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Abstract

Sequent calculus for intuitionistic propositional logic (IPC) is briefly presented and later formalized
in Agda, an interactive theorem prover. The main result of this thesis is a proof searching procedure
for IPC using sequent calculus, which is proven correct in Agda. We facilitate this in two ways; first

by restricting the “normal” sequent calculus into a “contraction-free” version along the lines of R.
Dyckhoff [1], guaranteeing termination of the search procedure. Secondly, the decision procedure
itself is encoded in the inference rules, similarly to the “focused” sequent calculus of R. J. Simmons
[2], leaving us with a slightly more complicated set of inference rules, but also a search procedure

that is correct almost by construction. In the end, we end up with a sequent calculus LJf¹ for which
a search procedure is implemented and proven correct in Agda.

Sammanfattning

Sekventkalkyl för intuitionistisk satslogik (IPC) presenteras kortfattat och formaliseras senare i
Agda, en interaktiv bevisassistent. Uppsatsens huvudresultat är en bevissökningsalgoritm som

bevisas vara korrekt i Agda. Vi möjliggör detta på två vis; först genom att begränsa den “vanliga”
sekventkalkyllen till en “kontraktionsfri” version likt den formulerad av R. Dyckhoff [1], vilket

garanterar att sökalgoritmen terminerar. För det andra så inskrivs algoritmens valprocedur i
inferensreglerna själva, likt R. J. Simmons [2] “fokuserade” sekventkalkyl, vilket leder till

inferensregler som är något mer komplicerade, men som gör att avgörbarhet håller nästan
automatiskt. I slutändan får vi en sekventkalkyl LJf² för vilket en sökalgoritm implementeras och

bevisas vara korrekt i Agda.

¹LJf can be seen as a simpler, less efficient, variant of the focused sequent calculus LJF of Simmons, hence the
lower-case f.

²LJf kan ses som en enklare, mindre effektiv, variant av Simmons fokuserade sekventkalkyl LJF, varav gemenen
“f”.
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1. Introduction
The original formulation of sequent calculus is due to G. Gentzen [3] as a means of proving
properties of natural deduction. He devised two variants of sequent calculus, one classical, denoted
LK, and one intuitionistic, denoted LJ. Both LK and LJ can be used with propositional and
predicate logic. In this thesis, we are going to focus on LJ for intuitionistic propositional logic (IPC)
only, as presented by F. Pfenning [4]. Sequent calculus has since found other uses. One such use is
for the development of mechanized proof searching, which is precisely what we are going to use it
for. Another – and perhaps related – benefit of sequent calculus for us is that it is amenable to
formalization in an interactive theorem prover such as Agda.

We are going to use Agda throughout this thesis, providing definitions, propositions and proofs in
both pen-and-paper style and as Agda programs. The final Agda codebase is available at [5]. The
reason for the use of Agda is that we are interested in developing a proof searching procedure and
prove that this procedure is correct, and, by using Agda we can obtain both: In the end we will
arrive with a function isProvable in Agda that is the search procedure, and a proof that the search
procedure is correct. In Section 2 we will provide a brief overview of Agda and the “proofs as
program” paradigm that underpins it and many other interactive theorem provers.

In Section 3.1 and Section 3.2 we will introduce LJ, and in Section 3.3 we formalize LJ in Agda. In
Section 3.4 we will prove some basic properties of LJ in Agda, and in Section 3.5 we prove that LJ
is sound in Agda with respect to classical semantics.

In Section 4 we begin by developing a restricted version of LJ denoted LJf, and then develop a
search procedure for it.

In Section 5 we prove that the search procedure in Section 4 does terminate. Section 5.1 is
concerned with how termination is proven in Agda using well-founded induction.

In Section 6 we show how a proof in LJf is translated to LJ.

2. About Agda
Agda is two things simultaneously. It is a programming language and a theorem prover, meaning
that Agda can be used to both write computer programs and prove mathematical statements. It can
be these two things at the same time because in Agda, every type is a proposition, and every
program is a proof, x : T is a proof of T, and f : P → Q is a proof that assuming P, Q can be proved.
The phrases “propositions as types”, “proofs as programs”, “Curry-Howard isomorphism” are all
related to this, though we will not explore this in detail [6]. The idea of interpreting types as
propositions and programs as proofs can be applied to Haskell as well. In this interpretation, a
function like isMember : Integer → List Integer → Bool proves that given an integer, and a
list of integers, there exists a boolean. This is not a very interesting proof, and we could write
essentially the same function in Agda and have the same uninteresting interpretation. Things get
interesting, however, when we leverage Agda’s “dependent types”, which lets us write a signature
such as this

isProvable : (Γ : Ctx) → (C : Prop) → Either (Γ ⊢ C) (Γ ⊬ C)

which is interpreted as a proof that, for a set of assumptions Γ and a propositional formula C, there
is either a derivation in LJ assuming Γ and concluding C, or a proof that no such derivation exists
in LJ. Proving this statement is the end goal of this thesis. Γ ⊢ C and Γ ⊬ C are both types, and as
we can see, the types refer back to the arguments Γ and C. This is not possible in Haskell, but it is
in Agda, because Agda is dependently typed.
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Now we introduce some more concepts in Agda that we will make use of in this thesis.

Proofs using Either

We saw a reference to an Either datatype, recall how Either is defined in Haskell

data Either a b = Left a | Right b

In Haskell-lingo, Either is a type constructor, meaning that it takes as arguments two types a and b
and produces a new type Either a b. In Agda, type constructors can take vales as arguments, not
only types, so the definition of Either is a little more explicit here than in Haskell

The Either data type takes two arguments A and B of type Set and returns a Set. The Set type
can be though of roughly as the “type of types”³, that is, Either takes two types and returns a new
type.

Truth and falsehood

In logic we usually have the atom ⊤ denoting a statement that is always true. In the types-as-
propositions interpretation, this corresponds to a type that can always be constructed. We have this
notion in both Agda and Haskell, and it is the unit type

Falsehood ⊥ should never be provable, and that corresponds to a type that can never be
constructed.

Since bot has no constructors, we can write the following in order to encode the principle of
explosion

The empty parenthesis is a so-called “absurd pattern,” and we can pattern match using the absurd
pattern when there are no other constructors applicable.

We also define negation of statements. We are used to thinking of the statement ¬𝑃  as being true if
and only if 𝑃  is false, and in Agda this means that bot can be constructed by assuming 𝑃 , giving us
the following definition

³This is an oversimplification, in Agda there is a hierarchy of types denoted Set,Set₁,Set₂, ⋯, but that is beyond
the scope of this thesis. See https://agda.readthedocs.io/en/v2.7.0.1/language/sort-system.html for futher information.
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Whenever statements such as x ≢ y, Γ ⊬ C, etc, are encountered in this thesis, they are always
mere synonyms for x ≡ y → bot, etc.

Equality and Booleans

We will also make extensive use of propositional equality _≡_, refl as defined in Agda’s standard
library. If you haven’t encountered these before I warmly recommend reading [7], especially about
cong, cong₂ and subst as we will make use of these in this thesis.

The type of booleans is given the name 𝔹 in this thesis, with operators _or_, _and_, _cond_ and
_not_.

2.1. Propositional formulas.
We define our set of propositions Prop in much the same way as [8].

Definition 2.1.1 (Prop) :  The set Prop of propositional formulas is defined inductively as
follows:

𝑛 ∈ ℕ
𝑃𝑛 ∈ Prop ⊤ ∈ Prop

⊥∈ Prop
𝐴 ∈ Prop 𝐵 ∈ Prop

(𝐴 ∧ 𝐵) ∈ Prop

𝐴 ∈ Prop 𝐵 ∈ Prop
(𝐴 ∨ 𝐵) ∈ Prop

𝐴 ∈ Prop 𝐵 ∈ Prop
(𝐴 → 𝐵) ∈ Prop

This is how we formalize it in Agda.

(Note that → and ⟶ look similar but are distinct symbols. The first is an Agda keyword used in
function signatures and the latter is a constructor.)
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We have said nothing about two common logical connectives: negation ¬, and biconditional ↔.
This is simply because they can be described in terms of the other logical connectives:

¬𝐴 ≔ 𝐴 →⊥⏟⏟⏟⏟⏟
see the similarities to Agda?

𝐴 ↔ 𝐵 ≔ (𝐴 → 𝐵) ∧ (𝐵 → 𝐴),

and so we omit them for brevity.

2.2. Contexts and context membership
Here we make precise the notion of a context, which is used to define sequents in Section 3.1.

A context is roughly a set containing all propositions we are allowed to assume in a proof. I say
“roughly” because, in the literature, contexts are usually conceived of as a multisets (a set where
there can be multiple occurrences of the same element), and we will follow this convention. For the
Agda formalization, however, contexts are list-like (for purely practical reasons), and order does
matter, but Proposition 3.4.2.1 will show that the multiset and list notions are in some sense
equivalent.

We define the Ctx type in Agda, along with the definition for concatenation ⧺.

Example : The context 𝑧, 𝑦, 𝑥 is ∅ , z , y , x in Agda. Of note is that the head of the context,
x, if furthest to the right, while the head is usually furthest to the left in many programming
language contexts.

Now we need a notion of context membership. Let x ∈ Γ be the type of proofs that the proposition
x is in the context Γ, we define this relation as follows

To better understand the idea behind this datatype, it might be instructive to consider the
constructors head and tail as if they were inference rules.

head
𝑒 ∈ Γ, 𝑒

𝑒 ∈ Γ tail
𝑒 ∈ Γ, 𝑥

The “head” rule states that 𝑒 is always an element in the context Γ, 𝑒, because 𝑒 is at the head of the
context. The “tail” rule states that if we know that 𝑒 is in Γ then 𝑒 is also in Γ, 𝑥, because 𝑒 is in the
tail of the context.

Example : The statement 𝑥 ∈ ∅, 𝑧, 𝑦, 𝑥 is proved using inference rules and Agda as follows

head
𝑥 ∈ ∅, 𝑧, 𝑦, 𝑥
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Example : The statement 𝑧 ∈ ∅, 𝑧, 𝑦, 𝑥 is proved using inference rules and Agda as follows

head
𝑧 ∈ ∅, 𝑧 tail

𝑧 ∈ ∅, 𝑧, 𝑦 tail
𝑧 ∈ ∅, 𝑧, 𝑦, 𝑥

3. Sequent calculus
In this section we first define intuitionistic sequent calculus LJ for IPC along the lines of F.
Pfenning [4]. In Section 3.3 we formalize LJ in Agda.

3.1. The syntax of sequent calculus
A sequent in LJ is a sentence of the form

𝐴₁, ⋯, 𝐴ₙ ⊢ 𝐶

Where 𝐴₁, ⋯, 𝐴ₙ and 𝐶 are all elements of Prop. We can read this sentence as stating “If we can
assume A₁, ⋯, Aₙ then we may conclude 𝐶”. We call the assumptions 𝐴₁, ⋯, 𝐴ₙ the antecendents or
context, and 𝐶 the succedent.

Example :  𝑃1 ∧ 𝑃2 ⊢ 𝑃1 ∨ 𝑃3 is a sequent stating that if 𝑃1 ∧ 𝑃2 is true, then so too must
𝑃1 ∨ 𝑃3 be. This statement is something the we intuitively think of as being a true statement.
In contrast, the sequent 𝑃1 ⊢ 𝑃2 is something we judge intuitively to be a false statement. So
there are both “good” and “bad” sequents, and what we want to do is develop a set of rules
that lets us construct only the “good” ones.

Of note is that the order of the antecendents is irrelevant, and it’s also convenient to use notation
like

Γ, 𝐴 ⊢ 𝐶

where Γ denotes some arbitrary set of antecendents the we are not interested in at this moment.
The above sentence reads as “If we can assume 𝐴, and some other arbitrary (there might also be
none at all) antecendents contained in Γ then we may conclude 𝐶”.

3.2. Inference rules
We are only interested in sequents that state true things. To this end, we define the set LJ which
contains all the sequents we believe state true things (this notion is made precise and proved in the
proof of soundness). This set is defined inductively by a set of inference rules. We will introduce
these inference rules now.

Truth.

The propositional atom ⊤ represents a statement that is always true, and as such we may always
state it and be confident that we are right. So, in other words, for any set of assumptions in Γ, the
sequent Γ ⊢ ⊤ is always something we belive to be true, and so it should be in the set LJ. We
summarize this with the inference rule

⊤R
Γ ⊢ ⊤

Propositional variables.
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The propositional atom 𝑃𝑛 represents some statement that is true depending on how it is
interpreted, and so we cannot be as bold as we were with ⊤ and simply proclaim “𝑃𝑛 is true”,
because there are certainly some interpretations where this statement is true, for instance if we
interpret 𝑃𝑛 to be “Plato is a man”, but there are of course other interpretations in which the
statement becomes false. But when can we be sure that 𝑃𝑛 is true? Well, if we simply assume that
𝑃𝑛 is true, then it is certainly true. In other words, for any set of assumptions Γ where 𝑃𝑛 is a
member, the sequent Γ ⊢ 𝑃𝑛 is always something we believe to be true. We can summarize this
with the inference rule

id
Γ, 𝑃𝑛 ⊢ 𝑃𝑛

Conjunction.

If 𝐴 and 𝐵 are propositions, when can we be confident that 𝐴 ∧ 𝐵 is a true statement? Well,
whenever we are confident that both 𝐴 is true and that 𝐵 is true. We can summarize this with the
inference rule

Γ ⊢ 𝐴 Γ ⊢ 𝐵 ∧R
Γ ⊢ 𝐴 ∧ 𝐵

There are two more inference rules concerning conjunctions, but these are about manipulating the
context Γ. They look like this

Γ, 𝐴 ∧ 𝐵, 𝐴 ⊢ 𝐶 ∧L1Γ, 𝐴 ∧ 𝐵 ⊢ 𝐶
Γ, 𝐴 ∧ 𝐵, 𝐵 ⊢ 𝐶 ∧L2Γ, 𝐴 ∧ 𝐵 ⊢ 𝐶

They mean simply that if we have assumed 𝐴 ∧ 𝐵, then we may also assume 𝐴 and 𝐵 if we want
to.

Remark (L and R) :  The first of these rules, ∧R is called a right-rule and the other two, ∧L1

and ∧L2 are called left-rules. We will see that the inference rules for disjunction and
implication also follow this scheme. The left/right distinction tells us which rules concern the
left resp. the right side of the sequent we are trying to prove. With ∧R, we are in some sense
“looking” at the succedent of Γ ⊢ 𝐴 ∧ 𝐵 and deciding to act on the fact that it’s a conjunction.
With the left rules, we are instead “looking” at one of the antecendents.

Disjunction.

We begin with the two right rules for disjunction

Γ ⊢ 𝐴 ∨R1Γ ⊢ 𝐴 ∨ 𝐵
Γ ⊢ 𝐵 ∨R2Γ ⊢ 𝐴 ∨ 𝐵

These reflect the idea that if we want to prove 𝐴 ∨ 𝐵, then it is enough tho show that either 𝐴 or 𝐵
holds.
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The left rule is a little more complicated

Γ, 𝐴 ⊢ 𝐶 Γ, 𝐵 ⊢ 𝐶 ∨L
Γ, 𝐴 ∨ 𝐵 ⊢ 𝐶

The rationale for this one is that if we want to prove that assuming Γ and 𝐴 ∨ 𝐵 then 𝐶 holds, then
we find ourselves a little annoyed because we know that 𝐴 ∨ 𝐵 holds, but we cannot know if it
holds because 𝐴 is true, of because 𝐵 is true, it could be either one of them. But, if we can show that
in either case 𝐶 holds, then we are done.

Implication.

The right rule is simple: If we want to prove that assuming Γ then 𝐴 → 𝐵 holds. Well, we could
simply assume Γ and 𝐴, and show that 𝐵 holds.

Γ, 𝐴 ⊢ 𝐵 →R
Γ ⊢ 𝐴 → 𝐵

The left rule is more complicated.

Γ, 𝐴 → 𝐵 ⊢ 𝐴 Γ, 𝐴 → 𝐵, 𝐵 ⊢ 𝐶 →L
Γ, 𝐴 → 𝐵 ⊢ 𝐶

The idea is that if we have assumed 𝐴 → 𝐵, then, if we can prove 𝐴, we may assume 𝐵 in addition
to 𝐴 → 𝐵. The first premise of the inference rule is the proof of 𝐴, and the second premise is the
proof of 𝐶 where 𝐵 is assumed.

Falsehood.

What can be said about the propositional atom ⊥ that represents a statement that is always false?
Well, since it is false we should never be able to conclude that ⊥ is true, i.e. there should be no right
rule for the sequent Γ ⊢⊥.

Moreover, we have the principle of explosion, or Ex falso quodlibet, which states that if we assume
something false, then anything, even false things, can be proved. We specify this principle with the
following left rule

⊥L2Γ, ⊥ ⊢ 𝐶

Cut.

This is special rule as it does not pertain to any specific propositional atom or connective. It looks
like this

Γ ⊢ 𝐴 Γ, 𝐴 ⊢ 𝐶 cut
Γ ⊢ 𝐶
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This can be thought of as a analogy to the use of a lemma in normal mathematical reasoning: If I’m
trying to prove 𝐶 assuming Γ, and some lemma states that 𝐴 holds assuming Γ, then I can
additionally assume 𝐴 in my proof of 𝐶 .

The cut rule is also an example of an “admissible” rule, meaning that we can prove the statement

If Γ ⊢ 𝐴 and Γ, 𝐴 ⊢ 𝐶 then Γ ⊢ 𝐶

for LJ using only the inference rules we have already defined. The fact that cut is admissible is a
very important property, and Gentzen, the originator of sequent calculus even called the theorem
the “Hauptsatz” (main theorem) [9]. Admissibility of cut is important to us too, and the restricted
sequent calculus presented in Section 4.1 will not have cut rule, the reason is that it would be
detrimental to a search procedure: If we want to search for a proof tree of Γ ⊢ 𝐶 using cut, then we
need to first find a proof tree of Γ ⊢ 𝐴 for some 𝐴, but here 𝐴 can be any proposition, which one
should we pick? In some sense, the cut rule would offer to much room for creativity in a proof
search, something we don’t want.

Now we have defined all our inference rules, which we summarize below.

id
Γ, 𝑃𝑛 ⊢ 𝑃𝑛

⊤R
Γ ⊢ ⊤

⊥L2Γ, ⊥ ⊢ 𝐶

Γ ⊢ 𝐴 Γ ⊢ 𝐵 ∧R
Γ ⊢ 𝐴 ∧ 𝐵

Γ, 𝐴 ∧ 𝐵, 𝐴 ⊢ 𝐶 ∧L1Γ, 𝐴 ∧ 𝐵 ⊢ 𝐶
Γ, 𝐴 ∧ 𝐵, 𝐵 ⊢ 𝐶 ∧L2Γ, 𝐴 ∧ 𝐵 ⊢ 𝐶

Γ ⊢ 𝐴 ∨R1Γ ⊢ 𝐴 ∨ 𝐵
Γ ⊢ 𝐵 ∨R2Γ ⊢ 𝐴 ∨ 𝐵

Γ, 𝐴 ∨ 𝐵, 𝐴 ⊢ 𝐶 Γ, 𝐴 ∨ 𝐵, 𝐵 ⊢ 𝐶 ∨L
Γ, 𝐴 ∨ 𝐵 ⊢ 𝐶

Γ, 𝐴 ⊢ 𝐵 →R
Γ ⊢ 𝐴 → 𝐵

Γ, 𝐴 → 𝐵 ⊢ 𝐴 Γ, 𝐴 → 𝐵, 𝐵 ⊢ 𝐶 →L
Γ, 𝐴 → 𝐵 ⊢ 𝐶

Γ ⊢ 𝐴 Γ, 𝐴 ⊢ 𝐶 cut
Γ ⊢ 𝐶

Figure 1: The set LJ defined with inference rules.

3.3. Sequent calculus in Agda
Now it’s time to model LJ in Agda, but creating a new datatype with constructors based on the
inference rules in Figure 1 will prove difficult as there are some ambiguities that us humans barely
notice but that Agda will not accept. Let’s illustrate this with an example. Here is a proof tree of the
sequent Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵 ⊢ 𝑃1 ∧ 𝑃2 in LJ
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id
Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵, 𝑃2, 𝑃1 ⊢ 𝑃1

id
Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵, 𝑃2, 𝑃1 ⊢ 𝑃2 ∧R

Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵, 𝑃2, 𝑃1 ⊢ 𝑃1 ∧ 𝑃2 ∧L1Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵, 𝑃2 ⊢ 𝑃1 ∧ 𝑃2 ∧L2Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵 ⊢ 𝑃1 ∧ 𝑃2

Now we may ask ourselves which propositions in the context ∧L1 and ∧L2 refer to. The obvious
answer to us humans is 𝑃1 ∧ 𝑃2, but to Agda that would not at all be clear: why couldn’t it refer to
𝐴 ∧ 𝐵 instead? Or some other conjunction in Γ? In Agda, for every left rule, we need to attach
some more information. A first thought would be to attach some sort of index to our left rules
specifying what proposition in the context we’re referring to. The proof tree would then change to
look like this

⋮ [3] ∧L1Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵, 𝑃2 ⊢ 𝑃1 ∧ 𝑃2 [2] ∧L2Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵 ⊢ 𝑃1 ∧ 𝑃2

It will still be difficult to make Agda happy with this approach, though, we need something better.
Instead of supplying an index we supply a proof that the proposition we refer to is an element in the
context using the ∈ datatype defined in Section 2.2. This works because the proof of x ∈ xs
contains three bits of information that Agda needs:

1. What the proposition x we are referring to looks like.
2. That the proposition x really is in the list xs.
3. Where precisely in xs the proposition x is located.

So we would change the ∧L1 and ∧L2 rules to look like this

𝐴 ∧ 𝐵 ∈ Γ Γ, 𝐴 ⊢ 𝐶 ∧L1Γ ⊢ 𝐶
𝐴 ∧ 𝐵 ∈ Γ Γ, 𝐵 ⊢ 𝐶 ∧L2Γ ⊢ 𝐶

The id rule also needs to change. We now provide an explicit proof that the propositional variable
that we want to use is in the context

𝑃𝑛 ∈ Γ id
Γ ⊢ 𝑃𝑛

Thus, our proof for the sequent Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵 ⊢ 𝑃1 ∧ 𝑃2 changes to the following, which is
quite verbose, maybe even painful, for us humans, but just right for Agda
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head
𝑃1 ∧ 𝑃2 ∈ Γ, 𝑃1 ∧ 𝑃2 tail

𝑃1 ∧ 𝑃2 ∈ Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵

head
𝑃1 ∧ 𝑃2 ∈ Γ, 𝑃1 ∧ 𝑃2 tail

𝑃1 ∧ 𝑃2 ∈ Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵 tail
𝑃1 ∧ 𝑃2 ∈ Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵, 𝑃2

head
𝑃1 ∈ Δ, 𝑃2, 𝑃1 id
Δ, 𝑃2, 𝑃1 ⊢ 𝑃1

head
𝑃2 ∈ Δ, 𝑃2 tail

𝑃2 ∈ Δ, 𝑃2, 𝑃1 id
Δ, 𝑃2, 𝑃1 ⊢ 𝑃2 ∧R

Δ, 𝑃2, 𝑃1 ⊢ 𝑃1 ∧ 𝑃2 ∧L1Δ, 𝑃2 ⊢ 𝑃1 ∧ 𝑃2 ∧L2Γ, 𝑃1 ∧ 𝑃2, 𝐴 ∧ 𝐵⏟⏟⏟⏟⏟⏟⏟
Δ

⊢ 𝑃1 ∧ 𝑃2

We institute this change for all of the other left rules as well, obtaining a new set of inference rules.

𝑃𝑛 ∈ Γ id
Γ ⊢ 𝑃𝑛

⊤R
Γ ⊢ ⊤

⊥∈ Γ ⊥L2Γ ⊢ 𝐶

Γ ⊢ 𝐴 Γ ⊢ 𝐵 ∧R
Γ ⊢ 𝐴 ∧ 𝐵

𝐴 ∧ 𝐵 ∈ Γ Γ, 𝐴 ⊢ 𝐶 ∧L1Γ ⊢ 𝐶
𝐴 ∧ 𝐵 ∈ Γ Γ, 𝐵 ⊢ 𝐶 ∧L2Γ ⊢ 𝐶

Γ ⊢ 𝐴 ∨R1Γ ⊢ 𝐴 ∨ 𝐵
Γ ⊢ 𝐵 ∨R2Γ ⊢ 𝐴 ∨ 𝐵

𝐴 ∨ 𝐵 ∈ Γ Γ, 𝐴 ⊢ 𝐶 Γ, 𝐵 ⊢ 𝐶 ∨L
Γ, ⊢ 𝐶

Γ, 𝐴 ⊢ 𝐵 →R
Γ ⊢ 𝐴 → 𝐵

𝐴 → 𝐵 ∈ Γ Γ ⊢ 𝐴 Γ, 𝐵 ⊢ 𝐶 →L
Γ ⊢ 𝐶

Γ ⊢ 𝐴 Γ, 𝐴 ⊢ 𝐶 cut
Γ ⊢ 𝐶

Figure 2: The set LJ defined with more verbose inference rules.

These inference rules map to constructors in a new Agda datatype ⊢.
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Figure 3: The set LJ defined in Agda

Example :  The sequent 𝑃1 ∧ 𝑃2 ⊢ 𝑃2 ∧ 𝑃1 is proved using the inference rules in Figure 1 and
Figure 3 as follows.

id
𝑃1 ∧ 𝑃2, 𝑃2 ⊢ 𝑃2 ∧L2𝑃1 ∧ 𝑃2 ⊢ 𝑃2

id
𝑃1 ∧ 𝑃2, 𝑃1 ⊢ 𝑃1 ∧L1𝑃1 ∧ 𝑃2 ⊢ 𝑃2 ∧R

𝑃1 ∧ 𝑃2 ⊢ 𝑃2 ∧ 𝑃2

Example :  The sequent ((𝐴 →⊥) →⊥) →⊥ ⊢ 𝐴 →⊥ is proved using the inference rules in
Figure 1 and Figure 3 as follows.
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id
((𝐴 →⊥) →⊥) →⊥, 𝐴, (𝐴 →⊥) ⊢ 𝐴

⊥L2((𝐴 →⊥) →⊥) →⊥, 𝐴, (𝐴 →⊥), ⊥ ⊢⊥ →L
((𝐴 →⊥) →⊥) →⊥, 𝐴, (𝐴 →⊥) ⊢⊥ →R

((𝐴 →⊥) →⊥) →⊥, 𝐴 ⊢ (𝐴 →⊥) →⊥
⊥L2((𝐴 →⊥) →⊥) →⊥, 𝐴, ⊥ ⊢⊥ →L

((𝐴 →⊥) →⊥) →⊥, 𝐴 ⊢⊥ ∧R
((𝐴 →⊥) →⊥) →⊥ ⊢ 𝐴 →⊥

Now that we have LJ formalized in Agda, we want to prove a couple of useful properties of it,
working our way towards a proof of soundness.

3.4. Structural rules.
Here we prove some useful properties of sequent calculus that we will make use of later, and also
get more acquainted with proofs in Agda. The properties we prove are very basic, and also serve as
some sort of sanity-check: if our formalization of LJ didn’t have these properties then something
might have gone wrong.

3.4.1. Strong identity
The strong-identity rule is like the id rule, except it holds for all propositions, not just propositional
variables.

Proposition 3.4.1.1 (Strong identity) :  For all propositions 𝐴 and all contexts Γ,

Γ, 𝐴 ⊢ 𝐴.

Equivalently

If 𝐴 ∈ Γ then Γ ⊢ 𝐴.

We formulate this in Agda as

Proof :  Suppose that 𝐴 ∈ Γ, and that there is a proof ℎ for this using the head and tail
inference rules define in Section 2.2. We proceed structural induction on 𝐴.

Base case 1 : 𝐴 = 𝑃𝑛

This is true by the id rule. In Agda the case looks like this
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Base case 2 and 3 : 𝐴 = ⊤ and 𝐴 =⊥

These cases are trivially true just like case 1.

Inductive case 4 : 𝐴 = 𝐴1 ∧ 𝐴2

By the inductive hypothesis we have proof trees of both Γ, 𝐴1 ⊢ 𝐴1 and Γ, 𝐴2 ⊢ 𝐴2. We thus
obtain the following proof tree for Γ ⊢ 𝐴1 ∧ 𝐴2

𝐴1 ∧ 𝐴2 ∈ Γ
ℎ

head
𝐴1 ∈ Γ, 𝐴1 strong-id
Γ, 𝐴1 ⊢ 𝐴1 ∧L1Γ ⊢ 𝐴1

𝐴1 ∧ 𝐴2 ∈ Γ
ℎ

head
𝐴2 ∈ Γ, 𝐴2 strong-id
Γ, 𝐴2 ⊢ 𝐴2 ∧L2Γ ⊢ 𝐴2 ∧R

Γ ⊢ 𝐴1 ∧ 𝐴2

In Agda the case is handled like this

Inductive case 5 and 6 : 𝐴 = 𝐴1 ∨ 𝐴2 and 𝐴 = 𝐴₁ → 𝐴2

These cases are handled analogous to case 4, using the ∨L, ∨R1 and ∨R2 rules resp. the →R and
→L rules.

□

3.4.2. Strong weakening
Here we will present and sketch out a proof of “strong weakening,” which is a generalization of
three usual properties of sequent calculus called weakening, contraction and exchange.

Weakening stems from the observation that if we have assumed Γ, and proved 𝐶 , then there is no
reason why we can’t add some extra, superfluous assumption 𝐴, and then assume Γ, 𝐴 and prove
𝐶 . That is

If Γ ⊢ 𝐶 then Γ, 𝐴 ⊢ 𝐶 ∀𝐴 ∈ Prop.

This is weakening. For strong weakening we first define a subset relation for contexts.
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Definition 3.4.2.1 (Context subset) : For two contexts Γ and Δ we say that Γ is a subset of Δ,
denoted Γ ⊆ Δ if and only if

𝑥 ∈ Γ ⇒ 𝑥 ∈ Δ,

that is, every assumption in Γ is also an assumption in Δ.

In Agda this relation is defined as

So in Agda, the way we prove that Γ ⊆ Δ is by producing a function that takes proofs of 𝑥 ∈ Γ and
returns proofs of 𝑥 ∈ Δ.

Remark : This notion of a subset relation for contexts has some seemingly weird
consequences, for instance, the context Γ, 𝑥, 𝑥, 𝑥 is a subset of the context Γ, 𝑥. However, this
subset relation still retains many properties that we want a subset relation to have, for
instance the relation is still reflexive and transitive.

We also state a lemma that we will make use of.

Lemma 3.4.2.1 : Adding assumptions to contexts is monotonic w.r.t. the subset relation, that
is

If Γ ⊆ Δ then Γ, 𝑥 ⊆ Δ, 𝑥.

In Agda we state this as

Proposition 3.4.2.1 (Strong weakening) :  Let Γ and Δ be contexts such that Γ ⊆ Δ. If Γ ⊢ 𝐶
then Δ ⊢ 𝐶 .

In Agda we state this as

Proof :  Let Γ ⊆ Δ and proceed by structural induction on the proof tree 𝒟 of the sequent Γ ⊢
𝐶 .

Base case 1, 2 and 3 :
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If the proof tree 𝒟 is one of

𝑃𝑛 ∈ Γ id
Γ ⊢ 𝑃𝑛

id
Γ ⊢ ⊤

⊥∈ Γ id
Γ ⊢ 𝐶

then the statement is trivially true, having to note only that since Γ ⊆ Δ we have 𝑃𝑛 ∈ Δ
resp. ⊥∈ Δ. In Agda the cases are handled like this

Inductive case 5 : 𝒟 = Γ ⊢ 𝐴
𝒟1

Γ, 𝐴 ⊢ 𝐶
𝒟2

cut
Γ ⊢ 𝐶

By the inductive hypothesis on 𝒟1 and 𝒟2 we have proof trees ℰ1 and ℰ2 of

Δ ⊢ 𝐴 and Δ, 𝐴 ⊢ 𝐶.

Now we construct a proof tree of Δ ⊢ 𝐶 as follows

Δ ⊢ 𝐴
ℰ1

Δ, 𝐴 ⊢ 𝐶
ℰ2

cut
Δ ⊢ 𝐶

In Agda the case is handled like this

Inductive case 5 : 𝒟 = 𝐴 ∨ 𝐵 ∈ Γ
ℎ

Γ, 𝐴 ⊢ 𝐶
𝒟₁

Γ, 𝐵 ⊢ 𝐶
𝒟₂

∨L
Γ ⊢ 𝐶

We note first that Γ, 𝐴 ⊆ Δ, 𝐴 and Γ, 𝐵 ⊆ Δ, 𝐵 by Lemma 3.4.2.1. By the inductive
hypothesis on 𝒟1 and 𝒟2 we have proof trees ℰ1 and ℰ2 of

Δ, 𝐴 ⊢ 𝐶 and Δ, 𝐵 ⊢ 𝐶.

Finally, since we know that 𝐴 ∨ 𝐵 ∈ Γ, and Γ ⊆ Δ we conclude that 𝐴 ∨ 𝐵 ∈ Δ and label
this proof ℎ′.

Now we can construct a proof tree of Δ ⊢ 𝐶

15



𝐴 ∨ 𝐵 ∈ Δ
ℎ′

Δ, 𝐴 ⊢ 𝐶
ℰ1

Δ, 𝐵 ⊢ 𝐶
ℰ2

∨L
Δ ⊢ 𝐶

In Agda this case is handled as follows

The rest of the cases are handled analogously, using the inductive hypothesis on each sub-
term and using the assumption Γ ⊆ Δ and Lemma 3.4.2.1 where applicable. □

Now we state the three corollaries of weakening, contraction and exchange.

Corollary (Weakening) :

Corollary (Contraction) :

Corollary (Exchange) :

3.5. Soundness
Here we prove that our formalization of LJ is sound with respect to boolean semantics. Boolean
semantics is a semantics of classical logic, while the sequent calculus we have developed is
intuitionistic. The consequence of this is, for instance, that the proposition 𝐴 ∨ ¬𝐴, is a tautology in
the semantics, but not provable in LJ. However, this is only a problem when proving completeness,
which we will not do in this thesis, and therefore we stick to boolean semantics because it might be
more familiar to the reader. We define valuations along the lines of [8].
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Definition 3.5.1 (Valuation) :  The valuation of the proposition 𝐴 according to an assignment
𝑎 : ℕ → {true, false}, denoted ⟦𝐴⟧𝑎 is given recursively by:

⟦𝑃𝑖⟧
𝑎 = 𝑎(𝑖)

⟦⊤⟧𝑎 = true
⟦⊥⟧𝑎 = false

⟦𝐴 ∧ 𝐵⟧𝑎 = ⟦𝐴⟧𝑎 ∧𝑏 ⟦𝐵⟧𝑎

⟦𝐴 ∨ 𝐵⟧𝑎 = ⟦𝐴⟧𝑎 ∨𝑏 ⟦𝐵⟧𝑎

⟦𝐴 → 𝐵⟧𝑎 = ⟦𝐴⟧𝑎 →
𝑏

⟦𝐵⟧𝑎

where ∧𝑏, ∨𝑏 and →
𝑏

 denote the usual boolean operators.

The valuation ⟦·⟧ is thus a function from Prop × (Prop → {true, false}) to {true, false}
where Prop → {true, false} denotes the set of all function from Prop to {true, false}

In Agda we define assignments and valuations as follows

If we have a context Γ, we say that an assignment 𝑎 satisfies Γ if ⟦𝛾⟧𝑎 = true for all 𝛾 in Γ

Finally, we say the Γ entails 𝐶 semantically if ⟦𝐶⟧𝑎 = true for all valuations 𝑎 satisfying Γ, and we
denote this as Γ ⊨ 𝐶 . In Agda we define it as

Before we can prove soundness, we need to prove a basic property of valuations.
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Proposition 3.5.1 (Valuations are decidable) :  For any valuation 𝑎 and any proposition 𝐴 we
have either

⟦𝜑⟧𝑎 = true or ⟦𝜑⟧𝑎 = false

In Agda we state this as

Proof :  We proceed by induction on the complexity of the propositional formula 𝜑

Base case 1 : 𝜑 = 𝑃𝑛

By the definition of valuations

⟦𝑃𝑛⟧𝑎 = 𝑎(𝑃𝑛),

and so we can determine the valuation by simply evaluating 𝑎(𝑃𝑛) and considering the result.

Base case 2 and 3 : 𝜑 = ⊤ and 𝜑 =⊥

These cases are trivial.

Inductive case 4 : 𝜑 = 𝐴 → 𝐵

By the inductive hypothesis, ⟦𝐴⟧𝑎 and ⟦𝐵⟧𝑏 are both decidable, so we can consider their
valuations on a case-by-case basis.

For this reason, we can simply construct a truth-table to determine the valuation of
⟦𝐴 → 𝐵⟧𝑎

⟦𝐴⟧𝑎 ⟦𝐵⟧𝑎 ⟦𝐴 → 𝐵⟧𝑎

true true true
true false false
false true true
false false true

This is essentially what we’re doing in Agda too
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Base case 5 and 6 : 𝜑 = 𝐴 ∧ 𝐵 and 𝜑 = 𝐴 ∨ 𝐵

These cases are handled analogous to case 4.

□

Proving soundness is relatively straightforward, but first we need to state this simple lemma.

Lemma 3.5.1 :

If 𝑥 is false, then 𝑥 is not true.

Theorem 3.5.1 (Soundness) :  If Γ ⊢ 𝐶 then Γ ⊨ 𝐶 .

In Agda we state this as

Proof :

We have to show that given a proof tree 𝒟 of the sequent Γ ⊢ 𝐶 , and some arbitrary
assignment 𝑎 such that 𝑎 satisfies Γ, we can prove that ⟦𝐶⟧ᵃ = true.

We will proceed by structural induction on the proof tree.

Base case 1 : 𝒟 = 𝑃𝑛 ∈ Γ id
Γ ⊢ 𝑃𝑛

𝑎 satisfies 𝐶 = 𝑃𝑛 since 𝑎 satisfies Γ and 𝑃𝑛 is in Γ.

Base case 2 : 𝒟 = ⊥∈ Γ ⊥L2Γ ⊢ 𝐶

This is a contradiction. Suppose 𝑎 satisfies Γ, then, in particular ⟦⊥⟧𝑎 = true, but we know by
the definition of valuations that ⟦⊥⟧𝑎 = false. There cannot be any 𝑎 that satisfy Γ.
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Inductive case 3 : 𝒟 = Γ ⊢ 𝐴
𝒟₁

Γ ⊢ 𝐵
𝒟₂

∧R
Γ ⊢ 𝐴 ∧ 𝐵

By the inductive hypotheses on 𝒟1 and 𝒟2 we have

Γ ⊨ 𝐴 and Γ ⊨ 𝐵.

So ⟦𝐴⟧𝑎 = ⟦𝐵⟧𝑎 = true, and so, by the definition of valuations, ⟦𝐴 ∧ 𝐵⟧ = true.

Inductive case 4 : 𝒟 = 𝐴 → 𝐵 ∈ Γ Γ ⊢ 𝐴
𝒟₁

Γ, 𝐵 ⊢ 𝐶
𝒟₂

→L
Γ ⊢ 𝐶

By the inductive hypothesis on 𝒟1 and 𝒟2 we have

Γ ⊨ 𝐴 and Γ, 𝐵 ⊨ 𝐶.

Since 𝐴 → 𝐵 ∈ Γ we also know that ⟦𝐴 → 𝐵⟧𝑎 = true. This gives us, by the definition of
valuations, either

⟦𝐴⟧𝑎 = false or ⟦𝐴⟧𝑎 = ⟦𝐵⟧𝑎 = true.

If ⟦𝐴⟧𝑎 = false we have a contradiction as Γ ⊨ 𝐴 implies ⟦𝐴⟧𝑎 = true, so it must be the case
that ⟦𝐴⟧𝑎 = ⟦𝐵⟧𝑎 = true.

In this case, 𝑎 satisfies not only Γ, but Γ, 𝐵, and since Γ, 𝐵 ⊨ 𝐶 we have ⟦𝐶⟧𝑎 = true, which
is what we wanted to show.
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All other cases are handled analogously using the inductive hypothesis on sub-terms.

□

4. Proof searching
Here we develop the restricted sequent calculus that will be used to implement the search
procedure, starting with an exposition that introduces the problem of termination in a search
procedure. The inference rules themselves are introduced in Section 4.1.

The methodology of proving. The way we prove a statement in sequent calculus is by building a
proof tree using the inference rules. The “root” of the tree is always the sequent we are trying to
prove, and the leaves are always the inference rules id, ⊤R or ⊥L2, i.e. those inference rules which
have no further premises that need proving. For instance, consider the example proof tree of 𝑃1 ∧
𝑃2 ⊢ 𝑃2 ∧ 𝑃1 on page 11.

id
𝑃1 ∧ 𝑃2, 𝑃2 ⊢ 𝑃2 ∧L2𝑃1 ∧ 𝑃2 ⊢ 𝑃2

id
𝑃1 ∧ 𝑃2, 𝑃1 ⊢ 𝑃1 ∧L1𝑃1 ∧ 𝑃2 ⊢ 𝑃1 ∧R

𝑃1 ∧ 𝑃2 ⊢ 𝑃2 ∧ 𝑃1
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Once we have the proof tree, it might make sense to us, and we can verify that this proof tree is
correct, but how do you come up with one? It is almost always easiest to find a proof tree starting
from the bottom working upwards. In the example above we would start off like this:

? ?
𝑃1 ∧ 𝑃2 ⊢ 𝑃2 ∧ 𝑃1

Now we look at Figure 1 and see if there are any inference rules that are applicable. We see that ∧R,
∧L1, ∧L2 are all applicable. Now we have to make a choice as to which one of these we try –
sometimes intuition helps us pick, sometimes trial and error is the only way. In any case, suppose
we chose to apply ∧R, now we end up with this:

? ?
𝑃1 ∧ 𝑃2 ⊢ 𝑃2

? ?
𝑃1 ∧ 𝑃2 ⊢ 𝑃2 ∧R

𝑃1 ∧ 𝑃2 ⊢ 𝑃2 ∧ 𝑃1

Now we re-do this process for the two new “holes” in our proof tree, considering which inference
rules are applicable, trying one of them, and (hopefully), eventually finding complete proof tree. Our
proof searching procedure will operate on the same principle. However, it is not quite that simple as
we can end up in infinite loops if we are not careful. Consider this attempt at proving
commutativity that ends up in an infinite loop

⋮ ∧L1𝑃1 ∧ 𝑃2, 𝑃1, 𝑃1, 𝑃1, 𝑃1 ⊢ 𝑃2 ∧ 𝑃1 ∧L1𝑃1 ∧ 𝑃2, 𝑃1, 𝑃1, 𝑃1 ⊢ 𝑃2 ∧ 𝑃1 ∧L1𝑃1 ∧ 𝑃2, 𝑃1, 𝑃1 ⊢ 𝑃2 ∧ 𝑃1 ∧L1𝑃1 ∧ 𝑃2, 𝑃1 ⊢ 𝑃2 ∧ 𝑃1 ∧L1𝑃1 ∧ 𝑃2 ⊢ 𝑃2 ∧ 𝑃1

Figure 4: A search that goes on forever

How do we fix this? A first instinct might be to implement some sort of cycle-detection algorithm,
but that can be difficult for two reasons

1. There might be cycles that are difficult to detect.
2. It might be very difficult to convince Agda that our search procedure with cycle detection

does terminate.

The approach we take will instead be to restrict our inference rules to make these pathological cases
impossible, and proving rigorously that this is the case. In the end we will arrive at a “contraction-
free” sequent calculus along the lines of R. Dyckhoff [1]. Our search procedure will also follow a
very specific order of applying inference rules, and we want the inference rules themselves to
impose this order: For any given sequent there should be at most one or two inference rules that are
applicable, i.e. at most one or two “choices” for the search procedure to consider. In order to achieve
this restrictiveness we endow our sequents with a “cursor” and a “mode.”
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Definition 4.1 (Sequent with a cursor and a mode) :  Let Γ | Δ ⊢ 𝐶 ∙ 𝑚 denote a sequent
with a cursor and a mode, where Γ and Δ are contexts, 𝐶 is a proposition, and 𝑚 is one of the
symbols 𝑅 or 𝑆 denoting reduce-mode and search-mode respectively. We may write

Γ, 𝑥 | 𝑦, Δ ⊢ 𝐶 ∙ 𝑚

to denote a sequent where 𝑥 is the proposition just to the left of the cursor, and 𝑦 is the
proposition just to the right.

In Agda we define sequents with cursors as follows

We want a way to build lists in “reverse order”, because in the sequent Γ, 𝑥 ∣ 𝑦, Δ ⊢ 𝐶 ∙ 𝑚 we have
𝑦 as the head of the list 𝑦, Δ. We define this as follows

and so the above sequent is written as Γ , x ∣ y ,, Δ ⊢ C ∙ m in Agda.

4.1. The restricted sequent calculus LJf.
The overall strategy of our search procedure will be to simplify all of the propositions in the
antecedents using left rules, starting from the right and moving left. When all of the propositions in
the antecedents have been simplified as far as possible, and the cursor is all the way to the left, we
will try to simplify the succedent using a right rule, and then “rewind” the cursor all the way to the
right and restart our search. There will overall be three types of rules

Γ, 𝑥′ ∣ Δ ⊢ 𝐶 ∙ 𝑚 left rule
Γ, 𝑥 ∣ Δ ⊢ 𝐶 ∙ 𝑚

Γ ∣ ∅ ⊢ 𝐶′ ∙ 𝑚 right rule
∅ ∣ Γ ⊢ 𝐶 ∙ 𝑚

Γ ∣ 𝑥, Δ ⊢ 𝐶 ∙ 𝑚 move rule
Γ, 𝑥 ∣ Δ ⊢ 𝐶 ∙ 𝑚

For all of the inference rules, the premises have to be strictly “smaller” than the conclusion
according to some measure. Unfortunately, this measure cannot simply be the structural complexity
of the sequent, and we will not define the specific measure until Section 5.

Now we use Figure 1 as a basis and restrict those rules one by one. The mode 𝑚 exists in order to
handle a specific scenario relating to propositions of the form 𝑃𝑛 → 𝐵 in the context, and will be
discussed last. For all other inference rules, the mode will always be 𝑅, and there is no need to
consider the mode until the last few inference rules.

Propositional variables.

If we encounter a propositional variable in the context, i.e. we find ourselves in this situation
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Γ, 𝑃𝑛 ∣ Δ ⊢ 𝐶,

then we might check if 𝐶 = 𝑃𝑛, at which point we’ve found our proof tree. If, on the other hand,
𝐶 ≠ 𝑃𝑛 then we have to go on with our search. This gives us the following two rules for
propositional variables

id
Γ, 𝑃𝑛 | Δ ⊢ 𝑃𝑛 ∙ 𝑅

Γ | 𝑃𝑛, Δ ⊢ 𝐶 ∙ 𝑅 id⟨
Γ, 𝑃𝑛 | Δ ⊢ 𝐶 ∙ 𝑅

The id rule simply ends our search with a proof tree and the id⟨ rule makes progress by moving the
cursor further along to the left, and so the premises are strictly “smaller” than the conclusions in
both cases.

Truth.

If we encounter ⊤ in the context, there’s is nothing we can do with it, and we make progress by
simply removing it from the context. If we encounter ⊤ as a succedent, then we have immediately
found a proof tree. Note that we only consider the succedent after we have simplified all the
propositions in the context.

Γ ∣ Δ ⊢ 𝐶 ∙ 𝑅 ⊤L
Γ, ⊤ ∣ Δ ⊢ 𝐶 ∙ 𝑅

⊤R
∅ ∣ Γ ⊢ ⊤ ∙ 𝑅

We can see that the sequent weight of the premise in ⊤𝐿 is strictly “smaller” than the conclusion.

Falsehood. This is pretty much the same rule as in Figure 1.

⊥L2Γ, ⊥ ∣ Δ ⊢ 𝐶 ∙ 𝑅

Conjunction.

For LJf there is only one left rule for conjunction instead of two

Γ, 𝐴, 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅 ∧L
Γ, 𝐴 ∧ 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅

The reasoning behind this restricted version is that with the original ∧L1 and ∧L2 rules it is possible
to end up in an infinite loop as seen in Figure 4 by just repeatedly applying this rule. In this
restricted, version that is not possible because it removes the assumption 𝐴 ∧ 𝐵 from the context.
This removal is not too restrictive, because assuming 𝐴 ∧ 𝐵 and assuming 𝐴, 𝐵 are logically
equivalent, and so we don’t lose any information. We also note that this makes the sequent in the
premise strictly “smaller” in some sense.

The right rule for conjunction is nothing special.

Γ ∣ ∅ ⊢ 𝐴 ∙ 𝑅 Γ ∣ ∅ ⊢ 𝐵 ∙ 𝑅 ∧R
∅ ∣ Γ ⊢ 𝐴 ∧ 𝐵 ∙ 𝑅
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Disjunction.

There is nothing very special about the left rule for disjunction

Γ, 𝐴 ∣ Δ ⊢ 𝐶 ∙ 𝑅 Γ, 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅 ∨L
Γ, 𝐴 ∨ 𝐵 ∣ Γ ⊢ 𝐶 ∙ 𝑅

nor with the two right rules

Γ | ∅ ⊢ 𝐴 ∙ 𝑅 ∨R1∅ | Γ ⊢ 𝐴 ∨ 𝐵 ∙ 𝑅
Γ | ∅ ⊢ 𝐵 ∙ 𝑅 ∨R2∅ | Γ ⊢ 𝐴 ∨ 𝐵 ∙ 𝑅

Again, the sequents in the premises are strictly “smaller” than the conclusions.

There is one point to be made about branching: Sow far we’ve seen that the rules ∧R and ∨L contain
two premises each, meaning that our search procedure will have to branch off at these points. This
branching is purely mechanical; If I want to prove for instance the sequent Γ ⊢ 𝐴 ∧ 𝐵, then i know
that i will always have to prove Γ ⊢ 𝐴 and Γ ⊢ 𝐵 first. The ∨R1 and ∨R2 also induce branching in the
procedure, but of another nature: If I want to prove Γ ⊢ 𝐴 ∨ 𝐵 then I will have to prove either Γ ⊢
𝐴 or Γ ⊢ 𝐵, but not necessarily both. This branching then represents some fundamental
uncertainty; I only need to prove one of the sub-sequents but I don’t know which one, so worst
case, I’ll have to try proving both.

Conditional

The right rule for conditional is straightforward

Γ, 𝐴 | ∅ ⊢ 𝐵 ∙ 𝑅 →R
∅ ∣ Γ ⊢ 𝐴 → 𝐵 ∙ 𝑅

The left rule for conditionals poses a problem however. Consider the left-conditional rule from
Figure 1

Γ, 𝐴 → 𝐵 ⊢ 𝐴 Γ, 𝐵 ⊢ 𝐶 →L
Γ, 𝐴 → 𝐵 ⊢ 𝐶

The problem is that if 𝐴 = 𝐶 , then the first premise is precisely the conclusion, i.e. we don’t make
any progress applying the rule like this, and we might end up in an infinite loop similar to Figure 4.
The solution is to have six (!!) left-conditional rules specialized depending on the value of 𝐴.

Left-conditional with truth

If the conditional is ⊤ → 𝐵 then we may always assume 𝐵.

Γ, 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅 ⊤→L
Γ, ⊤ → 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅

Left-conditional with falsehood
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The conditional ⊥→ 𝐵 is logically equivalent to ⊤, (assuming ⊥, it follows that 𝐵 for any 𝐵) and,
just like ⊤, this proposition isn’t useful, assuming it doesn’t give us anything new to work with,
leaving us with this rule

Γ ∣ Δ ⊢ 𝐶 ∙ 𝑅 ⊥→L
Γ, ⊥→ 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅

Left-conditional with conjunction

If the conditional is (𝐴1 ∧ 𝐴2) → 𝐵 then we simplify it with the logically equivalent 𝐴1 → (𝐴2 →
𝐵)

Γ, 𝐴1 → (𝐴2 → 𝐵) ∣ Δ ⊢ 𝐶 ∙ 𝑅 ∧→L
Γ, (𝐴1 ∧ 𝐴2) → 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅

Here it is not very clear that the premise would be strictly “smaller” than the conclusion, however,
in Section 5 we will see that it is possible to define a measure where this is the case. The intuition is
that the proposition 𝐴1 → (𝐴2 → 𝐵) is “smaller” than (𝐴1 ∧ 𝐴2) → 𝐵 in the sense that the
premise is smaller, and therefore we’ll eventually end up with all conditionals in the context having
the premises 𝑃𝑛, ⊤ or ⊥.

Left-conditional with disjunction

If the conditional is (𝐴1 ∨ 𝐴2) → 𝐵 then we know that 𝐴1 → 𝐵 and 𝐴2 → 𝐵, which is how we
make progress in our search.

Γ, 𝐴1 → 𝐵, 𝐴2 → 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅 ∨→L
Γ, (𝐴1 ∨ 𝐴2) → 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅

Here it isn’t obvious that the premise would be “smaller” either, but the intuition is that although
there are more propositions in the premise, they “replaced” one large proposition (𝐴₁ ∨ 𝐴₂) → 𝐵,
and so we’ve made progress.

Left-conditional with conditional

Here the conditional is (𝐴1 → 𝐴2) → 𝐵. If we came across this in LJ we might proceed with the
following proof tree which we will use as a basis for finding the restricted version.

⋮
Γ, (𝐴1 → 𝐴2) → 𝐵, 𝐴1 ⊢ 𝐴2 →R

Γ, (𝐴1 → 𝐴2) → 𝐵 ⊢ 𝐴1 → 𝐴2

⋮
Γ, (𝐴1 → 𝐴2) → 𝐵, 𝐵 ⊢ 𝐶 →L

Γ, (𝐴1 → 𝐴2) → 𝐵 ⊢ 𝐶

The sequent in the second premise Γ, (𝐴1 → 𝐴2) → 𝐵, 𝐵 ⊢ 𝐶 can have the assumption (𝐴1 →
𝐴2) → 𝐵 removed without losing any information, because we already have 𝐵, and, assuming 𝐵
we can conclude 𝑋 → 𝐵 for any 𝑋.
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Similarly, the sequent in the first premise, Γ, (𝐴1 → 𝐴2) → 𝐵, 𝐴1 ⊢ 𝐴2 can be simplified; since we
have 𝐴1 in the context, the conditional (𝐴1 → 𝐴2) → 𝐵 can be replaced with 𝐴2 → 𝐵 without
losing any information.

These simplifications leave us with the following rule, which is a rule from LJT.

Γ, 𝐴2 → 𝐵, 𝐴1 ⊢ 𝐴2 Γ, 𝐵 ∣ Δ ⊢ 𝐶 →→L
Γ, (𝐴1 → 𝐴2) → 𝐵 ⊢ 𝐶

By adding cursors and modes where appropriate, we arrive at the following inference rule for LJf.

Γ, 𝐴2 → 𝐵, 𝐴1 | Δ ⊢ 𝐴2 ∙ 𝑅 Γ, 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅 →→L
Γ, (𝐴1 → 𝐴2) → 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅

Here the context of both premises is smaller – that is, if we use the same reasoning as for the left-
conditional with disjunction. However, the first premise has 𝐴2 as the succedent, whereas the
succedent of the conclusions is 𝐶 , and 𝐴2 can be “larger” than 𝐶 . Recall also that the →R rule
reduces the succedent, but makes the context larger. This means that a well-founded measure
cannot be a simple lexicographical ordering of

• the size of the context
• the size of the succedent

due to →→L and →R.

Left-conditional with propositional variables

This is where we make use of the mode of the sequent.

If the conditional is 𝑃𝑛 → 𝐵 then there are two possible courses of action. If 𝑃𝑛 is in the context,
then we may of course assume 𝐵, giving us this rule

𝑃𝑛 ∈ Γ ∪ Δ Γ, 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅 P→L
Γ, 𝑃𝑛 → 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅

If 𝑃𝑛 isn’t in the context, then we can’t do anything with the 𝑃𝑛 → 𝐵 right now, however, once
we’ve simplified all propositions then 𝑃𝑛 → 𝐵 might become applicable, so we don’t discard it. This
leaves us with a second inference rule for left-conditional with propositional variables.

Γ ∣ 𝑃𝑛 → 𝐵, Δ ⊢ 𝐶 ∙ 𝑅 P→⟨
Γ, 𝑃𝑛 → 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅

At this point, we are almost done, but there is one problem with this case. Consider for instance if
we want to prove the sequent

⊤ → 𝑃1, 𝑃1 → 𝑃2 ⊢ 𝑃2.

In such a search we start with the cursor all the way to the right, and in reduce-mode
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? ?
⊤ → 𝑃1, 𝑃1 → 𝑃2 ∣ ∅ ⊢ 𝑃2 ∙ 𝑅

We see first if the P→L rule is applicable; it isn’t since 𝑃1 is not an element in the context. P→⟨ is
the only other applicable rule, leaving us with

? ?
⊤ → 𝑃1 | 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 P→⟨

⊤ → 𝑃1, 𝑃1 → 𝑃2 | ∅ ⊢ 𝑃2 ∙ 𝑅

The ⊤→L rule is applicable, leaving us with

? ?
𝑃1 | 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 ⊤→L

⊤ → 𝑃1 | 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 P→⟨
⊤ → 𝑃1, 𝑃1 → 𝑃2 | ∅ ⊢ 𝑃2 ∙ 𝑅

Finally, we apply the id⟨ rule as it is the only applicable one

? ?
∅ ∣ 𝑃1, 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 id⟨
𝑃1 | 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 ⊤→L

⊤ → 𝑃1 | 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 P→⟨
⊤ → 𝑃1, 𝑃1 → 𝑃2 | ∅ ⊢ 𝑃2 ∙ 𝑅

Now there are no more applicable inference rules and the search fails to find a proof of the sequent.
We can recognize that there is a solution, tough. Since 𝑃1 is now in the context we should be able to
reduce 𝑃1 → 𝑃2 to 𝑃2 and continue with the search. The reason the search fails is due to the order
of ⊤ → 𝑃1, 𝑃1 → 𝑃2 in the context. Had the order been reversed the search would have succeeded.

The way we remedy this is to perform one final pass over the context before giving up with the
search, we do this with the following inference rule

𝐶 ∈ {𝑃𝑛 | 𝑛 ∈ ℕ} ∪ {⊥} Γ | ∅ ⊢ 𝐶 ∙ 𝑆 init
∅ | Γ ⊢ 𝐶 ∙ 𝑅

This simply rewinds the cursor, and continues in “search” mode whenever the succedent 𝐶 cannot
be reduced further. In order for the premise to be considered “smaller” than the conclusion we say
that for two equivalent sequents 𝑠1 and 𝑠2 (modulo order of the context and position of the cursor),
the sequent 𝑠1 is smaller than 𝑠2 if 𝑠1 is in search mode and 𝑠2 is in reduce mode.

All previous inference rules are only applicable when in “reduce” mode, but we want the P→L rule
to be applicable in both modes, so we change it
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𝑃𝑛 ∈ Γ ∪ Δ Γ, 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑅 P→L
Γ, 𝑃𝑛 → 𝐵 ∣ Δ ⊢ 𝐶 ∙ 𝑚

Note that the premise is always in reduce mode, meaning that when P→L is applied in search
mode, the search “resets” back to reduce mode.

The final inference rule is only applicable in search mode, and is analogous to id⟨, but applicable for
all propositions.

Γ | 𝐴, Δ ⊢ 𝐶 ∙ 𝑆 continue
Γ, 𝐴 | Δ ⊢ 𝐶 ∙ 𝑆

With these additions and changes in place, there is now a proof for the sequent ⊤ → 𝑃1, 𝑃1 →
𝑃2 ⊢ 𝑃2

𝑃2 ∈ {𝑃𝑛 | 𝑛 ∈ ℕ} ∪ {⊥}

𝑃1 ∈ {𝑃1 → 𝑃2} ∪ {𝑃1}
id

𝑃2 | 𝑃1 ⊢ 𝑃2 ∙ 𝑅 P→L
𝑃1 → 𝑃2 | 𝑃1 ⊢ 𝑃2 ∙ 𝑆 continue

𝑃1 → 𝑃2, 𝑃1 | ∅ ⊢ 𝑃2 ∙ 𝑆 init
∅ ∣ 𝑃1, 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 id⟨
𝑃1 | 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 ⊤→L

⊤ → 𝑃1 | 𝑃1 → 𝑃2 ⊢ 𝑃2 ∙ 𝑅 P→⟨
⊤ → 𝑃1, 𝑃1 → 𝑃2 | ∅ ⊢ 𝑃2 ∙ 𝑅

All inference rules are summarized in Figure 5
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id
Γ, 𝑃𝑛 | Δ ⊢ 𝑃𝑛

Γ | 𝑃𝑛, Δ ⊢ 𝐶 id⟨
Γ, 𝑃𝑛 | Δ ⊢ 𝐶

⊤R
∅ | Γ ⊢ ⊤

Γ | Δ ⊢ 𝐶 ⊤L
Γ, ⊤ | Δ ⊢ 𝐶

⊥L2Γ, ⊥ | Δ ⊢ 𝐶

Γ | ∅ ⊢ 𝐴 Γ | ∅ ⊢ 𝐵 ∧R
∅ | Γ ⊢ 𝐴 ∧ 𝐵

Γ, 𝐴, 𝐵 | Δ ⊢ 𝐶 ∧L
Γ, 𝐴 ∧ 𝐵 | Δ ⊢ 𝐶

Γ ∣ ∅ ⊢ 𝐴 ∨R1∅ | Γ ⊢ 𝐴 ∨ 𝐵
Γ ∣ ∅ ⊢ 𝐵 ∨R2∅ | Γ ⊢ 𝐴 ∨ 𝐵

Γ, 𝐴 | Δ ⊢ 𝐶 Γ, 𝐵 | Δ ⊢ 𝐶 ∨L
Γ, 𝐴 ∨ 𝐵 | Δ ⊢ 𝐶

Γ, 𝐴 | ∅ ⊢ 𝐵 →R
∅ | Γ ⊢ 𝐴 → 𝐵

Γ, 𝐵 | Δ ⊢ 𝐶 ⊤→L
Γ, ⊤ → 𝐵 | Δ ⊢ 𝐶

Γ | Δ ⊢ 𝐶 ⊥→L
Γ, ⊥→ 𝐵 | Δ ⊢ 𝐶

Γ, 𝐴1 → (𝐴2 → 𝐵) | Δ ⊢ 𝐶 ∧→L
Γ, (𝐴1 ∧ 𝐴2) → 𝐵 | Δ ⊢ 𝐶

Γ, 𝐴1 → 𝐵, 𝐴2 → 𝐵 | Δ ⊢ 𝐶 ∨→L
Γ, (𝐴1 ∨ 𝐴2) → 𝐵 | Δ ⊢ 𝐶

Γ, 𝐴2 → 𝐵, 𝐴1 | Δ ⊢ 𝐴2 Γ, 𝐵 | Δ ⊢ 𝐶 →→L
Γ, (𝐴1 → 𝐴2) → 𝐵 | Δ ⊢ 𝐶

𝑃𝑛 ∈ Γ ∪ Δ Γ, 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅 P→L
Γ, 𝑃𝑛 → 𝐵 | Δ ⊢ ∙ 𝑚

Γ | 𝑃𝑛 → 𝐵, Δ ⊢ 𝐶 P→⟨
Γ, 𝑃𝑛 → 𝐵 | Δ ⊢ 𝐶

𝐶 ∈ {𝑃𝑛 | 𝑛 ∈ ℕ} ∪ {⊥} Γ ∣ ∅ ⊢ 𝐶 ∙ 𝑆 init
∅ | Γ ⊢ 𝐶 ∙ 𝑅

Γ | 𝐴, Δ ⊢ 𝐶 ∙ 𝑆 continue
Γ, 𝐴 | Δ ⊢ 𝐶 ∙ 𝑆

Figure 5: All inference rules for the restricted sequent calculus LJf. For brevity, the mode specifier is
omitted for those inference rules where all premises and the conclusion are in reduce mode.

These inference rules are defined in Agda as follows:
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Figure 6: The set LJf defined in Agda

4.2. The search procedure.
First we state two simple lemmas that we will make us of.
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Proposition 4.2.1 :

For any sequent with a cursor 𝑠, there is either a derivation for 𝑠 in LJf, or there is no such
derivation.

In Agda we state this as

(More on the {-# TERMINATING #-} pragma in the proof)

The fact that we return a proof that no derivation exists in the case that the search fails is
important. It establishes the fact that the search procedure is exhaustive; the only reason for it
failing to find a derivation in LJf is if there literally is no such derivation in LJf. This does not
necessarily mean, however, that the search is complete (i.e. finds a proof for all semantically true
statements), because it could be that the inference rules in LJf are not expressive enough.

Proof :

We will proceed by induction on the “size” of the sequent 𝑠 according to Definition 5.2, which
follows in the next section.

Unfortunately, Agda’s automatic termination checker does not see that our induction is sound,
and so we have to annotate the search procedure with the {-# TERMINATING #-}
pragma, which instructs Agda to trust our judgment. In Section 5.1 we will see how to make
the inductive reasoning explicit so that Agda accepts our search procedure without the
pragma.

All inductive cases of this proof will follow the same prototype: Tasked with finding a proof
tree of 𝑠 ∈ LJf we consider which inference rules in Figure 5 can be used to prove it. There
will never be more than two applicable rules, suppose for the demonstration that ℛ is the
only applicable rule, and 𝑠1 ∈ LJf and 𝑠2 ∈ LJf are its premises. Next, we apply the inductive
hypothesis and search for proof trees 𝒟1 and 𝒟2 for 𝑠1 ∈ LJf and 𝑠2 ∈ LJf respectively. If
the sub-searches succeed then we have found a proof of 𝑠 ∈ LJf

𝑠1 ∈ LJf
𝒟1

𝑠2 ∈ LJf
𝒟2

ℛ
𝑠 ∈ LJf

Suppose on the other hand that the first search fails, then we know that

¬𝑠1 ∈ LJf

Since ℛ was the only applicable rule, and since one of its sub-terms lead to a contradiction,
we conclude that there can be no proof of 𝑠 either.
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Base case 1 : 𝑠 = ∅ ∣ Γ ⊢ ⊤ ∙ 𝑅

This case is trivial.

Base case 2 : 𝑠 = ∅ | Γ ⊢ 𝐶 ∙ 𝑆

Here the cursor has reached the end in search mode, and there are no applicable inference
rules, so there is no proof tree for 𝑠.

Inductive case 3 and 4 : 𝑠 = ∅ ∣ Γ ⊢ 𝑃𝑛 ∙ 𝑅 and 𝑠 = ∅ | Γ ⊢⊥ ∙ 𝑅

Suppose the succedent is 𝑃𝑛

We apply the inductive hypothesis and search for a proof tree 𝒟1 of the sequent

Γ | ∅ ⊢ 𝑃𝑛 ∙ 𝑆

(recall that a sequent in search mode is considered “smaller” than a sequent in reduce mode)

If we find a proof tree 𝒟1 then the search succeeds with the following proof tree

Γ | ∅ ⊢ 𝑃𝑛 ∙ 𝑆
𝒟1

init
∅ | Γ ⊢ 𝑃𝑛 ∙ 𝑅

Otherwise there are no applicable inference rules, and there is no proof tree of 𝑠.

When the succedent is ⊥ the case is handled analogously.

Inductive case 5 : 𝑠 = ∅ ∣ Γ ⊢ 𝐴 ∨ 𝐵 ∙ 𝑅

The proof of 𝑠 has to start with ∨R1 or ∨R2 as there are no other applicable inference rules. As
such, we apply the inductive hypothesis and search for proofs trees 𝒟1 and 𝒟2 of Γ | ∅ ⊢ 𝐴
and Γ | ∅ ⊢ 𝐵.

If the first sub-search succeeds, we have a proof of 𝑠 with the following proof tree

Γ ∣ ∅ ⊢ 𝐴 ∙ 𝑅
𝒟1

∨R1∅ ∣ Γ ⊢ 𝐴 ∨ 𝐵 ∙ 𝑅

Similarly, if the second sub-search succeeds, we have a proof tree of 𝑠 using the ∨R2 rule.
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If bot sub-searches fail then there are no applicable inference rules, and there is no proof tree
of 𝑠.

Inductive case 6 : s = Γ, 𝑃𝑛 | Δ ⊢ 𝐶 ∙ 𝑅

The applicable rules in this case are id and id⟨. If 𝐶 = 𝑃𝑛 then our search succeeds with the
following proof tree

id
Γ, 𝑃𝑛 | Δ ⊢ 𝑃𝑛 ∙ 𝑅

If 𝐶 ≠ 𝑃𝑛 then we apply the inductive hypothesis and search for a proof tree of the sequent
Γ | 𝑃𝑛, Δ ⊢ 𝐶 .

If the sub-search succeeds with a proof tree 𝒟1 of Γ | 𝑃𝑛, Δ ⊢ 𝐶 ∙ 𝑅 then we also have a
proof of Γ, 𝑃𝑛 | Δ ⊢ 𝐶 ∙ 𝑅 with the following proof tree

Γ | 𝑃𝑛, Δ ⊢ 𝐶 ∙ 𝑅
𝒟1

id⟨
Γ, 𝑃𝑛 | Δ ⊢ 𝐶 ∙ 𝑅

If 𝐶 ≠ 𝑃𝑛 and if the sub-search failed, there is no proof tree of 𝑠.

Inductive case 7 : 𝑠 = Γ, (𝐴1 → 𝐴2) → 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅

A proof tree of 𝑠 has to start with the →→L rule as there are no other applicable inference
rules. We apply the inductive hypothesis and search for proof trees 𝒟₁ and 𝒟₂ of Γ, 𝐴2 →
𝐵, 𝐴1 | Δ ⊢ 𝐴1 and Γ, 𝐵 | Δ ⊢ 𝐶 respectively. If both sub-searches succeed then our search
succeeds with the proof tree
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Γ, 𝐴2 → 𝐵, 𝐴1 | Δ ⊢ 𝐴2

𝒟1
Γ, 𝐵 | Δ ⊢ 𝐶

𝒟2

→→L
Γ, (𝐴1 → 𝐴2) → 𝐵 | Δ ⊢ 𝐶

If any of the searches fail, there can be no proof tree.

Inductive case 7 : 𝑠 = Γ, 𝑃𝑛 → 𝐵 | Δ ⊢ 𝐶 ∙ 𝑚

Here a proof tree of 𝑠 can start with either P→L, or P→⟨.

We consider first if 𝑃𝑛 there is a proof ℎ of 𝑃𝑛 being an element in the context Γ or Δ,
suppose this is the case, we then apply the inductive hypothesis, searching for a proof tree 𝒟1
of the sequent

Γ, 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅.

If there is such a proof tree, then our search succeeds with the following proof tree of 𝑠

𝑃𝑛 ∈ Γ ∪ Δ
ℎ

Γ, 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅
𝒟1

P→L
Γ, 𝑃𝑛 → 𝐵 | Δ ⊢ 𝐶 ∙ 𝑚

If it is not the case that such a proof tree exists, either because 𝒟1 or ℎ is a contradiction, we
continue, applying the inductive hypothesis again, searching for a proof tree 𝒟2 of the
sequent

Γ | 𝑃𝑛 → 𝐵, Δ ⊢ 𝐶 ∙ 𝑚.

If there is such a proof tree then our search succeeds with the following proof trees of 𝑠
depending on the mode 𝑚.

Γ | 𝑃𝑛 → 𝐵, Δ ⊢ 𝐶 ∙ 𝑅 P→⟨
Γ, 𝑃𝑛 → 𝐵 | Δ ⊢ 𝐶 ∙ 𝑅

Γ | 𝑃𝑛 → 𝐵, Δ ⊢ 𝐶 ∙ 𝑆 continue
Γ, 𝑃𝑛 → 𝐵 | Δ ⊢ 𝐶 ∙ 𝑆

We show only the Agda case for 𝑚 = 𝑅. The case for 𝑚 = 𝑆 is handled analogously except
for the final application of P→L being replaced by an application of continue
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All remaining cases are handled analogously.

□

5. Proving termination
Here we prove first that the inductive arguments in Proposition 4.2.1 are all sound by giving a
measure according to which all premises of all inference rules in Figure 5 are strictly smaller than
their respective conclusions.

In Section 5.1 we use this measure to prove termination to Agda, leaving us with a version of
isProvable that does not need a {-# TERMINATING #-} pragma.

We use the measure defined by A. S. Troelstra and H. Schwichtenberg [10] to measure the “weight”
of propositions.

Definition 5.1 (Propositional weight) :  The propositional weight 𝑤(𝐴) of a proposition 𝐴 is
given recursively by

𝑤(𝑃𝑛) = 2
𝑤(⊤) = 2
𝑤(⊥) = 2
(𝐴 ∧ 𝐵) = 𝑤(𝐴)(1 + 𝑤(𝐵))
(𝐴 ∨ 𝐵) = 1 + 𝑤(𝐴) + 𝑤(𝐵)
(𝐴 → 𝐵) = 1 + 𝑤(𝐴)𝑤(𝐵).

The propositional weight can be extended to a whole sequent with

𝑤(Γ ∣ Δ ⊢ 𝐶 ∙ 𝑚) = ∑
1≤𝑖≤𝑘

𝑤(Γ𝑖) + ∑
1≤𝑖≤ℎ

𝑤(Δ𝑖) + 𝑤(𝐶)

where 𝑘 and ℎ are the length of Γ resp. Δ.

This measure appears rather arbitrary, but we can verify via routine and tedious calculation that for
almost all inference rules in Figure 5, the premises are strictly smaller than the conclusions
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according to this measure, with the exceptions being id⟨, init and continue. If we add one to the
weight of all sequents in reduce mode, then the premise in init is now strictly smaller than the
conclusion. Finally, we can take care of id⟨ and continue, if we define our measure lexicographically,
where for two sequents 𝑠1 and 𝑠2 of equal weight, 𝑠1 is considered “smaller” than 𝑠2 if the cursor of
𝑠1 is further to the left. This leaves us with our final measure

Definition 5.2 (Sequent size) :  The size of the sequent Γ | Δ ⊢ 𝐶 ∙ 𝑚 is given by the tuple

(𝑤(Γ | Δ ⊢ 𝐶 ∙ 𝑚) + 𝑓(𝑚), 𝑘)

where 𝑓  maps 𝑅 ↦ 0 and 𝑆 ↦ 1, and 𝑘 is the length of Γ.

We say that a sequent 𝑠1 is “smaller” than a sequent 𝑠2 if the sequent size of 𝑠1 is smaller
when ordered lexicographically.

We can now verify that all applications of the inductive hypothesis in the proof of Proposition 4.2.1
are sound according to Definition 5.2. In Agda this means that isProvable is guaranteed to
terminate, although Agda cannot see it automatically.

5.1. Proving termination in Agda
An approximate description⁴ of Agdas automatic termination checker is that it tries to detect sound
uses of structural induction, (in programming terms: recursion on sub-terms of function
arguments). When we want to make an inductive argument that is not along the lines of structural
induction, we can make use of the Acc datatype from Agdas standard library, where Acc _≺_ x
means that x is “accessible” w.r.t. the relation _≺_. There is a single constructor

acc : (∀ {y} → y ≺ x → Acc _≺_ y) → Acc _≺_ x,

meaning that ≺ is accessible w.r.t 𝑥 if for every 𝑦 such that 𝑦 ≺ 𝑥, 𝑦 is also accessible. This means in
effect that there are no infinite decsending chains ⋯ ≺ 𝑥3 ≺ 𝑥2 ≺ 𝑥1. The intended use-case for
Acc is to modify isProvable to have the following signature

isProvable' : (s : SequentWithCursor)
→ Acc _≺_ s
→ Either (derivationFor s) (¬ derivationFor s)

where _≺_ is Definition 5.2 but in Agda.

To illustrate, the inductive case 5 in the proof of Proposition 4.2.1 is handled as follows (with new
additions in the code highlighted)

isProvable' (∅ ∣ Γ ⊢ (A ∨ B) ∙ R) (acc rs)
with isProvable' (Γ ∣ ∅ ⊢ A ∙ R) (rs ℋ)

| isProvable' (Γ ∣ ∅ ⊢ B ∙ R) (rs 𝒦)
… | (left 𝒟₁) | _ = left (∨R₁ 𝒟₁)
… | _ | (left 𝒟₂) = left (∨R₂ 𝒟₂)
… | (right ¬𝒟₁ | (right ¬𝒟₂) = right λ { (∨R₁ 𝒟₁) → ¬𝒟₁ 𝒟₁

; (∨R₂ 𝒟₂) → ¬𝒟₂ 𝒟₂
}

⁴See A. Abel [11] for an in-depth description of the type of algorithm underpinning Agda’s termination checker.
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whre ℋ and 𝒦 are proofs of

Γ ∣ ∅ ⊢ 𝐴 ∙ 𝑅 ≺ ∅ ∣ Γ ⊢ (𝐴 ∨ 𝐵) ∙ 𝑅

and

Γ ∣ ∅ ⊢ 𝐵 ∙ 𝑅 ≺ ∅ ∣ Γ ⊢ (𝐴 ∨ 𝐵) ∙ 𝑅

respectively.

With this change applied to all cases, Agdas termination checker will see that our induction is
sound. Finally, we prove that Definition 5.2 is well-founded in Agda, which is stated in terms of
accessibility and means that every sequent is accessible w.r.t. ≺

≺-wf : ∀ { s } → Acc _≺_ s

Now we have the final, guaranteed-by-Agda-to-terminate, form of isProvable

isProvable : (s : SequentWithCursor)
→ Either (derivationFor s) (¬ derivationFor s)

isProvable s = isProvable' s (≺-wf s)

6. Translating LJf to LJ
If our search procedure finds a proof tree in LJf then we may want a corresponding proof tree in
LJ. We will prove that this correspondence exists in this section.

For this proof we will be working with inference rules in both LJ and LJf, and though some of the
inference rules share the same names, context will make it clear which one is refereed to. In Agda,
the inference rules in LJ will be prefixed with LJ..
We state first some lemmas that we will make us of in the proof

,

Proposition 6.1 :  If Γ ∣ Δ ⊢ 𝐶 ∈ LJf then Γ ⧺ Δ ⊢ 𝐶 ∈ LJ.

In Agda we state this as

Proof :

We will proceed by induction on the depth of the proof tree 𝒟 of Γ ∣ Δ ⊢ 𝐶 .
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Base case 1 : 𝒟 = id
Γ, 𝑃𝑛 ∣ Δ ⊢ 𝑃𝑛 ∈ LJf

In this case we need to find a proof tree for Γ, 𝑃𝑛 ⧺ Δ ⊢ 𝑃𝑛 ∈ LJ. We can see that 𝑃𝑛 ∈
Γ, 𝑃𝑛, and so by lemma₁ we have a proof ℎ of 𝑃𝑛 ∈ Γ, 𝑃𝑛 ⧺ Δ. Now we can construct the
following proof tree for Γ′, 𝑃𝑛 ⧺ Δ ⊢ 𝑃𝑛 ∈ LJ

𝑃𝑛 ∈ Γ, 𝑃𝑛 ⧺ Δ
ℎ

id
Γ, 𝑃𝑛 ⧺ Δ ⊢ 𝑃𝑛

In Agda we handle the case like this

Base case 2 : 𝒟 = ⊥L2Γ, ⊥ | Δ ⊢ 𝐶

Handled analogously to case 1.

Base case 3 : 𝒟 = ⊤R
∅ ∣ Γ ⊢ ⊤

This case is trivial.

Inductive case 4 : 𝒟 = Γ ∣ ∅ ⊢ 𝐴
𝒟₁

Γ ∣ ∅ ⊢ 𝐵
𝒟₂

∧R
∅ ∣ Γ ⊢ 𝐴 ∧ 𝐵

In this case we need to find a proof tree for ∅ ⧺ Γ ⊢ 𝐴 ∧ 𝐵. By the inductive hypothesis we
have proof trees ℰ1 and ℰ2 of

Γ ⧺ ∅ ⊢ 𝐴 and Γ ⧺ ∅ ⊢ 𝐵

respectively. By lemma₂ and strong weakening we have proof trees ℰ′
1 and ℰ′

2 of

∅ ⧺ Γ ⊢ 𝐴 and ∅ ⧺ Γ ⊢ 𝐵

respectively. We now construct a proof tree for ∅ ⧺ Γ ⊢ 𝐴 ∧ 𝐵

∅ ⧺ Γ ⊢ 𝐴
ℰ′

1
∅ ⧺ Γ ⊢ 𝐵

ℰ′
2

∧R
∅ ⧺ Γ ⊢ 𝐴 ∧ 𝐵

In Agda the case is handled like this
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Inductive case 5 : 𝒟 = Γ, 𝐵 | Δ ⊢ 𝐶 Γ, 𝑃𝑛 → 𝐵 | Δ ⊢ 𝐶 P→L
𝑃𝑛 ∈ Γ ∪ Δ

Inductive case 6 : 𝒟 = Γ ∣ 𝑃𝑛 → 𝐵, Δ ⊢ 𝐶
𝒟1

P→⟨
Γ, 𝑃𝑛 → 𝐵 ∣ Δ ⊢ 𝐶

In this case we need to find a proof tree for Γ, 𝑃𝑛 → 𝐵 ⧺ Δ ⊢ 𝐶 . By the inductive hypothesis
on 𝒟1 we have a proof tree ℰ1 of

Γ ⧺ 𝑃𝑛 → 𝐵, Δ ⊢ 𝐶

by strong weakening and lemma₄ this is the same as

Γ, 𝑃𝑛 → 𝐵 ⧺ Γ ⊢ 𝐶

Inductive case 7 : 𝒟 = Γ, 𝐴2 → 𝐵, 𝐴1 | Δ ⊢ 𝐴2

𝒟1
Γ, 𝐵 | Δ ⊢ 𝐶

𝒟2

→→L
Γ, (𝐴1 → 𝐴2) → 𝐵 | Δ ⊢ 𝐶
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In this case we need to find a proof tree for Γ, (𝐴1 → 𝐴2) → 𝐵 ⧺ Δ ⊢ 𝐶 , which, by the
definition of ⧺ is the same as Γ ⧺ Δ, (𝐴1 → 𝐴2) → 𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω

⊢ 𝐶 .

By the inductive hypothesis on 𝒟1 we have a proof tree ℰ1 of

Γ, 𝐴2 → 𝐵, 𝐴1 + +Δ ⊢ 𝐴2.

By strong weakening this gives us a proof tree ℰ′
1 of

Ω, 𝐴1, 𝐴2 → 𝐵 ⊢ 𝐴2

By the inductive hypothesis on 𝒟2 we have a proof tree ℰ2 of

Γ, 𝐵 ⧺ Δ ⊢ 𝐶.

By strong weakening this gives us a proof tree ℰ′
2 of

Ω, 𝐵 ⊢ 𝐶

By strong identity we have a proof tree ℰ3 of Ω, 𝐴1, 𝐴2, 𝐴1 ⊢ 𝐴2.

By strong identity we have a proof ℰ4 of Ω, 𝐴1, 𝐴2, 𝐵 ⊢ 𝐵.

Now we may construct a proof of Γ, (𝐴1 → 𝐴2) → 𝐵 ⧺ Δ ⊢ 𝐶

Ω, 𝐴1, 𝐴2, 𝐴1 ⊢ 𝐴2

ℰ3

→R
Ω, 𝐴1, 𝐴2 ⊢ (𝐴1 → 𝐴2) Ω, 𝐴1, 𝐴2, 𝐵 ⊢ 𝐵

ℰ4

→L
Ω, 𝐴1, 𝐴2 ⊢ 𝐵 →R

Ω, 𝐴1 ⊢ 𝐴2 → 𝐵 Ω, 𝐴1, 𝐴2 → 𝐵 ⊢ 𝐴2

ℰ′
1

cut
Ω, 𝐴1 ⊢ 𝐴2 →R

Ω ⊢ 𝐴1 → 𝐴2 Ω, 𝐵 ⊢ 𝐶
ℰ′

2

→L
Ω ⊢ 𝐶
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All other cases are handled analogously.

□

7. Conclusions and future work
We have developed a proof searching procedure for IPC in Agda, based on sequent calculus, and
proven it to be correct. Here is a proof tree of disjunction being commutative as given by the search
procedure and as a pen-and-paper proof

∨L (id-f⟨ (∨R₂ id)) (id-f⟨ (∨R₁ id))

id
𝑃1 | ∅ ⊢ 𝑃1 ∙ 𝑅 ∨R2∅ | 𝑃1 ⊢ 𝑃2 ∨ 𝑃1 ∙ 𝑅 id⟨

𝑃1 | ∅ ⊢ 𝑃2 ∨ 𝑃1 ∙ 𝑅

id
𝑃2 | ∅ ⊢ 𝑃2 ∙ 𝑅 ∨R1∅ | 𝑃2 ⊢ 𝑃2 ∨ 𝑃1 ∙ 𝑅 id⟨

𝑃1 | ∅ ⊢ 𝑃2 ∨ 𝑃1 ∙ 𝑅 ∨L
𝑃1 ∨ 𝑃2 | ∅ ⊢ 𝑃2 ∨ 𝑃1 ∙ 𝑅

The proof tree in LJf can then be translated to a proof tree in LJ, giving us

∨L head (∨R₂ (id head)) (∨R₁ (id head))
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head
𝑃1 ∨ 𝑃2 ∈ 𝑃1 ∨ 𝑃2

head
𝑃1 ∈ 𝑃1 ∨ 𝑃2, 𝑃1 id
𝑃1 ∨ 𝑃2, 𝑃1 ⊢ 𝑃1 ∨R2𝑃1 ∨ 𝑃2, 𝑃1 ⊢ 𝑃2 ∨ 𝑃1

head
𝑃2 ∈ 𝑃1 ∨ 𝑃2, 𝑃2 id
𝑃1 ∨ 𝑃2, 𝑃2 ⊢ 𝑃2 ∨R1𝑃1 ∨ 𝑃2, 𝑃2 ⊢ 𝑃2 ∨ 𝑃1 ∨L

𝑃1 ∨ 𝑃2 ⊢ 𝑃2 ∨ 𝑃1

If the search procedure fails to find a proof tree for the sequent s it returns a function s → bot, i.e. a
proof that no proof tree of 𝑠 exists. Here is a proof that the law of excluded middle does not hold, as
given by the proof searching procedure (after some manual cleanup)

The procedure can also handle more complicated problems, for instance, it can find a proof tree of a
tripple-negated version of an unsatisfiable boolean formula in conjunctive normal form

¬¬¬((𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3)

∧ (¬𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3)).

However, the proof tree is quite lengthy, with over 27300 inference rules. Here are the first seven
lines of the proof tree

⋮ ∧L
⊥→⊥, ((𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ 𝑃3)) | ¬𝑃1 ⊢⊥ ∙ 𝑅 P→⟨

⊥→⊥, ((𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ 𝑃3)), ¬𝑃1 ∣ ∅ ⊢⊥ ∙ 𝑅 ⋮ ∨L
⊥→⊥, ((𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ 𝑃3)), ¬𝑃1 ∨ ¬𝑃2 ∣ ∅ ⊢⊥ ∙ 𝑅 ⋮

∨L
⊥→⊥, ((𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ 𝑃3)), ¬𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3 ∣ ∅ ⊢⊥ ∙ 𝑅 ∧L

⊥→⊥, ((𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3)) ∣ ∅ ⊢⊥ ∙ 𝑅
⊥L2⊥ ∣ ∅ ⊢⊥ ∙ 𝑅 →→L

¬¬((𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3)) ∣ ∅ ⊢⊥ ∙ 𝑅
→R

∅ ∣ ∅ ⊢ ¬¬¬((𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ 𝑃2 ∨ ¬𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ 𝑃3) ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ ¬𝑃3)) ∙ 𝑅

Future work

A natural direction for future research is to prove that the search procedure is complete in Agda.
Since we have already established that the search procedure is correct it would be enough to prove
this weaker version of completeness

completeness-irrefutable : ∀{Γ}{C} → Γ ⊨ C → ¬ ¬ (Γ ∣ ∅ ⊢ C ∈LJf)

The benefit of this approach is that we may employ classical reasoning for this proof using double
negation translation.
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