e

For the other direction, assume I' is isometric. But then

?ll =

2]l = 2%l = 1213 = Il

O

Theorem 3.2.10 ([Kan09, Lem. 2.4.4]). Let A be a commutative C*-algebra.
Then the Gelfand homomorphism is a *~homomorphism

Proof. Let A be unital?’. Let a, 3,v,6 € R and let p(x) = a+i83, p(z*) = y+id
Assume that §+ § # 0. Since 8 + « isn’t zero, it must be invertible. Let
y=(B+8) " z+a2*—(a+7)e) € A. But theny =y* , so

o(y) = (B+08) Ha+if+~+id— (a+7))
=(B+6)""(iB +i0)
=i(B+6) (B +9) =i

Thus, for all r € R

oly+rie) =o(y)+ri=i+ri=(1+r)i

20This is allowed according to Kaniuth
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so |1+ r| < |y + riel|. But since y = y* and A is a C*-alegbra, it follows that

(r+1)% < ||y + rie|?

= ||(y + rie)(y + rie)*|
= [ly + rie)(y — rie)||
= Iy +r’e||

< ly? [+ r?

However, since y does not depend on r, there will be a sufficiently large r
such that 2r + 1 > ||3?|| and the inequality fails. This is a contradiction, so
B+ 6 = 0, meaning 8 = —9.

It follows that

p((iz)") = p(—ia") = —ip(e") = —i(y +i6) = = — ivy

However, from the definition of ¢ above, we know that ¢(iz) = i(a + i) =
—fB + ia. From this we conclude that

—B—iy=—-p—i«x

so v = a. But since ¢(z) and p(z*) have the same real part but opposite
imaginary part, we conclude that ¢(x*) = @(x) for arbitrary ¢ € A(A) and
xeA O

Theorem 3.2.11 ([Kan09, Thm. 2.4.5]). For a commutative C*-algebra A, the
Gelfand homomorphism T is an isometric *-isomorphism from A onto Co(A(A)).

Proof. Let y € A such that y = y*. Then

Iyl = llyiyll = |||

and by induction
277' n
lyl* = [s"]| nen
but then

I

n 2"
raly) = Tim ||y? = |yl

Let x € A, but then
ra(zte = |loxz| = ||z

as per above. But from 3.2.10 we know that ¥ =7 and together with 3.2.8 we
conclude that

I1Z11% = 172l = ll(z"2)*[loc = ra(z*z) = |l2]|?

This means that = + 7 is isometric and that A every Cauchy sequence with
respect to |||l has a limit point in A, so it is closed inf Cy(A(A)). Then
by 3.2.9 A is a *-subalgebra of CyA(A)) which strongly separates the points
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of A(A) By 3.1.7 it follows that Neighbourhoods of every point of Cy(A(A))

contain points of A. But then A = Co(A(A)). Since we already knew that
the Gelfand transform was a homorphism, this shows that it is an isometric
*_homomorphism O

Theorem 3.2.12 ([Kan09, Lem. 2.2.12]). Let A and B be commutative Banach
algebras. If there exists an algebra isomorphism ¢ : A — B, then A(A) and
A(B) are homomorphic.

Proof. Let ¢* : A(B) — A(A) be the dual of ¢, that is to say

9" ()(a) = p(¢(a)) forae A, pe A(B)

then ¢* is a bijection and continuous as per the definition of A. Similarly, ¢*_1
is also continuous. O

Theorem 3.2.13 ([Kan09, Cor. 2.4.6]). For any two C*-algebras A, B, the
following are equivalent:

(1) A(A) and A(B) are homeomorphic.

(2) There exists an isometric *~isomorphism between A and B.

(8) There esists an algebra isomorphism between A and B.
Proof. The proof is shown in three steps:

1—-2: Let ¢ : A(A) — A(B) be a homeomorphism. But then f +— fo¢ is an iso-
metric isomorphism Co(A(A)) — Co(A(B)) and f + fo @, so Co(A(A))
is isometrically isomorphic to Co(A(B)). By 3.2.11 we know that A is iso-
metrically isomorphic to Cy(A(A)), similarly for B. Since isomorphisms
are transitive due to the transitivity of morphism composition in general,
A is isometrically isomophic to B.

2—3: Is trivially true as all isometric *-isomorphisms are algebra isomorphisms
3—1: This a special case of 3.2.12
O

Theorem 3.2.14 (Anti-equivalence of categories). Let C*-Alg denote the cate-
gory of all C*-algebras with *-algebra homomorphisms as the morphisms and let
Haus denote the category of all locally compact Hausdorff spaces with continuous
functions where the preimage f~*(K) of a compact subset K is compact as mor-
phisms. There exists natural isomorphisms S : X — A(Co(X)) with x — eval,
and D : A — CoA(A))?! with a — @, such that Cy and A are contravariant
functors and
C*-Alg = Haus?

Proof. This is a consequence of 3.2.13 O

211t is the existance of D which Gelfand and Neumark originally proved in [GN94]
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3.2.1 Dictionary

By this point the reader has hopefully gained some insight into how intimately
connected Hausdorff spaces and commutative C*-algebras are. One may in fact
construct a dictionary of sorts of which algebraic terms correspond to which
topological ones. While I have not in this text defined or even mentioned some
of the following terms, I still wish to include them so that they may perhaps
serve as inspiration for future reading withing the field.

The following is from [Khal3]

Topological spaces Algebraic spaces
compact unital

1-point compactification unitization
Stone-Chech compactification  multiplier algebra
closed subspace closed ideal
surjection?? injection??
injection?? surjection??
homeomorphism automorphism
Borel measure positive functional
probability measure state

disjoin union direct sum
cartesian product minimal tensor product

22Notice how the dual properites of surjectivity and injectivity swap with
each other when transformed by the contravariant functors

References

[BCS58]  Anatole Beck, Harry H. Corson, and A. B. Simon. “The interior points
of the product of two subsets of a locally compact group”. English.
In: Proc. Am. Math. Soc. 9 (1958), pp. 648-652. 1SsN: 0002-9939. DOTI:
10.2307/2033225.

[Foll6]  Gerald B. Folland. A course in abstract harmonic analysis. English.
2nd updated edition. Textb. Math. Boca Raton, FL: CRC Press, 2016.
ISBN: 978-1-4987-2713-6; 978-1-032-92221-8; 978-1-4987-2715-0. DOL:
10.1201/b19172.

[GN94] I Gelfand and M. Neumark. “On the imbedding of normed rings
into the ring of operators in Hilbert space”. English. In: C*-Algebras:
1943-1993. A fifty year celebration. AMS special session commemo-
rating the first fifty years of C*-algebra theory, January 13-14, 1993,
San Antonio, TX, USA. Providence, RI: American Mathematical So-
ciety, 1994, pp. 3-20. 1SBN: 0-8218-5175-6.

[Kan09] Eberhard Kaniuth. A course in commutative Banach algebras. En-
glish. Vol. 246. Grad. Texts Math. New York, NY: Springer, 2009.
ISBN: 978-0-387-72475-1. DOI: 10.1007/978-0-387-72476-8.

27


https://doi.org/10.2307/2033225
https://doi.org/10.1201/b19172
https://doi.org/10.1007/978-0-387-72476-8

[Kel81]

[Khal3]

[Leell]

[Rie16]

[Ruds87]

[Wil04]

John L. Kelley. General topology. (Obshchaya topologiya). 2nd ed.,
transl. from the English by A. V. Arkhangel’skij. Russian. Moskva:
Izdatel’stvo “Nauka”. 432 p. R. 2.10 (1981). 1981.

Masoud Khalkhali. Very basic noncommutative geometry. English.
2nd updated ed. EMS Ser. Lect. Math. Ziirich: European Mathemati-
cal Society (EMS), 2013. 1SBN: 978-3-03719-128-6. DOI: 10.4171/128.

John M. Lee. Introduction to topological manifolds. English. 2nd ed.
Vol. 202. Grad. Texts Math. New York, NY: Springer, 2011. ISBN:
978-1-4419-7939-1; 978-1-4419-7940-7. DOI: 10.1007/978-1-4419-
7940-7.

Emily Riehl. Category theory in context. English. Mineola, NY: Dover
Publications, 2016. 1SBN: 978-0-486-80903-8.

Walter Rudin. Real and complex analysis. English. 3rd ed. New York,
NY: McGraw-Hill, 1987. 1sSBN: 0-07-054234-1.

Stephen Willard. General topology. English. Reprint of the 1970 orig-
inal. Mineola, NY: Dover Publications, 2004. 1SBN: 0-486-43479-6.

28


https://doi.org/10.4171/128
https://doi.org/10.1007/978-1-4419-7940-7
https://doi.org/10.1007/978-1-4419-7940-7

These are some corrections to The Gelfand Duality bacherlor’s thesis by
Jesper Flodmark.

Please note that there are a number of spelling mistakes I have deliberately
chosen to ignore for the sake of this correction document. This is because I
judge that the correct meaning is apparent from context and wish to keep this
list of corrections free from unnecessary clutter to the extent it is possible.

Page 8

Definition 2.1.2

(2) The correct definition of the morphisms of the opposite category should be
fr.Yy - X

Page 14
Definition 2.3.2

The corrected definition is as follows
Let X be a topological space, let ¢ € X and let A be an open set containing
q. A set N is said to be a neighborhood of g if A C N

Page 17
Definition 3.1.1

This definition is incorrect and may be disregarded completely. 3.1.6 contains
the correct definition of a normed algebra as considered in this text.

Page 21
Theorem 3.2.6

The correct statement of the theorem is as follows
For a commutative Banach algebra A, the mapping

> kerp={zecA:p(x)=0}

is a bijection between A(A) and the set of all mazimal modular ideals over A

Page 22
Proof of theorem 3.2.6

This proof is incomplete. For a full version of the proof, see [Kan09a, Thm. 2.1.8],
page 49.



Page 23

In the remark right before Theorem 3.2.8 there is a missing reference of where
to find Shilov’s Idempotent theorem. The theorem may be found in [Kan09b|

Page 26

Theorem 3.2.12

The correct statement of the theorem is as follows:
Let A and B be commutative Banach algebras. If there exists an algebra
isomorphism ¢ : A — B, then A(A) and A(B) are homeomorphic.
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