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Abstract

A graph can illustrate patterns in data. Clusters in a graph show which of
its vertices are closely related. The Laplacian matrix is a powerful matrix
that one can associate with a graph. Spectral analysis studies the relations
between properties of a graph and eigenvalues of its Laplacian matrix. In
this thesis, basic facts about the Laplacian matrix will be introduced and an
investigation of its use in the study of clusters will be performed. We derive an
approximation of a clustering method called RatioCut for finding two clusters
in a graph, which uses the eigenvector of the second smallest eigenvalue as an
indicator. We give examples that illustrate the method.

Sammanfattning

En graf kan åskådliggöra mönster i data, där kluster i grafen visar vilka noder
som är nära relaterade. Laplacematrisen är en kraftfull matris som kon-
strueras utifrån grafens struktur. I spektralanalys studeras relationen mellan
en grafs egenskaper och Laplacematrisens egenvärden. I uppsatsen redogör vi
för grundläggande teori om Laplacematrisen och vi undersöker dess tillämp-
barhet för att studera kluster. Vi utför en approximation av mtoden RatioCut
för att identifiera två kluster i en graf, vilken använder egenvektorn tillhörande
det näst minsta egenvärdet som indikator. Metoden illustreras med exempel.
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1 Introduction

Thinking about a graph, different pictures may come to mind: a curve representing
the trajectory of a discus throw, a family tree, or a social network. In either case, a
graph is a visual representation of underlying information, which, when talking about
the social network, is built of a set of vertices and edges. Each vertex represents an
individual, and an edge between two individuals represents their social connection.
In his article, "On the Magical Properties of the Laplacian Matrix", [Ita24], Uri Itai
provides an introduction to the Laplacian matrix that generates curiosity and urges
one to learn more about the topic. Among other interesting statements, Itai writes
that a graph is a visualisation that reveals patterns in the underlying data, which is
of great relevance when it comes to the analysis of information. One of the patterns
that will be the focus of this thesis is clusters - and clustering - meaning dividing
the vertex set of a graph into subsets based on the edges between them.

Spectral clustering, which is clustering based on the eigenvalues and eigenvectors
of a graph, aims to cluster a graph of vertices and connecting edges into subsets of
vertices where the intuition is that vertices within a subset are more similar to
each other - a cluster, [vL07, p. 9]. In this thesis, we begin the discussion about
clustering by showing that the connected components of a graph are determined
by the eigenspace of zero. Further, the topic of identifying clusters will be limited
to what is called the "RatioCut" method for spectral clustering, which is described
in detail by Ulrike von Luxburg in her paper "A Tutorial on Spectral Clustering",
[vL07]. The RatioCut method is a method with the goal of minimizing the number of
edges between different clusters in a graph. This way, a problem of how to identify
clusters in a graph is reformulated from focusing on similarities within a cluster,
to focusing on minimizing the number of edges between clusters instead, [vL07,
p. 9]. We will, based on Luxburg’s paper, approximate the RatioCut method for
clustering to the case of identifying two clusters in a graph, a subset of vertices, and
its complement.

This thesis is divided into seven chapters, each containing sub-chapters to further
divide and analyse the concepts in a coherent and clear manner. The first chapter
offers an introduction to the topic of Laplacian matrices and their application as
being a tool for spectral clustering of graphs. The second contains an overview of
definitions and theorems that are crucial for understanding the concepts discussed in
the thesis. In the third chapter, we introduce two graphs which serve as a pedagogical
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function throughout the rest of the thesis - all mathematical theory is applied to these
graphs. Chapter four defines the Laplacian Matrix and reviews some of its spectral
properties that matter for the introduction of the RatioCut clustering method in
Chapter five. In Chapter five, the method is described and analysed for a case
of two clusters. Chapter six presents an overview of the limitations of the theory
discussed in this thesis and gives an introduction into future expansions of the topic
of clustering using the Laplacian matrix. Lastly, Chapter 7 wraps the thesis up with
a concise and clear summary of the topic discussed.

By reading this thesis on the Laplacian matrix as a tool for spectral clustering, the
reader will gain an understanding of how the spectral properties of a graph, visualised
by the Laplacian matrix, can be used to identify clusters in underlying data. A
detailed approximation of the problem of the RatioCut method for identifying two
clusters is included, which gives an insight into how clustering problems of graphs
relate to the analysis of the eigenvalues and eigenvectors of the Laplacian matrix.
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2 Theoretical background
This chapter will present the theoretical background needed in this thesis, and math-
ematical terms will be defined. The definitions and theorems are divided into the
following areas: 2.1 Concepts in graph theory, and 2.2 Spectral properties of matri-
ces.

2.1 Concepts in graph theory

This introductory section uses books written by Norman L. Biggs Discrete Math-
ematics, [Big02], and Bogdan Nica’s A Brief Introduction to Spectral Graph The-
ory, [Nic18], to provide useful definitions and theorems of concepts in graph theory
needed to further understand the reasoning and derivations made in this thesis.

Definition 2.1. A finite graph G is a structure consisting of a finite set of vertices
V , and a set of edges E, that consists of 2-subsets of V . V is called a vertex set,
and E is called an edge set, [Big02, p. 178]. We write

G = (V, E).

For two vertices u, v in V such that they are connected, we use the notation
u ∼ v to indicate that they are an edge {u, v} in E.

Definition 2.2. An adjacency matrix A of a graph G is a square matrix indexed
by the vertex set V , given by

A(u, v) =

1, if u ∼ v

0, otherwise,

where u and v are vertices in V, [Nic18, p. 63].

Definition 2.3. The degree of a vertex v in V , denoted deg(v), is the number of
edges in E that contain v. The degree matrix D is given by

D(u, v) =

deg(v), if u = v

0, otherwise,

[Nic18, p. 63].
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Definition 2.4. A partition of a vertex set V is a family of non-empty sets Vi, such
that V is the union of all sets Vi and each pair Vi, Vj (i ̸= j) is disjoint, [Big02, p.
126].

Definition 2.5. Let u, v be two vertices of a graph G. A path from u to v is a
sequence of vertices u = w1, w2, ..., wn = v, where for each i (1 ≤ i ≤ n − 1), either
wi = wi+1 or {wi, wi+1} is an edge, [Big02, p. 183].

Definition 2.6. We say that two vertices u and v in a graph are connected if there
is a path from u to v. It is easy to check that being connected is an equivalence
relation. The vertex set V is partitioned into k disjoint equivalence classes

V = V1 ∪ V2 ∪ · · · ∪ Vk,

where equivalence classes of this relation are called connected components of a graph.
We say that a graph is connected if it has just one connected component. Equiva-
lently, a graph is connected if for every two vertices u, v there is a path from u to v,
[Big02, p. 183].

We use the word cluster to denote, informally, a subset of vertices of the vertex
set V , that are more connected to each other than to vertices outside the subset. At
this point, this is a heuristic rather than a rigorously defined notion. In Chapter 5,
when we discuss the RatioCut method, we will see a way to formalize the notion of
a cluster. Note that connected components are the most obvious types of clusters.

2.2 Spectral properties of matrices

This section uses books written by Friedberg et al. Linear Algebra, [FIS14], and
Lütkepohl’s Handbook of Matrices, [Lü96]. As the scope of this thesis concerns
matrices, the definitions and theorems have been limited to the area relating to ma-
trices, in order to present a concise and clear argument. This is recurring throughout
the thesis.

Definition 2.7. Let M be a n × n matrix defined over a field F . A nonzero vector
v in F is called an eigenvector of M if v satisfies Mv = λv for some scalar λ which
is called the corresponding eigenvalue to the vector v, [FIS14, p. 246].
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Theorem 2.8. Let M be a n × n matrix defined over a field F . Then the following
three statements are equivalent:

1. M is invertible,

2. If Mv = 0, then v = 0,

3. det(M) ̸= 0,

[FIS14, p. 71].

In this thesis we assume F to be the real numbers R.

Definition 2.9. A real, symmetric n × n matrix M is positive semi-definite if
vtMv ≥ 0 for all non-zero, real vectors v, [Lü96, p. 151].

Theorem 2.10. A matrix M is positive semi-definite if it is a real, symmetric
matrix and all its eigenvalues are non-negative, [Lü96, p. 267].
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3 Introductory example graphs
There will be two graphs used throughout the thesis as help when understanding the
Laplacian matrix and its application to spectral clustering. Both graphs are similar,
but when used together, offer a comprehensive way of explaining the definition of
the Laplacian matrix. The inspiration for these graphs comes from a YouTube video
titled "What is...the laplace matrix?", [Vis23, 1:10-4:57, 9:05-11:02].

Both graphs have seven nodes, with the only difference that Figure 1 has no edge
between vertices 4 and 5, while Figure 2 has. By eye, we can see in Figure 1 that
it consists of two connected components, while in Figure 2 there are two clusters
connected by an edge.

1 2

3 4 5

6

7

Figure 1: Graph with two connected components.

1 2

3 4 5

6

7

Figure 2: Connected graph.
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4 The Laplacian matrix

4.1 Definition

We can now introduce the Laplacian matrix as an expression involving the adjacency
matrix (Definition 2.2) and the degree matrix (Definition 2.3) defined above. There
are several ways to define the Laplacian matrix; however, in this thesis, we will
stick to Definition 4.1 below, which is used by Bogdan Nica in his book A Brief
Introduction to Spectral Graph Theory, [Nic18, p. 63]. This definition is often called
the "unnormalised" graph Laplacian.

Definition 4.1. The adjacency matrix A and the degree matrix D are related by
the equation

L = D − A,

in other words, L is the Laplacian matrix defined as

L(u, v) =


deg(v), u=v

−1, if u ∼ v

0, otherwise.

It may be of relevance to be familiar with the existence of a normalised graph
Laplacian as well. In her paper "A Tutorial on Spectral Clustering", [vL07, p. 5],
Ulrike von Luxburg defines it in two versions as in Definition 4.2 below.

Definition 4.2. The symmetric matrix Lsym and the matrix Lrw, which is closely
related to a "random walk" on a graph (stochastic process of random transitions
from vertex to vertex, [vL07, p. 14]), are both called a normalised Laplacian matrix
and are defined as

Lsym := D−1/2LD−1/2 = I − D−1/2AD−1/2,

Lrw := D−1L = I − D−1A.

We will not develop the reasoning about the normalised Laplacian matrix more
than noting that it is useful for spectral clustering too, but with a slightly different
method than the one that will be introduced for the unnormalised Laplacian ma-
trix in Chapter 5. From now on, the unnormalised definition is meant when ’the
Laplacian matrix’ is mentioned.
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4.1.1 Laplacian matrix for example graphs

Using Definition 4.1 we can construct the Laplacian matrix L as the difference
L = D − A and for the example graph in Figure 1 get

L =



2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 0 0 0
0 0 0 0 2 −1 −1
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1


.

For the example graph in Figure 2 we get

L =



2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 3 −1 0 0
0 0 0 −1 3 −1 −1
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1


.

4.2 Analogue of the second derivative

If we were to multiply the Laplacian matrix L, here using the matrix representing
the graph in Figure 2, by a vector u⃗ representing every vertex in the graph, we would
get a vector Lu⃗ as follows:

Lu⃗ =



2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 3 −1 0 0
0 0 0 −1 3 −1 −1
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1





u1

u2

u3

u4

u5

u6

u7


=



2u1 − u2 − u3

2u2 − u1 − u4

2u3 − u1 − u4

3u4 − u2 − u3 − u5

3u5 − u4 − u6 − u7

u6 − u5

u7 − u5


.
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We can rewrite this as follows below, where we divide each row i = 1, ..., 7 in Lu⃗

by the degree of ui. This is the same operation as multiplying Lu⃗ by the inverted
diagonal matrix D−1, which diagonal is given by 1/deg(ui). We denote the new
matrix L′.

L′ = D−1 · Lu⃗ =



u1 − u2+u3
2

u2 − u1+u4
2

u3 − u1+u4
2

u4 − u2+u3+u5
3

u5 − u4+u6+u7
3

u6 − u5
1

u7 − u5
1


.

We can identify that every row i in L′ shows the vertex ui minus the average of
its adjacent vertices, and can be represented by the expression

ui − 1
deg(ui)

∑
uj∼ui

uj.

Intuitively, we can say that every row i gives a measure of how much ui deviates
from its adjacent vertices. In his article On the Magical Properties of the Laplacian
Matrix, [Ita24], Itai describes this as an analogue of the second derivative as it
strongly reminds one of the definition of the second derivative of functions, which is
given in Definition 4.3 below.

Definition 4.3. The second derivative of a function f(x) is given by

f ′′(x) = lim
h→0

f(x + h) − 2f(x) + f(x − h)
h2 .

Itai continues by approximating the second derivative to

f ′′(x) ≈ f(x + h) − 2f(x) + f(x − h)
h2 ,

which can be rewritten as

h2 · f ′′(x) ≈ f(x + h) − 2f(x) + f(x − h)
= −2f(x) + f(x + h) + f(x − h)

= −2
(

f(x) − f(x + h) + f(x − h)
2

)
.
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If we divide both sides by −2 we obtain

−1
2h2 · f ′′(x) ≈ f(x) − f(x + h) + f(x − h)

2 ,

where the right-hand side of the approximation side looks similar to the ex-
pression we obtained earlier by looking at the example graph in Figure 2. If f(x)
represents the vertex ui, then (f(x + h) + f(x − h))/2 represents the average of its
adjacent vertices. We get a margin of error of −h2/2 when deriving an approxima-
tion of the second derivative. This is why we say the Laplacian can be viewed as an
analogue of the second derivative, even though it does not satisfy an equality. This
is interesting as spectral graph theory often aims to find patterns in a graph, which
is stated by Itai, [Ita24].

4.3 Computing eigenvalues and eigenvectors

To be able to compute eigenvectors and eigenvalues, we need to be certain that
such exist. The Laplacian matrix is a real, symmetric matrix, which entails that
we can apply the spectral theorem. For the case of real, symmetric matrices, Nica
formulates it as in Theorem 4.4 below, [Nic18, p. 64].

Theorem 4.4. If M is a real, symmetric n×n matrix, then there exists an orthogonal
basis of eigenvectors of M, and M has n real eigenvalues counted with multiplicities.

The Laplacian matrix L satisfies the criteria for Theorem 4.4 since it is a real,
symmetric n × n matrix. Here n is the number of vertices in the underlying graph
with vertex set V , so the Laplacian matrix L has n = |V | real eigenvalues, [Nic18, p.
64]. In other words, the number of real eigenvalues equals the number of vertices in
the graph. Each eigenvalue λ has an associated eigenspace, whose non-zero elements
are the eigenvectors of λ in the vector space Rn.

Note that elements of Rn can be interpreted as functions f : V → R. In partic-
ular, eigenvectors of L can be interpreted as a function of such form that assigns a
real number to each vertex in the vertex set V . This is why eigenvectors are often
called eigenfunctions. To compute the eigenvalues, we can use Theorem 4.5 below.

Theorem 4.5. Let M be a n × n matrix defined over the field F . A scalar λ is an
eigenvalue of M if and only if det(M − λIn) = 0, [FIS14, p. 248].
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Proof. We prove both ways of the equivalence:

1. By Definition 2.7, if λ is an eigenvalue of M , then Mv = λv for a nonzero
vector v in F . By factorisation, we can write (M − λIn)v = 0. Because v ̸= 0,
the matrix M − λIn is not invertible, that is equivalent to det(M − λIn) = 0,
according to Theorem 2.8.

2. By Theorem 2.8, if det(M −λIn) = 0, then the matrix M −λIn is not invertible.
Equally, there exists a nonzero vector v in F such that (M − λIn)v = 0.
Restructuring the equation, we get Mv = λv, so λ is an eigenvalue of M by
Definition 2.7.

Computing the eigenvalues from the equivalence det(M − λIn) = 0, is called
’solving the characteristic equation’.

Definition 4.6. The function f(t) = det(M − tIn) is called the characteristic poly-
nomial of the matrix M , [FIS14, p. 248].

Once the eigenvalues are computed, the associated non-zero eigenvectors v can
be found by solving the equation

(M − λIn)v = 0

for each eigenvalue λ, [FIS14, p. 250].

4.3.1 Computing eigenvalues for example graphs

By applying Theorem 4.5, the following characteristic equation is produced for Fig-
ure 1:

det(L − λI7) = det



2 − λ −1 −1 0 0 0 0
−1 2 − λ 0 −1 0 0 0
−1 0 2 − λ −1 0 0 0
0 −1 −1 2 − λ 0 0 0
0 0 0 0 2 − λ −1 −1
0 0 0 0 −1 1 − λ 0
0 0 0 0 −1 0 1 − λ


= 0.
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This is a large matrix to compute the determinant by hand, so we use the pro-
gramming language R to compute eigenvalues (code is included in Appendix A.1).
This gives us:

λ1 = 0, λ2 = 0, λ3 = 1, λ4 = 2, λ5 = 2, λ6 = 3, λ7 = 4

For Figure 2 we get

det(L − λI7) = det



2 − λ −1 −1 0 0 0 0
−1 2 − λ 0 −1 0 0 0
−1 0 2 − λ −1 0 0 0
0 −1 −1 3 − λ −1 0 0
0 0 0 −1 3 − λ −1 −1
0 0 0 0 −1 1 − λ 0
0 0 0 0 −1 0 1 − λ


= 0.

Using the programming language R (code is included in Appendix A.1), approx-
imated to 3 decimals, we get the eigenvalues

λ1 = 0.000, λ2 = 0.359, λ3 = 1.000, λ4 = 2.000, λ5 = 2.276, λ6 = 3.589, λ7 = 4.776.

4.4 0 is a Laplacian eigenvalue

As already done with the eigenvalues for the two example graphs, Figure 1 and
Figure 2, we can order the Laplacian eigenvalues as follows:

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax,

[Nic18, p. 64]. For both Figure 1 and Figure 2, we can note that λ1 = 0. That zero
is a Laplacian eigenvalue is an useful property, which is stated in Theorem 4.9. The
theorem is proved by Nica, [Nic18, p. 65-66], under the assumption that a graph
is connected, and therefore, he is using the condition that an eigenfunction of zero
is constant. However, we will prove the theorem without this assumption, which is
why we instead have the condition that the function is locally constant, as defined
in Definition 4.7 below.
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Definition 4.7. If f : V → R is a function that satisfies that f(u) = f(v) when u

and v are in the same connected component A in a graph G, then f is called locally
constant. If G is connected, then f is constant.

To prove Theorem 4.9, we also need Lemma 4.8, which is a rephrasing of the
scalar product Lf · f . The rephrasing uses the fact that the Laplacian matrix L

is related to the degree matrix D and the adjacency matrix A by the equation
L = D − A.

Lemma 4.8. If L is a Laplacian matrix and f is a function f : V → R, then L

satisfies the equality
Lf · f =

∑
{u,v}∈E

(f(u) − f(v))2,

[Nic18, p. 64].

Proof. The scalar product is given by

Lf · f =
∑
v∈V

(Lf)(v)f(v),

where Lf(v) can be written as

Lf(v) = deg(v)f(v) −
∑

u:u∼v

f(u)

since L = D − A, [Nic18, p. 63-64]. We get

Lf · f =
∑
v∈V

(
deg(v)f(v) −

∑
u:u∼v

f(u)
)

f(v)

=
∑
v∈V

deg(v)f(v)2 −
∑
v∈V

∑
u:u∼v

f(u)f(v).

We will rewrite the sums so they range over edges {u, v} ∈ E instead. The first
term sums over all vertices v ∈ V where each f(v)2 is counted deg(v) times, in other
words, once for every edge {u, v} ∈ E it is part of. This includes both f(u)2 and
f(v)2. In the second sum, the outermost summation ranges over all vertices v ∈ V ,
so, for every vertex v, we count all its adjacent vertices u. Therefore, when we sum
over edges {u, v} ∈ E instead, we count every f(u)f(v) twice. We get
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Lf · f =
∑

{u,v}∈E

(f(u)2 + f(v)2) −
∑

{u,v}∈E

2f(u)f(v)

=
∑

{u,v}∈E

(f(u)2 − 2f(u)f(v) + f(v)2)

=
∑

{u,v}∈E

(f(u) − f(v))2.

We now have all the pieces needed to be able to prove that zero is a Laplacian
eigenvalue. The proof of Theorem 4.9 is highly inspired by Nica, [Nic18, p. 65-66].

Theorem 4.9. A function f : V → R is an eigenfunction with eigenvalue 0 of the
Laplacian matrix L if and only if it is locally constant.

Proof. We prove the theorem in two parts:

1. Let f : V → R be a locally constant function in R. Then,

Lf(v) = deg(v)f(v) −
∑

u:u∼v

f(u) = f(v)(deg(v) − deg(v)) = 0,

for all v ∈ V . So, f is an eigenfunction with associated eigenvalue 0.

2. Let f : V → R be an eigenfunction with eigenvalue 0. By Definition 2.7 this
means Lf = 0. We have the scalar product

Lf · f =
∑
v∈V

(Lf)(v)f(v).

By Lemma 4.8 it holds that

Lf · f =
∑

{u,v}∈E

(f(u) − f(v))2.

Because Lf = 0 we then have

0 =
∑

{u,v}∈E

(f(u) − f(v))2,
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which leads to f(u) = f(v) for all edges {u, v} ∈ E. So, f is locally constant.

This way, we can refer to zero as the trivial Laplacian eigenvalue. Its multiplicity
is the number of connected components of a graph, [Nic18, p. 66], which we will
learn more about in the chapter on clustering.

4.5 All Laplacian eigenvalues are non-negative

We have shown that the eigenvalue zero is a Laplacian eigenvalue, but not that it is
the smallest one. This follows trivially if we can show that all Laplacian eigenvalues
are non-negative. We prove this in Theorem 4.10 below, [vL07, p. 4].

Theorem 4.10. The Laplacian matrix L has n non-negative eigenvalues.

Proof. In Lemma 4.8 we proved the following equality for locally constant eigen-
functions f : V → R:

Lf · f =
∑

{u,v}∈E

(f(u) − f(v))2.

The right side of the equality is a sum of squares and therefore non-negative,
which implies that Lf ·f ≥ 0 for all non-zero eigenfunctions f : V → R. Therefore, L

is positive semi-definite by Definition 2.9. By Theorem 2.10 this means the Laplacian
matrix has n non-negative eigenvalues counted with multiplicities.

Earlier we ordered the Laplacian eigenvalues as

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax.

Now we can conclude that the smallest eigenvalue λmin = 0 for all Laplacian matrices.
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5 Clustering using the Laplacian matrix

5.1 Number of connected components

In Theorem 4.9, we proved that zero is a Laplacian eigenvalue. We will now learn
to use the eigenvalue 0 as an indicator of the number of connected components
A1, ..., Ak in a graph. Luxburg formulates a theorem, [vL07, p. 4], here stated in
Theorem 5.1, whose proof is highly inspired by her.

Theorem 5.1. Let G be the underlying graph to a Laplacian matrix L. The mul-
tiplicity k of the eigenvalue zero of L equals the number of connected components
A1, ..., Ak in the graph. Indicator vectors 1A1 , ...,1Ak

span the eigenspace of the
eigenvalue 0.

Proof. We prove the theorem by dividing it into two cases: k = 1 and k ≥ 1.

1. Let k = 1, meaning the graph is connected, equally, contains only one con-
nected component A1. From Theorem 4.9, we know that 0 is a Laplacian
eigenvalue whose eigenvectors are locally constant functions. Because G is
connected, the only locally constant functions are the constant ones, and the
space of constant functions has dimension one. It follows that in this case, the
eigenvalue zero has multiplicity one with corresponding eigenvector 1A1 .

2. Let k ≥ 1, so that the graph contains k ≥ 1 connected components A1, ..., Ak.
For the same reason as above, 0 is a Laplacian eigenvalue with the locally
constant eigenfunction f . Assuming the vertices are ordered according to the
connected components to which they belong to, we can for each connected
component A1, ..., Ak construct a Laplacian matrix L1, ..., Lk. The Laplacian
matrix L for the whole graph G will then be

L =


L1

L2
. . .

Lk

 .

L is a block sum matrix of the union L1 ∪L2 ∪ ...∪Lk. From the case k = 1 we
know that every Laplacian matrix Li has the eigenvalue 0 with multiplicity 1,
with corresponding eigenvector 1Ai

. Since L is the block sum of L1, ..., Lk it
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then has k eigenvalues that equals 0.

5.1.1 Number of connected components in example graphs

In Theorem 5.1 above, we proved that the multiplicity of the eigenvalue zero equals
the number of connected components in a graph. Figure 1 consists of two connected
components which we can now conclude directly from the eigenvalues of its associ-
ated Laplacian matrix. We can see that it has two connected components as it has
k = 2 eigenvalues that equals zero; namely λ1 = λ2 = 0. Its eigenvalues, which we
computed earlier, are

λ1 = 0, λ2 = 0, λ3 = 1, λ4 = 2, λ5 = 2, λ6 = 3, λ7 = 4.

For Figure 2, which is a connected graph, and therefore is a case of part one of the
proof of Theorem 5.1 above, has k = 1 eigenvalues that equal zero; λ1 = 0. The
eigenvalues of its Laplacian matrix are

λ1 = 0, λ2 = 0.359, λ3 = 1.000, λ4 = 2.000, λ5 = 2.276, λ6 = 3.589, λ7 = 4.776.

5.2 RatioCut clustering method

We will now assume that a graph G is connected, meaning it consists of only one
connected component. An example of such a graph is Figure 2, as we have seen
before. The RatioCut clustering method is a method for partitioning the graph into
clusters that are not completely disconnected from each other. The method aims to
minimize the number of edges between the two clusters, which we want to construct,
while maximizing the number of edges within a cluster, [vL07, p. 9]. This way, the
RatioCut clustering method helps us identify clusters in a graph. We will focus
on the case of partitioning G into two clusters, and based on Ulrike von Luxburg’s
paper "A Tutorial on Spectral Clustering, [vL07, p. 10-11], derive an approximation
of the RatioCut method for this specific case.

Before introducing the RatioCut definition, which is given for the general case of
k clusters in Definition 5.2, we need to start referring to the number of edges within
a set as the ’weight’, w. An edge between two vertices ui and uj is undirected, which
is why wij = wji, [vL07, p. 2]. This equals 1 if {ui, uj} ∈ E is an edge and zero
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otherwise. You could say the adjacency matrix A(ui, uj) defined as in Definition 2.2
is a matrix that displays the weights between vertices in a graph G. For two subsets
A and its complement A of V , we use the notation

W (A, A) :=
∑

i∈A,j∈A

wij,

[vL07, p. 2]. In other words, W (A, A) is the number of all edges connecting a
vertex in A to a vertex that is not in A. Now we have a clear understanding of all
components needed in Definition 5.2 below.

Definition 5.2. Given k connected components A1, ..., Ak, the objective function
for RatioCut is defined as

RatioCut(A1, ..., Ak) :=
k∑

i=1,j ̸=i

W (Ai, Aj)
|Ai|

,

[vL07, p. 9].

As mentioned, we will focus on the case of k = 2 clusters where we have the
subsets A and A. Then Definition 5.2 can be simplified accordingly:

RatioCut(A, A) = W (A, A)
|A|

+ W (A, A)
|A|

= W (Ai, Ai)
(

1
|A|

+ 1
|A|

)
.

The sum 1/|A|+1/|A| is minimized if the size of the subsets satisfies |A| = |A|, in
other words, our goal is to identify a partition where |A| and |A| have as similar size
as possible, and the number of edges between A and A is as small as possible. This
is an optimization problem of minimizing the RatioCut objective function where A

and A are subsets of the vertex set V , [vL07, p. 10], namely

min
A⊂V

RatioCut(A, A).

To achieve a solution to this problem, we will express it in terms of the quadratic
form f tLf , which is formulated in Lemma 5.4 below. The vector f is defined in a
specific way according to Luxburg in Definition 5.3, [vL07, p. 10].
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Definition 5.3. f = (f1, ..., fn)t ∈ Rn is a vector given that all ui (1 ≤ i ≤ n) are
vertices in V , and that A and A are subsets of V . Each coordinate fi in f is given
by

fi =


√

|A|
|A| , if ui ∈ A,

−
√

|A|
|A| , if ui ∈ A.

The rephrasing of f tLf follows in Lemma 5.4 below.

Lemma 5.4. The quadratic form of the Laplacian matrix, f tLf , can be expressed
in terms of the RatioCut for k = 2 clusters as

f tLf = |V | · RatioCut(A, A),

[vL07, p. 10].

Proof. The quadratic form f tLf equals the scalar product Lf · f , so by Lemma 4.8
it holds that

f tLf =
∑

{ui,uj}∈E

(fi − fj)2.

Inserting the values of fi and fj according to the definition of f in Definition 5.3,
the sum now ranges over edges {ui, uj} ∈ E where ui and uj belong to different
subsets. By simplification, we get

f tLf =
∑

{i,j}∈E,i∈A,j∈A


√√√√ |A|

|A|
+

√√√√ |A|
|A|


2

=
∑

{i,j}∈E,i∈A,j∈A

(
|A|
|A|

+ 2 + |A|
|A|

)

=
∑

{i,j}∈E,i∈A,j∈A

(
|A| + |A|

|A|
+ |A| + |A|

|A|

)
.

The summation range over all edges between A and A, which is the sum of all
weights, W (A, A). We can also note that |A| + |A| = |V | since A is a subset of V
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and A is its complement. Therefore, it follows that

f tLf = W (A, A)
(

|V |
|A|

+ |V |
|A|

)

= |V | · W (A, A)
(

1
|A|

+ 1
|A|

)
.

We can now recognise the RatioCut definition for the case k = 2 which follows
from Definition 5.2, and get

f tLf = |V | · RatioCut(A, A)

To continue the approximation of minimizing the RatioCut objective function
for two clusters A and A, we will look at some properties of the vector f , defined
as in Definition 5.3. As Luxburg notes, the sum of all coordinates fi equals zero
according to the calculation below, [vL07, p. 10]. By this, it follows that the vector
f is orthogonal to the constant vector 1 as the inner product ⟨f,1⟩ then equals zero.

n∑
i=1

fi =
∑
i∈A

√√√√ |A|
|A|

+
∑
i∈A

−

√√√√ |A|
|A|


=
∑
i∈A

√√√√ |A|
|A|

−
∑
i∈A

√√√√ |A|
|A|

= |A|

√√√√ |A|
|A|

− |A|

√√√√ |A|
|A|

=
√

|A|
√

|A| −
√

|A|
√

|A|

= 0.

Luxburg continues by noting that the vector f satisfies that the length of the
vector squared equals n according to
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||f ||2 =
n∑

i=1
f 2

i

=
∑
i∈A

f 2
i +

∑
i∈A

f 2
i

=
∑
i∈A

|A|
|A|

+
∑
i∈A

|A|
|A|

= |A| |A|
|A|

+ |A| |A|
|A|

= |A| + |A|

= |V |

= n,

[vL07, p. 10].
Since f tLf = |V | · RatioCut(A, A) according to Lemma 5.4, the optimization

problem of minimizing the RatioCut(A, A) is equivalent to minimizing the quadratic
form under the conditions that f , given in Definition 5.3, is orthogonal to the con-
stant vector 1, and that the length of f is

√
n, [vL07, p. 10].

min
A⊂V

f tLf subject to f⊥1, ||f || =
√

n.

As Luxburg states, this is a discrete optimization problem because of the condi-
tion that f is defined as in Definition 5.3, which is only allowed to take two values,
[vL07, p. 10]. This problem is known to be NP-hard, which means that there is
no polynomial-time algorithm known for it. This is why we make a relaxation by
dropping the condition of f being defined as in Definition 5.3, and letting fi be
arbitrary real numbers:

min
f∈R

f tLf subject to f⊥1, ||f || =
√

n,

[vL07, p. 11].
We will now introduce the Rayleigh-Ritz theorem for real, symmetric matrices

that is mentioned by Helmut Lütkepohl in his book "Handbook of Matrices", [Lü96,
p. 67]. We formulate it in Theorem 5.5 below.
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Theorem 5.5. If M is a real, symmetric n × n matrix, then

λmin(M) = min
{

xtMx

xtx
: x ∈ Rn×1, x ̸= 0

}
,

λmax(M) = max
{

xtMx

xtx
: x ∈ Rn×1, x ̸= 0

}
.

In our case, M in Theorem 5.5 is the Laplacian matrix L, and the vector x is f .
It says that the smallest eigenvalue λmin of L is the eigenvalue that is minimizing
the Rayleigh quotient, which is written below in the form that Aaron Sidford uses
in his lecture notes on spectral graph theory, [Sid18, p. 8]:

R(f) = f tLf

f tf
.

Luxburg states that it from Theorem 5.5 can be seen that the solution to the
relaxation of the optimization problem is given by the vector f , which is the eigen-
vector corresponding to the second smallest eigenvalue of L, [vL07, p. 11]. We will
now motivate this statement.

Let us note that the spectral theorem (Theorem 4.4) implies that the symmetric
matrix L can be written in the form L = QtDQ where Q is an orthogonal n×n matrix
whose columns are eigenvectors of L, and D is a diagonal matrix of eigenvalues of
L such that

L = QtDQ = Qt


λ1

. . .
λn

Q.

Then the Rayleigh quotient can be rewritten using the equality L = QtDQ as
below. By assigning a vector Y = (y1, ..., yn)t such that Qf = Y and ||Y || = 1, we
get

R(f) = f tQtDQf

f tQtQf
= Y tDY

Y tY
= λ1y

2
1 + ... + λny2

n

y2
1 + ... + y2

n

,

[Sid18, p. 8].

In the optimization problem, we have the condition that f is orthogonal to the
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constant vector 1, and as mentioned, Q is an orthogonal matrix. This implies that

f⊥1 ⇒ Y = Qf⊥Q1 =


1
0
...
0

 ,

meaning Y is orthogonal to the vector (1, 0, ..., 0)t, which leads to y1 = 0. There-
fore, we can rewrite R(f) as

R(f) = λ2y
2
2 + ... + λny2

n

y2
2 + ... + y2

n

.

This can be seen as the weighted average of the eigenvalues λ2 ≤ ... ≤ λn, which
is minimized when the coefficients of λ3, ..., λn are all zero, and the coefficient of λ2 is
one. Therefore, the Rayleigh quotient is minimized by the eigenvector f associated
with the eigenvalue λ2, and just like Sidford, [Sid18, p. 9], we get

min
f∈R

R(f) = min
f∈R

f tLf

f tf
= λ2.

So, an approximate minimization of RatioCut is given by the eigenvector of the
second smallest eigenvalue of L; λ2, [vL07, p. 11]. This means that the relaxed
optimization problem

min
f∈R

f tLf subject to f⊥1, ||f || =
√

n.

is minimized when we use the eigenvector f , which corresponds with λ2.

5.3 RatioCut clustering method in practice

Now that we have approximated the RatioCut clustering method for two clusters,
we will see how the eigenvector of the second smallest eigenvalue can be used as an
indicator for how to cluster a graph.

The vector f was earlier defined as f = (f1, ..., fn)t ∈ Rn in Definition 5.3, where
fi is given by

fi =


√

|A|
|A| , if ui ∈ A,

−
√

|A|
|A| , if ui ∈ A.
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To obtain a partition of the graph where each of A and A are clusters, we have
to rewrite the real-valued solution vector f of the relaxed problem into a discrete
indicator vector, [vL07, p. 11]. This is done in terms of the vertex ui, where the
sign of fi becomes an indicator of what subset ui belongs to, such that

ui ∈ A, if fi ≥ 0,

ui ∈ A, if fi < 0.
.

Since f is proved to be the eigenvector of the second smallest eigenvalue, vertices
associated with a coordinate fi that is greater or equal to zero belong to one subset
A of the vertices - a cluster. Vertices associated with a coordinate fi that is smaller
than zero belong to the complement A - another cluster. This is only one of many
indicators that can be derived from the Laplacian matrix, and be used to divide a
graph into two clusters, which will be discussed in Chapter 6. However, the sign of
fi is what will be used in this thesis when applying the RatioCut method to graphs.

To summarize how the approximated RatioCut clustering method for two clusters
A and A can be used; we formulate a short step-by-step instruction:

1. Identify the Laplacian matrix L according to Definition 4.1.

2. Identify the eigenvector f associated with the second smallest eigenvalue λ2.

3. Divide the vertex set V into two clusters A and A based on the value of fi

where ui ∈ A, if fi ≥ 0,

ui ∈ A, if fi < 0.
.

5.3.1 Applying RatioCut clustering method to example graph

We will now apply the RatioCut method approximated to two clusters to the example
graph in Figure 2, which is a connected graph. As earlier calculated in Chapter 4.1.1,
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its associated Laplacian matrix L equals

L =



2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 3 −1 0 0
0 0 0 −1 3 −1 −1
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1


.

According to calculations in Chapter 4.3.1, the eigenvalues are computed to

λ1 = 0, λ2 = 0.359, λ3 = 1.000, λ4 = 2.000, λ5 = 2.276, λ6 = 3.589, λ7 = 4.776.

The second smallest eigenvalue is noted to be λ2 = 0.359. Using the programming
language R (code is provided in Appendix A.1), the eigenvector f associated to λ2,
with values approximated to three decimals, is computed to

f =



−0.424
−0.348
−0.348
−0.147
0.308
0.480
0.480


.

We can see that those fi such that i = 1, 2, 3, 4 are negative values, while those
fi such that i = 5, 6, 7 are positive values. Therefore, we can conclude that vertices
u1, u2, u3, u4 ∈ V belong to one cluster A, and that u5, u6, u7 ∈ V belong to another
cluster A. This corresponds to how we described Figure 2 in Chapter 3, where we
noted that the only difference to Figure 1, is that Figure 2 includes an edge between
vertex u4 and u5, while Figure 1 does not. Between vertices u4 and u5 is a natural
spot to partition the graph into two clusters, as this is the partition that minimizes
the number of edges between two clusters at the same time as A and A are as similar
in size as possible.

28



6 Discussion

6.1 Limitations and critique

This thesis has mainly focused on the unnormalised version of the Laplacian matrix,
its spectral properties, and its application to spectral clustering using the RatioCut
clustering method. However, it must be emphasized that it has certain limitations.

Firstly, we focused on the unnormalised Laplacian matrix, while, as earlier men-
tioned, there are normalised definitions of the Laplacian matrix too. Luxburg, [vL07,
p. 24], writes that for graphs that are very regular and most vertices have approx-
imately the same degree, it does not matter which definition is chosen. But for
the case of spectral clustering, the unnormalised Laplacian matrix is sensitive to
variations of the degree of vertices in the graph, [vL07, p. 22], as A and A are not
necessarily similar within each cluster even if they are similar in size. Although
the RatioCut clustering method works well for smaller graphs, it may not do so
for larger, more irregular graphs. This is due to the RatioCut method not parti-
tioning the graph in order to maximise the similarity of vertices within a cluster,
but rather to minimise the similarities of different clusters, [vL07, p. 25]. Spectral
clustering methods using the normalised Laplacian matrix, eg. NCut (also covered
by Luxburg), take both objectives into account. No comparisons between the un-
normalised and normalised Laplacian matrices, and not between the RatioCut and
NCut clustering methods, were included in this thesis.

Secondly, the relaxation of the RatioCut clustering method - an approximation
of the RatioCut minimization problem to the case of two clusters - can not be
guaranteed to be a good solution compared to the exact one, [vL07, p. 13]. The
problem of minimizing the RatioCut by an exact solution is, as earlier mentioned,
known to be NP-hard, and nothing that was covered in this thesis.

Finally, this thesis is primarily theoretical. While several spectral properties of
the unnormalised Laplacian matrix were discussed, and an approximation of the
RatioCut clustering method was derived, no empirical investigation on any real-
world clustering problem was performed. This limits the possibility of drawing any
general conclusions about the effectiveness of the topics discussed in this thesis.

However, having identified limitations of this thesis, it has to be stressed that
(apart from the uncertainty of the quality of the approximation of the RatioCut
method for two clusters) this does not have an influence on the calculations that are
presented. The aim of this thesis was to present the Laplacian matrix and give an
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introduction to its applicability as a tool for spectral clustering in a clear and peda-
gogical way. By including example graphs, this has been achieved through deriving
one clustering method, the RatioCut method, and applying it to the mentioned
graphs.

Keeping the limitations in mind, this thesis still presents valuable information
that can be of interest in further studies on the topic and be expanded in the future.

6.2 Further outlook

This thesis can be used as a basis for further expansions of the topic of the Laplacian
matrices as a tool for spectral clustering, as it provides a detailed starting-point for
further research. The natural next step for the reader who want to learn more, is to
read about the normalised Laplacian matrix and the NCut clustering method to gain
more knowledge and a broader understanding of the subject. Deriving the spectral
properties of the normalised definition in a similar way to what was provided for
the unnormalised Laplacian in this thesis, would supply a foundation to continue
the reasoning on spectral clustering in terms of NCut. It is recommended to read
the paper "A Tutorial on Spectral Clustering" by Ulrike von Luxburg, [vL07], as she
reasons about both kinds of Laplacian matrices and different clustering methods.

Another interesting expansion of research would be to apply these clustering
methods to real data and try to validate their correctness for large data sets. Real-
world data often tends to take more parameters into account, and as the graphs
considered in this thesis are undirected, it would be of relevance to examine the
applicability of Laplacian spectral clustering for directed graphs.
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7 Summary
This thesis focused on the Laplacian matrix as a tool for spectral clustering. It pro-
vided an introduction to the concept of the Laplacian matrix and its spectral prop-
erties, presenting important definitions and theorems relating to the topic. Through
the introduction of example graphs, the reader got the opportunity to practically
see how the mathematical theory introduced can be applied to undirected graphs.

The RatioCut method was also introduced, which is a clustering method using
Laplacian, which aims to minimize the number of edges between clusters in a graph.
We derived an approximation of this method to the case of identifying two clusters.
It was derived that the eigenvector associated with the second smallest eigenvalue
achieves this minimization, and that the signs of each coordinate in the eigenvector
can be used to indicate which vertices should be divided into which cluster.

The limitations of the thesis were acknowledged, where the main takeaway is the
fact that we in this thesis use the unnormalised Laplacian matrix while it might be
of greater relevance for applications to get familiar with the normalised Laplacian
matrix. Researching this definition as well, together with its spectral properties,
would provide a foundational basis to further gain knowledge on spectral clustering
using Laplacian matrices.

To conclude, the mathematical calculations and theorems presented in this thesis
offer a valuable look into the Laplacian Matrix and its spectral properties. It also
provides the reader with a starting-point to further learn about spectral clustering.
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A Appendix

A.1 R-code for computations

R-code for computations on a Laplacian matrix L. Here the Laplacian matrix for
the graph in Figure 2 is used, but if wanted, one can insert the matrix of another
graph where L is defined.

#Figure 2 : Connected graph
L <− matrix (c (2 , −1, −1, 0 , 0 , 0 , 0 ,

−1, 2 , 0 , −1, 0 , 0 , 0 ,
−1, 0 , 2 , −1, 0 , 0 , 0 ,
0 , −1, −1, 3 , −1, 0 , 0 ,
0 , 0 , 0 , −1, 3 , −1, −1,
0 , 0 , 0 , 0 , −1, 1 , 0 ,
0 , 0 , 0 , 0 , −1, 0 , 1 ) , nrow = 7 , byrow = TRUE)

# Compute e i g en v a l u e s and e i g e n v e c t o r s o f L
e i g enva lu e s <− eigen (L)$va lues
e i g env e c t o r s <− eigen (L)$vec to r s

# Eigenva lues
print ( " Eigenva lues : " )
print ( sort (round( e i genva lue s , 3 ) ) )

# Eigenvec tor o f second s m a l l e s t e i g enva l u e
print ( " Eigenvector ␣ o f ␣ the ␣ second␣ sma l l e s t ␣ e i g enva lue : " )
index <− length ( e i g enva lu e s ) − 1
f <− e i g env e c t o r s [ , index ]
print (round( f , 3 ) )
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